
1

CHAPTER 1
INTRODUCTION

 The first step in routing is to collect network state information. This information is

generally obtained from a link state protocol such as Open Shortest Path First. Link

state protocols periodically broadcast a node�s state to every other node so that each

node knows the network topology and the state of every link. This would have been an

acceptable means of broadcasting and maintaining network state information had it not

been for the phenomenal growth of networks these days. As the network size grows, it

becomes unrealistic to broadcast its entire topology to every node in the network as

this will take an enormous amount of space, time and bandwidth. Here are a few

proposed solutions to deal with the scalability problem:

(i) Reducing the frequency of topology updates

(ii) Reducing the size of topology updates

(iii) Combining the above two techniques

The goal of frequency reduction is to generate routing update messages as

infrequently as possible without compromising routing performance [1]. The goal of size

reduction is to reduce the size of these messages while preserving routing

performance. This work deals with the topology updates size reduction technique.

1.1 Topology Aggregation

 Topology updates size reduction leads to the concept of Topology Aggregation.

Topology aggregation is perhaps the most important technique to achieve scalability in

Quality-of-Service (QoS) routing1 and routing in general, since it can potentially reduce

the amount of link state update information by orders of magnitude [3]. It is achieved

1 Quality of Service routing identifies paths that meet the Quality of Service requirements and selects one that leads
to high overall resource efficiency [2].

2

by grouping neighboring nodes of the network into smaller and manageable routing

domains. The process of topology aggregation as discussed in [3] usually consists of

four steps:

(i) Grouping or partitioning the network into domains and forming the

hierarchical routing

(ii) Deriving the port-to-port distances in each domain

(iii) Representing the port-to-port distances in a compact manner

(iv) Exchanging the aggregated information among domains

Thus, the internal details of a domain are aggregated before they are broadcast to

other domains. This means that all the nodes within a domain have a complete view of

their domain, but outside nodes only have an aggregated view. External nodes will

make use of this aggregated information to make routing decisions, hence the

aggregated topology must represent the domain state information as accurately as

possible, else routing will suffer greatly. An efficient topology aggregation scheme,

thus, is one that provides a proper balance between topology compaction and the

impact of this compaction on the routing performance.

1.2 Topology Aggregation Schemes

In the Asynchronous Transfer Mode (ATM) Forum, Private Network-Network

Interface (PNNI) [4] standard proposed a possible topology aggregation protocol. In

this protocol, nodes in a network are grouped hierarchically into different peer groups.

Although PNNI defines how the aggregated peer group should look like, it does not

specify how to do the aggregation [5]. This choice is left for vendor differentiation.

There exist several proposed topology aggregation schemes. All the schemes seek to

summarize the topology of the routing domains as accurately as possible.

The Full Mesh representation is the basis for most other aggregation schemes.

The idea is to first reduce the topology of a routing domain into its full mesh

representation, which only consists of the border nodes of the domain. Border nodes

are those nodes that are connected via physical links to nodes belonging to external

domains. In the full mesh, each pair of border nodes is connected by one or several

3

logical links2. These logical links are then assigned weights. After a domain topology is

reduced to its full mesh, it may be further aggregated into more compact forms. This

reduction is usually done by pruning links from the full mesh. In Section 2, existing

topology aggregation schemes will be surveyed.

1.3 Topology Aggregation for Multiple Additive Metrics

Link metrics may be additive or non-additive. An additive metric associated with

every link along a path is added up to determine if a path is acceptable. An example of

additive metric is delay. On the other hand, a non-additive metric associated with every

link is used to independently determine whether that link can be a part of the path or

not. An example of non-additive metric is bandwidth. Effective topology aggregation

schemes have been developed for networks with one additive or non-additive metric

[6]. However, aggregating topologies with multiple additive metrics still poses

significant challenges. We will use an example to show the difference between

aggregating topologies with one metric and multiple additive metrics. Consider the

topology in Figure 1.1. Let us first assume that each link contains one additive metric

as shown in the figure and that the edge nodes are node 1 and node 2. In this case, the

best path from node 1 to node 2 can be easily found to be 1-3-2 with metric 20 using

any standard shortest path algorithm such as Bellman-Ford or Djikstra�s Shortest Path

Algorithm.

Figure 1.1. Domain topology with links having one additive metric

2 A logical link between two nodes is a physical link or a physical path between them.

21

3

0

 50

20 20

10 10

4

Figure 1.2. Domain topology with links having two additive metrics

Now, consider the case when two additive metrics are involved as shown in figure 1.2.

There are two best paths between the nodes 1 and 2. The first path is 1-0-2 with

metrics (40, 20) and the second path is 1-3-2 with metrics (20, 40). Both these paths

are the best paths with respect to one additive metric. This example shows two

significant differences between aggregating topology with one metric and two metrics.

First, with two metrics, multiple paths between two nodes might need to be computed.

Further, the problem of computing �optimal� paths with multiple additive metrics is NP-

hard [7]. Therefore, aggregating topology of a domain when multiple additive metrics is

much more difficult than aggregating topologies with one metric. Second, with multiple

metrics, it is not clear whether a path is better or worse than another path, this leads to

the difficulty in evaluating a topology aggregation scheme.

 In this paper, we propose a method to compute the full mesh aggregation with

limited path heuristic [2] and demonstrate that the distortion of the heuristic is small.

We also propose a novel area-differences based scheme to evaluate the performance

of an aggregation. Finally we develop a number of spanning tree based aggregations

and evaluate them.

