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Abstract

A new schedulability test is presented for preemptive deadline-monotonic scheduling of periodic or sporadic
real-time tasks on a single-queue m-server system. This generalizes and extends a result of Andersson, Baruah,
and Jonsson, for the case where deadline equals period, which showed all deadlines will be met if the total
utilization is at most m2=(3m� 1) and the utilization of each task is at most m=(3m� 2). The new condition
does not require that the task deadline be equal to the period, and can be used to verify schedulability for
task sets with higher total utilizations or lower individual task utilizations. In addition to the lower bound on
the minimum achievable utilization, an upper bound of �+m ln( 2

1+�
) is derived.

1 Introduction

This paper derives a simple suÆcient condition for schedulability of systems of periodic or sporadic tasks in a
multiprocessor preemptive �xed-priority scheduling environment. In 1973 Liu and Layland[13] showed that the
optimal way of assigning priorities to periodic tasks in such a system is rate monotonic. With rate monotonic
(RM) scheduling tasks are assigned priorities according to their rates, with higher priority going to tasks with
shorter periods. Liu and Layland showed further that there is a lower bound on the utilization at which systems
of periodic tasks may miss deadlines under preemptive RM scheduling, called the minimum achievable utilization.
A set of n periodic tasks is guaranteed to to meet deadlines on a single processor under RM scheduling if the
system utilization is no greater than n(21=n � 1). This is a conservative but useful test for schedulability.

The ideas in [13] have been extended by many others, and developed into a comprehensive toolkit for the
design and analysis of real time systems[11]. One of the extensions is deadline monotonic scheduling. Deadline
monotonic (DM) scheduling is the generalization of rate monotonic scheduling to systems of tasks with pre-period
and post-period deadlines, in which tasks with shorter relative deadlines are given higher priority.

The cornerstone of rate-monotonic and deadline-monotonic schedulability analysis is an observation in [13],
called the critical zone property. That is, the worst-case response time for any periodic task is achieved when it
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is released simultaneously with all the higher priority tasks. Unfortunately, the critical zone property only holds
for single-processor systems.

Dhall and Liu[6] cast doubts on the value of rate monotonic scheduling for multiprocessor systems when they
showed that RM scheduling can give very poor utilization on multiprocessor systems. For example, consider a set
of periodic tasks �1; : : : ; �m+1 with periods and relative deadlines T1 = d1 = 2mx; : : : ; Tm = dm = 2mx; Tm+1 =
dm+1 = 2mx+1, and worst-case execution times c1 = 1; : : : ; cm = 1; cm+1 = mx+1, all released at time zero. If
�m+1 is allowed to monopolize one processor, all the jobs can be completed by their deadlines on m processors,
as shown in Figure 1. However, a rate monotonic scheduler for m processors would schedule �1 : : : �m ahead of
�m+1, causing �m+1 to miss its deadline, as shown in Figure 2.
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Figure 1: All jobs can be scheduled if �m+1 is given its own processor.
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Figure 2: �m+1 misses deadline with RM scheduling.

The total utilization of this set of tasks is

U = (

mX
i=1

ci
Ti
) +

cm+1

Tm+1

= m
1

2mx
+

2mx+ 1

2mx+ 1

= 1 +
1

2x

By choosing x suÆciently large, U can be made as close to one as desired, i.e., all but one of the m processors
will be idle almost all of the time.

Generalizing from such examples, one is tempted to conjecture that there might be no useful utilization bound
test for rate monotonic scheduling, and even that RM scheduling may not be a good real-time scheduling policy
for multiprocessor systems. However, neither conclusion is actually justi�ed.

Looking at the example above we observed that there are two kinds of tasks: \hard" ones, with high ratio
of compute time to deadline, and \easy" ones, with low ratio of compute time to deadline. It is the mixing of
those two kinds of tasks that causes a problem. A scheduling policy that segregates the large tasks from the small
tasks, on disjoint sets of CPU's, would have no problem with this example. Examination of further examples led
us to conjecture that such a segregated scheduling policy would not miss any deadlines until a very high level of
CPU utilization is achieved, and may even permit the use of simple utilization-based schedulability tests.

Perhaps motivated by reasoning similar to ours, Andersson, Baruah, and Jonsson[1] recently examined the
preemptive scheduling of periodic tasks on multiprocessors, and showed that any system of independent periodic
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tasks for which the utilization of every individual task is at most m=(3m� 2) can be scheduled successfully on m
processors using rate monotone scheduling if the total utilization is at most m2=(3m� 1). They then proposed
a modi�ed scheduling algorithm that gives higher priority to tasks with utilizations above m=(3m� 2), which is
able to successfully schedule any set of independent periodic tasks with total utilization up to m2=(3m�1). They
derived these results indirectly, using a general theorem relating schedulability on sets of processors of di�erent
speeds by Phillips, Stein, Torng, and Wein[15]. A similar result, showing that a total utilization of at least m=3
can be achieved if the individual task utilizations do not exceed 1=3, also based on [15], is proved by Baruah and
Goossens[5].

