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ABSTRACT 

Even though modern information systems provide fairly good service under normal 

conditions, in the existence of malicious activity or unforeseen failures these systems 

have flaws, imperfections and vulnerabilities. The systems essential to the minimum 

operation of government and economy, called critical infrastructures, are particularly 

important since attacks on these systems may result in serious consequences to the nation. 

This paper presents an adaptive case-based reasoning security framework that can be 

applied to any critical infrastructure domain with minimum extra coding effort. Also the 

system is specifically tailored for network intrusion detection problems as a proof of 

concept. Snort IDS rule knowledge is ejected into a case library so that the final system is 

at least as powerful as Snort IDS. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

In recent years the US government has drawn increasing attention to the problem of 

protecting the nation’s critical infrastructures. Some of the actions that have been taken 

are as follows [10, 11]:  

 July 1996: The President’s Commission on Critical Infrastructure Protection 
(CIP) was established. This was the first national effort to address the 
vulnerabilities of the new information age.  

 
 October 1997: The final report of the President’s Commission on CIP was 

released [12]. In this report, increasing dependence on critical infrastructures 
was stressed and a wide variety of threats were defined.  

 
 May 1998: President Clinton announced two new directives, PDD-62 and 

PDD-63, highlighting the growing range of unconventional threats and focused 
on protecting the nation’s critical infrastructures.  

 
 October 2001: President Bush created the Office of Homeland Security.  

 
 June 2002: President Bush proposes to create a new Department of Homeland 

Security, the most significant transformation of the U.S. government in over a 
half-century. 

 
In the 1997 report [12], critical infrastructures are defined as “systems whose 

incapacity or destruction would have a debilitating impact on the defense or the economic 

security of the nation.” The infrastructures are classified into eight categories:  
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 Information and Communications 
 Electrical Power Systems 
 Gas and Oil Production, Storage and Transportation  
 Banking and Finance  
 Transportation  
 Water Supply Systems 
 Emergency Services 
 Continuity of Government Services 

 

Information systems were put on the top of the critical infrastructures list because of the 

severity of the risk and dependence of other critical infrastructures on such systems. In 

addition, six topical categories for research and development were identified: 

 Information Assurance 
 Monitoring and Threat Detection 
 Vulnerability Assessment and System Analysis 
 Risk Management and Decision Support  
 Protection and Mitigation 
 Contingency Planning, Incident Response, and Recovery 

The research reported in this thesis is aimed at defining a generic, domain-independent 

case-based reasoning framework applicable to a variety of problems occurring in all the 

indicated infrastructures and research categories. Briefly, case-based reasoning is a 

method of recording and benefiting from past experiences, so that former problems and 

their solutions can be recalled and reused as appropriate for responding to new 

occurrences of the same, or similar, problems.  

There are many potential benefits of such a generic framework. Once it has been 

created at this level of abstraction, the communication between specific instances of this 

framework will be easier. Since a case-based reasoning methodology is used, each 

instance of the framework will learn through its experiences. Furthermore, via 

communication between instances of different categories (e.g., vulnerability analysis and 
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intrusion detection) the learning process will produce a higher level of certainty. For 

example, if the system is used for attack detection, the overall system will discover the 

attacks that no one of the instances can realize by itself. 

While the resulting system is expected to have a wide range of applications, the 

present work is focused more specifically, for proof of concept, on the problem of 

monitoring and threat detection for information systems. In particular, the framework is 

customized to replicate the functionality of Snort [27] intrusion detection system as 

explained in chapter 5.   

1.2 Computers and Critical Infrastructures 

As mentioned, Information Systems were put at the top of the list in the 1997 

President’s report [12]. This is because computer and networking technologies have 

evolved to a point that information systems, as a product of such technologies, have 

become an essential part of our lives. After the 1980s, with the explosion in computer 

connectivity, especially in the form of the Internet, the way people communicate, 

government works, and people do business have begun to be shaped by these 

technologies. Not only do individuals rely on these systems for work, leisure, 

communication, and many other purposes, but also in some cases, companies, large 

organizations, governments, or an entire society depend on their continued operations. 

Air traffic systems, telecommunication systems, and power distribution control systems 

are counted as some examples of these crucial systems that are generally referred to as 

critical information systems.  
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From the government’s perspective, critical infrastructures, supported by critical 

information systems, are the systems that are essential for the minimal operation of the 

economy and government. Even though these systems provide fairly good service under 

normal conditions, in the presence of malicious activity or unforeseen failures, they are 

seen to have flaws, imperfections, and vulnerabilities. When the degree of societal 

dependence on these systems is considered, the impact of their failure on society can be 

enormous. As an example, even a few hours of effective denial of service attack to 

certain parts of a banking system may cause very serious monetary damage. The problem 

becomes more serious if one takes into consideration the growing risk of cyber attacks on 

these systems by potential adversaries, such as criminal organizations, terrorist groups, or 

insiders. Such systems become increasingly attractive as targets for attack due to 

society’s increasing dependence on them.  

In the interests of improving the efficiency of the various systems by taking advantage 

of the ongoing advances in information technology, critical infrastructures have become 

increasingly automated and interconnected. Further, most of the infrastructures are 

composed of many interconnected networks within themselves. The complexity and 

connectivity of these networks carrying critical information introduce vulnerabilities and 

threats to the entire infrastructure. For example, one system may be used as a base to 

attack other systems, or weakness in one system may be used as an entrance point to 

other systems.  

Thus, critical infrastructure protection is an open problem for researchers working on 

information security. In the past five years, research activities in the area of computer 



 

 5

security for military and intelligence systems have been greatly expanded due to the 

infusion of governmental sponsorship support. Some of these research activities, for 

example [38, 39, 40], apply also to the critical infrastructure problem, but much still 

remains to be done. 

1.3 Definition of the Problem 

In the early stages of the development of operating systems and computer networks 

the primary emphasis was on functionality and performance, and little thought was given 

to matters of security. As a result, these systems have evolved to such levels of 

complexity and interconnectivity that it is now perhaps impossible to retrofit them with 

modifications that will assure adequate security. Moreover, this problem has become 

much deeper due to the proliferation of insecure application programs produced by many 

different software vendors. Therefore, in the short-term, the only reasonable solution to 

computer security problems is to plug the holes in the systems as we discover them. A 

short-term solution is needed because of the immediacy and potential severity of the 

threats. This has prompted the exploration of the popular security solutions such as 

intrusion detection and vulnerability assessment, as well as many others.  

