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ABSTRACT 

 

Monte Carlo applications are widely perceived as computationally intensive but 

naturally parallel. Therefore, they can be effectively executed on the grid using the 

dynamic bag-of-work model.  We improve the efficiency of the subtask-scheduling 

scheme by using an N-out-of-M strategy, and develop a Monte Carlo-specific lightweight 

checkpoint technique, which leads to a performance improvement for Monte Carlo grid 

computing.  Also, we enhance the trustworthiness of Monte Carlo grid-computing 

applications by utilizing the statistical nature of Monte Carlo and by cryptographically 

validating intermediate results utilizing the random number generator already in use in 

the Monte Carlo application.  All these techniques lead to our implementation of a grid-

computing infrastructure – GCIMCA (Grid-Computing Infrastructure for Monte Carlo 

applications), which is based on Globus and the SPRNG (Scalable Parallel Random 

Number Generators) library.  GCIMCA intends to provide trustworthy grid-computing 

services for large-scale and high-performance distributed Monte Carlo computations. 

 

We apply Monte Carlo applications to GCIMCA to show the capability of our 

techniques. These applications include the grid-based Monte Carlo integration and a 

“real-life” Monte Carlo application -- the grid-based hybrid Molecular Dynamics 

(MD)/Brownian Dynamics (BD) application for simulating the long-time, nonequilibrium 

dynamics of receptor-ligand interactions. Our preliminary results show that our 

techniques and infrastructure can achieve significant speedup, efficiency, accuracy, and 

trustworthiness for grid-based Monte Carlo applications. 

 

 

 xii



 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Definition 

Recently, grid computing has emerged as an important new area in parallel 

computing, distinguished from traditional distributed computing by its focus on large-

scale dynamic, distributed, and heterogeneous resource sharing, cooperation of 

organizations, innovative applications, and high-performance orientation. Many 

applications have been developed to take advantage of grid computing facilities and have 

already achieved elementary success. However, as the field grew so also did the problems 

associated with it. Traditional assumptions that are more or less valid in traditional 

distributed and parallel computing settings break down on the Grid. In traditional 

distributed computing settings, one often assumes a “well-behaved” system: no faults or 

failures, minimal security requirements, consistency of state among application 

components, availability of global information, and simple resource sharing policies. 

While these assumptions are arguably valid in tightly coupled systems, they break down 

as systems become much more widely distributed [1]. Therefore, despite the undisputed 

success of grid computing, as seen in SETI@home [2, 3] and distributed.net [4], many 

fundamental problems and questions remain unanswered, such as, system performance, 

heterogeneous resources management, task-schedule efficiency, security, portability, 

reliability, and trustworthiness of computing.  
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Among all these problems, from the grid application point-of-view, two of them 

are of prime importance. One is the performance, i.e., how to efficiently manage and use 

the large-scale, widely distributed resources in the grid to reduce the application task 

completion time. The other is the trustworthiness, i.e., how to guarantee that the 

computational results obtained from the grid are due to the grid application requested [5]. 

Like most of the fundamental issues in computer science, these problems are addressed at 

the system level, programming level, or application level. At the system level, there have 

been efforts focused on developing services, functionalities, and protocols to satisfy the 

requirements of grid applications. At the programming level, Application Programming 

Interfaces (APIs) and Software Development Kits (SDKs) have been constructed to 

provide the programming abstractions required to create a usable and reliable grid. At the 

application level, proper applications are picked up, the characteristics of the application 

are examined, and then approaches are developed to address their issues for grid 

computing. The goal in which all these efforts at different levels converge is to achieve 

high-performance and trustworthy grid computation.  

 

Monte Carlo methods comprise a branch of experimental mathematics that is 

concerned with experiments using random numbers. They are important techniques in 

performing simulations, optimization and integration, and have been employed 

sporadically in numerous fields of science and engineering, including nuclear physics [6, 

7], medicine [8], chemistry [9], meteorology [10], and biology [11]. At the same time, 

applications employing Monte Carlo methods are widely perceived as computationally 

intensive but naturally parallel. Therefore, Monte Carlo applications are considered as a 

natural fit for grid computing. They are expected to be effectively executed using the 

dynamic bag-of-work model [12], which splits a big computational task into smaller 

independent subtasks. Programmed via the dynamic bag-of-work model, large-scale 

Monte Carlo computations can then be deployed on the grid. At the same time, Monte 

Carlo applications and the underlying random number generators exhibit interesting 

properties [13], which may be used to address important issues of grid computing at the 
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application level. In a word, the inherent characteristics of Monte Carlo applications 

motivate the use of the grid techniques to effectively perform large-scale Monte Carlo 

computation. 

 

Just like many other grid applications, large-scale grid-based Monte Carlo 

applications have to confront the challenges of the existing issues in grid computing. 

Further research is needed to tackle the problems of performance and trustworthiness of 

applying grid-computing techniques to Monte Carlo applications. The aim of this 

dissertation research is to take advantage of the characteristics of Monte Carlo 

applications to develop application-level approaches and establish a grid-computing 

infrastructure based on these approaches for high-performance and reliable large-scale 

grid-based Monte Carlo computations. 

 

1.2 Terminology 

Traditionally, a parallel computing system is defined as one composed of tightly 

coupled processors that can coordinate to accomplish the concurrent solution of a 

common task [14]. In a parallel computing system, the processors typically work in tight 

synchrony, share memory to a large extent, and have very fast and reliable 

communication channels between them. However, in this dissertation research paper, we 

will instead focus on distributed computing systems where the processors are thought of 

as being more loosely coupled, which is a result of less rapid intercommunication and 

inherently larger grained processing performed on the different processors, computers, or 

workstations. Distributed computing systems typically present different problems than 

those of parallel systems, since each of the processors is autonomous and may refuse a 

request for services, and the processors here are connected by a heterogeneous network. 

Technically, the meaning of meta-computing is very close to that of distributed 

computing, with an emphasis on problems arising from the extreme heterogeneity of such 

systems. At the same time, grid computing has emerged as an important new field, 

defined as “a single seamless computational environment in which cycles, 
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communication, and data are shared” [15], denoting the construction of a distributed 

computing infrastructure focusing on large-scale resource sharing [16]. According to 

their functionalities, grids can be classified as a computational grid, an access grid, a data 

grid, and a data-centric grid [17]. In this dissertation, we are especially interested in the 

computational grid, which has emphasis on high-performance computing and large-scale 

data sharing. 

 

1.3 Dissertation Objectives 

The purpose of this research is to provide guidance and develop techniques for 

large-scale grid-based Monte Carlo computations. Our approach is to investigate the 

statistical nature of Monte Carlo applications and the cryptographic aspect of the 

underlying random number generators to develop application-level techniques to address 

performance and trustworthiness issues in grid-based Monte Carlo computation. The 

objectives of this dissertation are: 

1) to research and analyze the inherent characteristics of grid-based Monte Carlo 

applications; 

2) to develop approaches and techniques to address the performance and 

trustworthiness issues of Monte Carlo computation on a computational grid from 

the application level; 

3) to build up a grid-computing infrastructure for high-performance and trustworthy 

large-scale Monte Carlo computations based on these techniques; and 

4) to extend these techniques to other applications on the grid. 

 

1.4 Dissertation Organization 

The remainder of this dissertation paper is organized as following. We present a 

literature review of grid computing and Monte Carlo method in Chapter 2. In Chapter 3, 

we analyze the characteristics of distributed Monte Carlo applications and their 
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underlying random number generators. The analysis leads to techniques to improve 

performance and trustworthiness of grid-based Monte Carlo applications. Based on these 

techniques, in Chapter 4, we elucidate our implementation of a grid-computing 

middleware tool, which we refer to as the Grid-Computing Infrastructure for Monte Carlo 

Applications (GCIMCA), based on the Globus software toolkit and the SPRNG library. 

We apply the Monte Carlo applications to GCIMCA and we present the preliminary 

computational results in Chapter 5. These applications include the grid-based Monte 

Carlo integration and the grid-based hybrid Molecular Dynamics (MD)/Brownian 

Dynamics simulation. In Chapter 6, we discuss the extension of techniques in GCIMCA 

for other applications. Finally, Chapter 7 summarizes our conclusions and provides our 

future (post-dissertation) research directions. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this literature review, we will provide a review of a limited number of studies 

related to distributed computing and the grid. Going through the history of the grid, 

studying the approaches in active grid projects, and analyzing the working paradigm of a 

computational grid in Section 2.1, this review seeks to present what the previous research 

has discovered about these problems. Following the review of grid computing, in Section 

2.2, we will also present a survey of distributed Monte Carlo applications. In this Monte 

Carlo application survey, we will study previous work exploring the power of distributed 

computing for large-scale Monte Carlo applications. In a word, the literature review 

shows the link between grid computing and distributed Monte Carlo applications and 

reveals existing issues and problems, which forms the foundation of our dissertation 

research.  

 

2.1 Grid Computing 

2.1.1 From Distributed Computing to Grid Computing 

In the early 1970s, when computers were first linked by networks, the idea of 

harnessing distributed computing power was born. A few early experiments with 

distributed computing, including a pair of programs called Creeper and Reaper, ran on 

the Internet’s predecessor, the ARPAnet. In 1973, the Xerox Palo Alto Research Center 

installed the first Ethernet network and the first full-fledged distributed computing effort 
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was underway. Scientists J. F. Shoch and J. A. Hupp created a program called “worm,” 

which routinely cruised about 100 Ethernet-connected computers. These worms could 

move from machine to machine using idle resources for beneficial purposes. Each worm 

used idle resources to perform a computation and had the ability to reproduce and 

transmit clones to other nodes of the network. With these worms, Shoch and Hupp 

distributed graphic images and shared computations for rendering realistic computer 

graphics. In another effort, R. Crandall started putting idle, networked NeXT computers 

to work. Crandall installed software that allowed the machines, when not in use, to 

perform computations and to combine efforts with other machines on the network. His 

software, named “Zilla,” first focused on finding, factoring, and testing the primality of 

huge numbers, and then moved on to test encryption [18]. 

 

 Subsequent exploration of distributed computing centered on using a network-

connected cluster. In 1988, M. Livny at the University of Wisconsin, Madison, created 

Condor, a software system that put the University’s idle computers to work to provide 

High Throughput Computing (HTC) [19, 20, 21]. Also in 1988, A. Lenstra and M. 

Manesse of the DEC Systems Research Center wrote a software program that distributed 

factoring tasks to computers inside and outside their Palo Alto, California lab via email 

[22]. 

 

 Distributed computing scaled to a global level with the maturation of the Internet 

in the 1990s. In 1996, the Great Internet Mersenne Prime Search (GIMPS) [23] project 

used distributed computing to search for enormous Mersenne prime numbers. C. Percival 

launched PiHex [24], a successful distributed computing effort to calculate the digits of 

π. Among the many new distributed computing projects, two projects in particular have 

proven that the concept works extremely well, even better than many experts had 

anticipated. 

• The first of these revolutionary projects is distributed.net, which used thousands 

of independently owned computers across the Internet to crack encryption codes. 
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• The second, and the most successful and popular of distributed computing 

projects in history, is the SETI@home project [2, 3]. Over two million people, the 

largest number of volunteers for any Internet distributed computing project to 

date, have installed the SETI@home software agent since the project started in 

May 1999. This project conclusively proved that distributed computing could 

accelerate computing project results while managing project costs.  

 

Later, more and more projects in many different areas utilized and demonstrated 

the power of distributed computing. In 2000, Stanford scientists launched Folding@home 

[25] for protein folding simulation. NASA launched clickworkers [26], a project to search 

for craters on Mars. Intel-United Device’s Cancer Research Project [27] was launched for 

searching drugs for use in cancer therapy. All these projects use the Internet distributed 

computing paradigm. 

 

 As more and more applications use the globally distributed computing technique, 

many problems and challenges arise as well. First of all, how to efficiently manage and 

utilize the vast and widely distributed dynamic resources becomes an unavoidable task to 

every globally distributed computing project. Secondly, the distributed computations 

must worry about the trustworthiness of these computations performed on a likely 

“untrustable” computer. For example, experience with SETI@home has shown that users 

may fake computations and return wrong or inaccurate results to obtain more rewarded 

benefits [28]. Thirdly, computations in a distributed computing environment have to face 

the problems that arise from the possible sudden unavailability of certain computers or 

segments of the network. Thus, performance, reliability, trustworthiness, scalability, and 

security become critical issues in distributed computing applications. In large-scale 

distributed computing environments, these problems become more abrupt. 

 

To address these issues, many of the more recent efforts in distributed computing 

are aimed at developing a general-purpose distributed computing infrastructure, 
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providing integrated security, availability, scalability, reliability, and manageability for 

general distributed computing applications. In the mid 1990s, the term “grid” was coined 

by I. Foster and C. Kesselman in their book, “The Grid: Blueprint for a New Computing 

Infrastructure,” to denote a proposed distributed computing infrastructure for advanced 

science and engineering [29]. In a very short period of time, grid computing was widely 

accepted in popular perception, denoting a framework for “flexible, secure, coordinated 

resource sharing among dynamic collections of individuals, institution and resources” 

[30].   

 

2.1.2 Grid-Computing Projects 

In addition to application-oriented projects like SETI@home, Folding@home, 

and distributed.net, there are many academic and industrial projects that aim at 

developing an infrastructure or framework for general grid computing applications. For 

instance, Charlotte [31], Javelin [32, 33], LFS [34], Legion [35], Globus [36], Entropia 

[37], and Jini [38] were developed as prototypes to explore general grid computing 

infrastructure. Charlotte and Javelin implemented a distributed memory model and a 

shared memory model, respectively, in a grid-computing environment. LFS, standing for 

Load Sharing Facility, is a product of Platform Computing aiming at efficient dynamic 

workload management. Entropia’s DCGrid has the capability of scalable job 

management, providing system facilities for application job scheduling, deployment, and 

execution. The Globus project is probably the largest current academic project, with the 

goal of developing a basic software infrastructure for computations that “integrates 

geographically distributed computational and information resources.” [39] The Globus 

grid programming toolkit in the Globus project designs and provides standard services for 

resource location and allocation, fault detection, executable management, and user 

authentication. Similar to Globus, Legion is an integrated grid-computing system with a 

set of standard grid-computing services. Jini uses Java middleware technology to support 

the general requirements of federating networking resources.  
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Among these grid-computing projects, the Globus project, which develops a 

software toolkit that includes software services and libraries for resource monitoring, 

discovery, management, and security control in creating and using a grid, has been 

adapted in more and more science and engineering projects using grid-computing 

facilities. Nowadays, the Globus toolkit becomes the “de facto” standard for grid 

computing. 

  

As a result of the development of grid-computing projects, in 1998, several large 

grids across the United States have been deployed, and two test beds – Gusto [40] and 

Centurion [41] – have been used to test the Globus toolkit and Legion on real 

applications. Also, a year later, NASA deployed the Information Power Grid [42], and 

the US Department of Energy deployed ASCI DISCOM [43]. The European Grid Forum 

was established in the summer of 1999. More importantly, the fall of 2000 saw the US 

and European Grid Forum merge with the Asia-Pacific grid community, giving rise to the 

Global Grid Forum [44]. Through all these efforts, the physical infrastructure of grid 

computing has been well established. 

 

Despite these encouraging developments, several fields require additional 

research and many problems still remain unsolved or require further improvements. 

These various grid projects may have different implementations with different emphasis 

for different problems. Nevertheless, all these projects concentrate on addressing the 

emerging issues in grid computing at the system level, the middleware level, or the 

programming level. The development of these projects is helpful for solving some of the 

problems in grid computing, such as, the heterogeneity of different computer systems and 

the interoperability of distributed resources, however, many issues, such as performance 

and trustworthiness requirements, still remain unsolved and require more research effort. 

 

2.1.3 The General Working Paradigm in a Computational Grid 
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Figure 2.1 A General Working Paradigm of a Computational Grid 

 

Although there are many existing grid computing systems, frameworks, and 

prototypes, they all have different implementations, while sharing a similar paradigm. In 

order to generalize a generic grid computing architecture, the Open Grid Services 

Architecture (OGSA) [45], which is being developed by IBM and the Globus project, 

treats all resources – CPU cycles, networks, storage, programs, databases – as services 

that provide some capability and try to define standard grid services. OGSA brings 
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together Web services standards, such as XML, WSDL, UDDI and SOAP, with the 

standards for grid computing developed by the Globus project. Through OGSA, the grid 

community has begun to specify open standards, Grid Computing protocols and Web 

services designed to enable large-scale cooperation and access to applications over public 

and private networks. Here is a list of services that are typically needed in a 

computational grid, although they may have different names in a particular system. 

