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CHAPTER 1 
INTRODUCTION 

 
  

 
 

 The first step in routing is to collect network state information. This information is 

generally obtained from a link state protocol such as Open Shortest Path First. Link 

state protocols periodically broadcast a node�s state to every other node so that each 

node knows the network topology and the state of every link. This would have been an 

acceptable means of broadcasting and maintaining network state information had it not 

been for the phenomenal growth of networks these days. As the network size grows, it 

becomes unrealistic to broadcast its entire topology to every node in the network as 

this will take an enormous amount of space, time and bandwidth. Here are a few 

proposed solutions to deal with the scalability problem:  

(i) Reducing the frequency of topology updates 

(ii) Reducing the size of topology updates 

(iii) Combining the above two techniques 

The goal of frequency reduction is to generate routing update messages as 

infrequently as possible without compromising routing performance [1]. The goal of size 

reduction is to reduce the size of these messages while preserving routing 

performance. This work deals with the topology updates size reduction technique. 

 
  

1.1 Topology Aggregation 
 
 

 Topology updates size reduction leads to the concept of Topology Aggregation. 

Topology aggregation is perhaps the most important technique to achieve scalability in 

Quality-of-Service (QoS) routing1 and routing in general, since it can potentially reduce 

the amount of link state update information by orders of magnitude [3].   It is achieved 

                                                        
1 Quality of Service routing identifies paths that meet the Quality of Service requirements and selects one that leads 
to high overall resource efficiency [2]. 
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by grouping neighboring nodes of the network into smaller and manageable routing 

domains.  The process of topology aggregation as discussed in [3] usually consists of 

four steps: 

(i) Grouping or partitioning the network into domains and forming the 

hierarchical routing              

(ii) Deriving the port-to-port distances in each domain 

(iii) Representing the port-to-port distances in a compact manner 

(iv) Exchanging the aggregated information among domains 

Thus, the internal details of a domain are aggregated before they are broadcast to 

other domains. This means that all the nodes within a domain have a complete view of 

their domain, but outside nodes only have an aggregated view. External nodes will 

make use of this aggregated information to make routing decisions, hence the 

aggregated topology must represent the domain state information as accurately as 

possible, else routing will suffer greatly. An efficient topology aggregation scheme, 

thus, is one that provides a proper balance between topology compaction and the 

impact of this compaction on the routing performance. 

 

1.2 Topology Aggregation Schemes 
 
 

In the Asynchronous Transfer Mode (ATM) Forum, Private Network-Network 

Interface (PNNI) [4] standard proposed a possible topology aggregation protocol. In 

this protocol, nodes in a network are grouped hierarchically into different peer groups. 

Although PNNI defines how the aggregated peer group should look like, it does not 

specify how to do the aggregation [5]. This choice is left for vendor differentiation. 

There exist several proposed topology aggregation schemes. All the schemes seek to 

summarize the topology of the routing domains as accurately as possible. 

The Full Mesh representation is the basis for most other aggregation schemes. 

The idea is to first reduce the topology of a routing domain into its full mesh 

representation, which only consists of the border nodes of the domain. Border nodes 

are those nodes that are connected via physical links to nodes belonging to external 

domains. In the full mesh, each pair of border nodes is connected by one or several 
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logical links2. These logical links are then assigned weights.  After a domain topology is 

reduced to its full mesh, it may be further aggregated into more compact forms. This 

reduction is usually done by pruning links from the full mesh. In Section 2, existing 

topology aggregation schemes will be surveyed. 

 
1.3 Topology Aggregation for Multiple Additive Metrics 

 
 
Link metrics may be additive or non-additive. An additive metric associated with 

every link along a path is added up to determine if a path is acceptable. An example of 

additive metric is delay. On the other hand, a non-additive metric associated with every 

link is used to independently determine whether that link can be a part of the path or 

not. An example of non-additive metric is bandwidth. Effective topology aggregation 

schemes have been developed for networks with one additive or non-additive metric 

[6]. However, aggregating topologies with multiple additive metrics still poses 

significant challenges. We will use an example to show the difference between 

aggregating topologies with one metric and multiple additive metrics.  Consider the 

topology in Figure 1.1. Let us first assume that each link contains one additive metric 

as shown in the figure and that the edge nodes are node 1 and node 2. In this case, the 

best path from node 1 to node 2 can be easily found to be 1-3-2 with metric 20 using 

any standard shortest path algorithm such as Bellman-Ford or Djikstra�s Shortest Path 

Algorithm. 

 

 
Figure 1.1.  Domain topology with links having one additive metric 

 

                                                        
2 A logical link between two nodes is a physical link or a physical path between them. 
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Figure 1.2.  Domain topology with links having two additive metrics 

 

 

 

Now, consider the case when two additive metrics are involved as shown in figure 1.2. 

There are two best paths between the nodes 1 and 2. The first path is 1-0-2 with 

metrics (40, 20) and the second path is 1-3-2 with metrics (20, 40). Both these paths 

are the best paths with respect to one additive metric. This example shows two 

significant differences between aggregating topology with one metric and two metrics. 

First, with two metrics, multiple paths between two nodes might need to be computed. 