In the long-term, however, we may expect to see the complete redesign and rebuilding 

of all system from the bottom up, including secure computer chips, secure operating 

systems, secure communication protocols, secure programming languages, and secure 

applications. In the end, one may expect the new systems to be inherently much more 

secure than those of today, but at the same time the need for intrusion detection and 
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vulnerability analysis may also be expected to continue.  No matter how well we design 

our systems, dedicated attackers may be expected to find new ways to break in.  

Although not all the critical information systems are totally computer-based systems, 

they are heavily and increasingly dependent on computers. Furthermore, most of the 

information providing the current state of the system and history of errors is available in 

digital format even though the systems are different. Therefore, in this research we 

concentrate on processing of data and representation of information rather than gathering 

of evidence. We believe that a bottleneck in the CIP problem is the difficulty of 

processing the enormous amount of data available to the security community. When the 

amount of information that it is necessary to process and the complexity of the systems 

are considered, the need for an automated intelligent system becomes obvious.  

1.4 Organization of Chapters 

The rest of the chapters are organized as follows. The methodologies and 

technologies, used in this research, and design decisions for our security framework are 

presented in chapter 2. Chapter 3 contains the related work. In chapter 4, the proposed 

security framework is explained. As a proof of concept, the implementation of an 

instance of the framework, that replicates Snort’s functionality, is given in chapter 5. 

Finally, the thesis is closed with the concluding remarks and issues for future work.  



 

CHAPTER 2  

BACKGROUND AND DESIGN DECISIONS  

The framework created in this thesis can be easily customized into a domain specific 

security application according to needs of a particular problem domain. To achieve the 

required level of abstraction for this flexible framework, the knowledge representation 

scheme, learning methodology, programming language, and, more importantly, the 

design architecture for the software must be chosen carefully. In this decision process, 

works such as [6, 7, 8, 9, 13, 14, 16, 19] have been very influential. In this chapter, we 

briefly explain the methodologies and technologies used in the proposed framework and 

why their appropriateness for a generic adaptive software system. The first research area 

includes the artificial intelligence technique of case-based reasoning [4, 5]. The second 

research area includes the use of adaptive architectures and meta-data [16, 17]. The last 

area includes XML [28] and the Java programming language [14, 15].  

2.1 Case Based Reasoning 

2.1.1 Overview 

In the early ages of artificial intelligence (AI), reasoning was generally modeled as a 

process of extracting conclusions from the facts about the problem domain by
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manipulating the domain specific knowledge. Expert, or rule-based, systems were the 

first successful AI applications that followed this paradigm. Rule-based systems model 

the knowledge about the domain in the form of if-then rules and perform reasoning by 

applying the principles of first-order logic to those rules.  

In spite of the early successes, rule-based systems had many disadvantages. Among 

these, two are important. First, the explicit information needed to model the domain in 

the form of rules is difficult to obtain. To build a consistent and effective rule set requires 

considerable amount of investigation about the domain. This is known as the knowledge 

elicitation bottleneck. Second, even if the rule-based system is implemented, it is difficult 

to maintain as the domain evolves since rule extraction from data needs expert 

participation. A detailed discussion on these problems can be found in [4]. 

Case-based reasoning (CBR) was developed as a means to remedy these problems [4, 

5]. CBR differs from rule-based systems in its primary source of knowledge. As opposed 

to the domain specific rules, the knowledge in CBR systems is stored in cases that 

represent past concrete experiences. Case-based reasoning systems do not require a 

model of the problem domain. Cases are problem-solution pairs that describe complete 

episodes, or full experiences. Thus, in CBR, both knowledge elicitation and knowledge 

maintenance amount simply to identifying new cases and adding these to the library. This 

can be handled by the typical user. Expert participation in extraction of rules or other 

information from generalizations of domain knowledge is not required. For example, in 

network intrusion detection problem, cases might represent full network packet 

information for the packets that are used in previous attacks. Therefore, such a case will 
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have a feature for each field in the packet header and a feature for the packet payload. 

However, in order to create a rule for a rule-based system for the same problem, one has 

to extract relevant information from the network packet. 

CBR solves new problems by adapting old solutions to meet the requirements of the 

new problem. The CBR approach was inspired by the recognition of the importance of 

memory (or remembering) in human reasoning processes. It was observed that people 

generally use the solutions of previously solved problems as a starting point for the 

solution of new problems. Also it is commonly accepted that the world is regular in the 

sense that similar problems have similar solutions.  Furthermore, most of the problems 

that people encounter recur over time. In view of these facts, case-based reasoning was 

developed as a new problem-solving paradigm. 

2.1.2 Case-Based Problem Solving 

The case-based problem solving process involves navigating through the solutions in a 

“solution space,” guided by the similarity of a given problem to those represented by the 

cases stored in a case library. This is illustrated in Figure 1, adopted from [4].  

As a new problem is encountered, the CBR system searches for those cases in the case 

library whose problem descriptions are similar, according to some similarity metric, to 

that of the given problem. The solution(s) of the most similar case(s) is (are) then used as 

a starting point for devising a solution to the new problem. The CBR system creates a 

solution to the new problem by adapting the solutions from the cases that were retrieved. 

This adaptation process is sometimes automatic, but typically requires human assistance. 
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Figure 1: Case Based Problem Solving 

 

2.1.3 The CBR Cycle  

Realization of the CBR methodology described above is normally accomplished via a 

cyclic CBR process comprising the following four “REs,” as described in [23]:  

1. RETRIEVE 
2. REUSE 
3. REVISE 
4. RETAIN 
 

The basic CBR process is depicted in Figure 2 [21, 22]. The most important part of a 

case-based reasoning system is its case archive, or case library, where previously 

encountered problems are stored as problem description/solution pairs. The problem 

description is a set of case features that characterize the problem. When a problem is 

perceived in the surrounding environment, it is transformed into a set of case features 
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(step 1.0) and transferred to the search engine that extracts the similar cases from the case 

archive (step 2.0). This extraction process generally uses a similarity metric, which gives 

a value representing the degree of similarity between the given problem and an arbitrary 

case in the archive. The search engine then returns a set of top ranked cases according to 

their similarity to the given problem.  

 

 

Figure 2: Case-Based Reasoning Cycle 

 



 

 12

At this stage, two different scenarios are possible: either one of the cases is selected 

(step 3.0), and its suggested action in its solution is taken (step 4.0), or a new solution is 

formulated from returned cases where their recommended solutions are used as a base 

point in the creation of new solution (step 3.0), and the action part of new solution is 

taken (step 4.0). If a new solution is created, the problem description and new solution 

pair is stored into case archive. In either case, the outcome of the action, as a measure of 

success or failure, is recorded with the case in the case archive (step 5.0). This measure is 

used in future case extraction processes, so that the performance of the system will 

improve. 

