THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTSAND SCIENCES

DISTRIBUTED FILE ACCESS WITH
WEB-SERVICES

By

SMITA S. KULKARNI

Major Professor

Dr. Robert van Engelen

A project submitted to the Department of Computer Science
in partial fulfillment of the requirements for the degree of
Master of Science

The members of the committee approve the Masters Project of Smita S. Kulkarni

defended on Tuesday, April 27, 2004.

Dr. Robert van Engelen

Supervising Professor

Dr. LoisWright Hawkes
Committee Member

Dr. Kyle Gallivan

Committee Member

To, Dear Aai Baba

Acknowledgements

My deepest thanks to my major professor Dr. Robert van Engelen, for his original idea
and the design of the project. | learned a lot from working with him on this project. |
want to thank Dr. Lois Hawkes and Dr. Kyle Gallivan for agreeing to be on my Master’s
Project defense committee. Finally | want to thank my parents who are constant source

of inspiration and support.

Table of Contents

P o - o 01

I a0 o (U oo TR

1.1 Background INfOrmMation.oovueire i et e e e 02
1.2 SO A . . e e e e 04
L B DI M E. o 07
1.4 Architecture Of aWED-SEIVICE. vttt e e e e e 11
0L T 13
L B OO0 P e e 15
2. DESIGN ISSUES. .. .t et ettt e e e e e e e e e e e e e
2.1 ProjeCt OULIINE.ttt e e e e e e e e e e e e e e e e 16
2.2 SOAP-DIME WED SENVICE. .. ueiiiiee e et e et et e e e e e e 16
2.3 SOAP-DIME Clent.. ..o e e i e e e e e e e eae e 17
2ADIME File AttaChment..... ... e e e e e 20
2.5 DIME Data StreaminNg.........oueeie e e e e e eee e e et e e e eneeaeanenas 24

3. Implementation DELaIlS. e

3.1 Use of gSOAP Stub and Skeleton Compiler to Build SOAP -DIME Client........ 25
3.2 Use of gSOAP Stub and Skeleton Compiler to Build SOAP Web Services 30
3.3 How the datastreaming iSUONE.ooviue ittt e e e e e 36
3.4 How tofileattachmentishandled......... ..o e 37
B SYSEM USAQE. .. .ttt e e e e e e 38

A FUIUrE WOOTK . . e e e e e e e e e e A0

B CONCIUSION. .. e e e e e e e e e e e e e e e e e e A2

Abstract

This project report describes an efficient distributed file access system with a
standardized Web services interface developed with the gSOAP toolkit. The file access
system built with gSOAP can transmit binary data efficiently using multimedia-streaming
techniques. With multimedia streaming, binary data is retrieved from data sources at run
time in parts without the need to store or buffer the entire data contents. Likewise, the
data is streamed to the designated data sinks at the recelving side. Streaming is
implemented in gSOAP with function callbacks to handle the data streams to and from
the application and to encode them as attachments to the XML-based Web services
messages. There are a number of advantages of using this approach. The standardized
Web services interface uses SOAP/ XML messaging over HTTP as the transport
mechanism. HTTP can pass through most firewalls and supports SSL encryption and
compression. Because SOAP (Simple Object Access Protocol) is an XML-based message
format, SOAP/XML messaging provides a non-proprietary open standard for
interoperability between diverse platforms and disparate organizations. SOAP uses XML
message format and therefore SOAP has inherited all the advantages that XML provides.
The resulting system based on SOAP with DIME (Direct Internet Message
Encapsulation) implements an efficient binary-based data transfer mechanism with a

standardized open Web servicesinterface for distributed file access.

1. Introduction

1.1 Background Information

The most basic data transfer scenario involves transfer of data from one point to other.
There are different mechanisms that are provided for transferring data from one
application to another. Although this seems to be an easy task, the mechanism has to
address different issues before the actual data transfer begins. The two applications
might have different file naming convention or different ways to represent the data or
they could have different directory structures. Therefore a mechanism is needed which
will address all such problems that can occur in data transfer. Severa protocols and
mechanisms have been proposed and developed for an inter application data exchange.

The brief review of few such mechanism is given below.
Sun Microsystems' s Remote Procedure Call:

RPC compiler generates code that is used by client and server to exchange data over the
network. RPC data is encoded using the eXternal Data Representation. XDR defines
how integers, floating-point parameters and strings etc are defined for network
transmission. Thisis called as parameter marshaling. However it does not support pointer
based data structures such as graphs. RPC provides a mechanism for authenticating
procedure calls from one machine to another.

File Transfer Protocol:

FTP is a standard mechanism provided by TCP/IP for downloading or uploading files
from one computer to another over the network. This is the most popular protocol that is
used over the web for file transfer. FTP establishes two connections with the host, one for
the data transfer and one for the control information such as commands and responses
transfer. FTP uses two well-known TCP ports: port 20 for the data transfer and port 21
for control information transfer. The FTP Server allows the authorized users to upload
and download files from it. The files are stored on the FTP server. The FTP client is a

program that makes it possible to upload and download the files from the FTP server. If

the user is not an authorized user then with the help of anonymous FTP user can connect
to FTP sitefor filetransfer if it is allowed.

Common Request Broker Architecture:

CORBA is a specification that allows programs that are created on different platforms by
different vendors to communicate over the network. It's an open standard for working
with distributed objects. CORBA used Internet | nter ORB Protocol for data transmission
between the CORBA applicants.

Microsoft Distributed Component Object M oddl:

DCOM is a protocol that allows the client to directly communicate with each other in a
secure and efficient way. Even if DCOM is a platform independent protocol it is mainly

used within the windows environment.
Sun Microsystems's Java Remote M ethod | nvocation:

JAVA RMI helps user to create distributed Java technology based applications enabling
java remote methods, which are on different hosts. The marshaling of objects for the
transmission is done automatically. Even the sterilization of complex data structures like
arrays, lists, graphs, and mapsis supported.

NFS

Network File Systems connect virtual and physical file systems over a LAN. Mounting a
file-based drive is simple with OS support and the OS typically provides atransparent file
access system to the users. NFS assumes a high level of reliability and security of the
LAN.

1.2 SOAP

“Simple Object Access Protocol (SOAP) is a lightweight protocol for exchange of
information in a decentralized, distributed environment. It is an XML based protocol that
consists of three parts. an envelope that defines a framework for describing what isin a
message and how to process it, a set of encoding rules for expressing instances of
application-defined data types, and a convention for representing remote procedure calls
and responses. SOAP can potentially be used in combination with a variety of other
protocols.” [W3c SOAP 1.1 specification] Though SOAP can be used with variety of
other protocols, but this document describes SOAP implementation with HTTP protocol
because of few advantages of HTTP such asit is available on all the platforms, it requires

very little runtime support and it is firewall friendly.

Figure-1 describes the SOAP message structure]8]. A message consists of an envelope
root element, an optional SOAP header element to encode the meta-information such as
authentication information, signatures, message routing information etc, encoding rules
describing how messages should be processed and SOAP message body which describes
the remote procedure call representation that is RPC responses and parameters. Clients
can send complex data types such as structures or arrays as the RPC parameters. The
value of each parameter appears as the XML element within the message body. To carry
the error information, SOAP Fault Element is used.