 Having introduced the concept of topology aggregation and the challenges in

aggregation with multiple additive metrics in Section 1, the rest of the paper is

organized as follows. Section 2 discusses various existing aggregation schemes and

describes the proposed performance evaluation scheme. Section 3 discusses the

21

3

0

(50, 40)

(20, 10) (20, 10)

(10, 20) (10, 20)

5

computation of the full mesh and the spanning tree based aggregation schemes. The

results of performance evaluation are presented in Section 4. Section 5 concludes the

paper.

6

CHAPTER 2
AGGREGATION SCHEMES AND EVALUATION SCHEME

2.1 Existing Topology Aggregation Schemes

 As discussed in section 1, in the ATM forum, PNNI standard proposed a

possible topology aggregation protocol. However, it does not specify how to do the

aggregation. In this section, we discuss the advantages and disadvantages of existing

aggregation schemes.

Full Mesh Representation

 The Full Mesh representation [8], [9] of a routing domain is constructed by

connecting each pair of border nodes by logical links. If each link in the domain has

only one associated metric, then the full mesh retains all the distances between the

border nodes of the original topology. This is by far the most accurate representation.

However it is also the least compact one. A full mesh topology update is a matrix of

size n(n-1)/2, where n is the number of border nodes. This scheme does not scale well

if the size of the network and thereby the size of the domain grows.

Single Node Representation

 While the full mesh scheme that advertises too much information lies on one end

of the spectrum, the Single Node scheme [8] lies on the other. This approach collapses

a routing domain with multiple nodes into a single virtual node. Obviously, it offers the

greatest reduction of advertised information as it reduces the routing information size

complexity to O(1). It is also very scalable. This scheme hides the border nodes and

assigns a matrix of parameters to the virtual node. These parameters are derived from

7

the topology information of the original domain. A common way to assign the matrix of

parameters to the virtual node is to find the best, worst or the average value for every

metric associated with all the links in the domain and give the virtual node this value.

Another technique is to assign the virtual node metrics of the diameter of the domain.

Though this approach reduces the size of the update messages drastically, it may not

represent the domain adequately enough to make efficient routing decisions.

Star Representation

 The Star representation [8] is a compromise between the two extreme

representations: full mesh and single node. In this scheme, border nodes are

connected via virtual links to a virtual center node, sometimes called as the nucleus [5].

Links going from the border nodes to the nucleus as well as the links going from the

nucleus to the border nodes are assigned weights. These weights are obtained from

the appropriate links in the full mesh. Lui and Nahrstedt propose a method to assign

weights to the links in the star representation in [5]. To make the representation more

accurate, bypasses may be introduced. Bypasses in the star scheme are links

connecting two border nodes and do not pass through the nucleus.

Spanning Tree Representation

A Spanning Tree representation [6] of a domain is a tree whose nodes are the

border nodes of a domain and each pair of nodes has only one unique path between

them. Therefore a domain with n border nodes, when aggregated into a spanning tree

will have n-1 links that need to be advertised. Given the topology of any domain, the

first step is to convert it into a full mesh. When each link has only one associated

metric, a spanning tree can be created by choosing appropriate links between border

nodes. When there are several metrics involved, a method to first convert these

metrics into one virtual metric or to choose the most important metric must be applied

before the tree is constructed. To make the representation more accurate, links that

are crucial, or links that are used frequently may be included in the tree. If each link

8

has only one associated metric, then the scheme is fairly accurate. It is also much more

scalable than the full mesh.

2.2 Proposed Evaluation Scheme

All aggregation schemes may deviate from the original topology by varying

degrees. Some amount of distortion of information is invariably introduced. This

distortion leads to an increase in the rates of connection rejection for those calls that

could have been supported and ultimate failure of connection requests that are

accepted. Therefore, it is greatly desirable to reduce this distortion to the maximum

possible extent. An effective aggregation scheme, thus, is one in which distortion is

almost zero. In other words, an effective aggregation allows for the admittance of calls

whose requirements can be supported by the domain and rejects those whose

requirements cannot. An aggregation scheme may be evaluated by comparing its

performance against the results obtained when no aggregation is done.

For topologies with one additive metric, the distortion of an aggregation scheme

can easily be defined as length (shortest path in the aggregation graph) / length

(shortest path in the original graph). Unfortunately, this definition cannot be extended to

the case with two metrics since the concept of shortest path in networks with multiple

metrics is not well defined. Consider that a link in the original network with metrics (5,

5) is approximated by a link with metrics (5, 6) in aggregation scheme X and by a link

with metrics (7, 5) in another aggregation scheme Y. In this case how do we decide

which aggregated link represents the original link most accurately? In other words, how

do we evaluate the performances of the aggregation schemes X and Y and decide

which scheme is better than the other?

 We propose an area-differences based scheme to evaluate the performance of

an aggregation. For an aggregation to be distortion free, it must advertise the same

information to external domains that would be advertised if no aggregation were done.

To evaluate an aggregation using the area-differences based scheme, QoS metrics

supported by a set of �optimal� paths between two nodes are represented by areas. We

will assume that the two additive QoS metrics are delay and cost. For example,

9

consider the case when there exist three paths between two nodes A and B with

associated metrics (1, 3), (2, 2), and (3, 1). The area covered by the paths between A

and B can be found as follows:

(i) Sort the list of paths by the first metric

The above list in the sorted form is (1, 3), (2, 2), (3, 1).

(ii) area = (1 - 0) * 3 + (2 -1) * 2 + (3 � 2) * 1 = 6

In general, for a sorted list, (x1, y1), (x2, y2), (x3, y3),���, (xn, yn)

area = (x1 � 0) * y1 + (x2 � x1) * y2 + (x3 � x2) * y3 +����+ (xn-xn-1) * yn ------- (1)

Any path with QoS metrics falling in this area is a better path than one or more original

paths.