2.1.4 Case Similarity and Nearest Neighbor Algorithm 

The accuracy of the extraction process of similar cases to a given problem determines 

the success of the CBR system. If the system cannot find the best matching cases, the 

solution suggested by these cases will not be the most appropriate one for the given 

problem. The Nearest Neighbor Algorithm (NNA) [42] is extensively used in CBR 

systems for robust case extraction. This approach involves the assessment of similarity 

based on matching a weighted sum of features. The problem is described as a set of 

features in a case, as mentioned above. The features that are used in similarity assessment 

are called indexed-features, whereas the others are called non-indexed-features. The 

similarity between a given problem P and a case C is calculated as follows in NNA: 

∑

∑

=

=

×
= n

i
i

n

i

C

i

P

ii

w

ffw sim
CPSim

1

1
),(

),(  
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In this equation w is the importance weight of a feature and sim is the similarity 

function that calculates the similarity of the matching features of a case and a problem.  

2.1.5 CBR for Security Framework 

While the use of artificial intelligence techniques, such as knowledge-base systems 

and neural networks, for security applications is well-known [33, 34], the possibility of 

using case-based reasoning in this realm does not seem to have so far been considered. 

CBR can be a natural fit for this domain, however, because it adheres to the two tenets 

underlying case-based systems mentioned in the foregoing, namely, the regularity of the 

world and the recurrence of similar problems.  

In order to show the recurrence rate of the security problems, we will use data from 

CERT [43]. CERT is a well-established repository for incident reports, supported by the 

US department of defense. In addition to its incidents database, CERT also maintains a 

list of currently known vulnerabilities. In Figure 3 and Figure 4, the number of incidents 

and the number of vulnerabilities reported to CERT per year are given respectively.  

 

Figure 3: Number of incidents reported to CERT 
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Figure 4: Number of vulnerabilities reported to CERT 

 

From Figures 3 and 4, the average number of recurrences per vulnerability can be 

calculated by dividing total numbers of incidents reported for a given year to the number 

of different vulnerabilities reported for the same year. For example for the year 2001, on 

average, each vulnerability is exploited twenty times.  

As noted by Ian Watson in [5] case-based reasoning is a general methodology, as 

distinguished from, say, rule-based reasoning and neural nets, which are more correctly 

viewed as technologies. The distinction is based on the observation that case-bases 

systems can utilize many different such AI technologies in both the case retrieval and 

case adaptation phases of the CBR process. For example, the retrieval phase might use 

fuzzy logic as a basis for the similarity metric, and the adaptation phase might use a rule-

based expert system. Specific examples of CBR systems that integrate other AI 

techniques are noted by [24, 25]. This distinction becomes crucial in the design of our 

adaptive security framework, because it describes the cased-based approach at the 
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appropriate level of abstraction and generalization and allows for the integration of other 

AI techniques. 

2.2 Adaptive Architectures and Meta-Data 

2.2.1 Overview of Adaptive Software Architectures 

Due to the complexity of today’s problem environments and the increasing 

expectations place on software systems, it is impossible to create a software system 

design that satisfies all such expectations at all dimensions of the given problem. The 

time versus space trade off for programmers in the early ages of software engineering has 

become a multidimensional dilemma including security, portability, performance, quality 

of service, reusability, and much more. These factors cause the requirements of the 

software systems to change rapidly in accordance with changes in the circumstances 

under which the software is used.  

There is an observable trend in software design methodologies towards adaptive 

software systems. In the 1970’s, structured programming was popular [20]. This 

technique enables one to build large applications where the specifications are given 

before the design phase and they are then implemented as specified. Then, with 1980’s, 

the Object-Oriented Programming concept was introduced. This technique makes it 

easier for the programmer to handle specification changes. Since all the functionality of 

the software is separated among different classes, and the interactions between classes are 

organized in such a way that they minimize coupling and maximize cohesion, the change 

management of specification becomes easier. However, any change still requires 
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programmer involvement. Even a simple change in requirements still leads to a costly, in 

terms of both time and money, software engineering cycle that includes all of redesign, 

re-implementation, and retesting.  

Adaptive programming is a new software design methodology that enables the user to 

change the behavior of the program without changing its code [16, 18]. This requires a 

different software architecture. Adaptive or reflexive architectures are defined as the 

architectures that can dynamically adapt at run-time to new user requirements. In this 

architecture, the environment is modeled in the form of structural descriptions, 

constraints, and rules, rather than classes as in object-oriented programming [16]. This 

flexibility requires different levels of abstraction. Even though it is generally difficult to 

build, and more difficult to understand, these software architectures, the amount of actual 

code required for the program decreases dramatically. 

Adaptive architectures heavily rely on dynamic programming languages. Static 

languages, like C, require the programmer to establish the structure of the program in 

terms of data structures and data manipulation in the early stages of programming. 

However, in dynamic programming languages, a running program can add a new method 

to one of its classes without recompilation. Currently, Java is one of the most popular 

programming language providing dynamic programming features.  

Figure 5 depicts how an adaptive program differs from a conventional program [16]. 

In adaptive programs, the class structures are defined partially by setting a number of 

constraints over the class structure that must be satisfied. Examples of such constraints 

are method names and the types of the data structures that the methods will act upon. 
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Figure 5: Infinite family of programs denoted by an adaptive program 

 

As a result, there are infinitely many class structures satisfying the constraints defined by 

a given adaptive program. Further, behaviors of the methods are not implemented 

thoroughly in the adaptive program. Methods are implemented or bound only whenever 

they are needed. Since each class structure represents a conventional object-oriented 

program, an adaptive program denotes a family of programs where their class structures 

satisfy the constraints of the adaptive program.  

2.2.2 Meta-Data 

Meta-Data is one of the most common tools used by adaptive architectures to provide 

easy change management. Data describing the properties of the data and behavior used in 

an application domain is called meta-data. Once the programmer abstracts out predictable 

changes or the type of changes in the program and expresses them in terms of meta-data, 

the maintenance and the change management of the program becomes a task of changing 
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the meta-data not the program code. Thus, it is an easier task. The basic idea lying behind 

the meta-data concept is that the designer cannot predict all future potential changes and 

design the system accordingly, but by shifting the information about the domain from the 

actual source code into data one can make the source code easy to manage and change 

[17, 18].  

