

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

MOBILE AGENT PROTECTION WITH DATA ENCAPSULATION

AND EXECUTION TRACING

By

ANNA SUEN

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:
Spring Semester, 2003

The members of the Committee approve the thesis of Anna Suen defended on April 30, 2003.

 Alec Yasinsac
 Professor Directing Thesis

 Mike Burmester
 Committee Member

 Lois Hawkes
 Committee Member

Approved:

__
Sudhir Aggarwal, Chair, Department of Computer Science

The Office of Graduate Studies has verified and approved the above named committee members.

 iii

ACKNOWLEDGEMENTS

 I would like to thank my major professor, Dr. Alec Yasinsac, who mentored me these last

two years. Through our many discussions, he helped me form and solidify ideas. I would also

like to thank my wonderful colleagues for listening to my ideas, asking questions when they did

not make sense, and providing feedback and suggestions for improving my ideas. I thank my

parents, for giving me the loving support and encouragement I needed to get through this. And I

thank my sister, Tina, for letting me use her as a guinea pig all these years. I would like to thank

all my friends for the continual encouragement and the positive support. Finally, I would like to

thank the Department of Defense Information Assurance Scholarship Program for providing the

funding for my final year of graduate school.

 iv

TABLE OF CONTENTS

LIST OF FIGURES..vi

LIST OF SYMBOLS ..vii

ABSTRACT...viii

1. INTRODUCTION... 1

1.1. A Closer Look at a Mobile Agent .. 1
1.2. Mobile Agent Applications .. 2
1.3. Mobile Agent Advantages .. 4
1.4. Thesis Structure .. 4

2. MOBILE AGENT SYSTEM SECURITY.. 5

2.1. Mobile Agent System Model.. 5
2.2. Security Threats.. 6
2.3. Security Tools... 7
2.4. Security Requirements.. 8

2.4.1. Confidentiality ... 8
2.4.2. Integrity.. 8
2.4.3. Availability... 9
2.4.4. Accountability.. 9

3. RELATED WORK ... 10

3.1. Publicly Verifiable Chained Digital Signature Protocol .. 10

3.1.1. Pitfalls .. 12
3.2. Execution Tracing... 14

3.2.1. Pitfalls .. 17

4. THE ENCAPSULATED OFFER PROTOCOL ... 19

4.1. Overview of the Encapsulated Offer Protocol.. 19
4.2. The Parts of a Message in EOP .. 20

4.2.1. The Encapsulated Offers and Chaining ... 21
4.3. Protocol Description ... 23

 v

4.3.1. Creating and Dispatching the Initial Mobile Agent 23
4.3.2. Receiving a Mobile Agent ... 23
4.3.3. Receiving and Processing the Results.. 25
4.3.4. Execution Trace File .. 27
4.3.5. Notice Message .. 27

4.4. Security Evaluation .. 27
4.4.1. Security Evaluation of the Code and State... 27
4.4.2. Security Evaluation of the Encapsulated Offers .. 28
4.4.3. Security Properties ... 31
4.4.4. Other Security Concerns .. 32

5. CONCLUSION ... 33

5.1. Future Work.. 33

REFERENCES.. 35

BIOGRAPHICAL SKETCH .. 36

 vi

LIST OF FIGURES

Figure 1.1. Mobile Agent Migration ... 1

Figure 1.2. Mobile Agent (MA) for Personal Digital Assistants Example................................... 3

Figure 2.1. Mobile Agent System Model.. 5

Figure 3.1. Publicly Verifiable Digital Signature Protocol... 11

Figure 3.2. Fault in PVCDSP.. 13

Figure 3.3. Execution Tracing Protocol .. 16

Figure 4.1. Description of the fields of a message .. 20

Figure 4.2. Each platform appends his offer to the set of encapsulated offers 22

Figure 4.3. Chaining in the encapsulated offers.. 23

Figure 4.4. Checking process completed by an intermediate platform....................................... 24

Figure 4.5. Checking process completed by originator upon receipt of results 26

Figure 4.6. Notice Message... 27

Figure 4.7. Cannot modify code and state... 28

Figure 4.8. Cannot collect and append offers.. 29

Figure 4.9. Cannot truncate the set of encapsulated offers ... 30

Figure 4.10. Cannot insert an offer after truncation.. 31

 vii

LIST OF SYMBOLS

Symbol Label Description

C Code mobile agent code

S State mobile agent state

P0 Originator owner of the mobile agent

Pi>0 Platform computational environment for the mobile agent

oi Offer the piece of data that platform Pi submits

Oi Encapsulated offer the offer oi encrypted and/or hashed together with some other
information

r0
Secret random
number

the secret random number used in creating the encapsulated
offer Oi

tPi Timestamp the timestamp provided by platform Pi

I Identifier the unique identifier of the mobile agent session

ENCPi(m) Encryption encryption of message m with the public key of platform Pi

SIGPi(m) Signature signing of message m with the secret key of platform Pi

h(m) Hash function one-way hash of message m

 viii

ABSTRACT

 Mobile agent systems provide a new method for computer communication. A mobile

agent can migrate from platform to platform, performing a task or computation for its originator.

Mobile agents are a promising new technology; however, there exist many security issues that

need to be addressed. Security issues consist of protecting the agent platform and protecting the

mobile agent. The toughest task is protecting the mobile agent, who is subject to attacks from

the platform it is operating on. This thesis is concerned with protecting a mobile agent who

collects data on behalf of its originator. A new mobile agent protection protocol, the data

encapsulation protocol, is presented in this thesis.

 1

CHAPTER 1

INTRODUCTION

 A new and emerging technology for computers to communicate is via mobile agents. A

mobile agent is a piece of code with the property of mobility, allowing the code to freely roam

the network to perform a task described by its owner. As with many computing technologies,

protecting mobile agents has received a significant amount of attention, and is the focus of this

thesis.

1.1. A Closer Look at a Mobile Agent

 A mobile agent consists of the code and state information needed to perform some

computation. More specifically, the state information consists of the execution state and data

state. A mobile agent migrates between agent platforms, who execute the mobile agent code and

provide data as a result of the execution. The platform from which a mobile agent originates is

called the home platform, and the user who creates the mobile agent is referred to as the

originator.

Figure 1.1. Mobile Agent Migration

P0

Pj

P2

P3

 P1

P5

P4

Pj-1

Home Platform

 2

 Since a mobile agent can only migrate between agent platforms, these platforms are

notably important to the mobile agent [3]. Not only do they execute the mobile agent code, but

they also provide functionality, such as migration. When the mobile agent requests to migrate to

another platform, the current platform bundles the mobile agent into a transportable form and

sends it to the next platform.

 Different types of itineraries can be chosen by a mobile agent [5]. The itinerary can be

fixed, where the originator defines the platforms the mobile agent is to visit and the order they

are to be visited. Alternatively, the itinerary can be partially fixed, where some of the platforms

to be visited are known at the time of departure, but the mobile agent is free to decide the next

hop. Or, the itinerary can be random, so the mobile agent has complete freedom as to which

platform is visited next. This thesis is concerned with partially fixed mobile agent itineraries.

The actual decision process of the itinerary is beyond the scope of this thesis.

1.2. Mobile Agent Applications

 Mobile agents can be applied in many different areas. They can be used for electronic

commerce, for network management, or as personal digital assistants [4].

