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ABSTRA CT

The performanceof a cortent-basedimageretrieval systemdependson the represemation
of images. As a typical image consistsof di erent objects, an image segmetation is needed
for more accurate represemations of cortents. The rst part of this thesis descrikes a
genericimage segmetation algorithm basedon local spectral histograms of images. This
algorithm, demonstratedby experimertal results, is shovn to be e ective for both texture
and non-texture images, and comparableto other segmetation algorithms. Due to the
time constrairt of an image retrieval system,the secondpart of this thesis focuseson low
dimensionalrepresetations of images. By analyzingthe semarics of commonly usedlinear
subspacerepresetations through sampling their intrinsic generalizations,their limitations
areillustrated and a nonlinear represetation, called Spectral SubspaceAnalysis (SSA) that
overcomegheselimitations is proposed.In addition, to obtain optimal retrieval performance,
an algorithm for learning optimal represemations is deweloped by formulating the problemas
an optimization oneon a Grassmannmanifold and exploiting the underlying geometryof the
manifold. Experimertal resultson di erent datasetsshow that both the SSArepresemation
and the learnedoptimal represemations can improve retrieval performancesigni cantly for

conent-basedimageretrieval systems.
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CHAPTER 1

INTR ODUCTION

In recen years,with the advancesin imaging technology, digital imagesare available at
an increasingspeed, resulting in large collections of images. Searting in these collections
becomeamore and more important in many elds, sud as commerce,medical and govern-
ment applications. This motivates researt for content-based image retrieval and various
application systemshave been dewloped. A cortent-based image retrieval systemis to
seart through an imagedatabaseto nd out imagesthat are similar in cortent to a given
guery one. Howewer, most existing retrieval systems,if not all, su er one problem: whena
user submits a query, the systemretrievesimagesfar from the user's expectation, leading
to low retrieval performance. Sartini and Jain [31] report that many existing systemsgive
meaninglessesponsesiesk[18 summarizesa genericohenomenorin retrieval systemsusing
\What you seeis what you get, but not what you want" asthe title. Smeulderset al. [35
attribute it to a problem known asthe semaric gap.

In this thesis we arguethat the root of meaninglessesponsesis the lacking of seman-
tically meaningful represemtations of images. An ideal represetation of imagesshould be
semarically meaningful so that it can group together cortent-similar imagesin the image
spaceand is semattically discriminating for content-dissimilar images. This necessitates
investigating the semairtics of represemations of images.

As images' cortents, or objects, are of signi cant importance, it would semartically
be advantageousto do a segmetation rst. There are numerous algorithms for image
segmetation (see[33] for a recer literature review). For gray level imageswith piecewise
smooth regions,the Mumford-Shah model [2§] is represemativ e in that most criterion used
in existing segmetation algorithms are its special cases[26]. In this thesis, we presen
a segmeination algorithm by extending the Mumford-Shah model to imagesconsisting of
piecewisesmaooth regions as well as texture onesusing local spectral histograms[19, 27|
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as a generic represemation. Becausea local spectral histogram of an image window
consistsof histogramsof responseimagesof chosen lters, it captureslocal spatial patterns
through ltering and global patterns through histograms. Assumingthat a represemative
spectral histogram is available for ead region in an image, the segmetation algorithm is
implemerted as follows: 1) estimating a probability model for ead region and classifying
the image windows to obtain an initial segmetation, 2) iteratively updating pixels along
region boundariesbasedon the derived probability models, and 3) further localizing region
boundariesusing re ned probability models derived basedon spatial patterns in segmeted
regions. Additionally, this algorithm addresseshe issuesof automatically identifying regions,
selectingoptimal Iters for spectral histograms, and choosing an optimal window size for
segmetation. This segmetation algorithm is e ective for both texture and non-texture
regions, justied by experimertal results on dierent kinds of images. Also, it leadsto
more accurate segmetation results, which is justied by comparisonwith normalized cut
method [34] and other methods [29]. As an image represemation for cortent-basedimage
retrieval, new represemations needto be employedto represen the segmerted objects. This
is not included in this thesisand will be studied further in the future.

Due to the time constraint of a retrieval system, low dimensional represemations are
usedto reducethe time for computing and sorting. Low dimensionalrepresemations impose
equivalencerelationsin imagespace.ldeally, in the cortext of content-basedimageretrieval,
only imageswith semarnically similar cortents should be grouped into an equivalenceclass.
This semattics-related equivalenceclassis namedas intrinsic genealization. For example,
the histogram of pixel valuesof an imageis widely used. This histogram represetation is
semartically too weak as di erent kind of imagestend to be grouped in one equivalence
class,which leadsto meaninglessesponses. In this thesis, we study the equivalenceclass
structures of low dimensional represemations by sampling their intrinsic generalizations.
To demonstrate the e ectivenessof the sampling method, we utilize it to compare two
low dimensional represemation families, namely linear subspacesof imagesand spectral
subspaces. The linear represemations include principal componert analysis (PCA) [16],
independert componert analysis(ICA) [9] and Fisherdiscriminant analysis(FDA) [11]. The
study shavsthat the linear represemations of imagesgroup sematically dissimilarimagesin
one equivalenceclassand are not semanically meaningful for cortent-base image retrieval.
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By analyzing two problems with linear subspacerepresetations, we propose a nonlinear
represemation called Spectral SpaceAnalysis which improves the intrinsic generalization.
The proposedrepresetation has been applied to a large dataset and improved retrieval
performancehasbeenobtained.

Additionally, we further presen an algorithm that can be usedto improve retrieval
performanceby explicitly nding optimal represemations in both imageand spectral spaces
for cortent-based image retrieval applications. While it does not solve the semarttic gap
problem, it o ers a method to reducethe semartic gap through labeled training images.
The key to the proposedalgorithm is to formulate the problem on Grassmannmanifold and
utilize an e ective optimization algorithm, MCMC simulated annealing, on the manifold.
The experimertal results on di erent datasetsdemonstratethe feasibility and e ectiveness
of the proposedmethod.

The remainder of this thesis is organizedas follows. Chapter 2 introducesan image
segmenation algorithm using local spectral histograms. Chapter 3 analyzesthe semartics
of represemations for cortent-based image retrieval. Chapter 4 presens an algorithm for
learning optimal represemations for image retrieval applications. Chapter 5 makes a brief
conclusionfor this thesis.



CHAPTER 2

IMA  GE SEGMENT ATION USING LOCAL
SPECTRAL HISTOGRAMS

In this chapter, a generic segmetation algorithm by extending Mumford and Shah's
model[28 using local spectral histogram represemation is presened. Algorithms for bound-
ary localization, automatedseedselection,automated Iter and integration scaleselectionare
also provided to improve segmetation performance. Experimertal results and comparison
with other algorithms showv that the proposed segmetation algorithm is e ective and
comparableto the best available.

2.1 Local Spectral Histogram Representation

Given an input imagewindow W and a chosenbank of Iters fF(); = 1;2;:::;Kg,
for each lter F(), we compute a sub-bandimageW () through a linear corvolution, i.e.,
WO(v)=FO) W(v) = P JFO(UW (v u), wherecircular boundary condition is used
for corvenience.For W ( ), we de ne the marginal distribution, or histogram

1
HW' @) =

Wi (z WO (v): (2.1)

v
Figure 2.1 shavs an exampleof computing histogram. Figure 2.1(a) showns an input image.
Figure 2.1(c) shows the image after linear cornvolution with a Laplacian of Gaussian lter
shown in Figure 2.1(b). Figure 2.1(d) shows the histogram of the Itered image.