2.2.3 Adaptive Software Architecture for Security Framework 

In this research, it was aimed to define a common software architecture and 

methodology that can be used to implement a family of programs in such a way as to 

enable collaboration between these programs in their decision making processes. In 

addition, it was aimed to implement the behavior of the well-known Snort [27] intrusion 

detection system as a proof of concept. In the future, collaborations among different 

instances of the same security framework will be explored.  

Adaptive architectures have played an important role in the design of the security 

framework proposed in this thesis. The use of this software engineering methodology has 

made the implementation of the Snort [27] functionality much easier than would have 

been otherwise possible.  

2.3 XML and JAVA 

Case representation is one of the most important issues in case-based reasoning 

systems. In this thesis, we proposed an adaptive case-based framework such that the 

instances of this framework will solve different problems. Therefore, selecting a generic 

case representation that can be customized and used for different problem domains 
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becomes critical. Furthermore, the aim of supporting communication among instances of 

the framework requires a portable and adaptive case representation. With its unique 

properties described below, XML provides such a portable, customizable data 

representation.  

Java is one of the most widely used object-oriented dynamic programming languages, 

providing features such as portable, platform-independent code and reflection. Lately, 

with Java APIs for XML, it has become easy to use XML data representation from Java 

programs [14, 15]. These two characteristics guided the decision to use Java. 

2.3.1 XML  

XML (eXtensible Markup Language) is a system-independent data representation 

language developed by W3C (World Wide Web Consortium) and has become an 

industry-standard [26, 28]. As with all markup languages, XML uses special notation to 

differentiate sections of a document. Although XML uses the same notation, angle 

brackets with tags (<TAG> … </TAG>) to mark different sections, as does HTML, the 

purpose of these tags in XML is completely different. HTML tags tell the application 

how to display the text occurring between the start and end tags, whereas XML tags 

specify the meaning of the text enclosed by the tags. The other main difference between 

HTML and XML is that HTML tags are predefined. However XML allows you to define 

your own tags, and, further, the structure of the document, by means of different type 

definition languages, such as DTD (Data Type Definition) and XML Schema.  

The following example, Figure 6, is the XML data representation of a thesis defense 

announcement structure. The <thesisdefenseannouncement> and <\ 

thesisdefenseannouncement> tags tells the application that the information between them 
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is a thesis defense announcement. However, the same thesis announcement can be 

structured differently. In order to avoid confusion a DTD, or some other type definition 

providing the structure of the announcement, is necessary. 

 

 

Figure 6: Thesis defense announcement XML representation 

 

2.3.2 DTD 

A document type definition (DTD) provides the definition of the structure and the 

content of XML documents [26, 28]. Each declaration in a DTD defines the structure of a 

building block in the associated XML documents. There are two types of basic 

declarations: element declarations and attribute declarations. Element declarations 

specify the set of tags an XML document can contain. Attribute declarations provide 

additional information about the element defined by a given element declaration. 

Attribute declarations are not mandatory for each element, as can be seen in Figure 7. 

This figure defines the structure of the thesis defense announcement XML data given 

above.  
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Figure 7: Thesis defense anouncement DTD 

 

The first line in the example DTD defines the highest-level element, 

thesisdefenseannouncement, which must contain all the elements between the parentheses 

that follow it. The DTD provides more features than the ones covered in this section, 

such as a capability for selecting among a set of tags. More detailed information about 

XML and DTDs can be found in [26, 28].  

2.3.3 Overview of JAVA APIs for XML  

Java provides a set of APIs for XML related applications. These APIs are listed below. 

They fall into one of two broad categories: document oriented and procedure oriented. 

[14, 15]  

Document-oriented:  

 Java API for XML Processing (JAXP): process XML documents using different 
parsers 

 Java Architecture for XML Binding (JAXB): maps XML elements to Java classes 
 

Procedure-oriented:  

 Java API for XML Messaging (JAXM): sends SOAP messages over the Internet 
 Java API for XML Registries (JAXR): provides a standard way to access business 

registries 
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 Java API for XML-based RPC (JAX-RPC): sends SOAP method calls to remote 
machines and receives results  

2.3.4 JAXB  

Java Architecture for XML Binding provides a way to create mappings between XML 

documents and Java objects [14]. The JAXB compiler, takes a given DTD for XML 

documents and a binding schema, and generates Java classes that contain all the 

necessary source code to parse and manipulate XML documents satisfying that DTD. 

Figure 8 explains the binding cycle.  

 

Figure 8: Binding framework cycle 

 

The primary operations of the binding framework as shown in Figure 8 are 

unmarshalling, marshalling, and validation.  

 Unmarshalling: the process that creates a content tree instance from a given 

XML document.   

 Marshalling: the process that creates an XML document from a content tree 

instance.  
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 Validation: the process that checks whether a content tree satisfies all the 

constraints expressed in DTD.  

The generation cycle of Java classes from a DTD and a binding schema is given in 

Figure 9. The first step is to write a binding schema. This contains instructions on how to 

bind the DTD components to Java classes. For example, for the DTD shown in Figure 7, 

the binding schema might specify that a class be created for the element 

thesisdefenseannouncement with variables representing title, author, etc., and that 

#PCDATA indicates the data type String. Then one runs the schema compiler (xjc) with 

the DTD and binding schema using the command:  

xjc datatypedefinition.dtd bindingschema.xjs 

Execution of the this command generates Java class source code that has all the 

functionality needed to handle the primary operations of the binding framework 

(marshalling, unmarshalling, and validation) over XML documents whose structure are 

defined by given DTD.  

 

 

Figure 9: Generation of Java classes from DTD and binding schema 
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2.4 Intrusion Detection 

Intrusion detection [1, 2] is the process of monitoring computers on hosts or computer 

networks for violations of security policy. The first model for an intrusion detection 

system (IDS) was proposed in 1986 by Denning [3]. Although many different intrusion 

detection systems have emerged since Denning’s paper, the basic structure for the 

intrusion detection systems is still very similar to Denning’s model. An IDS consists of 

three components:  

 Information source providing a stream of event records 

 Analysis engine that processes the evidence to find intrusions 

 Response component that generates actions based on the analysis 

Intrusion detection systems fall into three categories: network-base, host-based, and, 

recently, kernel-based intrusion detection systems [41].   

2.4.1 Network-based IDS 

A network based intrusion detection system (NIDS) monitors network traffic for 

suspicious activity. The idea of a NIDS evolved from packet sniffers and network 

monitors that capture all the packets on the network and produce a view of the network 

traffic. NIDS are automated systems that look for particular signs in the network traffic. 