Example of SOAP Request and Response:

Figure-2 and Figure-3 shows an example of a sample SOAP/HTTP request and
SOAP/HTTP response. The SOAP/HTTP request contains a block called
GetTodaysWeather that takes a single parameter, name of the city. The service's response
to this request contains a single parameter, the temperature of the city in degree
Fahrenheit.

POST / Service-Nanme HTTP/ 1.1
Host : wwwv. URL- Addr ess. com

Cont ent - Type: text/xm;
Content - Lengt h: nnn HTTP Header
SQAPAct i on: *”

\

<env: Envel ope>

<env: Header > . SOAP

</ env: Header > Header

> SOAP Envelope

<env: Body>
<m et hod- nane> . SOAP
<par amil> </ par anl> Body
</ m met hod- name>
</ env: Body>

</ env: Envel ope>

Fig: 1- SOAP Message Structure

POST / Get Weat her HTTP/ 1.1

Host: www. Tal | ahasseelLocal Weat her. com
Cont ent - Type: text/xm ; Charset = “utf-8”
Cont ent - Lengt h: nnn

SOAPAct i on: “”

<env: Envel ope xnml ns:env =
“htt p: / / schemas. xm soap. or g/ soap/ envel ope ” >
<env: Body>

<m Get TodaysWeat her
env: encodi ngSt yl e=
htt p://schemas. xm soap. or g/ soap/ encodi ng”
xm ns:m= “">
<City> Tal | ahassee </City>

</ m Get TodaysWeat her >

</ env: Body>

</ env: Envel ope>

Fig: 2- SOAP HTTP Request

HTTP/ 1.1 200 K
Cont ent - Type: text/htm; Charset= “utf-8”
Cont ent - Lengt h: nnnn

<env: Envel ope xnl ns: env=
“http://schemas. xm soap. or g/ soap/ envel ope” >
<env: Body>
<m Cet TodaysWat her Response
env: encodi ngSt yl e=
http://schemas. xm soap. or g/ soap/ encodi ng”
xm ns:m= “">
<Tenper at ure> 55 </ Tenper at ur e>
</ m Get TodaysWeat her Response>
</ env: Body>

</env:Envelope>

Fig: 3- SOAPHTTP Response

Why SOAP:

SOAP is used for the application because of some advantages of SOAP, which are as

follows:

1.

I nteroper ability: With the use of technologies such as XML and HTTP SOAP
can be used within the applications that run on different operating systems. That
means the client written on Microsoft platform can invoke methods from the
application running on Linux.

Open Standard: SOAP is built upon the technologies such as XML and different
transportation protocols such as HTTP, FTP that are not vendor specific.
Thereforeit’s been uniformly accepted by the industry.

Firewall Friendly: When SOAP is used with the HTTP protocol, the SOAP
message packets can easily bypass the firewall as it uses the standard port 80 for
the message data transmission. However it is possible for the system administrator
to track the SOAP specific HTTP headers to re-configure the firewall to block it.
Easy maintenance: The SOAP based system is easy to deploy. It requires

minimum amount of setup including enabling the port for data transmission.

1.3DIME
Why DIME:

The biggest strength of SOAP is that it can encapsulate XML data from any XML
schema within the message. Still at many times there is a situation where the data is not
in XML format. In that case if the SOAP is used for the data transmission then the data
marshalling to and from XML becomes necessary. However this is not always an easy
task as there are situations where this data conversion to and from XML is very
expensive. e.g. Suppose the JPEG image file is to be transmitted. The JPEG format for
holding the image is highly structured format. If this image data is to be converted to
XML schema then the conversion of the data to and from XML format can cause
tremendous slow down because of the large size of the image. The other situation occurs
when the data that is to be transmitted between the two systems, which do not use XML.
In that case the datais required to convert to and from XML. In such a situations the data
is serialized and deserialized from the origina format to XML only for the sake of data
transmission. Therefore a mechanism is needed that will allow SOAP to transmit the
binary data with itself. This mechanism is provided by DIME. Hence it is used for this
application.

Direct Internet Message Encapsulation (DIME) is a specification that allows multiple
binary records to be included within it. With DIME there is no restriction on size and
format of data. The data could be of any type i.e. either a JPEG or GIF file or a SOAP
message or binary digitally signed data. Also while transmitting the data it is not
necessary to find out the total length of data.

DIME Structure:

DIME message is organized into different records. There is no restriction on the number
of records. Each record has record header and data. The first record sets the message
begin flag set and the last record sets the message end flag. Because of these flags it is
not necessary for the application to know the data size in advance. In addition to these

flags the header contains few more flags. The length of each record is different as the

length of data within each record is different. The sequence of the data records must be

maintained while data transmission.

| MB || ME || CF | ID Length

Type Name For mat Type Length

Data Length

Type

Data

Fig: 4 - DIME Data Record Format

Fig: 4 shows the DIME data record format[2]. The light gray portion of the record
specifies the record header and the dark gray portion specifies the data within the DIME.
The first three bits are three flags. MB is the message begin flag, ME is message end flag
and CF is Chunked flag. The next field is ID length, which length of identifier stored in
field ID, which is used to identify a particular record in the DIME message. The type
name format specifies the mechanism used to describe the data type and the type length
field specifies the length of the type field. The data length field specifies the length of the
data within the record. The data length field is of 32-bit size, which specifies the

maximum data size of 4GB.
Need for data chunking:

To avoid the size limitation on the data DIME offers a very good solution caled data
chunking. There is need for data chunking for various reasons like to allow the
application to send the data larger than 4-gigabite of size. Also even if the application
needs to send the data of lesser size, it's not always possible for the application to

alocate a single buffer to store the data before data transmission. Therefore the chunking

option is needed with which the part of data can be read at atime and sent over. The other
reason is sometimes the application is unaware of the size of data to be transmitted e.g.
output of the Database Query, in such a case data chunking provides the good solution.
Whenever the application need to start chunking simply turn on the CF flag in the DIME
header and when the complete data is sent turn off the CF flag. The ID and type field for
all the records for which CF flag is set, is same.

Example:

Consider a scenario where a server needs to send a JPEG file to a client. The file is of
huge size. Therefore sending the whole file as a single attachment is difficult for the
server and reception of such a huge data into single buffer will be difficult for the client.
Therefore the concept of ‘data streaming’ comes into the picture. In such a case the server

can send the file as a DIME attachment with the option of data chunking.
DIME vs. MIME:

M ultipurpose Internet M ail Extension provides a mechanism with which various types of
complex files can be sent as an attachment with the email messages. It works with any
transport system that is compliant with SMTP. MIME does this task of simplifying and
rebuilding of complex files by encoding a file and transporting it as a message body. A
MIME-compliant user agent (UA) on the receiving end can decode the message to get the
origina file contents.

This looks very similar to DIME. But DIME provides certain advantages over MIME.
DIME provides simplicity where MIME provides flexibility.