 Mobile agents for electronic commerce applications, such as contract negotiating, stock

trading, and auctioning, may need access to a platform’s database and other sensitive

information. Also, the mobile agent may be collecting sensitive information that should be kept

secret from a third party. This security requirement may limit the mobility of a mobile agent –

the more sensitive the information collected, the less mobile the agent can be. Thus the level of

security required for the task directly affects the mobility of the mobile agent.

 Network management tasks, such as software updates and distribution as well as remote

network management, can also be accomplished with mobile agents. With current network

management devices, network administrators must adhere to the parameters defined by the

manufacturer of the device. However, with mobile agents, administrators can have greater

control of the parameters. Also, mobile agents are dynamic, so they can adaptively respond to

network events. For example, a network administrator can dispatch a mobile agent to upgrade a

piece of software. If the software does not exist on the machine, either the same mobile agent

can install it, or it can initiate another mobile agent to install the software.

 3

 Mobile agents for personal digital assistants are becoming the focus of agent developers.

Devices, such as cell phones and hand-held digital organizers, that are not continuously online,

can take advantage of the mobile agent’s ability to achieve a task autonomously. A popular

example is that of a user dispatching a mobile agent from his personal digital assistant to collect

the best airline ticket price offer from various airline agencies. For example (figure 1.2), if Alice

wishes to find an airline ticket from Los Angeles to Chicago, she can create a mobile agent to

perform this task for her. With the aid of this mobile agent, Alice will not have to spend

countless hours hunting for the perfect ticket. She can specify exactly what time(s) she is willing

to accept, the price range, seating preference, etc. Alice then dispatches the mobile agent, which

roams the network, visiting various airlines. Each time the mobile agent queries the airline for

its best offer. Upon reaching the final airline, the results are sent back to Alice.

Figure 1.2. Mobile Agent (MA) for Personal Digital Assistants Example

 Users of a personal digital assistant mobile agent most likely will not create their own

mobile agent, but instead will use mobile agents purchased from a reputable vendor or download

them. These users also are unlikely to serve as a host to other mobile agents because they are

usually everyday people, not vendors of some product or service.

P0

P1

P3

P2

P4
P5

Alice

Sky Air

Flyers International

Alpha
Universal Airlines

Sunshine Airways
 MA P1($245) P2($259)

 P3($226) P4($300)
 P5($240)

 MA

 MA P1($245)

 MA P1($245) P2($259)

 MA P1($245) P2($259)
 P3($226)

 MA P1($245) P2($259)
 P3($226) P4($300)

 4

1.3. Mobile Agent Advantages

 Many advantages result from the use of mobile agents, including elimination of network

latency, reduction of network load, asynchronous processing, autonomy, dynamic adaptability,

operation in heterogeneous environments, and robust and fault-tolerant behavior [4, 3].

 Network latency is eliminated because the mobile agent resides on the platform when it is

computing. The mobile agent execution does not depend on latencies in messages sent across

slow and unreliable networks. Similarly, the network load is reduced because the mobile agent

is sent to the data, rather than bringing large amounts of data to the local platform for processing.

 Mobile agents have the ability to perform computations asynchronously. They do not

have to be permanently connected to the mobile agent originator to fulfill a task. Also, a mobile

agent is autonomous, i.e. it can continue its task without instructions from its originator.

 Being autonomous, a mobile agent can dynamically adapt to its environment. For

example, if the mobile agent arrives on a platform that is busy, it can sense this obstruction and

migrate to another platform that can better serve its needs.

 Since mobile agents work in the application layer, they have the ability to operate in

heterogeneous computing environments. Mobile agent heterogeneity is commonly made

possible by virtual machines or interpreters on the host platform.

 Because a mobile agent has dynamic adaptability, it also has a robust and fault-tolerant

behavior. For example, if a failure occurs in the system, the host platform can warn all its

mobile agents, and they would be given the opportunity to migrate and continue their task on

another platform.

1.4. Thesis Structure

The focus of this thesis is to protect mobile agents whose task is to collect data from

various platforms and return the results to the mobile agent originator (in particular, a personal

digital assistant). Chapter 2 discusses the security of mobile agents and their systems. In chapter

3, we describe the protocols that this thesis is based upon. Chapter 4 introduces and details our

proposed encapsulated offer protocol. Finally, we conclude in chapter 5.

 5

CHAPTER 2

MOBILE AGENT SYSTEM SECURITY

2.1. Mobile Agent System Model

 Many models for a mobile agent system exist, but a simple one is sufficient for

describing security issues. Here, the mobile agent system model consists of two main entities:

the mobile agent and the agent platform. The mobile agent is the code and state information

needed to perform some described computation. With the property of mobility, mobile agents

hop from platform to platform. These agent platforms provide the computational environment

for the mobile agent. Many platforms also consist of agents, called platform agents. Platform

agents, however, are not mobile. Instead they are stationary on the agent platform and provide

system-level services. The home platform is the agent’s originator and is the most trusted

environment.

Figure 2.1. Mobile Agent System Model

Home
Platform

mobile
agent Platform

platform
agent

 6

2.2. Security Threats

 There are four categories of security threats on the mobile agent system: platform-to-

agent, agent-to-platform, agent-to-agent, and other-to-platform. Platform-to-agent is where the

mobile agent is attacked by the platform in which it is performing its computation. Agent-to-

platform is just the opposite; the mobile agent attacks the platform. Agent-to-agent is where a

platform agent attacks the visiting agent. Each of the previous three categories of attacks takes

place within one agent system. Other-to-platform is where the agent platform is attacked by a

mobile agent or a platform from a remote system.

 The platform-to-agent threat category consists of masquerading, denial of service,

eavesdropping, and alteration. A platform can masquerade as a trusted platform to extract

sensitive information from a mobile agent. This masquerading harms both the mobile agent and

the platform whose identity was assumed. A denial of service attack on the mobile agent can

easily be accomplished – simply ignore, delay, or terminate the agent’s requests. The platform

can also continuously feed the agent with tasks, so that it never gets to the task it is supposed to

perform. This attack can affect other agents that depend on the attacked agent, resulting in a

deadlock. With access to all the mobile agent’s data and instructions, the platform can eavesdrop

on the agent’s task. For example, if the mobile agent’s task is to collect offers from hotels along

the beach, the platform can infer that the agent’s owner is taking a trip to the beach soon. The

platform may share this information with a beachwear retailer, who in turn may solicit the

mobile agent’s owner to buy beachwear from them. Finally, a platform can modify an agent’s

code, state, or data, causing the agent to behave in a way that was not originally intended or to

return incorrect results to the originator.

 The agent-to-platform threat category consists of masquerading, denial of service, and

unauthorized access. An unauthorized mobile agent can masquerade as an authorized agent to

gain access to a platform’s services. Or, an authorized agent can masquerade as an unauthorized

agent to avoid being blamed for some mistake that it had made. This attack damages the trust

and reputation of the assumed agent. The denial of service attack on the platform can be

achieved by executing attack scripts or via unintentional program errors, such as a non-

terminating loop. A mobile agent can also attempt to access unauthorized data on the platform.