Further, the problem of computing �optimal� paths with multiple additive metrics is NP-

hard [7]. Therefore, aggregating topology of a domain when multiple additive metrics is 

much more difficult than aggregating topologies with one metric. Second, with multiple 

metrics, it is not clear whether a path is better or worse than another path, this leads to 

the difficulty in evaluating a topology aggregation scheme. 

 In this paper, we propose a method to compute the full mesh aggregation with 

limited path heuristic [2] and demonstrate that the distortion of the heuristic is small. 

We also propose a novel area-differences based scheme to evaluate the performance 

of an aggregation. Finally we develop a number of spanning tree based aggregations 

and evaluate them. 

 Having introduced the concept of topology aggregation and the challenges in 

aggregation with multiple additive metrics in Section 1, the rest of the paper is 

organized as follows.  Section 2 discusses various existing aggregation schemes and 

describes the proposed performance evaluation scheme. Section 3 discusses the 
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computation of the full mesh and the spanning tree based aggregation schemes. The 

results of performance evaluation are presented in Section 4. Section 5 concludes the 

paper. 
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CHAPTER 2 
AGGREGATION SCHEMES AND EVALUATION SCHEME 

 
 
 
 

2.1 Existing Topology Aggregation Schemes 
 
 

 As discussed in section 1, in the ATM forum, PNNI standard proposed a 

possible topology aggregation protocol. However, it does not specify how to do the 

aggregation. In this section, we discuss the advantages and disadvantages of existing 

aggregation schemes.  
 

Full Mesh Representation 
 

 The Full Mesh representation [8], [9] of a routing domain is constructed by 

connecting each pair of border nodes by logical links. If each link in the domain has 

only one associated metric, then the full mesh retains all the distances between the 

border nodes of the original topology. This is by far the most accurate representation. 

However it is also the least compact one. A full mesh topology update is a matrix of 

size n(n-1)/2, where n is the number of border nodes. This scheme does not scale well 

if the size of the network and thereby the size of the domain grows.  

 

Single Node Representation 
 

 While the full mesh scheme that advertises too much information lies on one end 

of the spectrum, the Single Node scheme [8] lies on the other. This approach collapses 

a routing domain with multiple nodes into a single virtual node. Obviously, it offers the 

greatest reduction of advertised information as it reduces the routing information size 

complexity to O(1). It is also very scalable. This scheme hides the border nodes and 

assigns a matrix of parameters to the virtual node. These parameters are derived from 
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the topology information of the original domain. A common way to assign the matrix of 

parameters to the virtual node is to find the best, worst or the average value for every 

metric associated with all the links in the domain and give the virtual node this value. 

Another technique is to assign the virtual node metrics of the diameter of the domain. 

Though this approach reduces the size of the update messages drastically, it may not 

represent the domain adequately enough to make efficient routing decisions. 

 

Star Representation 
 

 The Star representation [8] is a compromise between the two extreme 

representations: full mesh and single node. In this scheme, border nodes are 

connected via virtual links to a virtual center node, sometimes called as the nucleus [5]. 

Links going from the border nodes to the nucleus as well as the links going from the 

nucleus to the border nodes are assigned weights. These weights are obtained from 

the appropriate links in the full mesh. Lui and Nahrstedt propose a method to assign 

weights to the links in the star representation in [5]. To make the representation more 

accurate, bypasses may be introduced. Bypasses in the star scheme are links 

connecting two border nodes and do not pass through the nucleus. 

 

Spanning Tree Representation 
 

A Spanning Tree representation [6] of a domain is a tree whose nodes are the 

border nodes of a domain and each pair of nodes has only one unique path between 

them. Therefore a domain with n border nodes, when aggregated into a spanning tree 

will have n-1 links that need to be advertised. Given the topology of any domain, the 

first step is to convert it into a full mesh. When each link has only one associated 

metric, a spanning tree can be created by choosing appropriate links between border 

nodes.  When there are several metrics involved, a method to first convert these 

metrics into one virtual metric or to choose the most important metric must be applied 

before the tree is constructed.  To make the representation more accurate, links that 

are crucial, or links that are used frequently may be included in the tree. If each link 
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has only one associated metric, then the scheme is fairly accurate. It is also much more 

scalable than the full mesh. 

 

2.2 Proposed Evaluation Scheme 
 
 

All aggregation schemes may deviate from the original topology by varying 

degrees. Some amount of distortion of information is invariably introduced. This 

distortion leads to an increase in the rates of connection rejection for those calls that 

could have been supported and ultimate failure of connection requests that are 

accepted. Therefore, it is greatly desirable to reduce this distortion to the maximum 

possible extent.  An effective aggregation scheme, thus, is one in which distortion is 

almost zero. In other words, an effective aggregation allows for the admittance of calls 

whose requirements can be supported by the domain and rejects those whose 

requirements cannot. An aggregation scheme may be evaluated by comparing its 

performance against the results obtained when no aggregation is done. 

For topologies with one additive metric, the distortion of an aggregation scheme 

can easily be defined as length (shortest path in the aggregation graph) / length 

(shortest path in the original graph). Unfortunately, this definition cannot be extended to 

the case with two metrics since the concept of shortest path in networks with multiple 

metrics is not well defined.  Consider that a link in the original network with metrics (5, 

5) is approximated by a link with metrics (5, 6) in aggregation scheme X and by a link 

with metrics (7, 5) in another aggregation scheme Y. In this case how do we decide 

which aggregated link represents the original link most accurately? In other words, how 

do we evaluate the performances of the aggregation schemes X and Y and decide 

which scheme is better than the other? 