Then we de ne the spectral histogram with respect to the chosen lters as

Hw = (H\%);H\(,s);:::;H\(,f,()): (2.2)

Figure 2.2 shows the spectral histogramsof two images. For eat imagein Figure 2.2(a), it
is rst cornvoluted by ead of the eight Iters shown in Figure 2.2(c), then the correspnding
4
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Figure 2.1. An exampleof computing histogram. (a) An input image. (b) A Laplacian of
Gaussian lter. (c) The ltered image. (d) The histogram of Itered image.

histograms are computed. The spectral histogram is obtained by concatenatingthe eigh
histograms. The spectral histogram of an image or an image patch is essetially a vector
consisting of marginal distributions of lter responses. The size of the input image or the
input imagepatch is calledintegration sale. Becausehe marginal distribution of ead lter

responseis a distribution, a similarity measurecan be de ned as 2-statistic, which is a
rst-order appraximation of Kullback-Leibler divergenceand is usedwidely to comparetwo
histogramsHy, and Hy,

X X )@ H@)?
4 . HY@+H) @

The spectral histogram providesa normalizedfeature statistic to compareimagewindows

2(Hw,; Hw,) = (2.3)

of di erent sizes. The input image windows do not needto be aligned; misalignmert is a
seriousproblem for approadesthat use Iter responsesdirectly as features, sud as those
studiedin [29], dueto the inhomogeneiy of Iter responses.In this chapter, unlessotherwise
speci ed, eight xed Iters are used: the intensity lter, two gradiert lIters, LoG with
two scalesand three Gabor Iters with di erent orientations. An automatic Iter selection
algorithm is introduced later in this chapter. When proper lters are chosen,the spectral
histogram is su cien t in characterizing texture appearance. Figure 2.3 shows three types
of images,where the typical imagesare generatedusing a Gibbs sampler[39]. In Figure
2.3(a), the spectral histogram capturesthe perceptual appearanceof both regions. Given
that the circular boundary is usedfor a typical image, the typical image represens closely
the obsenedone. Figure 2.3(b) shavs a texton image,wherethe spectral histogram captures
5



(b)
B -1 1]
(©)

Figure 2.2. An exampleof spectral histogramsof two images. (a) The input images. (b)
The correspnding spectral histograms. (¢) The usedeigh lters

Figure 2.3. Dierent typesof imagescharacterizedby spectral histograms. Top row shavs
an obsened imagesand the bottom row a typical image that sharesthe same spectral
histogram. (a) A gray-level imageconsistingof two piecewiseconstart regionswith additive
Gaussiannoise. (b) A texton image consisting of crosselemerts. (c) A stochastic texture

image.



the texton elements and the elemen density. This example demonstratesclearly that the
spectral histogram provides a description for textons without specifying texton elemens
explicitly [22]. Figure 2.3(c) shows a stochastic texture and the spectral histogram captures
the perceptual appearancewell.

Note that the spectral histogram is de ned on any type of images. Piecewiseconstart
imageswith additive Gaussiannoiseare a special casewhere the spectral histogram has a
unique pattern. In addition, it canalsocharacterizepatterns with topologicalstructures(e.g.
a face) with appropriate boundary conditions [2(]. The spectral histogram represetation
was rst suggestedn psydiophysical studieson texture modeling [4], and has beenusedin
texture modeling and synthesis [15, 40, 19, texture classi cation [1, 19, 23] and modeling
human texture discrimination [22]. Histogramsof local elds have alsobeenusedfor object
recognition [32, 20].

2.2 Segmentation Algorithm

In [28], Mumford and Shahde ne a represemativ e energyfunctional for segmetation of
which segmetation criteria in most existing segmetation algorithms are special caseq26).
In their formulation, segmetation is posted as the problem of nding optimal partitions
where eat region should be as homogeneousas possible. The homogeneiy of a region is
measuredby its variance;this, howewer, is not e ectiv e for a textured region. To overcome
this limitation, we uselocal spectral histogramsaslocal featuresand measurehomogeneiy of
a region using distanceamongspectral histograms. As spectral histogramscan characterize
e ectively both texture and non-texture regions,this formulation is e ectiv e for both types
of regions.

To be more speci c, let R be agrid de ned on a planar domainandR;, i = 1, ;n be
a disjoint subsetof R, ; be the piecewisesmaoth boundary of R;, and R be the union of
R,and of ;,i=1; ;n. A feature F; is assaiated with ead regionR;, i = 1; n.
We also de ne Rg, which is called backgound [38],asRo = R (R1 [ Rn). Note that
segmeiration can be represeted using either or R. Using the latter, motivated by the
Mumford and Shah'senergyfunctional, for an input imagel , we de ne an energyfunctional

for segmetation as



. P n P . . P n .
E(R,n) = R P in:1 P |(qX;Y)2Ri D(FRi(Xyly)yFi) oL i=z1 ) il

S 2.4
F o= j:lD(Fi;Fj) inzllRiJ (2.4)

Here D is a distance measurebetweena feature at a pixel location and the feature vector
of the region, r, ¢, and [ are weights that cortrol the relative contribution of the
correspnding term. Fg, (X;y) is the feature vector at pixel location (x; y), and this notation
implies that the feature vector depends on R; in our implemenrtation. In this chapter,
spectral histogramsare usedasfeaturesvectors,i.e., Fg,(X; ¥) = Hy s (xy), WhereW® (x; y)
is a local neighborhood, the sizeand shape of which are given by integration scalew ® for
segmetration, a prede ned neighborhood. In (2.4), the rst term encalesthe homogeneiy
requiremert in ead region R; and the secondterm requiresthat boundariesof regionsbe
as short as possible,or as smooth as possible. The third term requiresthat the featuresof
di erent regionsbe asdi erent aspossible. The last term is motivated by the fact that some
regionsmay not be described well by the selectedfeatures. In that case thoseregionsshould
be treated as badkground, which can be viewed as grouping through inhomogeneiy [38].
We usean iterativ e but deterministic algorithm to minimize the energyfunctional given
in (2.4), and implemert it astwo stagesfollowed an additional localization stage given in
the next section. The rst term in (2.4) is rst minimized using the minimum distance
classi erin the rst stageand further re ned by (2.5) alongwith the secondterm. The third
term is usedin the feature selectionprocedure descrited in Section 2.4.1 so that selected
featureswill be di erent from ead other. The last term is incorporated in (2.6). Feature
vectors F; for regionsare rst extracted from windows certered at given or detected pixel
locations; the size of a window is speci ed by integration scaleW(® for segmetation. To
estimate probability models and parametersT; (homogeneiy thresholds for regions used
in (2.6) below), we compute the spectral histogram certered at a pixel location; to save
computation, it is doneonly at sub-sampledpixels. The 2-statistic distance measuremay
not provide an accuratemeasurecloseto boundariesdue to inhomogeneiy. For example,in
the imageshown in Fig. 2.4,the left regionis homogeneouand the variation allowed should
be small. In the right region, the variation allowed should be relatively large. To overcome
this problem and provide a more accurate model, we estimate a probability model of the
2-statistic for eah given feature vector F;. This is done by computing the histogram of

the 2-statistic betweenthe computedspectral histogramsat all chosenpixels and the given
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Figure 2.4. Gray-levelimagesegmeration usingspectral histograms. The integration scale
W for spectral histogramsis a15 15squarewindow, = 0:2,and g = 3. Two features
are given at (32;64) and (96; 64). (a) A synthetic imagewith size128 128. The imageis
generatedby adding zero-meanGaussiannoisewith dierent 's at left and right regions.
(b) Initial classi cation result. (c) Segmetation result. Ead region is represeted by a
manually assignedgray value. All the pixels are perfectly segmeted. (d) The segmetation
result shovn by region boundary (white). Note the original imageis dimmed to make the
boundary more visible.

spectral histogram F; for the region. Figure 2.5(a) shavs the histogramsof the 2-statistic
for the two regionsin Fig. 2.4(a). Parameter T; for ead regionis determined by the rst

trough after the leftmost peak from its histogram. Basedon an assumptionthat feature
vectorsF; are closeto the true feature vectors, a probability model is derived by assigning
zero probability for valueslarger than T;. The derived probability models are given in Fig.
2.5(b). Then the input imageis classi ed using a minimum distance classi er to minimize
the rst term in (2.4); the pixels whoseminimum distanceis larger than T;, are classi ed
as badkground. The classi cation result is usedas initial segmetation. For the imagein
Fig. 2.4(a), the correspnding initial segmetation result is shavn in Fig. 2.4(b). Note that

the classi cation is doneat sub-sampledpixels only and nearby pixels are assignedhe same
label.