 7

 The agent-to-agent threat category consists of masquerading, denial of service,

repudiation, and unauthorized access. Like a malicious platform, a platform agent can

masquerade as a reputable vendor in order to gain private information, such as credit card

information, from a mobile agent. A platform agent can also launch a denial of service attack by

spamming the mobile agent with useless messages and information. Repudiation happens when

an agent claims that a transaction never took place. To solve this attack, platforms can keep

records to resolve disputes. A platform agent can gain unauthorized access by invoking a mobile

agent’s public methods. It can modify a mobile agent’s data or code, resulting in a change in the

attacked mobile agent’s behavior. Also, a platform agent can gain information on the mobile

agent’s activities by eavesdropping on it activities.

 The other-to-agent threat category consists of masquerading, unauthorized access, denial

of service, and copy and replay. These attacks come from remote platforms and agents. An

agent on a remote platform can request services and resources. It can act in conjunction with a

malicious platform, or it can act in solitary. A remote user, process, or agent can also gain

unauthorized access to a platform’s services and resources. Agent platforms are also susceptible

to common denial of service attacks coming from a remote entity. Finally, a platform can clone

a mobile agent and retransmit it.

2.3. Security Tools

 The main security tools used in a mobile agent system are encryption, signatures, and

hashing. The mobile agent system can operate in either a public key infrastructure or a secret

key infrastructure.

 In a public key infrastructure, each platform owns a public key and its corresponding

secret key. A platform can encrypt data with another platform’s public key, allowing only the

owner of the public key to decrypt the ciphertext with his secret key. A platform can also

encrypt data with his secret key, creating a signature on the data. Any platform, with knowledge

of the signer’s public key, can verify the signer.

 In a secret key infrastructure, each platform shares a separate secret key with the

originator. This secret key can be exchanged using a key exchange protocol, such as the Diffie-

 8

Hellman protocol [2]. Since this key is used for both encryption and decryption, it must remain

secret.

 Other than encrypting and signing, data can be hashed. However, unlike an encryption or

signature, the hash values are used to check the integrity of the data and cannot be reversed. The

hash value is sent together with the data and the recipient can hash the data and compare it with

the one provided. If they match, then the recipient can be confident that the data has not been

tampered with.

2.4. Security Requirements

 The users of a mobile agent system have four main security requirements:

confidentiality, integrity, availability, and accountability [4].

2.4.1. Confidentiality

 Sensitive information or data that are stored on the agent platform or carried by the

mobile agent need to be protected for confidentiality. Eavesdroppers can also learn about a

mobile agent or platform’s activities by observing the message flow. For example, a mobile

agent sends messages to an airline agency, followed by a message to its originator, and finally a

message to the airline agency. Then, the airline agency sends a message to the bank. Although

the eavesdropper does not have the details of this transaction, i.e. where the flight is going or

credit card information, she can easily infer that the mobile agent just purchased an airline ticket.

 Platforms may maintain an audit log that needs to be protected and kept confidential.

These logs are used to solve any disputes between the mobile agent originator and the platform

involved in the transaction and therefore must be tamper-proof.

2.4.2. Integrity

 In order for a platform to execute a mobile agent, it needs to have access to all of the

mobile agent’s code and state information. Being completely susceptible to the platform on

which it is computing, a mobile agent cannot prevent a malicious platform from modifying its

 9

code, state, and data. A malicious platform could also interfere in mobile agent transactions and

tamper with the audit logs, resulting in a dispute between the involved parties. However,

detection mechanisms can be instilled to detect these types of tampering.

 The integrity of the agent platform must also be protected from unauthorized users.

Mobile agents can be intentionally malicious, like Trojan horses, or an agent’s code may contain

unintentional errors that can harm the integrity of the platform it is computing on.

 The importance of maintaining the integrity of mobile agent code, state, and data needs to

be weighed against the advantages of agent mobility. An agent’s mobility may be restricted if it

is carrying sensitive information.

2.4.3. Availability

 Agent platforms must make sure that its data and services are available to mobile agents.

The agent platform must provide services, such as concurrency support, deadlock management,

and fault-tolerance and recovery, to mobile agents. Hundreds or perhaps thousands of mobile

agents may be requesting services from a single platform at the same time, so agent platforms

need to have the capability of handling large volumes of requests and providing proper rejection

of service.

2.4.4. Accountability

 Both mobile agents and agent platforms need to be held accountable for their actions.

Mobile agents need to be held accountable for services and data it accessed, and platforms need

to be held accountable for the services and data it provided. These actions need to be uniquely

identified, authenticated, and logged.

 Logging is required to hold mobile agents and platforms accountable for their actions.

This log, maintained by either or both the mobile agent and agent platform, must be tamper-

proof and non-repudiable. Measures need to be in place to handle situations when the log

becomes full.

 10

CHAPTER 3

RELATED WORK

 The two main works related to this thesis are the publicly verifiable chained digital

signature protocol and the execution tracing protocol. This chapter details each of these

protocols and describes their pitfalls.

3.1. Publicly Verifiable Chained Digital Signature Protocol

 The publicly verifiable chained digital signature protocol (PVCDSP) [5] uses the data

encapsulation technique where an offer is encrypted with some other information to create the

encapsulated offer. So, the offer is “encapsulated” within some other information. This protocol

relies on a public key infrastructure. Each platform in this system has a unique identifier and a

public signature verification key that is issued by the certification authority. There also exists a

directory service from which to retrieve certificates.

 In this protocol, each platform signs with its secret key for non-repudiability and

unforgability. They also encrypt the offer with their public key for data confidentiality.

PVCDSP uses the hash chaining mechanism to link the offer from the current platform with the

identity of the next platform. The hash chain prevents a server from modifying its own offer

later. In this protocol, anyone is allowed to authenticate the servers involved, thus publicly

verifiable.

 The protocol begins with the originator P0 picking a random number r0. He then hashes

r0 with the identity of the next platform P1, producing the chaining value H0. Then he creates the

encapsulated offer O0 by signing the encryption of his dummy offer o0 and r0 with the hash value

H0. The encapsulated offer O0 is sent to platform P1. P1 uses the encapsulated offer he received

to compute his chaining value, i.e. hashes the encapsulated offer with the identity of the next

 11

platform. He then creates his encapsulated offer in the same way as before. The equations are

given as follows:

 Encapsulated offer: Oi = SIGPi(ENCP0(oi, ri), Hi)

 Chaining relation: H0 = h(r0, P1)

 Hi = h(Oi-1, Pi+1)

An example of the PVCDSP is given in figure 3.1. For illustrative purposes, we have only

showed four platforms making offers. In reality, it is most likely that there will be many more

offerers.

Figure 3.1. Publicly Verifiable Digital Signature Protocol

 The encapsulated offers are probabilistically encrypted so only the originator can decrypt

it. Consisting of the previous encapsulated offer concatenated with the identity of the next

platform, the encapsulated offer links the previous offer with the current one. Also, Oi-1 cannot

be modified without modifying Oi. The encapsulation also guarantees that only Pi+1 can append

the next offer.

P0

P2

P3

P4

P1

H0 = h(r0, P1)
O0 = SIGP0(ENCP0 (o0, r0), H0)

H1 = h(O0, P2)
O1 = SIGP1(ENCP0(o1, r1), H1) H2 = h(O1, P3)

O2 = SIGP2(ENCP0 (o2, r2), H2)

H3 = h(O2, P4)
O3 = SIGP3(ENCP0 (o3, r3), H3)

H4 = h(O3, P5)
O4 = SIGP4(ENCP0 (o4, r4), H4)

{O0}

{O0, O1}

{O0, O1, O2}

{O0, O1,
 O2, O3}

{O0, O1,
O2, O3, O4}

 12

3.1.1. Pitfalls

 There are several pitfalls in this protocol. One pitfall is that since the originator receives

as a result a set of encapsulated offers, he needs to extract each individual encapsulated offer to

find the offers. Since the encapsulated offers are chained, the originator must extract them in

order, one after the other. If there are numerous offers, this extraction may become a costly

process for the originator.