 We propose an area-differences based scheme to evaluate the performance of 

an aggregation. For an aggregation to be distortion free, it must advertise the same 

information to external domains that would be advertised if no aggregation were done. 

To evaluate an aggregation using the area-differences based scheme, QoS metrics 

supported by a set of �optimal� paths between two nodes are represented by areas. We 

will assume that the two additive QoS metrics are delay and cost. For example, 
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consider the case when there exist three paths between two nodes A and B with 

associated metrics (1, 3), (2, 2), and (3, 1). The area covered by the paths between A 

and B can be found as follows: 

(i) Sort the list of paths by the first metric 

The above list in the sorted form is (1, 3), (2, 2), (3, 1). 

(ii) area = (1 - 0) * 3 + (2 -1) * 2 + (3 � 2) * 1 = 6 

In general, for a sorted list, (x1, y1), (x2, y2), (x3, y3),���, (xn, yn)  

area = (x1 � 0 ) * y1 + (x2 � x1) * y2 + (x3 � x2) * y3 +����+ (xn-xn-1) * yn ------- (1) 

Any path with QoS metrics falling in this area is a better path than one or more original 

paths. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. Area covered by paths with metrics (1, 2), (2, 2) and (3, 1) 
 

 
Figure 2.2. Geometric representation of the four area regions 
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In general, the set of paths between two nodes partitions QoS metrics space into four 

regions as shown in Figure 2.2.  

(i) Requests whose QoS requirement are in region 2 can be satisfied by the 

set of paths, while requests whose QoS requirement are in regions 1, 3, 

and 4 cannot be satisfied. 

(ii) Paths whose QoS metrics in region 2 are worse than one or more paths in 

the set of paths. Paths whose QoS metrics in region 1 are better than one 

or more paths in the set of paths. Paths whose QoS metrics in region 3 

and 4 are neither better nor worse than paths in the set.  

In the aggregated graph, another set of paths with potentially different QoS 

metrics are used to approximate the original set of paths. The quality of the 

approximation scheme can be determined by measuring how closely the approximated 

contour matches the original contour. Figure 2.3 depicts this case. Let the solid line 

denote the QoS performance in the original network and the dotted line denote the 

approximation. The difference between these two contours can be measured by the 

differences in the areas as shown in the figure. There can be two kinds of differences 

as indicated in Figure 2.3 by region 1 and region 2. Requests whose QoS requirements 

fall in region 1 can be satisfied by the original graph but cannot be satisfied in the 

aggregated graph. Requests whose QoS requirements fall in region 2 cannot be 

satisfied in the original graph, but can be satisfied in the aggregated graph (hence, the 

aggregated graph mis-predicts).   Since in both cases, the aggregated graph does not 

reflect the original graph, we will call both region 1 and region 2 in Figure 2.3 mis-

predict regions. Intuitively, a better aggregation scheme should have a smaller mis-

predict region. Based on this intuition, we propose to use the following formula to 

define the distortion of a topology aggregation scheme for networks with two additive 

metrics: 

  Distortion = sum of the size of all mis-predict regions / size of original contour(size of 

region 1) 
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Figure 2.3. Diagrammatic representation of area differences 
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CHAPTER 3 
TOPOLOGY AGGREGATION FOR NETWORKS WITH TWO ADDITIVE 

METRICS 
 
 
 
 

 The network is modeled as a directed graph G(N, E), where N is the set of nodes 

representing routers and E is the set of edges representing links that connect the 

routers. Each edge e = u → v is associated with two independent weights w1(e) and 

w2(e). The notation w(e) = w(u → v) = (w1(e), w2(e)) is used to represent the weights of 

a link. It is assumed that the weights associated with a link are additive. Thus for a path 

p = vo → v1→v2→ � → vn, where vi Є E, w1(p) = ∑i = 1,..,n w 1 (vi-1 → vi) and w2(p) = ∑i = 1,..,n w 2 

(vi-1 → vi). We will use delay and cost as the two additive metrics in all examples in this 

section. 

 
 

3.1 Computing Full Mesh Summary 
 
 
 The first step in topology aggregation is to compute the full mesh summary that 

gives QoS metrics that can be supported between each pair of border nodes. As 

described in Section 1, a full mesh representation is constructed by connecting each 

pair of border nodes of the domain by one or several logical links. Each link in the 

network is associated with two additive metrics and assumed to be symmetric, that is, a 

link has the same properties in both directions.  As mentioned earlier, computing paths 

between two nodes with two additive metrics is an NP-hard problem. Fortunately, with 

the recent advances on multi-constrained QoS routing, effective heuristics for this 

problem have been developed. We propose to use the limited path heuristic [2] to 

compute the paths between all edge routers so that the full mesh topology can be 

obtained.  The heuristic is a minor modification of the version in [2] in that the QoS 

requirement is no longer a factor in the selection of paths and thus, all optimal paths 

can potentially be stored.  
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The limited path heuristic uses an extended Bellman-Ford algorithm, which 