Figure 2.1 shows a generic working paradigm for a computational grid operating with the 

cooperation of different services. 

• Task Split Service: An agent running the task split service divides a big 

computational task into a number of relatively small subtasks. 

• Computational Service: Computational service is provided by a computer or 

device in an organization that contributes CPU cycles for grid applications. 

Mechanisms that are required for starting programs and for monitoring and 

controlling the execution of the resulting processes are defined. 

• Connectivity Service: The connectivity service provides connections between 

different resources. Core communication and authentication protocols required for 

grid-specific network transactions are defined. 

• Schedule Service: The schedule service is responsible for distributing existing 

work units to available service providers. Resource tracking, task dispatching, and 

task monitoring mechanisms are defined. 

• Storage Service: The storage service provides the capability of storing the 

program code repositories, data, intermediate results, and partial results during the 

processing of the grid computation. 

• Collection Service: The collection service gathers the partial result data and 

assembles the final results.  

 

In addition to the services mentioned above, there might be some other services 

needed in a computational grid, for example, an authentication service for a user to log on 
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and participate in a computation, a lookup service to locate a specific resource, a Web 

service to access the Web, and a statistical service to calculate resource usage. 

 

2.1.4 Grid Computing Summary 

The newly emerging grid computing technology has quickly attracted attention 

from science, engineering, and industry. In the above review, with an emphasis on the 

computational grid, we have reviewed the motivation of grid computing, current grid 

projects, and the grid architecture. Also, we have discussed potential issues in grid 

computing and various approaches to address these issues within existing grid projects. 

 

Not every distributed computing application can fit in the grid-computing 

environment. The grid’s dynamics and widely distributed characteristics welcome those 

applications that are robust and do not require much communication between distributed 

resources. The applications in most of the recent grid computing projects generally use an 

exhaustive search algorithm over a large data set. On the other end of the spectrum, there 

is a potentially large computational category of applications using the Monte Carlo 

method that are regarded as naturally parallel. These kinds of applications seem to be 

especially capable of taking advantage of the power of grid computing and therefore, are 

a potentially large computational category of grid applications. We will also discover that 

the nature of Monte Carlo applications can even be exploited to address the performance 

and trustworthiness issues emerging in grid computing at the application level. In the 

following section, we will review the developments and applications of the Monte Carlo 

method and explore the possibility of applying Monte Carlo applications within a grid-

computing environment. 

  

2.2 Monte Carlo Applications 

Monte Carlo methods provide solutions to a variety of mathematical problems 

through statistical sampling. They are important techniques for performing simulation, 
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optimization and integration, and form the computational foundation for many fields 

including transport theory [6], quantum chromodynamics [7], and computational finance 

[46]. 

 

2.2.1 A Brief History of Monte Carlo Method 

Perhaps the earliest documented use of the Monte Carlo method to find the 

solution to an integral is that of the Comte de Buffon. In 1777, he described the “Buffon 

Needle Experiment” [47] to estimate the value of π. Lord Kelvin appeared to have used 

random sampling to aid in evaluating some time integrals of the kinetic energy that 

appear in the kinetic theory of gases [48]. Later, many advances made in probability 

theory and the theory of random walks explored fields in which Monte Carlo methods 

can be used. In addition, Courant, Friedrichs, and Lewy showed the equivalence of the 

behavior of certain random walks to solutions of certain partial differential equations 

[49].  

 

During the Second World War, the bringing together of such people as von 

Neumann, Fermi, Ulam, and Metropolis at the beginning of modern digital computers 

gave a strong impetus to the advancement of Monte Carlo [49]. E. Fermi in the 1930’s 

used Monte Carlo in the calculation of neutron diffusion, and later designed the Fermiac, 

a Monte Carlo mechanical device used in the calculation of criticality in nuclear reactors. 

In the 1940’s, a formal foundation for the Monte Carlo method was developed by von 

Neumann, who established the mathematical basis for probability density functions, 

inverse cumulative distribution functions, and pseudorandom number generators. The 

work was done in collaboration with S. Ulam [50], who realized the importance of the 

digital computer in the implementation of the approach. Papers appeared that described 

the new method and how it could be used to solve problems in statistical mechanics, 

radiation transport, economic modeling, and other fields [9].  
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Today’s applications of Monte Carlo methods include: cancer therapy, traffic 

flow, “plug-drug” search, Dow-Jones forecasting, and oil well exploration, as well as 

more traditional physics applications like stellar evolution, reactor design, and quantum 

chromo-dynamics. Monte Carlo methods are widely used in the modeling of materials 

and chemicals [9], from grain growth modeling in metallic alloys, to the behavior of 

nanostructures, polymers, and protein structure prediction [8]. 

 

2.2.2 Distributed Monte Carlo Applications and the Grid 

When using the Monte Carlo method, a set of computational random numbers has 

to be generated and used to statistically estimate a quantity of interest. The probabilistic 

convergence rate of this process is known to be approximately O(N-1/2), where N is the 

number of underlying random samples [11]. A serious drawback of the Monte Carlo 

method is this slow rate of convergence. In order to accelerate the convergence rate of the 

Monte Carlo method, several techniques have been developed. Variance reduction 

methods, such as antithetic variates, control variates, stratification and importance 

sampling [11], reduce the variance, σ2, which is a quantity that measures probabilistic 

uncertainty. Another method is applying the quasi-Monte Carlo method, which uses 

quasirandom (subrandom) sequences that are highly uniform (measured as “discrepancy” 

[51]) instead of the usual random or pseudorandom numbers. While pseudorandom 

numbers are constructed to imitate the behavior of truly random sequences, the members 

of a quasirandom sequence are deterministic, and achieve equidistribution often at the 

cost of correlation and independence. Therefore, quasi-Monte Carlo methods can often 

converge more rapidly, at a rate of O(N-1(logN)k), for some k [52]. Figure 2.2 shows the 

discrepancies of quasirandom numbers and pseudorandom numbers and the 

corresponding convergence rates of quasi-Monte Carlo and Monte Carlo for an 

application of evaluating an integral. 
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Figure 2.2 Discrepancy of Quasirandom Numbers and Pseudorandom Numbers and 

Convergence Rates of Quasi-Monte Carlo and Monte Carlo 
 

Parallelism is an alternative way to accelerate the convergence of a Monte Carlo 

computation. If n processors execute n independent copies of a Monte Carlo computation, 

the accumulated result will have a variance n time smaller than that of a single copy. Due 

to this nature of Monte Carlo methods, Monte Carlo programs tend to compute as many 

samples as possible to reduce the statistical errors as much as possible. However, they 

consume vast computing resources and thus, are regarded as computation-bound. On the 

other hand, in a distributed Monte Carlo application, once a distributed task starts, it can 

usually be executed independently with the need for almost no inter-process 

communication. Therefore, Monte Carlo applications are widely perceived as 

computationally intensive but naturally parallel. The subsequent growth of computer 

power, especially that of parallel and distributed computers, has made large distributed 

Monte Carlo applications possible, with more ambitious calculations and accumulated 

knowledge learned from failures. Actually, many Monte Carlo applications and software 

packages in science and engineering, for example, CHARMM [53] for macromolecular 

dynamics simulation implemented using MPI, PMC [54] for nuclear physics simulation 

on the Livermore Message Passing System, MESYST [55] for simulation of 3D tracer 

dispersion in the atmosphere running on a CRAY T3E parallel machine, and MrBayes 
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[56] using Markov Chain Monte Carlo for Bayesian estimation of phylogeny on a Linux 

Beowulf cluster, have already taken advantage of the power of parallel systems to 

achieve a more accurate understanding of the problem or better performance of the 

computation. 

 

Compared to the parallel computing environment, a large-scale distributed 

computing environment or a computational grid potentially has a tremendously large 

amount of computational power. Therefore, the grid has more unexplored potential and is 

expected to provide vast computational resources for distributed Monte Carlo 

computation. Several attempts have been made to use Monte Carlo applications in large-

scale distributed computing paradigms. Y. Li and M. Mascagni developed “A Web-based 

Monte Carlo Integration Tool” (http://sprng.cs.fsu.edu/mcint/) [57] to set up a web-based 

application using the crude Monte Carlo method to implement multidimensional 

integration in the Condor distributed computing environment. M. Zhou built a Cycle 

Server to utilize the high throughput Condor system for a Brownian Langevin simulation 

of medical molecules [58]. F. Solms and W. H. Steeb used CORBA and Java to 

implement distributed Monte Carlo integration [59]. J. Basney et al.’s published paper 

“High Throughput Monte Carlo” [12] discussed using a High Throughput Computing 

system for distributed Monte Carlo applications. Entropia Inc. [37] is planning to apply 

Monte Carlo simulation applications to its DCGrid platform. Nowadays, with the 

development of grid-computing technology, we believe that Monte Carlo applications 

can be carried out on a much larger scale allowing one to extensively enhance the 

performance and accuracy of the Monte Carlo method. 

 

Effectively exploring the power of distributed Monte Carlo applications requires 

that the underlying random number streams in each subtask be independent in a statistical 

sense. The main techniques used in parallel random number generators to distribute 

sequentially generated random number sequences among different processors include 

sequence splitting and leapfrog [60]. One problem with sequence splitting and the 
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leapfrog technique is that we must either assume that the number of parallel processes is 

fixed or at least bounded, which restricts the scalability of distributed Monte Carlo 

computations. Another technique to generate parallel random number sequences is to 

produce independent sequences by properly parameterizing pseudorandom number 

generators [61]. The SPRNG (Scalable Parallel Random Number Generators) library [62] 

was designed to use parameterized pseudorandom number generators to provide 

independent random number streams to parallel processes. Some generators in SPRNG 

can generate up to 278000-1 independent random number streams with sufficiently long 

periods and good quality [63]. These generators meet the random number requirements of 

most Monte Carlo grid applications. 

 

2.3 Conclusion 

In this chapter, we provided a brief literature review of grid computing and Monte 

Carlo applications. For large-scale Monte Carlo analysis, “all the pieces of the puzzle” 

have just come into confluence. First of all, the distributed computing environment, 

especially the grid-computing environment with large-scale resource sharing and 

collaboration, is now sufficiently powerful to enable the simulation of very large 

engineering and physical systems. Secondly, with the emergence of scalable parallel 

random number generators, parallelization at any granularity appears to be easily 

implemented, and robust. Finally, many models, algorithms, and applications packages 

using Monte Carlo methods in various scientific and engineering areas have been well 

developed. All these motivate us to develop a high-performance and trustworthy grid-

computing infrastructure to effectively and reliably deploy Monte Carlo computations on 

a computational grid. 
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CHAPTER 3 

ANALYSIS OF GRID-BASED MONTE CARLO APPLICATIONS  

 

 Grid computing is characterized by large-scale sharing and cooperation of 

dynamically distributed resources. As mentioned in Chapter 1, in the grid’s dynamic 

environment, from the application point-of-view, two issues are of prime importance:  

• performance – how quickly the grid-computing system can complete the 

submitted tasks, and  

• trustworthiness – that the results obtained are, in fact, due to the computation 

requested.  

To meet these two requirements, many grid-computing or distributed-computing systems, 

such as Condor [19], HARNESS [64], Javelin [32], Legion [35], Globus [36], and 

Entropia [37], concentrate on developing high-performance and trust-computing facilities 

through system-level approaches. In this chapter, we are going to develop application-

level techniques to improve performance and enforce trustworthiness of grid-based 

Monte Carlo applications.  

 

This chapter is organized as follows. In Section 3.1, we analyze the characteristics 

of Monte Carlo applications, which are a potentially large computational category of grid 

applications. Based on these analyses, in Section 3.2, we discuss improving the efficiency 

of the subtask-scheduling scheme by an “N-out-of-M” strategy and a Monte Carlo-

specific lightweight checkpoint technique, which leads to a performance improvement for 

Monte Carlo grid computing.  Also, in Section 3.3, we address the trustworthiness issues 

of Monte Carlo grid-computing applications by utilizing the statistical nature of Monte 
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Carlo partial results and by validating intermediate results utilizing the random number 

generator already in use in the Monte Carlo application. All these techniques eventually 

lead to a high-performance grid-computing infrastructure that is capable of providing 

trustworthy Monte Carlo computation services. 

 

3.1 Introduction to Grid-based Monte Carlo Applications 

 Among grid applications, those using Monte Carlo methods, which are widely 

used in scientific computing and simulation, have been considered too simplistic for 

consideration due to their natural parallelism. However, we will show that many aspects 

of Monte Carlo applications can be exploited to provide much higher levels of 

performance and trustworthiness for computations on the grid. According to word of 

mouth, about 50% of the CPU time used on supercomputers at the U.S. Department of 

Energy National Labs is spent on Monte Carlo computations. Unlike data-intensive 

applications, Monte Carlo applications are usually computationally intensive [65] and 

they tend to work on relatively small data sets while often consuming a large number of 

CPU cycles. As we mentioned before, parallelism is a way to accelerate the convergence 

of a Monte Carlo computation. Also, in a parallel/distributed Monte Carlo application, 

once a distributed task starts, it can usually be executed independently with almost no 

inter-process communication. Therefore, Monte Carlo applications are perceived as 

naturally parallel, and they can usually be programmed via the so-called dynamic bag-of-

work model. Here a large task is split into smaller independent subtasks and each are then 

executed separately. Usually, these subtasks share the same program logic but are based 

on unique random number streams. Each subtask produces a partial result. Finally, the 

assembly of these partial results constitutes the final result of the whole Monte Carlo 

computation. 

 

 The intrinsically parallel aspect of Monte Carlo applications makes them an ideal 

fit for the grid-computing paradigm and motivates the use of the computational grid to 

effectively perform large-scale Monte Carlo computations. In general, grid-based Monte 
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Carlo applications can utilize the grid’s schedule service to dispatch the independent 

subtasks to different nodes [66]. The execution of a subtask takes advantage of the 

storage service of the grid to store intermediate results and also each subtask’s final 

(partial) result. When the subtasks are done, the collection service can be used to gather 

the results and generate the final result of the entire computation. In Figure 3.1, we 

illustrate this generic paradigm for grid-based Monte Carlo applications on a 

computational grid. Furthermore, in the following sections of this chapter, we are going 

to show the technique of taking advantage of the inherent characteristics of Monte Carlo 

applications to reduce the wallclock time and to enforce the trustworthiness of the 

computation within the Monte Carlo grid-computing paradigm. 

 

Schedule Service

Storage Service

Collection Service

Subtasks

Partial
Results

Partial
Results

Monte Carlo Grid
Applications

Task

Final Result  

Grid
System

Figure 3.1: Monte Carlo Application on a Computational Grid 
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3.2 Improving the Performance of Grid-based Monte Carlo Computing 

3.2.1 The N-out-of-M Strategy 

Before we discuss the N-out-of-M strategy, we first analyze the generic 

computational replication technique to enhance performance on a computational grid. 

Then, using the outcome analytical model of computational replication on the grid as a 

theoretical foundation, we extend the generic computational replication technique to the 

N-out-of-M subtask schedule strategy specifically for high-performance grid-based Monte 

Carlo applications. 

 

3.2.1.1 Computational Replication on the Grid 

A large-scale computational grid can, in principle, offer a tremendous amount of 

low-cost computational power. This attracts many computationally intensive scientific 

applications. On the other hand, significant challenges also arise. Within a computational 

grid’s dynamic environment, the computational capabilities of each node vary greatly. A 

node might be a high-end supercomputer, or a low-end personal computer, even just an 

intelligent widget. As a result, a task running on different nodes on the grid will have a 

huge range of completion times. Also, due to unreliable network connections and the 

possible unavailability of a node, an executing task may be delayed or even halted at any 

time. Therefore, from the grid-application point of view, how quickly a computational 

grid can complete a group of submitted tasks from an application becomes an issue of 

prime importance. 

 

In this section, we investigate a computational replication technique [67] to 

develop an optimal scheduling mechanism to improve the throughput of a computational 

grid and reduce task completion time. This is different from the task-scheduling problem 

that has been discussed for many conventional parallel or distributed computing 

environments [68, 69], where there are a very limited number of nodes or processors. In 

contrast, on a computational grid, the available computational service providers can 
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essentially be treated as unlimited compared to the number of existing tasks. Therefore, 

we have more freedom to use these massive computational resources as trade-offs to 

achieve better task completion times. 

