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ABSTRACT

The performance of a content-based image retrieval system depends on the representation

of images. As a typical image consists of different objects, an image segmentation is needed

for more accurate representations of contents. The first part of this thesis describes a

generic image segmentation algorithm based on local spectral histograms of images. This

algorithm, demonstrated by experimental results, is shown to be effective for both texture

and non-texture images, and comparable to other segmentation algorithms. Due to the

time constraint of an image retrieval system, the second part of this thesis focuses on low

dimensional representations of images. By analyzing the semantics of commonly used linear

subspace representations through sampling their intrinsic generalizations, their limitations

are illustrated and a nonlinear representation, called Spectral Subspace Analysis (SSA) that

overcomes these limitations is proposed. In addition, to obtain optimal retrieval performance,

an algorithm for learning optimal representations is developed by formulating the problem as

an optimization one on a Grassmann manifold and exploiting the underlying geometry of the

manifold. Experimental results on different datasets show that both the SSA representation

and the learned optimal representations can improve retrieval performance significantly for

content-based image retrieval systems.
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CHAPTER 1

INTRODUCTION

In recent years, with the advances in imaging technology, digital images are available at

an increasing speed, resulting in large collections of images. Searching in these collections

becomes more and more important in many fields, such as commerce, medical and govern-

ment applications. This motivates research for content-based image retrieval and various

application systems have been developed. A content-based image retrieval system is to

search through an image database to find out images that are similar in content to a given

query one. However, most existing retrieval systems, if not all, suffer one problem: when a

user submits a query, the system retrieves images far from the user’s expectation, leading

to low retrieval performance. Santini and Jain [31] report that many existing systems give

meaningless responses; Lesk [18] summarizes a generic phenomenon in retrieval systems using

“What you see is what you get, but not what you want” as the title. Smeulders et al. [35]

attribute it to a problem known as the semantic gap.

In this thesis we argue that the root of meaningless responses is the lacking of seman-

tically meaningful representations of images. An ideal representation of images should be

semantically meaningful so that it can group together content-similar images in the image

space and is semantically discriminating for content-dissimilar images. This necessitates

investigating the semantics of representations of images.

As images’ contents, or objects, are of significant importance, it would semantically

be advantageous to do a segmentation first. There are numerous algorithms for image

segmentation (see [33] for a recent literature review). For gray level images with piecewise

smooth regions, the Mumford-Shah model [28] is representative in that most criterion used

in existing segmentation algorithms are its special cases [26]. In this thesis, we present

a segmentation algorithm by extending the Mumford-Shah model to images consisting of

piecewise smooth regions as well as texture ones using local spectral histograms [19, 22]

1



as a generic representation. Because a local spectral histogram of an image window

consists of histograms of response images of chosen filters, it captures local spatial patterns

through filtering and global patterns through histograms. Assuming that a representative

spectral histogram is available for each region in an image, the segmentation algorithm is

implemented as follows: 1) estimating a probability model for each region and classifying

the image windows to obtain an initial segmentation, 2) iteratively updating pixels along

region boundaries based on the derived probability models, and 3) further localizing region

boundaries using refined probability models derived based on spatial patterns in segmented

regions. Additionally, this algorithm addresses the issues of automatically identifying regions,

selecting optimal filters for spectral histograms, and choosing an optimal window size for

segmentation. This segmentation algorithm is effective for both texture and non-texture

regions, justified by experimental results on different kinds of images. Also, it leads to

more accurate segmentation results, which is justified by comparison with normalized cut

method [34] and other methods [29]. As an image representation for content-based image

retrieval, new representations need to be employed to represent the segmented objects. This

is not included in this thesis and will be studied further in the future.

Due to the time constraint of a retrieval system, low dimensional representations are

used to reduce the time for computing and sorting. Low dimensional representations impose

equivalence relations in image space. Ideally, in the context of content-based image retrieval,

only images with semantically similar contents should be grouped into an equivalence class.

This semantics-related equivalence class is named as intrinsic generalization. For example,

the histogram of pixel values of an image is widely used. This histogram representation is

semantically too weak as different kind of images tend to be grouped in one equivalence

class, which leads to meaningless responses. In this thesis, we study the equivalence class

structures of low dimensional representations by sampling their intrinsic generalizations.

To demonstrate the effectiveness of the sampling method, we utilize it to compare two

low dimensional representation families, namely linear subspaces of images and spectral

subspaces. The linear representations include principal component analysis (PCA) [16],

independent component analysis (ICA) [9] and Fisher discriminant analysis (FDA) [11]. The

study shows that the linear representations of images group semantically dissimilar images in

one equivalence class and are not semantically meaningful for content-base image retrieval.

2



By analyzing two problems with linear subspace representations, we propose a nonlinear

representation called Spectral Space Analysis which improves the intrinsic generalization.

The proposed representation has been applied to a large dataset and improved retrieval

performance has been obtained.

Additionally, we further present an algorithm that can be used to improve retrieval

performance by explicitly finding optimal representations in both image and spectral spaces

for content-based image retrieval applications. While it does not solve the semantic gap

problem, it offers a method to reduce the semantic gap through labeled training images.

The key to the proposed algorithm is to formulate the problem on Grassmann manifold and

utilize an effective optimization algorithm, MCMC simulated annealing, on the manifold.

The experimental results on different datasets demonstrate the feasibility and effectiveness

of the proposed method.

The remainder of this thesis is organized as follows. Chapter 2 introduces an image

segmentation algorithm using local spectral histograms. Chapter 3 analyzes the semantics

of representations for content-based image retrieval. Chapter 4 presents an algorithm for

learning optimal representations for image retrieval applications. Chapter 5 makes a brief

conclusion for this thesis.

3



CHAPTER 2

IMAGE SEGMENTATION USING LOCAL

SPECTRAL HISTOGRAMS

In this chapter, a generic segmentation algorithm by extending Mumford and Shah’s

model[28] using local spectral histogram representation is presented. Algorithms for bound-

ary localization, automated seed selection, automated filter and integration scale selection are

also provided to improve segmentation performance. Experimental results and comparison

with other algorithms show that the proposed segmentation algorithm is effective and

comparable to the best available.

2.1 Local Spectral Histogram Representation

Given an input image window W and a chosen bank of filters {F (α), α = 1, 2, . . . , K},
for each filter F (α), we compute a sub-band image W(α) through a linear convolution, i.e.,

W(α)(v) = F (α) ∗ W(v) =
∑

u F
(α)(u)W(v − u), where circular boundary condition is used

for convenience. For W(α), we define the marginal distribution, or histogram

H
(α)
W (z) =

1

|W |
∑

v

δ(z −W (α)(v)). (2.1)

Figure 2.1 shows an example of computing histogram. Figure 2.1(a) shows an input image.

Figure 2.1(c) shows the image after linear convolution with a Laplacian of Gaussian filter

shown in Figure 2.1(b). Figure 2.1(d) shows the histogram of the filtered image.