 Another pitfall is that encrypting and then signing a piece of data is questionable. A

principle of cryptographic protocols is that one should not infer that the signer knows the content

of the encrypted data it is signing [Principle 5, 1]. So, it cannot be inferred that the signing

platform is the one who encrypted the offer or even knows of the contents in that encryption (the

offer). The platform can simply take someone else’s encryption and sign it, claiming the offer to

be its own.

 In [8], it is explained that PVCDSP has a weakness. An adversary can truncate offers by

removing them from the end of the set, build her own chain of offers, and submit them to the

mobile agent. This weakness would cause the originator into believing that the mobile agent

collected these offers while in fact it never even visited the platform.

 Let the adversary be platform Pa>1. Pa picks a platform Pi who has already submitted an

offer. Pa also picks a new Pi+1. First, Pa replaces the originator’s mobile agent with her own and

sends it to Pi to collect an offer in order to maintain the validity of the chaining relation at Pi-1.

Pi subsequently sends the mobile agent to the new Pi+1. Pi+1 adds his offer to the set, and then

sends it to Pa. Pa then removes Pi+1’s encapsulated offer, increments i, picks a new Pi+1, and

repeats the process.

 For example, in figure 3.2, let P4 be the malicious platform. The message is sent

normally from P0 to P4 with MA_P0, the mobile agent of the originator platform P0. After the

malicious platform P4 receives the mobile agent, she picks P1 (where i = 1) to be the point from

which to start collecting her new offers. And P4 picks a new platform P'3 as the next hop. Then

P4 replaces the mobile agent with her own mobile agent, truncates the offers from P1 (it is easy

to truncate offers [5]), and sends it to P1. P1 makes his offer and sends the mobile agent to P'3.

After P'3 makes his offer, he sends the mobile agent to P4.

 13

 P4 now discards the offer from P'3, increments i to 2, picks a new platform P'4, and sends

the mobile agent to P'3. P'3 makes his offer and sends the mobile agent to the next new hop P'4,

who makes an offer and sends the mobile agent to P4. This process repeats to collect an offer

from P'5.

Figure 3.2. Fault in PVCDSP

P4

P'3

P3

P1

P2

P0

P'5 P5

P'4

MA_P0, {O0}

MA_P0,
{O0, O1}

MA_P0,
{O0, O1, O2}

MA_P0,
{O0, O1,
O2, O3}

MA_P4,
{O0}

MA_P4, {O0, O1}

MA_P4,
{O0, O1, O'3}

 MA_P4,
{O0, O1}

MA_P4,
{O0, O1, O'3}

MA_P4,
{O0, O1, O'3, O'4}

MA_P4, {O0, O1, O'3}

MA_P4,
{O0, O1, O'3, O'4} MA_P4,

{O0, O1, O'3,
O'4, O'5}

MA_P4,
{O0, O1, O'3,
O'4, O'5, O4}

MA_P4,
{O0, O1, O'3, O'4,

O'5, O4, O5}

malicious

 14

 And this collection process can continue until P4 decides that she has collected enough

misleading offers. However, for illustrative purposes, we have only collected three misleading

offers in our example. Finally, P4 simply pastes the set of misleading offers into P0’s mobile

agent, makes her own offer, and sends it to the next platform. P4 can even send the mobile agent

back to P0 herself, without sending it to P5. In our example, P4 sends the mobile agent to P5.

 The authors of [8] claim that the weakness in PVCDSP is not truncation, as the authors of

[5] claim, but the weakness is that a platform can act as an oracle and collect offers to the terms

of the adversary instead of the originator. For example, the originator may be searching for

properties for rent at the beach, with a preference for beachfront properties. The adversary can

modify the mobile agent, so that it only searches for non-beachfront properties, making it seem

like the adversary is the only one who offers a beachfront rental.

3.2. Execution Tracing

 Vigna’s execution tracing protocol [9] is based on the use of a mechanism to trace the

mobile agent’s execution in a way that cannot be forged. These execution traces can be used to

verify the traces provided by a platform. They can also be used to prove that they never

executed the mobile agent.

 Vigna distinguishes between white statements and black statements. White statements

are operations where the state is modified only by internal program variables. Black statements,

on the other hand, are operations where the state is modified by external information. Depending

on whether the statement is white or black, the execution trace TC of code C contains different

information. A trace is comprised of a sequence of pairs <n, s>, where n is the unique identifier

of the statement and s is the signature. The signature for white statements is empty. The

signature for black statements contains the resulting new value.

 Vigna discusses three types of mobile agents: remote code execution agents, boomerang

agents, and multi-hop agents. A remote code execution agent is one where a program, with some

initialization data, is sent to a remote site, who executes the program and returns the results to the

originator. A boomerang agent is exactly the same as a remote code execution agent, except that

the entire mobile agent is returned to the originator. Finally, a multi-hop agent is one that visits

 15

one or more platforms, whereas the previous two only visit one. Also, with multi-hop agents,

only the results are returned to the originator. This thesis is concerned with multi-hop agents.

 The execution tracing protocol for multi-hop agents depends on a public key

infrastructure and a trusted third party (TTP). It is assumed that the code carried by the mobile

agent is static and that there is a tamper-proof, non-repudiable execution trace file.

The protocol (figure 3.3) begins with the originator P0 dispatching the mobile agent to the

first platform P1:

 P0 → P1: P0, ENCP1(C, S0), SIGP0(h(C), h(S0), P1, TTP, tP0, I)

The first field indicates the sender of the message. The second field contains the encryption of

the code C and the initial state S0 with the recipient’s public key, so only the recipient can

decrypt the code and state. The final field is signed with the private key of P0. With the final

field, P1 can verify that the code and state were not tampered with and that it was actually sent by

P0. Also, this field contains the identity of the recipient, so P1 can verify that he is the intended

recipient. From this field, P1 can also know who the trusted third party is. The trusted third

party TTP and the originator P0 may coincide, or may be different if P0 will be disconnected after

dispatching the mobile agent. The timestamp tP0 is used to guarantee freshness and the unique

identifier I is used to prevent replay attacks.

Immediately upon receipt of the agent, the first platform P1 sends a receipt message to the

trusted third party TTP, indicating that he received a mobile agent from the sender and to verify

to the TTP that the code and state were received correctly:

 P1 → TTP: P1, SIGP1(P0, SIGP0(h(C), h(S0), P1, TTP, tP0, I))

The receipt message contains the identity of the sender in the first field. Signed by P1, the

second field contains the identity of the platform from which he received the mobile agent and

the entire third field of the message received. With this message, TTP can verify that P1 received

a mobile agent execution request at time tP0 and that TTP is the intended receipt recipient.

Then the platform P1 executes the mobile agent until it decides to migrate to the next

platform. Consequently, he sends the trusted third party another receipt:

 P1 → TTP: P1, SIGP1(P2, h(S1), h(T 1
C), I))

 16

Again, the first field contains the identity of the sender. The second field is signed by P1,

consisting of the identity of the next hop P2, a hash of the current state S1, hash of the execution

trace T 1
C , and the unique identifier I.