 

3.2.1.1.1 Introduction to Computational Replication 

Replication is a well-known technique for improving availability in an unreliable 

system. In fault-tolerant computing, replication is also a technique to overcome faults 

[70, 71]. The replication technique has already been favorably utilized in grid computing. 

In SETI@home [3], a majority voting mechanism1 is applied to check the correctness of a 

task. Ranganathan, Iamnitchi, and Foster discussed using dynamic model-driven 

replication to obtain high data availability in a large peer-to-peer community [72]. In this 

paper, we are interested in improving the performance of a computational grid by 

replicate scheduling of grid tasks.  

 

The basic idea of replicate scheduling in a computational grid is concurrently 

executing multiple copies of a given task. If multiple copies of a computational task are 

executed on independent nodes, then the chance that at least one copy is completed 

during a specific period of time increases. As a result, the time between submitting a task 

and obtaining a result is very probably reduced. Concurrent assignment of tasks to 

multiple nodes guarantees that a particular, very slow, machine will not slow the 

aggregate progress of a computation. Eventually, under the assumption of unlimited 

computational service providers available in the pool, the throughput of the 

computational grid will tend to increase with increasing numbers of computing replicas 

for each task.  

 

The implementation of computational replication on a computational grid is rather 

simple. Figure 3.2 shows the mechanism of replicate scheduling in a grid-computing 

                                                 
1 Different nodes process the same copy of tasks independently and the final result is obtained by a majority vote of the distributed 
results 
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environment. When the computational grid receives a task, r copies are replicated and 

scheduled to r different nodes. At that point in time, r copies of the task are concurrently 

running. Once an execution is complete and the corresponding result is obtained, the task 

is regarded as finished. Termination signals can be sent to the other nodes to abort their 

current running jobs. 
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Figure 3.2: Replicate Scheduling in a Computational Grid 

 

Using the computational replication technique can prevent slow or unstable nodes 

from slowing down or halting a grid task with high probability, which could lead to a 

reduced completion time of this task. However, we do not wish to imply that the more 

replicas, the better. The execution of too many copies of a task may not contribute much 

to reducing completion time but may significantly increase the grid system’s workload. 

Such problems can be found in the metacomputing prototype Charlotte [31] using its 

eager scheduling mechanism. Eager scheduling aggressively assigns and reassigns 
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existing tasks to available nodes in the distributed-computing system to keep all the 

nodes busy. Nevertheless, the following phenomenon may occur: there may be many 

copies of a task running on the system and occupying many computational resources. 

However, the later arriving tasks may not be able to find an available node, which will 

lead to reducing the system throughput. In short, to determine what is a “reasonable” 

number of replicas becomes critical for the computational replication technique. We will 

establish a system model to probe for answers to this question in the next section. 

 

3.2.1.1.2 Analytical Model of Computational Replication 

 To determine the number of computing replicas to achieve a specific performance 

requirement, we need to consider some system parameters. In a computational grid, the 

completion time of a grid task depends on the performance of each individual node 

participating in the computation, the node failure rate, and also the network failure rate. 

We make the following assumptions to set up and simplify our model. 

1) The execution of a task completely occupies a node on the grid, and no other jobs 

can be executed on the same node concurrently. 

2) Compared to the execution time (usually from hours up to days), the tasks’ 

scheduling time and result collection time (usually in the range of seconds or 

minutes) is short enough to be ignored. 

3) Each node works on its task independently. 

4) Each node has an equal probability of obtaining a task from the schedule service. 

The tasks are scheduled without noticing the performance of each node. 

5) A task is architecture-independent. 
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 Figure 3.3 shows the Petri Net (PN) model of replicated tasks concurrently 

running on a computational grid. In this PN model, a node, i, alternates between an up 

state (place pi
up) and a down state (place pi

down). Transition ti
down represents node 

unavailability (with unavailability rate λ) and transition ti
up node back to service (with 

availability rate µ). Transition ti
complete is assigned the task progress threshold W (usually 

100%) so that the task completion condition (token in ptask) is reached when W is hit.  

 Let r  be the total number of computing replicas, 

   pi
sys  be the probability of node i participating in the computations is up, where 

, and )/( λµµ +=sys
ip

  θI′ be the service rate of node i, which can be measured as the number of 

tasks that can be finished within a specific period of time without 

interruption. Considering the node availability, the service rate, θi, in node 

i is . sys
i

ii p*′= θθ
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Then, the service time distribution function Si(t), referring to the probability that the task 

completion time Ti is less than t, which conforms to an exponential distribution, can be 

represented as 

t

t

x
iii

ii edxetTtS θθθ −∞ − ==≥= ∫)Pr()(
. 

(1) 

 

The probability that a task can be completed by time t, which is the cumulative 

distribution function of the exponential distribution, is  

)(1)( tStp itaski
−= . (2) 

 

Finally, the probability, preplica(t), that at least one task will be done by time t is 

∑
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−=≥−=
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By evaluating the mean of the service rates θi, ∑
=

=
r

i
ir 1

1 θθ , in each node participating in 

the computation, we are able to estimate a proper number of replicas, r. Suppose we want 

at least one task completion at time t with probability α, then, we need to have at least r 

copies of tasks running, where 








 −
−=

t
r

θ
α )1ln( . 

(4) 

 

3.2.1.1.3 Simulation Results of Generic Computational Replication on the Grid 

In our simulation program, we simulated a 1,000-node computational grid. Nodes 

join and leave the grid system with a specified probability. Also, nodes have a variety of 

computational capabilities. Each simulation is run for 1,000 time steps. (A task running 
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on a node with service rate θ will take about 1/θ time steps to compute, e.g., a fast node 

with service rate 0.01 will take 100 time steps to complete the task on average while a 

slow one with service rate 0.001 will take 1,000) At each time step, a certain number of 

nodes go down while a certain number of nodes become available for computation. We 

built our simulations in order to 

1) evaluate the validity of our model, and to 

2) compare the computational replication technique with the dynamic rescheduling 

technique.  

 

3.2.1.1.3.1 Model Validation 

Our model computes the minimum number of replicas that are necessary to 

achieve a certain task completion probability up to a specified time. At the same time, our 

model can also evaluate the task completion probability using the computational 

replication technique. In order to validate the accuracy of our model, we therefore fix the 

number of replicas and compare the actual task completion rate with the predicted 

probability of our model at different time steps. 

 

Figure 3.4 shows the comparison between the simulation results and the 

prediction from our analytical model. From the graph, we can see that the actual behavior 

matches our model prediction quite well. Also, we notice that with 1 task running, at least 

600 time steps are required to obtain a 90% task completion percentage, however, with 4 

replicas, less than 200 time steps are required to obtain this same percentage. This 

indicates a significant task completion time reduction using the computational replication 

technique. However, we also found that even when we increase the number of current 

tasks to 20, we cannot significantly further increase task performance. Therefore, with a 

proper number of replicas, we can achieve an optimal performance/cost ratio.  
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Figure 3.4: Model Prediction versus Actual Behavior with Different Numbers of Replicas 

 

3.2.1.1.3.2 Replicate Scheduling vs. Dynamic Rescheduling 

To prevent a slow node from delaying or halting the completion of a grid task, the 

dynamic rescheduling technique is another popular method used in existing 

computational grid systems like Condor [19, 20] and Entropia [37]. In dynamic 

rescheduling, the system keeps track of the execution of each task. When a task is halted, 

a checkpoint of the execution is then generated. Next, the schedule service will look for 

another available and appropriate node to reschedule the task. After the checkpoint data 

file is transferred to the new node, the task then continues to execute on the new node by 

recovering the execution process of the task. The dynamic rescheduling technique can 

keep the task running all the time but at the cost of additional system administration and 

rescheduling overhead involving task status monitoring, checkpointing, searching for 

available nodes, network transferring, task rescheduling, and execution recovering. 

 

We simulate the scheduling mechanism using the dynamic rescheduling 

technique. When a node running a task is down, the task is rescheduled to another 

available node. The rescheduling penalty is taken into consideration when task 

rescheduling occurs in the simulation. Figures 3.5 and 3.6 illustrate the task completion 
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time comparison between replicate scheduling and dynamic rescheduling. The data in 

Figure 3.5 come from simulation on a computational grid comprised of nodes with 

similar performance characteristics. This can be a grid constructed from computers in a 

computer lab that have similar performance parameters and are connected by a high-

speed network. The cost of task rescheduling is relatively low in such a situation. Our 

simulation results show that the dynamic rescheduling technique has a better task 

completion time than that of replicate scheduling when the node unavailability rate is 

high. When the node down rate is low, both techniques have a similar simulated 

performance. Figure 3.6 simulates a computational grid whose nodes have computational 

capabilities in a wide range. In practice, this grid can be a system with geographically 

widely distributed nodes like SETI@home [3]. In this grid system, a node might be a 

high-end supercomputer, or a low-end personal computer, or even just an intelligent 

widget. The connection among nodes is via a low-speed network, which carries a high 

task rescheduling cost. We notice that in our simulation results, replicate scheduling 

using an appropriate number of replicas has a better task completion time than that of the 

dynamic rescheduling technique. 
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Figure 3.5: Replicate Scheduling vs. Dynamic Rescheduling on a Computational Grid 

with Nodes Sharing Similar Performance Parameters 
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Figure 3.6: Replicate Scheduling vs. Dynamic Rescheduling on a Computational Grid 

with Nodes having a Wide Range of Computational Capabilities 
 

3.2.1.2 The N-out-of-M Strategy for Monte Carlo Applications 

 In this section, we are interested in extending the computational replication 

technique to grid Monte Carlo applications to improve their performance. In the typical 

execution of a Monte Carlo computation on a grid system, we split the entire 

computational task into N subtasks, with each subtask based on unique independent 

random number streams. We then schedule each subtask onto the nodes in the grid 

system. In this case, the assembly of the final result requires all of the N partial results 

generated from the N subtasks. In this situation, each subtask is a “key” subtask, since the 

suspension or delay of any one of these subtasks will have a direct effect on the 

completion time of the whole task. To address this problem, system-level methods are 

used in many grid or distributed-computing systems. For example, Entropia [37] tracks 

the execution of each subtask to make sure none of the subtasks are halted or delayed. 

However, the statistical nature of Monte Carlo applications provides a shortcut to solve 

this problem. To address this issue at the application level, we can use the so-called N-

out-of-M subtask scheduling strategy specific for grid-based Monte Carlo applications, 

which is an extension of the computational replication technique. 
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3.2.1.2.1 Introduction to N-out-of-M Subtask Scheduling 

To reduce the completion time of the whole Monte Carlo task, we may use the 

computational replication technique discussed in the previous section. Nevertheless, 

when we studied the statistical nature of generic Monte Carlo applications, we found that 

we could take advantage of these characteristics to develop a more efficient way to 

reduce their task completion time on a computational grid.  

 

When we are running Monte Carlo applications, what we really care about is how 

many random samples (random trajectories) we must obtain to achieve a certain, 

predetermined, accuracy. We do not much care which random sample set is estimated, 

provided that all the random samples are independent in a statistical sense. The statistical 

nature of Monte Carlo applications allows us to enlarge the actual size of the computation 

by increasing the number of subtasks from N to M, where M > N. Each of these M 

subtasks uses its unique independent random number set, and we submit M instead of N 

subtasks to the grid system. Therefore, M bags of computation will be carried out and M 

partial results may be eventually generated. However, it is not necessary to wait for all M 

subtasks to finish. When N partial results are ready, we consider the whole task for the 

grid system to be completed. The application then collects the N partial results and 

produces the final result. At this point, the grid-computing system may broadcast abort 

signals to the nodes that are still computing the remaining subtasks. We call this 

scheduling strategy the N-out-of-M strategy. In the N-out-of-M strategy more subtasks 

than are needed are actually scheduled, therefore, none of these subtasks will become a 

“key” subtask and we can tolerate at most M – N delayed or halted subtasks. 

 

Figure 3.7 shows an example of a distributed Monte Carlo computation using the 

“6-out-of-10” strategy. In this example, 6 partial results are needed and 10 subtasks are 

actually scheduled. During the computation, one subtask is suspended for some unknown 

reason. In addition, some subtasks have very short completion time while others execute 
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very slowly. However, when 6 of the subtasks are complete, the whole computation is 

complete. The suspended subtask and the slow subtasks do not affect the completion of 

the whole computational task.  
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Figure 3.7 Example of the “6-out-of-10” Strategy with 1 Suspended and 3 “Slow” 

Subtasks 
 

Also notice that the Monte Carlo computation using the N-out-of-M strategy is 

reproducible, because we know exactly which N out of M subtasks are actually involved 

and which random numbers were used. Thus each of these N subtasks can be reproduced 

later. However, if we want to reproduce all of these N subtasks at a later time on the grid 

system, the N-out-of-N strategy must be used! 

 

One drawback of the N-out-of-M strategy is we must execute more subtasks than 

actually needed and will therefore increase the computational workload on the grid 

system. However, our experience with distributed computing systems such as Condor and 

Javelin shows that most of the time there are more nodes providing computing services 
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available in the grid system than subtasks. Therefore, properly increasing the 

computational workload to achieve a shorter completion time for a computational task 

should be an acceptable tradeoff in a grid system. 

 

3.2.1.2.2 The Binomial Model of the N-out-of-M Strategy 

In Monte Carlo applications, N is determined by the application and it depends on 

the number of random samples or random trajectories needed to obtain a predetermined 

accuracy. The problem is thus how to choose the value M properly. A good choice of M 

can prevent a few subtasks from delaying or even halting the whole computation. 

However, if M is chosen too large, there may be little benefit to the computation at the 

cost of significantly increasing the workload of the grid system. In order to determine a 

proper value of M to achieve a specific performance requirement, we study the grid 

behavior and consider some system parameters. In the N-out-of-M strategy, the 

completion time of a Monte Carlo computational task depends on the performance of 

each individual node that is assigned a subtask, the node failure rate, and also the 

interconnection network failure rate. At the same time, we make similar assumptions as 

those in Subsection 3.2.1.1.2 to set up our model. 

 

Figure 3.8 shows the PN model of the N-out-of-M subtask schedule strategy. 

Similar to the PN model of generic computational replication, in each individual node, i, 

places pi
up and pi

down, transitions ti
down, ti

up, and ti
complete have the same meaning and 

parameters as the ones in Figure 3.3. This PN model has M such nodes in total. When 

psubtask gathers N tokens, transition tN-out-of-M enables us to fire and a token in place pcomplete 

indicates the completion of the Monte Carlo task.  
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Figure 3.8 Petri Net Modeling of N-out-of-M Subtask Schedule Strategy 

 

  We establish a binomial model for the subtask-scheduling scheme using the N-

out-of-M strategy based on the above PN model. Assume that the probability of a subtask 

completing by time t is given by p(t). p(t) describes the aggregate probability over the 

pool of nodes in the grid. In a real-life grid system, p(t) could be measured by computing 

the empirical frequencies of completion times over the pool. In this paper, we model p(t) 

based on an analytic probability distribution function.  

 

Let S  be the total number of nodes available in the grid system, 

  pi
sys  be the probability of node i participating in the computations is up, where 

, similarly to the computational replication model, and )/( λµµ +=sys
ip

  θi′ be the service rate of node i, which can be measured as the number of tasks that 

can be finished within a specific period of time without interruption. 
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Considering node availability, the actual service rate, θi, in node i is 

. sys
i

ii p*′= θθ

At time t, the probability that a Monte Carlo subtask will be done on node i is 1 . 

Since each node has equal probability to be scheduled a subtask, p(t) can be represented 

as 

tieθ−

∑ ∑
= =

−=−=
S

i

S

i

tt ii e
S

e
S

tp
1 1

11)1(1)( θθ . (5) 

If the service rates, θ1, θ2, …, θS, conform to a distribution with probability density 

function φ(θ), p(t) can thus be written as 

∫−=
L t de

L
tp

0

)(11)( θθφ . (6) 

Here L is the maximum value of θi in the computation. 

Typically, if all of the nodes have the same service rate θ, p(t) can be simplified to 

tetp θ−= 1)( . (7) 

Then, the probability that exactly N out of M subtasks are complete at time t is given by 

NMN
MofoutNExactly tptp

N
M

tP −
−−−− −×








= ))(1()()( . (8) 

We can approximate PExactly-N-out-of-M(t) using a Poisson distribution with λ = N*p(t). 

Then, PExactly-N-out-of-M(t) can be approximated as 

λλ −
−−−− ≈ e

M
tP

M

MofoutNExactly !
)( . 