Figure 2.1. Area covered by paths with metrics (1, 2), (2, 2) and (3, 1)

Figure 2.2. Geometric representation of the four area regions

Region 1

Region 3

Region 4

Region 2

cost

delay

0 1 2 3 4

1

2

3

co
st

delay

10

In general, the set of paths between two nodes partitions QoS metrics space into four

regions as shown in Figure 2.2.

(i) Requests whose QoS requirement are in region 2 can be satisfied by the

set of paths, while requests whose QoS requirement are in regions 1, 3,

and 4 cannot be satisfied.

(ii) Paths whose QoS metrics in region 2 are worse than one or more paths in

the set of paths. Paths whose QoS metrics in region 1 are better than one

or more paths in the set of paths. Paths whose QoS metrics in region 3

and 4 are neither better nor worse than paths in the set.

In the aggregated graph, another set of paths with potentially different QoS

metrics are used to approximate the original set of paths. The quality of the

approximation scheme can be determined by measuring how closely the approximated

contour matches the original contour. Figure 2.3 depicts this case. Let the solid line

denote the QoS performance in the original network and the dotted line denote the

approximation. The difference between these two contours can be measured by the

differences in the areas as shown in the figure. There can be two kinds of differences

as indicated in Figure 2.3 by region 1 and region 2. Requests whose QoS requirements

fall in region 1 can be satisfied by the original graph but cannot be satisfied in the

aggregated graph. Requests whose QoS requirements fall in region 2 cannot be

satisfied in the original graph, but can be satisfied in the aggregated graph (hence, the

aggregated graph mis-predicts). Since in both cases, the aggregated graph does not

reflect the original graph, we will call both region 1 and region 2 in Figure 2.3 mis-

predict regions. Intuitively, a better aggregation scheme should have a smaller mis-

predict region. Based on this intuition, we propose to use the following formula to

define the distortion of a topology aggregation scheme for networks with two additive

metrics:

 Distortion = sum of the size of all mis-predict regions / size of original contour(size of

region 1)

11

Figure 2.3. Diagrammatic representation of area differences

delay

cost

1

1

1
2 2

12

CHAPTER 3
TOPOLOGY AGGREGATION FOR NETWORKS WITH TWO ADDITIVE

METRICS

 The network is modeled as a directed graph G(N, E), where N is the set of nodes

representing routers and E is the set of edges representing links that connect the

routers. Each edge e = u → v is associated with two independent weights w1(e) and

w2(e). The notation w(e) = w(u → v) = (w1(e), w2(e)) is used to represent the weights of

a link. It is assumed that the weights associated with a link are additive. Thus for a path

p = vo → v1→v2→ � → vn, where vi Є E, w1(p) = ∑i = 1,..,n w 1 (vi-1 → vi) and w2(p) = ∑i = 1,..,n w 2

(vi-1 → vi). We will use delay and cost as the two additive metrics in all examples in this

section.

3.1 Computing Full Mesh Summary

 The first step in topology aggregation is to compute the full mesh summary that

gives QoS metrics that can be supported between each pair of border nodes. As

described in Section 1, a full mesh representation is constructed by connecting each

pair of border nodes of the domain by one or several logical links. Each link in the

network is associated with two additive metrics and assumed to be symmetric, that is, a

link has the same properties in both directions. As mentioned earlier, computing paths

between two nodes with two additive metrics is an NP-hard problem. Fortunately, with

the recent advances on multi-constrained QoS routing, effective heuristics for this

problem have been developed. We propose to use the limited path heuristic [2] to

compute the paths between all edge routers so that the full mesh topology can be

obtained. The heuristic is a minor modification of the version in [2] in that the QoS

requirement is no longer a factor in the selection of paths and thus, all optimal paths

can potentially be stored.

13

The limited path heuristic uses an extended Bellman-Ford algorithm, which

differs from the original Bellman-Ford algorithm as described in [11] in that it has each

node u maintain a set PATH (u) that records all optimal paths from the source node to

u. An optimal path between two nodes satisfies particular QoS constraints that no

other path can. This algorithm can find a path that satisfies all the QoS constraints

when such a path exists by recording all optimal paths in each node [2]. Since the

number of optimal paths from the source node to each node u may grow exponentially

with the size of the network, a check is placed in the algorithm (line (9)) so that a new

path is added to the set only if the size of the set is less than NPATH. As a result, it is

possible that not all optimal paths between the source and destination nodes are found,

and thus, only an approximate solution is found. Thus, the value for NPATH must be

selected carefully so that the routing performance can be maintained. As will be

demonstrated in the performance evaluation section, the limited path heuristic performs

fairly well in practice and the full mesh representation produced with the heuristic gives

a fairly accurate approximation of the original network. The algorithm is summarized as

follows:

 RELAX(u, v, w)

(1) For each w(p) in PATH(u)

(2) flag = 1

(3) For each w(q) in PATH(v)

(4) if(w(p) + w(u, v) ≥ w(q)) then

(5) flag = 0

(6) if(w(p) + w(u, v) < w(q)) then

(7) remove w(q) from PATH(v)

(8) if(flag = 1) then

(9) if (size(PATH(v)) < NPATH) add w(p) + w(u, v) to PATH(v)

Limited-path-heuristic(G, w, src, dst)

(1) For i = 0 to |N(G)| - 1

(2) PATH(i) = Φ

14

(3) PATH(src) = {0}

(4) For i = 1 to |N(G)| -1

(5) For each edge (u, v) Є E(G)

(6) RELAX(u, v, w)

 Figure 3.1. Domain topology Figure 3.2. Full mesh of the domain

In the figure 3.1, the entire topology of the domain is seen. We have border

nodes (1, 2, 3 and 4) as well as internal nodes (nodes shown in dotted lines). Links

between the nodes have two associated metrics indicated as (delay, cost). In the full

mesh (as shown in figure 2.2) paths between each pair of border nodes are shown.

