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Abstract 
With the unprecedented growth of computer networks in the past decade, the need for security 

is now bigger than ever. An intrusion detection system (IDS) can add a level of security to a 
computer network by monitoring all the users in its environment. Generally, an IDS detects attacks 
by analyzing the payload in messages or commands. Recently, a way of detecting intruders without 
looking at the contents of a message was introduced [1]. The technique is applied to the specific 
problem setting of security protocols.  

This paper addresses a new and novel technique of gathering meta-information of network 
messages and describes the technique as implemented. Unfortunately, actual encrypted traffic is 
not available to test this concept, so our work includes development of a simulation environment. 
Consequently, our system consists of a monitor, a principal simulation environment, and a security 
protocol intrusion detection engine. We address our design framework, the software techniques to 
accomplish the network programming in our environment and how our design relates to the 
Common Intrusion Detection Framework. 

Keywords: Threads, Network Programming, Intrusion Detection, Reference Monitor, 
Consumer-Producer  

1. Introduction 

In the 1990’s we experienced the dawn of the Internet revolution. Now the Internet is 

growing at an unprecedented rate and is embedding itself in the fabric of our society. The 

average American can now trade stocks, check bank accounts, and buy goods online. 

Unfortunately, this new convenience comes with a price. Network security has not grown in par 

with the Internet and as a result many Internet users are vulnerable to attacks. 

Two approaches to security for electronic communication have emerged: (1) Detection and 

response and (2) Protection. In the first paradigm, Intrusion Detection Systems (IDS) add a level 

of security to a computer network by monitoring the users network activity. IDSs build on early 

security technology that depended on monitoring system logs to determine if malicious activity 
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occurred. On the other hand, protection mechanisms prevent security compromise, usually 

through access control technology with or without encryption. Encryption has proven to be 

effective in protecting privacy and enhancing authentication in network communications. 

These approaches are each effective mechanisms, though neither is foolproof. Moreover, 

while they have complementary characteristics, until recently, they have been mutually exclusive 

in application. There is one issue that is the primary reason for this. Generally, an IDS detects 

attack by analyzing the payload in messages or commands, while in encrypted environments, 

payloads are not available for inspection. 

Recently, a novel way of detecting intruders without looking at the contents of a message 

was introduced [1]. This technique proposed analyzing meta-information about packets on the 

network, specifically targeting characteristics of security protocols. Security protocols are 

commonly used on networks for authentication purposes, distribution of encryption keys, and 

initiating and terminating secure communication sessions. These protocols have characteristics 

that allow detection of known attacks without knowing the content of the message payloads. 

This paper discusses an implementation of a monitor, detection engine, and simulation 

environment that can be used to detect intrusions from encrypted network messages. The monitor 

system is a client-server application with the server gathering and organizing the meta-

information. To test the functionality of the monitor a principal simulation environment was 

created. This environment can simulate normal, suspicious, and attack behavior. 

The rest of this paper is organized as follows: In Section 2, we present background 

information about intrusion detection systems, and in section 3, summarize the SEADS 

architecture. In Section 4 we describe the monitor and in section 5, detail the principal simulation 

environment. Section 6 describes the detection engine while Section 7 details test results. We 

conclude the paper in Section 7. 

2. Intrusion Detection Systems 

Numerous intrusion detection systems have been created and applied to a wide range of 

problems [2]. They can be used on networks to provide an extra layer of security. However, they 

do not provide security alone. IDSs are designed to complement and assist other forms of 

security. This interoperability between security systems is essential and represents the time-

tested principle of defense in depth. 
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The Common Intrusion Detection Framework or CIDF is a movement to develop ways to 

allow intrusion detection engines to interoperate with other programs [5]. One of their attempts is 

to architecturally divide the IDS into four major independent components that can be reused in 

other systems: Event Generator, Event Analyzer, Event Database, and the Response Unit 

The event generator is the component that samples activity from the network environment 

and convert the information into objects that can be used by other components. After converting 

the information into objects, the generator stores the objects in the event Database. The event 

analyzer retrieves the objects from the event database and analyses them in order to detect 

intrusions. 