(9) 

The probability that at least N subtasks are complete is thus given by 

∑
=

−
−−− −×








=

M

Ni

iMi
MofoutN tptp

i
M

tP ))(1()()( . (10) 

The old strategy can be thought of as “N-out-of-N” which has probability given by 
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)()( tptP N
NofoutN =−−− . (11) 

 

Now the question is to decide on a reasonable value for M to satisfy a required 

task completion probability α (when N subtasks are complete on the grid). Unfortunately, 

it is hard to explicitly represent M in analytic form. However, we use a numerical 

method, which gradually increases M by 1 to evaluate PN-out-of-M(t) until the value of PN-

out-of-M(t) is greater than α. This empirically gives us the minimum value of M. An 

alternative approach to estimate M/N is to use a normal distribution to approximate the 

underlying binomial. When M*(1-p(t)) ≥ 5 and M*p(t) ≥ 5, the binomial distribution can 

be approximated by a normal curve with mean m = M*p(t) and standard deviation 

))(1)(( tptMp −=σ . Then, we can find the minimum value M that satisfies 

α
σσ

≥
−

Φ−
−

Φ )()( mNmM , (12) 

where Φ is the unit normal cumulative density function. 

 

 In a grid system, nodes providing computational services join and leave 

dynamically. Some nodes are considered “transient” nodes, which provide computational 

services temporarily and may depart from the system permanently. A subtask submitted 

to a “transient” node may have no chance of being finished. Suppose the fraction of 

“transient” nodes in a grid is β, then, we need to enlarge M to  )1/( β−M  to tolerate these 

never-finished subtasks. 

 

3.2.1.2.3 The Simulation of the N-out-of-M Strategy 

In our simulation program of the N-out-of-M strategy, we simulated a 

computational grid with the same behavior as the one described in Subsection 3.2.1.1.3 

when we perform simulation of the computational replication technique. Our goals are to 

1) evaluate the validity of our binomial model, and to 
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2) compare the performance of the N-out-of-M strategy in grid systems with 

different configurations.  

 

Figure 3.9 shows our simulation results and model prediction of the N-out-of-M 

strategy for grid Monte Carlo applications. Our analytical model matches the simulation 

results quite well. Also, we can find that with a proper choice of M (20 in the graph), the 

Monte Carlo task completion time can be improved significantly over the N-out-of-N 

strategy. However, if we enlarge M too much, the workload of the system increases 

without significantly reducing the Monte Carlo task completion time. Also, we notice 

that, as time goes on, the N-out-of-M strategy always has a higher probability of 

completion than the N-out-of-N strategy, although they all converge to probability one at 

large times. 
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Figure 3.9 Simulations and Model Prediction of the N-out-of-M Scheduling Strategy for 

Grid Monte Carlo Applications 
 

 Figure 3.10 and 3.11 show the simulation results of the N-out-of-M strategy in 

different grid systems. Both simulated grid systems assume that the service rates θ of 

nodes are normally distributed with the same means (0.005) but different variances 

(0.001 in Figure 3.10 and 0.003 in Figure 3.11). Figure 3.10 simulates a grid comprised 

of nodes with similar performance characteristics. This can be a grid constructed from 
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computers in a computer lab that have similar performance parameters. On the other 

hand, Figure 3.11 is the simulation of a grid whose nodes have computational capabilities 

in a wide range. In practice, this grid can be a system with geographically widely 

distributed nodes like SETI@home [2], where a node might be a high-end 

supercomputer, or a low-end personal computer. From the graphs, we see that the N-out-

of-M scheduling strategy improves the Monte Carlo task completion time in both grid 

systems; however, we gain more significant improvement in the system comprised of 

nodes with service rates having a large variance. This experimental result indicates that 

the N-out-of-M strategy is more effective in a grid system where an individual node’s 

performance varies greatly. More interestingly, the simulation results also show that, in 

both grid systems, with a sufficiently large value of M, the time values after which the 

Monte Carlo task is complete with a high probability is close to 200 time steps, which is 

exactly the subtask completion time for a single node with mean (0.005) service rate. 

Therefore, we can expect that, with a proper number of subtasks scheduled using the N-

out-of-M strategy, the Monte Carlo task completion time on a grid can be made to be 

almost the same as the subtask completion time in a node with average computational 

capability! 
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Figure 3.10 Simulations of the N-out-of-M Strategy on a Grid System with Nodes Service 

Rates Normally Distributed (Mean=0.005, Variance=0.001) 
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Figure 3.11 Simulations of the N-out-of-M Strategy on a Grid System with Nodes Service 

Rates Normally Distributed (Mean=0.005, Variance=0.003) 

 

3.2.2 Lightweight Checkpointing 

 A subtask running on a node of a grid system may take a very long time to finish. 

The N-out-of-M strategy is an attempt to mitigate the effect of this on the overall running 

time. However, if checkpointing is incorporated, one can directly attack reducing the 

completion time of the subtasks. Some grid computing systems implement a process-

level checkpoint. Condor, for example, takes a snapshot of the process’s current state, 

including stack and data segments, shared library code, process address space, all CPU 

states, states of all open files, all signal handlers, and pending signals [20]. On recovery, 

the process reads the checkpoint file and then restores its state. Since the process state 

contains a large amount of data, processing such a checkpoint is quite costly. Also, 

process-level checkpointing is very platform-dependent, which limits the possibility of 

migrating the process-level checkpoint to another node in a heterogeneous grid-

computing environment. 
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Figure 3.12 A Typical Programming Structure for a Monte Carlo Application 

 

 Fortunately, Monte Carlo applications have a structure highly amenable to 

application-based checkpointing. Typically, a Monte Carlo application starts in an initial 

configuration, evaluates a random sample or a random trajectory, estimates a result, 

accumulates means and variances with previous results, and repeats this process until 

some termination condition is met. Although different Monte Carlo applications may 

have very different implementations, many of them can be developed or adjusted in a 

typical programming structure shown in Figure 3.12. 
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Figure 3.13 A Monte Carlo Application with Checkpoint and Recovery Facilities 

 

Thus, to recover an interrupted computation, a Monte Carlo application needs to 

save only a relatively small amount of information. The necessary information to 

reconstruct a Monte Carlo computation image at checkpoint time will be the current 

results based on the estimates obtained so far, the current status and parameters of the 

random number generators, and other relevant program information like the current 

iteration number. This allows one to make a smart and quick application checkpoint in 

most Monte Carlo applications. Using XML [73] to record the checkpointing 

information, we can make this checkpoint platform-independent. More importantly, 

compared to a process checkpoint, the application-level checkpoint is much smaller in 

size and much quicker to generate. Therefore, it should be relatively easy to migrate a 

Monte Carlo computation from one node to another in a grid system. With the 

application-level checkpointing and recovery facilities, the typical Monte Carlo 
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application’s programming structure can be amended to the one shown in Figure 3.13. 

However, the implementation of application level checkpointing will somewhat increase 

the complexity of developing new Monte Carlo grid applications.  

 

3.3 Enhancing the Trustworthiness of Grid-based Monte Carlo 
Computing 

3.3.1 Distributed Monte Carlo Partial Result Validation 

 The correctness and accuracy of grid-based computations are vitally important to 

an application. In a grid-computing environment, the service providers of the grid are 

often geographically separated with no central management. Faults may hurt the integrity 

of a computation. These might include faults arising from the network, system software 

or node hardware. A node providing CPU cycles might not be trustworthy. A user might 

provide a system to the grid without the intent of faithfully executing the applications 

obtained. Experience with SETI@home [3] has shown that users sometimes fake 

computations and return wrong or inaccurate results. The resources in a grid system are 

so widely distributed that it appears difficult for a grid-computing system to completely 

prevent all “bad” nodes from participating in a grid computation. Unfortunately, Monte 

Carlo applications are very sensitive to each partial result generated from each subtask. 

An erroneous partial result will most likely lead to the corruption of the whole grid 

computation and thus render it useless. 

 

The following example, Example 3.1, illustrates how an erroneous computational 

partial result effects the whole computation. Let us consider the following hypothetical 

Monte Carlo computation. Suppose we wish to evaluate integral  

∫ ∫ ++

++
1

0

1

0 251252221
...

2
42

22
31 ......

)1(
4... 205

31

dxdxxxxe
xx

exx xx
xx

. 
(13) 
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The exact solution to 8-digits of this integral is 103.81372. In the experiment, we plan to 

use crude Monte Carlo on a grid system with 1,000 nodes.  

 

Table 3.1 Hypothetical Partial Results of Example 3.1 

Subtask # Partial Results 

1 103.8999347 

2 104.0002782 

3 103.7795764 

4 103.6894540 

… 

561 89782.048998 

… 

997 103.9235347 

998 103.8727823 

999 103.8557640 

1000 103.7891408 

 

Table 3.1 tabulates the partial results from volunteer computers. Due to an error, the 

partial result returned from the node running subtask #561 is clearly bad. The fault may 

have been due to an error in the computation, a network communication error, or 

malicious activity, but that is not important. The effect is that the whole computational 

result ends as 193.280805, considerably off the exact answer. From this example, we see 

that, in Monte Carlo grid computing, the final computational result may be sensitive to 

each of the partial results obtained from nodes in the grid system. An error in a 

computation may seriously hurt the whole computation. 

 

 To enforce the correctness of the computation, many distributed computing or 

grid systems adapt fault-tolerant methods, like duplicate checking [74] and majority vote 

[75]. In these approaches, subtasks are duplicated and carried out on different nodes. 
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Erroneous partial results can be found by comparing the partial results of the same 

subtask executed on different nodes. Duplicated checking requires doubling computations 

to discover an erroneous partial result. Majority vote requires at least three times more 

computation to identify an erroneous partial result. Using duplicate checking or majority 

vote will significantly increase the workload of a grid system. 

 

 In the dynamic bag-of-work model as applied to Monte Carlo applications, each 

subtask works on the same description of the problem but estimates based on different 

random samples. Since the mean in a Monte Carlo computation is accumulated from 

many samples, its distribution will be approximately normal, according to the Central 

Limit Theorem. Suppose f1, …, fi, …, fn are the n partial results generated from individual 

nodes on a grid system. The mean of these partial results is 

∑
=

=
n

i
if

n
f

1

1ˆ , (14) 

 and we can estimate its standard error, s, via the following formula 

∑
=

−
−

=
n

i
i ff

n
s

1

2)ˆ(
1

1 . (15) 

Specifically, the Central Limit Theorem states that  should be distributed 

approximately as a student-t random variable with mean , standard deviation 

f̂

f̂ ns / , 

and n degrees-of-freedom. However, since we usually have n, the number of subtasks, 

chosen to be large, we may instead approximate the student-t distribution with the 

normal. Standard normal confidence interval theory states that with 68% confidence that 

the exact mean is within 1 standard deviation of , with 95% confidence within 2 

standard deviations, and 99% confidence within 3 standard deviations. This statistical 

property of Monte Carlo computation can be used to develop an approach for validating 

the partial results of a large grid-based Monte Carlo computation. 

f̂
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Here is the proposed method for distributed Monte Carlo partial result validation 

based on all the partial results. Suppose we are running n Monte Carlo subtasks on the 

grid, the ith subtask will eventually return a partial result, fi. We anticipate that the fi are 

approximately normally distributed with mean, , and standard deviation, σ = f̂ ns / . 

We expect that about one of the fi in this group of n to lie outside a normal confidence 

interval with confidence 1 – 1/n. In order to choose a confidence level that permits events 

we expect to see, statistically, yet flags events as outliers requires us to choose a 

multiplier, c, so that we flag events that should only occur once in a group of size cn. The 

choice of c is rather subjective, but c = 10 implies that in only 1 in 10 runs of size n we 

should expect to find an outlier with confidence 1 - 1/10n. With a given choice of c, one 

computes the symmetric normal confidence interval based on a confidence of 

cn/11% −=α . Thus the confidence interval is [ - σ, + σ], where  is the 

unit normal value such that 

f̂ 2/αZ f̂ 2/αZ 2/αZ

∫ =
−2/

2

0

2

22
1α α
π

Z x

dxe . If fi is in this confidence interval, we can 

consider this partial result as trustworthy. However, if fi falls out of the interval, which 

may happen merely by chance with a very small probability, this particular partial result 

is suspect.  

 

An alternative way of Monte Carlo partial result validation requires the existence 

of a trusted grid node. In this method, the computation of a subtask is executed on the 

trusted node and its partial result is used to validate the partial results from the other 

subtasks from untrusted nodes. Since the Monte Carlo subtask on the trusted node also 

evaluates a certain amount of random samples, the partial result of this subtask also has a 

mean ft and standard deviation σt. According to Tchebycheff’s inequality, 

2
1}){(Pr

k
kffob tt ≤≥− σ , (16) 

the other partial results should be in the interval of [ft - kσt, ft + kσt] with probability 1 - 

1/k2. Therefore, suppose n subtasks are calculated, we can select a proper value of k, 

where 
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 cnk = , (17) 

 to build a confidence interval with a confidence of cn/11% −=α . Again, here c is a 

subjective constant that we flag events that should only occur once in a group of size cn. 

Then, the confidence interval can be used to validate each partial result, fi, from the 

untrusted grid nodes. Practically, this interval may be much bigger than the one based on 

all the partial results. However, one benefit of the method based on the trusted node is, 

once we obtain the confidence interval, we can use it to validate each partial result 

returned from a grid node immediately and do not need to wait until all the required 

partial results are ready. This especially fits the N-out-of-M scheduling strategy discussed 

in Section 3.2.1. 

 

There are two possibilities for a partial result fi to fall out of the confidence 

interval. These are 

1) errors occur during the computation of this subtask, or  

2) a rare event with very low probability is captured.  

In former case, this partial result is erroneous and should be discarded, whereas in the 

latter case, we need to take it into consideration. To identify these two cases, we can 

rerun the particular subtask that generated the suspicious partial result on a trusted node 

for further validation.  

 

Let us now come back to the previous example, Example 3.1. If a hypothetical 

partial result happens as the one (#561) in Example 3.1, the outlier lies 30 standard 

deviations to the right of the mean. As we know from calculating the confidence interval, 

we have α = 99.9999999999% within 7 standard deviations. A outlier falling outside of 7 

standard deviations of the mean will be expected to happen by chance only once in 109 

experiments. Therefore, the erroneous partial result of #561 in Example 3.1 will easily be 

captured and flagged as abnormal. 
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This Monte Carlo partial result validation method supplies us with a way to 

identify suspicious results without running more subtasks. This method assumes that the 

majority of the nodes in grid system are “good” service providers, which can correctly 

and faithfully execute their assigned task and transfer the result. If most of the nodes are 

malicious, this validation method may not be effective. However, experience has shown 

that the fraction of “bad” nodes in volunteered computations is very small. 

 

3.3.2 Intermediate value checking 

Usually, a grid-computing system compensates the service providers to encourage 

computer owners to supply resources. Many Internet-wide grid-computing projects, such 

as SETI@home [3], have the experience that some service providers don’t faithfully 

execute their assigned subtasks. Instead they attempt to provide bogus partial results at a 

much lower personal computational cost in order to obtain more benefits. Checking 

whether the assigned subtask from a service provider is faithfully carried out and 

accurately executed is a critical issue that must be addressed by a grid-computing system. 

 

One approach to check the validity of a subtask computation is to validate 

intermediate values within the computation. Intermediate values are quantities generated 

within the execution of the subtask. To the node that runs the subtask, these values will 

be unknown until the subtask is actually executed and reaches a specific point within the 

program. On the other hand, to the clever application owner, certain intermediate values 

are either pre-known and secret or are very easy to generate.  Therefore, by comparing 

the intermediate values and the pre-known values, we can control whether the subtask is 

actually faithfully carried out or not. Monte Carlo applications consume pseudorandom 

numbers, which are generated deterministically from a pseudorandom number generator. 

If this pseudorandom number generator has an inexpensive algorithm for computing 

arbitrarily within the period, the random numbers are perfect candidates to be these 

cleverly chosen intermediate values. Thus, we have a very simple strategy to validate a 
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result from subtasks by tracing certain predetermined random numbers in Monte Carlo 

applications.  