Toillustrate the e ectivenessf the derived probability modelsand asymmetricwindows,
Fig. 2.6(a) shovs a row from the image shown in Fig. 2.4(a). Figure 2.6(b) shaws the
probability of the two labels at ead pixel using asymmetric windows. It can be seenthat
the edgepoint is localizedpreciselyat the true location. Figure 2.6(c) shavs the probability
using windows certered at pixels. There is an interval where labels can not be decided
becausethe spectral histogram computed in the interval does not belongto either of the
regions. This demonstratesalsothat the probability modelsbasedon spectral histogramsare

sensitive to spatial patterns. For comparison,Fig. 2.6(d) shows the result using 2-statistic
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Figure 2.5. The histogramand derived probability model of 2-statistic for the givenregion
features. Solid lines stand for left region and dashedlines stand for right region. (a) The
histogram of the 2-statistic betweenthe given feature and the computed onesat a coarse
grid. (b) The derived probability model for the left and right regions.

directly for certral windows. Here boundariesare systematically shifted by seweral pixels
because ?-statistic distancefavors homogeneousegions.

After the initial segmenation and probability models are obtained, the segmetration is
then iterativ ely updated basedon the following local updating rule at pixel (x;y):

i(y) = @ P( A(Hwo ey Hi)) + i (xl;yl>2N<x;y)'LIN(}lv;y&?y(;l;yl): (2.5)
Here L‘N(x;y)(x; y) is the number of pixels in N(Xx;y) whose current labels are i and
N (X;y) is a user-de ned neighborhood (the eight nearestneighbors are used) and provides
an approximation of the boundary term in (2.4). Parameter cortrols the relative
cortributions from the regionand boundaryterms. For a given pixel (x; y) to be updated, the
spectral histogramis rst estimated using asymmetric windows around the pixel. Because
there are seeral windows to chooseat pixel (x;y), for eat F;, we usethe window that has
the most number of labels of R;, and thus the feature at pixel (x;y) for di erent labelscan
be dierent. The new label of (Xx;y) is assignedthe one that givesthe maximum ;(x;y).
A special caseof (2.5) is for pixels along boundariesbetweenthe badkground region and
a given region becausewe do not assumeany model for the badkground region. For pixel
(X;¥) 2 Rg, which is adjacert to regionR;, i 6 O, if

2(HW(S)(x;y); HI) < s T (26)

10



0 20 40 60 80 100 120 0 20 40 60 80 100 120

(@ (b)

0 20 40 60 80 100 1220 O 20 40

© (d

80 100 120

Figure 2.6. E ectiv enessof derived probability models. In (b)-(d), solid lines stand for
the left region and dashedlines the right region. (a) The 64th row from Fig. 2.4(a). (b)
The probability of the two given regional features using asymmetric windows to compute
spectral histograms,wherethe edgepoint is correctly localized. (c) Similar to (b) but using
windows certered at the pixel to compute spectral histogram. Here the edgepoint cannot
be localized. (d) 2-statistic from the two given regional features using certered windows,
wherethe edgepoint is wrongly localized betweenpixel 61 and 62.

label i is assignedto (x;y). HereT; is the estimated homogeneiy threshold for region R;,
and g is a parameter which determinesrelative penalty for unsegmeted pixels. Figure
2.4(c) shavs the segmetation result for the imagein Fig. 2.4(a), and the resulting region
boundary is shovn in Fig. 2.4(d). Here all the pixels are segmeted correctly. Sincethe
image consistsof two imageswith similar mean valuesbut di erent variance, if we apply
nonlinear smaothing algorithms, the segmetation result would not be accurate.

2.3 Localization of Texture Boundaries

Becausdextures needto be characterizedby spatial relationshipsamongpixels, relatively
large integration windows are neededin order to extract meaningful features. A large
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Figure 2.7. (a) A texture image with size256 256. (b) The segmenation result using
spectral histograms. (c) Wrongly segmeted pixels of (b), represeted in black with respect
to the ground truth. The segmetation error is 6:55%. (d) and (e) Re ned segmetation
result shavn by regionboundariesand by regionsrespectively. (f) Wrongly segmeted pixels
of (e), represered in black asin (c). The segmetation error is 0:95%.

integration scale howewer results in large errors along texture boundaries due to the
uncertainty introduced by large windows [7]. By using asymmetric windows for feature
extraction, the uncertainty e ect is reduced. Howewer, for arbitrary texture boundaries,
the errors along boundariescan be large even when the overall segmetation performance
is good. For example, Fig. 2.7(b) shovs a segmetation result using spectral histograms.
While the segmetation error is only 6:55%, visually the segmetation result is intolerable
dueto large errors along texture boundaries,as shavn in Fig. 2.7(c).

In order to accurately localize texture boundaries,we proposethe following measureto
re ne the obtained segmeration result. As for segmeration, a re ned probability model is
built for given m pixelsfrom a texture region. To capture the spatial relationship, we choose
for eat texture regiona window asa template. Here,the template is the samewindow from
which the region feature F is extracted. For the selectedm pixels, we de ne the distance

12
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Figure 2.8. (a) A synthetic imagewith size128 128. (b) Segmetation result. (¢) and
(d) Re ned segmetration result shovn asregionsand asthe region boundary respectively.

betweenthose pixels and a texture region as the minimum mean squaredistance between
those pixels and the template. Basedon the obtained result, we build a probability model
for eadh texture regionwith respect to the proposeddistance measure.Intuitiv ely, if the m
pixels belongto atexture region,it should match the spatial relationship amongpixels when
the m pixels are aligned with the texture structure. Theseprobability models are sensitive
to alignmerts and thus should produce more accurate region boundariesthan those based
on the spectral histograms.

After the probability models are derived, we use the local updating equation given in
(2.5) by replacingW ©®) (x; y) by the m pixelsin atexture regionalongits boundary basedon
the current segmeimation result and 2(H\,\,(s)(x;y); H;) by the new distance measure.Figure
2.7(e) shaws the re ned segmetation result with m = 11 pixels and Fig. 2.7(d) shows the
correspnding region boundaries. The segmetation error is reducedto 0:95% and visually
the segmenation result is improved signi cantly. Figure 2.7(f) shovsthe wrongly segmeted
pixels of the re ned segmeiation.

Figure 2.8(a) shows an intensity imagewith a curvy boundary betweentwo regionswith
the samemean but di erent variance. Figure 2.8(b) shavs the segmetation result, Fig.
2.8(c) shaws the re ned result, and Fig. 2.8(d) shows the region boundary. It is clear that
the boundary betweentwo regionsis improved signi cantly, especially at the top and bottom
bordersof the image.

Similar to segmeration, a special casefor boundary localization is for pixels along
boundaries between the badground region and a texture region becausethere is not a
probability model for the badkground region. To localize these pixels, we assumethat the
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badkground region is locally homogeneouslong the boundary. Basedon this assumption
and usingthe 2-statistic measureinstead of the probability model, the updating rule (2.5)
becomes:

LiN (><1?Y1)(X1;y1) .

P
06Y) = @ )CHHmpHD + o~ e (2.7)

where, m; is the m pixels from region R; in the template.

2.4 Automated Selection Algorithms

In the segmenation algorithm presened above, we assumethat seeral represemativ e
pixels, lters and an integration scalefor segmertation are given. This assumption can
limit the use of the proposedmethod in autonomoussystems. In this section, we dewelop
algorithms for identifying seedpoints, selectingoptimal Iters, and estimating integration
scalesautomatically for a givenimage.

2.4.1 Automated Seed Selection

The basicidea for seedselectionalgorithm is to idertify homogeneougexture regions
within a givenimage. As they are naturally normalized,spectral histogramsde ned onimage
patchesof di erent sizescanbe compared. Within a texture regionrelative to an integration
scale,spectral histogramscalculated at di erent windows should be similar. Basedon this
obsenation, wetry to identify homogeneousgexture regionsbasedon distancemeasureswith
respect to two integration scales.Let W® = ¢ W be an integration scalelarger than
W) the integration scalefor segmemation. In other words, we require that ¢ > 1 and
in this chapter, we set s to be 1:20. We de ne two distance measuresat pixel (x;y) with
respectto W andW®, B —and | ., givenby:

w (s)
w6y = D (Hw© xy)s Hw @ eyy)s (2.8)
and
we (GY) = max D(Hw e ey Hw o ) (2.9)
(x13y1)

Here \I/3v(5> measureghe distance betweenthe spectral histogramsof two integration scales
W and W®. Within a homogeneousexture region, 2 . should be small because
14



Figure 2.9. Textureimagesegmetation with represemativ e pixelsidenti ed automatically.
WO js29 29, W@ js35 35 =01, ,o=02, g=20 =02 and T, = 0:08.
(a) Input texture image. (b) Initial classi cation result. Here the represemativ e pixels are
detectedautomatically. (c) and (d) Segmeiation result and the resulting region boundary.