Then we define the spectral histogram with respect to the chosen filters as

HW = (H
(1)
W , H

(2)
W , . . . , H

(K)
W ). (2.2)

Figure 2.2 shows the spectral histograms of two images. For each image in Figure 2.2(a), it

is first convoluted by each of the eight filters shown in Figure 2.2(c), then the corresponding

4
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Figure 2.1. An example of computing histogram. (a) An input image. (b) A Laplacian of
Gaussian filter. (c) The filtered image. (d) The histogram of filtered image.

histograms are computed. The spectral histogram is obtained by concatenating the eight

histograms. The spectral histogram of an image or an image patch is essentially a vector

consisting of marginal distributions of filter responses. The size of the input image or the

input image patch is called integration scale. Because the marginal distribution of each filter

response is a distribution, a similarity measure can be defined as χ2-statistic, which is a

first-order approximation of Kullback-Leibler divergence and is used widely to compare two

histograms HW1 and HW2

χ2(HW1 , HW2) =
K

∑

α=1

∑

z

(H
(α)
W1

(z) −H
(α)
W2

(z))2

H
(α)
W1

(z) +H
(α)
W2

(z)
. (2.3)

The spectral histogram provides a normalized feature statistic to compare image windows

of different sizes. The input image windows do not need to be aligned; misalignment is a

serious problem for approaches that use filter responses directly as features, such as those

studied in [29], due to the inhomogeneity of filter responses. In this chapter, unless otherwise

specified, eight fixed filters are used: the intensity filter, two gradient filters, LoG with

two scales and three Gabor filters with different orientations. An automatic filter selection

algorithm is introduced later in this chapter. When proper filters are chosen, the spectral

histogram is sufficient in characterizing texture appearance. Figure 2.3 shows three types

of images, where the typical images are generated using a Gibbs sampler [39]. In Figure

2.3(a), the spectral histogram captures the perceptual appearance of both regions. Given

that the circular boundary is used for a typical image, the typical image represents closely

the observed one. Figure 2.3(b) shows a texton image, where the spectral histogram captures

5



(a) (b)

(c)

Figure 2.2. An example of spectral histograms of two images. (a) The input images. (b)
The corresponding spectral histograms. (c) The used eight filters .

(a) (b) (c)

Figure 2.3. Different types of images characterized by spectral histograms. Top row shows
an observed images and the bottom row a typical image that shares the same spectral
histogram. (a) A gray-level image consisting of two piecewise constant regions with additive
Gaussian noise. (b) A texton image consisting of cross elements. (c) A stochastic texture
image.
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the texton elements and the element density. This example demonstrates clearly that the

spectral histogram provides a description for textons without specifying texton elements

explicitly [22]. Figure 2.3(c) shows a stochastic texture and the spectral histogram captures

the perceptual appearance well.

Note that the spectral histogram is defined on any type of images. Piecewise constant

images with additive Gaussian noise are a special case where the spectral histogram has a

unique pattern. In addition, it can also characterize patterns with topological structures (e.g.

a face) with appropriate boundary conditions [20]. The spectral histogram representation

was first suggested in psychophysical studies on texture modeling [4], and has been used in

texture modeling and synthesis [15, 40, 19], texture classification [1, 19, 23] and modeling

human texture discrimination [22]. Histograms of local fields have also been used for object

recognition [32, 20].

2.2 Segmentation Algorithm

In [28], Mumford and Shah define a representative energy functional for segmentation of

which segmentation criteria in most existing segmentation algorithms are special cases [26].

In their formulation, segmentation is posted as the problem of finding optimal partitions

where each region should be as homogeneous as possible. The homogeneity of a region is

measured by its variance; this, however, is not effective for a textured region. To overcome

this limitation, we use local spectral histograms as local features and measure homogeneity of

a region using distance among spectral histograms. As spectral histograms can characterize

effectively both texture and non-texture regions, this formulation is effective for both types

of regions.

To be more specific, let R be a grid defined on a planar domain and Ri, i = 1, · · · , n be

a disjoint subset of R, Γi be the piecewise smooth boundary of Ri, and R be the union of

Ri and Γ of Γi, i = 1, · · · , n. A feature Fi is associated with each region Ri, i = 1, · · · , n.

We also define R0, which is called background [38], as R0 = R − (R1 ∪ · · ·Rn). Note that

segmentation can be represented using either Γ or R. Using the latter, motivated by the

Mumford and Shah’s energy functional, for an input image I, we define an energy functional

for segmentation as
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E(R, n) = λR
∑n

i=1

∑

(x,y)∈Ri
D(FRi

(x, y),Fi) + λL
∑n

i=1 |Γi|−
λF

∑n

i=1

∑n

j=1D(Fi,Fj) −
∑n

i=1 |Ri|
(2.4)

Here D is a distance measure between a feature at a pixel location and the feature vector

of the region, λR, λF , and λL are weights that control the relative contribution of the

corresponding term. FRi
(x, y) is the feature vector at pixel location (x, y), and this notation

implies that the feature vector depends on Ri in our implementation. In this chapter,

spectral histograms are used as features vectors, i.e., FRi
(x, y) = HW (s)(x,y), where W (s)(x, y)

is a local neighborhood, the size and shape of which are given by integration scale W (s) for

segmentation, a predefined neighborhood. In (2.4), the first term encodes the homogeneity

requirement in each region Ri and the second term requires that boundaries of regions be

as short as possible, or as smooth as possible. The third term requires that the features of

different regions be as different as possible. The last term is motivated by the fact that some

regions may not be described well by the selected features. In that case, those regions should

be treated as background, which can be viewed as grouping through inhomogeneity [38].

We use an iterative but deterministic algorithm to minimize the energy functional given

in (2.4), and implement it as two stages followed an additional localization stage given in

the next section. The first term in (2.4) is first minimized using the minimum distance

classifier in the first stage and further refined by (2.5) along with the second term. The third

term is used in the feature selection procedure described in Section 2.4.1 so that selected

features will be different from each other. The last term is incorporated in (2.6). Feature

vectors Fi for regions are first extracted from windows centered at given or detected pixel

locations; the size of a window is specified by integration scale W (s) for segmentation. To

estimate probability models and parameters Ti (homogeneity thresholds for regions used

in (2.6) below), we compute the spectral histogram centered at a pixel location; to save

computation, it is done only at sub-sampled pixels. The χ2-statistic distance measure may

not provide an accurate measure close to boundaries due to inhomogeneity. For example, in

the image shown in Fig. 2.4, the left region is homogeneous and the variation allowed should

be small. In the right region, the variation allowed should be relatively large. To overcome

this problem and provide a more accurate model, we estimate a probability model of the

χ2-statistic for each given feature vector Fi. This is done by computing the histogram of

the χ2-statistic between the computed spectral histograms at all chosen pixels and the given
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(a) (b) (c) (d)

Figure 2.4. Gray-level image segmentation using spectral histograms. The integration scale
W (s) for spectral histograms is a 15×15 square window, λΓ = 0.2, and λB = 3. Two features
are given at (32, 64) and (96, 64). (a) A synthetic image with size 128 × 128. The image is
generated by adding zero-mean Gaussian noise with different σ’s at left and right regions.
(b) Initial classification result. (c) Segmentation result. Each region is represented by a
manually assigned gray value. All the pixels are perfectly segmented. (d) The segmentation
result shown by region boundary (white). Note the original image is dimmed to make the
boundary more visible.

spectral histogram Fi for the region. Figure 2.5(a) shows the histograms of the χ2-statistic

for the two regions in Fig. 2.4(a). Parameter Ti for each region is determined by the first

trough after the leftmost peak from its histogram. Based on an assumption that feature

vectors Fi are close to the true feature vectors, a probability model is derived by assigning

zero probability for values larger than Ti. The derived probability models are given in Fig.

2.5(b). Then the input image is classified using a minimum distance classifier to minimize

the first term in (2.4); the pixels whose minimum distance is larger than Ti, are classified

as background. The classification result is used as initial segmentation. For the image in

Fig. 2.4(a), the corresponding initial segmentation result is shown in Fig. 2.4(b). Note that

the classification is done at sub-sampled pixels only and nearby pixels are assigned the same

label.

To illustrate the effectiveness of the derived probability models and asymmetric windows,

Fig. 2.6(a) shows a row from the image shown in Fig. 2.4(a). Figure 2.6(b) shows the

probability of the two labels at each pixel using asymmetric windows. It can be seen that

the edge point is localized precisely at the true location. Figure 2.6(c) shows the probability

using windows centered at pixels. There is an interval where labels can not be decided

because the spectral histogram computed in the interval does not belong to either of the

regions. This demonstrates also that the probability models based on spectral histograms are

sensitive to spatial patterns. For comparison, Fig. 2.6(d) shows the result using χ2-statistic
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Figure 2.5. The histogram and derived probability model of χ2-statistic for the given region
features. Solid lines stand for left region and dashed lines stand for right region. (a) The
histogram of the χ2-statistic between the given feature and the computed ones at a coarse
grid. (b) The derived probability model for the left and right regions.

directly for central windows. Here boundaries are systematically shifted by several pixels

because χ2-statistic distance favors homogeneous regions.