Once such activity is detected, they take pre-defined actions such as raising an alert 

message to the system administrator’s screen or reconfiguring the firewall to block 

unwanted packets. Some examples of such systems are NIDES [44], Snort [13], network 

flight recorder [31], and RealSecure [32].   
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2.4.2 Host-based IDS 

As opposed to network-based IDS systems, host-based systems monitor events on a 

particular computer for signs of intrusion. The information sources for host-based 

systems consist of operating system audit trails and system logs [1, 2]. These sources give 

the IDS information about login activity, root activity, file system activity, and much 

more.  Some examples of such systems are NADIR [33], MIDAS [34] and TripWire [35].   

2.4.3 Kernel-based IDS  

Kernel based intrusion detection is a relatively new intrusion detection concept. Some 

examples of such systems are OpenWall [36] and LIDS [37]. These systems work at the 

kernel level of the operating system and aim at preventing buffer overflows, increasing 

file system protection, blocking signals among processes, and generally making intrusion 

more difficult.  

2.4.4 Conclusions on IDS  

Since new threats and security holes are being discovered every day, it is almost 

impossible to prevent all intrusions. However, by keeping up-to-date versions of security 

tools and by using more than one tool for each type of intrusion detection, one can reduce 

the risk of intrusion.  



 

CHAPTER 3 

RELATED WORK 

3.1 Previous XML Based CBR Applications  

How to best represent cases in a case archive is one of the open problems in case-

based reasoning research. The following works on case representation in XML have been 

influential in determining the approach to case representation employed by the proposed 

framework.  

3.1.1 CARET/XML   

CARET/XML, designed by Shimazu [6], is textual case-based reasoning tool that uses 

XML as its case representation language. It is a client-server architecture based on the 

WWW, where a client inputs his/her queries via a web browser, and the CARET/XML 

server responds with the URL of the similar case profiles. Then a java applet on the client 

side, with case adapter, retrieves case profiles with HTTP calls to the server. For 

measuring the similarity between a given case and those in the archive, this system uses 

what is called a similarity data definition (SDD) file, which, for each possible case 

feature, contains a tree structure from which one can calculate the degree of match 

between any two given values for that feature. This tree structured similarity value 

assignment is adopted from an earlier system, SQUAD, by the same author. 
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This system is of interest in that it employs a web-based client-server architecture and 

an XML-based case representation. It is restrictive, however, in that one must also 

provide a complete SDD file constituting a predefined similarity assessment for all 

possible case features. Hence it does not provide the required level of flexibility for our 

security framework.   

3.1.2 CBML 

Case-Based Markup Language (CBML) has been proposed as the case representation 

language for a distributed CBR system [7, 8, 9]. The design of CBML was based on the 

CASUEL case representation language [26] and it aimed to provide functionality similar 

to CASUEL. Although CASUEL is an object-oriented language, CBML is designed for 

flat feature-value representations. 

CBML consists of two files, namely a DTD file and an XML file. The DTD file 

describes the structure of the case, whereas the XML file contains the cases. The main 

characteristic feature of CBML is that it has <slotdef> tags for each case feature that 

define its type and possible values. The following Figure 10 gives a sample <slotdef> tag 

definition for the Duration feature.  

 

 

Figure 10: Sample <slotdef> tag definition. 
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Although the proposed <slotdef> tag structure is effective for simple data type 

comparisons, a more general feature comparison method, that is able to do computations 

for different comparison algorithms, is necessary for complex data types.   

3.2 Snort Intrusion Detection System 

3.2.1 Overview  

Snort is a lightweight intrusion detection system developed by Marty Roesch [27]. As 

opposed to most of the commercial network intrusion detection systems, which require a 

dedicated platform and user training, Snort has a footprint of only a few kilobytes, and is 

easy to install, configure, and use.  It is freely available, quite popular, and runs on Linux, 

BSD, Solaris/SunOS, HP-UX, AIX, IRIX, MAC OS X, and Windows.  

Snort is a real-time packet analyzer and logger on IP networks that is used as a 

Network Intrusion Detection System (NIDS) [27]. It monitors the network traffic in a per 

packet manner for predefined suspicious patterns or activities. These suspicious patterns 

are expressed in terms of Snort Rules.  

 Snort’s architecture is comprised of three subsystems: the packet decoder, the 

detection engine, and the logging and alerting system. The packet decoder subroutines are 

called in the order of the protocol stack for the TCP/IP reference model, i.e. from the 

data-link layer through the transport layer, and then the application layer. These 

subroutines assume that the raw network data satisfies the specific data structure imposed 

by the protocol stacks. Since performance is the key issue in the Snort packet decoder 
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subsystem, instead of making copies of all the packets, the packer decoder only sets 

pointers to the packet data fields that are used by detection engine.  

The detection engine is the heart of the Snort intrusion detection system. This searches 

through its detection rules for a match with the decoded packet data in a per-packet 

manner. The creation of the data structure representation of the Snort rules in memory 

from the rule files takes place before the packet sniffing begins. Therefore, rule parsing 

does not produce a bottleneck in performance. The first matching rule with decoded 

packet triggers the action part in the rule definition. It is possible that the packets may 

move through the network faster than the Snort engine can handle them, in which case 

some packets will not be processed.  In most current systems, however, Snort is still fast 

enough to keep up. This is the reason it has retained its popularity.  

3.2.2 Snort Rules  

Snort uses a simple rule description language that is flexible and quite powerful [13]. 

The rule structure is divided into two sections, the rule header and the rule options. The 

rule header consists of rule action, protocol name, source IP address, source port number, 

destination IP address, and destination port number respectively. These parts are defined 

for each Snort rule. However, a Snort rule may or may not contain rule options. Some 

rule options are content, by which one specifies search pattern in packet’s payload, and 

dsize, by which one specifies a limit on the packet’s payload data size. In order for a 

Snort rule to be fired, all the header features and option features must match their 

corresponding fields in the network packet.  



 

CHAPTER 4 

THE ADAPTIVE CASE BASED SECURITY FRAMEWORK 

In previous chapters, we introduced technologies and methodologies used in the 

adaptive case-based security framework. Namely, these were (i) the adaptive 

architectures used both for the software design and the general framework 

implementation, (ii) the case-based reasoning methodology for analysis of data, (iii) the 

use of XML and DTDs for the knowledge representation structure, and (iv) the use of 

Java with its APIs supporting XML for actual implementation of the framework. In this 

chapter, we will explain how all these parts fit together to build the backbone of the 

security framework.  