DIME specifies the data record by specifying the data record length in the header while
MIME represents its data records by bounding the data with a unique string, called the
MIME boundary. This string is defined at the beginning and at the end of the MIME
message. The application has to scan the entire data in the message until it reaches the
next string where it can determine the data record boundary. There is problem with this

approach. To send an arbitrary block of data, the data must be persistent or buffered to

determine a unigue boundary string that does not match any part of the data to be
transmitted. This prevents streaming, where a data stream does not require persistence or
buffering of the entire data content. In MIME, any prior chosen separator string can occur
within the data of the data record. In that case the MIME message format is broken.

With DIME, the application only needs to send the data in chunks, where each DIME
chunk contains the relative local size of the data chunk. Memory alocation with DIME is
much more straightforward as it specifies the size of the data record. With MIME it does
not specify the size of data so that at the receiving side, the application has to
incrementally enlarge the data space to allocate the memory for the receiving buffer.

MIME encodes data before sending it whereas DIME does not require encoding of binary
data. DIME has smpler syntax. Content type specification for MIME is aways
“text/ntml”, Whereas DIME supports content type specified with URI as well.

10

1.4 Architectur e of a web-service

Before getting into the SOAP-DIME web service details, let’s first study what is the

architecture of a web service[8]. The figure-5 shows the layered architecture of a web

service. The information and function description of each layer is given below.

Discovery L ayer

uDDI

l

Service Layer
Web Service DIME
and WSDL attachment
l XML message
XML protocol (SOAP)
Schema ¢

l

XML Svntax

v

HTTP/ HTTPS. SMTP. FTP

Fig: 5—Layered Architecture of aWeb Service

Packaging L ayer

Information Layer

Transport Layer

Discovery Layer: The discovery layer offers a way to know about the different web

service providers. Universal Description Discovery | dentification provides a mechanism

for clients to dynamically find other web services. UDDI has 2 types of clients, one who

want to publish the information about the service that it provides and the other client who

wants to obtain that service.

Service Layer: Web Service Description Language describes the SOAP/ XML web
service. WSDL provides the basic format of the service request over the different

protocols and with the different encodings. It describes where the web service is, what

function it can do and how the client can invoke it. WSDL also gives information about

the communication protocol used to send message to the web service along with specific

mechanisms like commands, headers or error codes.

Packaging layer: Packaging layer uses XML based SOAP protocol. Figure: 1 described
in the Chapter-1 gives the detailed information about the SOAP message structure

Information Layer: Information layer carries the XML formatted SOAP message. The
process of wrapping application data into XML format is called as XML Serialization
which involves the task of XML encoding before sending the data and XML decoding
after reception of the data.

Transport Layer: Firewall friendly HTTP or HTTPS are used to invoke web services
with HTTP post request- response message exchanges.

12

1.5RPC

Remote Procedure Call is a programming model that allows the developers to work with
method calls. RPC uses request/response type message exchange pattern. SOAP defines a
standard way to map RPC cals. So that it is easy to transate between the method
invocation and the SOAP cal at runtime. To make the PRC call-using SOAP the
application (in this case the client) needs the following things:

1. Endpoint URL: Where the server islocated which will serve the client.

2. Method name: The different methods written by the server to serve the client.

3. Parameter names/ values: The parameter passed by the clients to the method located at
server machine. Thisincludes the return parameter as well.

4. Optiona method signature

5. Optional header data

The information is conveyed to the server with WSDL files. First it maps the method
signature to simple request / response structure, which later on has to be encoded in the
XML format. According to the SOAP specifications the RPC request and response
should be modeled as structures. The request structure should be named after the method.
This structure contains all the input parameters, which are defined in the method
signature. Even the order of the parameters should be the same. For the response structure
the name of the response should be name of the method followed by the word
‘Response’. This structure contains the return parameter and optional in-out parameters.
The parameters passed to the method could be in any format like they could be arrays or
integers or strings. To map these data structures to XML, SOAP defines the set of
encoding rules. These rules explain how to map the data structures like arrays, structures
strings to XML. RPC produces a SOAP fault in case of the error otherwise the method

returns with the return parameter.

The figure-6 shows the RPC request / response message exchange[8]. The client’s RPC
stub routine marshals the function parameter in XML, wraps it in SOAP envelope and
sends it over the network. At the reception side, the server RPC skeleton demarshals the

13

function parameters sends the request to server and then sends the response from the

server in the similar manner.

Client : Server
request response : request I response
i RPC-Skeleton
marshal demarshd | marshal l T demarshal
(SOAP/XML transport j \

Fig: 6 — Remote Procedure Calling

14

1.6 gSOAP

gSOAP toolkit is a platform independent development environment for C and C++ web
services. The main features of gSOAP are easy to use and good performance. It includes
HTTP1.0/1.1 web server, XML parser/generator, RPC compiler and WSDL importer.
This toolkit offers an easy to use RPC compiler that generates the stub and skeleton
routines to integrate C and C++ applications into SOAP/ XML web services. It
automatically maps the C and C++ data types to equivalent XML data types. It generates
the code to limit the application code size, which is very good for embedded systems.
The gSOAP is compliant with WDSL and SOAP latest versions. It also supports a basic
set of web service protocols.

Some of the highlights of gSOAP that are used in this application development are listed
below:

» gSOAP s easy to use and has good performance

» gSOAPistheonly toolkit that supports streaming DIME attachment transfers.

» gSOAP supports Zlib deflate and gzip compression (for HTTP, TCP/IP, and file
storage).

» gSOAP supports SSL (for HTTPS).

* gSOAP supports HTTP/1.1 keep-alive, chunking, and basic authentication.

15

2. Design | ssues

2.1 Project Outline

For this project, | have developed a Simple Image Server-using DIME. This server runs
as CGlI (not multi-threaded) or as a multi-threaded stand-alone web service. The server
stores al the JPEG files, which are uploaded by different clients. For the security reason
the client can access only the JPEG files that are in current working directory of the
server. For thisimage server, | have developed DIME clients, which sends the request to

the web service to upload or download or delete the files.

2.2 SOAP-DIME Web Servicefor Distributed File Access

Figure-7 shows the development and deployment stages of the gSOAP web service[g].
The application implements a set of SOAP compliant RPC functions to expose the
service on the web. In this case there are four RPCs, first is to download data from the
web service (gdx__get), second is to upload data on the web service (gdx__put), third is
to view the list of data files on the server (gdx__list) and fourth is to delete files on the
server (gdx__delete). The prefix gdx stands for “gSOAP data access’. If the remote
method uses compound data types such as arrays or structures etc then it is required to
declare them in a header file. For this application all the structure declaration as well as
the method prototype isin ‘gdx.h’. This service can aso be specified with a WSDL file,
which can be preprocessed by gSOAP compiler to generate a header file. The gSOAP
compiler generates the skeleton routine for each of the remote method described above
and the serialization code for the data types. The skeleton routine can be used to
implement the remote method in the SOAP web-service. These codes are compiled and

linked with the service application to expose the service to the web.

The gSOAP RPC compiler generates a WSDL document describing the services that it
provides in detail such as remote method information, types of parameters. In this case
the WSDL document name is ‘gdx.wsdl’. This document can be registered and used by a
developer of aclient application to implement a procedure to invoke the web service.