differs from the original Bellman-Ford algorithm as described in [11] in that it has each 

node u maintain a set PATH (u) that records all optimal paths from the source node to 

u.  An optimal path between two nodes satisfies particular QoS constraints that no 

other path can. This algorithm can find a path that satisfies all the QoS constraints 

when such a path exists by recording all optimal paths in each node [2]. Since the 

number of optimal paths from the source node to each node u may grow exponentially 

with the size of the network, a check is placed in the algorithm (line (9)) so that a new 

path is added to the set only if the size of the set is less than NPATH. As a result, it is 

possible that not all optimal paths between the source and destination nodes are found, 

and thus, only an approximate solution is found. Thus, the value for NPATH must be 

selected carefully so that the routing performance can be maintained. As will be 

demonstrated in the performance evaluation section, the limited path heuristic performs 

fairly well in practice and the full mesh representation produced with the heuristic gives 

a fairly accurate approximation of the original network. The algorithm is summarized as 

follows: 

 

           RELAX(u, v, w) 

(1) For each w(p) in PATH(u) 

(2)  flag = 1 

(3)  For each w(q) in PATH(v) 

(4)   if(w(p) + w(u, v) ≥ w(q)) then 

(5)    flag = 0 

(6)   if(w(p) + w(u, v) < w(q)) then 

(7)    remove w(q) from PATH(v) 

(8)  if(flag = 1) then 

(9)   if (size(PATH(v)) < NPATH) add w(p) + w(u, v) to PATH(v) 

 

Limited-path-heuristic(G, w, src, dst) 

(1) For i = 0 to |N(G)| - 1 

(2)  PATH(i) = Φ  
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(3) PATH(src) = {0} 

(4) For i = 1 to |N(G)| -1 

(5)  For each edge (u, v) Є E(G) 

(6)   RELAX(u, v, w) 

 

  
       Figure 3.1.  Domain topology       Figure 3.2.  Full mesh of the domain 

 

 

 

In the figure 3.1, the entire topology of the domain is seen. We have border 

nodes (1, 2, 3 and 4) as well as internal nodes (nodes shown in dotted lines). Links 

between the nodes have two associated metrics indicated as (delay, cost). In the full 

mesh (as shown in figure 2.2) paths between each pair of border nodes are shown. 

Some pairs can have more that one optimal path between them. In the figure 3.2, 

border nodes 1 and 2 have two paths between them. The first path with metrics (8, 2) is 

better in terms of cost as compared to the second path which has associated metrics 

(6, 7). On the other hand, path (6, 7) is better that path (8, 2) in terms of delay. For 

these two paths between nodes 1 and 2 to have been found, the value of NPATH had 

to be at the very least 2. 
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3.2 Computing Spanning Tree Aggregation 
 
 

   A full mesh aggregation of a domain constructed using the method described 

above would have at least n(n-1)/2 links that need to be advertised, where n is  the 

number of border nodes. This is still a large amount of data. The mesh is aggregated 

further so that fewer links would need to be advertised, thereby reducing the amount of 

space, time and bandwidth that each topology update would require. We compute a 

spanning tree from the full mesh aggregation. Since all spanning tree construction 

algorithms work for networks with a single metric, we need to first convert the weights 

on logical links into a single weight. Notice that the goal is to produce a spanning tree 

with the minimum distortion, which is based on area and is defined in Section 2. There 

are two issues in this process: (1) converting the weights on a logical link into a single 

value, and (2) computing the spanning tree with minimal distortion. We follow the 

methods in [6] to compute spanning trees. Specifically, we consider Minimum Spanning 

Trees (MST), Random Spanning Trees (RST), and a combination of these two kinds of 

trees.  To generate a MST, a list of all the links from the full mesh is created and is 

sorted in the ascending order by the weight. Links are added one by one to the tree 

such that the properties of a spanning tree do not get violated. In order to construct a 

RST, a sorted list is not required. Next, we will describe various schemes to convert 

weights into a single value.  

  
 

Area-Based Spanning Trees 
 
 
 The first set of trees is area-based. Each logical link is represented by a weight 

equal to the area covered by the physical paths found between the pair of nodes 

connected by that link. The reason for using area as the metric is that we are trying to 

produce a spanning tree where the distance between two nodes has the smallest area.  

Notice that area-based trees may not achieve that since area is neither additive nor 

concave. Area-based full mesh representation of figure 3.2 obtained by using equation 

(1) is shown in figure 3.3. 
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      Figure 3.3. Full mesh with weights                  Figure 3.4. Full mesh with  
     represented by area         weights represented by 
            min( a1 * delay  +  a2 * cost) 
 
 
 
 
Sum-Based Spanning Trees  
 
 

Sum-based spanning tree is constructed by conversion of two weights into one 

weighted sum of the two weights. Traditionally, this has been a typical method to 

convert multiple metrics into one so that algorithms for one metric can be used to solve 

routing problems with multiple metrics. The weight of a link is derived as: 

 weight of link = function( a1 * delay  +  a2 * cost) 

Here a1 and a2, which gives weights to the two metrics, are parameters that are 

inputted by the user. This approach allows priorities to be given to different metrics in 

the optimization. In the examples below, we will assume a1 = 1 and a2 = 1. There are 

three different ways to assign weights based on the function used. 