Some pairs can have more that one optimal path between them. In the figure 3.2,

border nodes 1 and 2 have two paths between them. The first path with metrics (8, 2) is

better in terms of cost as compared to the second path which has associated metrics

(6, 7). On the other hand, path (6, 7) is better that path (8, 2) in terms of delay. For

these two paths between nodes 1 and 2 to have been found, the value of NPATH had

to be at the very least 2.

1 2

3 4

(8, 2)

(2, 1)

(8, 4)

(2, 3)

(2, 3)

(2, 3)

(2, 3)

(10, 20)

(2, 3)

1 2

3 4

(6, 7

(6, 7)

(4, 6)

(6, 7)

(4, 6) (4, 6)

(8, 4)

(8, 2)

15

3.2 Computing Spanning Tree Aggregation

 A full mesh aggregation of a domain constructed using the method described

above would have at least n(n-1)/2 links that need to be advertised, where n is the

number of border nodes. This is still a large amount of data. The mesh is aggregated

further so that fewer links would need to be advertised, thereby reducing the amount of

space, time and bandwidth that each topology update would require. We compute a

spanning tree from the full mesh aggregation. Since all spanning tree construction

algorithms work for networks with a single metric, we need to first convert the weights

on logical links into a single weight. Notice that the goal is to produce a spanning tree

with the minimum distortion, which is based on area and is defined in Section 2. There

are two issues in this process: (1) converting the weights on a logical link into a single

value, and (2) computing the spanning tree with minimal distortion. We follow the

methods in [6] to compute spanning trees. Specifically, we consider Minimum Spanning

Trees (MST), Random Spanning Trees (RST), and a combination of these two kinds of

trees. To generate a MST, a list of all the links from the full mesh is created and is

sorted in the ascending order by the weight. Links are added one by one to the tree

such that the properties of a spanning tree do not get violated. In order to construct a

RST, a sorted list is not required. Next, we will describe various schemes to convert

weights into a single value.

Area-Based Spanning Trees

 The first set of trees is area-based. Each logical link is represented by a weight

equal to the area covered by the physical paths found between the pair of nodes

connected by that link. The reason for using area as the metric is that we are trying to

produce a spanning tree where the distance between two nodes has the smallest area.

Notice that area-based trees may not achieve that since area is neither additive nor

concave. Area-based full mesh representation of figure 3.2 obtained by using equation

(1) is shown in figure 3.3.

16

 Figure 3.3. Full mesh with weights Figure 3.4. Full mesh with
 represented by area weights represented by
 min(a1 * delay + a2 * cost)

Sum-Based Spanning Trees

Sum-based spanning tree is constructed by conversion of two weights into one

weighted sum of the two weights. Traditionally, this has been a typical method to

convert multiple metrics into one so that algorithms for one metric can be used to solve

routing problems with multiple metrics. The weight of a link is derived as:

 weight of link = function(a1 * delay + a2 * cost)

Here a1 and a2, which gives weights to the two metrics, are parameters that are

inputted by the user. This approach allows priorities to be given to different metrics in

the optimization. In the examples below, we will assume a1 = 1 and a2 = 1. There are

three different ways to assign weights based on the function used.

Case 1: weight of link = min(a1 * delay + a2 * cost)

Referring to figure 3.2, the weight of the logical link between nodes 1 and 2 can be

computed as:

 weight of link = min((1 * 8 + 1 * 2), (1 * 6 + 1 * 7))

 = 10

The new full mesh representation is shown in figure 3.4.

1 2

3 4
50

24

42

24 24

46 1 2

3 4
12

10

13

10 10

10

17

Case 2: weight of link = max(a1 * delay + a2 * cost)

The weight of the logical link between nodes 1 and 2 can be computed as:

 weight of link = max((1 * 8 + 1 * 2), (1 * 6 + 1 * 7))

 = 13

The full mesh with weights computed using the max function is shown in figure 3.5.

Figure 3.5. Full mesh with weights Figure 3.6. Full mesh with weights
represented by represented by
max(a1 * delay + a2 * cost) min+max](a1 * delay + a2 * cost)/2

Case 3: weight of link = [min+max](a1 * delay + a2 * cost)/2

The weight of the logical link between nodes 1 and 2 can be computed as:

 weight of link = [min+max]((1 * 8 + 1 * 2), (1 * 6 + 1 * 7))/2

Here min = 10 and max = 13, hence weight of link = (10+13)/2 = 11.5

The full mesh with weights using the (min+max)/2 function is shown in figure 3.6.

1 2

3 4
12.5

10

13

10 10

11.5 1 2

3 4
13

10

13

10 10

13

18

Non-Linear Path Length-Based Spanning Trees

This set of trees is generated by computing the weights for the logical links using

the formula:

 weight of link = function(min(delay/a1, cost/a2))

Here again we have three cases based on the function used. a1 and a2 are user

inputs. This approach is motivated by the concept of non-linear path lengths [10] that

are commonly used in QoS routing. As defined in [10], given the QoS constraint (a1,

a2), the non-linear length of a link is defined as min(delay/a1, cost/a2). This concept is

used to convert multiple QoS metrics into one so that traditional algorithms that work on

a single metric can be applied to solve multi-constrained QoS routing problems.