 

Some pseudorandom number generators exhibit the fast leap-ahead property [76], 

which enables us to easily and economically jump ahead in the sequence. By the fast 

leap-ahead algorithm, we can transform a seed at a particular point in a pseudorandom 

number generator’s cycle to a new point n steps away in O(log2n) “operations,” where 

one “operation” is the cost of generating a single random number. Figure 3.14 shows the 

leaping in a random number sequence. For example, to linear congruential generators 

(LCGs) in the general form, 

))(mod*( 1 McXaX ii += − , (18) 

where a is known as the multiplier, M is the modulus, and c is the additive constant, the 

corresponding leapfrog generator with leaping length n can be represented as 

))(mod*( 1 MCXAX ii += −  (19) 

by replacing the multiplier a and the additive constant c by new values A and C, where 

)(mod)1(

),(mod
11 MacaC

andMaA
n

n

−− −=

=
. 

(20) 

It requires O(log2n) “operations” to produce the parameters of a leapfrog generator. After 

this, the new leapfrog generator can produce random number sequence leaping by 

distance n in the sequence generated by the original generator. The generation of each 

leaping random number costs only a unit “operation.” The fast leap-ahead algorithm can 

also be implemented in combined LCGs [77], lagged Fibonacci generators (LFG) [76], 

and shift-register generators (SRG) [78]. The description of these algorithms can be 

found in Appendix A of this dissertation. 
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Figure 3.14 Fast Leap-ahead Property of a Pseudorandom Number Generator 

 

Usually, the fast leap-ahead property of the pseudorandom number generators is 

widely used to spread a serial pseudorandom number sequence across parallel processors. 

Here, we use the fast leap-ahead technique to economically regenerate any selected 

pseudorandom numbers used in a Monte Carlo subtask. These selected pseudorandom 

numbers are used as the intermediate values for further validation. For example, in a grid 

Monte Carlo application, we might force each subtask to save the value of the current 

pseudorandom number after every N (e.g., N = 100,000) pseudorandom numbers are 

generated. Therefore, we can keep a record of the Nth, 2Nth, …, kNth random numbers 

used in the subtask. To validate the actual execution of a subtask on the server side, we 

can just re-compute the Nth, 2Nth, …, kNth random numbers applying the corresponding 

leapfrog generator with the same seed as used in this subtask. We then simply match 

them. A mismatch indicates problems during the execution of the subtask.  

 

Also, we can use intermediate values of the computation along with random 

numbers to create a cryptographic digest of the computation in order to make it even 

harder to fake a computational result.  Given our list of random numbers, or a 

deterministic way to produce such a list, when those random numbers are computed, we 
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can save some piece of program data current at that time into an array.  At the same time 

we can use that random number to encrypt the saved data and incorporate these encrypted 

values in a cryptographic digest of the entire computation.  At the end of the computation 

the digest and the saved values are then both returned to the server.  The server, through 

cryptographic exchange, can recover the list of encrypted program data and quickly 

compute the random numbers used to encrypt them.  Thus, the server can decrypt the list 

and compare it to the "plaintext" versions of the same transmitted from the application.  

Any discrepancies would flag either an erroneous or faked result.   

 

While the intermediate value checking technique is certainly not a perfect way to 

ensure correctness and trustworthiness, a user determined to fake results would have to 

scrupulously analyze the code to determine the technique being used, and would have to 

know enough about the mathematics of the random number generator to leap ahead as 

required.  In our estimation, surmounting these difficulties would far surpass the amount 

of work saved by gaining the ability to pass off faked results as genuine. 

 

3.4 Summary of Analysis of Grid-based Monte Carlo Applications 

Monte Carlo applications generically exhibit naturally parallel and 

computationally intensive characteristics. Moreover, we can easily fit the dynamic bag-

of-work model, which works so well for Monte Carlo applications, onto a computational 

grid to implement large-scale grid-based Monte Carlo computing. More importantly, 

based on our analysis of the statistical nature of Monte Carlo applications and the 

cryptographic nature of random numbers, we developed techniques to enhance the 

performance and trustworthiness of grid-based Monte Carlo computations at the 

application level. In the next chapter, we are going to elucidate the implementation 

details of a grid-computing infrastructure for Monte Carlo applications utilizing these 

techniques. 
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CHAPTER 4 

GCIMCA: A GLOBUS AND SPRNG IMPLEMENTATION OF A 
GRID-COMPUTING INFRASTRUCTURE FOR MONTE CARLO 

APPLICATIONS 

 

 In Chapter 3, we analyzed the inherent characteristics of Monte Carlo applications 

and the underlying random number generators to develop techniques for large-scale grid-

based Monte Carlo computations. Based on these techniques, in this chapter, we are 

going to discuss the implementation of a software toolkit, which we refer to as the Grid-

Computing Infrastructure for Monte Carlo Application (GCIMCA) [79], to provide high-

performance and trustworthy grid services for grid-based Monte Carlo computations. 

 

In addition to the approaches and techniques we discussed in Chapter 3, the 

implementation of GCIMCA benefits from state-of-the-art approaches to accessing a 

computational grid and requires scalable parallel random number generators with good 

quality. The Globus software toolkit [39] facilitates the creation and utilization of a 

computational grid for large distributed computational jobs. The Scalable Parallel 

Random Number Generators (SPRNG) [63] library is designed to generate practically an 

infinite number of random number streams with favorable statistical properties for 

parallel and distributed Monte Carlo applications. Taking advantage of the facilities of 

the Globus toolkit and the SPRNG library, GCIMCA implements services specific to 

grid-based Monte Carlo applications, including the Monte Carlo subtask schedule service 

using the N-out-of-M strategy, the facilities of application-level checkpointing, the partial 

result validation service, and the intermediate value validation service. Based on these 
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facilities, GCIMCA intends to provide a trustworthy grid-computing infrastructure for 

large-scale and high-performance distributed Monte Carlo computations. 

 

Chapter 4 is organized as follows. We provide a brief introduction to the Globus 

software toolkit and the SPRNG library in Section 4.2 and 4.3, respectively. In Section 

4.4, we elucidate the architecture of GCIMCA. Section 4.5 provides an illustration of the 

working paradigm of GCIMCA. The detailed implementations of the core services and 

facilities in GCIMCA are discussed in Section 4.6. 

 

4.1 Introduction to the Globus Toolkit 

 The Globus project is a joint effort of the Argonne National Laboratory, the 

University of Chicago, and the University of Southern California. The Globus toolkit is 

the concrete result of the Globus project, which is a symbiotic set of basic grid services, 

including resource management, security protocols, information services, communication 

services, fault tolerance services, and remote data access facilities. It allows developers to 

easily build computational grid infrastructure for grid-based applications and use 

geographically distributed resources on the grid [80].  

 

 The fabric of the grid comprises the underlying computers, operating systems, 

networks, storage systems, and routers. The Globus toolkit provides grid services and 

facilities integrating the components of the grid fabric. These grid services and facilities 

include: 

• GRAM (the Globus Resource Allocation Manager) – a basic library service that 

provides capabilities to do remote-submission job start-up, 

• GIS (the Grid Information Service) – information service to discover the 

properties of the computers, systems, and networks that a user expects to use, 

• GSI (the Grid Security Infrastructure) – a library for generic security services for 

applications running on the grid, and 
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• GASS (the Global Access to Secondary Storage) – a service for primitive access 

to remote data distributed on the grid. 

With these grid services and facilities provided by the Globus toolkit, a grid application is 

capable of having uniform access to distributed resources with diverse scheduling 

mechanisms; using information services for resource publication, discovery, and 

selection; utilizing grid-based APIs for remote file management, staging of executables 

and data; and achieving enhanced performance through multiple communication 

protocols. 

 

4.2 Introduction to the SPRNG Library 

Development of the SPRNG library is a research project funded by the U.S. 

Department of Energy at the Florida State University Department of Computer Science. 

The goal of the SPRNG project is “to develop, implement, and test a scalable package for 

parallel pseudorandom number generation that will be easy to use on a variety of 

architectures, especially for large-scale parallel Monte Carlo applications.” [63] 

 

SPRNG is designed to use parameterized pseudorandom number generators to 

provide independent random number streams for parallel processes. The following 

generators are the core generators available in SPRNG: 

• Additive lagged-Fibonacci generators (LFG), 

• Multiplicative lagged-Fibonacci generators (MLFG), 

• Prime modulus multiplicative congruential generators (PMLCG), 

• Power-of-two modulus linear congruential generators (LCG), and 

• Combined multiple recursive generators (CMRG). 

In addition, Shift-Register Generators (SRG) and Inversive Congruential Generators 

(ICG) are currently being implemented to integrate with the existing SPRNG generators. 

Grid-based Monte Carlo applications require large number of parallel random number 

streams with good quality. Some generators in the SPRNG library can provide up to 
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278000 – 1 independent random number streams with sufficiently long period, which have 

favorable inter-stream and cross-stream properties in a statistical sense. These generators 

can meet the random number requirements of most grid-based Monte Carlo applications. 

 

4.3 Architecture of GCIMCA 
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Figure 4.1 Architecture of GCIMCA 

 
GCIMCA is designed on the top of the grid services provided by Globus, [39] and 

supplies facilities and services for grid-based Monte Carlo applications. Figure 4.1 shows 

the architecture of GCIMCA. The services include GRAM (Globus Resource Allocation 

Manager), GIS (Grid Information Service), GSI (Grid Security Infrastructure), and 

GridFTP. GRAM is used to do Monte Carlo subtask remote-submission and manage the 

execution of each subtask. GIS provides information services, i.e., the discovery of the 

grid nodes with proper configurations for running a Monte Carlo subtask. GSI offers 

security services such as authentication, encryption and decryption for running Monte 

Carlo applications on the grid. GridFTP provides a uniform interface for application data 

transport and access on the grid for GCIMCA. At the same time, the execution of each 
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Monte Carlo subtask usually consumes a large amount of random numbers. SPRNG is 

the underlying pseudorandom number generator library in GCIMCA, providing 

independent pseudorandom number streams. Based on the grid services provided by 

Globus and the SPRNG library, GCIMCA provides higher-level services to grid-based 

Monte Carlo applications. These services include N-out-of-M Monte Carlo subtask 

scheduling, application-level checkpointing, partial result validation, and intermediate 

value checking. With the services in GCIMCA, compared to the generic diagram of a 

grid application in Figure 2.1 we described in Chapter 2, the diagram of grid-based 

Monte Carlo computation is shown in Figure 4.2. 
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4.4 GCIMCA Working Paradigm 

4.4.1 Working Paradigm Overview 
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Figure 4.3 The Working Paradigm for GCIMCA 

 

Figure 4.3 shows the GCIMCA working paradigm, which is based on the master-

worker model of a grid-based Monte Carlo application. The execution of a grid-based 

Monte Carlo application in GCIMCA is initiated by a user who submits a Monte Carlo 

job description to the job server. At the same time, the user prepares and stores the Monte 

Carlo job files, such as the executable binary and data files, on a job file server. The job 

file server may run in the user’s own domain and allow only those accesses with 

authentication. The GCIMCA job server manages the subtasks of a Monte Carlo job, and 

is in charge of actually scheduling these subtasks. The eligible GCIMCA subtask agent 

running on a node within an organization obtains a Monte Carlo subtask description from 
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the job server. Then, according to the specification of the subtask description, the subtask 

agent downloads the necessary files from the job file server using GridFTP and retrieves 

the actual subtask. The subtask is set remotely running on an eligible grid node within the 

organization by GRAM. When a subtask is ready, the partial result files are submitted 

back to the job file server. At the same time, the job server is notified that a subtask is 

done. When the entire Monte Carlo job is finished, the partial results are validated and 

the job server notifies the user as to the completion of the computation. 

 

4.4.2 Job Submission 

Monte Carlo Job Description 

JobName =    “Monte Carlo Integration” 

JobDescription =   “Execfile=http://sprng.cs.fsu.edu/mcint/mcintIntel.out 

  Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data 

  Arg= -r   

  Arch=INTEL  

  Opsys=LINUX” 

JobDescription=   “Execfile=http://sprng.cs.fsu.edu/mcint/mcintSolaris.out 

    Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data 

    Arg= -r 

  Arch=SUN  

  Opsys=Solaris26” 

RequiredJobs =  20 

MaxJobs =  40 

ResultFileName = mcintresult.dat 

ResultLocation =  http://sprng.cs.fsu.edu/mcint/result 

Org=   cs.fsu.edu;csit.fsu.edu 

Encryption=  YES 

Figure 4.4 Sample of a Monte Carlo Job Description File 

 

A user submits a Monte Carlo job description file to the job server. The Monte 

Carlo job description file declares the information related to the Monte Carlo job, 
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including the job name, locations of executable and data files, arguments, required 

hardware architectures and operating systems, number of subtasks, result file names and 

destinations, encryption option, and authenticated organization. Figure 4.4 shows a 

sample of a job description file. Based on the job description, the job server validates the 

Monte Carlo job, creates a Monte Carlo subtasks pool, chooses the qualified subtask 

applications from the subtask agent, verifies the authentication of a subtask agent using 

GSI, and then actually schedules the subtask. 

 

In GCIMCA, a user provides different executable binary files for each possible 

different system architecture on the grid. The remote compiler [58] service is used to 

address this heterogeneity issue. A user can send source packages to a remote node of a 

specific system architecture with the remote compiler service running. Then, the remote 

compiler service compiles the source files, generates the executable files, and sends them 

back to the user. Using the remote compiler service, different executable codes for 

different platforms can be obtained. 

 

4.4.3 Passive-Mode Subtask Scheduling 

Unlike the design of most existing distributed and parallel computing systems, 

such as Condor [19], Javelin [32], Charlotte [31] and HARNESS [64], which use an 

active scheduling mode to dispatch subtasks, GCIMCA uses a passive scheduling mode. 

In an active scheduling mode, the job server needs to keep checking the status of 

computational nodes to schedule tasks to the capable ones. Also, the job server must keep 

track of each running subtask. In contrast, using the passive scheduling mode in 

GCIMCA, a Monte Carlo subtask agent sends applications to the job server to apply for a 

subtask only when it has computational nodes available and ready for work. The 

management responsibility of the execution of each subtask is decentralized to the 

subtask agents. The advantage of using the passive scheduling mode here is to reduce the 

workload, or more specifically, the requirements of network connection bandwidth of the 

job server. In GCIMCA, most of the communication load is between a subtask agent and 
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the computational nodes within the organization usually having connection via a high-

speed LAN. The communication between the job server and the subtask agents, which is 

usually through a WAN with relatively low bandwidth, is minimized. 

 

In GCIMCA, the job server manages the jobs from the users, and processes 

subtask applications from the subtask agents. It is the subtask agent that retrieves the 

information related to a subtask, forms the subtask described in Globus RSL (Resource 

Specification Language), and actually schedules the subtask to a grid node. The job 

management functionalities of GRAM are utilized to run subtasks on a remote grid node. 

Figure 4.5 shows the GCIMCA implementation of remotely executing a Monte Carlo 

subtask based on GRAM. When a Monte Carlo subtask is scheduled on a grid node, a 

process running the GCIMCA subtask callback function is created so as to listen to the 

status as it changes on the running subtask. Depending on the status of the running 

subtask, the callback function takes corresponding actions, such as reporting to the job 

server, submitting partial result files, or rescheduling the subtask with checkpoint data. 
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Figure 4.5 Remote Execution of a Monte Carlo Subtask 
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4.5 Implementation of GCIMCA Services 

4.5.1 N-out-of-M Scheduling Strategy 

The main idea of the N-out-of-M strategy for grid-based Monte Carlo 

computations is to schedule more subtasks than are required to tolerate possible delayed 

or halted subtasks on the grid to achieve more reliable performance. The statistical nature 

of Monte Carlo applications allows us to enlarge the actual size of the computation by 

increasing the number of subtasks from N to M, where M > N. Each of these M subtasks 

uses its unique independent random number streams, and we submit M instead of N 

subtasks to the grid system. When N partial results are ready, we consider the whole task 

for the grid system to be completed.  
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Figure 4.6 Implementation of the N-out-of-M Scheduling Strategy in GCIMCA 

 

Figure 4.6 shows the implementation of the N-out-of-M scheduling strategy in 

GCIMCA. The Monte Carlo job description file from the user states the maximum 

number (M) of subtasks to be scheduled and the required number (N) of those to achieve 

a certain predetermined accuracy. Based on this, the GCIMCA job server sets up a 

subtask pool with the number of entries as M. Each entry of the pool describes the status 
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of a subtask, including the subtask schedule status, random stream ID for the SPRNG 

library, the responsible subtask agent if scheduled, and other implementation dependent 

details. The job server also maintains the statistics of completed subtasks. Once the 

number of completed subtasks reaches the number of requested subtasks, the job server 

will regard this Monte Carlo job as complete. A subtask-canceling signal will be sent to 

the subtask agents that still have subtasks running related to this job. 

