
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

ADAPTIVE CASE BASED SECURITY FRAMEWORK FOR

CRITICAL INFRASTRUCTURE PROTECTION

By

ERBIL YILMAZ

A thesis submitted to the
Department of Computer

Science in partial fulfillment of
the requirements for the degree

of Master of Science

Degree Awarded:
Fall Semester, 2002

The members of the Committee approve the

thesis of Erbil Yilmaz defended on Friday, November the 22nd .

 Daniel G. Schwartz
Professor Directing Thesis

 Sara Stoecklin
Committee Member

 Alec Yasinsac
Committee Member

To Gorkem Ozer

 iii

ACKNOWLEDGEMENTS

I give my sincerest thanks to my major professor, Dr. Daniel G. Schwartz, for

supervising my thesis and for his continuous support and constructive criticism towards

the completion of this thesis. I would like to thank both Dr. Sara Stoecklin and Dr. Daniel

G. Schwartz for weekly research meetings, and useful suggestions in my research field.

Without their great help, this work may not have been completed. Also I want to express

my gratitude to my committee members, Dr. Sara Stoecklin and Dr. Alec Yasinsac for

working with me in reviewing my thesis and attending my defense.

Finally, my greatest gratitude goes to Gorkem Ozer for her endless support,

encouragement and for always being there to cheer me up, and my family for their

continuous support throughout my education.

This work was supported by the US Army Research Office grant number DAAD19-

01-1-0502.

 iv

TABLE OF CONTENTS

List of Tables ... vii

List of Figures... viii

ABSTRACT.. ix

INTRODUCTION..1

1.1 Motivation..1
1.2 Computers and Critical Infrastructures..3
1.3 Definition of the Problem ..5
1.4 Organization of Chapters ...6

BACKGROUND AND DESIGN DECISIONS ...7
2.1 Case Based Reasoning ...7

2.1.1 Overview...7
2.1.2 Case-Based Problem Solving..9
2.1.3 The CBR Cycle ...10
2.1.4 Case Similarity and Nearest Neighbor Algorithm..12
2.1.5 CBR for Security Framework ...13

2.2 Adaptive Architectures and Meta-Data ...15
2.2.1 Overview of Adaptive Software Architectures...15
2.2.2 Meta-Data ...17
2.2.3 Adaptive Software Architecture for Security Framework18

2.3 XML and JAVA...18
2.3.1 XML..19
2.3.2 DTD ..20
2.3.3 Overview of JAVA APIs for XML...21
2.3.4 JAXB...22

2.4 Intrusion Detection...24
2.4.1 Network-based IDS...24
2.4.2 Host-based IDS ...25
2.4.3 Kernel-based IDS..25
2.4.4 Conclusions on IDS ..25

RELATED WORK ..26
3.1 Previous XML Based CBR Applications ..26

3.1.1 CARET/XML ...26
3.1.2 CBML ...27

 v

3.2 Snort Intrusion Detection System ..28

3.2.1 Overview...28
3.2.2 Snort Rules..29

THE ADAPTIVE CASE BASED SECURITY FRAMEWORK.................................30
4.1 Systems Overview ...31
4.2 Generic Case Based Reasoning ...34

4.2.1 Generic Case Representation ..34
4.2.2 Similarity Assessment...35

4.3 Domain Meta Data...36
4.4 Generic and Domain Specific CBR Modules ..37
4.5 Comparators...38
4.6 Meta Data Dictionary...38

IMPLEMENTATION OF SNORT WITH ADAPTIVE CASE-BASED SECURITY
FRAMEWORK..40

5.1 Domain Meta Data and Case Representation ..40
5.2 Comparators...43

5.2.1 Exact Comparator ...44
5.2.2 Range Comparator ..44
5.2.3 IP Range Comparator..44
5.2.4 String Pattern Comparator ..45

5.3 Meta Data Dictionary...45
5.4 How Snort Customization of the Framework Works ..46
5.5 Testing of the Snort Customization ...48

5.5.1 Case Feature Level Comparator Testing...49
5.5.2 Case Level Testing..49
5.5.3 Case-Based Reasoner Level Testing...49

CONCLUSIONS AND FUTURE WORK...51

BIBLIOGRAPHY..53

BIOGRAPHICAL SKETCH ..57

 vi

LIST OF TABLES

Table 1: Meta Data Dictionary for Snort Implementation...46

 vii

LIST OF FIGURES

Figure 1: Case Based Problem Solving ...10

Figure 2: Case-Based Reasoning Cycle...11

Figure 3: Number of incidents reported to CERT ...13

Figure 4: Number of vulnerabilities reported to CERT...14

Figure 5: Infinite family of programs denoted by an adaptive program............................17

Figure 6: Thesis defense announcement XML representation ..20

Figure 7: Thesis defense anouncement DTD...21

Figure 8: Binding framework cycle ...22

Figure 9: Generation of Java classes from DTD and binding schema...............................23

Figure 10: Sample <slotdef> tag definition. ..27

Figure 11: Instances of the security framework...31

Figure 12: Adaptive Case Based Security Framework Overview32

Figure 13: Generic Case Representation Structure assumed by the framework................35

Figure 14: Sample Snort rule ...41

Figure 15: Data Type Definition for Snort case representation...41

Figure 16: Binding schema for Snort DTD..42

Figure 17: XML case representation for sample Snort rule...43

Figure 18: Customization of the security framework for Network Intrusion Detection....47

 viii

ABSTRACT

Even though modern information systems provide fairly good service under normal

conditions, in the existence of malicious activity or unforeseen failures these systems

have flaws, imperfections and vulnerabilities. The systems essential to the minimum

operation of government and economy, called critical infrastructures, are particularly

important since attacks on these systems may result in serious consequences to the nation.

This paper presents an adaptive case-based reasoning security framework that can be

applied to any critical infrastructure domain with minimum extra coding effort. Also the

system is specifically tailored for network intrusion detection problems as a proof of

concept. Snort IDS rule knowledge is ejected into a case library so that the final system is

at least as powerful as Snort IDS.

 ix

CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years the US government has drawn increasing attention to the problem of

protecting the nation’s critical infrastructures. Some of the actions that have been taken

are as follows [10, 11]:

 July 1996: The President’s Commission on Critical Infrastructure Protection
(CIP) was established. This was the first national effort to address the
vulnerabilities of the new information age.

 October 1997: The final report of the President’s Commission on CIP was

released [12]. In this report, increasing dependence on critical infrastructures
was stressed and a wide variety of threats were defined.

 May 1998: President Clinton announced two new directives, PDD-62 and

PDD-63, highlighting the growing range of unconventional threats and focused
on protecting the nation’s critical infrastructures.

 October 2001: President Bush created the Office of Homeland Security.

 June 2002: President Bush proposes to create a new Department of Homeland

Security, the most significant transformation of the U.S. government in over a
half-century.

In the 1997 report [12], critical infrastructures are defined as “systems whose

incapacity or destruction would have a debilitating impact on the defense or the economic

security of the nation.” The infrastructures are classified into eight categories:

 1

 Information and Communications
 Electrical Power Systems
 Gas and Oil Production, Storage and Transportation
 Banking and Finance
 Transportation
 Water Supply Systems
 Emergency Services
 Continuity of Government Services

Information systems were put on the top of the critical infrastructures list because of the

severity of the risk and dependence of other critical infrastructures on such systems. In

addition, six topical categories for research and development were identified:

 Information Assurance
 Monitoring and Threat Detection
 Vulnerability Assessment and System Analysis
 Risk Management and Decision Support
 Protection and Mitigation
 Contingency Planning, Incident Response, and Recovery

The research reported in this thesis is aimed at defining a generic, domain-independent

case-based reasoning framework applicable to a variety of problems occurring in all the

indicated infrastructures and research categories. Briefly, case-based reasoning is a

method of recording and benefiting from past experiences, so that former problems and

their solutions can be recalled and reused as appropriate for responding to new

occurrences of the same, or similar, problems.

There are many potential benefits of such a generic framework. Once it has been

created at this level of abstraction, the communication between specific instances of this

framework will be easier. Since a case-based reasoning methodology is used, each

instance of the framework will learn through its experiences. Furthermore, via

communication between instances of different categories (e.g., vulnerability analysis and

 2

 3

intrusion detection) the learning process will produce a higher level of certainty. For

example, if the system is used for attack detection, the overall system will discover the

attacks that no one of the instances can realize by itself.