 

Case 1: weight of link = min(a1 * delay + a2 * cost) 

Referring to figure 3.2, the weight of the logical link between nodes 1 and 2 can be 

computed as: 

 weight of link = min((1 * 8 + 1 * 2), (1 * 6 + 1 * 7)) 

   = 10 

The new full mesh representation is shown in figure 3.4. 
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Case 2: weight of link = max(a1 * delay + a2 * cost) 

The weight of the logical link between nodes 1 and 2 can be computed as: 

 weight of link = max((1 * 8 + 1 * 2), (1 * 6 + 1 * 7)) 

   = 13 

The full mesh with weights computed using the max function is shown in figure 3.5. 

 
 

 

 

  

         

 

 
 
 
 
 
 
 
 
 
Figure 3.5. Full mesh with weights               Figure 3.6. Full mesh with weights 
represented by                 represented by 
max(a1 * delay + a2 * cost)                                  min+max](a1 * delay + a2 * cost)/2 
 

 

 
Case 3: weight of link = [min+max](a1 * delay + a2 * cost)/2 

The weight of the logical link between nodes 1 and 2 can be computed as: 

 weight of link = [min+max]((1 * 8 + 1 * 2), (1 * 6 + 1 * 7))/2  

Here min = 10 and max = 13, hence weight of link = (10+13)/2 = 11.5 

The full mesh with weights using the (min+max)/2 function is shown in figure 3.6. 
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Non-Linear Path Length-Based Spanning Trees 
 
 

This set of trees is generated by computing the weights for the logical links using 

the formula: 

 weight of link = function(min(delay/a1, cost/a2)) 

Here again we have three cases based on the function used. a1 and a2 are user 

inputs. This approach is motivated by the concept of non-linear path lengths [10] that 

are commonly used in QoS routing. As defined in [10], given the QoS constraint (a1, 

a2), the non-linear length of a link is defined as min(delay/a1, cost/a2). This concept is 

used to convert multiple QoS metrics into one so that traditional algorithms that work on 

a single metric can be applied to solve multi-constrained QoS routing problems.   

 

Case 1: weight of link = min(min(delay/a1, cost/a2)) 

The weight of the link between nodes 1 and 2 assuming a1 = 100 and a2 = 100, can be 

computed as: 

 weight of link = min(min(8/100, 2/100), min(6/100, 7/100)) 

   = min(0.02,0.06) = 0.02 

The full mesh with weights computed using this function is shown in figure 3.7. 

 

Case 2: weight of link = max(min(delay/a1, cost/a2)) 

The weight of the link between nodes 1 and 2 can be computed as: 

 weight of link = max(min(8/100, 2/100), min(6/100, 7/100)) 

   = max(0.02,0.06) 

   = 0.06 

The full mesh with weights computed using this function is shown in figure 3.8. 

 

Case 3: weight of link = [min+max](min(delay/a1, cost/a2))/2 

The weight of the link between nodes 1 and 2 can be computed as: 

 weight of link = [min+max](min(8/100, 2/100), min(6/100, 7/100))/2 

   = [min+max](0.02,0.06)/2 

   = 0.04 
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The full mesh with weights computed using this function is shown in figure 3.9. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
   Figure 3.7. Full wesh with weights                       Figure 3.8. Full mesh with weights 
   represented by                      represented by 
   min(min(delay/a1, cost/a2))                   max(min(delay/a1, cost/a2)) 
 
 
 

 

 

 

  

 

 
 
 
 
Figure 3.9. Full mesh with weights represented by [min+max](min(delay/a1, cost/a2))/2 

1 2 

3 4 
0.04 

0.04 

0.06 

0.04 0.04 

0.02 1 2 

3 4 
0.06 

0.04

0.06 

0.04 0.04 

0.06 

1 2

3 4
0.05 

0.06

0.04 

0.04 0.04 

0.02 



20 

CHAPTER 4 
PERFORMANCE EVALUATION 

 

 

 

 In this section, we present the results obtained by performing simulations on 

topologies with 100, 200, 300 and 400 nodes in one domain. These topologies were 

generated by using the Georgia Tech-Internetwork Topology Models (GT-ITM) graph 

generation package [12].  This package supports the generation of structured network 

topologies that comprise of multiple administrative domains. In the simulation, the 

weights for each link, delay and cost, are randomly generated in the range [1-100]. 
 
 

4.1 Evaluation of Full Mesh Summary 
 
 

 As discussed in Section 1, a full mesh summary of a domain is the most 

accurate representation. However, since we use a heuristic to construct the full mesh 

representation, we must make sure that the full mesh representation accurately 

represents the original network. This section reports the results of the evaluation of the 

full mesh representation. 

 We performed experiments on domains of various sizes with different limited 

path heuristic to find the degree of distortion present in the full mesh summary 

generated. The degree of distortion in an aggregation can be found by comparing the 

area covered between any two border nodes with limited path heuristic set to x against 

the area covered by them when an exhaustive search is done, that is, limited path 

heuristic is set to ∞. 