 

4.5.2 Monte Carlo Lightweight Checkpointing 

A long-running computational task on a grid node must be prepared for node 

unavailability. Compared to process-level checkpointing [20], application-level 

checkpointing is much smaller in size and thus less costly. More importantly, the 

application-level checkpointing data is usually readily portable and is easy to migrate 

from one platform to another. Typically, a Monte Carlo application can be programmed 

in a structure that starts in an initial configuration, evaluates a random sample or a 

random trajectory, estimates a result, accumulates means and variances with previous 

results, and repeats this process until some termination conditions are met. GCIMCA 

takes advantage of this programming structure of Monte Carlo applications to implement 

the application-level checkpointing. 

 

Thus, to recover an interrupted computation, a Monte Carlo subtask needs to save 

only a relatively small amount of information, which includes the current results based on 

the estimates obtained so far, the current status and parameters of the random number 

generators, and other relevant program information like the current iteration number. 

GCIMCA uses the pack_sprng() and unpack_sprng() functions [63] in the SPRNG library 

to store and recover the states of random number streams, respectively. At the same time, 

GCIMCA requires the Monte Carlo application programmer to specify the other 

checkpoint data, and also the location of the main loop to generate the checkpointing and 

recovery subroutines. Figure 4.7 shows the flowchart of GCIMCA’s implementation of 

Monte Carlo application-level checkpointing and recovery. 
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Figure 4.7 GCIMCA Implementation of Monte Carlo Application-Level Checkpointing 

 

4.5.3 Partial Result Validation and Intermediate Value Checking 

The partial result validation service takes advantage of the statistical nature of 

distributed Monte Carlo applications. In distributed Monte Carlo applications, we 

anticipate the partial results are approximately normally distributed. Based on all the 

partial results and a desired confidence level, the normal confidence interval is evaluated. 

Then, each partial result is examined. If it is in the normal confidence interval, this partial 

result is considered as trustworthy; otherwise it is very suspicious. To utilize the partial 

result validation service, GCIMCA requires the user to specify the quantities in the partial 

result data files that are anticipated to conform to the approximately normal distribution. 

Then, when the Monte Carlo job is done, the job server will collect all these value files 

from the subtask agents using GridFTP, compute the normal confidence interval, and 
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begin to check each partial result. If a partial result is found suspicious, the job server will 

reschedule the particular subtask that produced this partial result on another grid node to 

perform further validation. 

 

The intermediate value checking service is used to check if the assigned subtask 

from a grid node is faithfully carried out and accurately executed. The intermediate 

values are quantities generated within the execution of the subtask. To the node that runs 

the subtask, these values will be unknown until the subtask is actually executed and 

reaches a specific point in the program. On the other hand, to the owner of the 

application, certain intermediate values are either pre-known or very easy to generate. By 

comparing the intermediate values and the pre-known values, we can determine whether 

the subtask is actually faithfully executed. The underlying pseudorandom numbers in 

Monte Carlo applications are the perfect candidates to use as the intermediate values. The 

intermediate value checking service in GCIMCA uses a simple strategy to validate a 

result from subtasks by tracing certain predetermined random numbers in grid-based 

Monte Carlo applications. To utilize the intermediate value checking service, GCIMCA 

also requires user-level cooperation. The application programmers need to save the value 

of the current pseudorandom number after every N pseudorandom numbers are generated. 

Thus, a record of the Nth, 2Nth, …, kNth random numbers used in the subtask are 

produced. When a subtask is done, the GCIMCA job server obtains this record and then 

re-computes the Nth, 2Nth, …, kNth random numbers applying the specific generator in 

the SPRNG library with the same seed and equivalent parameters as used in this subtask. 

A mismatch indicates problems during the execution of the subtask.  
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Figure 4.8 Match of the Random Numbers in a Subtask and the Ones Regenerated by 
Leapfrog on the Job Server 

 

To regenerate the Nth, 2Nth, …, kNth random numbers of a specific generator, we 

implement a leapfrog function in the SPRNG library.  

int leapfrog(int *igenptr, int leaplength); 

The leapfrog function retrieves the parameters of the original generator, computes the 

new parameters of the leapfrog generator based on the leaping length, and finally 
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converts the original generator to the leapfrog generator. After calling the leapfrog 

function, we can get the leapfrog generator and economically generate the leaping 

random number sequence. Figure 4.8 shows the match of the random numbers used in a 

subtask and the ones regenerated by leapfrog in the job server. 

 

The implementation algorithms of grid-based Monte Carlo partial result 

validation and checking are relatively simple. Figure 4.9 shows the algorithm flowchart 

for Monte Carlo partial result validation and intermediate value check. To check the 

intermediate values, the selected random numbers are reproduced on the job server by 

calling the SPRNG leapfrog function. When the partial result returns, the recorded 

random number values are retrieved. By simply comparing the random numbers in the 

returned partial result data with those reproduced by the server-side program, we will be 

able to determine whether this subtask is actually executed faithfully or not. The partial 

result validation process starts when the required number of partial results are ready. It 

will calculate the confidence interval based on the mean and the statistical standard error 

of the partial results. Then, in the next step, for each partial result, the partial result 

validation process will examine if it resides in the appropriate confidence interval. If the 

answer is yes, this partial result is regarded as an acceptable result; otherwise, the 

particular subtask that generates this partial result needs to be re-executed on a trustable 

service provider. Notice that in order to use the partial result validation and intermediate 

value checking facilities, in the Monte Carlo program, the Monte Carlo application 

developer has to explicitly specify the intermediate values and the quantitative values 

within the partial result data file that possess statistical property. 
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Figure 4.9 Flow Chart of Grid Monte Carlo Partial Result Validation and Intermediate 

Value Checking
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CHAPTER 5 

MONTE CARLO APPLICATIONS ON THE GRID 

 

With our Monte Carlo grid-computing infrastructure, GCIMCA, many Monte 

Carlo applications can be run on it to obtain better performance, accuracy, and 

trustworthiness. In this chapter, we will choose a fundamental Monte Carlo application – 

distributed Monte Carlo integration – as a “simple warm-up problem” in Section 5.1. 

Then, in Section 5.2, we will use a real-life engineering application – large-scale 

Molecular Dynamics/Brownian Dynamics simulation for Ligand-Receptor interaction in 

structured protein systems [81], to demonstrate the utilization and power of the Monte 

Carlo grid-computing infrastructure. Experiments are done on the computational grid to 

compare with conventional distributed/parallel computing environments. 

 

5.1 Grid-based Multidimensional Monte Carlo Integration 

The Monte Carlo method seems to be the only feasible computational method to 

evaluate complicated integrals in high dimension. Our grid-based Monte Carlo 

integration application has the functionality of evaluating multi-dimensional integrals, 

avoiding “the curse of dimensionality.” We take advantage of the services and tools in 

GCIMCA for Monte Carlo applications to demonstrate its utilization.  

 

5.1.1 Introduction to Monte Carlo Multidimensional Integration 

Suppose we need to calculate the s-dimensional integral 
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using crude Monte Carlo. If ξ1, …, ξn are independent uniformly distributed random 
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is an unbiased estimator of θ with standard error 
n

σ  [39]. Thus, we estimate θ by 

computing f  that will have mean θ. In practice, we probably don’t know the standard 

error. Instead, we estimate the variance from the formula, 
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to provide a confidence interval for our estimate. 

 

 In conventional numerical methods for evaluating s-dimensional integrals, with 

increasing dimension, s, the error bound, O , increases drastically; hence the 

required number of integration nodes increases exponentially – this is called the “curse of 

dimensionality.” With crude Monte Carlo, the quantity to be calculated is interpreted via 

a stochastic model and subsequently estimated by random sampling. The probabilistic 

convergence rate of crude Monte Carlo method is known to be approximately O(N-1/2), 

which is independent of dimension s, and thus avoids the “curse of dimensionality.” [11] 

)( / sN α−
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5.1.2 Experiencing Monte Carlo Multidimensional Integration on a Computational 

Grid 

 We implemented a multidimensional Monte Carlo integration program using 

crude Monte Carlo. The program can evaluate the integral (13) described in Example 3.1 

of Chapter 3 based on GCIMCA. Then, we used the Monte Carlo job description file in 

Figure 4.4 to submit a task to implement a 10-out-of-40 scheduling. Here, each subtask is 

based on the evaluation of a unique random number stream generated by the SPRNG 

library. To obtain more grid nodes, we also enabled the Subtask Agent to schedule a 

subtask in a Condor pool using the following Globus Resource Specification Language 

(RSL) to specify the subtask description of the Monte Carlo integration program:  

“(arguments=-newrun)(count=1) 

(executable=mcint.exe)(stdin=mcint.in)(stdout=mcint.out)(stderr=mcint.err) 

(jobType=condor)” 

The subtask description in RSL gives the application data, application location, runtime 

parameters, and the target execution platform -- a Condor pool. Table 5.1 (below) 

tabulates the computational results and wallclock time of 10 runs on a computational grid 

using the 10-out-of-40 scheduling and 10-out-of-10 scheduling. At each run, 40 and 10 

subtasks were actually carried out using the 10-out-of-40 scheduling and 10-out-of-10 

scheduling, respectively, with each subtask evaluating 109 random samples. When 10 

subtasks were complete, we recorded the wallclock time and calculated the corresponding 

mean and standard deviation of each run. 
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Table 5.1 Comparison of the N-out-of-M and N-out-of-N Strategy in Grid-based Monte 
Carlo Multidimensional Integration 

 
10-out-of-40 10-out-of-10 # of 

Run Wallclock 
Time (s) 

Mean Standard 
Deviation 

Wallclock 
Time (s) 

Mean Standard 
Deviation 

1 1001 103.788513 0.028695 10793 

2 875 103.808234 0.028661 967 

3 1534 103.818967 0.028735 8695 

4 955 103.830010 0.028711 12436 

5 1678 103.860001 0.028910 5246 

6 2103 103.852748 0.028709 2890 

7 1274 103.866856 0.028866 1745 

8 962 103.822717 0.028736 16780 

9 1524 103.828391 0.028683 6489 

10 1320 103.764991 0.028633 6340 

103.817396 0.028974 

 

From Table 5.1, we see that the 10-out-of-10 scheduling has task completion times 

varying in a wide range, while 10-out-of-40 scheduling has relatively more predictable. 

Also, the 10-out-of-40 scheduling has much shorter average task completion time (1323s) 

than that of the 10-out-of-10 scheduling (6238s).  Since in both schedules, the Monte 

Carlo integration tasks evaluated the same number of random samples, these 

computations have very similar accuracy. 

 

 The application-level lightweight checkpointing in Monte Carlo integration is 

rather simple -- only the current iteration index, the status of the random number 

generator, the accumulated sum of the evaluation on previous random samples, and the 

current variance must be stored. The Subtask Agent can then use the following RSL to 

resume the subtask on another grid node. 

“(arguments=-checkpoint)(count=1) 

(executable=mcint.exe)(stdin=checkpoint.in) 
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(stdout=mcint.out)(stderr=mcint.err)” 

 

We validate the partial results of the grid-based Monte Carlo integration subtasks 

we obtained. Figure 5.1 shows the distribution of 100 generated partial results: 63 partial 

results are located within 1 standard deviation of the mean, 93 partial results within 2 

standard deviations, 98 of the 100 partial results within 3 standard deviations, and all 

within 4 standard deviations. A partial result fallen out of the confidence interval with 4 

standard deviations can be easily detected as suspect and either recomputed on a trusted 

host or discarded.  

 

6 3

9 3

9 8

f̂ f̂ + σ f̂ + 2 σf̂ + 3 σ
f̂ -σ  f̂ - 2 σ  f̂ - 3 σ  

 
Figure 5.1 Partial Result Distribution of Monte Carlo Integration Subtasks 

 

 In grid-based Monte Carlo integration, we also examine random numbers as 

intermediate values to help validate if the subtask is faithfully executed. In this 

experiment, we used the LCG generator in the SPRNG library. Here we recorded the 

value of the first random number of every block of 107 random numbers. Table 5.2 shows 

the match of the first several random numbers in one of these subtasks. We notice that the 

generation of 109 pseudorandom numbers costs 222 seconds on a Linux system with a 

Pentium IV 1.6GHz processor; nevertheless, using the leapfrog technique to regenerate 

100 random numbers with 107 as leaping distance requires less than 1 second on the same 

computer. 
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Table 5.2 Matches of Random Number as Intermediate Values and the Regenerated 
Random Numbers 

 
Random Number Recorded in a Subtask Random Number Regenerated 
0.575170 0.575170 

0.818598 0.818598 

0.819430 0.819430 

0.865870 0.865870 

0.647430 0.647430 

0.286175 0.286175 

… … 

 

5.1.3 Summary of Grid-based Monte Carlo Integration 

The Monte Carlo multidimensional integration program is a typical and 

representative example to demonstrate running a distributed Monte Carlo application on 

the grid. “Every Monte Carlo computation that leads to quantitative results may be 

regarded as estimating the value of a multiple integral.” [11] Monte Carlo integration 

constitutes the basis for many other Monte Carlo calculations. For example, using Monte 

Carlo methods to solve Boundary Value Problems (BVP) may be regarded as estimating 

the value of a multiple integral. This grid-based multidimensional Monte Carlo 

integration example shows the way to use the services and development toolkits in 

GCIMCA. It seems clear that the techniques in GCIMCA can be applied to other Monte 

Carlo applications based on integral evaluation as well. However, we plan to investigate 

these application classes in detail after the dissertation. 
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5.2 Grid-based Molecular Dynamics (MD)/Brownian Dynamics (BD) 
Simulation 

In the hybrid Molecular Dynamics (MD)/Brownian Dynamics (BD) algorithm for 

simulating the long-time, nonequilibrium dynamics of receptor-ligand interactions, the 

evaluation of the force autocorrelation function can be computationally costly but 

fortunately is highly amenable to multimode processing methods. In this chapter, taking 

advantage of the computational grid’s large-scale computational resources and the nice 

characteristics of grid-based Monte Carlo applications, we developed a grid-based 

receptor-ligand interactions simulation application using the MD/BD algorithm and the 

facilities of GCIMCA. We expect to provide high-performance and trustworthy 

computing for analyzing long-time dynamics of proteins and protein-protein interaction 

to predict and understand cell signaling processes and small molecule drug efficacies. 

Our preliminary results showed that our grid-based application could provide a faster and 

more accurate computation of the force autocorrelation function in our MD/BD 

simulation than previous parallel implementations [81]. 

 

5.2.1 MD/BD Simulation 

Prediction of the long-time, nonequilibrium dynamics of receptor-ligand 

interactions for structured proteins in a host fluid is of critical importance to the 

understanding of infectious diseases, immunology, the development of “target” drugs, 

and biological separations. However, such processes take place on time scales on the 

order of milliseconds to seconds, which prevents “brute-force” real-time molecular or 

atomic simulations from determining the absolute ligand binding rates to receptor targets. 

In a previous study [82], we implemented a hybrid Molecular Dynamics (MD)/Brownian 

Dynamics (BD) algorithm which utilizes the underlying, disparate time scales involved 

and overcomes the limitations of brute-force approaches. Single and isolated proteins, 

protein with charge effects, and D-peptide/HIV capsid protein systems were investigated 

using the hybrid MD/BD algorithm [82].  
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Within the hybrid MD/BD algorithm, the calculation of the force autocorrelation 

function to generate the grand particle friction tensor forms the basis of the most 

computationally costly part, which requires large amounts of CPU times. Even on an 

advanced supercomputer, this computation takes from days to months, and thus becomes 

the performance bottleneck of the MD/BD simulation. Fortunately, this part of the 

computation uses Monte Carlo methods2, which are computationally intensive but 

naturally parallel. It is very amenable to the emerging grid-computing environment, 

characterized by “large-scale sharing and cooperation of dynamically distributed 

resources, such as CPU cycles, communication bandwidth, and data, to constitute a 

computational environment” [30]. A large-scale computational grid can, in principle, 

offer a tremendous amount of low-cost computational power, which attracts us to utilize 

the computational grid for our MD/BD application. On the other hand, our previous 

studies in grid-based Monte Carlo applications in Chapter 3 and 4 showed that Monte 

Carlo’s statistical nature could be applied to improve the performance and enforce the 

trustworthiness of grid computing at the application level. The rest of this section will 

study the development of the grid-based nonequilibrium, multiple-time scale simulation 

application of ligand-receptor interactions. We take advantage of the services of a 

computational grid and the characteristics of grid-based Monte Carlo applications to 

provide high-performance and trustworthy computation for predicting and understanding 

the dynamics of structured protein systems. 