There are two main designs available to the event analyzer for detecting attacks: 1) the 

knowledge-based design and 2) the behavioral-based designs [6]. In theory, an IDS can use 

either or both design approaches to detect intruders.  

Knowledge-based design detects intruders by pattern-matching user activity to known attack 

signatures. Signatures are kept in a database containing a repertoire of information describing 

normal, suspicious, or attack behavior. A signature is a description of a behavior. For instance, in 

an operating system, an attack signature may consist of the following sequence of commands: 

su <correct password>

rm –R /* 

If the event analyzer detects a sequence of events that matches a corresponding attack 

signature, then an attack has been detected. 

The behavior-based design uses statistical methods or artificial intelligence in order to detect 

attacks. Profiles of normal activity are created and stored in a database. Any activity gathered by 

the event generator that deviates from the normal profile in a statistically significant way can be 

deemed as suspicious activity or an attack. 

3. Secure Enclave Attack Detection System (SEADS)  

3.1 The Topology of SEADS 

SEADS applies the well-known monitor model to an IDS application. SEADS is 

conceptually divided into three parts similar to the ones described in the CIDF model presented 

in section 2. The three parts are the Monitor, the Intrusion Detection Engine (IDE), and the 

Knowledge Base (KB). 
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The monitor in SEADS is comparable to the CIDF event generator and event database. This 

is because the monitor gathers information from the network, converts the information to objects 

and stores these into an internal database. The intrusion detection engine and the knowledge base 

together are analogous to the event analyzer. The IDE uses the knowledge-base design described 

in section 2. It retrieves objects from the monitor’s database and searches for the presence of 

attacks by comparing these with signatures stored in the KB. The KB is a repository of normal, 

suspicious, and attack signatures.  

SEADS assumes secure communication between the monitor and principals. Inside this 

protected environment, the principals can safely forward information to SEADS. The principals 

communicate between one another via public networks such as the Internet. Accordingly, the 

intruder only interacts with the principals on the public network. 

3.2 The Needham-Schroeder Protocol 

In this section, we use a well-known protocol to illustrate how SEADS can detect an 

attack on a security protocol. The Needham-Schroeder Protocol (NSP) is a popular and widely 

used key distribution and authentication protocol. This protocol was first introduced in [12] in 

1978 and now countless papers show how intruders can spoof the participants by replaying 

messages. The protocol contains the messages shown in Table 1.  

The NSP protocol consists of five messages 

and involves the participation of three parties. 

Since the messages are encrypted, their 

contents cannot be used to detect attacks. A 

primary contribution of the work on SEADS is 

that there is other pertinent information 

available. For instance, every message in the NSP protocol is sent by one participant and 

received by another. The series of send and received events are valuable information that does 

not involve the decryption of messages. The NSP protocol is shown in Table 2 as a series of send 

and receive events. 

We now show the Denning and Sacco attack on NSP [3] and how it is detected in this 

architecture. The attack requires the intruder to intercept messages from one session, 

compromise a session key, and open a second session to replay the intercepted messages. 

1. A -> S: A,B,na 
2. S -> A: {na,B,kab,{kab,A}kbs}kas
3. A -> B: {kab,A}kbs 
4. B -> A: {nb}kab 
5. A -> B: {nb-1}kab 

Table 1 
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Effectively, the attack is enacted by the intruder replaying message #3 from the compromised 

session to the same recipient that originally received the message. Even though payloads are 

encrypted in NSP messages, the intruder is able to obtain authentication from B. The intruder 

does not have to decipher the payloads in order to perform this attack. Instead, the intruder relies 

on copying and replaying messages.  

In order for this attack to be possible, the intruder needs to be sophisticated enough to 

remove and insert messages in the network at will. Unfortunately, the technology to do this is 

available to many intruders.  