And then the mobile agent is sent to the next platform:

 P1 → P2: P1, P0, ENCP2(C, S1), SIGP1(h(S1), P2), SIGP0(h(C), h(S0), P1, TTP, tP0, I)

This message is similar to the first message in this protocol except for the addition of the second

and fourth fields. The second field indicates the identity of the mobile agent originator P0 so that

P2 knows whose public key to retrieve for decrypting the last field. The fourth field is used to

verify the intended recipient P2, the message sender P1, and the state S1. If P2 is able to decrypt

the fourth field with the public key of P1, then he has verified that P1 is the sender. P2 can verify

the state by hashing the state given in the third field and comparing to that in the fourth field.

Figure 3.3. Execution Tracing Protocol

P0

P1

P2 TTP

Pj

…

1. dispatch
mobile agent

2. send receipt
message

3. execute agent

4.
send hash of
results and
execution trace

5.
send to next

platform

6. send receipt
message 7. execute

agent

8. send hash of
results and
execution trace

9. send to next
platform

n-3.
send receipt
message

n-2. execute agent

n-1.
send hash of
results and
execution trace

n-4.

n. send final
results

 17

After receiving of the above message, P2 sends a receipt to the trusted third party:

 P2 → TTP: P2, SIGP2(SIGP1(h(S1), P2), SIGP0(h(C), h(S0), P1, TTP, tP0, I))

This message is similar to the receipt message that P1 sent to TTP, except that P2 also needs to

sign the fourth part of the message he received to verify that the message was sent by P1.

This protocol continues until the last platform Pj is reached. The last platform sends the

trusted third party a receipt of the results. This receipt, unlike the previous ones does not include

the identity of the next hop since Pj is the last one. Pj then sends the originator the final state,

which contains the resulting data encrypted with the public key of P0:

 Pj → TTP: Pj, SIGPj(h(Sj), h(T j
C), I)

 Pj → P0: Pj, SIGPj(ENCP0(Sn), I)

 The originator examines the results and if he suspects any platform cheated, he can ask

the trusted third party for all the receipt messages and ask each platform for their execution

traces. With this information, the originator then proceeds to simulate the agent execution by

following the order of the execution traces. Each of the resulting states should match the hash

result in the receipt message.

3.2.1. Pitfalls

 Many pitfalls exist in this protocol. First of all, there is a dependency on the trusted third

party. The integrity of the messages depends entirely on the trusted third party, so if the TTP

were to fail, there would be no way to check the integrity of the messages. Therefore, the trusted

third party is a single point of failure where the entire process fails if it shuts down.

 Another pitfall is that the messages sent are not uniform. The initial message sent from

the originating platform to the first platform is different from the subsequent messages sent from

one platform to the next. Also, the receipt message that the first platform sends is different from

the receipt message subsequent platforms send. So, a platform must know if he is the first

platform to receive the mobile agent. The only way a platform can tell is via the message sent

from the previous platform. The final two messages sent from the last platform are also different

from previous messages of the same function.

 18

 An inefficiency in this protocol is due to the last field of the initial message that is

repeated in almost all the subsequent messages. While it is important to include this information

in subsequent messages, it is not clear that all the components of this field are needed.

 In addition, the fact that the timestamp stays the same throughout the life of the mobile

agent illustrates another weak point. The timestamp provided by the originator and only

indicates freshness of the initial message. There is no way to tell if subsequent platforms are

receiving messages in a timely manner.

 Finally, the verification process is expensive. If there is suspicion of tampering with the

data, then the originator has to simulate the entire mobile agent execution. Plus, the execution

must be followed in the correct order. This is a taxing process because if the suspicion rate is

high, then the originator will always have to simulate the mobile agent execution. In that case,

the originator may as well have executed the mobile agent himself.

 19

CHAPTER 4

THE ENCAPSULATED OFFER PROTOCOL

 The encapsulated offer protocol (EOP) is a mobile agent protocol with mechanisms

implemented to protect the mobile agent and its data. EOP applies to mobile agents for personal

digital assistants, where the ideal paradigm is comparison-shopping. For example, a user

dispatches a mobile agent, and the mobile agent hops from platform to platform collecting offers.

 In this chapter, we describe our encapsulated offer protocol, which uses data

encapsulation and execution tracing. EOP relies on a public key infrastructure and does not

allow updating of previously submitted offers. For the class of mobile agents we address, the

code and state are static, as we are dealing with a comparison-shopping model. Thus, this makes

the data state separate from the execution state.

 Each platform has a unique identifier. With the identifier a platform can retrieve the

public key for the platform identified. This key can either be stored at each platform, or can be

distributed by a certification authority. The identity of the signer must be explicitly stated in a

message, otherwise the examiner of the signature cannot determine who the signer is.

 Each platform also maintains a tamper-proof, non-repudiable execution trace file on their

system. This file is used to solve disputes between the platform who provided the service and

the originator. Provided that the platform executes a mobile agent’s code non-maliciously, it

always provides the correct answer.

4.1. Overview of the Encapsulated Offer Protocol

 The EOP is modeled after Vigna’s multi-hop agent protocol [9]. Each message in EOP is

identical, so platforms do not necessarily need to recognize that he is the first, or the last,

platform to receive the mobile agent. In addition, the message is optimized so that each field and

 20

its components serve a purpose for the platform who receives the message. The message and the

meaning of each part are explained in the next section.

 In EOP, the trusted third party is not necessary, thus eliminating the keystone dependency

and the overhead of sending receipt messages each time a message is received and after code

execution. However, without the trusted third party, the integrity check mechanism is removed.

Data encapsulation is introduced into the protocol to control data (and sometimes code and state)

integrity. With data encapsulation, it is easiest to separate the state and results (offers) into

different entities. This means that the state information will not change, so its hash value is

included with the hash of the code in the fifth field.

4.2. The Parts of a Message in EOP

 A message in EOP contains five fields: 1) the sender identity, 2) the originator identity,

3) the encryption of the code, state, and offers, 4) the signature of the receiving platform identity

and timestamp, and 5) the signature of the hash of the code and state and the unique session

identifier. A message from the sender Pi to the receiver Pi+1 is formatted as in figure 4.1.

Figure 4.1. Description of the fields of a message

 The first two fields Pi and P0 indicate the identities of the message sender and mobile

agent originator, respectively. Since the identity of the signer cannot be deduced by examining

sender of
the message originator

of the mobile
agent

encrypted with
the recipient’s
public key

identity of
the intended
recipient timestamp

signed by
the sender of
the message

hash of the
code & state

unique
session
identifier

signed by
the originator

code state
set of
encapsulated
offers

Pi → Pi+1: Pi, P0, ENCPi+1(C, S, {O0,…,Oi}), SIGPi(Pi+1, tPi), SIGP0(h(C, S), I)

 21

the signature, these two fields are needed to determine whose public keys need to be retrieved to

decrypt the fourth and fifth fields.

 The third field, containing the code C, state S, and set of encapsulated offers {O0,…,Oi},

is encrypted with the recipient platform’s public key. With this encryption, only the recipient

can decrypt this field with his secret key and access the code, state, and offers. This encryption

prevents unauthorized third parties from attempting to execute the mobile agent. The offers are

also hidden from an adversary, but even a valid platform still cannot extract another platform’s

offer due to the signature on the encapsulated offers.