While the resulting system is expected to have a wide range of applications, the

present work is focused more specifically, for proof of concept, on the problem of

monitoring and threat detection for information systems. In particular, the framework is

customized to replicate the functionality of Snort [27] intrusion detection system as

explained in chapter 5.

1.2 Computers and Critical Infrastructures

As mentioned, Information Systems were put at the top of the list in the 1997

President’s report [12]. This is because computer and networking technologies have

evolved to a point that information systems, as a product of such technologies, have

become an essential part of our lives. After the 1980s, with the explosion in computer

connectivity, especially in the form of the Internet, the way people communicate,

government works, and people do business have begun to be shaped by these

technologies. Not only do individuals rely on these systems for work, leisure,

communication, and many other purposes, but also in some cases, companies, large

organizations, governments, or an entire society depend on their continued operations.

Air traffic systems, telecommunication systems, and power distribution control systems

are counted as some examples of these crucial systems that are generally referred to as

critical information systems.

 4

From the government’s perspective, critical infrastructures, supported by critical

information systems, are the systems that are essential for the minimal operation of the

economy and government. Even though these systems provide fairly good service under

normal conditions, in the presence of malicious activity or unforeseen failures, they are

seen to have flaws, imperfections, and vulnerabilities. When the degree of societal

dependence on these systems is considered, the impact of their failure on society can be

enormous. As an example, even a few hours of effective denial of service attack to

certain parts of a banking system may cause very serious monetary damage. The problem

becomes more serious if one takes into consideration the growing risk of cyber attacks on

these systems by potential adversaries, such as criminal organizations, terrorist groups, or

insiders. Such systems become increasingly attractive as targets for attack due to

society’s increasing dependence on them.

In the interests of improving the efficiency of the various systems by taking advantage

of the ongoing advances in information technology, critical infrastructures have become

increasingly automated and interconnected. Further, most of the infrastructures are

composed of many interconnected networks within themselves. The complexity and

connectivity of these networks carrying critical information introduce vulnerabilities and

threats to the entire infrastructure. For example, one system may be used as a base to

attack other systems, or weakness in one system may be used as an entrance point to

other systems.

Thus, critical infrastructure protection is an open problem for researchers working on

information security. In the past five years, research activities in the area of computer

 5

security for military and intelligence systems have been greatly expanded due to the

infusion of governmental sponsorship support. Some of these research activities, for

example [38, 39, 40], apply also to the critical infrastructure problem, but much still

remains to be done.

1.3 Definition of the Problem

In the early stages of the development of operating systems and computer networks

the primary emphasis was on functionality and performance, and little thought was given

to matters of security. As a result, these systems have evolved to such levels of

complexity and interconnectivity that it is now perhaps impossible to retrofit them with

modifications that will assure adequate security. Moreover, this problem has become

much deeper due to the proliferation of insecure application programs produced by many

different software vendors. Therefore, in the short-term, the only reasonable solution to

computer security problems is to plug the holes in the systems as we discover them. A

short-term solution is needed because of the immediacy and potential severity of the

threats. This has prompted the exploration of the popular security solutions such as

intrusion detection and vulnerability assessment, as well as many others.

In the long-term, however, we may expect to see the complete redesign and rebuilding

of all system from the bottom up, including secure computer chips, secure operating

systems, secure communication protocols, secure programming languages, and secure

applications. In the end, one may expect the new systems to be inherently much more

secure than those of today, but at the same time the need for intrusion detection and

 6

vulnerability analysis may also be expected to continue. No matter how well we design

our systems, dedicated attackers may be expected to find new ways to break in.

Although not all the critical information systems are totally computer-based systems,

they are heavily and increasingly dependent on computers. Furthermore, most of the

information providing the current state of the system and history of errors is available in

digital format even though the systems are different. Therefore, in this research we

concentrate on processing of data and representation of information rather than gathering

of evidence. We believe that a bottleneck in the CIP problem is the difficulty of

processing the enormous amount of data available to the security community. When the

amount of information that it is necessary to process and the complexity of the systems

are considered, the need for an automated intelligent system becomes obvious.

1.4 Organization of Chapters

The rest of the chapters are organized as follows. The methodologies and

technologies, used in this research, and design decisions for our security framework are

presented in chapter 2. Chapter 3 contains the related work. In chapter 4, the proposed

security framework is explained. As a proof of concept, the implementation of an

instance of the framework, that replicates Snort’s functionality, is given in chapter 5.

Finally, the thesis is closed with the concluding remarks and issues for future work.

CHAPTER 2

BACKGROUND AND DESIGN DECISIONS

The framework created in this thesis can be easily customized into a domain specific

security application according to needs of a particular problem domain. To achieve the

required level of abstraction for this flexible framework, the knowledge representation

scheme, learning methodology, programming language, and, more importantly, the

design architecture for the software must be chosen carefully. In this decision process,

works such as [6, 7, 8, 9, 13, 14, 16, 19] have been very influential. In this chapter, we

briefly explain the methodologies and technologies used in the proposed framework and

why their appropriateness for a generic adaptive software system. The first research area

includes the artificial intelligence technique of case-based reasoning [4, 5]. The second

research area includes the use of adaptive architectures and meta-data [16, 17]. The last

area includes XML [28] and the Java programming language [14, 15].

2.1 Case Based Reasoning

2.1.1 Overview

In the early ages of artificial intelligence (AI), reasoning was generally modeled as a

process of extracting conclusions from the facts about the problem domain by

 7

manipulating the domain specific knowledge. Expert, or rule-based, systems were the

first successful AI applications that followed this paradigm. Rule-based systems model

the knowledge about the domain in the form of if-then rules and perform reasoning by

applying the principles of first-order logic to those rules.

In spite of the early successes, rule-based systems had many disadvantages. Among

these, two are important. First, the explicit information needed to model the domain in

the form of rules is difficult to obtain. To build a consistent and effective rule set requires

considerable amount of investigation about the domain. This is known as the knowledge

elicitation bottleneck. Second, even if the rule-based system is implemented, it is difficult

to maintain as the domain evolves since rule extraction from data needs expert

participation. A detailed discussion on these problems can be found in [4].

Case-based reasoning (CBR) was developed as a means to remedy these problems [4,

5]. CBR differs from rule-based systems in its primary source of knowledge. As opposed

to the domain specific rules, the knowledge in CBR systems is stored in cases that

represent past concrete experiences. Case-based reasoning systems do not require a

model of the problem domain. Cases are problem-solution pairs that describe complete

episodes, or full experiences. Thus, in CBR, both knowledge elicitation and knowledge

maintenance amount simply to identifying new cases and adding these to the library. This

can be handled by the typical user. Expert participation in extraction of rules or other

information from generalizations of domain knowledge is not required. For example, in

network intrusion detection problem, cases might represent full network packet

information for the packets that are used in previous attacks. Therefore, such a case will

 8

 9

have a feature for each field in the packet header and a feature for the packet payload.

However, in order to create a rule for a rule-based system for the same problem, one has

to extract relevant information from the network packet.

CBR solves new problems by adapting old solutions to meet the requirements of the

new problem. The CBR approach was inspired by the recognition of the importance of

memory (or remembering) in human reasoning processes. It was observed that people

generally use the solutions of previously solved problems as a starting point for the

solution of new problems. Also it is commonly accepted that the world is regular in the

sense that similar problems have similar solutions. Furthermore, most of the problems

that people encounter recur over time. In view of these facts, case-based reasoning was

developed as a new problem-solving paradigm.

2.1.2 Case-Based Problem Solving

The case-based problem solving process involves navigating through the solutions in a

“solution space,” guided by the similarity of a given problem to those represented by the

cases stored in a case library. This is illustrated in Figure 1, adopted from [4].

As a new problem is encountered, the CBR system searches for those cases in the case

library whose problem descriptions are similar, according to some similarity metric, to

that of the given problem. The solution(s) of the most similar case(s) is (are) then used as

a starting point for devising a solution to the new problem. The CBR system creates a

solution to the new problem by adapting the solutions from the cases that were retrieved.