The events that identify the attack are given in Table 3. When the IDS detects these three 

events signified by the action, protocol message number and session, it should signal that an 

attack has occurred. 

 

 

 

 

 

4. The Monitor  

4.1 The Monitor Database 

In an intrusion detection system, the monitor is the component that gathers traffic between 

principals and other pertinent activity. It packages this information into events and stores them in 

an internal database for later use or forwards them directly to the intrusion detection engine.  

Our monitor is novel because it gathers information without looking at the contents of the 

network traffic. The information that is collected is meta-information about the traffic. 

Seq # Action Protocol 
Msg # 

Session 
ID 

1. B<-A 3 x 
2. B->A 4 x 
3. B <- A: 5 x 

Table 3 

Seq # Action Protocol 
Msg # 

1. A -> S 1 
2. S <- A 1 
3. S -> A 2 
4. A <- S 2 
5. A -> B 3 
6. B <- A 3 
7. B -> A 4 
8. A <- B 4 
9. A -> B 5 
10. B <- A 5 

Table 2 
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Specifically, we utilize characteristics about security protocols and attacks gleaned from years of 

formal method research. 

In order to gather the necessary meta-information, principals are required to report events to 

the monitor. You may recall from section 3, that during the execution of a protocol, a series of 

messages are exchanged between principals. Each message in the protocol consist of at least two 

events: a send and a receive event. These send and receive events are the ones forwarded to the 

monitor. Thus, the principals execute cooperating processes that automatically communicate 

with the monitor. Every time a protocol message is sent, the principal notifies the monitor by 

reporting it as an event; the same for receive events. 

For our implementation of events, we selected a minimal set of data that we can use to 

identify attacks. These include the identity of the acting principal (PN), a session identifier 

(nonce), other parties to the session (Parties), and the type of event (send or receive). 

A session represents one execution of a security protocol. At any given time, the monitor can 

be gathering information from countless sessions involving different principals. It is crucial for 

the monitor to efficiently record the event and store it in its database. Figure 4a shows how an 

event is stored  

As shown in Figure 4.1, a session can be distinguished from any other session with its PN, 

Parties and Nonce fields. Each session in turn has a collection of events. 

It is worth noting that this organization of events by the monitor aids the intrusion detection 

engine in detecting attacks. This is due because many known attacks span multiple sessions 

involving the same group of principals [4]. Since the monitor’s database stores events according 

to the group of principals involved, it is easy and fast for the IDE to retrieve this information. 

4.2 The Monitor’s Threads 

The monitor was designed to be robust and able to handle a high volume of sessions. To 

accomplish this, a multi-threaded design was chosen, commonly referred to as the consumer-

producer thread design. 
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In this case, the consumer is a thread, which is constantly listening to network socket 

connections and managing all the open sockets. Any information the consumer reads from a 

socket is quickly placed in a queue. The producer thread takes the packets waiting in the queue, 

checks them for proper format, converts them to event objects and then stores the objects in the 

monitor’s database.  

After storing an object in the database, the producer thread signals the IDE engine about the 

presence of new events. In turn, the IDE uses a well-defined interface provided to it by the 

monitor to retrieve events from the monitor’s database. This consumer-producer thread design 

helps the monitor handle many concurrent sessions by shifting the bottleneck from the network 

socket’s I/O and into the internal, dynamic queue of the monitor. Figure 4.2 illustrates the 

monitor’s threads collaborating in a consumer-producer thread design.  

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

Packet received from a principal

[PN] [parties] [nonce] [event]

The Monitor’s Database

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

Packet received from a principal

[PN] [parties] [nonce] [event]

The Monitor’s Database

Figure 4.1 
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4.3 The Monitor’s Code 

The monitor was coded in Visual C++ for the Win32 platform. Win32 kernel objects such as 

sockets, threads, events and critical sections [7] were used. The sockets allowed the monitor to 

listen for network traffic and the threads were used in the coding of the consumer-producer 

monitor design. 