After the initial segmentation and probability models are obtained, the segmentation is

then iteratively updated based on the following local updating rule at pixel (x, y):

πi(x, y) = (1 − λΓ)P (χ2(HW (s)(x,y), Hi)) + λΓ

∑

(x1,y1)∈N(x,y)

Li
N(x1,y1)

(x1,y1)

|N(x,y)|
. (2.5)

Here LiN(x,y)(x, y) is the number of pixels in N(x, y) whose current labels are i and

N(x, y) is a user-defined neighborhood (the eight nearest neighbors are used) and provides

an approximation of the boundary term in (2.4). Parameter λΓ controls the relative

contributions from the region and boundary terms. For a given pixel (x, y) to be updated, the

spectral histogram is first estimated using asymmetric windows around the pixel. Because

there are several windows to choose at pixel (x, y), for each Fi, we use the window that has

the most number of labels of Ri, and thus the feature at pixel (x, y) for different labels can

be different. The new label of (x, y) is assigned the one that gives the maximum πi(x, y).

A special case of (2.5) is for pixels along boundaries between the background region and

a given region because we do not assume any model for the background region. For pixel

(x, y) ∈ R0, which is adjacent to region Ri, i 6= 0, if

χ2(HW (s)(x,y), Hi) < λB ∗ Ti, (2.6)
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(c) (d)

Figure 2.6. Effectiveness of derived probability models. In (b)-(d), solid lines stand for
the left region and dashed lines the right region. (a) The 64th row from Fig. 2.4(a). (b)
The probability of the two given regional features using asymmetric windows to compute
spectral histograms, where the edge point is correctly localized. (c) Similar to (b) but using
windows centered at the pixel to compute spectral histogram. Here the edge point cannot
be localized. (d) χ2-statistic from the two given regional features using centered windows,
where the edge point is wrongly localized between pixel 61 and 62.

label i is assigned to (x, y). Here Ti is the estimated homogeneity threshold for region Ri,

and λB is a parameter which determines relative penalty for unsegmented pixels. Figure

2.4(c) shows the segmentation result for the image in Fig. 2.4(a), and the resulting region

boundary is shown in Fig. 2.4(d). Here all the pixels are segmented correctly. Since the

image consists of two images with similar mean values but different variance, if we apply

nonlinear smoothing algorithms, the segmentation result would not be accurate.

2.3 Localization of Texture Boundaries

Because textures need to be characterized by spatial relationships among pixels, relatively

large integration windows are needed in order to extract meaningful features. A large

11



(a) (b) (c)

(d) (e) (f)

Figure 2.7. (a) A texture image with size 256 × 256. (b) The segmentation result using
spectral histograms. (c) Wrongly segmented pixels of (b), represented in black with respect
to the ground truth. The segmentation error is 6.55%. (d) and (e) Refined segmentation
result shown by region boundaries and by regions respectively. (f) Wrongly segmented pixels
of (e), represented in black as in (c). The segmentation error is 0.95%.

integration scale however results in large errors along texture boundaries due to the

uncertainty introduced by large windows [7]. By using asymmetric windows for feature

extraction, the uncertainty effect is reduced. However, for arbitrary texture boundaries,

the errors along boundaries can be large even when the overall segmentation performance

is good. For example, Fig. 2.7(b) shows a segmentation result using spectral histograms.

While the segmentation error is only 6.55%, visually the segmentation result is intolerable

due to large errors along texture boundaries, as shown in Fig. 2.7(c).

In order to accurately localize texture boundaries, we propose the following measure to

refine the obtained segmentation result. As for segmentation, a refined probability model is

built for given m pixels from a texture region. To capture the spatial relationship, we choose

for each texture region a window as a template. Here, the template is the same window from

which the region feature F is extracted. For the selected m pixels, we define the distance
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(a) (b) (c) (d)

Figure 2.8. (a) A synthetic image with size 128 × 128. (b) Segmentation result. (c) and
(d) Refined segmentation result shown as regions and as the region boundary respectively.

between those pixels and a texture region as the minimum mean square distance between

those pixels and the template. Based on the obtained result, we build a probability model

for each texture region with respect to the proposed distance measure. Intuitively, if the m

pixels belong to a texture region, it should match the spatial relationship among pixels when

the m pixels are aligned with the texture structure. These probability models are sensitive

to alignments and thus should produce more accurate region boundaries than those based

on the spectral histograms.

After the probability models are derived, we use the local updating equation given in

(2.5) by replacing W (s)(x, y) by the m pixels in a texture region along its boundary based on

the current segmentation result and χ2(HW (s)(x,y), Hi) by the new distance measure. Figure

2.7(e) shows the refined segmentation result with m = 11 pixels and Fig. 2.7(d) shows the

corresponding region boundaries. The segmentation error is reduced to 0.95% and visually

the segmentation result is improved significantly. Figure 2.7(f) shows the wrongly segmented

pixels of the refined segmentation.

Figure 2.8(a) shows an intensity image with a curvy boundary between two regions with

the same mean but different variance. Figure 2.8(b) shows the segmentation result, Fig.

2.8(c) shows the refined result, and Fig. 2.8(d) shows the region boundary. It is clear that

the boundary between two regions is improved significantly, especially at the top and bottom

borders of the image.

Similar to segmentation, a special case for boundary localization is for pixels along

boundaries between the background region and a texture region because there is not a

probability model for the background region. To localize these pixels, we assume that the
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background region is locally homogeneous along the boundary. Based on this assumption

and using the χ2-statistic measure instead of the probability model, the updating rule (2.5)

becomes:

πi(x, y) = (1 − λΓ)(χ2(H|mi|, Hi)) + λΓ

∑

(x1,y1)∈N(x,y)

Li
N(x1,y1)

(x1,y1)

|N(x,y)|
. (2.7)

where, mi is the m pixels from region Ri in the template.

2.4 Automated Selection Algorithms

In the segmentation algorithm presented above, we assume that several representative

pixels, filters and an integration scale for segmentation are given. This assumption can

limit the use of the proposed method in autonomous systems. In this section, we develop

algorithms for identifying seed points, selecting optimal filters, and estimating integration

scales automatically for a given image.

2.4.1 Automated Seed Selection

The basic idea for seed selection algorithm is to identify homogeneous texture regions

within a given image. As they are naturally normalized, spectral histograms defined on image

patches of different sizes can be compared. Within a texture region relative to an integration

scale, spectral histograms calculated at different windows should be similar. Based on this

observation, we try to identify homogeneous texture regions based on distance measures with

respect to two integration scales. Let W (a) = λs ∗W (s) be an integration scale larger than

W (s), the integration scale for segmentation. In other words, we require that λs > 1 and

in this chapter, we set λs to be 1.20. We define two distance measures at pixel (x, y) with

respect to W (s) and W (a), ψB
W (s) and ψI

W (s) , given by:

ψB
W (s)(x, y) = D(HW (s)(x,y), HW (a)(x,y)), (2.8)

and

ψI
W (s)(x, y) = max

(x1,y1)
D(HW (s)(x,y), HW (s)(x1,y1)). (2.9)

Here ψB
W (s) measures the distance between the spectral histograms of two integration scales

W (s) and W (a). Within a homogeneous texture region, ψB
W (s) should be small because
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(a) (b) (c) (d)

Figure 2.9. Texture image segmentation with representative pixels identified automatically.
W (s) is 29 × 29, W (a) is 35 × 35, λC = 0.1, λA = 0.2, λB = 2.0, λΓ = 0.2, and TA = 0.08.
(a) Input texture image. (b) Initial classification result. Here the representative pixels are
detected automatically. (c) and (d) Segmentation result and the resulting region boundary.