The idea behind the security framework is to create an adaptive software for security 

applications that uses case-based reasoning as its primary methodology for problem 

solving and that can be customized into a specific software instance according to the 

requirements of the problem domain.  It is intended that each instance of the framework 

will solve a different security problem using the methodology defined in the framework, 

as illustrated in Figure 11. Instances of the framework are created through a process 

known as customization, with each instance being to create a case-based reasoner for a 

specific problem domain. The instances differ in terms of both the types of the cases and  
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the similarity metrics used in the case retrieval process. The details of this customization 

process will be explained in the sections that follow. 

 

 

Figure 11: Instances of the security framework 

4.1 Systems Overview 

A schematic overview of the security framework is shown in Figure 12. This 

framework contains only the generic notion of case-based reasoning process and the 

mechanisms to adapt some given domain specific knowledge so as to create an instance 

of the framework. However, extracting the generic notion of CBR requires separating the 

characteristics of CBR that are common to all case-based reasoners from the 

characteristics of CBR that are specific to the given problem domain. Two major 

common characteristics of CBR are the case representation scheme and the mechanisms 
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to assess similarity among cases. The details of the generic case-based reasoning system 

are explained in the next section.  

 

 

Figure 12: Adaptive Case Based Security Framework Overview 
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Assuming a generic case representation structure, customization of the framework for 

a given problem domain begins with defining a domain-specific case representation DTD 

that satisfies the general constraints required by the generic structure. With this defined 

DTD and a proper JAXB binding schema for this DTD, the adaptation mechanism in the 

framework creates classes to instantiate and to process XML data that conforms to the 

DTD. The adaptation mechanism then uses JAXB to create the desired classes to support 

the domain specific features.  

This completes the first step of the customization process. The framework, at this 

point, has evolved to have capabilities to process domain specific XML data, but it is still 

not equipped with enough knowledge to analyze the data. Without a case library, a CBR 

system cannot solve any given problem. Therefore a case library has to be provided for 

given problem domain. The case library is easily loaded using the customized DTD and 

JAXB created classes. 

With only a generic notion of CBR, the current state of the framework does not know 

how to assess the similarity of cases. Moreover, in order to perform the CBR process, the 

framework needs to know how to compare cases. This is accomplished by applying 

comparator methods to the individual case features. The determination of which 

comparator to apply to which feature is represented in the case meta-data dictionary. The 

comparator to use on a feature is determined dynamically during the CBR process by 

looking this information up in a metadata dictionary. If the current version of the 

framework does not contain all the needed comparators for a new problem domain, then 

new comparators are written and included in the comparator collection, and appropriate 
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new entries for these need to be added to the metadata dictionary. Details of these 

components appear in the following sections.  

After completing the customization process described above, the evolved system is 

ready to serve in given problem domain. For a given problem instance in this domain, the 

new system applies the CBR process to find the best solution for that problem among 

those that are currently known.  

4.2 Generic Case Based Reasoning 

For the process of separating the generic aspects of CBR from domain specific ones as 

well as for the representation of cases in XML format, works such as CARET [6] and 

CBML [8] have been influential. In CBML, a case-based markup language defined that is 

applicable to this research. However, since it is not an accepted standard for case 

representation, we avoided restraining the framework to a specific language.  

As mentioned, there are two major characteristics of CBR systems that differentiate 

case-based reasoners from each other, namely case representation and similarity 

assessment. Therefore a generic CBR must have the minimal knowledge about these 

characteristics so that it can adapt to new problem domains through their customization.   

4.2.1 Generic Case Representation 

Figure 13 gives the case representation that the generic CBR assumes. Specifically, it 

is assumed that a case is composed of a list of case features defining the problem and a 

solution, and a case feature is composed of a list of feature values. Case features are 

categorized into required features and optional features to emphasize the fact that some 
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features may not appear in all cases. These requirements comprise the general constraints 

required for all applications of the generic CBR framework. They are quite flexible and 

are observed as common among a wide variety of CBR systems.  

 

Figure 13: Generic Case Representation Structure assumed by the framework 

 

4.2.2 Similarity Assessment 

As explained in section 2.2, the first step in the cased-based reasoning process is to 

retrieve cases similar to the given one from the case library. This step requires a 

similarity assessment mechanism to select the most similar cases. A nearest neighbor 

algorithm is widely in used for this purpose. This algorithm selects the case with the 

highest similarity value, where this is computed as weighted sum of the similarity values 
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for the individual features. The feature comparison requires comparators that can assign a 

similarity value for the features. In this thesis, any method that takes two case feature 

values and produces a similarity value for them is called a comparator instance, inasmuch 

as it is an instance of a generic comparator class (in Java, and object of type Comparator). 

Such an instance could be a human fingerprint comparator that evaluates the similarity 

between two given fingerprints, where the measure of similarity is determined by a neural 

network, an AI technique commonly used in fingerprint matching and face recognition. 

Thus, the present framework is quite flexible, and allows for the use of virtually any kind 

of comparator one may desire. 

4.3 Domain Meta Data 

Domain meta-data, shown in the box on the left of Figure 12, is the knowledge about 

the domain used in customizing the framework. It is composed of three components, a 

DTD, a binding schema, and a case library. In the DTD, the structure of the case 

representation and the features types that identify a case are defined. The DTD for a 

given domain must satisfy the general constraints specified in the generic case-based 

reasoner, as described in the foregoing section 4.2. 

The binding schema is automatically created by the framework from the given DTD. 

This schema explains to the Java Schema Compiler (part of the JAXB package) how to 

create the Java classes needed to parse and represent XML documents that conform to the 

given DTD. In effect, the binding schema contains instructions regarding how to bind 

DTDs to a Java class.  
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The last component of a domain meta-data is a case library. This is a collection of 

previously solved problems with their definitions and solutions encoded in XML 

according to the DTD. Once all of the above domain meta-data is given, the framework is 

ready to create Java classes to represent and manipulate XML data for the given domain.   

4.4 Generic and Domain Specific CBR Modules 

The adaptive case-based security framework, or generic CBR, module assumes no 

knowledge about the problem domain. It has to go through a customization process to 

evolve into an instance of the framework comprising a domain-specific CBR module. It 

is crucial to understand the difference between generic and domain-specific modules. 

One can think of generic module as an adaptive program and a domain-specific module 

as a conventional program.  

As explained in section 2.3.1, an adaptive program does not contain fully defined 

behaviors for the methods [16]. The methods are implemented, or bound, only when they 

are needed, i.e., dynamically during the execution of the program. Thus, in our generic 

CBR module, the methods necessary for a CBR process are defined but not totally 

implemented for any particular domain. The customization process makes the generic 

module a domain-specific module. 