Standard Template Library [8] containers were also used. For instance, the monitor’s 

database was created with maps, linked-lists, and vectors. Since these containers grow 

dynamically, the monitor’s database can hold as much data as possible limited only by the 

computer’s memory. 

Network Thread

Database Thread

IDE

DB

1. The principals send 
events to the monitor

2. The network thread reads the 
events from the monitor’s network 
socket

3. The network thread places the 
events in the monitor’s queue

4. The database thread reads 
events from the queue

5. The database thread 
places the processed 
event object in the 
database

6. The database thread 
signals the IDE about 
updating the database

7. The IDE reads the new 
events from the database.

The Monitor’s Use Case Scenario

…
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events from the monitor’s network 
socket

3. The network thread places the 
events in the monitor’s queue

4. The database thread reads 
events from the queue

5. The database thread 
places the processed 
event object in the 
database

6. The database thread 
signals the IDE about 
updating the database

7. The IDE reads the new 
events from the database.

The Monitor’s Use Case Scenario

…

Figure 4.2 
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5. The Principal Simulation Environment 

5.1 The Components of the Principal Simulation Environment 

In order to test the functionality and correctness of the monitor, a network environment of 

principals was developed. The principals were created with the intelligence to initiate and engage 

in security protocol sessions involving other autonomous principals. The principals can run on 

any Windows computer and execute any given protocol signature over the network. During a 

session, the principals report the completion of events to the monitor. The principals have the 

ability to engage in normal, suspicious or attack behavior.  

The Principal Simulation Environment is divided into three different programs: Principal 

Simulator, Principal Dispatcher, and The Principals themselves. The Principal Simulator 

provides the user-interface for creating an environment of principals. Each simulation requires 

the input of parameters that are used to configure the system. Some of the configuration 

parameters that the user can customize are the number of sessions to be executed, the computers 

involved in the simulation and the protocols and signatures that the principals will execute.  

After the simulation has been created, it is the job of the Principal Dispatcher to instantiate 

the principals at a given computer when instructed to do so by the Principal Simulator. The 

autonomous principals then communicate with each other, execute protocols and report events to 

the monitor. Figure 5.1 illustrates how the three components interact to produce a simulation.  

5.2 The Principal Simulator 

The Principal Simulator is the program that configures the principal's network environment. 

This is a Graphical User Interface program that provides the user with an easy to use interface to 

create and run simulations. 

All the commands necessary to work with the simulator are presented as menu items in the 

menu bar. The toolbar also contains the most commonly used commands such as run, new, edit, 

save and print. The user can create a new simulation by clicking on the new command. This 

command will show a dialog box that permits the user to add activities to the simulation. A 

simulation consists of activities and each activity requires configuration parameters for the 

protocol name, number of sessions, identity of principals, signatures to use, and a start time for 

the simulation. 
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In order to assist the user in selecting a protocol name, the program reads the file containing 

the protocol signatures and populates the “Protocol Name” combo box with the available 

protocols.  

Again the program reads the protocol signature file to populate another combo box listing 

the attack signatures available for this particular protocol. The attack signatures are numbered 

from 0 to (n-1) where n is the total number of signatures given for the protocol. Once the user 

has finished adding activity to the simulation, all the configuration parameters are printed to the 

screen as shown in Figure 5.2. 

After the simulation is created, the user has the choice of editing, saving, printing deleting or 

the simulation. When the user clicks on run, the Principal Simulator communicates with every 

Principal Dispatcher running on all the participating computers. The Principal Dispatcher in 

turns creates the principals that will run on his computer. 

Figure 5.1 
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5.3 The Principal Dispatcher 

The reason for having a Principal Dispatcher has to do with the inability of creating 

processes on a computer remotely. This inability is expected since the ability to start remote 

processes on a computer can be seen as a security breach.  