16

i Deplovment
Development ! . .
— 1| Service application
Provided { Specification of ! with RPC
b User remote procedures and i implementation
y datatypes |
\ i A
- i return skeleton invoke
gSOAP :?PC WSDL service | ! marshal
compiler it !
P description i dermarchal
Automated< RPC skeleton code i \ 4 .
: client request
— ., C/ CTT}- : gSOAP
atype compiier : communication ;
serialization code i module Service r%ponﬁe
_ i

Fig: 7—Development and deployment of web service

2.3 SOAP-DIME Client Application

The SOAP client developed has four remote methods with which it can either upload the
file on the server or download the file from the server or can delete the file or get the list
of available files. To invoke these remote methods the client needs the four stub routines
for the remote operations. Figure —8 shows the development and deployment stages of a
gSOAP client[8]. The input to gSOAP compiler is the header file (gdx.h), which is then
processed by the gSOAP compiler to generate the stub routine for the client application.
The primary stub’s responsibility is to marshal the input data send the request to the
designed SOAP service (server) over the network, wait for the response and once the
response arrives demarshal the output data. The client application invokes the remote
methods in exactly similar way as it invokes any local method. While downloading the
file, the DIME client demonstrates the new DIME streaming feature.

17

Development

e i Deployment
Specifications of i
Provided by J remote procedures i | Client application
user and data types i invokes RPC stub
: |
r i invoke stub return
gSOAP RPC i marshal
compiler !
! demarshal
Automated< RPC stub code Ly _
! client request
Datat —> o C:-'|-|+ ! gSOAP
atype compiler ! communication -
seriaization code | module Service response
NG I

Fig: 8 — Development and deployment of a client

The detailed information about each method is as follows-

Downloading thefile:

The remote method (gdx__ get) specifies all the parameters needed to download the file
from the SOAP web service. With the help of the function prototype the gSOAP compiler
generates the stub routine to interact with the SOAP service. The remote method takes
user authentication information and the resources information, which includes the list of
names of files to be downloaded from the server as input parameters. Both these
parameters are passed by value. According to gSOAP convention, the last parameter of
the remote method is output parameter, which is passed by reference. Here the output
parameter specifies the data of all the requested files. The implementation of this method
is discussed in detail in the next section. The function prototype associated with this
method is int whose value indicates whether the request is successfully processed or not.
The output can be received as DIME attachment or as DIME streaming. Both these

18

approaches are described in section 2.3 and 2.4 respectively. The client can change the

name of the files, which he/sheis downloading. Thisis an optiona parameter.

Uploading thefile:

The remote method (gdx__put) specifies al the parameters needed to upload the file on
the SOAP web service. The stub routine, generated by the gSOAP compiler, interacts
with the SOAP service. This remote method takes user authentication information such as
username and password and list of files to be uploaded on the server as the input
parameters. All the input parameters are passed by value. Every remote method needs to
have an output parameter. Here the output parameter is the null parameter. The function
prototype associated with this method is int whose value indicates whether the request is
successfully processed or not. The files can be uploaded on the SOAP web service as
DIME attachments or as DIME data streaming. Both these approaches are discussed in
sections 2.3 and 2.4 respectively.

Deleting thefile:

The remote method (gdx__delete) is written to delete the files on the SOAP web service.
The stub routine, generated by the gSOAP compiler, interacts with the SOAP service.
This remote method takes user authentication information such as username and
password and list of files to be deleted from the server as the input parameters. All the
input parameters are passed by value. The output parameter is the null parameter. With
this option any client can delete the file on the server. With the help of authentication
information the access to the files on the SOAP web service for the purpose of deletion
can be restricted. This issue is discussed in the section-4, Future Work. The function
prototype associated with this method is int whose value indicates whether the request is
successfully processed or not.

Listing thefiles:

The remote method (gdx__list) specifies all the parameters needed to list all the files on
the SOAP web service. For the security reason the method lists all the files in the current
working directory of the SOAP web service. The stub routine, generated by the gSOAP

19

compiler, interacts with the SOAP service. This remote method takes user authentication
information such as username and password as the input parameter. The output parameter
isthe list of all the files in the current working directory of the SOAP web service. The
function prototype associated with this method is int whose value indicates whether the

reguest is successfully processed or not.

2.4 DIME File Attachment

gSOAP can transmit binary data with DIME with or without streaming. Without
streaming the data is stored in XSD:base64Binary class. The structure is declared as
follows —

struct xsd__ base64Bi nary

{ unsigned char *_ptr; /1 point to binary data bl ock
int _ size; /1 size of block
char *id; /! optional DI ME attachnent 1D
char *type; /1 DI ME attachnment type (M ME type)
char *options; /] Additional information with D ME
3

The last three parameters of this structure are important to support DIME. gSOAP will
test for the presence of the DIME-specific attributes at run time and use SOAP in DIME
accordingly. The order of these fields is important. Any additional declarations can
appear after the declaration of these fields. When the id or type field is non-NULL,
DIME attachment transmission is used for the entire SOAP message.

2.5 DIME Data Streaming

Streaming DIME is achieved with callback functions to fetch and store data during
transmission. For DIME output streaming, three function calls are available with the
gSOAP tool and for DIME input streaming three functions calls are availabl e[7].

DIME receiving-side streaming:

The three function calls that are available are:

1. soap.fdimewriteopen(): Called by the gSOAP DIME attachment receiver at run time
to start writing an inbound DIME attachment in the application’s data store. The
contents are stored in the applications data store with the multiple fdimewrite()

20

function calls, which are discussed below. The prototype for this function is as

follows;

soap. fdimewiteopen = dinme_wite_open;
static void *dime_wite_open(struct soap *soap, const char *id,

const char *type, const char *options)

The id field contains the image id, type field contains the image type i.e
“image/jpeg” and options field contains additional information about DIME
attachment. In this case it contains the image name. The callback returns the handle
of the file that is to be transmitted via DIME streaming. This handle is next passed
to soap.fdimewrite() and soap.fdimewriteclose() functions.

2. soap.fdimewrite(): Caled by the gSOAP DIME attachment receiver at run time to
write an inbound DIME attachment in the application’s data store in parts. The

prototype for this function is as follows:

soap.fdimewite = dine_wite;

static int dime_write (struct soap * soap, void * handle, const char *buf, size t len)

The handle field contains the file handle returned by the fdimewriteopen() callback.
The buffer contains the inbound data of length len. In case of any error, the call back
returns gSOAP error code otherwise the call back returns SOAP_OK. There could be
multiple fdimewrite() calls.

3. soap.fdimewriteclose(): Called by the gSOAP DIME attachment receiver at run time
to close the data store. It is called either after successfully receiving the data or after

any error occurrence.

soap.fdimewitecl ose = dine_wite_close;

static void dine_wite close(struct soap *soap, void *handl e)

The handle contains the file handle returned by the fdimewriteopen() callback.

21

In the SOAP structure, there is one field called “user” field, which is available to pass the
user-defined data. For this application this field is used to pass the pointer of the list of
image file names. The detailed information is given in the next section.