This adaptation process is sometimes automatic, but typically requires human assistance.

 10

Figure 1: Case Based Problem Solving

2.1.3 The CBR Cycle

Realization of the CBR methodology described above is normally accomplished via a

cyclic CBR process comprising the following four “REs,” as described in [23]:

1. RETRIEVE
2. REUSE
3. REVISE
4. RETAIN

The basic CBR process is depicted in Figure 2 [21, 22]. The most important part of a

case-based reasoning system is its case archive, or case library, where previously

encountered problems are stored as problem description/solution pairs. The problem

description is a set of case features that characterize the problem. When a problem is

perceived in the surrounding environment, it is transformed into a set of case features

 11

(step 1.0) and transferred to the search engine that extracts the similar cases from the case

archive (step 2.0). This extraction process generally uses a similarity metric, which gives

a value representing the degree of similarity between the given problem and an arbitrary

case in the archive. The search engine then returns a set of top ranked cases according to

their similarity to the given problem.

Figure 2: Case-Based Reasoning Cycle

 12

At this stage, two different scenarios are possible: either one of the cases is selected

(step 3.0), and its suggested action in its solution is taken (step 4.0), or a new solution is

formulated from returned cases where their recommended solutions are used as a base

point in the creation of new solution (step 3.0), and the action part of new solution is

taken (step 4.0). If a new solution is created, the problem description and new solution

pair is stored into case archive. In either case, the outcome of the action, as a measure of

success or failure, is recorded with the case in the case archive (step 5.0). This measure is

used in future case extraction processes, so that the performance of the system will

improve.

2.1.4 Case Similarity and Nearest Neighbor Algorithm

The accuracy of the extraction process of similar cases to a given problem determines

the success of the CBR system. If the system cannot find the best matching cases, the

solution suggested by these cases will not be the most appropriate one for the given

problem. The Nearest Neighbor Algorithm (NNA) [42] is extensively used in CBR

systems for robust case extraction. This approach involves the assessment of similarity

based on matching a weighted sum of features. The problem is described as a set of

features in a case, as mentioned above. The features that are used in similarity assessment

are called indexed-features, whereas the others are called non-indexed-features. The

similarity between a given problem P and a case C is calculated as follows in NNA:

∑

∑

=

=

×
= n

i
i

n

i

C

i

P

ii

w

ffw sim
CPSim

1

1
),(

),(

 13

In this equation w is the importance weight of a feature and sim is the similarity

function that calculates the similarity of the matching features of a case and a problem.

2.1.5 CBR for Security Framework

While the use of artificial intelligence techniques, such as knowledge-base systems

and neural networks, for security applications is well-known [33, 34], the possibility of

using case-based reasoning in this realm does not seem to have so far been considered.

CBR can be a natural fit for this domain, however, because it adheres to the two tenets

underlying case-based systems mentioned in the foregoing, namely, the regularity of the

world and the recurrence of similar problems.

In order to show the recurrence rate of the security problems, we will use data from

CERT [43]. CERT is a well-established repository for incident reports, supported by the

US department of defense. In addition to its incidents database, CERT also maintains a

list of currently known vulnerabilities. In Figure 3 and Figure 4, the number of incidents

and the number of vulnerabilities reported to CERT per year are given respectively.

Figure 3: Number of incidents reported to CERT

 14

Figure 4: Number of vulnerabilities reported to CERT

From Figures 3 and 4, the average number of recurrences per vulnerability can be

calculated by dividing total numbers of incidents reported for a given year to the number

of different vulnerabilities reported for the same year. For example for the year 2001, on

average, each vulnerability is exploited twenty times.

As noted by Ian Watson in [5] case-based reasoning is a general methodology, as

distinguished from, say, rule-based reasoning and neural nets, which are more correctly

viewed as technologies. The distinction is based on the observation that case-bases

systems can utilize many different such AI technologies in both the case retrieval and

case adaptation phases of the CBR process. For example, the retrieval phase might use

fuzzy logic as a basis for the similarity metric, and the adaptation phase might use a rule-

based expert system. Specific examples of CBR systems that integrate other AI

techniques are noted by [24, 25]. This distinction becomes crucial in the design of our

adaptive security framework, because it describes the cased-based approach at the

 15

appropriate level of abstraction and generalization and allows for the integration of other

AI techniques.

2.2 Adaptive Architectures and Meta-Data

2.2.1 Overview of Adaptive Software Architectures

Due to the complexity of today’s problem environments and the increasing

expectations place on software systems, it is impossible to create a software system

design that satisfies all such expectations at all dimensions of the given problem. The

time versus space trade off for programmers in the early ages of software engineering has

become a multidimensional dilemma including security, portability, performance, quality

of service, reusability, and much more. These factors cause the requirements of the

software systems to change rapidly in accordance with changes in the circumstances

under which the software is used.

There is an observable trend in software design methodologies towards adaptive

software systems. In the 1970’s, structured programming was popular [20]. This

technique enables one to build large applications where the specifications are given

before the design phase and they are then implemented as specified. Then, with 1980’s,

the Object-Oriented Programming concept was introduced. This technique makes it

easier for the programmer to handle specification changes. Since all the functionality of

the software is separated among different classes, and the interactions between classes are

organized in such a way that they minimize coupling and maximize cohesion, the change

management of specification becomes easier. However, any change still requires

 16

programmer involvement. Even a simple change in requirements still leads to a costly, in

terms of both time and money, software engineering cycle that includes all of redesign,

re-implementation, and retesting.

Adaptive programming is a new software design methodology that enables the user to

change the behavior of the program without changing its code [16, 18]. This requires a

different software architecture. Adaptive or reflexive architectures are defined as the

architectures that can dynamically adapt at run-time to new user requirements. In this

architecture, the environment is modeled in the form of structural descriptions,

constraints, and rules, rather than classes as in object-oriented programming [16]. This

flexibility requires different levels of abstraction. Even though it is generally difficult to

build, and more difficult to understand, these software architectures, the amount of actual

code required for the program decreases dramatically.

Adaptive architectures heavily rely on dynamic programming languages. Static

languages, like C, require the programmer to establish the structure of the program in

terms of data structures and data manipulation in the early stages of programming.

However, in dynamic programming languages, a running program can add a new method

to one of its classes without recompilation. Currently, Java is one of the most popular

programming language providing dynamic programming features.

Figure 5 depicts how an adaptive program differs from a conventional program [16].

In adaptive programs, the class structures are defined partially by setting a number of

constraints over the class structure that must be satisfied. Examples of such constraints

are method names and the types of the data structures that the methods will act upon.

 17

Figure 5: Infinite family of programs denoted by an adaptive program

As a result, there are infinitely many class structures satisfying the constraints defined by

a given adaptive program. Further, behaviors of the methods are not implemented

thoroughly in the adaptive program. Methods are implemented or bound only whenever

they are needed. Since each class structure represents a conventional object-oriented

program, an adaptive program denotes a family of programs where their class structures

satisfy the constraints of the adaptive program.

2.2.2 Meta-Data

Meta-Data is one of the most common tools used by adaptive architectures to provide

easy change management. Data describing the properties of the data and behavior used in

an application domain is called meta-data. Once the programmer abstracts out predictable

changes or the type of changes in the program and expresses them in terms of meta-data,

the maintenance and the change management of the program becomes a task of changing

 18

the meta-data not the program code. Thus, it is an easier task. The basic idea lying behind

the meta-data concept is that the designer cannot predict all future potential changes and

design the system accordingly, but by shifting the information about the domain from the

actual source code into data one can make the source code easy to manage and change

[17, 18].

2.2.3 Adaptive Software Architecture for Security Framework

In this research, it was aimed to define a common software architecture and

methodology that can be used to implement a family of programs in such a way as to

enable collaboration between these programs in their decision making processes. In

addition, it was aimed to implement the behavior of the well-known Snort [27] intrusion

detection system as a proof of concept. In the future, collaborations among different

instances of the same security framework will be explored.

Adaptive architectures have played an important role in the design of the security

framework proposed in this thesis. The use of this software engineering methodology has

made the implementation of the Snort [27] functionality much easier than would have

been otherwise possible.