Hw e (X y) and Hy, @ (X; y) shouldbe similar. Similarly, , measureghe variation among

|
wes
di erent windowsat scalew ©® within W® andit shouldbe alsosmallwithin a homogeneous
region. In this chapter, | , is approximated in implemertation using four cornerwindows
within W® . Finally, we want to choosefeaturesthat are as di erent as possiblefrom all

those already chosen. Supposewe have chosenn featuresalready, where,Fi = Hyy ) (4, v,

"(xy) = max D(Hy gy Fi): (2.10)

which givesa distance measurebetweenthe candidate feature at (x; y) and all other chosen

features. Combining thesetogether, we have the following saliencymeasure:

YY) =@ A Boky+@ A Leky) c  Fxy) (211)

Here A and  are parametersto determine the relative cortribution of ead term.
Intuitiv ely, (X;y) should be large in a region that has not beenrepreseted. Therefore
we selectthe seedwindows accordingto  (x;y) until  (X;y) < Ta, whereT, is a threshold.
To save computation, we compute (X;y) on a coarsegrid.

Figure 2.9 shows a seedselectionexample,where the image with two texture regionsis
showvn in Fig. 2.9(a). Figure 2.9(b) shows the initial classi cation result, wherethe feature
vectorsare detectedautomatically. Figure 2.9(c) shonvsthe segmetation result. The texture
boundary is localizedwell even though the two textures are similar in local intensity values.
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2.4.2 Automated Filter and Integration Scale Selection

Similar to seed selection, we also can estimate the optimal Iters and the optimal
integration scalefor eady homogeneousegion. While a larger integration scaletendsto give
smaller 3 and | ., a smallerintegration scaleis preferredin term of computational
e ciency and boundary accuracygiven that it is su cient to characterizethe region. Note
that the optimal integration scaledependson the lters that are usedin spectral histogram
calculation and the choice of lters also a ects the e ectivenessof the spectral histogram
represemation. If implemerted directly, this requires an iterative procedure of choosing
Iters and estimating the optimal integration scale.

To simplify the procedure, we adopt a simpler one that seemsto be sucient for
segmetmation. Given a large set of candidate Iters, we estimate the optimal integration
scalefor ead Iter. Then we choosea xed number of Iters whoseestimated optimal
integration scaleis the smallest. After the Iters are chosen,we usethe sameprocedureto
estimatethe nal optimal integration scalebut using the chosen lters.

More speci cally, for one Iter orasetof lters, weinitially sets= s®andcompute .,

whereW " isa5 5window. Then wedo the following stepsiterativ ely: 1) compute &,( I

at alargerscaleW! 9, where ¢issetto 1.20.2)If B < T &, stopthe iteration

W (s) \?v( ss)
and return W asthe optimal integration scale. Here T & is a threshold. 3) Otherwise,
sets= s sandgoto step1). Similarly, an optimal integration scaleis chosenbasedon

\'N(S). Here, a linear conbination of two optimal integration scalesis usedasthe estimated
optimal integration scale.

Figure 2.10shows an examplefor selecting Iters and estimating the optimal integration
scaleson an image with four texture regions. Here 8 lters with the smallest optimal
integration scale are selectedfrom 74 candidates. Then for ead region, the optimal
integration scaleis computed basedon the eight chosen lters using the proceduresgiven
above. Figure 2.10(b) shavs the wrongly segmeted pixels using selected lters and the
estimated optimal integration scale. The estimatedintegration scalefor eat texture region
is consisterh with the texture pattern scale. For example, the estimated integration scale
for the top-right regionis 23 23 while the onefor the top-left is 13 13. For comparison,

Figures 2.10(c)-(f) show the correspnding results using manually speci ed scalesand the
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Figure 2.10. (a) A texture imageof size128 128. (b) Wrongly segmeted pixels (black)
using automatically selected Iters and the estimated optimal integration scale,where the
error rate is 4:04%. Here the integration scaleis 13 13 for the top-left and bottom-right
region, 23 23 for top-right region, and 15 15 for bottom-left region. (c)-(f) Wrongly
segmeted pixels (black) using manually speci ed integration scaleand eight xed lIters.
The integration saleis 19 19 with error rate 1273%,23 23 with error rate 4:99%,29 29
with error rate = 3:15%,and 35 35with error rate = 5:11%respectively.

eight xed Iters given in Section2.1. This example shows that the segmetation result
using automatically selectedlters and the integration scalegivesan accuratesegmetation
result with much smallerintegration scalestherefore computationally more e cien t.

2.5 Experimental Results and Comparison

2.5.1 Segmentation results

This sectionshonvs someadditional experimertal results. For all results shovn here,the
optimal Iters and integration scalesare selectedautomatically. Figures2.11and 2.12showv
the segmeiration results for a set of texture images. First the feature vectorsare identi ed
automatically and an initial result is then obtained usinga minimum distanceclassi er with
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the found regionfeatures. The nal result is obtained by applying the boundary localization
algorithm. As shawvn in theseexamples the texture boundariesare localizedwell and all the
homogeneousexture regionsare identi ed by the seedselectionalgorithm. The inaccuracy
of the boundariesis mostly due to the similarity of the textures alongthe boundariesaswell
aslarge texture structures and variations in theseexamples.

Figure 2.11. Texture image segmetation examples. In ead panel, the left is the input
image, the middle the nal segmetation result, and the right the nal region boundaries.
All represemativ e pixels are detectedautomatically. ¢ =01, o =02, =038, g = 50,
and Tp = 0:20. (a) m = 11. (b) m = 15.

Two examplesshown in Fig. 2.12 are also used by Randen and Husoy [29 in their
comparative study of 100 texture classi cation methods. Their experimerts are set up as
supervisedclassi cation, wheretraining featuresare provided rst. Thus the segmeration
problem studied here is essetially more dicult . Figures 2.13(a) and (b) show the
classi cation error of the 100 texture classication methods for Fig. 2.12(a) and (b)
respectively. In both casesthe segmetation error of our resultsis 1.0%. For Fig. 2.12(a),
only four methods perform slightly better (one 0.9% and three 0.7%) than ours. However,

IFor texture classi cation comparison,see[23).
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Figure 2.12. Texture image segmeration examples.In ead column, the top is the input
image, the middle the segmetation result and the bottom the region boundaries. Here

c=01, A=02, =02,Ta=0:20,andm = 11. All represemativ e pixels are detected
automatically. (a) g = 5:0. (b) g = 40.

thesefour methods along with others perform signi cantly worsethan ours on Fig. 2.12(b).
To shaw this, Fig. 2.13(c) shows the averageperformanceon both imagesand clearly our
method givesthe lowest error rate. This signi cant improvemert in performanceis due to
the desirableproperties of the spectral histogram represetation and the derived probability
models.

Natural imagesin generalconsistof many regionsthat are not homogeneousegionsand
we are interestedin somemeaningfulregions,called region of interest This canbe achieved
in our systemby idertifying only a few regionfeatures. As mertioned before,no assumption
is madein our algorithm regarding the distributions and properties of badkground regions,
and thus we avoid building models for them. We apply the samealgorithm but with one
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Figure 2.13. Classi cation error of 100 methods usedin [29]. In ead plot, the dashedline
is the correspnding segmenation error of our results. (a) For imagein Fig. 2.12(a). (b)
For imagein Fig. 2.12(b). (c) The averageperformanceon the two images.

regionidenti ed and Figs. 2.14and 2.15shov someexamples.Herewe usethe special caseof
the localization algorithm descriked in Section4 becausethere is only oneregion of interest
in eat image. The left row shavs the input imagesand the middle shows the segmetation
result before boundary localization. The nal boundary-localized result is shovn in the
right row. To show the accuracyof segmeted boundaries,they are embeddedin the original
image. As theseexamplesshaw, our algorithm givesaccurateregionboundaries. Someparts
of the boundariesare not localizedwell due to the similarity betweenthe region of interest
and the badground. If we had modelsfor recognition, the cheetahin Fig. 2.15(a) and (b)
could be recognizeddueto its distinctiv e skin pattern and then the segmeiation result could
be further improved usingtop-down information. Giventhat our systemis genericand there
iS no image speci ¢ training, our results are comparablewith the best available results.