The following diagram explains the DIME receive streaming —

soap.fdimewriteopen()

soap.fdimewrite()
soap.fdimewriteclose()
>

(filehandle) | ____

(multiple-writes)
>

(file-handle)
>
(Error)
>
(Error)

Fig: 9—Dime Receive Streaming

DIME sending-side streaming:

The three function calls that are available are:

1. soap.fdimereadopen(): Called by the gSOAP DIME attachment sender at run time to
start reading from a data store for an outbound transmission. The contents are read in
chunks at the run time with the multiple fdimeread() function calls and streamed into
SOAP/XML/DIME output stream.

soap- >f di ner eadopen = di ne_read_open
static void *di me_read_open(struct soap *soap, void *handl e, const

char *id, const char *type, const char *options)

22

The id field contains the image id, type field contains the image type i.e.
“image/jpeg” and options field contains additional information about DIME
attachment. In this case it contains the image name. The callback returns the handle
that is next passed to soap.fdimeread() and soap.fdimereadclose() functions. In case

of error the function returns NULL.

1. soap.fdimeread(): Called by the gSOAP DIME attachment sender at run time to read
data from the data store for streaming into the output stream. The prototype for this

function is asfollows:

soap->fdi neread = di ne_read

static size t dime_read(struct soap *soap, void *handle, char *buf, size t len)

The handle field contains the file handle returned by the fdimereadopen() callback.
The buffer of length len is used to store chunk of data. In case of successful operation
the call back returns no of bytes read otherwise in case of any error, the call back

returns 0. There could be multiple fdimeread() calls.

2. soap.fdimereadclose(): Called by the gSOAP DIME attachment sender at run time to
end the streaming process to close the data store. It is called either after successfully

transmitting the data or after any error occurrence.

soap- >f di nereadcl ose = di ne_read_cl ose;

static void dine_read_cl ose(struct soap *soap, void *handl e)

The handle contains the file handle returned by the fdimereadopen() callback.

The following diagram explains the DIME send streaming —

23

soap.fdimereadopen()

soap.fdimeread()

soap.fdimereadcl ose()
>
(filehandle) |
(multiple-reads) >

(file-handle)

(Error) >

(Error)

Fig: 10— Dime Send Streaming

2.6 DIME Chunked Data Streaming

gSOAP automatically handles inbound chunked DIME attachments. gSOAP also
supports the transmission of outbound-chunked DIME attachments without prior
determination of DIME attachment size. To enable chunking the output-mode
SOAP_IO_CHUNK flag must be set and __size field of an attachment must be set to
zero. The DIME fdimeread callback then fetches data in chunks and it is important to fill
the entire buffer unless the end of the data has been reached and the last chunk is to be
send. That is, fdimeread should return the value of the last len parameter and fill the
entire buffer buf for all chunks except the last.

24

3. Implementation Details

3.1 Use of gSOAP Stub and Skeleton Compiler to Build SOAP-DIME Client
Implementation of SOAP-DIME client requires a stub routine for each remote method
that the client invokes. (Refer to figure-8). The gSOAP stub and skeleton compiler is a
preprocessor, which generates the necessary C/C++ sources to build SOAP C++ clients.
For this application the input to the gSOAP compiler is a header file. The name of thefile
is gdx.h. The SOAP service methods are specified in the gdx.h as function prototypes.
gSOAP automatically generates the stub routines for these functions.

/[Contents of thefile: gdx.h

//gsoap gdx service name: gdx gSOAP Data eXchange service

//gsoap gdx service namespace: http://mww.genivia.convservices/gdx.wsdl
//gsoap gdx service location: http://mww.cs.fsu.edu/~engel en/gdx.cgi
//gsoap gdx schema namespace: http://www.genivia.convschemas/gdx.xsd

/[USER authentication
struct gdx__ Authentication
{ char *userid;

char *passwd ;

¥

int gdx__get(struct gdx__Authentication authentication, struct gdx__Resources
resources, struct gdx__Data &data);

int gdx__put(struct gdx__ Authentication authentication, struct gdx__Resources
resources, struct gdx__Data data, struct gdx__putResponse{ } *);

int gdx__del(struct gdx__Authentication authentication, struct gdx__Resources
resources, struct gdx__delResponse{ } *);

int gdx__list(struct gdx__Authentication authentication, struct gdx__Resources
&resources);

The header file specifies the service details for the gSOAP compiler. The remote methods
are declared as the gdx__get, gdx__put, gdx__del and gdx__list function prototype. The
method specifies all the necessary details for the gSOAP compiler to generate the stub

25

routine. The input parameters of the remote methods are objects of structures, which are
passed by value. The last parameter of each remote method is the output parameter,
which is passed by reference. On successful complementation, the method returns

SOAP_OK otherwise an error code is returned.

Namespace Consider ations:

All the remote methods use the namespace prefix gdx__. The purpose of the namespace
prefix isto associate a remote method name with a service in order to prevent the naming
conflictsi.e. to distinguish the remote methods with same name but used by the different
services. The use of name space prefix is aso required to enable SOAP applications to
validate the contents of the SOAP messages. When the response arrives, the stub routine
can verify the contents by using the information provided in the namespace-mapping
table. The client application needs to include the namespace mapping table as a part of
client application code. The stub accesses the table at run time while encoding and

decoding the messages to resolve the namespace bindings.

//Contents of the file: gdx.nsmap

include "soapH.h"
SOAP_NMAC struct Namespace namespaces]] =
{
{"SOAP-ENV", "http://schemas.xml soap.or g/soap/envel ope/”,
"http://mmw.w3.or g/* /soap-envel ope'},
{"SOAP-ENC", "http://schemas.xml soap.or g/soap/encoding/",
"http: //mmw.w3.0r g/* /soap-encoding},
{"xs", "http:/mww.w3.org/2001/ XML Schema-instance”,
"http: //mwww.w3.or g/* XML Schema-instance”},
{"xsd", "http://imww.w3.0org/200L/ XML Schema, " http: //mmww.w3.or g/* /XML Schema'},
{"gdx", "http://wwmw.genivia.com/schemas/gdx.xsd"},
{NULL, NULL} //end of table.

}

The first four entries are standard entries used by SOAP. The later one is user specified.
The last entry of the namespace prefix gdx_, which is bound to
“http://www.genivia.com/schemas/gdx.xsd” by namespace mapping table, is used by stub

26

to encode all the remote the methods. gSOAP does this task automaticaly by using the
prefix gdx__ of al the remote methods, specified in the header file. Also the different
structures that are declared in the file *gdx.h’ also have namespace prefix.

To generate the stub routines, the gSOAP compiler is invoked. The command used for

thisis asfollows. Makefile has the list of al the commands.

soapcpp2 gdx.h

The stub routine can be called from the client program at any time to invoke the remote
method. The stub routine is saved in the file dimeclient.cpp. In al there are four
dimeclientX.cpp files, one for each remote method. The interface to the remote method

gdx__ get written in the stub is as follows.