HW (s)(x, y) and HW (a)(x, y) should be similar. Similarly, ψI
W (s) measures the variation among

different windows at scale W (s) withinW (a) and it should be also small within a homogeneous

region. In this chapter, ψI
W (s) is approximated in implementation using four corner windows

within W (a). Finally, we want to choose features that are as different as possible from all

those already chosen. Suppose we have chosen n features already, where, Fi = HW (s)(xi,yi),

for i = 1, . . . , n, we define

ψF (x, y) = max
1≤i≤n

D(HW (s)(x,y),Fi), (2.10)

which gives a distance measure between the candidate feature at (x, y) and all other chosen

features. Combining these together, we have the following saliency measure:

ψ(x, y) = (1 − λC)(λA × ψB
W (s)(x, y) + (1 − λA) × ψI

W (s)(x, y)) − λC × ψF (x, y) (2.11)

Here λA and λC are parameters to determine the relative contribution of each term.

Intuitively, ψ(x, y) should be large in a region that has not been represented. Therefore

we select the seed windows according to ψ(x, y) until ψ(x, y) < TA, where TA is a threshold.

To save computation, we compute ψ(x, y) on a coarse grid.

Figure 2.9 shows a seed selection example, where the image with two texture regions is

shown in Fig. 2.9(a). Figure 2.9(b) shows the initial classification result, where the feature

vectors are detected automatically. Figure 2.9(c) shows the segmentation result. The texture

boundary is localized well even though the two textures are similar in local intensity values.
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2.4.2 Automated Filter and Integration Scale Selection

Similar to seed selection, we also can estimate the optimal filters and the optimal

integration scale for each homogeneous region. While a larger integration scale tends to give

smaller ψB
W (s) and ψI

W (s) , a smaller integration scale is preferred in term of computational

efficiency and boundary accuracy given that it is sufficient to characterize the region. Note

that the optimal integration scale depends on the filters that are used in spectral histogram

calculation and the choice of filters also affects the effectiveness of the spectral histogram

representation. If implemented directly, this requires an iterative procedure of choosing

filters and estimating the optimal integration scale.

To simplify the procedure, we adopt a simpler one that seems to be sufficient for

segmentation. Given a large set of candidate filters, we estimate the optimal integration

scale for each filter. Then we choose a fixed number of filters whose estimated optimal

integration scale is the smallest. After the filters are chosen, we use the same procedure to

estimate the final optimal integration scale but using the chosen filters.

More specifically, for one filter or a set of filters, we initially set s = s0 and compute ψB
W (s) ,

whereW (s0) is a 5×5 window. Then we do the following steps iteratively: 1) compute ψB
W (λss) ,

at a larger scale W (λss), where λs is set to 1.20. 2) If ψB
W (s) −ψBW (λss) < TψB , stop the iteration

and return W (s) as the optimal integration scale. Here TψB is a threshold. 3) Otherwise,

set s = λs × s and go to step 1). Similarly, an optimal integration scale is chosen based on

ψI
W (s) . Here, a linear combination of two optimal integration scales is used as the estimated

optimal integration scale.

Figure 2.10 shows an example for selecting filters and estimating the optimal integration

scales on an image with four texture regions. Here 8 filters with the smallest optimal

integration scale are selected from 74 candidates. Then for each region, the optimal

integration scale is computed based on the eight chosen filters using the procedures given

above. Figure 2.10(b) shows the wrongly segmented pixels using selected filters and the

estimated optimal integration scale. The estimated integration scale for each texture region

is consistent with the texture pattern scale. For example, the estimated integration scale

for the top-right region is 23 × 23 while the one for the top-left is 13 × 13. For comparison,

Figures 2.10(c)-(f) show the corresponding results using manually specified scales and the
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(a) (b) (c)

(d) (e) (f)

Figure 2.10. (a) A texture image of size 128 × 128. (b) Wrongly segmented pixels (black)
using automatically selected filters and the estimated optimal integration scale, where the
error rate is 4.04%. Here the integration scale is 13 × 13 for the top-left and bottom-right
region, 23 × 23 for top-right region, and 15 × 15 for bottom-left region. (c)-(f) Wrongly
segmented pixels (black) using manually specified integration scale and eight fixed filters.
The integration sale is 19×19 with error rate 12.73%, 23×23 with error rate 4.99%, 29×29
with error rate = 3.15%, and 35 × 35 with error rate = 5.11% respectively.

eight fixed filters given in Section 2.1. This example shows that the segmentation result

using automatically selected filters and the integration scale gives an accurate segmentation

result with much smaller integration scales, therefore computationally more efficient.

2.5 Experimental Results and Comparison

2.5.1 Segmentation results

This section shows some additional experimental results. For all results shown here, the

optimal filters and integration scales are selected automatically. Figures 2.11 and 2.12 show

the segmentation results for a set of texture images. First the feature vectors are identified

automatically and an initial result is then obtained using a minimum distance classifier with
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the found region features. The final result is obtained by applying the boundary localization

algorithm. As shown in these examples, the texture boundaries are localized well and all the

homogeneous texture regions are identified by the seed selection algorithm. The inaccuracy

of the boundaries is mostly due to the similarity of the textures along the boundaries as well

as large texture structures and variations in these examples.

(a)

(b)

Figure 2.11. Texture image segmentation examples. In each panel, the left is the input
image, the middle the final segmentation result, and the right the final region boundaries.
All representative pixels are detected automatically. λC = 0.1, λA = 0.2, λΓ = 0.8, λB = 5.0,
and TA = 0.20. (a) m = 11. (b) m = 15.

Two examples shown in Fig. 2.12 are also used by Randen and Husoy [29] in their

comparative study of 100 texture classification methods. Their experiments are set up as

supervised classification, where training features are provided first. Thus the segmentation

problem studied here is essentially more difficult1. Figures 2.13(a) and (b) show the

classification error of the 100 texture classification methods for Fig. 2.12(a) and (b)

respectively. In both cases, the segmentation error of our results is 1.0%. For Fig. 2.12(a),

only four methods perform slightly better (one 0.9% and three 0.7%) than ours. However,

1For texture classification comparison, see [23].
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(a) (b)

Figure 2.12. Texture image segmentation examples. In each column, the top is the input
image, the middle the segmentation result and the bottom the region boundaries. Here
λC = 0.1, λA = 0.2, λΓ = 0.2, TA = 0.20, and m = 11. All representative pixels are detected
automatically. (a) λB = 5.0. (b) λB = 4.0.

these four methods along with others perform significantly worse than ours on Fig. 2.12(b).

To show this, Fig. 2.13(c) shows the average performance on both images and clearly our

method gives the lowest error rate. This significant improvement in performance is due to

the desirable properties of the spectral histogram representation and the derived probability

models.

Natural images in general consist of many regions that are not homogeneous regions and

we are interested in some meaningful regions, called region of interest. This can be achieved

in our system by identifying only a few region features. As mentioned before, no assumption

is made in our algorithm regarding the distributions and properties of background regions,

and thus we avoid building models for them. We apply the same algorithm but with one
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Figure 2.13. Classification error of 100 methods used in [29]. In each plot, the dashed line
is the corresponding segmentation error of our results. (a) For image in Fig. 2.12(a). (b)
For image in Fig. 2.12(b). (c) The average performance on the two images.

region identified and Figs. 2.14 and 2.15 show some examples. Here we use the special case of

the localization algorithm described in Section 4 because there is only one region of interest

in each image. The left row shows the input images and the middle shows the segmentation

result before boundary localization. The final boundary-localized result is shown in the

right row. To show the accuracy of segmented boundaries, they are embedded in the original

image. As these examples show, our algorithm gives accurate region boundaries. Some parts

of the boundaries are not localized well due to the similarity between the region of interest

and the background. If we had models for recognition, the cheetah in Fig. 2.15(a) and (b)

could be recognized due to its distinctive skin pattern and then the segmentation result could

be further improved using top-down information. Given that our system is generic and there

is no image specific training, our results are comparable with the best available results.