One solution to this problem is to create a process in every computer that listens to the 

network on a pre-established port number. The Principal Simulator sends instructions to each 

Principal Dispatcher at this port number. The instructions contain the number of Principals to be 

created and configuration parameters for each. After getting the instructions, the dispatcher 

creates each Principal. 

5.4 The Principals 

Principals are autonomous network programs that engage in sessions with other principals. 

They execute protocols and report events to the monitor. The design issue for this program was 

figuring out the easiest way to create a principal that could engage in normal and attack behavior 

when instructed? The answer was to provide a file containing signatures of normal, suspicious 

and attack behavior that the principals could read and execute. 

This file, named “Simulation_File.txt”, is almost identical to the one provided to the intrusion 

detection engine by the knowledge base. The file is divided by protocols and each protocol 

contains at most one normal signature. Any additional signatures in the file represent suspicious 

Figure 5.2 
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or attack scenarios. An example of a signature present in the file is the one shown below 

executing a normal session of the Denning-Sacco Protocol or DSP: 

When the Principal Dispatcher creates the Principal, the first step is to read 

“Simulation_File.txt”. After picking the selected signature from the database the Principal 

determines the number of other Principals involved. This number may differ since different 

security protocols differ in the number of participating entities. All protocols involve at least two 

principals. 

The next step is to determine the initiating principal. The initiator is responsible for creating a 

random number called a nonce that is used to identify the session. As you may recall, the 

monitor uniquely identifies sessions by the protocol name, group of principals and nonce. The 

initiating principal is now ready to send the first message to the corresponding party. During 

execution of the protocol signature, the principals report their activities to the monitor. Figure 5.3 

shows the flow of the Principal program. 

The Principal’s Use Case
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The principals have the special ability to open multiple sessions with the same group of 

principals. They can accomplish this feat with the assistance of threads. This feature is necessary 

since some protocols require the execution of parallel sessions. In addition, opening multiple 

sessions allows for the simulation of particular sophisticated attacks. These types of attacks 

usually involve the intruder opening multiple sessions with the same group of principals. 

The IDE uses distinct detection methodologies for protocol attacks depending on the number 

of sessions used in each specific attack. Attacks on security protocols may be over only a single 

session of the protocol or may utilize information gleaned from multiple runs of the protocol. 

Thus, attacks may be classified as Single session attacks or Multi-session attacks. 

Single session attacks are those attacks which may occur in a single session. The signature of 

such an attack may differ from the protocol itself in only something so subtle as a missing 

receive statement. In our environment, these subtle differences are easily recognized. 

Interestingly, we consider the attack on the Needham and Schroeder Conventional Key 

Protocol (NSCKP) a single session attack even though the attack depends on a previously 

compromised key from another session. The telling factor is that the attack can be detected by 

recognition of a single protocol session. In the NSCKP case, even though it is, technically a 

replay attack, it can be recognized by the signature given in Table 1 without any knowledge of 

the previous session.  

Detection of single session attacks by the IDE is simply a matter of the relevant attack finite 

state machine reaching the final state, upon which the IDE will signal a notification. No 

knowledge of the previous session is necessary for the IDE to detect this attack. 

Multi-session attacks are those attacks that use information extracted from more than one 

previous or concurrent protocol sessions. We make the reasonable assumption that such attack 

sessions must use the information within a certain time period of the reference session(s), from 

which the information is taken in order to subvert the protocol. For multi-session attacks, the 

IDE classifies them as either Replay Attacks or Parallel Session Attacks. 

Replay attacks use information extracted from a previous run of a protocol. The first question 

that must be answered is: "How much time can pass between the reference session and the attack 

session?" This is an important question in our architecture because of the way replay attacks are 

detected. The signature of a replay attack consists of the signature of the reference session 
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followed by the signature of the attack session. Thus, the recognizer must remain active until 

either an attack is detected or the threshold period expires.  