2.5.2 Comparison with Normalized Cut

To provide additional empirical justi cations of our method, we have compared our
segmetation method with the normalized cut algorithm proposedby Shi and Malik [34]
and further analyzedby Fowlkeset al. [12. Here an implemertation provided by Shi? is
employed. For eat caseshavn below, we havetried di erent conbinations of the parameters
to obtain the best performancewe can. First we apply the normalizedcut on the gray level

2QObtained from http://www.hid.ri.cm u.edu/Hid/soft ware_ncutPublic.html
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Figure 2.14. Natural image segmeration examples. In eat panel, the left is the input

image, the middle segmeration result beforeboundary localization and the right the result

after boundary localization. Herem = 25, = 0:2. (a) A cat imagewith size305 450,
g = 5:0. (b) A sh imagewith size438 321, g = 9.0.

image showvn in Fig. 2.8(a) and Fig. 2.16(b) showvs the segmetation result. Following Shi
and Malik, Fig. 2.16(b) alsoshavs the segmeted componerts from normalizedcut and Fig.
2.16(c)shows our correspnding segmertation and componerts. In this casethe normalized
cut successfullysegmets two regionsout. Howewer, the regionboundary is not well localized
becausethe normalized cut does not exploit the spatial connectivity in segmeted regions
and doesnot have a re ned model for boundary localization.

Figure 2.17 comparesthe normalized cut method and ours on the cheetahimage shovn
in Fig. 2.15(b). Here we comparethe segmen correspnding to the cheetahregion. While
both methods are ableto segmeh the cheetahout, our segmen is localizedmore accurately
Note that the normalized cut givesthe cheetahregion as one of its segmets and does not
localizeits boundary.
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Figure 2.15. More natural image segmetation examples. SeeFig. 2.14for gure legend.
Herem = 25, = 0:2. (a) A cheetahimagewith size795 343, g = 2:2. (b) Another
cheetahimagewith size486 324, g = 1.2.

Figure 2.18(b) shawvs the normalized cut segmenation and its major componerts for the
imageshaowvn in Fig. 2.7(a). For comparison,we have shovn our segmetation result in the
sameformat in Fig. 2.18(c). As in the previous example,the major regionsare segmeted
out by their algorithm. While boundariesbetweenvery di erent regionsare localized well,
boundariesare not accuratewhen neighboring regionsare similar. In seweral casesregions
from dierent textures are mixed. On the other hand, our segmetation gives accurate
region boundaries. We attribute the di erence to the derived probability modelsand to the
fact that the spectral histogram is more reliable to characterizetexture regionsthan Iter

responses,which are useddirectly in the normalized cut method.
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Figure 2.16. Comparisonbetweennormalized cut and proposedmethod on a gray-level
image. (@) Input image, as shavn in Fig. 2.8(a). (b) and (c) Segmetation result from
normalized cut and our method. In ead panel, the left is the segmetation result and the
rest are the componerts. Here a gray color is usedto indicate pixels not in the current

componert.

(b)

(d)

Figure 2.17. Comparisonbetweennormalizedcut and the proposedmethod on the cheetah
image (Fig. 2.15(b)). In (c) and (d), bladck is usedto indicate pixels not in the current
componert. (a) Input image. (b) Segmetation result from normalizedcut. (c) The cheetah
segmen from (b). (d) The cheetahsegmen from our method.
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Figure 2.18. Normalized cut segmetation result and its major componerts for a texture
image. (a) Input imageasshown in Fig. 2.7(a). (b) and (c) Segmenation result and major
segmeted componerts of normalized cut and the proposed method respectively. Here a
distinctive gray color is usedto indicate pixels not in the current componert.
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CHAPTER 3

SEMANTICS ANAL YSIS OF IMA GE
REPRESENT ATIONS FOR CONTENT-BASED
IMA GE RETRIEV AL

Due to the curse of dimensionality [3], low dimensional represetations for imagesare
widely usedin image processing,including content-based image retrieval. Howewer, a low
dimensional represemation imposesequivalence relations in the image spaceand causes
meaninglesgesponsesin imageretrieval applications. An induced equivalenceclassconsists
of all the imagesthat are identical under an adopted represemation and is called intrinsic
generalization. In this chapter, we investigate the semarnics of a few commonly used low
dimensionalrepresemations by samplingtheir intrinsic generalizationsand reveal that they
tend to include semarnically dissimilar imagesin sameequivalenceclass. We then propose
a new represemation called Spectral SubspaceAnalysis (SSA) and demonstrate improved

retrieval performanceusing SSArepresetations by experimertal results.

3.1 Low Dimensional Representations Analysis

In this chapter, an image| is de ned on a nite lattice R  Z2, the intensity at pixel
location ¥ 2 R is denoted by I(v¥) 2 G = [rq;r3], whererq, r, bound the dynamic range
of the imaging sensor,and the set of all imageson R. A represemation is a mapping
dened asf : ! RKX. For alow dimensionalrepresemation, it is requiredthat K  jRj.
Before analyzing the semartics of low dimensional represemations, we rst introduce the
equivalencerelations imposedby theserepresemations.
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3.1.1 Equiv alence Class of Low Dimensional Representation

Here, to introducethe equivalencerelations, Bishop's framework is chosenwhich is laid
out to formulate generalizationproblem in recognition [5]. Conceptually, this framework is
valid for content-basedimage retrieval applications as the retrieval problem can be viewed
as a recognition problem, where the answer is a few most similar imagesinstead of only
the most similar one. Let the query image | be generatedfrom an unknown probability
density P on and the underlying true retrieval mapping be denotedby h: 7! A, where
A is the set of all classes.Ead classconsistsof sematically similar imagesand there is
no overlapping between two classes. For any retriever function g, in caseof using a low
dimensionalrepresemation f , its averageretrieval ability is de ned as the probability that

g(f (1)) = h(1), i.e.

G(g:;f) = PBrftjl 2 5g(f (1)) = h(h)g (3.1)
= rayPridjd 2 £ (Q3)=1()g '
here f (1) denotesthe rangeof f on . From (3.1), it is clear that f has a signi cant

e ect on the performanceof g. Ideally, all the imagesfrom ead classshould be grouped

as a single equivalenceclass. While this is generally not possiblefor real applications, we

want to group imagesfrom ead classinto a small number of equivalenceclasseswith eath

classhaving a large cardinality, as emphasizedoy Vapnik [37]. Howewer, when making eat

equivalenceclassas large as possible,we do not want to include imagesfrom other classes,
asthis will leadto meaninglesgesponses.This makesit necessaryto analyzethe semarnics

through equivalenceclassesof low dimensional represemations to achieve a good retrieval

performance.

3.1.2 Semantics Analysis by Sampling Intrinsic Generalization

The previous analysis shows that the equivalence class structures of low dimensional
represemations are essetial for a good retrieval performance. This chapter focuseson
studying the semairtics of a particular equivalenceclassthrough statistical sampling. First,
we given a de nition of intrinsic generalization.

Intrinsic Generalization : Givena represemation f, the intrinsic generalizationof an
imagel underf is de ned as
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S(Y=fJj32 Q@) =f()g (3.2)

In other words, intrinsic generalizationof image | includesall the imagesthat cannot be
distinguished from | under represetation f. Dene SP(I) as the set of images having
semartically similar cortents with 1. Ideally, S; (1) shouldbe ascloseaspossibleto S°(1). As
S(1) is generally not available, to explore S, (1), we employ a statistical sampling through
the following probability model:

oI;T) = TlT)expf D(f (3):f (1))=Ta: (3.3)

HereT is a temperature parameter,D (:;:) a Euclideanor other distancemeasure,and Z(T)
is a normalizing function, givenas Z(T) = P 5, expf D(f(J);f(1)=Tg. This model has
beenusedfor texture syrthesis[39 and we generalizeit to any represemation. It is easyto
seethat asT ! 0, q(J;T) de nes a uniform distribution on S, (1) [39]. The advantage of
using a sampleris to be able to generatetypical imagesin S, (l) sothat S, (l) underf can
be examinedin a statistical sense.