2.5.2 Comparison with Normalized Cut

To provide additional empirical justifications of our method, we have compared our

segmentation method with the normalized cut algorithm proposed by Shi and Malik [34]

and further analyzed by Fowlkes et al. [12]. Here an implementation provided by Shi2 is

employed. For each case shown below, we have tried different combinations of the parameters

to obtain the best performance we can. First we apply the normalized cut on the gray level

2Obtained from http://www.hid.ri.cmu.edu/Hid/software ncutPublic.html

20



(a)

(b)

Figure 2.14. Natural image segmentation examples. In each panel, the left is the input
image, the middle segmentation result before boundary localization and the right the result
after boundary localization. Here m = 25, λΓ = 0.2. (a) A cat image with size 305 × 450,
λB = 5.0. (b) A fish image with size 438 × 321, λB = 9.0.

image shown in Fig. 2.8(a) and Fig. 2.16(b) shows the segmentation result. Following Shi

and Malik, Fig. 2.16(b) also shows the segmented components from normalized cut and Fig.

2.16(c) shows our corresponding segmentation and components. In this case, the normalized

cut successfully segments two regions out. However, the region boundary is not well localized

because the normalized cut does not exploit the spatial connectivity in segmented regions

and does not have a refined model for boundary localization.

Figure 2.17 compares the normalized cut method and ours on the cheetah image shown

in Fig. 2.15(b). Here we compare the segment corresponding to the cheetah region. While

both methods are able to segment the cheetah out, our segment is localized more accurately.

Note that the normalized cut gives the cheetah region as one of its segments and does not

localize its boundary.
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(a)

(b)

Figure 2.15. More natural image segmentation examples. See Fig. 2.14 for figure legend.
Here m = 25, λΓ = 0.2. (a) A cheetah image with size 795 × 343, λB = 2.2. (b) Another
cheetah image with size 486 × 324, λB = 1.2.

Figure 2.18(b) shows the normalized cut segmentation and its major components for the

image shown in Fig. 2.7(a). For comparison, we have shown our segmentation result in the

same format in Fig. 2.18(c). As in the previous example, the major regions are segmented

out by their algorithm. While boundaries between very different regions are localized well,

boundaries are not accurate when neighboring regions are similar. In several cases, regions

from different textures are mixed. On the other hand, our segmentation gives accurate

region boundaries. We attribute the difference to the derived probability models and to the

fact that the spectral histogram is more reliable to characterize texture regions than filter

responses, which are used directly in the normalized cut method.

22



(a) (b)

(c)

Figure 2.16. Comparison between normalized cut and proposed method on a gray-level
image. (a) Input image, as shown in Fig. 2.8(a). (b) and (c) Segmentation result from
normalized cut and our method. In each panel, the left is the segmentation result and the
rest are the components. Here a gray color is used to indicate pixels not in the current
component.

(a) (b)

(c) (d)

Figure 2.17. Comparison between normalized cut and the proposed method on the cheetah
image (Fig. 2.15(b)). In (c) and (d), black is used to indicate pixels not in the current
component. (a) Input image. (b) Segmentation result from normalized cut. (c) The cheetah
segment from (b). (d) The cheetah segment from our method.
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(a)

(b)

(c)

Figure 2.18. Normalized cut segmentation result and its major components for a texture
image. (a) Input image as shown in Fig. 2.7(a). (b) and (c) Segmentation result and major
segmented components of normalized cut and the proposed method respectively. Here a
distinctive gray color is used to indicate pixels not in the current component.
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CHAPTER 3

SEMANTICS ANALYSIS OF IMAGE

REPRESENTATIONS FOR CONTENT-BASED

IMAGE RETRIEVAL

Due to the curse of dimensionality [3], low dimensional representations for images are

widely used in image processing, including content-based image retrieval. However, a low

dimensional representation imposes equivalence relations in the image space and causes

meaningless responses in image retrieval applications. An induced equivalence class consists

of all the images that are identical under an adopted representation and is called intrinsic

generalization. In this chapter, we investigate the semantics of a few commonly used low

dimensional representations by sampling their intrinsic generalizations and reveal that they

tend to include semantically dissimilar images in same equivalence class. We then propose

a new representation called Spectral Subspace Analysis (SSA) and demonstrate improved

retrieval performance using SSA representations by experimental results.

3.1 Low Dimensional Representations Analysis

In this chapter, an image I is defined on a finite lattice R ⊂ Z2, the intensity at pixel

location ~v ∈ R is denoted by I(~v) ∈ G = [r1, r2], where r1, r2 bound the dynamic range

of the imaging sensor, and Ω the set of all images on R. A representation is a mapping

defined as f : Ω → RK . For a low dimensional representation, it is required that K � |R|.
Before analyzing the semantics of low dimensional representations, we first introduce the

equivalence relations imposed by these representations.
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3.1.1 Equivalence Class of Low Dimensional Representation

Here, to introduce the equivalence relations, Bishop’s framework is chosen which is laid

out to formulate generalization problem in recognition [5]. Conceptually, this framework is

valid for content-based image retrieval applications as the retrieval problem can be viewed

as a recognition problem, where the answer is a few most similar images instead of only

the most similar one. Let the query image I be generated from an unknown probability

density P on Ω and the underlying true retrieval mapping be denoted by h : Ω 7→ A, where

A is the set of all classes. Each class consists of semantically similar images and there is

no overlapping between two classes. For any retriever function g, in case of using a low

dimensional representation f , its average retrieval ability is defined as the probability that

g(f(I)) = h(I), i.e.

G(g, f) = Pr{I|I ∈ Ω, g(f(I)) = h(I)}
=

∑

f(I) Pr{J|J ∈ Ω, f(J) = f(I)} (3.1)

here f(I) denotes the range of f on Ω. From (3.1), it is clear that f has a significant

effect on the performance of g. Ideally, all the images from each class should be grouped

as a single equivalence class. While this is generally not possible for real applications, we

want to group images from each class into a small number of equivalence classes, with each

class having a large cardinality, as emphasized by Vapnik [37]. However, when making each

equivalence class as large as possible, we do not want to include images from other classes,

as this will lead to meaningless responses. This makes it necessary to analyze the semantics

through equivalence classes of low dimensional representations to achieve a good retrieval

performance.

3.1.2 Semantics Analysis by Sampling Intrinsic Generalization

The previous analysis shows that the equivalence class structures of low dimensional

representations are essential for a good retrieval performance. This chapter focuses on

studying the semantics of a particular equivalence class through statistical sampling. First,

we given a definition of intrinsic generalization.

Intrinsic Generalization : Given a representation f , the intrinsic generalization of an

image I under f is defined as
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SI(I) = {J|J ∈ Ω, f(J) = f(I)} ⊂ Ω. (3.2)

In other words, intrinsic generalization of image I includes all the images that cannot be

distinguished from I under representation f . Define S0
I (I) as the set of images having

semantically similar contents with I. Ideally, SI(I) should be as close as possible to S0
I (I). As

S0
I (I) is generally not available, to explore SI(I), we employ a statistical sampling through

the following probability model:

q(J, T ) =
1

Z(T )
exp{−D(f(J), f(I))/T}. (3.3)

Here T is a temperature parameter, D(., .) a Euclidean or other distance measure, and Z(T )

is a normalizing function, given as Z(T ) =
∑

J∈Ω exp{−D(f(J), f(I)/T}. This model has

been used for texture synthesis [39] and we generalize it to any representation. It is easy to

see that as T → 0, q(J, T ) defines a uniform distribution on SI(I) [39]. The advantage of

using a sampler is to be able to generate typical images in SI(I) so that SI(I) under f can

be examined in a statistical sense.

To illustrate the effectiveness of the sampling methods, we have used a linear subspace

representation PCA on the ORL face dataset1, which consists of 40 subjects with 10 images

each; we have obtained similar results using other linear subspace representations. In this

case, we first calculate the eigen faces corresponding to the 50 largest eigenvalues. Under

PCA, given an image I, f(I) is the projections of I along eigen faces. We define the

reconstructed image of I as π(I) =
∑K

i=1 < I,Vi > Vi, where Vi is the ith eigen face

and < ., . > is the inner product. Fig. 3.1(a) shows a face image in the dataset and Fig.