We handle this by requiring the author of signatures of replay attacks to include the threshold 

in the signature, which will vary from protocol to protocol. The default wait constant was chosen 

to be ten seconds for the IDE prototype. If events occur that triggers a replay recognizer, if the 

time difference between the attack session and the reference session is greater than the wait time, 

the IDE will flag this activity as suspicious behavior. 

A parallel session attack occurs when two or more protocol runs are executed concurrently 

and messages from one run (the reference session) are used to form spoofed messages in another 

run (the attack session). As a simple example consider the following One-Way Authentication 

Protocol (OWAP) [13]: 

A � B : E(Kab : Na) 

B � A : E(Kab : Na + 1) 

Successful execution should convince A that B is operational since only B could have formed 

the appropriate response to the challenge issued in the first message. An intruder can play the 

role of B both as responder and initiator. The attack works by starting another protocol run in 

response to the initial challenge. 

To initiate the attack, Mallory waits for Alice to initiate the first protocol session with Bob. 

Mallory intercepts the message and pretends to be Bob, starting the second run of the protocol by 

replaying the intercepted message. Alice replies to Mallory's challenge with exactly the value 

that Mallory requires to accurately complete the attack session. The attack is shown in Figure 

5.4. 

The IDE detects parallel session attacks by matching the ongoing activity against the attack 

signatures. The telling factor in this case is the omission of any information from Alice's partners 

in either session, as reflected in the signature in Table 4.  

Attack Session 
A � M(B): E(Kab : Na) 
 
 
M(B) � A: E(Kab : Na + 1) 

Reference Session 
 
M(B) � A: E(Kab : Na) 
A � M(B): E(Kab :Na + 1) 

Figure 5.4 



The Monitor and Principals 

15 

6. Intrusion Detection Engine Design 

This section provides an insight into the design of the Intrusion Detection Engine. 

Justification of the major design decisions is also given. The design of the IDE uses the object-

oriented paradigm. The problem was broken down into smaller components, and appropriate 

classes were developed to accurately represent the problem. 

A major factor in the design of the IDE, was the complexity of the environment being 

monitored. Within any enclave, we expect to monitor events interleaved from multiple: 

• = Concurrent sessions 
• = Different principals 
• = Different protocols  

In addition there is no guarantee that all the sessions will properly conclude. Some sessions may 

be suspended abnormally and messages may be lost. 

a. Architectural Design 

A number of issues had to be taken into account in the design phase of this research 

implementation. The design was created in order to ensure that all the requirements and 

specifications were satisfied. 

In the secure enclave it is possible to have multiple concurrent sessions of different protocols 

executing within the enclave. The sessions may consist of the same or different principals. The 

Intrusion detection engine must be able to keep track of the different protocol sessions executing 

within the enclave in order to detect any attacks or suspicious activity. Not all attacks on security 

protocols occur over a single session. As described earlier, multi-session attacks such as replay 

attacks or parallel attacks may occur within the enclave. These multi-session attacks span 

multiple different protocol sessions. The Intrusion detection engine must provide a means to 

keep track of such executing sessions and detect any attacks. 

Current 
State 

Event Protocol Session Sender Receiver Message 
Number 

Next 
State 

SS send OWAP X A B 1 S1 
S1 receive OWAP X+α B A 1 S2 
S2 send OWAP X+α A B 2 S3 
S3 receive OWAP X B A 2 FS 

Table 4 
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Additionally, the detection of attacks has to be communicated to the person or system 

monitoring the enclave. Detailed reports of all attacks or suspicious behavior must be generated 

by the IDE. Such reports provide in-depth information about the type of attack and principals 

participating in the protocol session. The Intrusion Detection Engine receives crucial inputs from 

the Activity Monitor and from the Knowledge base of protocol signatures. It is important to 

ensure that interfaces with the Monitor and the Knowledge base are well defined and reliable. 

b. The Thread Dispatcher and Monitors 

As noted earlier, the IDE receives protocol events from the monitor as they occur. The IDE is 

multi-threaded with a single thread to serve as the thread dispatcher. Since each protocol may 

have many attack signatures associated with it, when a new protocol session begins, the IDE 

spawns a new thread to monitor all the FSM recognizers for that protocol. As illustrated in 

Figure 6.1, the Thread Dispatcher then routes events to the appropriate thread as they arrive.  