/I Contents of file dimeclient.cpp

int main(int argc, char ** argv)

{

if (soap_call_gdx__get(&soap, url, ", authentication,resour ces,data))

{
soap_print_fault(&soap, stderr);

else

{
printf(*\n Done ... gdx_get() \n");

return SOAP_OK;

The parameters of the function soap_call_gdx__get are al identical with the parameters
of gdx_get with three additional parameters. The first parameter is the pointer to gSOAP

27

runtime environment. The second parameter is the URL, which is the endpoint URL,
where the web service is located along with the valid port number. The third parameter is
the SOAP action parameter. The fourth parameter is the object of the structure
gdx__Authentication. This contains two fields where the first is username and the second
is password. The next parameter is the object of structure gdx _Resources. This structure
contains all the information about the files that are requested to either download, upload
or delete by the client. The two fields of this structure are the file number along with the
pointer to array of strings, which has al the file names to be processed. All the file names
that the client wants to either upload or download or delete are stored in the linked list.
Each node contains the filename along with some additional information. Before making
the soap__call all the information from the linked list is stored in this structure. The last
parameter is data, which is the output parameter. The structure contains the number of
attachments send by the server long and the pointer to array of base64 structs. When
successful the stub returns SOAP_OK and the output parameter contains the valid
response otherwise the SOAP fault is displayed with soap_print_fault function. Similarly,
the function soap _call_gdx__ put, soap_call _gdx__list, soap call gdx__delete are created
and handled.

Client proxy classes:

The proxy class is automatically generated by the gSOAP complier with the help of the
information provided in header file gdx.h. The service name provided in the gdx.h file
becomes the name of the proxy class. Here the name of the class is gdx. The default
encoding is SOAP-RPC, but for this application the XSD type encoding is used which

improves the interoperability.

28

//Contents of file : soapgdxProxy.h

#ifndef gdx_H
#define gdx_H
#include "soapH.h"
class gdx
{ public:
struct soap * soap;
const char *endpoint;
gdx() { soap = soap_new(); endpoint =
"http: //mww.cs.fsu.edu/~engelen/gdx.cgi”; };
~gax() { i (soap) { soap_destroy(soap); soap_end(soap); soap_done(soap);
free((void*)soap); } };

int get(struct gdx__ Authentication authentication, struct gdx__Resources

resources, struct gdx__Data &data) { return soap ? soap_call_
gdx__get(soap, endpoint, NULL, authentication, resources, data) : SOAP_EOM; };

#endif

29

3.2 Use of gSOAP Stub and Skeleton Compiler to Build SOAP Web Services

The server implements four RPCs first is to download data from the web service
(gdx__get), second is to upload data on the web service (gdx__ put), third is to view the
list of data files on the server (gdx__list) and fourth is to delete files on the server

(gdx__ delete). The specification of these four methodsiis as follows.

/[Contents of file - gdx.h

int gdx__get(struct gdx__Authentication authentication, struct gdx__Resources
resources, struct gdx__Data &data);
int gdx__put(struct gdx__ Authentication authentication, struct gdx__Resources
resources, struct gdx__Data data, struct gdx__putResponse{ } *);
int gdx__del(struct gdx__Authentication authentication, struct gdx__Resources
resources, struct gdx__delResponse{ } *);
int gdx__list(struct gdx__Authentication authentication, struct gdx__Resources
&resources);

To generate the skeleton routines, the gSOAP compiler is invoked. The command used
for thisisasfollows.

soapcpp2 gdx.h

The compiler generates the skeleton routines for the get, put, del, and list remote methods
as specified in the gdx.h header file. The skeleton routines are soap_serve gdx__ get,
soap_serve gdx_put, soap_serve gdx del and soap _serve gdx list. These are saved
in the file soapServer.cpp. The soapC.cpp file generated contains serializers and
deserializers for the skeleton. The soap_serve function written in the soapServer.cpp file
handles client requests on the standard input stream and dispatches the remote method
requests to the appropriate skeletons to serve the requests. The skeleton then calls the
remote method implementation function. During runtime an extra parameter gets attached

to each remote method. The new parameter is a pointer to gSOAP runtime environment.

30

WSDL Service:

The soapcpp2 compiler generates a Web Service Description Language file for this
service. The compiler produces the WSDL file for the set of remote methods. The name
of the WSDL file is the namespace prefix that the remote methods have used. If there are
multiple namespaces then the compiler will create multiple WSDL files. For this
application the remote methods use gdx as namespace prefix. Hence the name of the
WSDL file is gdx.wsdl. This file can be published with the help of which the client
application can be built to use the web service.

The gSOAP compiler also generates the XML schemafile for all the complex data types
when declared with namespaces. For this application there are few structures that are
declared with the namespace gdx. The gdx.xsd file contains the XML schema for these

complex structures.

SOAP-DIME Web Service:

The web service first does some initiaization work, creates a listening port and waits for
the request from the client. There are various gSOAP functions that are used for this
purpose.

Function calls Description

soap_init(struct soap * soap):

Initializes the gSOAP Runtime environment

soap_initl(struct soap * soap, int
imode)

Initializes the gSOAP runtime environment with
and sets flags.

soap_init2(struct soap *soap, int
imode, int omode)

Initializes the gSOAP runtime environment with
and sets flags.

soap_bind(struct soap* soap,

char *host, int port, int backlog):

This is the bind function. The value of parameter
backlog is the maximum queue size for the
requests. If the value oh parameter host = NULL
then the host is the machine on which the web
service is running. The return value is the active
socket number.

soap_accept(struct soap * soap):

Returns the socket number after accepting the
request.

soap_end(struct soap * soap):

Cleans up the decentralized and temporary data,
which is created via soap_malloc function.

soap_free(struct soap * soap):

Cleans up the temporary data only.

soap_done(struct soap * soap)

Closes the sockets and removes the callbacks.

31

Multi-threaded web service:

It is necessary for the web service to be multithreaded to avoid the long response time.
gSOAP supports the implementation of multi-threaded stand-alone services. The web
service has a standard port available on which the web service can accept the client
request. For each request the web service creates a thread, which is then assigned the
work of serving the request. After the successful completion of the request the thread
exits. The code does not wait for threads to join the main thread upon program
termination.

The soap_serve method acts as the service dispatcher. It invokes the remote method via
the skeleton routine to serve the SOAP client request.

//Contents of file : dimeserver.cpp

int main(int argc, char **argv)

{
struct soap soap;

soap_init(&soap);
pthread_create(&tid, NULL, (void* (*)(void*))process request, (void*)tsoap):
void *process_request(void * soap)

pthread_detach(pthread_self()):;
soap_serve((struct soap*)soap);

return NULL;
}

int gdx__get(struct soap * soap,gdx__Authentication authentication, gdx__Resources
resources, gdx__Data & data)

{

return SOAP_OK

32

The remote method gdx_get is explained below. With the help of this method the client

can download the data from the web service.

gdx__get :

/[Contents of file : dimeserver.cpp

int gdx__get(struct soap * soap, gdx__Authentication authentication, gdx__Resources
resources, gdx__Data &data)

return SOAP_OK
}

The gdx__get method can send the data in three different ways. All the three approaches
are discussed below.

Streaming thedata WITH HTTP Chunking:

If the SOAP_IO_CHUNK flagisset and the _sizefield of an attachment is set to ZERO
then gSOAP enables HTTP chunking. With this the data can be streamed without the
need to know the data size. gSOAP automaticaly handles inbound chunked DIME
attachments. If chunking is enabled then only data compression option is provided to
improve the performance of the operation.