2.3 XML and JAVA

Case representation is one of the most important issues in case-based reasoning

systems. In this thesis, we proposed an adaptive case-based framework such that the

instances of this framework will solve different problems. Therefore, selecting a generic

case representation that can be customized and used for different problem domains

 19

becomes critical. Furthermore, the aim of supporting communication among instances of

the framework requires a portable and adaptive case representation. With its unique

properties described below, XML provides such a portable, customizable data

representation.

Java is one of the most widely used object-oriented dynamic programming languages,

providing features such as portable, platform-independent code and reflection. Lately,

with Java APIs for XML, it has become easy to use XML data representation from Java

programs [14, 15]. These two characteristics guided the decision to use Java.

2.3.1 XML

XML (eXtensible Markup Language) is a system-independent data representation

language developed by W3C (World Wide Web Consortium) and has become an

industry-standard [26, 28]. As with all markup languages, XML uses special notation to

differentiate sections of a document. Although XML uses the same notation, angle

brackets with tags (<TAG> … </TAG>) to mark different sections, as does HTML, the

purpose of these tags in XML is completely different. HTML tags tell the application

how to display the text occurring between the start and end tags, whereas XML tags

specify the meaning of the text enclosed by the tags. The other main difference between

HTML and XML is that HTML tags are predefined. However XML allows you to define

your own tags, and, further, the structure of the document, by means of different type

definition languages, such as DTD (Data Type Definition) and XML Schema.

The following example, Figure 6, is the XML data representation of a thesis defense

announcement structure. The <thesisdefenseannouncement> and <\

thesisdefenseannouncement> tags tells the application that the information between them

 20

is a thesis defense announcement. However, the same thesis announcement can be

structured differently. In order to avoid confusion a DTD, or some other type definition

providing the structure of the announcement, is necessary.

Figure 6: Thesis defense announcement XML representation

2.3.2 DTD

A document type definition (DTD) provides the definition of the structure and the

content of XML documents [26, 28]. Each declaration in a DTD defines the structure of a

building block in the associated XML documents. There are two types of basic

declarations: element declarations and attribute declarations. Element declarations

specify the set of tags an XML document can contain. Attribute declarations provide

additional information about the element defined by a given element declaration.

Attribute declarations are not mandatory for each element, as can be seen in Figure 7.

This figure defines the structure of the thesis defense announcement XML data given

above.

 21

Figure 7: Thesis defense anouncement DTD

The first line in the example DTD defines the highest-level element,

thesisdefenseannouncement, which must contain all the elements between the parentheses

that follow it. The DTD provides more features than the ones covered in this section,

such as a capability for selecting among a set of tags. More detailed information about

XML and DTDs can be found in [26, 28].

2.3.3 Overview of JAVA APIs for XML

Java provides a set of APIs for XML related applications. These APIs are listed below.

They fall into one of two broad categories: document oriented and procedure oriented.

[14, 15]

Document-oriented:

 Java API for XML Processing (JAXP): process XML documents using different
parsers

 Java Architecture for XML Binding (JAXB): maps XML elements to Java classes

Procedure-oriented:

 Java API for XML Messaging (JAXM): sends SOAP messages over the Internet
 Java API for XML Registries (JAXR): provides a standard way to access business

registries

 22

 Java API for XML-based RPC (JAX-RPC): sends SOAP method calls to remote
machines and receives results

2.3.4 JAXB

Java Architecture for XML Binding provides a way to create mappings between XML

documents and Java objects [14]. The JAXB compiler, takes a given DTD for XML

documents and a binding schema, and generates Java classes that contain all the

necessary source code to parse and manipulate XML documents satisfying that DTD.

Figure 8 explains the binding cycle.

Figure 8: Binding framework cycle

The primary operations of the binding framework as shown in Figure 8 are

unmarshalling, marshalling, and validation.

 Unmarshalling: the process that creates a content tree instance from a given

XML document.

 Marshalling: the process that creates an XML document from a content tree

instance.

 23

 Validation: the process that checks whether a content tree satisfies all the

constraints expressed in DTD.

The generation cycle of Java classes from a DTD and a binding schema is given in

Figure 9. The first step is to write a binding schema. This contains instructions on how to

bind the DTD components to Java classes. For example, for the DTD shown in Figure 7,

the binding schema might specify that a class be created for the element

thesisdefenseannouncement with variables representing title, author, etc., and that

#PCDATA indicates the data type String. Then one runs the schema compiler (xjc) with

the DTD and binding schema using the command:

xjc datatypedefinition.dtd bindingschema.xjs

Execution of the this command generates Java class source code that has all the

functionality needed to handle the primary operations of the binding framework

(marshalling, unmarshalling, and validation) over XML documents whose structure are

defined by given DTD.

Figure 9: Generation of Java classes from DTD and binding schema

 24

2.4 Intrusion Detection

Intrusion detection [1, 2] is the process of monitoring computers on hosts or computer

networks for violations of security policy. The first model for an intrusion detection

system (IDS) was proposed in 1986 by Denning [3]. Although many different intrusion

detection systems have emerged since Denning’s paper, the basic structure for the

intrusion detection systems is still very similar to Denning’s model. An IDS consists of

three components:

 Information source providing a stream of event records

 Analysis engine that processes the evidence to find intrusions

 Response component that generates actions based on the analysis

Intrusion detection systems fall into three categories: network-base, host-based, and,

recently, kernel-based intrusion detection systems [41].

2.4.1 Network-based IDS

A network based intrusion detection system (NIDS) monitors network traffic for

suspicious activity. The idea of a NIDS evolved from packet sniffers and network

monitors that capture all the packets on the network and produce a view of the network

traffic. NIDS are automated systems that look for particular signs in the network traffic.

Once such activity is detected, they take pre-defined actions such as raising an alert

message to the system administrator’s screen or reconfiguring the firewall to block

unwanted packets. Some examples of such systems are NIDES [44], Snort [13], network

flight recorder [31], and RealSecure [32].

 25

2.4.2 Host-based IDS

As opposed to network-based IDS systems, host-based systems monitor events on a

particular computer for signs of intrusion. The information sources for host-based

systems consist of operating system audit trails and system logs [1, 2]. These sources give

the IDS information about login activity, root activity, file system activity, and much

more. Some examples of such systems are NADIR [33], MIDAS [34] and TripWire [35].

2.4.3 Kernel-based IDS

Kernel based intrusion detection is a relatively new intrusion detection concept. Some

examples of such systems are OpenWall [36] and LIDS [37]. These systems work at the

kernel level of the operating system and aim at preventing buffer overflows, increasing

file system protection, blocking signals among processes, and generally making intrusion

more difficult.

2.4.4 Conclusions on IDS

Since new threats and security holes are being discovered every day, it is almost

impossible to prevent all intrusions. However, by keeping up-to-date versions of security

tools and by using more than one tool for each type of intrusion detection, one can reduce

the risk of intrusion.

CHAPTER 3

RELATED WORK

3.1 Previous XML Based CBR Applications

How to best represent cases in a case archive is one of the open problems in case-

based reasoning research. The following works on case representation in XML have been

influential in determining the approach to case representation employed by the proposed

framework.

3.1.1 CARET/XML

CARET/XML, designed by Shimazu [6], is textual case-based reasoning tool that uses

XML as its case representation language. It is a client-server architecture based on the

WWW, where a client inputs his/her queries via a web browser, and the CARET/XML

server responds with the URL of the similar case profiles. Then a java applet on the client

side, with case adapter, retrieves case profiles with HTTP calls to the server. For

measuring the similarity between a given case and those in the archive, this system uses

what is called a similarity data definition (SDD) file, which, for each possible case

feature, contains a tree structure from which one can calculate the degree of match

between any two given values for that feature. This tree structured similarity value

assignment is adopted from an earlier system, SQUAD, by the same author.

 26

 27

This system is of interest in that it employs a web-based client-server architecture and

an XML-based case representation. It is restrictive, however, in that one must also

provide a complete SDD file constituting a predefined similarity assessment for all

possible case features. Hence it does not provide the required level of flexibility for our

security framework.

3.1.2 CBML

Case-Based Markup Language (CBML) has been proposed as the case representation

language for a distributed CBR system [7, 8, 9]. The design of CBML was based on the

CASUEL case representation language [26] and it aimed to provide functionality similar

to CASUEL. Although CASUEL is an object-oriented language, CBML is designed for

flat feature-value representations.