To keep track of all the threads existing within the system, a ThreadList class is employed, 

that holds the protocol name, session number, identifiers of the principals involved, a signal to 

which the thread listens, and a thread identifier for each thread. 

The threads provide the detailed functionality of the Intrusion Detection Engine. Each thread 

monitors the activity within a single protocol session. As events for a particular protocol session 

come in from the activity monitor, the thread matches those events against the protocol 

signatures stored in the knowledge base. If a event matches, the Finite State Machine 

corresponding to that particular signature is advanced to the next state. 

Upon conclusion of an attack session or a normal protocol session, it may so happen that the 

entire signature from the knowledge base matches the succession of events for that protocol 

session coming in from the activity monitor. In such cases, the thread will raise alerts to the 

console, providing information about the attack or normal session. If an attack is detected by the 

Intrusion Detection Engine, the detailed information about that attack is written to a text file. 

Activity 
Monitor 

IDE Thread 
Dispatcher Protocol A Session 2

Protocol B Session 1 

Protocol C Session 1

Protocol A Session 1

Figure 6.1:Thread Dispatcher
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This information is used by the Graphical User Interface component of the IDE to generate the 

attack reports. 

Threads terminate in two normal ways: (1) An attack is detected, or (2) The protocol ends 

normally. However if a particular protocol session hangs with no further events coming into the 

IDE, the thread will die after a timeout period and it will signal the activity as an abnormal 

termination. When a thread dies, the corresponding entry from the list of threads designed as an 

object of the ThreadList class is removed. 

Threads are chosen as control structure of choice for the IDE for several reasons. First, the 

number of concurrent threads spawned by a process is limited only by the virtual memory on the 

system. This allows the IDE to track a large number of concurrent sessions, accurately 

representing an Internet environment that is rich with security protocols. Secondly, there are no 

synchronization issues to be taken care of as all the threads have their own memory space and 

can also access the global variables. Any data structure that is accessed by all the threads has 

been protected by means of a critical section. The overall design of the IDE is reflected in the 

flow chart in Figure 6.2. 
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New 
Session? 

Event 
Match?

Attack

Activity 

Wait for 
Events 

Create New 
Thread

Channel the 
event to the 

relevant 
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FSM

Continue Monitoring for 
attacks 

Notify and write 
to attack log file 

 Stop FSM 
/Suspicious 

No 

No 
No 

Time out 

Event: (B->A,NSCKP, session #, message #) 

Yes 

Yes 

Yes

Figure 6.2: Design Flowchart. 
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7. Test and Results 

Upon completion of each significant milestone, the IDE was tested to ensure that the product 

functioned correctly. We approached the testing from four standpoints:  

(1) Detection of attacks against protocols in all three categories of single session, replay, 
and parallel session  

(2) Detection of suspicious activity  
(3) Effective operation in a highly concurrent environment 
(4) Effective user interface. 

We began our testing by addressing the ability of the IDE to detect different categories of 

attacks. The environment being monitored was systematically subjected to attacks of each of the 

three categories of single session, replay and parallel session. For the single session attacks we 

simulated those attacks on protocols which span over only a single session. The single session 

attack on the Needham and Schroeder Conventional Key Protocol (NSCKP) explained in detail 

earlier was one of the many attacks that were simulated. The IDE was correctly able to detect all 

such single session attacks.  

To test the replay attacks, we simulated a correct run of protocols such as the Ottway-Rees 

Protocol (ORP) [14] and, within 10 seconds, we ran an attack session on the same protocol. In 

every instance, the IDE detected such replay attacks and classified them correctly.  