3.1(b) shows the reconstructed image withK = 50. Then a Gibbs sampler is used to generate

samples from SI(I). Fig. 3.1(c)-(f) show four samples of SI(I) (For Fig. 3.1(f), the object

in the middle is used as boundary condition, i.e., pixels on the object are not updated). In

other words, these images have the same 50 eigen decompositions, which means that these

images should have the same semantics under PCA representation. Obviously, they actually

do not. Note that SI(I) is defined on Ω and these images are far from each other in Ω.

Because SI(I) consists of images with semantically different contents, we argue that linear

low dimensional representations of images group semantically different images into same

1http://www.uk.research.att.com/facedatabase.html.
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(a) (b) (c) (d) (e) (f)

Figure 3.1. (a) A face image. (b) Reconstructed image using K = 50 principal components.
(c)-(f) Four random samples from SI(I), with π(I) identical to the one shown in (b).

equivalence class. Therefore, these representations are not semantically meaningful, and they

can make the subsequent retrieval intrinsically sensitive to noise and other deformations. To

show this, Fig. 3.2(a) gives three different face images which share the exactly same eigen

representation (bottom row). On the other hand, Fig. 3.2(b) shows three similar images

whose eigen representations correspond to three different faces.

(a) (b)

Figure 3.2. Examples of different images with identical eigen decompositions and similar
images with different eigen decompositions. The top row shows the images and the bottom
reconstructed. (a) Three different images with the same eigen representations. (b) Three
similar images with different eigen representations.

It needs to be emphasized here that the sampling is very different from reconstruction.

In the PCA case, the sampling is to draw a typical sample from the set of all the images with

a particular low dimensional representation while reconstruction gives one in the set whose

coefficients are zero along the dimensions complement to the given subspace. To illustrate
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this, Fig. 3.3 shows an example of a one-dimensional subspace in a two-dimensional space.

In this case, the reconstructed “image” of “x” is the point given by “+” in Fig. 3.3(a) while

the sampling can return any point with equal probability along the solid line shown in Fig.

3.3(b). This shows clearly that the reconstructed image may not provide much information

about all the other images having the same low dimensional representation.

(a) (b)

Figure 3.3. An illustration example of the difference between sampling and reconstruction.
Here the dashed line represents a one-dimensional subspace in a two-dimensional space. For
a training example (marked as ’x’), the sampling is to draw a random point along the solid
line in (b) while the reconstructed image is a single point given by ’+’ in (a).

These results, while generated based on PCA, are valid to an arbitrary linear subspace

since the sampling tries to match the representation. The main problem of linear subspace

representations, as revealed here, is that these representations can not take into account that

most images in the image space are white noise images.

3.2 Spectral Subspace Analysis

3.2.1 Spectral Representation of Images

As discussed earlier, an ideal representation f for I will be such that SI(I) = S0
I (I).

There are two important limitations of the linear methods that need to be addressed: (i)

As the vast majority images in Ω are white noise images, a good approximation of S0
I (I)

for an image of object(s) must handle white noise images effectively; otherwise, SI(I) will

concentrate on white noise images. Earlier experiments show that linear representations

suffer this problem. (ii) Another issue is the linear superposition assumption, where each

basis contributes independently to the image. In contrast, pixels on objects are dependent

and efficient models should exploit this dependency.
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The issue of white noise images can be dealt with effectively through the method of

types [10] as the white noise images are grouped together under types. However, the direct

use of types does not provide enough constraints as only the histogram of images is used.

We generalize the type definition by including marginals of filter responses (of the input

image) with respect to a set of filters, which also incorporates local pixel dependence through

filtering.

The representation of using marginals of filtered images can be justified in many ways:

(i) by assuming that small disjoint regions in the frequency domain are independent. That

is, partition the frequency domain into small disjoint regions and model each region by its

marginal distribution. The partitioning of the frequency also leads to spatial filters. (ii)

Wavelet decompositions of images are local in both space and frequency, and hence, provide

attractive representations for objects in the images. We convolve an image with the filters

and compute the marginals. Each image is then represented by a vector consisting of all the

marginal distributions. This representation is called spectral representation, each of these

vectors a spectral histogram, and the set of all valid vectors the spectral space. Elements of

a spectral histogram relate to the image pixels in a nonlinear fashion, and hence, avoid the

linearity issue mentioned earlier.

This representation has also been suggested through psychophysical studies on texture

modeling [8], and has been used in the texture modeling and synthesis [15, 40, 22] and

texture classification [23]. Both the histogram of input images [36] and joint histograms of

local fields [32] have been used for object recognition.

3.2.2 Spectral Subspace Analysis

In this method, the strategy is to first represent each image in the spectral space and

then apply a linear subspace method, such as PCA, ICA or FDA, in the spectral histogram

space2. Name these corresponding methods as SPCA, SICA, and SFDA, and call them

collectively as spectral subspace analysis (SSA).

2Note a reconstructed spectral histogram may be outside the spectral space and here we ignore this
complication.
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To demonstrate the effectiveness of SSA representations, we explore their intrinsic

generalizations through sampling. As in the linear subspace case, SPCA is used for

experiments; similar results have been obtained using other linear spectral subspaces.

First, bases in the spectral space are computed based on training images. Given an image,

its spectral representation is computed and then projected onto a spectral subspace. We use

a Gibbs sampling procedure to generate images that share the same spectral representation.

Fig. 3.4 shows four examples; Fig. 3.4(a)-(b) show two texture images and Fig. 3.4(c)-(d)

show one object image and one face image. These examples show that the spectral subspace

representation captures photometric features as well as topological structures, which are

important to characterize and recognize images. We have applied SSA representations to a

large dataset and obtained improved retrieval performance compared to the corresponding

linear subspace representations. Experimental results are shown in the next section.

3.3 Experimental Results

In this section, experimental results are presented to demonstrate the retrieval perfor-

mance using linear subspace representations and the proposed SSA representations. To

demonstrate convincingly, a large dataset is created by combining ORL face dataset, a

texture dataset, and the COIL-100 dataset. The resulting dataset consists of 180 different

classes with 40 textures, 100 objects, and 40 faces and a total of 10160 images, selected

images of which are shown in Fig. 3.5 to show the variability in the dataset. This dataset

is divided to two parts. The first one consists of 8060 images to be retrieved; the remaining

images are used for querying.

To evaluate the performance of a particular representation, first the 8,060 images are

represented under the given representation. Then for each query image, its representation

is computed and compared with that of the images to be retrieved. For a given number

of images retrieved, the corresponding precision and recall measures [27] are used for

performance evaluation. The performance of a representation is taken as the average

precision and recall of all the query images.

In our experiments, for all the linear and spectral subspace representation, we use the

precision-recall curves to evaluate the retrieval performance. These curves are generated

by varying the number of images retrieved. Here, the number of principal components is
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(a)

(b)

(c)

(d)

Figure 3.4. Samples from SPCA intrinsic generalization. In each row, the first column
shows the input image and others samples from the intrinsic generalization. (a)-(b) Two
textures. (c)-(d) One object and one face images. Boundary conditions need to be taken
with care when sampling from SI(I).

fixed to 54 for all representations. ICA is calculated using the FastICA algorithm [17] and

FDA is based on an algorithm by Belhumeur et al. [2]. To calculate the spectral histogram,

a fixed set of 21 filters are used. These filters were chosen automatically from a large set

using a filter selection algorithm [21] for the ORL dataset. To separate the effectiveness

of a representation from that of the choice of training data, we have also used (uniformly)

randomly generated bases, which we call random component analysis (RCA) and the spectral

random component analysis (SRCA).