CBML consists of two files, namely a DTD file and an XML file. The DTD file

describes the structure of the case, whereas the XML file contains the cases. The main

characteristic feature of CBML is that it has <slotdef> tags for each case feature that

define its type and possible values. The following Figure 10 gives a sample <slotdef> tag

definition for the Duration feature.

Figure 10: Sample <slotdef> tag definition.

 28

Although the proposed <slotdef> tag structure is effective for simple data type

comparisons, a more general feature comparison method, that is able to do computations

for different comparison algorithms, is necessary for complex data types.

3.2 Snort Intrusion Detection System

3.2.1 Overview

Snort is a lightweight intrusion detection system developed by Marty Roesch [27]. As

opposed to most of the commercial network intrusion detection systems, which require a

dedicated platform and user training, Snort has a footprint of only a few kilobytes, and is

easy to install, configure, and use. It is freely available, quite popular, and runs on Linux,

BSD, Solaris/SunOS, HP-UX, AIX, IRIX, MAC OS X, and Windows.

Snort is a real-time packet analyzer and logger on IP networks that is used as a

Network Intrusion Detection System (NIDS) [27]. It monitors the network traffic in a per

packet manner for predefined suspicious patterns or activities. These suspicious patterns

are expressed in terms of Snort Rules.

 Snort’s architecture is comprised of three subsystems: the packet decoder, the

detection engine, and the logging and alerting system. The packet decoder subroutines are

called in the order of the protocol stack for the TCP/IP reference model, i.e. from the

data-link layer through the transport layer, and then the application layer. These

subroutines assume that the raw network data satisfies the specific data structure imposed

by the protocol stacks. Since performance is the key issue in the Snort packet decoder

 29

subsystem, instead of making copies of all the packets, the packer decoder only sets

pointers to the packet data fields that are used by detection engine.

The detection engine is the heart of the Snort intrusion detection system. This searches

through its detection rules for a match with the decoded packet data in a per-packet

manner. The creation of the data structure representation of the Snort rules in memory

from the rule files takes place before the packet sniffing begins. Therefore, rule parsing

does not produce a bottleneck in performance. The first matching rule with decoded

packet triggers the action part in the rule definition. It is possible that the packets may

move through the network faster than the Snort engine can handle them, in which case

some packets will not be processed. In most current systems, however, Snort is still fast

enough to keep up. This is the reason it has retained its popularity.

3.2.2 Snort Rules

Snort uses a simple rule description language that is flexible and quite powerful [13].

The rule structure is divided into two sections, the rule header and the rule options. The

rule header consists of rule action, protocol name, source IP address, source port number,

destination IP address, and destination port number respectively. These parts are defined

for each Snort rule. However, a Snort rule may or may not contain rule options. Some

rule options are content, by which one specifies search pattern in packet’s payload, and

dsize, by which one specifies a limit on the packet’s payload data size. In order for a

Snort rule to be fired, all the header features and option features must match their

corresponding fields in the network packet.

CHAPTER 4

THE ADAPTIVE CASE BASED SECURITY FRAMEWORK

In previous chapters, we introduced technologies and methodologies used in the

adaptive case-based security framework. Namely, these were (i) the adaptive

architectures used both for the software design and the general framework

implementation, (ii) the case-based reasoning methodology for analysis of data, (iii) the

use of XML and DTDs for the knowledge representation structure, and (iv) the use of

Java with its APIs supporting XML for actual implementation of the framework. In this

chapter, we will explain how all these parts fit together to build the backbone of the

security framework.

The idea behind the security framework is to create an adaptive software for security

applications that uses case-based reasoning as its primary methodology for problem

solving and that can be customized into a specific software instance according to the

requirements of the problem domain. It is intended that each instance of the framework

will solve a different security problem using the methodology defined in the framework,

as illustrated in Figure 11. Instances of the framework are created through a process

known as customization, with each instance being to create a case-based reasoner for a

specific problem domain. The instances differ in terms of both the types of the cases and

 30

the similarity metrics used in the case retrieval process. The details of this customization

process will be explained in the sections that follow.

Figure 11: Instances of the security framework

4.1 Systems Overview

A schematic overview of the security framework is shown in Figure 12. This

framework contains only the generic notion of case-based reasoning process and the

mechanisms to adapt some given domain specific knowledge so as to create an instance

of the framework. However, extracting the generic notion of CBR requires separating the

characteristics of CBR that are common to all case-based reasoners from the

characteristics of CBR that are specific to the given problem domain. Two major

common characteristics of CBR are the case representation scheme and the mechanisms

 31

 32

to assess similarity among cases. The details of the generic case-based reasoning system

are explained in the next section.

Figure 12: Adaptive Case Based Security Framework Overview

 33

Assuming a generic case representation structure, customization of the framework for

a given problem domain begins with defining a domain-specific case representation DTD

that satisfies the general constraints required by the generic structure. With this defined

DTD and a proper JAXB binding schema for this DTD, the adaptation mechanism in the

framework creates classes to instantiate and to process XML data that conforms to the

DTD. The adaptation mechanism then uses JAXB to create the desired classes to support

the domain specific features.

This completes the first step of the customization process. The framework, at this

point, has evolved to have capabilities to process domain specific XML data, but it is still

not equipped with enough knowledge to analyze the data. Without a case library, a CBR

system cannot solve any given problem. Therefore a case library has to be provided for

given problem domain. The case library is easily loaded using the customized DTD and

JAXB created classes.

With only a generic notion of CBR, the current state of the framework does not know

how to assess the similarity of cases. Moreover, in order to perform the CBR process, the

framework needs to know how to compare cases. This is accomplished by applying

comparator methods to the individual case features. The determination of which

comparator to apply to which feature is represented in the case meta-data dictionary. The

comparator to use on a feature is determined dynamically during the CBR process by

looking this information up in a metadata dictionary. If the current version of the

framework does not contain all the needed comparators for a new problem domain, then

new comparators are written and included in the comparator collection, and appropriate

 34

new entries for these need to be added to the metadata dictionary. Details of these

components appear in the following sections.

After completing the customization process described above, the evolved system is

ready to serve in given problem domain. For a given problem instance in this domain, the

new system applies the CBR process to find the best solution for that problem among

those that are currently known.

4.2 Generic Case Based Reasoning

For the process of separating the generic aspects of CBR from domain specific ones as

well as for the representation of cases in XML format, works such as CARET [6] and

CBML [8] have been influential. In CBML, a case-based markup language defined that is

applicable to this research. However, since it is not an accepted standard for case

representation, we avoided restraining the framework to a specific language.

As mentioned, there are two major characteristics of CBR systems that differentiate

case-based reasoners from each other, namely case representation and similarity

assessment. Therefore a generic CBR must have the minimal knowledge about these

characteristics so that it can adapt to new problem domains through their customization.

4.2.1 Generic Case Representation

Figure 13 gives the case representation that the generic CBR assumes. Specifically, it

is assumed that a case is composed of a list of case features defining the problem and a

solution, and a case feature is composed of a list of feature values. Case features are

categorized into required features and optional features to emphasize the fact that some

 35

features may not appear in all cases. These requirements comprise the general constraints

required for all applications of the generic CBR framework. They are quite flexible and

are observed as common among a wide variety of CBR systems.

Figure 13: Generic Case Representation Structure assumed by the framework

4.2.2 Similarity Assessment

As explained in section 2.2, the first step in the cased-based reasoning process is to

retrieve cases similar to the given one from the case library. This step requires a

similarity assessment mechanism to select the most similar cases. A nearest neighbor

algorithm is widely in used for this purpose. This algorithm selects the case with the

highest similarity value, where this is computed as weighted sum of the similarity values

 36

for the individual features. The feature comparison requires comparators that can assign a

similarity value for the features. In this thesis, any method that takes two case feature

values and produces a similarity value for them is called a comparator instance, inasmuch

as it is an instance of a generic comparator class (in Java, and object of type Comparator).

Such an instance could be a human fingerprint comparator that evaluates the similarity

between two given fingerprints, where the measure of similarity is determined by a neural

network, an AI technique commonly used in fingerprint matching and face recognition.