 The domains under consideration were of sizes 100 nodes with 20 border 

nodes, 200 nodes with 40 border nodes, 300 nodes with 60 border nodes and 400 

nodes with 80 border nodes.  
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Figure 4.1. Limited path heuristic study for domain with 100 nodes and 20 border 

nodes 
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Figure 4.2. Limited path heuristic study for domain with 200 nodes and 40 border 

nodes 
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Figure 4.3. Limited path heuristic study for domain with 300 nodes and 60 border 

nodes 
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Figure 4.4. Limited path heuristic study for domain with 400 nodes and 80 border 

nodes 
 

Table 4.1 � Performance Evaluation of Full Mesh Summary 

Limited Path Heuristic 

 

Number of 

Nodes 

Number of 

Border Nodes 

Distortion < 

10% 

Distortion < 5% Distortion = 0 

100 20 3 4 8 

200 40 6 7 18 

300 60 7 9 19 

400 80 9 10 24 
 
 
 
 
 

The information represented by the graphs in figures 4.1, 4.2, 4.3 and 4.4 is 

summarized in table 4.1. It is observed from this study that 8 paths stored between a 

pair of border nodes for a 100-node domain with 20 border nodes, 18 paths for a 200-

node domain with 40 border nodes, 19 paths for a 300-node domain with 60 border 

nodes and 24 paths for a 400-node domain with 80 border nodes will yield a full mesh 

summary that has zero distortion. As low as 3, 6, 7 and 9 paths respectively can be 

stored for faster performance of the EBFA in networks where a distortion of less than 

10% is acceptable. Figure 4.5 shows the distortion histogram for the 100-node domain 
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when the limited path heuristic was set to 3. It is obvious from the histogram that the 

number of links with zero distortion is very high. 

In summary, these results indicate that the limited path heuristic indeed results 

in accurate full mesh representation by maintaining a relative small number of paths 

(e.g. 10) in each node even for a relative large network. In the next section, we will 

evaluate the schemes to further reduce the size of the summary. 
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Figure 4.5. Distortion histogram for a 100-node domain with 20 border nodes and 

limited path heuristic = 3 
 
 
 
 

4.2 Evaluation of Spanning Tree Summary 
 
 

 To evaluate the performance of the spanning tree aggregation, a number of 

MSTs, RSTs, and a combination of MSTs and RSTs were generated. The goal of the 

experiments is to compare the performance of the trees and decide which one maps 

the original topology of the domain with the least amount of distortion. The first 

simulation was done on a 100-node domain with 20 border nodes. We did a 

comparative study between the performance of one MST and one RST. Each MST and 

RST was constructed from the full mesh of the domain with the weights assigned 

according to the different methods described in Section 3.The values for a1 and a2 for 

the construction of sum-based trees were set to 1 and their values for the construction 
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of the non linear path-length based trees were set to 100. Table 4.2 shows the results 

obtained. 
 
 

 
Table 4.2. Performance Comparison of MST vs. RST for a 100-node Domain 

100 Nodes with 20 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 1.15 1.83 

Sum Based Case 1 1.89 3.77 

Sum Based Case 2 1.15 1.83 

Sum Based Case 3 1.29 1.92 

Path Length Based Case 1 1.99 2.94 

Path Length Based Case 2 1.39 1.92 

1 MST 

Path Length Based Case 3 1.58 2.39 

 

Area Based 64.48 270.90 

Sum Based Case 1 147.85 785.53 

Sum Based Case 2 131.38 804.32 

Sum Based Case 3 88.55 333.66 

Path Length Based Case 1 157.70 754.97 

Path Length Based Case 2 87.94 471.60 

1 RST 

Path Length Based Case 3 112.11 485.59 
 

 

 

 

Two concepts Average Difference Ratio and Standard Deviation are used to 

compare the performances. Difference Ratio is obtained by finding the difference in the 

area covered by a logical link in the full mesh and the area covered by it in the 

spanning tree scheme and dividing this difference by the area represented by the link 
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in the full mesh. We use the average difference ratio to describe the amount of 

distortion present in an aggregation. Standard deviation has its universal meaning. 

 

 

 
 
 

 

 

 

 
 

 

 
 
   
   Figure 4.6. Distortion Histogram                  Figure 4.7. Distortion Histogram 
   for area based MST                                      for area based RST 
 
 
 
 
 
   
 

 

 

 

 

 
  
   
 
   
   Figure 4.8. Distortion Histogram                  Figure 4.9. Distortion Histogram 
   sum-based MST with function                      sum-based RST with function   
   min(a1*delay + a2*cost)                               min(a1*delay + a2*cost) 
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  Figure 4.10. Distortion Histogram                 Figure 4.11. Distortion Histogram 
  sum-based MST with function                       sum-based RST with function   
  max(a1*delay + a2*cost)                               max(a1*delay + a2*cost) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  Figure 4.12. Distortion Histogram                Figure 4.13. Distortion Histogram 
  sum-based MST with function                      sum-based RST with function   
  [min+max](a1*delay + a2*cost)/2                 [min+max]( a1*delay + a2*cost)/2 
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  Figure 4.14. Distortion Histogram                 Figure 4.15. Distortion Histogram 
  path-based MST with function                       path-based RST with function   
  min(min(delay/a1,cost/a2))                            min(min(delay/a1,cost/a2)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 4.16. Distortion Histogram                 Figure 4.17. Distortion Histogram 
  path-based MST with function                       path-based RST with function   
  max(min(delay/a1,cost/a2))                           max(min(delay/a1,cost/a2)) 
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 Figure 4.18. Distortion Histogram               Figure 4.19. Distortion Histogram 
 path-based MST with function                     path-based RST with function   
 [min+max](min(delay/a1,cost/a2))/2             [min+ max](min(delay/a1,cost/a2))/2 
 