 

5.2.2 Hybrid MD/BD Algorithm 

5.2.2.1 Introduction to Hybrid MD/BD Algorithm 

                                                 
2 The hybrid MD/BD algorithm does not use the Monte Carlo method based on the Metropolis method; 
hence, it is not a typical Monte Carlo molecular modeling application. Nevertheless, since the Monte Carlo 
method is used to generate the configuration of host liquid in the hybrid MD/BD algorithm, the MD/BD 
simulation has the characteristics of generic Monte Carlo applications. 

 76



In a previous study [83] of the behavior of the many-bodied friction tensor for 

particles immersed in a rarefied, “free-molecule” gas, a molecular dynamics method was 

used. It was noted that the molecular dynamics method could be used to study the long-

time behavior of Brownian particles by a two-step procedure. This procedure is 

illustrated as following: 

1) For a given particle configuration, the many-body friction tensor is determined 

from MD through the analysis of the force autocorrelation function. In this step, 

the particle coordinates are kept fixed according to a fluctuation-dissipation type 

relation that gives the (time-independent) friction tensor in terms of the force 

autocorrelation function. 

2) The Fokker-Planck (FP) equation, which describes the dynamics of a single 

structured Brownian particle in a molecular fluid, is solved for discrete times 

assuming that the friction tensor remains constant over the time step. The particles 

are advanced to new positions according to the integrated FP equation. 

 

Simply speaking, the key to the hybrid MD/BD numerical algorithm is that the 

host fluid relaxes to an equilibrium state in the potential field of the Brownian particle 

over very short times, on the order of picoseconds or less. However, significant changes 

in the Brownian particles’s position and orientation take place on much longer time 

scales, on the order of microseconds or longer. This allows us to set the particle diffusion 

properties using MD and time correlation analysis (the picosecond calculation), and then 

“leap ahead” in time moving the particle according to a simple 6-dimensional (3 

positional and 3 orientational coordinates) BD time step. The entire process, MD 

followed by BD is repeated and MD is only performed at the beginning of each BD time 

step (the microsecond calculation). This MD/BD algorithm is based on a multiple time 

scale analysis of the total system Hamiltonian, including all atomic molecular structure 

information for the system: water, ligand, and receptor. The results allow the study of the 

long-time dynamics of macromolecules in complex systems where complete molecular 

details of the macromolecule, surface, and solvent can be incorporated. The theoretical 
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background and a detailed review of the hybrid MD/BD algorithm can be found in [81, 

82, 83, 84, 85, 86]. 

 

5.2.2.2 Hybrid MD/BD Algorithm Implementation 

 

PDB Files

Read s tandard PDB f iles  f or
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Perf orm equilibr ium, c anonic al
ens emble MD to get the grand
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Perf orm BD to get new  ligand pos ition
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Figure 5.2: Flowchart of the Hybrid MD/BD Algorithm 

 

The hybrid MD/BD algorithm was implemented in [87] to study the D-

peptide/HIV system. The general computational MD/BD algorithm is shown in Figure 

5.2 [81]. The computational scheme begins by reading a standard PDB file from the 
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Protein Data Bank [88] for both ligand and receptor. This file is then converted to a 

“topology” file that includes computationally critical information on atomic mass, residue 

charge, and Lennard-Jones interaction force constants. Next, the ligand and receptor must 

be hydrated using SOLVATE [89], which uses a Monte Carlo method. For the molecular 

model of water, the so-called modified Simple Point Charge (SPC) model [90] is used 

with long-range electrostatic inter-atomic interactions accounted for by a modified 

Poisson-Bolzmann reaction field method, which uses an acceptance-rejection Monte 

Carlo approach. The center of mass and body fixed axes along the principal axes of 

inertia for the ligand are initially computed. This sets the body-fixed coordinates and 

initial Euler angles, the latter of which give the orientation of the body relative to the 

space fixed frame. MD is then used to determine the particle grand friction tensor. The 

grand friction tensor is numerically inverted to obtain the grand diffusion tensor. The 

grand diffusion tensor is then utilized to perform the BD move on a time step of around 

10-5 seconds. The macromolecule position and orientation change by only a couple of 

percent or less over this time period. The new atomic positions are updated based on the 

BD move and the entire process, MD followed by BD, is repeated. 

 

5.2.2.3 The Force Autocorrelation Function 

The force autocorrelation function can be obtained by conducting standard 

canonical, equilibrium molecular dynamics simulations. The particle is considered to be 

composed of a large number of molecules each interacting with the fluid molecules 

according to a Lennard-Jones potential [85]. Suppose the Brownian particle is composed 

of M molecules and the fluid consists of N molecules. The computation of the force 

autocorrelation function is O(N2 + M*N) at every time step, which is very computational 

costly. 

 

A confidence interval in the autocorrelation values, CI, is obtained from the 

Tchebycheff inequality as 
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(21) 

where ε is the error in the autocorrelation, σ2 is the variance, and nr is the number of 

repetitions (ensembles). The error is proportional to the reciprocal square root of the 

number of repetitions nr, i.e.,  

2/1/1~ rnε . (22) 

Thus with increasing number of repetitions, the error in the autocorrelation is reduced. 

Our results show that at least 20 ensembles are minimally necessary, and more would be 

desirable for more accurate results.  

 

 
Figure 5.3: The xx-component of the Force Autocorrelation Function in One 

Standard Deviation for a D-peptide 
 

Figure 5.3 shows the xx-component of the force autocorrelation function for a D-

peptide within 1 standard deviation with 40 ensembles. Our experiment of the 

computation in Figure 5.3 was implemented using MPI. The computation simulates the 

D-peptide with 372 molecules in the system with around 10,000 water molecules running 

in 60,000 time steps. The experiment took almost 8 days on a DEC Alpha DS10 6/466 
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with 256 MB of DRAM with 4 processors for a single step of MD simulation, and more 

than a month on a serial DEC Alpha DS10. We can expect greater time consumption for 

a particle with more molecules, or a system with more host fluid molecules. The high 

computational cost of evaluating the force autocorrelation function constrains from 

performing more steps of the MD/BD simulation to study the behavior of particles and 

particle interactions. More importantly, since the friction tensor in the BD is the integral 

of the force autocorrelation, the inaccuracy in the MD may mislead the computation of 

the BD. This error can even propagate further in the MD/BD simulation. 

 

Deeper study of the MD part of the algorithm shows that the force autocorrelation 

function is particularly amenable to multiprocessor systems [81]. In parallel MD 

simulation, each node can represent one member (3,000 time steps) of the ensemble 

allowing hundreds and thousands of ensembles to be included. More importantly, once 

scheduled, each ensemble’s computation is based on its own fluid configuration, which is 

independent with no intercommunication needed. Also, each independent execution time 

costs a few hours or less depending on processor speed. This property of the 

autocorrelation computation motivates us to take advantage of the tremendously large 

and low-cost computational power in a computational grid for our MD/BD dynamics 

simulation for this structured protein system. 

 

5.2.3 Implementation of Grid-based MD/BD Simulation 

5.2.3.1 Grid-based MD/BD Simulation Application Overview 

To develop a grid-based hybrid MD/BD simulation application, we need to utilize 

certain grid services. First of all, the task split service is used to define the data set and 

initial conditions for each ensemble computation, e.g., the ligand and receptor 

configurations, the host fluid configuration, the Lennard-Jones constants, and the 

parameters for random number stream. Each ensemble data and program are packed into 

a grid subtask. Secondly, the task schedule service is used to distribute these subtasks to 
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individual computational service providers. During the execution of the subtask, the 

storage service is used to store the checkpointing data, intermediate results, and subtask 

results. Thirdly, when the partial results are ready, the collection service is responsible for 

gathering them all and validating each partial result. Finally, based on the computational 

results of all ensembles, we can assemble the estimate of the force autocorrelation 

function and estimate its statistical error. After the MD simulation using the grid 

environment, the BD simulation follows and updates the new atomic positions in the 

particle. The above process can be repeated for the next BD moves. 

 

Task Split Service

Computational
Service

Schedule Service

Computational
Service

Computational
Service

Computational
Service

Storage Service

Collection Service

Storage ServiceStorage ServiceStorage Service

Ensembles

Distribute Ensembles
Computation

Collect Partial
Results

M D
initialization

Compute Grand Particle
Friction Tensor

BD Simulation

 
Figure 5.4: Working Paradigm for the Grid-based MD/BD Simulation on a Structured 

Protein System 
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Figure 5.4 shows the working paradigm of the grid-based hybrid MD/BD 

simulation application. Furthermore, the MD part of the computation is a typical grid-

based Monte Carlo computation, which exhibits characteristics that can be used to 

improve the application’s performance and trustworthiness in the grid. We can take 

advantage of these properties to optimize the MD computation. 

 

5.2.3.2 Results of N-out-of-M Scheduling 

 

 
Figure 5.5: the xx-component of the force autocorrelation function in one standard 

deviation for a D-peptide on Condor with 400 ensembles  
 

We apply our N-out-of-M scheduling technique to schedule the MD computation 

subtasks to the computational grid. Here, we performed our experiments using 

GCIMCA’s N-out-of-M scheduling service. Some nodes in a Condor pool also 

participated in the computation. Figure 5.5 shows our preliminary results of grid-based 

MD/BD simulation using GCondor with 40 nodes each carrying the computation of 10 

ensembles. The SPRNG library is used to provide parallel random number streams. The 

D-peptide data in this experiment is the same as the one in Figure 4.3. Using the N-out-
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of-M subtasks scheduling strategy, this computation took around 8 days to obtain 400 

ensembles computational results of the force autocorrelation function (by scattering the 

400 ensembles to more nodes in the grid, we can expect an even shorter completion 

time). We can find that the xx-component of the force autocorrelation function has a 

much smaller error bound than the one in Figure 5.3. More specifically, Table 5.3 shows 

the statistical error bound estimates of xx-component of the force autocorrelation 

function with 90% confidence in this experiment. We notice that statistical error 

decreases while increasing the number of ensembles. The computations of other 

components of the force autocorrelation function exhibit similar behavior. 

 

Table 5.3: The Error of xx-component of the Force Autocorrelation Function with 90% 
Confidence. The Error Decreases with Increasing Number of Ensembles. 

 
# of Ensembles Std Deviation Error Bound 

10 4.10 12.97 

100 1.39 4.40 

200 0.943 2.97 

400 0.671 2.11 

 

5.2.3.3 Checkpointing the MD Simulation 

The execution of each MD subtask takes a relative long time on a grid node, and 

so the implementation of checkpointing is quite necessary. We implemented the 

application-level lightweight checkpoint in our MD simulation program. Since at each 

time step in the MD simulation, the positions of the atoms in the structured proteins 

remain the same, the only data that change are the configuration of the host fluid, such as 

the atoms’ locations and velocities. Thus, the checkpointing data that the subroutine 

needs to save are the configuration of the host fluid, the current time step, and the force 

autocorrelation function values from the previous time steps. The checkpointing data are 
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stored into the checkpointing file. Based on this checkpointing data, the recover 

subroutine can easily restore an interrupted MD calculation.  

 

5.2.3.4 Partial Result Validation 

In Chapter 3, we discussed a partial result validation method for point solutions 

taking advantage of the statistical nature of Monte Carlo applications. This method can be 

easily extended and used in our grid-based MD/BD simulation application to validate the 

force autocorrelation function curve from each ensemble. Based on the force 

autocorrelation function values at every time step, we calculate its mean, standard 

deviation, and then the corresponding confidence interval. The upper bound endpoints of 

all these confidence intervals at different time steps provide an upper bound curve, and 

the lower bound endpoints provide a lower bound. If a force autocorrelation function 

curve from an ensemble lies in the area between the upper bound and lower bound 

curves, we consider the partial result of this ensemble computation as being trustworthy; 

otherwise, it is suspect, and we may need to rerun this particular subtask for further 

verification. 

 

Figure 5.6 shows the partial result validation mechanism in our grid-based 

MD/BD simulation. We find that all of the force autocorrelation function curves obtained 

from different nodes in the computational grid lie in the area between the upper bound 

and lower bound curves within 3 standard deviation of the mean. We thus regard all of 

them as trustworthy computations. 
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Figure 5.6: Partial Result Validation of xx-component of the Force Autocorrelation 

Function. Each Curve Lies in the Error Bounds of 3σ. 
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CHAPTER 6 

TECHNIQUES EXTENSION 

 

 In previous chapters, we analyzed the inherent characteristics of Monte Carlo 

applications, developed the techniques for high-performance and trustworthy Monte 

Carlo computations on the grid, implemented the grid-computing infrastructure, 

GCIMCA, based on these techniques, and applied Monte Carlo applications to the grid. 

All these approaches are Monte Carlo application oriented. In further study, we find that 

some of these techniques may also be adaptable to other grid-computing applications. In 

this chapter, we try to explore the extension of these techniques to other grid-computing 

applications. First, in Section 6.1, we analyze the grid-based quasi-Monte Carlo 

applications, which are closely related to Monte Carlo applications but use quasirandom 

samples instead. Then, in Section 6.2 and 6.3, we discuss the techniques of intermediate 

value checking based on pseudorandom numbers and application-level lightweight 

checkpointing for more generic grid-based applications, respectively. 

 

6.1 Grid-based Quasi-Monte Carlo Applications 

6.1.1 The N-out-of-M Subtask Schedule for Grid-based Quasi-Monte Carlo 

Applications 

 In grid-based Monte Carlo applications, the N-out-of-M subtask schedule strategy 

requires the independence of parallel random sequences used in all M subtasks. In 

contrast, quasi-Monte Carlo applications use highly correlated and uniform quasirandom 

numbers. Therefore, to apply the N-out-of-M subtask schedule strategy to quasi-Monte 

Carlo applications, the combination of any N out of M parallel quasirandom sequences 
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must remain highly uniform. Intuitively, we may hope that the combination of two low-

discrepancy sequences will always lead to a lower discrepancy. The ideal situation is, if 

two sequences, S1 and S2, both contain N quasirandom numbers with discrepancies of the 

order of N-1, then the sequence S that is combined from S1 and S2 will have discrepancy of 

the order of (2N)-1. Unfortunately, this is not true. The simplest counterexample is the 

combination of two identical low-discrepancy sequences will have the same discrepancy 

as a single copy of the sequence.  

 

The above discussion leads to an interesting question – what is the error bound of 

a quasi-Monte Carlo computation on parallel quasirandom number sequences. The 

Koksma-Hlawka inequality [52] is the foundation of analyzing quasi-Monte Carlo 

integration error. Based on the Koksma-Hlawka inequality, we deduce a Lemma (6.2) 

that provides an upper bound on the error for a parallel quasi-Monte Carlo integration 

using multiple low-discrepancy sequences.  

 

Theorem 6.1 (Koksma-Hlawka Theorem) For any sequence X = {x0, …, xN-1} and any 

function, f, with bounded variation, the integration error, ε, is bounded as, 

*][][ NDfVf ≤ε . (23) 

Here V[f] is the total variation of f, in the sense of Hardy-Krause, 3 is the star 

discrepancy of sequence X = {x0, …, xN-1}, and ε[f] is defined as 
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(24) 

where d is the dimension of f. 