In summary, the customization process involves three steps: generation of Java classes 

to handle domain specific knowledge, definition of the necessary comparators to compare 

case features for a given domain, and specification of which case feature uses which 

comparator in terms of a meta-data dictionary. Throughout this process, the source code 
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for the generic module is not changed. The only programming required for customization 

is to create new comparators as might be necessary for the new domain. It should happen 

that accumulation of comparators over time would make writing code for comparators 

less frequent or even unnecessary.  

4.5 Comparators 

For each new type of case feature, the framework needs a comparator that evaluates 

whether, or to what degree, a given problem definition feature matches with the 

corresponding case feature in the case library. As an example, a comparator for IP 

addresses can give a degree of similarity for two given IP addresses according to whether 

they are the same, or on the same machine, or on the same network, or some other 

measure as may be desired.  

The comparators comprise a collection of classes that are kept and compiled 

separately. Whenever a new comparator is defined, the code is compiled and the 

comparator class is stored so that it is ready to use if a domain-specific module needs it 

for a case feature comparison. When a comparator is needed, it is created dynamically 

during run time as an instance of the associated comparator class.  

4.6 Meta Data Dictionary 

As mentioned, a meta-data dictionary is used to associate features with their 

comparators during run time. This enables the domain-specific module to create an 
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instance of the required comparator class as described above. This use of meta-data 

dictionaries is a well-known practice of adaptive, or reflective, software programming, cf. 

[16, 17, 18]. This requires a dynamic object-oriented programming language such as Java 

that supports run-time reflection. Run-time reflection provides a mechanism by which the 

application can dynamically determine the types of the objects and create the methods to 

apply based on the object’s type.  

To illustrate, a meta-data dictionary entry for an IP case feature is as follows:  

DataElementName: SourceIP 
DataElementType: int  
ComparatorType: IPRangeComparator  
 
In this example, the IP address is assumed to be stored in an integer format that 

corresponds to a 32-bit binary representation of an IP address. The entry also says to use 

an instance of the IP range comparator class to compare two IP addresses. 

 



 

CHAPTER 5 

IMPLEMENTATION OF SNORT WITH ADAPTIVE CASE-BASED 

SECURITY FRAMEWORK 

A network intrusion detection system is an essential part of every organization’s 

security framework. Among many others, Snort has recently become very popular, and is 

considered very successful [27]. There are two main reasons for its popularity: (i) as 

many other open-source systems, it can be used free of charge, and (ii) the rules written 

for Snort are being shared among its users, resulting in an accumulation of rules. In this 

chapter, as a proof of concept, customization of the proposed framework to replicate the 

functionality of Snort will be explained.  

5.1 Domain Meta Data and Case Representation  

Implementation of Snort in the adaptive case-based security framework requires 

transformation of Snort knowledge into a case library. In the Snort IDS, knowledge is 

expressed in terms of rules. Therefore, a logical approach for transformation will be to 

convert each Snort rule into a case. An example of a Snort rule is given in Figure 14.  

As explained in section 3.2.2, Snort rules are structured by a well-defined syntax. Each 

rule has an action, protocol name, source IP address, source port number, destination IP

 40
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Figure 14: Sample Snort rule 

 

address, and destination port number. These features may or may not be followed by a set 

of optional features in parentheses. The data type definition for case representation for the 

Snort IDS implementation, which satisfies the generic case-representation constraints 

introduced in section 4.2.1, is given in Figure 15. 

 

 

Figure 15: Data Type Definition for Snort case representation 
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Once the DTD for case representation is determined, the binding schema is generated 

automatically. Figure 16 shows the binding schema generated for the DTD given in 

Figure 15. 

  

 

Figure 16: Binding schema for Snort DTD 

In the process of automated binding schema generation, an element binding 

declaration is defined for each non-simple element in the corresponding DTD, where 

“non-simple” means that there exists at least one other element contained in it. This 

schema is then compiled with the schema compiler, namely xjc [14]. This generates Java 

source code for each non-simple element to represent and manipulate the data in that 

element of any XML document conforming to the DTD. This source code then needs to 

be compiled with Java compiler, javac, to obtain Java classes. The generic CBR module 

uses instances of these generated Java classes in its CBR process to access the XML case 

library.  

At this stage of the transformation, the framework is ready to process XML case 

library knowledge. However, the Snort knowledge is still in Snort rules format. Since the 
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representation of a Snort rule in XML format has been determined and expressed with a 

DTD, the rest of the transformation is a mechanical process. A Java program was written 

to convert Snort rules into XML cases for the case archive. The XML representation for 

the sample Snort rule in Figure 14 is shown in Figure 17. 

 

 

Figure 17: XML case representation for sample Snort rule 

5.2 Comparators  

For each new type of case feature that has not been encountered previously by the 

framework, a comparator has to be defined that determines to what degree a given 

problem definition feature is similar to the corresponding feature of a case in the case 
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library. However, in Snort, the comparison results are either matched or unmatched, i.e. 

the degree of similarity is defined in a discrete manner. Snort implementation requires 

only four different comparators: exact-comparator, range-comparator, IP-range-

comparator, and string-pattern-comparator.   

 5.2.1 Exact Comparator 

The exact-comparator returns true if the features given are exactly the same. For 

example, the protocol feature requires an exact string comparison, which returns true if 

the protocol feature in the problem description has the exact same value as the protocol 

feature in compared case; otherwise it returns false. Since the type information is also 

stored with each feature in data dictionary that is retrieved at run-time, the exact-

comparator can be also used to compare integer values by checking the type of the 

feature and applying proper comparison.   

5.2.2 Range Comparator 

In Snort, features such as port number and data size require a range comparison [27]. 

For example, the value “111:” for port numbers matches with any port number greater 

than or equal to 111. The range-comparator understands the Snort syntax and returns true 

if the port number of the “problem” network packet falls within the range specified by 

given numeric value.  

5.2.3 IP Range Comparator  

Because of their special string representation, IP numbers are compared with a special 

IP-range-comparator. IP version 4 addresses are expressed in XXX.XXX.XXX.XXX 

format where XXX is a value between 0 and 255. In Snort, suspicious IP values are given 

either as an IP address in the rule or a range of IP addresses that is in the form of IP1:IP2, 



 

 45

where IP1 and IP2 are IP addresses. IP-range-comparator gets the value of the case 

feature from the case library. If it is a range value, it assigns its internal min and max 

variables to the IP1 and IP2 respectively. Otherwise, in case of a single value, it assigns 

both min and max values to the same value. Then it applies a range comparison and 

returns the result of the comparison. 