To illustrate the e ectivenessof the sampling methods, we have useda linear subspace
represemation PCA on the ORL facedataset', which consistsof 40 subjects with 10images
ead; we have obtained similar results using other linear subspacerepresemations. In this
case,we rst calculate the eigenfacescorrespnding to the 50 largest eigervalues. Under
PCA, given an image |, f (I) is the projections of | along eigen faces. We de ne the
reconstructedimage of | as (l) = iK=1 < 1;V; > Vi, whereV; is the ith eigenface
and < :;: > is the inner product. Fig. 3.1(a) shavs a faceimagein the dataset and Fig.
3.1(b) showsthe reconstructedimagewith K = 50. Then a Gibbs sampleris usedto generate
samplesfrom S, (1). Fig. 3.1(c)-(f) shav four samplesof S, (I) (For Fig. 3.1(f), the object
in the middle is usedas boundary condition, i.e., pixels on the object are not updated). In
other words, theseimageshave the same50 eigendecompositions, which meansthat these
imagesshould have the samesemartics under PCA represemation. Obviously, they actually
do not. Note that S,(I) isde ned on and theseimagesare far from ead other in .

Becauses, (1) consistsof imageswith semartically di erent contents, we arguethat linear
low dimensional represemations of imagesgroup sematically dierent imagesinto same

Ihttp://www.uk.researc h.att.com/facedatabase.rml.
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Figure 3.1. (a) A faceimage. (b) ReconstructedimageusingK = 50 principal componerts.
(c)-(f) Four random samplesfrom S, (1), with (1) identical to the oneshawvn in (b).

equivalenceclass. Therefore,theserepresemations are not semarically meaningful,and they
can make the subsequenretrieval intrinsically sensitive to noiseand other deformations. To
show this, Fig. 3.2(a) givesthree di erent faceimageswhich sharethe exactly sameeigen
represemation (bottom row). On the other hand, Fig. 3.2(b) shows three similar images

whoseeigenrepresetations correspnd to three di erent faces.

Figure 3.2. Examplesof di erent imageswith identical eigendecompsitions and similar
imageswith di erent eigendecompsitions. The top row shows the imagesand the bottom
reconstructed. (a) Three di erent imageswith the sameeigenrepresemations. (b) Three
similar imageswith di erent eigenrepresemations.

It needsto be emphasizedhere that the samplingis very di erent from reconstruction.
In the PCA case the samplingis to draw a typical samplefrom the set of all the imageswith
a particular low dimensionalrepresetation while reconstruction givesonein the set whose

coe cien ts are zero along the dimensionscomplemen to the given subspace.To illustrate
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this, Fig. 3.3 shavs an exampleof a one-dimensionakubspacean a two-dimensionalspace.
In this case,the reconstructed\image"” of \x" is the point givenby \+" in Fig. 3.3(a) while
the sampling canreturn any point with equal probability alongthe solid line shavn in Fig.
3.3(b). This shaows clearly that the reconstructedimage may not provide much information
about all the other imageshaving the samelow dimensionalrepresemation.

(@ (b)

Figure 3.3. An illustration exampleof the di erence betweensamplingand reconstruction.
Herethe dashedline represeis a one-dimensionakubspacen a two-dimensionalspace.For
a training example(marked as'x’), the samplingis to draw a random point along the solid
line in (b) while the reconstructedimageis a single point given by '+' in (a).

Theseresults, while generatedbasedon PCA, are valid to an arbitrary linear subspace
sincethe sampling tries to match the represemation. The main problem of linear subspace
represemations, asrevealedhere,is that theserepresemations cannot take into accoun that
most imagesin the image spaceare white noiseimages.

3.2 Spectral Subspace Analysis

3.2.1 Spectral Representation of Images

As discussedearlier, an ideal represemation f for | will be suc that S;(1) = SP(1).
There are two important limitations of the linear methods that needto be addressed:(i)
As the vast majority imagesin  are white noiseimages,a good approximation of SP(1)
for an image of object(s) must handle white noiseimagese ectiv ely; otherwise, S, (1) will
concertrate on white noiseimages. Earlier experimerts show that linear represemations
su er this problem. (i) Another issueis the linear superposition assumption, where eah
basiscorributes independertly to the image. In cortrast, pixels on objects are dependen
and e cien t models should exploit this dependency
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The issue of white noise imagescan be dealt with e ectively through the method of
types[1(0 asthe white noiseimagesare grouped together under types. Howeer, the direct
use of typesdoesnot provide enoughconstraints as only the histogram of imagesis used.
We generalizethe type de nition by including marginals of lter responses(of the input
image)with respectto a setof Iters, which alsoincorporateslocal pixel dependencehrough
Itering.

The represemation of using marginalsof Itered imagescan be justied in many ways:
(i) by assumingthat smal disjoint regionsin the frequencydomain are independent That
is, partition the frequencydomain into small disjoint regionsand model eat region by its
marginal distribution. The partitioning of the frequencyalso leadsto spatial Iters. (ii)
Wavelet decompsitions of imagesare local in both spaceand frequency and hence,provide
attractiv e represemations for objects in the images. We corvolve an image with the lters
and computethe marginals. Each imageis then represered by a vector consistingof all the
marginal distributions. This represemation is called spectral representation ead of these
vectors a spectral histogram, and the set of all valid vectorsthe spectral space. Elemerts of
a spectral histogram relate to the image pixels in a nonlinear fashion, and hence,avoid the
linearity issuemertioned earlier.

This represemation has also been suggestedhrough psydiophysical studies on texture
modeling [8], and has been usedin the texture modeling and synthesis [15, 40, 22| and
texture classi cation [23]. Both the histogram of input images[36] and joint histograms of
local elds [32] have beenusedfor object recognition.

3.2.2 Spectral Subspace Analysis

In this method, the strategy is to rst represem ead imagein the spectral spaceand
then apply a linear subspacemethod, suc asPCA, ICA or FDA, in the spectral histogram
spacé. Name these correspnding methods as SPCA, SICA, and SFDA, and call them

collectively as spectral subspaceanalysis(SSA).

2Note a reconstructed spectral histogram may be outside the spectral spaceand here we ignore this
complication.

30



To demonstrate the e ectivenessof SSA represemations, we explore their intrinsic
generalizationsthrough sampling. As in the linear subspacecase, SPCA is used for
experimernts; similar results have beenobtained using other linear spectral subspaces.

First, basesn the spectral spaceare computedbasedon training images.Givenanimage,
its spectral represemation is computedand then projected onto a spectral subspace We use
a Gibbs samplingprocedureto generateimagesthat sharethe samespectral represetation.
Fig. 3.4 shows four examples;Fig. 3.4(a)-(b) show two texture imagesand Fig. 3.4(c)-(d)
show oneobject imageand onefaceimage. Theseexamplesshaw that the spectral subspace
represemation captures photometric features as well as topological structures, which are
important to characterizeand recognizeimages. We have applied SSArepresemations to a
large dataset and obtained improved retrieval performancecomparedto the correspnding

linear subspaceepresemations. Experimertal results are shovn in the next section.

3.3 Experimental Results

In this section, experimertal results are preserted to demonstratethe retrieval perfor-
mance using linear subspacerepresemations and the proposed SSA represemations. To
demonstrate corvincingly, a large dataset is created by conmbining ORL face dataset, a
texture dataset, and the COIL-100 dataset. The resulting dataset consistsof 180 di erent
classeswith 40 textures, 100 objects, and 40 facesand a total of 10160images, selected
imagesof which are showvn in Fig. 3.5to shawv the variability in the dataset. This dataset
is divided to two parts. The rst one consistsof 8060imagesto be retrieved; the remaining
imagesare usedfor querying.

To ewvaluate the performanceof a particular represetation, rst the 8,060imagesare
represeted under the given represemation. Then for eat query image, its represemation
is computed and comparedwith that of the imagesto be retrieved. For a given number
of images retrieved, the correspnding precision and recall measures[27] are used for
performance evaluation. The performance of a represemation is taken as the average
precisionand recall of all the query images.

In our experimerts, for all the linear and spectral subspacerepresemation, we usethe
precision-recallcurves to ewaluate the retrieval performance. These curves are generated
by varying the number of imagesretrieved. Here, the number of principal componerts is
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Figure 3.4. Samplesfrom SPCA intrinsic generalization. In ead row, the rst column
shaws the input image and others samplesfrom the intrinsic generalization. (a)-(b) Two
textures. (c)-(d) One object and one faceimages. Boundary conditions needto be taken
with carewhen samplingfrom S, (1).

xed to 54 for all represemations. ICA is calculated using the FastICA algorithm [17] and
FDA is basedon an algorithm by Belhumeur et al. [2]. To calculate the spectral histogram,
a xed setof 21 Iters are used. These Iters were chosenautomatically from a large set
using a lter selectionalgorithm [21] for the ORL dataset. To separatethe e ectiveness
of a represemation from that of the choice of training data, we have also used (uniformly)

randomly generatedbaseswhich we call randomcomponert analysis(RCA) and the spectral

random componert analysis(SRCA).