Thus, the present framework is quite flexible, and allows for the use of virtually any kind

of comparator one may desire.

4.3 Domain Meta Data

Domain meta-data, shown in the box on the left of Figure 12, is the knowledge about

the domain used in customizing the framework. It is composed of three components, a

DTD, a binding schema, and a case library. In the DTD, the structure of the case

representation and the features types that identify a case are defined. The DTD for a

given domain must satisfy the general constraints specified in the generic case-based

reasoner, as described in the foregoing section 4.2.

The binding schema is automatically created by the framework from the given DTD.

This schema explains to the Java Schema Compiler (part of the JAXB package) how to

create the Java classes needed to parse and represent XML documents that conform to the

given DTD. In effect, the binding schema contains instructions regarding how to bind

DTDs to a Java class.

 37

The last component of a domain meta-data is a case library. This is a collection of

previously solved problems with their definitions and solutions encoded in XML

according to the DTD. Once all of the above domain meta-data is given, the framework is

ready to create Java classes to represent and manipulate XML data for the given domain.

4.4 Generic and Domain Specific CBR Modules

The adaptive case-based security framework, or generic CBR, module assumes no

knowledge about the problem domain. It has to go through a customization process to

evolve into an instance of the framework comprising a domain-specific CBR module. It

is crucial to understand the difference between generic and domain-specific modules.

One can think of generic module as an adaptive program and a domain-specific module

as a conventional program.

As explained in section 2.3.1, an adaptive program does not contain fully defined

behaviors for the methods [16]. The methods are implemented, or bound, only when they

are needed, i.e., dynamically during the execution of the program. Thus, in our generic

CBR module, the methods necessary for a CBR process are defined but not totally

implemented for any particular domain. The customization process makes the generic

module a domain-specific module.

In summary, the customization process involves three steps: generation of Java classes

to handle domain specific knowledge, definition of the necessary comparators to compare

case features for a given domain, and specification of which case feature uses which

comparator in terms of a meta-data dictionary. Throughout this process, the source code

 38

for the generic module is not changed. The only programming required for customization

is to create new comparators as might be necessary for the new domain. It should happen

that accumulation of comparators over time would make writing code for comparators

less frequent or even unnecessary.

4.5 Comparators

For each new type of case feature, the framework needs a comparator that evaluates

whether, or to what degree, a given problem definition feature matches with the

corresponding case feature in the case library. As an example, a comparator for IP

addresses can give a degree of similarity for two given IP addresses according to whether

they are the same, or on the same machine, or on the same network, or some other

measure as may be desired.

The comparators comprise a collection of classes that are kept and compiled

separately. Whenever a new comparator is defined, the code is compiled and the

comparator class is stored so that it is ready to use if a domain-specific module needs it

for a case feature comparison. When a comparator is needed, it is created dynamically

during run time as an instance of the associated comparator class.

4.6 Meta Data Dictionary

As mentioned, a meta-data dictionary is used to associate features with their

comparators during run time. This enables the domain-specific module to create an

 39

instance of the required comparator class as described above. This use of meta-data

dictionaries is a well-known practice of adaptive, or reflective, software programming, cf.

[16, 17, 18]. This requires a dynamic object-oriented programming language such as Java

that supports run-time reflection. Run-time reflection provides a mechanism by which the

application can dynamically determine the types of the objects and create the methods to

apply based on the object’s type.

To illustrate, a meta-data dictionary entry for an IP case feature is as follows:

DataElementName: SourceIP
DataElementType: int
ComparatorType: IPRangeComparator

In this example, the IP address is assumed to be stored in an integer format that

corresponds to a 32-bit binary representation of an IP address. The entry also says to use

an instance of the IP range comparator class to compare two IP addresses.

CHAPTER 5

IMPLEMENTATION OF SNORT WITH ADAPTIVE CASE-BASED

SECURITY FRAMEWORK

A network intrusion detection system is an essential part of every organization’s

security framework. Among many others, Snort has recently become very popular, and is

considered very successful [27]. There are two main reasons for its popularity: (i) as

many other open-source systems, it can be used free of charge, and (ii) the rules written

for Snort are being shared among its users, resulting in an accumulation of rules. In this

chapter, as a proof of concept, customization of the proposed framework to replicate the

functionality of Snort will be explained.

5.1 Domain Meta Data and Case Representation

Implementation of Snort in the adaptive case-based security framework requires

transformation of Snort knowledge into a case library. In the Snort IDS, knowledge is

expressed in terms of rules. Therefore, a logical approach for transformation will be to

convert each Snort rule into a case. An example of a Snort rule is given in Figure 14.

As explained in section 3.2.2, Snort rules are structured by a well-defined syntax. Each

rule has an action, protocol name, source IP address, source port number, destination IP

 40

 41

Figure 14: Sample Snort rule

address, and destination port number. These features may or may not be followed by a set

of optional features in parentheses. The data type definition for case representation for the

Snort IDS implementation, which satisfies the generic case-representation constraints

introduced in section 4.2.1, is given in Figure 15.

Figure 15: Data Type Definition for Snort case representation

 42

Once the DTD for case representation is determined, the binding schema is generated

automatically. Figure 16 shows the binding schema generated for the DTD given in

Figure 15.

Figure 16: Binding schema for Snort DTD

In the process of automated binding schema generation, an element binding

declaration is defined for each non-simple element in the corresponding DTD, where

“non-simple” means that there exists at least one other element contained in it. This

schema is then compiled with the schema compiler, namely xjc [14]. This generates Java

source code for each non-simple element to represent and manipulate the data in that

element of any XML document conforming to the DTD. This source code then needs to

be compiled with Java compiler, javac, to obtain Java classes. The generic CBR module

uses instances of these generated Java classes in its CBR process to access the XML case

library.

At this stage of the transformation, the framework is ready to process XML case

library knowledge. However, the Snort knowledge is still in Snort rules format. Since the

 43

representation of a Snort rule in XML format has been determined and expressed with a

DTD, the rest of the transformation is a mechanical process. A Java program was written

to convert Snort rules into XML cases for the case archive. The XML representation for

the sample Snort rule in Figure 14 is shown in Figure 17.

Figure 17: XML case representation for sample Snort rule

5.2 Comparators

For each new type of case feature that has not been encountered previously by the

framework, a comparator has to be defined that determines to what degree a given

problem definition feature is similar to the corresponding feature of a case in the case

 44

library. However, in Snort, the comparison results are either matched or unmatched, i.e.

the degree of similarity is defined in a discrete manner. Snort implementation requires

only four different comparators: exact-comparator, range-comparator, IP-range-

comparator, and string-pattern-comparator.

 5.2.1 Exact Comparator

The exact-comparator returns true if the features given are exactly the same. For

example, the protocol feature requires an exact string comparison, which returns true if

the protocol feature in the problem description has the exact same value as the protocol

feature in compared case; otherwise it returns false. Since the type information is also

stored with each feature in data dictionary that is retrieved at run-time, the exact-

comparator can be also used to compare integer values by checking the type of the

feature and applying proper comparison.

5.2.2 Range Comparator

In Snort, features such as port number and data size require a range comparison [27].

For example, the value “111:” for port numbers matches with any port number greater

than or equal to 111. The range-comparator understands the Snort syntax and returns true

if the port number of the “problem” network packet falls within the range specified by

given numeric value.

5.2.3 IP Range Comparator

Because of their special string representation, IP numbers are compared with a special

IP-range-comparator. IP version 4 addresses are expressed in XXX.XXX.XXX.XXX

format where XXX is a value between 0 and 255. In Snort, suspicious IP values are given

either as an IP address in the rule or a range of IP addresses that is in the form of IP1:IP2,

 45

where IP1 and IP2 are IP addresses. IP-range-comparator gets the value of the case

feature from the case library. If it is a range value, it assigns its internal min and max

variables to the IP1 and IP2 respectively. Otherwise, in case of a single value, it assigns

both min and max values to the same value. Then it applies a range comparison and

returns the result of the comparison.