5.2.4 String Pattern Comparator 

In Snort, the optional data for packet content is either in binary format, represented as 

hexadecimal numbers enclosed by a pair of “|” characters, or in text format []. The 

comparison for the content option does not require a perfect matching. Instead a pattern 

match is performed. Hence a string-pattern-comparator is implemented for content 

feature value comparison. String-pattern-comparator differs from exact comparator in 

that it searches for the occurrence of the pattern given in case feature in the packet 

payload.  

5.3 Meta Data Dictionary 

As the final part of customization, in order to be able to instantiate necessary 

comparators, the evolving framework needs to know the comparator type for each case 

feature. In Table 1, the complete meta-data dictionary for our Snort implementation is 

given. Although fourteen case features are defined for the Snort implementation, only 

four different comparators have to be implemented. This is because several different 

features use the same comparator.  
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As described in the section 4.1, feature comparators are compiled and collected 

separately. With the accumulation of comparators over time, the likelihood that one will 

need to implement a new comparator for a new domain will decrease. 

 

Table 1: Meta Data Dictionary for Snort Implementation 

Data Element Name Data Element Type Comparator Type 
Protocol String Exact Comparator 

Source IP Integer IP Range Comparator 
Source Port Integer Range Comparator 

Destination IP Integer IP Range Comparator 
Destination Port Integer Range Comparator 

TTL Integer Exact Comparator 
TOS Integer Exact Comparator 
Flags String Exact Comparator 

ID Integer Exact Comparator 
Dsize Integer Range Comparator 

Sequence Number Integer Exact Comparator 
Acknowledgement Integer Exact Comparator 

Content String String Pattern Comparator 
Offset Integer Exact Comparator 

 

5.4 How Snort Customization of the Framework Works  

The customization process described above leads to an instance of the framework for 

the network intrusion detection problem that has the knowledge of Snort in its case 

library. Given these components---namely the DTD, the JAXB created Java classes to 

handle XML data, the case library in XML, the comparators, and the meta-data 

dictionary---the Snort implementation of the framework performs as shown in the lower 



 

 47

part of Figure 18, denoted with dotted lines. Simply, when a packet is received from the 

network, it triggers the CBR module to search through case library for cases that are 

similar to the network packet.  

  

 

Figure 18: Customization of the security framework for Network Intrusion Detection 
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The search process examines each case in the case library. For each case, every case 

feature defined by the DTD is compared with its corresponding packet feature. In order to 

perform this comparison, first the record containing the name of the case feature is 

retrieved from the meta-data dictionary. This record contains the name of the comparator 

that is needed for that particular case feature. Then using reflection on the name of the 

comparator, an instance of that comparator is created, and both the packet feature value 

and the case feature value are passed to it. Then the comparator instance determines the 

similarity value for that feature.  

In Snort, since all features in a case need to match with their corresponding packet 

features in order to conclude that the case and network packet are matched, only those 

cases that have a complete match on all features are retrieved. In this manner, the CBR 

module retrieves all cases that match the given network packet. The CBR module 

proceeds with performing the case actions of these matched cases. In Snort, action is 

generally reporting an alert message. 

5.5 Testing of the Snort Customization  

We tested the customization of the framework for Snort by creating six different test 

modules to test different parts of the implementation. In order to achieve a thorough test 

of the entire implementation, a test module for each level of comparison was completed.  
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5.5.1 Case Feature Level Comparator Testing  

In the customized framework for Snort, four different comparators are required as 

explained in previous sections. Each comparator takes a pair of case features and 

comparison is exercised at case feature level. Therefore, four different test modules were 

implemented to test each comparator, namely for exact comparator, range comparator, IP 

range comparator, and string pattern comparator respectively. They were tested with 

different values of the case features to make sure they give the proper results. They 

produced the expected results.  

5.5.2 Case Level Testing 

The fifth test module compares two given cases: one is network packet as a case and 

the other is a case from the case library. First, the case library with seventy-three cases is 

created from a subset of current Snort rules. Then, fifteen different synthetic network 

packets were created in XML format. These network packets were compared with fifteen 

different cases from the case library for the case level testing and the ones that were 

expected to match with their tested cases were actually matched.  

5.5.3 Case-Based Reasoner Level Testing 

Finally, the sixth testing module was implemented to test a given packet against the 

case library with seventy-three cases generated for the fifth test. This module takes a 

network packet in XML format and a case library and gives the similar cases, in the case 

library, to the given packet. Each of the fifteen packets used in the previous test was 

passed as a parameter to this testing module iteratively along with the case library. The 

cases matched in the previous test were again matched. Additionally for some packets 



 

 50

more cases were matched from the case library that were not tested previously. All the 

results were followed the Snort rules as expected.  

 



 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In the present work, we have proposed an adaptive security framework that can be 

customized according to the needs of any given CBR problem domain. The adaptation 

techniques used in this research allowed the investigation of the implementation of case-

based reasoning and security applications from a different point of view. Instead of 

producing software for a new problem domain, such as vulnerability analysis, an instance 

of a more generic framework, created in this thesis, is enough to solve this new problem. 

Furthermore, instantiation requires minimal coding effort as explained.  

We implemented a network intrusion detection instance of the framework that 

obtained Snort IDS knowledge through its customization phase. The resulting system is 

not a real-time application that requires network packets in a specific XML format. 

However the same level of success with Snort is achieved in matching.  

The framework is created in such a way that both its software and its knowledge in 

terms of XML cases are portable. This portability makes the framework very suitable for 

distributed systems and agent architectures. As a future work, we will build a network of 

a set of instances of this framework, so that these instances exchange knowledge, in terms 

of both data and functionality and help each other to increase their performance. 
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Also, this near term future effort will focus on building higher degrees of intelligence 

through communication among instances of the framework.  

Another potential application of the framework is a distributed architecture where 

instances of the framework will send their results to a central unit. Then, the central unit 

will put all the results together and produce an output that cannot be achieved by any 

single instance of the framework.  

In addition, we plan to explore the possibility of applying the methods to CBR 

problems in the other CIP domains discussed in section 1.1.  As mentioned, the aim of 

creating a case-based reasoning applicable across multiple domains was the primary 

motivation for this work. 

The present work represents a first, and major, step towards this goal. Further work 

needs to be done, however, to fill out the remainder of the CBR paradigm and produce a 

fully functioning tool. These tasks include, in particular, creating a module for managing 

the case adaptation process depicted in Figure 2. This in itself could comprise a major 

undertaking, possibly entailing application of expert systems technology.  Last we can 

mention the possibility of incorporating an expert system into the case retrieval process 

as well.  This would amount to adopting an interactive, or “conversational,” case-based 

reasoner along the lines of [30]. 
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