Figure 3.6 shaws the precision-recallcurves for three linear subspacerepresemations

vs. their correspnding SSA represemations. From the results, it is easyto seethat the
SSA represetmations outperform the correspnding linear subspaceones. Note that the
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Figure 3.5. Selectedimagesfrom the datasetusedin the retrieval experimerts.

dataset consistsof di erent kinds of imagesand the performanceof SFDA is the best and
is good especially when the number of imagesreturned is not very large, demonstrating the
e ectivenessof the proposedrepresemation for imageretrieval applications.

1 1 1

Precision
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a
Precision
o
a
Precision
o
a
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Recall Recall Recall
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Figure 3.6. Precision-recallcurvesfor linear subspacerepresemations vs. correspnding
SSArepresemations. The solid lines stand for SSArepresemations and the dashlines stand
for linear subspaceones. (a) PCA vs. SPCA. (b) FDA vs. SFDA. (c) RCA vs. SRCA.
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CHAPTER 4

LEARNING OPTIMAL REPRESENT ATIONS
FOR IMA GE RETRIEV AL APPLICA TIONS

This chapter preserts an MCMC stochastic gradiert algorithm for nding represetations
with optimal retrieval performanceon given image datasets. For linear subspacesn the
image spaceand the spectral space,the problem is formulated as that of optimization
one on a Grassmannmanifold. By exploiting the underlying geometry of the manifold,
a computationally e ectiv e algorithm is deweloped. The feasibility and e ectivenessof the
proposedalgorithm are demonstratedthrough extensive experimertal results.

4.1 Optimal Linear Subspace for Retriev al

We adopts an example-basedearning methodology to compute represetations that
provide optimal retrieval performance. This assumptioncan be generallysatis ed for image
retrieval applications, as labeled imagescan be generatedor collected interactively using
someexisting retrieval systems.

4.1.1 Image and Spectral Spaces

Before we introduce the main algorithm for nding optimal linear subspacesyve brie y
descrile two spaceghat are usedin this chapter, namely the image spaceand the spectral
space.In rst case,ead imageis viewed as one point in a high dimensionalvector space.
This framework hasbeenwidely usedin recognition, whereprincipal componert analysisand
Fisher discriminant analysisare derived basedon this formulation. It is easyto seethat in
this represetation all the imagesneedto have the samelength in orderto perform dimension
reduction using subspacemethods. The other spaceis called the spectral space[22], which
hasbeenintroducedin Chapter 3. In this spaceead imageis represeted by a vector formed
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by concatenatinghistogramsof Itered imagesobtained usinga setof Iters. The lters can
be designedbasedon somemathematical criteria or can be learnedfrom images[20]. This
represemation has beenshawvn to be e ective for texture classi cation as well as face and
object recognition. Recertly, it has beenshovn systematically through sampling [20] that
it is su cient to syrnthesizefacesand objects. See[22] and referencegherein for details on

the spectral represemation.

4.1.2 Problem Form ulation

We start with a formulation of the problemfor nding optimal linear represetations [24,
25], where the performance can be estimated. Mathematically, let U 2 R" ¢ be an
orthonormal basis of an d-dimensional subspaceof R", where n is the size of an image
(or the length of the spectral represemation) and d is the required dimensionof the optimal
subspacgn >> d). For animagel (or its spectral represemation), consideredasa column
vector of size n, the vector of coe cients is given by a(l;U) = UTI 2 RY In caseof
spectral represemation, a(l ;U) = UTH (1), whereH (1) represeis the histogramsof Itered
images. Let G, 4 be the set of all d-dimensionalsubspace®f R"; it is called a Grassmann
manifold [6]. Let U be an orthonormal basisin R" ¢ sudh that span(U) is the given subspace
and let F(U) be a retrieval performancemeasureassaiated with a systemthat usesU as
the linear represemation. That is, F : G,4 7! R, is the performancefunction and we want
to seart for the optimal subspacede ned as:

0 = argmaxF (U) : (4.1)
U2Gnyg

We perform the seart in a probabilistic framework by de ning a probability density function

f(X) = exp(F (X)=T) ; (4.2)

Z(T)
where T 2 R plays the role of temperature and f is a density with respect to the Haar

measureon the set G, 4.

4.1.3 Optimization via Simulated Annealing

We have chosena Monte Carlo version of simulated annealing processto estimate the
optimal subspacel. Sincethe Grassmannmanifold G.q IS a curved space,the gradiert
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processhasto accoun for its intrinsic geometry We rst descrike a deterministic gradiert
process(of F) on G,q and then generalizeit to a Markov chain Monte Carlo (MCMC) type
simulated annealingprocess.

The performancefunction F canbeviewedasa scalar- eld on G,.q. A necessaryondition
for O to be a maximum is that for any tangert vector at 0, the directional derivative of
F, in the direction of that vector, should be zero. The directional derivativeson G,4 are

de ned asfollows. Let Ej beann n skew-symmetricmatrix sudh that: forl i dand
d< j n, 8
< 1 if k=1; 1=
Ei (k;1) =, 1 if k=j; 1= (4.3)
0 otherwise:

There are d(n d) sudh matrices and they form an orthogonal basis of the vector space
tangert to G,4 at identity. The gradiert vector of F at any point U is de ned to be a
skew-symmetricmatrix given by:

Py P, -
A(U) = ( j=d+l i (U)Ej) 2R ,

=1
F(Qlefiirg) F() . (4.4)

i
where i =

where j isthe nite approximation of the directional derivative of F in the direction given
by Ej, eFi isann n rotation matrix, and Q; 2 R" " is any orthogonal matrix sud that

QU = Ig i 2 R™ 9. For numerical implemertation, given a step size > 0, the
discrete gradiert processis denotedby X;. Then, a discrete updating along the gradiert

direction is given by: .
Xir1 = Xt
w%éreA?t:eﬁpfil ét?”?dﬂt i (X)Ej - (4.5)
The gradiert processX; givenby (4.5) canbe stuck in alocal maximum. To alleviate the
local maximum problem, a stochastic componert is often addedto the gradiert processto
form a di usion [14]. Both simulated annealingand stochastic gradierts have [30] frequertly
beenusedto seekglobal optimizers [13]. To obtain stochastic gradierts, we add a random

componert to (4.4) accordingto
XX

A'(Xt) = A(Xt) + 2T Wij (t)E” ; (46)
i=1 j=d+1
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wherew; (t)'s arei.i.d standard normals. Under this setting, the discretetime update of the
stochastic processbecomeshe following:

X = Qf exp(A(X (1)) Ty
Qu1 = exp( dXy)Qr : (4.7)
1r R
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Figure 4.1. Temporal ewlution of the optimization algorithm. Hered = 20, R = 10,
Ko = 8, and kquery = 2. (@) Plots of retrieval precision (solid line) and the correspnding
recall (dotted line). (b) Distance of X from Xg.

In caseof MCMC simulated annealing,we usethis stochastic gradiert processo generate
a candidatefor the next point alongthe processbut acceptit only with a certain probability.
That is, the right side of the secondequationin (4.7) becomesa candidate Y that may or
may not be selectedasthe next point X, .

Algorithm 1 MCMC Simulated Annealing : Let X(0) = Uy 2 G,q be any initial
condition. Sett = 0.

1. Calculate the gradiert matrix A(X;) accordingto (4.4).

2. Generated(n d) independert realizations, w; 's, from standard normal density. With

X, calculatethe candidatevalue Y as X.; accordingto (4.6) and (4.7).
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3. Compute F(Y), F(X;), andsetdF = F(Y) F(Xy).
4. Set X1 = Y with probability minfexp(dF=T;); 19, elseset X+1 = X;.