5.2.4 String Pattern Comparator

In Snort, the optional data for packet content is either in binary format, represented as

hexadecimal numbers enclosed by a pair of “|” characters, or in text format []. The

comparison for the content option does not require a perfect matching. Instead a pattern

match is performed. Hence a string-pattern-comparator is implemented for content

feature value comparison. String-pattern-comparator differs from exact comparator in

that it searches for the occurrence of the pattern given in case feature in the packet

payload.

5.3 Meta Data Dictionary

As the final part of customization, in order to be able to instantiate necessary

comparators, the evolving framework needs to know the comparator type for each case

feature. In Table 1, the complete meta-data dictionary for our Snort implementation is

given. Although fourteen case features are defined for the Snort implementation, only

four different comparators have to be implemented. This is because several different

features use the same comparator.

 46

As described in the section 4.1, feature comparators are compiled and collected

separately. With the accumulation of comparators over time, the likelihood that one will

need to implement a new comparator for a new domain will decrease.

Table 1: Meta Data Dictionary for Snort Implementation

Data Element Name Data Element Type Comparator Type
Protocol String Exact Comparator

Source IP Integer IP Range Comparator
Source Port Integer Range Comparator

Destination IP Integer IP Range Comparator
Destination Port Integer Range Comparator

TTL Integer Exact Comparator
TOS Integer Exact Comparator
Flags String Exact Comparator

ID Integer Exact Comparator
Dsize Integer Range Comparator

Sequence Number Integer Exact Comparator
Acknowledgement Integer Exact Comparator

Content String String Pattern Comparator
Offset Integer Exact Comparator

5.4 How Snort Customization of the Framework Works

The customization process described above leads to an instance of the framework for

the network intrusion detection problem that has the knowledge of Snort in its case

library. Given these components---namely the DTD, the JAXB created Java classes to

handle XML data, the case library in XML, the comparators, and the meta-data

dictionary---the Snort implementation of the framework performs as shown in the lower

 47

part of Figure 18, denoted with dotted lines. Simply, when a packet is received from the

network, it triggers the CBR module to search through case library for cases that are

similar to the network packet.

Figure 18: Customization of the security framework for Network Intrusion Detection

 48

The search process examines each case in the case library. For each case, every case

feature defined by the DTD is compared with its corresponding packet feature. In order to

perform this comparison, first the record containing the name of the case feature is

retrieved from the meta-data dictionary. This record contains the name of the comparator

that is needed for that particular case feature. Then using reflection on the name of the

comparator, an instance of that comparator is created, and both the packet feature value

and the case feature value are passed to it. Then the comparator instance determines the

similarity value for that feature.

In Snort, since all features in a case need to match with their corresponding packet

features in order to conclude that the case and network packet are matched, only those

cases that have a complete match on all features are retrieved. In this manner, the CBR

module retrieves all cases that match the given network packet. The CBR module

proceeds with performing the case actions of these matched cases. In Snort, action is

generally reporting an alert message.

5.5 Testing of the Snort Customization

We tested the customization of the framework for Snort by creating six different test

modules to test different parts of the implementation. In order to achieve a thorough test

of the entire implementation, a test module for each level of comparison was completed.

 49

5.5.1 Case Feature Level Comparator Testing

In the customized framework for Snort, four different comparators are required as

explained in previous sections. Each comparator takes a pair of case features and

comparison is exercised at case feature level. Therefore, four different test modules were

implemented to test each comparator, namely for exact comparator, range comparator, IP

range comparator, and string pattern comparator respectively. They were tested with

different values of the case features to make sure they give the proper results. They

produced the expected results.

5.5.2 Case Level Testing

The fifth test module compares two given cases: one is network packet as a case and

the other is a case from the case library. First, the case library with seventy-three cases is

created from a subset of current Snort rules. Then, fifteen different synthetic network

packets were created in XML format. These network packets were compared with fifteen

different cases from the case library for the case level testing and the ones that were

expected to match with their tested cases were actually matched.

5.5.3 Case-Based Reasoner Level Testing

Finally, the sixth testing module was implemented to test a given packet against the

case library with seventy-three cases generated for the fifth test. This module takes a

network packet in XML format and a case library and gives the similar cases, in the case

library, to the given packet. Each of the fifteen packets used in the previous test was

passed as a parameter to this testing module iteratively along with the case library. The

cases matched in the previous test were again matched. Additionally for some packets

 50

more cases were matched from the case library that were not tested previously. All the

results were followed the Snort rules as expected.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In the present work, we have proposed an adaptive security framework that can be

customized according to the needs of any given CBR problem domain. The adaptation

techniques used in this research allowed the investigation of the implementation of case-

based reasoning and security applications from a different point of view. Instead of

producing software for a new problem domain, such as vulnerability analysis, an instance

of a more generic framework, created in this thesis, is enough to solve this new problem.

Furthermore, instantiation requires minimal coding effort as explained.

We implemented a network intrusion detection instance of the framework that

obtained Snort IDS knowledge through its customization phase. The resulting system is

not a real-time application that requires network packets in a specific XML format.

However the same level of success with Snort is achieved in matching.

The framework is created in such a way that both its software and its knowledge in

terms of XML cases are portable. This portability makes the framework very suitable for

distributed systems and agent architectures. As a future work, we will build a network of

a set of instances of this framework, so that these instances exchange knowledge, in terms

of both data and functionality and help each other to increase their performance.

 51

Also, this near term future effort will focus on building higher degrees of intelligence

through communication among instances of the framework.

Another potential application of the framework is a distributed architecture where

instances of the framework will send their results to a central unit. Then, the central unit

will put all the results together and produce an output that cannot be achieved by any

single instance of the framework.

In addition, we plan to explore the possibility of applying the methods to CBR

problems in the other CIP domains discussed in section 1.1. As mentioned, the aim of

creating a case-based reasoning applicable across multiple domains was the primary

motivation for this work.

The present work represents a first, and major, step towards this goal. Further work

needs to be done, however, to fill out the remainder of the CBR paradigm and produce a

fully functioning tool. These tasks include, in particular, creating a module for managing

the case adaptation process depicted in Figure 2. This in itself could comprise a major

undertaking, possibly entailing application of expert systems technology. Last we can

mention the possibility of incorporating an expert system into the case retrieval process

as well. This would amount to adopting an interactive, or “conversational,” case-based

reasoner along the lines of [30].

 52

 53

BIBLIOGRAPHY

[1] Northcutt, S., J. Novak, and D. McLachlan. Network Intrusion Detection: An
Analyst’s Handbook. New Riders Publishing, 2000.

[2] Bace, R. G. Intrusion Detection. Macmillan Technical Publishing, 2000.

[3] Denning, D. E. “An Intrusion-Detection Model.” IEEE Transactions on Software

Engineering 13, no. 2: 222-232, 1987.

[4] Leake, D. B. Case-Based Reasoning: Experiences, Lessons and Future

Directions. AAAI Press/ The MIT Press, 1996.

[5] Watson, I. “CBR is a methodology not a technology.” The Knowledge Based

Systems Journal 12, no.5-6: 303-8, Elsevier, 1999.

[6] Shimazu, H. “A textual cased-based reasoning system using XML on the world-

wide web.” Advances in Case-Based Reasoning, Proceedings of 4th European
Workshop, EWCBR-98, Lecture Notes in Computer Science, LNAI v 1488: 274-
285, Springer Verlag, 1998.

[7] Doyle, M., M. Ferrario, C. Hayes, P. Cunningham and B. Smyth. “CBR Net:

Smart technology over a network.” Technical Report, TCD-CS-1998-07,
Department of Computer Science, Trinity College Dublin, 1998.

[8] Hayes, C. and P. Cunningham. “Shaping a CBR view with XML.” Case-Based

Reasoning Research and Development, Proceeding of the Third International
Conference on Case-Based Reasoning, ICCBR-99, Lecture Notes in Computer
Science, LNAI v 1650: 468-, Springer Verlag, 1999.

[9] Hayes, C., P. Cunningham and M. Doyle. “Distributed CBR using XML.”

Technical Report, TCD-CS-1998-06, Department of Computer Science, Trinity
College Dublin, 1998.

[10] Davis, M. T. “Homeland Security: new mission of a new century.” Northrop

Grumman’s Analysis Center Papers, 2002.

[11] Wulf, W. A. and A. K. Jones. “Cybersecurity.” The Bridge 32,no. 1, National

Academy of Engineering, 2002.