 The fourth field is signed by the sender of the message to verify the sender. This field

contains the identity of the recipient Pi+1 and a timestamp tPi. The recipient examines this field

and checks if the message was intended for him. Also, the recipient uses the timestamp to verify

the freshness of the message. The timestamp should contain the time the message is sent and the

duration of how long the message is valid.

 The fifth and last field contains the hash of the code and state and the unique session

identifier I. This field is signed by the originator to prevent tampering with this information and

for platforms to verify the integrity of the code and state. The unique session identifier links all

the messages in the same session together.

4.2.1. The Encapsulated Offers and Chaining

 We model our encapsulated offers after that used in the publicly verifiable chained digital

signature protocol [5], which also relies on a public key infrastructure. A hash function is used

for creating the encapsulated offers. The hash function must be one-way and collision-free.

 Since one should not infer that the signer knows the contents of the encrypted data it is

signing, we eliminate the signature on the offer:

O0 = SIGP0(o0, h(r0, P1))

Oi = SIGPi(oi, h(Oi-1, Pi+1))

It may seem that now the set of offers can be verified by any platform who receives the mobile

agent. However, since the identities of the signers are not provided, platforms do not have the

ability to see each other’s offers. Only the first and last offers in the set can be verified since

their identities are provided in the message, and those are the only offers that need to be checked.

 22

Figure 4.2. Each platform appends his offer to the set of encapsulated offers

 The initial encapsulated offer O0 is slightly different from that of the others. The

originator creates an empty initial offer o0 to include in his encapsulated offer O0. It is empty

because he is not offering anything, as he is the originator. Also, the originator generates a

random number to use in the hash function because there does not exist a previous encapsulated

offer. The originator must keep the random number r0 and the identity of the next platform P1

secret. If these values become known to an intermediary platform, they can attempt at tampering

with the chain. Therefore, the strength of the chain depends on the knowledge of r0 and P1.

 The set of encapsulated offers utilizes the chaining mechanism (see figure 4.3). This

chaining mechanism prevents platforms from maliciously removing or replacing any of the

encapsulated offers. Each encapsulated offer Oi computed by Pi contains a chaining relation,

which is the encapsulated offer Oi-1 received from the previous platform hashed with the identity

of the next platform Pi+1. The previous encapsulated offer Oi-1 is used in computing the new

encapsulated offer Oi to link the new encapsulated offer to the previous one. Also, the inclusion

of the identity of the next platform Pi+1 in the chaining relation ensures that only the intended

recipient can make the next offer.

P0

P2

P3

Pj

P1

…

 O0

 O1 O0

 Oj

 O2 O1 O0

 O1 O0 O3 O2

 O1 O0 O3 O2 …

 23

Figure 4.3. Chaining in the encapsulated offers

4.3. Protocol Description

 EOP allows mobile agents to collect data (or offers) from various platforms. There are

three distinct actions taken in EOP. First, the originator creates the initial message and

dispatches it. Next, the message is received by intermediate platforms, who verify the integrity

of the message, execute the code, and submit an offer to the mobile agent. Finally, the originator

receives the results and processes them.

4.3.1. Creating and Dispatching the Initial Mobile Agent

 To begin the protocol, the originator P0 prepares the first message by creating an initial

encapsulated offer O0. To create O0, the originator generates a secret random number r0, decides

whom the first recipient P1 will be, and creates an initial offer o0 (which is empty). After

hashing r0 and P1, the originator then signs the initial offer and the hash value:

O0 = SIGP0(o0, h(r0, P1))

P0 then fills in the rest of the message, as defined in section 4.2, and sends it to the first recipient.

4.3.2. Receiving a Mobile Agent

 Upon receipt of a mobile agent message, the platform first performs a series of checks

before proceeding with the execution (figure 4.4). The first check is to compare the identity in

{O0,…,Oi-1,
 Oi, Oi+1} {O0,…,Oi-1, Oi} Pi-1

{O0,…,Oi-1}

Oi-1 = SIGPi-1(oi-1, h(Oi-2, Pi)) Oi = SIGPi(oi, h(Oi-1, Pi+1)) Oi+1 = SIGPi+1(oi+1, h(Oi, Pi+2))

Pi Pi+1

 24

the second field with its own. If they are the same, then it means that the platform is the

originator of the mobile agent. In this case, the platform proceeds with processing the results. If

Figure 4.4. Checking process completed by an intermediate platform

the platform is not the originator, then it continues with the next check of verifying that he is the

intended recipient of the mobile agent. If not, then he simply forwards the agent to the correct

recipient or some other platform who can forward it to the correct platform. Next, the platform

Am I the
originator?

Am I the
intended

recipient?

Process results
(see figure 4.5)

Is the
timestamp

fresh?

Forward to
correct

recipient

Are the
code & state

valid?

Halt processing and
send notice message

to originator

Is the set of
encapsulated
offers valid?

Halt processing and
send notice message

to originator

Halt processing and
send notice message

to originator

Execute
mobile agent

yes

yes

yes

yes

yes

no

no

no

no

no

 25

checks the timestamp for freshness. If the message has expired, then the platform halts any

further processing and sends a notice message to the originator (see section 4.3.5 for details

about the notice message). Then the platform checks the integrity of the code and state by

computing the hash value and comparing it against the hash value given in the fifth field of the

message. If the hash values do not match, the platform halts the processing and sends a notice

message to the originator. Finally, the platform checks the validity of the encapsulated offers.

He should be suspicious of the set of encapsulated offers if one or both of the following occurs:

1) the originator’s public key does not correctly verify the first encapsulated offer, or 2) the

public key of the message sender does not correctly verify the last encapsulated offer in the set.

If either one or both of these encapsulated offers do not verify correctly, then the platform halts

the execution and sends a notice message to the originator.

 If all of the above conditions are verified, then the platform proceeds to execute the

mobile agent’s code. This execution produces an offer, though if no offer can be made, an empty

offer indicating that the requirements cannot be met is created. The platform must submit an

offer to the mobile agent in order to maintain the chaining in the set of encapsulated offers.

Upon completion of code execution the next recipient of the mobile agent is determined. Next,

the platform creates the encapsulated offer by first taking the hash of the previous encapsulated

offer and the identity of the next platform, and signs this hash value together with its offer:

Oi = SIGPi(oi, h(Oi-1, Pi+1))

This encapsulated offer is then appended to the current set. The platform logs the execution

trace, makes the appropriate signature and encryption updates in the message, and sends the

mobile agent to the next platform.

4.3.3. Receiving and Processing the Results

 When the originator P0 receives his mobile agent, he performs a series of checks (figure

4.5). Like the previous platforms, P0 checks the validity of the timestamp, integrity of the code

and state, and validity of the first and last encapsulated offers. If any of these do not verify, then

the any one or more of the offers may have been tampered with. If everything verifies, P0 can

unravel the chain of encapsulated offers with its secret random number and the identity of the

first platform.

 26

 Should P0 suspect tampering with any of the offers, he can ask the respective platform to

provide the execution trace. The execution trace contains a copy of the encapsulated offer that it

submitted to the mobile agent. P0 compares the encapsulated offer that it received against that in

the execution trace. If the offers match, then it has not been tampered with. If they do not

match, then discard the offer, and the originator may report the incident to an authority.