5. Modify T, sett =t+ 1,andgoto Step 1.

The resulting processX; forms a Markov chain. This algorithm is a particularization of
Algorithm A.20 (p. 200)in the book by Robert and Casella[30]. Pleaseconsult that text
for the convergenceproperties of X;.
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Figure 4.2. Performanceof X versust for di erent initial conditions. In ead plot, the
solid line represets the precisionmeasureand the dashedline correspnding recall measure.
(@) Xo= Upca. (b) Xo= Uica. () Xo = Urpa.
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solid line represetts the precisionmeasureand the dashedline correspnding recall measure.
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4.2 Exp erimen tal Results

We have applied the proposedalgorithm to the seard for optimal linear basesin the
context of cortent-based image retrieval in the image spaceand the spectral space. Note
that the algorithm requires ewvaluation of F (the performance measure)for any linear
represemation U. Herewe usethe retrieval precisionasF with a xed number of retrieved
images[27]. To be more speci c, let there are C classesn an image dataset; eat classhas

Kao images(denoted by Ic.1;:::;lck,,) to be retrieved and kquery query images(denoted by
18457775 | Qiquer ,)- Herefor simplicity, we assumethat ead classhasthe samekas, and Kquery,

which can be modi ed easily to allow di erent numbers of imagesin di erent classes.To
ewvaluate the precisionmeasure,let R denotethe number of imagesto be retrieved for eah

guery image, we de ne F asthe averageretrieval precisionfor all the query images,given
by

1 X % No. of relevant imagesretrieved

Ckauery =1 =1 R

F(U) = (4.8)
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Becausethe total number of relevant imagesis known in this setting, for ead F (U), the
correspnding averagerecall measureis given by F(U) R=kg. Note that the optimal
performanceof F (U) is given by minf 1; kq,=Rg.

Before we proceedfurther, we briey descrike the two image datasetsthat have been
usedin our experimerts: the ORL facerecognitiondataset and a Brodatz texture dataset.
The ORL dataset consistsof facesof 40 di erent subjects with 10 imagesead. The texture
dataset consistsof textures of 40 textures with 16 imagesin ead class.

Figures 4.1 - 4.4 shaw the results on the ORL databasewith di erent initial conditions
in both the image spaceand the spectral space. Figure 4.1 shavs a casewith a random
initial condition. Fig. 4.1(b) (the distanceplot) highlights the fact that the algorithm moves
e ectiv ely on the Grassmannmanifold going large distancesalong the chain. Togetherwith
Fig. 4.1(a), it shavs multiple subspaceshat leadto perfect performance.

Figure 4.2 shownsthree casesvhen X g is setto Upca, Uica, Ofr Urpa. FDA wascalculated
using a proceduregivenin [2] and ICA was calculated using a FastICA algorithm proposed
by Hyverinen [17]. In these experimerts, d = 20, R = 10, Kgo = 8, and kguery = 2.
While these commonly used linear basesprovide a variety of performances,the proposed
algorithm corvergesto subspaceswith the best retrieval precision performanceregardless
of the initial condition. While Ugpa in this particular case gives a performance close
to the optimal one, howewer the optimality of Urpa depends on the assumptionsthat
the underlying distributions are Gaussianand linear discriminant function is used [24].
Therefore,theoretically, Urp o producesonly suboptimal performance(see[24] for examples).
Similar to the earlier result, theseresults alsopoint to the e ectivenessof this optimization
approad. In fact, for any choseninitial condition, the seard processcorvergesto a perfect
solution (in that it givesthe best achievable performance)and moves e ectiv ely along the
Grassmannmanifold. Also these solutions are quite dierent from ead other, allowing
additional constrairs to be imposed.

We have studied the variation of optimal performanceversusthe subspaceank denoted
by d and the number of imagesretrieved denotedby R. Fig. 4.3 shavstwo caseswith d = 5
and d = 10. While the optimal solution doesnot acieve the best achievable performance,

Ihttp://www.uk.researc h.att.com/facedatabase.rml
2http://www-db v.cs.uni-bonn.de/image/texture.tar.gz

40



Precision/Recall
o
(6]
™ T
kr
i
W
1l
O
o
Ll
!
.
-~
{ =
—
-
-
p

L L
0 500 1000 1500 2000
Iterations

Figure 4.4. Temporal ewlution of X; on the ORL dataset in the spectral space. Here
d= 20,R = 10, kg, = 8, and Kquery = 2. Here solid line shows the retrieval precisionand
dotted line the correspnding recall.

it is very closeto that asshavn by the precisionand recall curves. In someimageretrieval
applications, the computation time may be more important than the performance. The
algorithm can be usedto nd the bestcompromisebetweenaccuracyand computation.

The previousthree gures show di erent casesn the image space.As faceimagesused
here are roughly aligned, the linear represemations in the image spacework well on the
ORL dataset. Fig. 4.4 shows a casein the spectral spaceon the ORL dataset. It shows
that the performanceusing spectral represemation is comparablewith that in the image
space.The signi cance of the result is that it shows the spectral represemation is su cien t
to characterizedi erent faces. In addition, it can be usedto characterizetextures, making
it a good represemation for image retrieval applications where imagesare not con ned to
particular typesin general.

Figures 4.5 and 4.6 shav the results on the texture dataset. Fig. 4.5 shows a typical
casein the image space,where Fig. 4.5(a) shaws the performanceand Fig. 4.5(b) the
correspnding distance from X,. As Fig. 4.5(b) shows, the MCMC algorithm moves
e ectively in the image space as the distance is constartly increasing. Howewr, the
performance,(shovn in Fig. 4.5(a)), while improved signi cantly comparedto the initial
performance(the precisionis improved from 0.139to 0.544),is still not satisfactory The
main reasonis that texture models must be translation invariant while the subspace®f the
imagespaceare not. In corrast, the subspacesn the spectral spaceare very e ective. Fig.
4.6 shows two typical cases. The algorithm cornvergesquickly to represemations that give
the optimal achievable performance. Note that while the performancedoesnot change,the
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represemations are constartly ewlving, which shows there are multiple solutionsthat have
the perfect performance.
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Figure 4.5. Temporal ewlution of X; on the texture datasetin the image space. Here

d= 20,R = 10, Kgp = 12, and Kquery = 4. (a) Plots of retrieval precision(solid line) and the

correspnding recall (dotted line). (b) Distanceof X from Xo.

o

Theseresults underscoretwo important points about Algorithm 1: (i) the algorithm is
consistenly successfuin seekingoptimal linear basis from a variety of initial conditions,
and (ii) the algorithm moves e ectively on the manifold G,y with the nal solution being
far from the initial condition. We have alsocomparedempirically the performancesof these
optimal subspacesvith the frequertly usedsubspacespnamely Upca, Uica, and Ugpa. Fig.
4.7 shows the precision/recall performancefor the ORL datasetin the image space. The
plots are obtained by varying R, the number of retrieved images. This comparisoncon rms
the e ectivenessof the optimal represetation and shovs a potential signi cant performance
improvemert.
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CHAPTER 5

CONCLUSION

In this thesis, we have preserned an image segmetation algorithm using local spectral
histogram represemations. Related methods for automated feature selection, automated
Iter and integration scaleselectionare alsodeweloped. The experimertal results shav that
the algorithm is e ective and robust, and is comparableto other segmetation algorithms.
The proposedalgorithm canbe combined with other represetations for content-basedimage
retrieval applications. This needsto be studied further in the future.

We have also provided a novel way, namely sampling the intrinsic generalization, to
analyze the semairtics of represemations for cortent-based image retrieval applications.
Using this tool, we have shavn that linear subspacerepresemations of images cannot
semattically characterizeimageswell sincesematically dissimilarimagestend to be grouped
into the sameequivalenceclassunder theserepresetations. A new represetation, Spectral
SpaceAnalysis, is proposedto improve the intrinsic generalizationby implemerting linear
subspacesn the spectral space,and substartial improvemen in retrieval performancehas
beenobtained.

In addition, we have proposeda simulated annealingalgorithm on Grassmannmanifolds
for nding the optimal linear subspacesn the image spaceand the spectral spacefor image
retrieval applications. The experimertal results demonstratethat the algorithm providesan
e ective tool for improving retrieval performance. To our best knowledge, this algorithm
is the rst attempt to systematically nd optimal represemations for image retrieval
applications. While the used datasets are limited comparedto typical image retrieval
datasets,they consistof represemativ e natural imagesand thereforethe experimertal results

are corvincing and signi cant.
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