Figure 3.6 shows the precision-recall curves for three linear subspace representations

vs. their corresponding SSA representations. From the results, it is easy to see that the

SSA representations outperform the corresponding linear subspace ones. Note that the
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Figure 3.5. Selected images from the dataset used in the retrieval experiments.

dataset consists of different kinds of images and the performance of SFDA is the best and

is good especially when the number of images returned is not very large, demonstrating the

effectiveness of the proposed representation for image retrieval applications.
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Figure 3.6. Precision-recall curves for linear subspace representations vs. corresponding
SSA representations. The solid lines stand for SSA representations and the dash lines stand
for linear subspace ones. (a) PCA vs. SPCA. (b) FDA vs. SFDA. (c) RCA vs. SRCA.
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CHAPTER 4

LEARNING OPTIMAL REPRESENTATIONS

FOR IMAGE RETRIEVAL APPLICATIONS

This chapter presents an MCMC stochastic gradient algorithm for finding representations

with optimal retrieval performance on given image datasets. For linear subspaces in the

image space and the spectral space, the problem is formulated as that of optimization

one on a Grassmann manifold. By exploiting the underlying geometry of the manifold,

a computationally effective algorithm is developed. The feasibility and effectiveness of the

proposed algorithm are demonstrated through extensive experimental results.

4.1 Optimal Linear Subspace for Retrieval

We adopts an example-based learning methodology to compute representations that

provide optimal retrieval performance. This assumption can be generally satisfied for image

retrieval applications, as labeled images can be generated or collected interactively using

some existing retrieval systems.

4.1.1 Image and Spectral Spaces

Before we introduce the main algorithm for finding optimal linear subspaces, we briefly

describe two spaces that are used in this chapter, namely the image space and the spectral

space. In first case, each image is viewed as one point in a high dimensional vector space.

This framework has been widely used in recognition, where principal component analysis and

Fisher discriminant analysis are derived based on this formulation. It is easy to see that in

this representation all the images need to have the same length in order to perform dimension

reduction using subspace methods. The other space is called the spectral space [22], which

has been introduced in Chapter 3. In this space, each image is represented by a vector formed
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by concatenating histograms of filtered images obtained using a set of filters. The filters can

be designed based on some mathematical criteria or can be learned from images [20]. This

representation has been shown to be effective for texture classification as well as face and

object recognition. Recently, it has been shown systematically through sampling [20] that

it is sufficient to synthesize faces and objects. See [22] and references therein for details on

the spectral representation.

4.1.2 Problem Formulation

We start with a formulation of the problem for finding optimal linear representations [24,

25], where the performance can be estimated. Mathematically, let U ∈ Rn×d be an

orthonormal basis of an d-dimensional subspace of Rn, where n is the size of an image

(or the length of the spectral representation) and d is the required dimension of the optimal

subspace (n >> d). For an image I (or its spectral representation), considered as a column

vector of size n, the vector of coefficients is given by a(I, U) = U T I ∈ Rd. In case of

spectral representation, a(I, U) = UTH(I), where H(I) represents the histograms of filtered

images. Let Gn,d be the set of all d-dimensional subspaces of Rn; it is called a Grassmann

manifold [6]. Let U be an orthonormal basis in Rn×d such that span(U) is the given subspace

and let F (U) be a retrieval performance measure associated with a system that uses U as

the linear representation. That is, F : Gn,d 7→ R+ is the performance function and we want

to search for the optimal subspace defined as:

Û = argmax
U∈Gn,d

F (U) . (4.1)

We perform the search in a probabilistic framework by defining a probability density function

f(X) =
1

Z(T )
exp(F (X)/T ) , (4.2)

where T ∈ R plays the role of temperature and f is a density with respect to the Haar

measure on the set Gn,d.

4.1.3 Optimization via Simulated Annealing

We have chosen a Monte Carlo version of simulated annealing process to estimate the

optimal subspace Û . Since the Grassmann manifold Gn,d is a curved space, the gradient

35



process has to account for its intrinsic geometry. We first describe a deterministic gradient

process (of F ) on Gn,d and then generalize it to a Markov chain Monte Carlo (MCMC) type

simulated annealing process.

The performance function F can be viewed as a scalar-field on Gn,d. A necessary condition

for Û to be a maximum is that for any tangent vector at Û , the directional derivative of

F , in the direction of that vector, should be zero. The directional derivatives on Gn,d are

defined as follows. Let Eij be an n× n skew-symmetric matrix such that: for 1 ≤ i ≤ d and

d < j ≤ n,

Eij(k, l) =







1 if k = i, l = j
−1 if k = j, l = i
0 otherwise .

(4.3)

There are d(n − d) such matrices and they form an orthogonal basis of the vector space

tangent to Gn,d at identity. The gradient vector of F at any point U is defined to be a

skew-symmetric matrix given by:

A(U) = (
∑d

i=1

∑n

j=d+1 αij(U)Eij) ∈ Rn×n,

where αij =
F (QT

t e
εEij Ĩd)−F (U)

ε
.

(4.4)

where αij is the finite approximation of the directional derivative of F in the direction given

by Eij, e
εEij is an n× n rotation matrix, and Qt ∈ Rn×n is any orthogonal matrix such that

QtU =

[

Id
0

]

≡ Ĩd ∈ Rn×d. For numerical implementation, given a step size ∆ > 0, the

discrete gradient process is denoted by Xt. Then, a discrete updating along the gradient

direction is given by:
Xt+1 = QT

t exp(∆At)QXt ,

where At =
∑d

i=1

∑n

j=d+1 αij(Xt)Eij .
(4.5)

The gradient process Xt given by (4.5) can be stuck in a local maximum. To alleviate the

local maximum problem, a stochastic component is often added to the gradient process to

form a diffusion [14]. Both simulated annealing and stochastic gradients have [30] frequently

been used to seek global optimizers [13]. To obtain stochastic gradients, we add a random

component to (4.4) according to

Ã(Xt)∆ = A(Xt)∆ +
√

2∆T
d

∑

i=1

n
∑

j=d+1

wij(t)Eij, (4.6)
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where wij(t)’s are i.i.d standard normals. Under this setting, the discrete time update of the

stochastic process becomes the following:

Xt+1 = QT
t exp(Ã(X(t))∆)Ĩd,

Qt+1 = exp(−∆ dXt)Qt . (4.7)
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Figure 4.1. Temporal evolution of the optimization algorithm. Here d = 20, R = 10,
kdb = 8, and kquery = 2. (a) Plots of retrieval precision (solid line) and the corresponding
recall (dotted line). (b) Distance of Xt from X0.

In case of MCMC simulated annealing, we use this stochastic gradient process to generate

a candidate for the next point along the process but accept it only with a certain probability.

That is, the right side of the second equation in (4.7) becomes a candidate Y that may or

may not be selected as the next point Xt+1.

Algorithm 1 MCMC Simulated Annealing: Let X(0) = U0 ∈ Gn,d be any initial

condition. Set t = 0.

1. Calculate the gradient matrix A(Xt) according to (4.4).

2. Generate d(n−d) independent realizations, wij’s, from standard normal density. With

Xt, calculate the candidate value Y as Xt+1 according to (4.6) and (4.7).
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3. Compute F (Y ), F (Xt), and set dF = F (Y ) − F (Xt).

4. Set Xt+1 = Y with probability min{exp(dF/Tt), 1}, else set Xt+1 = Xt.

5. Modify T , set t = t+ 1, and go to Step 1.

The resulting process Xt forms a Markov chain. This algorithm is a particularization of

Algorithm A.20 (p. 200) in the book by Robert and Casella [30]. Please consult that text

for the convergence properties of Xt.

0 500 1000 1500 2000
0

0.5

1

P
re

ci
si

on
/R

ec
al

l

Iterations

(a)

0 500 1000 1500 2000
0

0.5

1

P
re

ci
si

on
/R

ec
al

l

Iterations

(b)

0 500 1000 1500 2000
0

0.5

1

P
re

ci
si

on
/R

ec
al

l

Iterations

(c)

Figure 4.2. Performance of Xt versus t for different initial conditions. In each plot, the
solid line represents the precision measure and the dashed line corresponding recall measure.
(a) X0 = UPCA. (b) X0 = UICA. (c) X0 = UFDA.
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Figure 4.3. Performance of Xt versus t for different values of d and R. In each plot, the
solid line represents the precision measure and the dashed line corresponding recall measure.
(a) d = 5 and R = 20. (b) d = 10 and R = 10.