To test our ability to detect parallel session attacks, we ran the parallel session attack on the 

Woo and Lam Authentication Protocol First (WLAPF), which was successfully detected by the 

IDE. We also ensured that protocol activity which may be considered abnormal or suspicious 

was detected by the IDE. Event sequences not corresponding to any attacks currently existing in 

the knowledge base or normal protocol runs were simulated for protocols. The IDE was correctly 

able to report such activity as unrecognizable suspicious activity on the basis of its inability to 

find a complete match for that particular signature in the Knowledge base. It is not always the 

case that protocol sessions successfully run to termination. Events get lost or the protocol session 

may stall. We simulated a protocol session in which there is abnormal termination before the 

current run has reached its completion In such cases the IDE thread monitoring this session times 

out after the TIMEOUT period and reports abnormal termination of the protocol. 

It was important to ensure that the IDE is able to function correctly under a highly concurrent 

environment. Sixty concurrent sessions of different security protocols were simulated. These 
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included attack sessions as well as correct sessions. Specifically, five distinct protocols were 

executed. A total of one hundred seventy principals were concurrently executing within the 

enclave. Out of the sixty protocol sessions, forty sessions were attack sessions and twenty 

sessions were normal protocol sessions. The IDE was able to correctly detect attacks and report 

them to the Graphical User Interface. 

The Graphical User Interface is an integral part of our research implementation. This GUI 

allows the user to have an overall detailed view of all the attacks that took place within the 

environment over any given period of time. After each attack is detected, the IDE writes the 

detailed attack report to an attack log file. This attack report file is used by the GUI to provide 

the user with customized attack reports. We tested the functionality of the GUI after each 

simulated attack was detected to ensure that the attack has been logged and its details are 

displayed by the GUI. Moreover, we ensured that on providing inputs to the GUI it will only 

display the attack reports for specific protocols over a specific duration of time. 

Based on the results obtained from the numerous tests performed on the IDE we can say that 

the IDE interfaces correctly and seamlessly with the activity monitor and the knowledge base. 

During the correct functioning of the IDE, there is no loss of events between the IDE and the 

monitor and hence no loss of functionality of one due to the other. Also, signatures can be added 

to the Knowledge to allow the IDE to detect the additional attacks on protocols. 

Extensive testing on the IDE shows that the IDE fulfills its functionality successfully. The 

IDE can be used to detect different types of attacks on security protocols under environments of 

high concurrency. The Graphical User Interface also proved to be very reliable in order to 

increase the amount of information available to the user upon occurrence of such attacks. 

Extensive testing and demos were conducted to test the functionality of the Monitor and the 

Principal Simulation Environment. We initially conducted limited tests to ensure that a single 

session could be recorded. We gradually increased the workload, varying the size and nature of 

the traffic. As example, one test included eleven sessions of three different protocols, with 

twenty four different principals participating. Another simulation exercised one hundred and 

twenty five concurrent sessions. 

We also exercised sessions that modeled classic replay attacks as well as more complex 

parallel session attacks. In all the tests, the software executed according to specifications. Stress 
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tests were also conducted to test the robustness of the software. These tests primarily involved 

overloading the network with a multitude of sessions executing different protocols and involving 

different principals. The Principals were successful at generating a large volume of traffic and 

the monitor was able to gather all event information from the principals.  

8. Conclusion 

This monitor program shows that relevant and useful information can be gathered without 

having to examine the payload of messages exchanged between principals. This is the first 

instance that we are aware of where security protocols have been analyzed in an environment 

comprised of different protocols running multiple concurrent sessions with multiple users. This 

is particularly significant because of the importance of encryption in protecting networks and 

computers in the future. 

An integral part of this work was the creation of the Principal Simulation Environment. The 

monitor needs the active participation of the principals in order to collect the meta-information 

from the network traffic. The principals are autonomous network programs that execute 

signatures between each other and report the events to the monitor. 
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