 

 

From table 4.2, it is clear that a MST summary of a domain performs several 

times better than a RST summary of that domain. Furthermore, it is shown that an area-

based MST and a sum-based MST with weights assigned using the function  

max(a1 * delay + a2 * cost). A sum-based MST with weights assigned using the 

function [min+max](a1 * delay + a2 * cost)/2 also perform relatively good. Distortion 

histograms for the MST and RST computed for the 100-node domain with 20 border 

nodes are presented in figures 4.6 � 4.19.To further validate our results, we performed 

similar experiments on the 200, 300 and 400 node domains. Table 4.3, 4.4 and 4.5 

summarize the results.  
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Table 4.3. Performance Comparison of MST vs. RST for a 200-node Domain 

200 Nodes with 40 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 4.01 5.29 

Sum Based Case 1 7.65 12.03 

Sum Based Case 2 3.54 4.30 

Sum Based Case 3 3.44 4.37 

Path Length Based Case 1 8.54 16.58 

Path Length Based Case 2 4.68 7.74 

1 MST 

Path Length Based Case 3 8.00 12.70 

 

Area Based 219.94 3857.12 

Sum Based Case 1 127.70 2251.93 

Sum Based Case 2 98.70 830.48 

Sum Based Case 3 81.14 658.54 

Path Length Based Case 1 133.27 2092.14 

Path Length Based Case 2 105.98 1431.84 

1 RST 

Path Length Based Case 3 99.33 987.17 
 

 

 

 

Again, it is clear that a MST out-performs a RST and an area-based MST, a sum-based 

MST with weights assigned using the function max(a1 * delay + a2 * cost) and a  sum-

based MST with weights assigned using the function [min+max](a1 * delay + a2 * 

cost)/2 introduce the lowest amount of distortion in the routing information as compared 

to the other MSTs.  
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Table 4.4. Performance Comparison of MST vs. RST for a 300-node Domain 

300 Nodes with 60 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 3.45 3.96 

Sum Based Case 1 5.66 7.18 

Sum Based Case 2 3.30 3.94 

Sum Based Case 3 3.55 4.03 

Path Length Based Case 1 17.32 45.48 

Path Length Based Case 2 5.36 7.10 

1 MST 

Path Length Based Case 3 8.10 12.02 

 

Area Based 102.12 1222.37 

Sum Based Case 1 124.38 1761.48 

Sum Based Case 2 89.62 515.61 

Sum Based Case 3 123.54 1337.44 

Path Length Based Case 1 174.27 1587.37 

Path Length Based Case 2 198.92 3368.50 

1 RST 

Path Length Based Case 3 170.50 1507.01 
 

Table 4.5. Performance Comparison of MST vs. RST for a 400-node Domain 
400 Nodes with 80 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 4.37 5.68 

Sum Based Case 1 8.47 10.85 

Sum Based Case 2 3.90 5.12 

Sum Based Case 3 5.08 7.05 

Path Length Based Case 1 42.57 125.58 

1 MST 

Path Length Based Case 2 8.92 11.15 
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Table 4.5-continued 
400 Nodes with 80 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

1 MST Path Length Based Case 3 11.55 16.32 

 

Area Based 102.11 1401.25 

Sum Based Case 1 113.03 795.13 

Sum Based Case 2 147.09 1877.76 

Sum Based Case 3 157.42 3743.76 

Path Length Based Case 1 124.30 933.83 

Path Length Based Case 2 98.13 1204.14 

1 RST 

Path Length Based Case 3 138.85 2053.48 
 
 
 
 
 
 The next set of experiments was done to evaluate the performances of three 

MSTs, three RSTs and a combination of one MST and two RSTs. The results obtained 

for the 100-node, 200-node, 300-node, 400-node domains are summarized in table 4.6-

4.9. From the results is shown that three overlapping MSTs perform much better that 

three RSTs as well as the combination of one MST and 2 RSTs.  

Between the three RSTs and the combination of one MST and two RSTs, the 

combination performs much better. It can now be stated that a Random Tree 

aggregation for a domain introduces the greatest degree of distortion and it is not 

advisable to use this representation else routing will suffer greatly. Furthermore it 

becomes obvious that the best way to assign the weights to the logical links is to use 

the area representation or the sum-based representation with case 2 or case 3 

functions.  
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Table 4.6. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a 
100-node Domain 

100 Nodes with 20 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 0.36 0.61 

Sum Based Case 1 0.48 0.93 

Sum Based Case 2 0.28 0.43 

Sum Based Case 3 0.33 0.56 

Path Length Based Case 1 0.99 1.70 

Path Length Based Case 2 0.32 0.54 

3 MST 

Path Length Based Case 3 0.48 1.05 

 