//Contents of file : dimeserver.cpp

if((soap->omode & SOAP_IO) == SOAP_IO_CHUNK)
{
data.data[count].__ ptr = (unsigned char*)fd;
data.data[count]. size=0;
data.data] count].type="";
data.data[count].id = NULL;
printf("\n Method#2 - Streaming the data WITH HTTP Chunking\n");

33

Streaming thedata WITHOUT HTTP Chunking:

If chunking is not enabled then the server web service streams the data without chunking.
In that case the . ptr field of the attachment is set to the file size that is to be
transmitted. In both the cases the type field is set to “” to enable DIME.

//Contents of file : dimeserver.cpp

eseif(!fstat(fileno(fd), &sb) & & sh.st_size > 0)
{
data.data] count] . ptr = (unsigned char*)fd;
data.datal count] . size= sh.st size;
data.data[count] .type= """ ;
data.data[count] .id = NULL;
printf("\n Method#2 - Streaming the data WITHOUT HTTP Chunking\n");

}

Sending the data as an attachment:

If chunking is not enabled or the file size is unknown in that case the file is buffered
before sending and then send the file as an attachment. In case of the success the method
returns SOAP_OK otherwise the method has to set SOAP_FAULT, which denotes an
exception with details that can be defined by the user.

/[Contents of file : dimeserver.cpp
else

{

printf("\n Method#3 - Can not stream so sending data as an attachment.\n");

//IMEMORY allocation for the image.

image.__ptr = (unsigned char*)soap_malloc(soap, MAX_FILE_SZE);
data.data count].__ptr = (unsigned char*)soap_malloc(soap, MAX_FILE_SZE);
¢ = (unsigned char *) malloc(si zeof(unsigned char));

i=0;

/I COPY thefile to the buffer.
while(!feof (fd))

{
if(fread(c,sizeof(* ¢),1,fd))
{
image.__ ptr[i] = *c;
i++;
}

Similarly the other remote methods, gdx__put, gdx__list, gdx__delete are handled.

The list of all the files that gets created with the gSOAP stub and skeleton compiler is

given below. The next sections discuss the file attachment handling and data streaming in

details.
File Name Description
soapH.h Main header file included by both client and server.
soapC.cpp Serializers and dserializers for specific data structures.
soapClient.cpp Client stub routines and proxies for all the routines.
soapServer.cpp Service skeleton routine.
soapStub.h A modified header file created from the compiler input header
file, gdx.h.
gdx.xsd gdx.xsd file contains the XML schema for each namespace
prefix gdx used by the data structure in the header file gdx.h.
gdx.wsdl Thefile generated with the WSDL description for each
namespace prefix gdx used by the remote method in the
header file gdx.h.
gdx*.*.xml Eight SOAP/XML request/response files are generated,
gdx.nsmap The nsmap file generated for the namespace prefix gdx used

by the remote method in the header file gdx.h, which isthe
input to the gSOAP compiler.

The serve provides two options for the data transmission when the client wants to

download the data from the server with the remote method gdx__get. The two options are

either send the data as an attachment or stream the data. Also the client can send the data

while uploading the data on the server machine with the remote method gdx__put as an

attachment or with the data streaming. This option is not provided for the remote

methods gdx__del with which the client can delete the files on the server machine and

gdx__list with which the client can get list of files from the server machine. Both these
options are discussed in the section 3.3 and 3.4 below.

35

3.3 How the data streaming isdone

This option is provided for the client and the server while data uploading or downloading.
The advantages of data streaming are already discussed in the section-1. The DIME data

streaming is done through function callbacks. The callbacks are described in the section

2.5. The following figure describes the DIME streaming for the RPC function gdx__get.

encoding

encoding

-

Client <<

sen |
transmission

Tee

—>

/’

encoding

s, |

\send

\

transmission transmission
_/
i< Tsend >§<_ Ted _>E
buffer buffer buffer buffer E
i parse i parse i parse i parse i E
E decoding decoding decoding decoding

Fig: 11 —DIME Streaming

Ts - Timetaken by server for encoding the SOAP message and collecting DIME data.

Tseng - Tota time for transmission and buffering of data.

T — Time taken by client for decoding of SOAP messages and storing DIME data.

The figure-11 shows the streaming of data from server to client[8]. The encoding of the

datato XML takes place by gSOAP compiler while the message is transferred in chunks

of XML. At the server side each chunk is encoded and sent at the same time while the

next datais being encoded. At the client side XML messages are parsed and then decoded

as soon as the data arrives in the buffer. The size of the buffer is independent of the size

of the chunk as the process of decoding starts immediately after the reception of data in

36

buffer. The network bandwidth and the processor speed decided the chunk size. For this

application the maximum chunk size is 32K. Similarly the gdx__put function handles the

data streaming between the client and the server.

3.4 How thefile attachment is handled?

This option is provided for the client to download the data from the server as a DIME

attachment.
| , ~
encoding encoding
| %\'\ | %nM > Server
i transmission transmission
i i i _ i .
< Tee < — Teend P Ty >
i /‘ : | | : i
i buffer buffer i
l arse l l arse ™ |
client < 1 P \ P |
| | decodin
decoding J

_ g !
Saveto file

Fig: 12 -DIME File attachment handling

T« - Timetaken by server for encoding SOAP messages and collection DIME data.
Tseng - Tota time for transmission and buffering of data.

Teq — Time taken by client for decoding of SOAP messages and storing DIME data.

The figure-12 shows the sending of data as an attachment from server to client[8]. The

encoding of the data to XML takes place by gSOAP compiler then the message is

transferred in chunks of XML. At the server side each chunk is encoded and then sent

37

one at a time. The next data is then encoded and sent over. At the client side XML
messages are parsed in the buffer and then the data is decoded. The size of the buffer is
can be caculated from the size of the data from the DIME header. The network
bandwidth and the processor speed decided the chunk size. For this application the
maximum chunk size is 32K. Similarly the gdx__put function handles the data sent via

file attachment between the client and the server.