Case 1: weight of link = min(min(delay/a1, cost/a2))

The weight of the link between nodes 1 and 2 assuming a1 = 100 and a2 = 100, can be

computed as:

 weight of link = min(min(8/100, 2/100), min(6/100, 7/100))

 = min(0.02,0.06) = 0.02

The full mesh with weights computed using this function is shown in figure 3.7.

Case 2: weight of link = max(min(delay/a1, cost/a2))

The weight of the link between nodes 1 and 2 can be computed as:

 weight of link = max(min(8/100, 2/100), min(6/100, 7/100))

 = max(0.02,0.06)

 = 0.06

The full mesh with weights computed using this function is shown in figure 3.8.

Case 3: weight of link = [min+max](min(delay/a1, cost/a2))/2

The weight of the link between nodes 1 and 2 can be computed as:

 weight of link = [min+max](min(8/100, 2/100), min(6/100, 7/100))/2

 = [min+max](0.02,0.06)/2

 = 0.04

19

The full mesh with weights computed using this function is shown in figure 3.9.

 Figure 3.7. Full wesh with weights Figure 3.8. Full mesh with weights
 represented by represented by
 min(min(delay/a1, cost/a2)) max(min(delay/a1, cost/a2))

Figure 3.9. Full mesh with weights represented by [min+max](min(delay/a1, cost/a2))/2

1 2

3 4
0.04

0.04

0.06

0.04 0.04

0.02 1 2

3 4
0.06

0.04

0.06

0.04 0.04

0.06

1 2

3 4
0.05

0.06

0.04

0.04 0.04

0.02

20

CHAPTER 4
PERFORMANCE EVALUATION

 In this section, we present the results obtained by performing simulations on

topologies with 100, 200, 300 and 400 nodes in one domain. These topologies were

generated by using the Georgia Tech-Internetwork Topology Models (GT-ITM) graph

generation package [12]. This package supports the generation of structured network

topologies that comprise of multiple administrative domains. In the simulation, the

weights for each link, delay and cost, are randomly generated in the range [1-100].

4.1 Evaluation of Full Mesh Summary

 As discussed in Section 1, a full mesh summary of a domain is the most

accurate representation. However, since we use a heuristic to construct the full mesh

representation, we must make sure that the full mesh representation accurately

represents the original network. This section reports the results of the evaluation of the

full mesh representation.

 We performed experiments on domains of various sizes with different limited

path heuristic to find the degree of distortion present in the full mesh summary

generated. The degree of distortion in an aggregation can be found by comparing the

area covered between any two border nodes with limited path heuristic set to x against

the area covered by them when an exhaustive search is done, that is, limited path

heuristic is set to ∞.

 The domains under consideration were of sizes 100 nodes with 20 border

nodes, 200 nodes with 40 border nodes, 300 nodes with 60 border nodes and 400

nodes with 80 border nodes.

21

0

20

40

60

80

100

120

0 2 4 6 8 10

number of paths stored
ar

ea
 ra

tio
 (p

er
ce

nt
ag

e)

Figure 4.1. Limited path heuristic study for domain with 100 nodes and 20 border

nodes

0

20

40

60

80

100

120

0 5 10 15 20

number of paths stored

ar
ea

 ra
tio

 (p
er

ce
nt

ag
e)

Figure 4.2. Limited path heuristic study for domain with 200 nodes and 40 border

nodes

0

20

40

60

80

100

120

0 5 10 15 20

number of paths stored

ar
ea

 ra
tio

 (p
er

ce
nt

ag
e)

Figure 4.3. Limited path heuristic study for domain with 300 nodes and 60 border

nodes

22

0

20

40

60

80

100

120

0 10 20 30

number of paths stored
ar

ea
 ra

tio
 (p

er
ce

nt
ag

e)

Figure 4.4. Limited path heuristic study for domain with 400 nodes and 80 border

nodes

Table 4.1 � Performance Evaluation of Full Mesh Summary

Limited Path Heuristic

Number of

Nodes

Number of

Border Nodes

Distortion <

10%

Distortion < 5% Distortion = 0

100 20 3 4 8

200 40 6 7 18

300 60 7 9 19

400 80 9 10 24

The information represented by the graphs in figures 4.1, 4.2, 4.3 and 4.4 is

summarized in table 4.1. It is observed from this study that 8 paths stored between a

pair of border nodes for a 100-node domain with 20 border nodes, 18 paths for a 200-

node domain with 40 border nodes, 19 paths for a 300-node domain with 60 border

nodes and 24 paths for a 400-node domain with 80 border nodes will yield a full mesh

summary that has zero distortion. As low as 3, 6, 7 and 9 paths respectively can be

stored for faster performance of the EBFA in networks where a distortion of less than

10% is acceptable. Figure 4.5 shows the distortion histogram for the 100-node domain

23

when the limited path heuristic was set to 3. It is obvious from the histogram that the

number of links with zero distortion is very high.

In summary, these results indicate that the limited path heuristic indeed results

in accurate full mesh representation by maintaining a relative small number of paths

(e.g. 10) in each node even for a relative large network. In the next section, we will

evaluate the schemes to further reduce the size of the summary.