Figure 4.5. Checking process completed by originator upon receipt of results

Are the timestamp, code
& state, and set of

encapsulated offers valid?

Offers may
be invalid

Unravel chain of
encapsulated offers

Do any
offers seem
suspicious?

Ask platform to
provide

execution trace

Proceed with
evaluating
the offers

Does the offer received
match that in the
execution trace?

Report malicious
activity to an

authority

Offer is invalid Offer is valid

yes

yes

yes no

no

no

Report malicious
activity to an

authority

 27

4.3.4. Execution Trace File

 The execution trace file is maintained by each platform. This file must be tamper-proof

and non-repudiable, so that the originator can verify that a platform made an offer. In EOP, an

execution trace contains a triplet < I, O, t >, where I is the unique session identifier, O is the

encapsulated offer submitted by the platform, and t is the timestamp.

4.3.5. Notice Message

 A notice message is a message sent to the originator indicating that there has been

tampering with his mobile agent. There are three types of notices: expired timestamp, invalid

code and state, and invalid or broken chain of encapsulated offers. The message is flagged to

indicate that it is a notice message, concatenated with the type of notice, and followed with the

message the platform received, signed.

notice
message

type of
notice

SIGPi(Pi-1, P0, ENCPi(C, S, {O0,…,Oi-1}), SIGPi-1(Pi, tPi-1),
SIGP0(h(C, S), I))

Figure 4.6. Notice Message

4.4. Security Evaluation

 In this section we will evaluate the security of our protocol. First, we evaluate the

security of the code and state. Then, we evaluate the security of the encapsulated offers. Next,

the security properties of EOP are defined. Finally, other security concerns are covered.

4.4.1. Security Evaluation of the Code and State

 Modification of the code and state can be detected in EOP. If a malicious platform

intends to modify or replace the code and state, he will also need to update the hash value in the

 28

fifth field. Having modified the fifth field, the malicious platform needs to sign it with his own

private key, as he cannot sign with the originator’s private key. Now having changed the

signature, the malicious platform also needs to replace the identity of the originator (second

field) with his own identity.

Figure 4.7. Cannot modify code and state

 However, the receiving platform can detect this tampering because the encapsulated offer

O0 remains signed by the originator, as illustrated in figure 4.7. Upon verifying the first

encapsulated offer O0 with the originator’s public key, the receiving platform can deduce that the

sender was malicious. To avoid this problem, the malicious platform can simply strip off the

originator’s signature on O0 and sign it himself. This would result in the mobile agent never

returning to the originator P0. This is a denial of service attack, which is a recurring issue in

information security and not addressed in this thesis.

4.4.2. Security Evaluation of the Encapsulated Offers

 We explained in section 3.1.1 that the PVCDSP has a weakness. A malicious platform

can truncate the set of encapsulated offers, modify or replace the code and state, build a new

chain of encapsulated offers with the new code and state, and append the new encapsulated

offers to the truncated set of encapsulated offers. This attack would lead the originator into

believing that his mobile agent collected these offers while in fact it never even visited the

O0 = SIGP0(o0, h(r0, P1))

P4, P4, ENCP5(C’, S’, {O0, O1, O2, O3, O4}), SIGP4(P5, tP4), SIGP4(h(C’, S’), I’)

P4

P5

P3

P3, P0, ENCP4(C, S, {O0, O1, O2, O3}, H3), SIGP3(P4, tP3), SIGP0(h(C, S), I)

malicious

 29

platforms. An important step in this attack is that the malicious platform needs to pick a

platform Pi who has already made an offer from which to truncate. In EOP, however, the

identity of the signer cannot be revealed by examining the encapsulated offer, so this attack

cannot occur.

 A malicious platform Pa can attempt an attack similar to that described above. Rather

than truncating the set of encapsulated offers, Pa can simply create a new mobile agent with a

modified state. For creating the initial encapsulated offer, instead of generating a random

number, Pa uses the value of the last encapsulated offer in the set she received. Using the last

encapsulated offer allows Pa to maintain the chaining mechanism after appending the new set to

the existing one later. With her mobile agent, Pa collects new offers. Upon return of the mobile

agent, Pa can append the set of offers she just collected to the set in the originator’s mobile agent.

Pa also needs to submit her offer again to maintain the chaining mechanism. Then Pa can either

forward the mobile agent to other platforms or send it back to the originator. Pa is successful in

executing this attack; however, there is a subtlety that can be detected. When the originator

unravels the chain, he can see that Pa has offered twice and should suspect Pa’s two offers and all

offers between them.

Figure 4.8. Cannot collect and append offers

P4

P6

P3

P1
P2

P0

P5

MA_P0, {O0}

MA_P0, {O0, O1}

MA_P0, {O0, O1, O2}

MA_P3, {O3}

MA_P3,
{O3, O4, O5, O6}

MA_P3, {O3, O4, O5}

MA_P3, {O3, O4}

MA_P0,
{O0, O1, O2, O3, O4, O5, O6, O'3, …}

malicious

O3 = SIGP3(o3, h(O2, P4))

…

O'3 = SIGP3(o3, h(O6, P0))

 30

 For example (figure 4.8), Andy (P0) sends out a mobile agent MA_P0 seeking the best

deal on a new car. He specifies in his mobile agent that he is looking for a red or silver sports

car. P1 and P2 submit their offers normally. When the malicious dealership P3 receives Andy’s

mobile agent, she holds it and sends out her own mobile agent MA_P3 to collect offers only for

red sports cars. To create her initial encapsulated offer, she uses the last encapsulated offer O2

she received in MA_P0 as her random number. After her mobile agent returns, she can easily

append the newly collected offers to the set in Andy’s mobile agent MA_P0. Note that this

appending maintains the chaining mechanism due to the use of O2 in her initial encapsulated

offer. Finally, P3 can either forward Andy’s mobile agent (with offers collected by P3) to

another platform or back to Andy. After Andy receives the results and unravels the chain of

encapsulated offers, he can see that P3 made two offers. Therefore, Andy should be suspicious

of P3’s two offers and any offers between them.

 In addition, truncation of the set of encapsulated offers can also be detected in EOP. The

last encapsulated offer in the set must be verifiable with the sender’s public key, as illustrated in

figure 4.9. If it does not verify, the recipient of the message can deduce that the sender had

truncated the set of encapsulated offers. Moreover, a malicious platform cannot add his own

encapsulated offer to the truncated set because doing so violates the chain (figure 4.10). The

message recipient cannot detect a broken chain, but when the originator tries to unravel the chain

he will discover the broken link.

Figure 4.9. Cannot truncate the set of encapsulated offers

P6

P7

P5

P5, P0, ENCP6(C, S, {O0, O1, O2, O3, O4, O5}), SIGP5(P6, tP5), SIGP0(h(C, S), I)

malicious

P6, P0, ENCP7(C, S, {O0, O1, O2}), SIGP6(P7, tP6), SIGP0(h(C, S), I)

O2 = SIGP2(o2, h(O1, P3))

 31

Figure 4.10. Cannot insert an offer after truncation

 Similar to truncation, a malicious replacement of the entire set of encapsulated offers can

be detected. If there is only one encapsulated offer in the set and it does not verify with the

originator’s public key, then the recipient of the message can conclude that the sender has

replaced the entire set of encapsulated offers with the set only containing his offer.