Area Based 7.48 52.9 

Sum Based Case 1 9.31 50.15 

Sum Based Case 2 12.41 67.81 

Sum Based Case 3 17.38 128.20 

Path Length Based Case 1 8.55 58.05 

Path Length Based Case 2 11.87 58.53 

3 RST 

Path Length Based Case 3 13.25 84.65 

 

Area Based 1.21 2.01 

Sum Based Case 1 1.15 2.87 

Sum Based Case 2 0.67 1.12 

Sum Based Case 3 0.97 1.65 

Path Length Based Case 1 0.89 2.20 

Path Length Based Case 2 0.76 1.23 

1 MST + 

2 RST 

Path Length Based Case 3 0.97 1.81 
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Table 4.7. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a 
200-node Domain 

200 Nodes with 40 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 0.94 1.21 

Sum Based Case 1 0.85 1.18 

Sum Based Case 2 0.99 1.17 

Sum Based Case 3 0.80 0.96 

Path Length Based Case 1 2.33 7.56 

Path Length Based Case 2 0.83 0.99 

3 MST 

Path Length Based Case 3 0.93 1.39 

 

Area Based 17.09 254.57 

Sum Based Case 1 18.11 202.98 

Sum Based Case 2 9.48 43.83 

Sum Based Case 3 9.60 56.41 

Path Length Based Case 1 9.17 47.67 

Path Length Based Case 2 19.01 274.92 

3 RST 

Path Length Based Case 3 18.17 34.23 

 

Area Based 2.27 3.38 

Sum Based Case 1 1.95 3.55 

Sum Based Case 2 2.04 2.96 

Sum Based Case 3 2.12 3.29 

Path Length Based Case 1 2.77 6.35 

Path Length Based Case 2 1.98 3.54 

1 MST + 

2 RST 

Path Length Based Case 3 2.34 1.91 
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Table 4.8. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a 
300-node Domain 

300 Nodes with 60 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 1.35 1.47 

Sum Based Case 1 1.41 1.63 

Sum Based Case 2 1.42 1.52 

Sum Based Case 3 1.30 1.40 

Path Length Based Case 1 2.48 6.82 

Path Length Based Case 2 1.70 1.89 

3 MST 

Path Length Based Case 3 1.56 2.00 

 

Area Based 18.23 239.80 

Sum Based Case 1 15.25 195.60 

Sum Based Case 2 21.48 281.56 

Sum Based Case 3 19.94 245.46 

Path Length Based Case 1 20.96 269.95 

Path Length Based Case 2 18.30 196.24 

3 RST 

Path Length Based Case 3 15.82 188.22 
 

Area Based 2.55 3.13 

Sum Based Case 1 2.09 2.80 

Sum Based Case 2 2.25 2.57 

Sum Based Case 3 2.24 2.42 

Path Length Based Case 1 3.77 8.59 

Path Length Based Case 2 2.25 2.73 

1 MST + 2 

RST 

Path Length Based Case 3 2.63 4.03 
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Table 4.9. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a 
400-node Domain 

400 Nodes with 80 Border Nodes Average 

Difference Ratio 

Standard 

Deviation 

 

Area Based 1.12 1.11 

Sum Based Case 1 1.56 1.87 

Sum Based Case 2 1.16 1.11 

Sum Based Case 3 1.08 1.01 

Path Length Based Case 1 2.96 6.97 

Path Length Based Case 2 1.67 1.71 

3 MST 

Path Length Based Case 3 1.42 1.56 

 

Area Based 83.93 3212.87 

Sum Based Case 1 67.43 2174.08 

Sum Based Case 2 120.42 4572.15 

Sum Based Case 3 94.16 4377.51 

Path Length Based Case 1 143.77 6267.20 

Path Length Based Case 2 29.87 578.33 

3 RST 

Path Length Based Case 3 123.37 5284.19 

 

Area Based 2.37 2.86 

Sum Based Case 1 2.52 3.96 

Sum Based Case 2 2.58 3.22 

Sum Based Case 3 2.54 3.06 

Path Length Based Case 1 4.78 12.95 

Path Length Based Case 2 2.50 3.64 

1 MST + 

2 RST 

Path Length Based Case 3 2.51 3.86 
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From all the spanning tree simulation results, we can conclude that to 

summarize the topology of domains with 100-400 nodes, three overlapping MSTs when 

used for the aggregation perform much better than a single MST and have a low 

degree of distortion. 
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CHAPTER 5 
CONCLUSION 

 
 
 
 

We have proposed in this paper a method to compute the full mesh summary 

with a limited path heuristic and demonstrated that distortion degree in the scheme 

when this heuristic is used is low. An area-differences based performance evaluation 

scheme is proposed to evaluate the distortion degree in different aggregations. Finally, 

we have computed several MSTs and RSTs and evaluated their performances. We 

have shown through simulation results that MSTs perform much better than RSTs and 

three overlapping MSTs aggregate a domain much more accurately than one single 

MST. It was also shown that when the weights assigned to a logical link use the area 

representation or the sum based representations with functions max(a1 * m1 + a2 * m2) 

or [min+max](a1 * m1 + a2 * m2)/2 , where m1 and m2 are any two additive metrics 

associated with a link, the spanning trees perform better than when other methods of 

weight assignment is used.  
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