4.2 Experimental Results

We have applied the proposed algorithm to the search for optimal linear bases in the

context of content-based image retrieval in the image space and the spectral space. Note

that the algorithm requires evaluation of F (the performance measure) for any linear

representation U . Here we use the retrieval precision as F with a fixed number of retrieved

images [27]. To be more specific, let there are C classes in an image dataset; each class has

kdb images (denoted by Ic,1, . . . , Ic,kdb
) to be retrieved and kquery query images (denoted by

I ′c,1, . . . , I
′
c,kquery

). Here for simplicity, we assume that each class has the same kdb and kquery,

which can be modified easily to allow different numbers of images in different classes. To

evaluate the precision measure, let R denote the number of images to be retrieved for each

query image, we define F as the average retrieval precision for all the query images, given

by

F (U) =
1

Ckquery

C
∑

c=1

kquery
∑

i=1

No. of relevant images retrieved

R
. (4.8)
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Because the total number of relevant images is known in this setting, for each F (U), the

corresponding average recall measure is given by F (U) ∗ R/kdb. Note that the optimal

performance of F (U) is given by min{1, kdb/R}.
Before we proceed further, we briefly describe the two image datasets that have been

used in our experiments: the ORL face recognition dataset1 and a Brodatz texture dataset2.

The ORL dataset consists of faces of 40 different subjects with 10 images each. The texture

dataset consists of textures of 40 textures with 16 images in each class.

Figures 4.1 - 4.4 show the results on the ORL database with different initial conditions

in both the image space and the spectral space. Figure 4.1 shows a case with a random

initial condition. Fig. 4.1(b) (the distance plot) highlights the fact that the algorithm moves

effectively on the Grassmann manifold going large distances along the chain. Together with

Fig. 4.1(a), it shows multiple subspaces that lead to perfect performance.

Figure 4.2 shows three cases when X0 is set to UPCA, UICA, or UFDA. FDA was calculated

using a procedure given in [2] and ICA was calculated using a FastICA algorithm proposed

by Hyvärinen [17]. In these experiments, d = 20, R = 10, kdb = 8, and kquery = 2.

While these commonly used linear bases provide a variety of performances, the proposed

algorithm converges to subspaces with the best retrieval precision performance regardless

of the initial condition. While UFDA in this particular case gives a performance close

to the optimal one, however the optimality of UFDA depends on the assumptions that

the underlying distributions are Gaussian and linear discriminant function is used [24].

Therefore, theoretically, UFDA produces only suboptimal performance (see [24] for examples).

Similar to the earlier result, these results also point to the effectiveness of this optimization

approach. In fact, for any chosen initial condition, the search process converges to a perfect

solution (in that it gives the best achievable performance) and moves effectively along the

Grassmann manifold. Also these solutions are quite different from each other, allowing

additional constraints to be imposed.

We have studied the variation of optimal performance versus the subspace rank denoted

by d and the number of images retrieved denoted by R. Fig. 4.3 shows two cases with d = 5

and d = 10. While the optimal solution does not achieve the best achievable performance,

1http://www.uk.research.att.com/facedatabase.html
2http://www-dbv.cs.uni-bonn.de/image/texture.tar.gz
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Figure 4.4. Temporal evolution of Xt on the ORL dataset in the spectral space. Here
d = 20, R = 10, kdb = 8, and kquery = 2. Here solid line shows the retrieval precision and
dotted line the corresponding recall.

it is very close to that as shown by the precision and recall curves. In some image retrieval

applications, the computation time may be more important than the performance. The

algorithm can be used to find the best compromise between accuracy and computation.

The previous three figures show different cases in the image space. As face images used

here are roughly aligned, the linear representations in the image space work well on the

ORL dataset. Fig. 4.4 shows a case in the spectral space on the ORL dataset. It shows

that the performance using spectral representation is comparable with that in the image

space. The significance of the result is that it shows the spectral representation is sufficient

to characterize different faces. In addition, it can be used to characterize textures, making

it a good representation for image retrieval applications where images are not confined to

particular types in general.

Figures 4.5 and 4.6 show the results on the texture dataset. Fig. 4.5 shows a typical

case in the image space, where Fig. 4.5(a) shows the performance and Fig. 4.5(b) the

corresponding distance from X0. As Fig. 4.5(b) shows, the MCMC algorithm moves

effectively in the image space as the distance is constantly increasing. However, the

performance, (shown in Fig. 4.5(a)), while improved significantly compared to the initial

performance (the precision is improved from 0.139 to 0.544), is still not satisfactory. The

main reason is that texture models must be translation invariant while the subspaces of the

image space are not. In contrast, the subspaces in the spectral space are very effective. Fig.

4.6 shows two typical cases. The algorithm converges quickly to representations that give

the optimal achievable performance. Note that while the performance does not change, the
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representations are constantly evolving, which shows there are multiple solutions that have

the perfect performance.
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Figure 4.5. Temporal evolution of Xt on the texture dataset in the image space. Here
d = 20, R = 10, kdb = 12, and kquery = 4. (a) Plots of retrieval precision (solid line) and the
corresponding recall (dotted line). (b) Distance of Xt from X0.

These results underscore two important points about Algorithm 1: (i) the algorithm is

consistently successful in seeking optimal linear basis from a variety of initial conditions,

and (ii) the algorithm moves effectively on the manifold Gn,d with the final solution being

far from the initial condition. We have also compared empirically the performances of these

optimal subspaces with the frequently used subspaces, namely UPCA, UICA, and UFDA. Fig.

4.7 shows the precision/recall performance for the ORL dataset in the image space. The

plots are obtained by varying R, the number of retrieved images. This comparison confirms

the effectiveness of the optimal representation and shows a potential significant performance

improvement.
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Figure 4.6. Performance of Xt versus t for the texture dataset with different values of R
in the spectral space. the solid line represents the precision measure and the dashed line
corresponding recall measure. Here d = 20, kdb = 12, kquery = 4. (a) R = 10. (b) R = 20.
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Figure 4.7. The precision/recall performance of different linear subspaces on the ORL
dataset. Here solid line is the optimal basis from the gradient search process, dotted line
FDA, dashed line PCA, and dash-dotted line ICA. The results are obtained by varying the
number of images retrieved (R).
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CHAPTER 5

CONCLUSION

In this thesis, we have presented an image segmentation algorithm using local spectral

histogram representations. Related methods for automated feature selection, automated

filter and integration scale selection are also developed. The experimental results show that

the algorithm is effective and robust, and is comparable to other segmentation algorithms.

The proposed algorithm can be combined with other representations for content-based image

retrieval applications. This needs to be studied further in the future.

We have also provided a novel way, namely sampling the intrinsic generalization, to

analyze the semantics of representations for content-based image retrieval applications.

Using this tool, we have shown that linear subspace representations of images cannot

semantically characterize images well since semantically dissimilar images tend to be grouped

into the same equivalence class under these representations. A new representation, Spectral

Space Analysis, is proposed to improve the intrinsic generalization by implementing linear

subspaces in the spectral space, and substantial improvement in retrieval performance has

been obtained.

In addition, we have proposed a simulated annealing algorithm on Grassmann manifolds

for finding the optimal linear subspaces in the image space and the spectral space for image

retrieval applications. The experimental results demonstrate that the algorithm provides an

effective tool for improving retrieval performance. To our best knowledge, this algorithm

is the first attempt to systematically find optimal representations for image retrieval

applications. While the used datasets are limited compared to typical image retrieval

datasets, they consist of representative natural images and therefore the experimental results

are convincing and significant.
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