3.5 System Usage

1. To build the SOAP web service:
The commands used to build the web service are —
> ../soapcpp2 gdx.h

> g++ -Wall -O2-I../ -odimeserver dimeserver.cpp soapC.cpp soapServer.cpp
..Istdsoap2.cpp —Ipthread -1z

2. Tobuild SOAP client:
> ../soapcpp2 gdx.h
> g++ -Wall -O2-1../ -odimeclient dimeclient.cpp soapC.cpp soapClient.cpp

../stdsoap?2.cpp -Ipthread -1z

g++ -Wall -O2-I../ -o dimeclientl dimeclient1.cpp soapC.cpp soapClient.cpp
..Istdsoap?2.cpp - Ipthread -1z

g++ -Wall -0O2-I../ -odimeclient2 dimeclient2.cpp soapC.cpp soapClient.cpp
.Istdsoap2.cpp - Ipthread -1z

g++ -Wall -O2-I../ -odimeclient3 dimeclient3.cpp soapC.cpp soapClient.cpp
../stdsoap?2.cpp -Ipthread -1z

\

\

\

3. Toexecutethe SOAP web service:

To enable streaming with chunking:

> dimeserver -SC 180012

To enable streaming with chunking with compression:
> dimeserver -SC -C 180012

To enable streaming without chunking:

> dimeserver -ST 180012

38

To enable attachment:
> dimeserver -AT 180012

4. Toexecutethe SOAP client:

To download files car.jpg home,jpg design.jpg from the server with streaming:
> dimeclient —ST car.jpg home.jpg design.jpg http://linprogl.cs.fsu.edu:180012
newcar.jpg newhome.jpg newdesign.jpg

To download files car.jpg home.jpg design.jpg from the server asan attachment

> dimeclient —AT car.jpg home.,jpg design.jpg http://linprogl.cs.fsu.edu: 180012
newcar.jpg newhome.jpg newdesign.jpg

To upload filestreejpg, image.jpg, view.jpg on the server with HT TP chunking:
> dimeclientl —SC tree.jpg image.jpg view.jpg http://linprogl.cs.fsu.edu: 180012

To upload filestreejpg, imagejpg, view.jpg on the server with HTTP chunking with
compression:

> dimeclientl —SC —C tree.jpg image.jpg view.jpg http://linprogl.cs.fsu.edu: 180012

Toupload filestreejpg, image.jpg, view.jpg on the server with streaming:
> dimeclientl —ST tree.jpg image.jpg view.jpg http://linprogl.cs.fsu.edu: 180012

To upload filestreejpg, imagejpg, view.jpg on the server with attachment:
> dimeclientl —AT tree,jpg image.jpg view.jpg http://linprogl.cs.fsu.edu:180012

To get thelist of filesfrom the server :
> dimeclient2 —ST/-AT http://linprogl.cs.fsu.edu:180012

To deletefilestreejpg, image.jpg, view.jpg from the server :

> dimeclient3 -ST/-AT treejpg image.jpg view.jpg http://linprogl.cs.fsu.edu: 180012

39

5. FutureWork

1. Fileaccess permission

The current application allows any client to connect to the web service and the client has
full access to the data on the web service. Therefore any client can view or delete al the
files that are on the web service. Therefore there could be a situation where a malicious
client is trying to delete the data from the web service. Therefore in future version the
file access permission could be set for each user. The user who has uploaded the file only
can delete the file. Also with the file access permissions only authorized users can be
given the access to view it. Also in the future version clients can be given a directory
where he/she can store their data. That particular client depending upon the contents of
the directory could set the access permission for the directory. To set the permissions the
web service will store the file information with the user credentials such as username and
password with it. Before giving the full access to the directory the web service can check
the username and password provided against the data stored in its database. If the user is

valid user then the access is provided.

2. Secure Web-Service

If the client wants to store the data on the web service then it must provide the unique
username and password to the web service for the future reference. While sending the
user credentials proper encryption algorithm should be used to prevent the unwanted
intrusions. There are various ways with which this functionality can be provided. The

two different approaches are described below.

Secure Web-Servicewith HTTPS/SSL

The web service can be made secure by allowing it to support HTTPS/SSL when the web
service is used as CGIl. gSOAP supports OPENSSL. To enable OpenSSL, the code must
be compiled with the option -DWITH_OPRNSSL. Call to the function soap_ssl_accept
after soap_accept enables SSL support. In addition to this, the key file, DH file and
password are needed. Function soap ssl_server initializes the server side SSL. The
CRYPTO _thread_setup() routine is used to setup locks for the multithreaded routine.

40

By default the server authentication is enabled. The gSOAP provides facility to unable
the server authentication by setting appropriate flags. By default the client as not required
to authenticate. But the application can support client authentication. The server is

required to set specific flag in the call to above function.

HTTP Authentication:

Setting the soap.userid to username and soap.passwd strings to the password enables
HTTP authentication at the client-side. A server may request user authentication and
denies access (HTTP 401 error) when the client tries to connect without HTTP
authentication (or with the wrong authentication information). A client MUST set the
soap.userid and soap.passwd strings for each call that requires client authentication. The
strings are reset after each successful or unsuccessful call.

A stand-alone gSOAP Web Service can enforce HTTP authentication upon clients, by
checking the soap.userid and soap.passwd strings. These strings are set when a client
request contains HT TP authentication headers. The strings SHOULD be checked in each

service method.

/IContents of thefile : dimeserver.cpp

int gdx__del(struct soap * soap, gdx__Resources resources, gdx__del Response * resp)
{
if ('soap->.userid //!soap->.passwd // strcmp(soap->.userid, "user#123") //
strcmp(soap->.passwd, "letmein™))
return 401;

41

5. Conclusion

With the use of gSOAP an efficient distributed file access with web-service can be built.
The application built on gSOAP can transmit the binary data with DIME attachments
with or without streaming. With DIME output streaming, the binary data is retrieved
from the data source at run time in parts without the need to store the entire file contents.
SOAP uses HTTP as the transport mechanism and HTTP can pass through most of the
firewalls therefore it is possible to do file exchange over such networks. SOAP uses
XML message format and therefore SOAP has inherited al the advantages that XML
provides. With the DIME attachments the date transfer between the systems that do not
use XML format e.g. Electronic Data Interchange (EDI) is possible without converting
the data to and from XML. With DIME thereis no restriction on size and format of data.

42

6. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Aaron Skonnard. SOAP: The Simple Object Access Protocol, Microsoft Corporation,
http://www.micr osoft.com/mind/0100/soap/soap.asp

Aaron Skonnard. Understanding SOAP, Microsoft Corporation,
http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnsoap/htm
|/under standsoap.asp

Gunjan Gupta, A Simple Object Access Protocol (SOAP) stub compiler for C, MS
Project, 2000

Jeannine Hall Gailey, Microsoft Corporation, Sending Files, Attachments, and
SOAP Messages ViaDirect Internet M essage Encapsulation
http://msdn.microsoft.com/msdnmag/issues/02/12/DIME/

Jeannine Hall Gailey, Microsoft Corporation, Using Web Services Enhancements to

Send SOAP Messages with Attachments
http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnwse/html/
wsedime.asp

Matt Powell. Microsoft Corporation, DIME: Sending Binary Datawith Y our SOAP
Messages, http://msdn.micr osoft.com/library/default.asp?url=/library/en-
us/dnservice/html/service01152002.asp

Robert van Engelen. gSOAP 2.6.0 User Guide
http://www.cs.fsu.edu/~engel en/soapdoc2.html

Robert van Engelen. Code Generation Techniques for devel oping light-weight XML
web services for embedded devices, ACM SIGAPP SAC Conference, 2004

Robert van Engelen. Pushing the SOAP Envel ope with web services for scientific
computing, 1% International Conference on Web-services, June 22-26, 2003 Las
Vegas USA.

[10] W3C Note 11 December 2000, SOAP Messages with Attachments,

http://www.w3.or g/T R/SOAP-attachments

[11] W3C Working Draft 9 July 2001, SOAP Version 1.2,

http:/mww.w3.or g/T R/2001/W D-soap12-20010709/# TocA78383512