0
50

100
150
200
250
300
350

0 10 20 30 40 50 60

Distortion (percentage)

Fr
eq

ue
nc

y

Figure 4.5. Distortion histogram for a 100-node domain with 20 border nodes and

limited path heuristic = 3

4.2 Evaluation of Spanning Tree Summary

 To evaluate the performance of the spanning tree aggregation, a number of

MSTs, RSTs, and a combination of MSTs and RSTs were generated. The goal of the

experiments is to compare the performance of the trees and decide which one maps

the original topology of the domain with the least amount of distortion. The first

simulation was done on a 100-node domain with 20 border nodes. We did a

comparative study between the performance of one MST and one RST. Each MST and

RST was constructed from the full mesh of the domain with the weights assigned

according to the different methods described in Section 3.The values for a1 and a2 for

the construction of sum-based trees were set to 1 and their values for the construction

24

of the non linear path-length based trees were set to 100. Table 4.2 shows the results

obtained.

Table 4.2. Performance Comparison of MST vs. RST for a 100-node Domain

100 Nodes with 20 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 1.15 1.83

Sum Based Case 1 1.89 3.77

Sum Based Case 2 1.15 1.83

Sum Based Case 3 1.29 1.92

Path Length Based Case 1 1.99 2.94

Path Length Based Case 2 1.39 1.92

1 MST

Path Length Based Case 3 1.58 2.39

Area Based 64.48 270.90

Sum Based Case 1 147.85 785.53

Sum Based Case 2 131.38 804.32

Sum Based Case 3 88.55 333.66

Path Length Based Case 1 157.70 754.97

Path Length Based Case 2 87.94 471.60

1 RST

Path Length Based Case 3 112.11 485.59

Two concepts Average Difference Ratio and Standard Deviation are used to

compare the performances. Difference Ratio is obtained by finding the difference in the

area covered by a logical link in the full mesh and the area covered by it in the

spanning tree scheme and dividing this difference by the area represented by the link

25

in the full mesh. We use the average difference ratio to describe the amount of

distortion present in an aggregation. Standard deviation has its universal meaning.

 Figure 4.6. Distortion Histogram Figure 4.7. Distortion Histogram
 for area based MST for area based RST

 Figure 4.8. Distortion Histogram Figure 4.9. Distortion Histogram
 sum-based MST with function sum-based RST with function
 min(a1*delay + a2*cost) min(a1*delay + a2*cost)

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 11

Distortion

Fr
eq

ue
nc

y

0

20
40

60

80
100

120

0 2 4 6 11 21 28

Distortion

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

0 21 45 60 84 110 140 167 185 229 250

Distortion

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

0 20 62 80 100 120 141 172 251

Distortion

Fr
eq

ue
nc

y

26

 Figure 4.10. Distortion Histogram Figure 4.11. Distortion Histogram
 sum-based MST with function sum-based RST with function
 max(a1*delay + a2*cost) max(a1*delay + a2*cost)

 Figure 4.12. Distortion Histogram Figure 4.13. Distortion Histogram
 sum-based MST with function sum-based RST with function
 [min+max](a1*delay + a2*cost)/2 [min+max](a1*delay + a2*cost)/2

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 11

Distortion

Fr
eq

ue
nc

y

0

5

10

15

20

25

0 9 18 28 39 70 13
6

41
7

Distortion

Fr
eq

ue
nc

y

0
20
40
60
80

100
120
140

0 1 2 3 4 5 6 7 11

Distortion

Fr
eq

ue
nc

y

0

5

10

15

20

25

0 20 41 62 79 140 200 224 342

Distortion

Fr
eq

ue
nc

y

27

 Figure 4.14. Distortion Histogram Figure 4.15. Distortion Histogram
 path-based MST with function path-based RST with function
 min(min(delay/a1,cost/a2)) min(min(delay/a1,cost/a2))

 Figure 4.16. Distortion Histogram Figure 4.17. Distortion Histogram
 path-based MST with function path-based RST with function
 max(min(delay/a1,cost/a2)) max(min(delay/a1,cost/a2))

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 11 12 13 15

Distortion

Fr
eq

ue
nc

y

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 11

Distortion

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

0 23 41 60 80 101 200 405

Distortion

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

0 20 41 63 81 109 209 555

Distortion

Fr
eq

ue
nc

y

28

 Figure 4.18. Distortion Histogram Figure 4.19. Distortion Histogram
 path-based MST with function path-based RST with function
 [min+max](min(delay/a1,cost/a2))/2 [min+ max](min(delay/a1,cost/a2))/2

From table 4.2, it is clear that a MST summary of a domain performs several

times better than a RST summary of that domain. Furthermore, it is shown that an area-

based MST and a sum-based MST with weights assigned using the function

max(a1 * delay + a2 * cost). A sum-based MST with weights assigned using the

function [min+max](a1 * delay + a2 * cost)/2 also perform relatively good. Distortion

histograms for the MST and RST computed for the 100-node domain with 20 border

nodes are presented in figures 4.6 � 4.19.To further validate our results, we performed

similar experiments on the 200, 300 and 400 node domains. Table 4.3, 4.4 and 4.5

summarize the results.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 10 11 16

Distortion

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

0 20 45 62 81 105 223 730 834

Distortion

Fr
eq

ue
nc

y

29

Table 4.3. Performance Comparison of MST vs. RST for a 200-node Domain

200 Nodes with 40 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 4.01 5.29

Sum Based Case 1 7.65 12.03

Sum Based Case 2 3.54 4.30

Sum Based Case 3 3.44 4.37

Path Length Based Case 1 8.54 16.58

Path Length Based Case 2 4.68 7.74

1 MST

Path Length Based Case 3 8.00 12.70

Area Based 219.94 3857.12

Sum Based Case 1 127.70 2251.93

Sum Based Case 2 98.70 830.48

Sum Based Case 3 81.14 658.54

Path Length Based Case 1 133.27 2092.14

Path Length Based Case 2 105.98 1431.84

1 RST

Path Length Based Case 3 99.33 987.17

Again, it is clear that a MST out-performs a RST and an area-based MST, a sum-based

MST with weights assigned using the function max(a1 * delay + a2 * cost) and a sum-

based MST with weights assigned using the function [min+max](a1 * delay + a2 *

cost)/2 introduce the lowest amount of distortion in the routing information as compared

to the other MSTs.