                                                 
3 For a sequence of N points X = {x0, …, xN-1} in the d-dimensional unit cube Id. For any box J with one 
corner at the origin in Id, the star discrepancy DN

* is defined as 
)()(sup* JJD x

IJ
N

d
µµ −=

∈
, 

where 
N

JintspoinofJX
#)( =µ  is the discrete measure of J, i.e., the fraction of points of X in J, and µ(J) 

is the Euclidean measure of J, i.e., the volume of J. 
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Lemma 6.2 For M sequences X1 = {x0,1, …, xN-1,1}, X2 = {x0,2, …, xN-1,2}, …, XM = {x0,M, 

…, xN-1,M} with discrepancy D*
N,1, D*

N,2, …, D*
N,M, respectively, and a function, f, with 

bounded variation, the integration error ε  is bounded as, 
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Proof: According to the Koksoma-Hlawka theorem, the integration error based on the kth 

quasirandom sequence is 
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Finally, we can obtain the integration error ε of all these M quasirandom sequences,  
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Lemma 6.2 tells us that the error in the evaluation of an integral based on multiple 

sequences will be less than or equal to the average of their star discrepancy multiplied by 

the integral function’s variation. Unfortunately, this upper bound is too coarse. It cannot 

guarantee that in the N-out-of-M scheduling strategy, the evaluation based on the 

combination of any N out of M quasirandom number sequences will lead to a smaller 

error. Nevertheless, empirical experiments in Figure 6.1 show that the N-out-of-M 

strategy in quasi-Monte Carlo integration is rather effective. In these experiments, we 

divided a Sobol’ sequence into 4 consecutive blocks, each block having an equal number 

of quasirandom numbers. Then, we evaluated the integral (13) in Chapter 3 using all 

combinations of any two of these blocks. In Figure 6.1, we see that the integral 

evaluations based on these combinations share a similar convergence rate. For our future 
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research of the N-out-of-M strategy for grid-based quasi-Monte Carlo applications, we 

may use the scrambling techniques for generating the parallel quasirandom number 

sequences with low discrepancies [91]. 
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Figure 6.1: Convergence Analysis of Quasi-Monte Carlo using Different Blocks 
Combinations in a Quasirandom Number Sequence 

 

6.1.2 Partial Result Validation for Grid-based Quasi-Monte Carlo Applications 

The theoretical foundation of our proposed partial result validation method for 

grid-based Monte Carlo applications is the Central Limit Theorem. An important 

assumption in the Central Limit Theorem is that the underlying random samples are 

independent. As we know, quasirandom numbers are highly correlated and so quasi-

Monte Carlo computations are deterministic; hence, quasi-Monte Carlo applications do 

not share the same statistical nature as Monte Carlo applications. Therefore, the Central 

Limit Theorem cannot be used here, and so, we cannot expect that partial results from 

quasi-Monte Carlo subtasks are normally distributed. The partial validation method based 
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on all partial results described in Chapter 3 cannot be used in the case of quasi-Monte 

Carlo. 

 

Nevertheless, we elucidated an alternative way of Monte Carlo partial result 

validation using a trusted grid node in Chapter 3. Fortunately, this method can be easily 

extended for grid-based quasi-Monte Carlo applications. To use the validation method, 

we first need to set up a special subtask that will estimate the same number of samples as 

the other quasi-Monte Carlo subtasks, but these samples are pseudorandom samples. 

Secondly, we execute this subtask on a trusted grid node. Since this subtask is actually a 

Monte Carlo subtask, we can obtain a confidence interval, [ft - kσt, ft + kσt], based on its 

mean ft and standard deviation σt using similar analysis as described in Section 3.3.1. 

Finally, this confidence interval can be used to validate each partial result, fi, of the quasi-

Monte Carlo subtasks running on the potentially untrusted grid nodes. Figure 6.2 shows 

the procedure of the extended partial result validation method for grid-based quasi-Monte 

Carlo applications. Due to the fast convergence rate of quasi-Monte Carlo methods, with 

same number of samples, the quasi-Monte Carlo applications usually have a smaller error 

than that of the Monte Carlo applications, when the number of samples is big enough. 

Therefore, we can expect that the partial results of the quasi-Monte Carlo subtasks should 

also lie in the confidence interval with very high probability. Similar to the partial result 

validation in Monte Carlo applications, the partial results of the quasi-Monte Carlo 

subtasks that are not in the confidence interval will be regarded as suspect. 

Recomputations of such subtasks are recommended. The only problem is that with quasi-

Monte Carlo, the confidence level is not necessarily known. 
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Figure 6.2: Extended Partial Result Validation Method for Grid-based Quasi-Monte 

Carlo applications 
 

6.1.3 Lightweight Checkpointing and Intermediate Value Checking for Grid-based 

Quasi-Monte Carlo Applications 

 Compared to the N-out-of-M subtask scheduling and the partial result validation, 

the techniques of lightweight checkpointing and intermediate value checking are 

essentially the same for grid-based quasi-Monte Carlo applications. In lightweight 

checkpointing for grid-based quasi-Monte Carlo applications, what we need to save as 

checkpoint data is the current status of the quasirandom number generator and other 

programming related information. Leapfrog in quasirandom number sequence can also be 

implemented. In [51], B. C. Bromley illustrates a leapfrog scheme for the Sobol’ 

sequences, which can actually be used in our intermediate value checking technique for 

grid-based quasi-Monte Carlo applications.  
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6.2 Extension of the use of Pseudorandom Number Generators for 
Intermediate Value Checking 

In Chapter 3, we proposed an approach of checking the pseudorandom numbers in 

Monte Carlo subtasks as intermediate values to validate the faithful execution in a 

potentially untrusted grid node. Some pseudorandom number generators have the 

following properties: to the grid node providing computational services, the value of a 

pseudorandom number remains unknown until it is actually generated; on the other hand, 

to the application’s owner, the value of a pseudorandom number can be easily and 

economically regenerated or predicted. For grid-based Monte Carlo applications, the 

underlying pseudorandom numbers can be naturally used as intermediate values for 

further validation checking. However, the nice property of these pseudorandom number 

generators motivates us to use them for the other applications on a computational grid. In 

this section, we propose an approach of “artificially” embedding pseudorandom numbers 

into an application to generate intermediate values for such checking. 

 

In many other grid-based applications, random numbers are not needed for their 

computation. However, within grid application design, we can force a subtask of such an 

application to generate pseudorandom numbers during its execution. For example, the 

subtask can be designed to generate a certain amount of pseudorandom numbers at each 

step. At the same time, the value of the current pseudorandom number after every N (e.g. 

N = 1,000,000) pseudorandom numbers is recorded just as what is done in the grid-based 

Monte Carlo applications. These values become the intermediate values of the subtask. 

By regenerating these values using the leapfrog techniques of pseudorandom number 

generators on a validation server, we can match them to check if this subtask is faithfully 

executed on the grid node. In this approach, embedding pseudorandom numbers into the 

grid applications does not contribute to the computational results; however, it provides a 

way to enforce the trustworthiness of running the application on the grid. 
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6.3 Application-level Lightweight Checkpointing 

The application-level lightweight checkpointing can also be extended to other 

applications on the computational grid, especially to those applications whose operations 

can be divided into many subsequent steps. Saving the application-level checkpoint data 

after every certain number of steps can help the application to rebuild the computational 

task status after interruption without wasting previous computations. As we mentioned in 

previous chapters, application-level checkpointing has significantly better portability and 

efficiency than process-level checkpointing. 

 

The MD simulation discussed in Section 5.2 is one of the examples of using 

application-level checkpointing. The MD simulation uses Monte Carlo to generate the 

initial configuration of the host liquid. After that, the molecular dynamics at each time 

step is deterministic. During the procedure of the MD simulation, the water atoms’ 

locations and velocities and other related data at the current time step are saved as 

checkpoint data after every certain number of time steps. The checkpoint data can then be 

used to rebuild the task status at the checkpointing time step so as to resume further 

molecular dynamics simulation. 
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CHAPTER 7 

SUMMARY AND POSTDISSERTATION RESEARCH 

 

Monte Carlo applications generically exhibit naturally parallel and 

computationally intensive characteristics, which is a natural fit for the grid-computing 

environment. In this dissertation, by analyzing the statistical nature of Monte Carlo 

applications and the cryptographic aspects of the underlying pseudorandom number 

generators, we developed techniques of an N-out-of-M subtask schedule strategy, Monte 

Carlo-specific lightweight checkpointing, partial result validation, and intermediate value 

checking. These techniques were utilized to implement grid services in our grid-

computing infrastructure for Monte Carlo applications, GCIMCA, with the purpose of 

high-performance and trustworthy grid-based Monte Carlo computations. Grid-based 

Monte Carlo integration and grid-based hybrid MD/BD simulation applications were 

computed within a grid environment including GCIMCA. Our preliminary results show 

the effectiveness of our techniques for improving performance and enforcing the 

trustworthiness of grid-based Monte Carlo computations. Finally, these techniques are 

extended to a broader range of grid applications. 

 

At the same time, this dissertation raises many interesting questions and 

opportunities for us to continue our study in our future post-dissertation research. The 

following is the list of some of these possible research directions.  

 

1. The OGSA (Open Grid Services Architecture) is becoming the standard for grid 

services. In the future, we plan to adopt the emerging OGSA into GCIMCA so 
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that we can integrate these standard grid-computing services into grid-based 

Monte Carlo applications. 

 

2. We need to analyze more grid-based Monte Carlo applications, especially “real-

life” applications in engineering and industry, and apply our techniques and 

software infrastructure to them. We believe that these grid-computing techniques 

can be applied to many Monte Carlo applications in computational biology, 

medical science, meteorology, financial mathematics, material science, nuclear 

science, and mechanical engineering. 

 

3. In Chapter 5, we discussed the implementation of a grid-based MD/BD simulation 

of receptor-ligand interactions in structured protein systems. Since we now have a 

more powerful computational application to study receptor-ligand interactions 

compared to the previous parallel version, we also plan to study more structured 

protein systems in order to predict and analyze cell signaling processes and small 

molecule drug efficacies. More aggressively, we expect to develop a “plug-drug” 

system based on our MD/BD simulation with the purpose of searching for good 

drug candidates. 

 

4. In our Monte Carlo-specific lightweight checkpointing technique, the checkpoint 

data are stored locally. However, if the grid node becomes unavailable, the 

checkpoint data are still not accessible, and this leads to a waste of computational 

effort. We plan to implement a remote-checkpointing grid service using gSOAP 

[92]. This remote-checkpointing service allows a subtask to save the checkpoint 

data to a remote checkpoint data server. The checkpoint data file is in the XML 

format, and hence provides good portability.  

 

5. In our dissertation research, we concentrated on how to serve a single Monte 

Carlo application using the developed grid services. In many cases, we assumed 
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that there are many more computational service providers than available subtasks. 

However, if multiple naturally parallel applications are running on the grid, how 

should we efficiently schedule all the available computational resources to 

achieve the best overall throughput? The theory of games may be appliable here. 

 

6. In our implementation of application-level checkpointing in GCIMCA, the Monte 

Carlo application programmers have to specify the location of the main loop and 

also the changed variables that need to be saved during the checkpoint operation. 

This leads to increasing programming complexity. However, it might be possible 

to automatically analyze the program to extract the above information. This is 

more like compiler-related research. 

 

7. In Chapter 6, we discussed the extension of our techniques to a broader range of 

grid applications. The goal here is to study the extent to which these application –

specific services can enhance other grid computations. We plan to expand the 

functionalities and services in GCIMCA to experiment with the Monte Carlo-

based services on non-Monte Carlo applications.  
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APPENDIX A 

FAST LEAP-AHEAD PROPERTY OF PSEUDORANDOM NUMBER 
GENERATORS 

 

Pseudorandom number generators exhibit the fast leap-ahead property [76], which 

enables us to easily and economically jump ahead in the sequence. By the fast leap-ahead 

algorithm, we can leap from a particular point in a pseudorandom number generator’s 

cycle to a new point j steps away in O(log2j) “operations.” The following paragraphs 

describe the implementations of fast leap-ahead algorithm in some common 

pseudorandom number generators. 

 
1. Linear Congruential Generators (LCG) 

The LCG is the most commonly used generator for pseudorandom numbers. It 

was introduced by D. H. Lehmer in 1949 [60] and is based on the following recursion: 

)(mod1 MbaXX nn += − . (26) 

In this expression, M is the modulus, a is the multiplier, and b is the additive constant.  

the corresponding leapfrog generator with leaping length j can be represented as 

))(mod*( 1 MCXAX nn += − , (27) 

by replacing the multiplier a and the additive constant c by new values A and C, where 

)(mod)1(

),(mod
11 MacaC

andMaA
j

j

−− −=

=
. 

(28) 

 

2. Shift-Register Generators (SRG) 
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 SRGs are based on the following recursion: 

),(mod
1

MXaX
k

i
inin ∑

=
−=  

(29) 

where the Xn’s and the ai’s are either 0 or 1 and M is 2. Matrix and polynomial methods 

can be used to implement fast leap-ahead in SRG sequences. 

 

In the matrix method, with an initial vector X0 = [X0, X-1,…, X-k+1]T of length k, 

one can define a vector recursion of SRG as 

Xn = AXn-1 (mod 2), (30) 

where the matrix A has the form 
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(31) 

This is a k × k matrix with elements defined modulo 2. Given the initial (seed) vector X0, 

we can compute the jth vector in the sequence as 

Xj = AjX0 (mod 2), (32) 

This algorithm for leaping j elements in the shift-register’s sequence requires the 

following two steps: 

1) Computation of Aj (mod 2), which can be accomplished with O(log2j) matrix-

matrix multiplications, and 

2) The subsequent evaluation of AjX0 (mod 2), which requires a single matrix-vector 

multiplication. 
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The polynomial method is another common algorithm for computing the jth 

element of a shift-register sequence based on polynomial algebra instead of matrix 

algebra. First, we define the characteristic polynomial, f(x) = akxk - ak-1xk-1 - … - 1. Then, 

we need to build a polynomial r(x) defined as 

∑
=

==
k

i
ii

j xcxfxxr
1

))((mod)( . 
(33) 

Then, the polynomial method consists of two steps: 

1) Evaluate r(x) = xj (mod f(x)), which can be accomplished in O(log2j) polynomial-

polynomial multiplications, and 

2) Evaluate Xj using the following equation 

∑
=

−=
k

i
kiij XcX

1

, 
(34) 

where ci are the coefficients of xj (mod f(x)). 

 

3. Additive Lagged-Fibonacci Generators (ALFG) 
The Additive Lagged-Fibonacci Generator (ALFG) is defined by the following 

recursion: 

lkXXX m
lnknn <+= −− ),2(mod . (35) 

Similar to the implementation in SRG, the matrix and polynomial method can also be 

used in ALFG. In the matrix method, matrix A becomes 
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and the modulo is 2m instead of 2. In the polynomial method, f(x) turns out to be 

f(x) = xl – xl-k –1 and the modulo is 2m. 

 

4. Multiplicative Lagged-Fibonacci Generators (MLFG) 
The recurrence relation for MLFG is defined by the following equation, which is 

closely related to that for the ALFG: 

lkXXX m
lnknn <×= −− ),2(mod . (37) 

Actually, we can get the following equation for the MLFG [96]: 

)2(mod3)1( mZY
n

nnX −= , (38) 

where Yn is given by the recurrence, 

)2(modlnknn YYY −− += , (39) 

and Zn by the recurrence, 

)2(mod 2−
−− += m

lnknn ZZZ . (40) 

The fast leap-ahead implementation in Makino’s scheme [93] consists of, equivalently, 

choosing seed Y0, …, Yl-1, and maximal period seed Z0, …, Zl-1, and then computing Yj 

and Zj efficiently in O(l2logj) time using Miller and Brown’s algorithm. Once Yj and Zj 

are computed, Xj can be easily obtained by equation (38). 
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5. Inversive Congruential Generators (ICG) 
The ICGs have two versions, the recursive ICG is given by the formula, 

),(mod1 mbxax nn +=+  (41) 

while the explicit ICG is defined as follows: 

)(mod mbanxn += . (42) 

Here c  denotes the multiplicative inverse of a modulo m in the sense that )(mod1 mcc ≡  

when , and 0≠c 0=0 .  

 

The fast leap-ahead in recursive ICG can be implemented using the following 

method. We define a sequence c0, c1, …, where 

)(mod
1
0

12

1

0

macbcc
c
c

nnn +=
=
=

++

. 
(43) 

By induction [94], we also obtain that 

)(mod1 mccx nnn += . (44) 

Then, the xn+j can be generated by 

)(mod1 mccx jnjnjn ++++ = , (45) 

where cn+j+1 and cn+j can be obtained by 
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01
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(46) 

In (46), we can pick up cn = 1 and cn+1 = xn for computational convenience. This requires 

only O(log2j) multiplications of 2×2 matrices to compute cn+j+1 and cn+j. 
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The implementation of fast leap-ahead in EICG is relatively easy. We can simply 

substitute n in (42) with n + j [65].  

 
6. Combined Generators 
 Combining different recurrences can increase the period length and improve the 

structural properties of pseudorandom generators. By combining the output of the basic 

generators, a new random sequence can be constructed of the form: 

    ,nnn yxz o=

where ° is typically either the exclusive-or operator or addition modulo some integer m or 

addition of floating-point random numbers modulo 1, and x and y are random number 

sequences from two different types of random number generators. If both xn and yn have 

the fast leap-ahead property, then zn can also leap ahead with O(log2j) operations. 
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