4.4.3. Security Properties

 A number of security properties in regards to an attacker who captures a mobile agent

with a set of encapsulated offers {O0, O1, …, Oj} are defined below. Suppose that the agent has

visited j platforms, and let i be in the range 1, …, j.

 Data Confidentiality. An offer oi cannot be extracted by platforms other than the

originator P0 and the platform Pi who made the offer because the identities of the signers are

unknown. However, offers o0 and oj can be extracted because their signatures are provided in

the message.

 Data Integrity. An offer oi cannot be modified by any platform due to the chaining

mechanism in the encapsulated offers.

 Truncation Resilience. The encapsulated offers cannot be truncated due to the

signatures of the sender and the final encapsulated offer.

P6

P7

P5

P5, P0, ENCP6(C, S, {O0, O1, O2, O3, O4, O5}), SIGP5(P6, tP5), SIGP0(h(C, S), I)

malicious

P6, P0, ENCP7(C, S, {O0, O1, O2, O6}), SIGP6(P7, tP6), SIGP0(h(C, S), I)

broken chain!

 32

 Insertion Resilience. A malicious platform cannot insert an offer into the set of

encapsulated offers (either at the beginning, middle, or end) due to the chaining mechanism.

 Modification Resilience. A malicious platform cannot modify one or more of the

encapsulated offers due to the chaining mechanism. Also, if O0 is modified, then the originator

can detect this change due to his secret random number and knowledge of the first platform.

 Non-repudiability. A platform Pi cannot claim that he did not provide an offer oi due to

the signature on the encapsulated offer and the execution trace.

 Partial Forward Privacy. None of the identities Pi can be extracted from the

encapsulated offers, except the originator P0 (first encapsulated offer) and message sender Pj

(last encapsulated offer).

4.4.4. Other Security Concerns

 Assuming that the identity of the signer cannot be extracted from the signature unless

explicitly stated is not a cryptographically strong assumption. If there are only few platforms in

the system, say fifty platforms, an attacker can easily test each identity to find the signer of an

encapsulated offer. However, this assumption is practically strong because in reality it is more

likely much more than fifty platforms will coexist on the same network. With the large amount

of platforms, it becomes infeasible for the attacker to test each identity.

 33

CHAPTER 5

CONCLUSION

 In this thesis we have proposed a protocol, the encapsulated offer protocol, for protecting

mobile agents and their data. The encapsulated offer protocol is based on two existing protocols,

the publicly verifiable chained digital signature protocol and the execution tracing protocol.

Many pitfalls were discovered in the publicly verifiable chained digital signature protocol and

the execution tracing protocol. By combining and modifying these two protocols to create the

encapsulated offer protocol, we have eliminated most of the aforementioned pitfalls.

 EOP ideally applies to a comparison-shopping paradigm, where the mobile agent

migrates from platform to platform and collects offers. The encryption, signature, and data

encapsulation mechanisms protect the mobile agent code, state, and data from being tampered

with.

5.1. Future Work

 In this thesis we have presented a mobile agent protocol that includes features to control

the integrity of the mobile agent and its components, in particular the code, state, and data.

 Future work can include implementation and testing for the encapsulated offer protocol.

The efficiency of EOP can be compared against the efficiency of existing protocols. It may

result that EOP is not as efficient as some other protocols. If that is the case, the advantages of

the security mechanisms in EOP need to be weighed against its inefficiency.

 Furthermore, EOP can be modified to adapt to a non-public key infrastructure

environment. The platforms involved in the mobile agent execution need to exchange secret

keys prior to dispatching the mobile agent. Or, a platform can exchange keys with the originator

upon receipt of a mobile agent.

 34

 Currently, EOP only applies to mobile agents for personal digital assistants, or

specifically for collecting offers from various platforms. Future work can extend EOP to enable

operation for various types of paradigms.

 In this thesis we have only covered attacks from one malicious platform. However, it is

also possible that two or more platforms may collude to perform an attack. One such case is the

“shortcut attack” [6]. For example, the mobile agent had already visited platforms P1, P2, P3, P4,

P5, P6, P7, and P8 in that order and just arrived platform P9. If platform P9, who is malicious,

suspects that any of the previous offers are better than his, he can collude with his conspirator P3

and remove offers P4 through P8, inclusive. To do this P9 sends the mobile agent to P3. P3 in

turn truncates the set of encapsulated offers from his offer O3, leaving the set {O0, O1, O2}. Then

P3 creates a new encapsulated offer, this time with P9’s identity, and sends the mobile agent to

P9. P9 can then submit his offer and forward the mobile agent to another platform or back to the

originator. Doing this a "shortcut" is taken from P3 directly to P9, bypassing all the platforms in

between. Collusion, such as the one described above, should be considered in future work.

 35

REFERENCES

[1] Martín Abadi and Roger Needham. “Prudent Engineering Practice for Cryptographic
Protocols.” IEEE Transactions on Software Engineering, 22(1): 6-15. January 1996.

[2] Whitfield Diffie and Martin Hellman. “New Directions In Cryptography.” IEEE

Transaction on Information Theory. IT-22/6: 644-654. November 1976.

[3] Fritz Hohl. “Mobile Agents and Active Networks.” Proceedings of the IFIP Fifth

International Conference on Intelligence in Networks (SMARTNET ’99). Pathumthani,
Thailand. November 1999.

[4] Wayne Jansen and Tom Karygiannis. “NIST Special Publication 800-19 – Mobile Agent

Security.” 2000.

[5] G. Karjoth, N. Asokan, C. Gülcü. “Protecting the computation results of free-roaming

agents.” Proceedings of the Second International Workshop, Mobile Agents 98. Springer-
Verlag Lecture Notes in Computer Science, vol. 1477, pages 195-207. 1998.

[6] P. Kotzanikolaou, M. Burmester, V. Chrissikopoulos. “Secure transactions with mobile

agents in hostil environments.” Information Security and Privacy, ACISP 2000. Springer-
Verlag Lecture Notes in Computer Science, vol. 1841: 289-297. Berlin. 2000.

[7] Sergio Loureiro, Refik Molva, Alain Pannetrat. “Secure Data Collection with Updates.”

Electronic Commerce Research Journal. 1/2: 119-130. February/March 2001.

[8] Volker Roth. “On the Robustness of some Cryptographic Protocols for Mobile Agent

Protection.” Proceedings of Mobile Agents 2001. Springer-Verlag Lecture Notes in
Computer Science, vol. 2240. December 2001.

[9] Giovanni Vigna. "Protecting Mobile Agents through Tracing." Proceedings of the 3rd

ECOOP Workshop on Mobile Object Systems. Jyvalskyla, Finland. June 1997.

 36

BIOGRAPHICAL SKETCH

Anna Suen was born in Atlanta, Georgia on May 26, 1979. Anna graduated with a bachelor’s

degree in Computer Science from Florida State University in 2001. Upon graduation, she began

working on her master’s degree in Computer Science, specializing in Information Security.

Anna served as Secretary of FSU’s chapter of the Association of Computing Machinery during

her senior year of her undergraduate career and Chair during her second year of graduate school.

Anna is also a member of the Phi Eta Sigma National Honor Society, Golden Key National

Honor Society, and Upsilon Pi Epsilon Computer Science Honor Society. During her spare time,

Anna enjoys working on her personal website, spending time with family and friends, and

relaxing on the beach.