30

Table 4.4. Performance Comparison of MST vs. RST for a 300-node Domain

300 Nodes with 60 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 3.45 3.96

Sum Based Case 1 5.66 7.18

Sum Based Case 2 3.30 3.94

Sum Based Case 3 3.55 4.03

Path Length Based Case 1 17.32 45.48

Path Length Based Case 2 5.36 7.10

1 MST

Path Length Based Case 3 8.10 12.02

Area Based 102.12 1222.37

Sum Based Case 1 124.38 1761.48

Sum Based Case 2 89.62 515.61

Sum Based Case 3 123.54 1337.44

Path Length Based Case 1 174.27 1587.37

Path Length Based Case 2 198.92 3368.50

1 RST

Path Length Based Case 3 170.50 1507.01

Table 4.5. Performance Comparison of MST vs. RST for a 400-node Domain
400 Nodes with 80 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 4.37 5.68

Sum Based Case 1 8.47 10.85

Sum Based Case 2 3.90 5.12

Sum Based Case 3 5.08 7.05

Path Length Based Case 1 42.57 125.58

1 MST

Path Length Based Case 2 8.92 11.15

31

Table 4.5-continued
400 Nodes with 80 Border Nodes Average

Difference Ratio

Standard

Deviation

1 MST Path Length Based Case 3 11.55 16.32

Area Based 102.11 1401.25

Sum Based Case 1 113.03 795.13

Sum Based Case 2 147.09 1877.76

Sum Based Case 3 157.42 3743.76

Path Length Based Case 1 124.30 933.83

Path Length Based Case 2 98.13 1204.14

1 RST

Path Length Based Case 3 138.85 2053.48

 The next set of experiments was done to evaluate the performances of three

MSTs, three RSTs and a combination of one MST and two RSTs. The results obtained

for the 100-node, 200-node, 300-node, 400-node domains are summarized in table 4.6-

4.9. From the results is shown that three overlapping MSTs perform much better that

three RSTs as well as the combination of one MST and 2 RSTs.

Between the three RSTs and the combination of one MST and two RSTs, the

combination performs much better. It can now be stated that a Random Tree

aggregation for a domain introduces the greatest degree of distortion and it is not

advisable to use this representation else routing will suffer greatly. Furthermore it

becomes obvious that the best way to assign the weights to the logical links is to use

the area representation or the sum-based representation with case 2 or case 3

functions.

32

Table 4.6. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a
100-node Domain

100 Nodes with 20 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 0.36 0.61

Sum Based Case 1 0.48 0.93

Sum Based Case 2 0.28 0.43

Sum Based Case 3 0.33 0.56

Path Length Based Case 1 0.99 1.70

Path Length Based Case 2 0.32 0.54

3 MST

Path Length Based Case 3 0.48 1.05

Area Based 7.48 52.9

Sum Based Case 1 9.31 50.15

Sum Based Case 2 12.41 67.81

Sum Based Case 3 17.38 128.20

Path Length Based Case 1 8.55 58.05

Path Length Based Case 2 11.87 58.53

3 RST

Path Length Based Case 3 13.25 84.65

Area Based 1.21 2.01

Sum Based Case 1 1.15 2.87

Sum Based Case 2 0.67 1.12

Sum Based Case 3 0.97 1.65

Path Length Based Case 1 0.89 2.20

Path Length Based Case 2 0.76 1.23

1 MST +

2 RST

Path Length Based Case 3 0.97 1.81

33

Table 4.7. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a
200-node Domain

200 Nodes with 40 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 0.94 1.21

Sum Based Case 1 0.85 1.18

Sum Based Case 2 0.99 1.17

Sum Based Case 3 0.80 0.96

Path Length Based Case 1 2.33 7.56

Path Length Based Case 2 0.83 0.99

3 MST

Path Length Based Case 3 0.93 1.39

Area Based 17.09 254.57

Sum Based Case 1 18.11 202.98

Sum Based Case 2 9.48 43.83

Sum Based Case 3 9.60 56.41

Path Length Based Case 1 9.17 47.67

Path Length Based Case 2 19.01 274.92

3 RST

Path Length Based Case 3 18.17 34.23

Area Based 2.27 3.38

Sum Based Case 1 1.95 3.55

Sum Based Case 2 2.04 2.96

Sum Based Case 3 2.12 3.29

Path Length Based Case 1 2.77 6.35

Path Length Based Case 2 1.98 3.54

1 MST +

2 RST

Path Length Based Case 3 2.34 1.91

34

Table 4.8. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a
300-node Domain

300 Nodes with 60 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 1.35 1.47

Sum Based Case 1 1.41 1.63

Sum Based Case 2 1.42 1.52

Sum Based Case 3 1.30 1.40

Path Length Based Case 1 2.48 6.82

Path Length Based Case 2 1.70 1.89

3 MST

Path Length Based Case 3 1.56 2.00

Area Based 18.23 239.80

Sum Based Case 1 15.25 195.60

Sum Based Case 2 21.48 281.56

Sum Based Case 3 19.94 245.46

Path Length Based Case 1 20.96 269.95

Path Length Based Case 2 18.30 196.24

3 RST

Path Length Based Case 3 15.82 188.22

Area Based 2.55 3.13

Sum Based Case 1 2.09 2.80

Sum Based Case 2 2.25 2.57

Sum Based Case 3 2.24 2.42

Path Length Based Case 1 3.77 8.59

Path Length Based Case 2 2.25 2.73

1 MST + 2

RST

Path Length Based Case 3 2.63 4.03

35

Table 4.9. Performance Comparison of 3 MSTs vs. 3 RSTs vs. 1 MST + 2 RSTs for a
400-node Domain