[12] The President's Commission on Critical Infrastructure Protection. “Critical

Foundations: Protecting America's Infrastructures.” Government Printing Office,
Washington D.C., U.S, 1997.

[13] Roesch, M. and C. Green, “Snort Users Manual Snort Release: 1.9.1”, Online

Documentation, available at http://www.snort.org/docs/writing_rules/, 2002.

[14] Sun Microsystems, Inc. “The Java Architecture for XML Binding User’s Guide.”,

Early-Access Draft, Online Documentation, available at
http://java.sun.com/xml/jaxb/jaxb-docs.pdf, 2001.

[15] Sun Microsystems, Inc. “Web Services Made Easier: The Java APIs and

Architectures for XML.”, Technical White Paper, Online Documentation,
available at http://java.sun.com/xml/webservices.pdf, 2002.

[16] Lieberherr, K. J. Adaptive Object-Oriented Software: The Demeter Method with

Propagation Patterns. PWS Publishing Company, 1996.

[17] Fowler, M. Analysis Patterns: Reusable Object Models. Addison Wesley, 1997.

[18] Foote, B., and J. W. Yoder. “Metadata and Active Object-Models.” Technical

Report, WUSC-98-25, Department of Computer Science, Washington University,
1998.

[19] Yoder, J. W. and R. Razavi. “Metadata and Adaptive Object-Models.” ECOOP

'2000 Workshop Reader, Lecture Notes in Computer Science, LNCS v 1964,
Springer Verlag, 2000.

[20] Norvig, P. and D. Cohn. “Adaptive Software.” PC AI Magazine, Jan 1997.

[21] Schwartz, D. G., S. Stoecklin, E. Yilmaz . “A Case-Based Approach to Network

Intrusion Detection.” Proceedings of the Fifth International Conference on
Information Fusion, IF'02: 1084-1089, 2002.

[22] Guha, R., O. Kachirski, D. G. Schwartz, S. Stoecklin, E. Yilmaz. “Case-Based

Agents for Packet-Level Intrusion Detection in Ad Hoc Networks.” Seventeenth
International Symposium On Computer and Information Sciences, 2002.

[23] Aamodt, A., E. Plaza. “Case-based reasoning: foundational issues,

methodological variations and system approaches.” AI Communications 7: 39-59,
1994.

 54

 55

[24] Thrift, P. “A neural network Model for cased-base reasoning.” Prooceedings of
the DARPA Case-Based Reasoning Workshop, editted by Morgan Kaufmann,
1989.

[25] Marling, C., M. Sqalli, E. Rissland, H. Munoz-Avila, D. Aha. “ Case-based

reasoning integrations.” AI Magazine: 69-86, Spring 2002.

[26] Desmarais, N. The ABC’s of XML: The Librarians’s Guide to the eXtensible

Markup Language. New Technology Press, 2000.

[27] Snort, The Open Source Network Intrusion Detection System.

http://www.snort.org/.

[28] XML, Extensible Markup Language.http://www.w3c.org/XML/.

[29] INRECA Consortium. “CASUEL: A Common Case Representation Language.”

http://wwwagr.informatik.uni-
kl.de/~bergmann/casuel/CASUEL_toc2.04.fm.html, 1994.

[30] Aha, D. W. “Navy Conversational Decision Aids Environment.”

http://www.aic.nrl.navy.mil/aha.

[31] NFR Security. “NFR: Network Flight Recorder.” http://www.nfr.net/.

[32] Internet Security Systems, Inc. “RealSecure Network Sensor.” http://iss.net/.

[33] Hochberg, J. et al. “NADIR, An Automated System for Detecting Network

Intrusion and Misuse.” Computers and Security 12, no. 3: 235-248, 1993.

[34] Sebring, M. M., E. Sellhouse, M. E. Hanna, R. A. Whitehurst. “Expert system in

intrusion detection: A case study.” Proceedings of the 11th National Computer
Security Conference: 74-81, 1988.

[35] Tripwire Open Source Project. “Tripwire.” http://www.tripwire.org/.

[36] Openwall Project. “Information security software for open environments.”

http://www.openwall.com/.

[37] LIDS Project. “LIDS: Linux Intrusion Detection System.” http://www.lids.org/.

[38] Sullivan, K., J. Knight, X. Du, S. Geist. “Information Survivability Control

Systems.” Proceedings of the 21st International Conference on Software
Engineering: 184-192, IEEE Computer Society Press, 1999.

 56

[39] Eckmann,S. T., G. Vigna, R.A. Kemmerer. “STATL: An Attack Language for
State-based Intrusion Detection.” Journal of Computer Security 10: 71-104, 2002.

[40] Knight, J. C., M. C. Elder, X. Du. “Error Recovery in Critical Infrastructure

Systems.” Proceedings of Computer Security, Dependability, and Assurance:
From Needs to Solutions, CSDA-98, IEEE Computer Society, 1999.

[41] Elson, D. “Intrusion Detection, Theory and Practice.” Security Focus, 2000.

http://www.securityfocus.com/focus/ids/articles/davidelson.html.

[42] Cover, T., P. Hart. “Nearest neighbor pattern classification.” IEEE Transactions

on Information Theory 13: 21-27, 1967.

[43] CERT Coordination Center. http://www.cert.org/.

[44] Anderson, D., T. Frivold, A. Valdes. “Next-generation intrusion detection expert

system (NIDES): A summary.” Technical Report, SRI—CLS—95—07,
Computer Science Laboratory, SRI International, 1995.

BIOGRAPHICAL SKETCH

Erbil Yilmaz was born in Istanbul, Turkey, in 1977. He got his Bachelor of Science

degree in Computer Engineering and his Bachelor of Science degree in Mathematics

from the Bogazici University, Istanbul, Turkey, in July 1999. In January 2001, he joined

to the Department of Computer Science at The Florida State University as a Ph.D.

student. During this period, he completed an educational program certified by NSTISSC

as compliant with NSTISSI No. 4011 for Information Systems Security (INFOSEC)

Professionals, and received his INFOSEC certificate in 2002. In the same year, he got his

Master of Science degree on Computer Science. Since May 2001, he has been working as

a research assistant, and conducting research on information security and artificial

intelligence applications on information security.

 57

	1.1 Motivation
	1.2 Computers and Critical Infrastructures
	1.3 Definition of the Problem
	1.4 Organization of Chapters
	2.1 Case Based Reasoning
	2.1.1 Overview
	2.1.2 Case-Based Problem Solving
	2.1.3 The CBR Cycle
	2.1.4 Case Similarity and Nearest Neighbor Algorithm
	2.1.5 CBR for Security Framework

	2.2 Adaptive Architectures and Meta-Data
	2.2.1 Overview of Adaptive Software Architectures
	2.2.2 Meta-Data
	2.2.3 Adaptive Software Architecture for Security Framework

	2.3 XML and JAVA
	2.3.1 XML
	2.3.2 DTD
	2.3.3 Overview of JAVA APIs for XML
	2.3.4 JAXB

	2.4 Intrusion Detection
	2.4.1 Network-based IDS
	2.4.2 Host-based IDS
	2.4.3 Kernel-based IDS
	2.4.4 Conclusions on IDS

	3.1 Previous XML Based CBR Applications
	3.1.1 CARET/XML
	3.1.2 CBML

	3.2 Snort Intrusion Detection System
	3.2.1 Overview
	3.2.2 Snort Rules

	4.1 Systems Overview
	4.2 Generic Case Based Reasoning
	4.2.1 Generic Case Representation
	4.2.2 Similarity Assessment

	4.3 Domain Meta Data
	4.4 Generic and Domain Specific CBR Modules
	4.5 Comparators
	4.6 Meta Data Dictionary
	5.1 Domain Meta Data and Case Representation
	5.2 Comparators
	5.2.1 Exact Comparator
	5.2.2 Range Comparator
	5.2.3 IP Range Comparator
	5.2.4 String Pattern Comparator

	5.3 Meta Data Dictionary
	5.4 How Snort Customization of the Framework Works
	5.5 Testing of the Snort Customization
	5.5.1 Case Feature Level Comparator Testing
	5.5.2 Case Level Testing
	5.5.3 Case-Based Reasoner Level Testing