400 Nodes with 80 Border Nodes Average

Difference Ratio

Standard

Deviation

Area Based 1.12 1.11

Sum Based Case 1 1.56 1.87

Sum Based Case 2 1.16 1.11

Sum Based Case 3 1.08 1.01

Path Length Based Case 1 2.96 6.97

Path Length Based Case 2 1.67 1.71

3 MST

Path Length Based Case 3 1.42 1.56

Area Based 83.93 3212.87

Sum Based Case 1 67.43 2174.08

Sum Based Case 2 120.42 4572.15

Sum Based Case 3 94.16 4377.51

Path Length Based Case 1 143.77 6267.20

Path Length Based Case 2 29.87 578.33

3 RST

Path Length Based Case 3 123.37 5284.19

Area Based 2.37 2.86

Sum Based Case 1 2.52 3.96

Sum Based Case 2 2.58 3.22

Sum Based Case 3 2.54 3.06

Path Length Based Case 1 4.78 12.95

Path Length Based Case 2 2.50 3.64

1 MST +

2 RST

Path Length Based Case 3 2.51 3.86

36

From all the spanning tree simulation results, we can conclude that to

summarize the topology of domains with 100-400 nodes, three overlapping MSTs when

used for the aggregation perform much better than a single MST and have a low

degree of distortion.

37

CHAPTER 5
CONCLUSION

We have proposed in this paper a method to compute the full mesh summary

with a limited path heuristic and demonstrated that distortion degree in the scheme

when this heuristic is used is low. An area-differences based performance evaluation

scheme is proposed to evaluate the distortion degree in different aggregations. Finally,

we have computed several MSTs and RSTs and evaluated their performances. We

have shown through simulation results that MSTs perform much better than RSTs and

three overlapping MSTs aggregate a domain much more accurately than one single

MST. It was also shown that when the weights assigned to a logical link use the area

representation or the sum based representations with functions max(a1 * m1 + a2 * m2)

or [min+max](a1 * m1 + a2 * m2)/2 , where m1 and m2 are any two additive metrics

associated with a link, the spanning trees perform better than when other methods of

weight assignment is used.

38

REFERENCES

[1] Fang Hao and Ellen W. Zegura, �On Scalable QoS Routing: Performance
Evaluation of Topology Aggregation�, IEEE Proceedings of the INFOCOM�00, March
2000.

[2] Xin Yuan, �Heuristic Algorithms for Multi-Constrained Quality of Service Routing�,

IEEE/ACM Transactions on Networking (TON), volume 10, issue 2, pages 244-256,
April 2002.

 [3] Fang Hao and Ellen W. Zegura, �Scalability Techniques in QoS Routing�, Technical

Report, GIT-CC-99-16, Georgia Tech University, 1999.

[4] The ATM Forum. Private network-to-network interface specification version 1.0

(pnni 1.0), March 1996. f-pnni-0055.000.

[5] King-Shan Lui and Klara Nahrstedt, �Topology Aggregation and Routing in

Bandwidth-Delay Sensitive Networks�, IEEE Proceedings of IEEE Globecom�00,
November-December 2000.

[6] Whay Chiou Lee, �Spanning Tree Method for Link State Aggregation in Large

Communication Networks�, IEEE Proceedings of the INFOCOM�95, pages 297-302,
1995.

[7] J.M. Jaffe, �Algorithms for Finding Paths with Multiple Constraints�, Networks,

Volume 14, pages 95-116, 1984.

[8] E. Sullivan and R. Callon, �P-NNI Draft Specification�, ATM Forum, July 1994.

[9] K. Sivarajan and W. Lee, �Issues in the Aggregation of Link State Parameters in

Hierarchical P-NNI Networks�, ATM Forum, July 1994.

[10] R. Vogel, R. Herrtwich, W. Kalfa, H. Wittig and L. Wolf, �QoS-Based Routing of

Multimedia Streams in Computer Networks�, IEEE Journal. on Selected Areas in
Communications, volume 14, no. 7, pages 1235-1244, 1996.

[11] T. H. Cormen, C. E. Leiserson and R. L. Rivest, �Introduction to Algorithms�, The

MIT Press, 1990.

[12] Kenneth Calvert, Matthew Doar and Ellen Zegura, �Modeling Internet Topology�,

IEEE Communications Magazine, June 1997.

39

BIOGRAPHICAL SKETCH
Almas Ansari

Almas Ansari was born and brought up in Bombay, India. She obtained her

Bachelor of Technology degree in Computer Engineering from Dr. Babasaheb

Ambedkar Technological University, India in 1999. After working as a Research

Assistant to Dr. Gopal Shevare in the Department of Aerospace Engineering at the

Indian Institute of Technology, Bombay, India, for two years, Almas has been working

towards the completion of the Master�s Degree in Computer Science at the Florida

State University.