We approached the problem in a di�erent and more direct way, based on our analysis of earliest-deadline-�rst
scheduling [3]. This leads to a di�erent and more general schedulability condition, of which the results of [1] and
[5] are special cases. The rest of this paper presents the derivation of our schedulability condition, discusses its
application, and explains how it relates to the above cited prior work.

2 De�nition of the Problem

Suppose one is given a set of n simple independent periodic tasks �1; : : : ; �n, where each task �i has minimum
interrelease time Ti (called period for short), worst case compute time ci, and relative deadline di, where ci � di �
Ti. Each task generates a sequence of jobs, each of whose release time is separated from that of its predecessor
by at least Ti. (No special assumptions are made about the �rst release time of each task.) Time is represented
by rational numbers. A time interval [t1; t2), t1 6= t2, is said to be of length t2 � t1 and contains the time values
greater than or equal to t1 and less than t2.

Note that what we call a periodic task here is sometimes called a sporadic task. In this regard we follow Jane
Liu[14], who observed that de�ning periodic tasks to have interrelease times exactly equal to the period \has led
to the common misconception that scheduling and validation algorithms based on the periodic task model are
applicable only when every periodic task is truly periodic ... in fact most existing results remain correct as long
as interrelease times of jobs in each task are bounded from below by the period of the task".

In this paper we assume that the jobs of a set of periodic tasks are scheduled on m processors according to a
preemptive �xed priority policy, with dynamic processor assignment. That is, whenever there are m or fewer jobs
ready they will all be executing, and whenever there are more than m jobs ready there will be m jobs executing,
all with priority higher than or equal to the jobs that are not executing. For notational convenience, the tasks
are numbered in order of increasing priority, so that task �1 has the highest priority.

Our objective is to formulate a simple test for schedulability, expressed in terms of the periods, deadlines, and
worst-case compute times of the tasks, such that if the test is passed one can rest assured that no deadlines will
be missed.

Our approach closely parallels the approach used in [3] to analyze EDF schedulability. We will consider a �rst
failure of scheduling for the given set of tasks. That is, consider a sequence of job release times and execution
times, consistent with the interrelease and execution time constraints, that produces a schedule with the earliest
possible missed deadline. Find the �rst point in this schedule at which a deadline is missed. Let �k be the task of
a job that misses its deadline at this �rst point. Let t be the release time of this job of �k. We call �k the problem
task, the job of �k released at time t the problem job, and the time interval [t; t+ dk) the problem window.

De�nition 1 (demand) The demand due to task �i over a time interval is the total amount of computation
that would need to be completed within the interval for all the deadlines of �i within the interval to be met. For
any task �k, the competing demand of �k is the sum of the demand due to all the other tasks �i that can preempt
�k in the interval (i.e., such that i < k). The combined demand with respect to �k is the sum of the demand due
to �k and the competing demand.
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Figure 3: The problem window.

De�nition 2 (load) The load due to task �i over an interval [t; t+�) is Wi=�, where Wi is the demand due to
�i over the interval. For any task �k the competing load of �k is the sum of the loads Wi=� over all the competing
tasks �i, i < k. The combined load with respect to �k is the sum of the load due to �k and the competing load.

If we can �nd a lower bound on the competing load that is necessary for a job to miss its deadline, and we
can guarantee that a given set of tasks could not possibly generate so much load in the problem window, that
would be suÆcient to serve as a schedulability condition.

3 Lower Bound on Load

A lower bound on the competing load in a problem window can be established using the following well known
argument, which is also used by [15]:

Since the problem job misses its deadline, the sum of the lengths of all the time intervals in which
the problem job does not execute must exceed its slack time, dk � ck.

dkt + 
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Figure 4: All processors must be busy whenever �k is not executing.

This situation is illustrated for m = 3 processors in Figure 4. The diagonally shaded rectangles indicate times
during which �k executes. The dotted rectangles indicate times during which all m processors must be busy
executing other jobs that are able to preempt that of �k in this interval.

Lemma 3 (lower bound on load) If W=dk is the combined load of the window [t; t + dk), where t + dk is a
missed deadline of �k, then

W

dk
> m(1�

ck
dk

) +
ck
dk
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Proof: Let x be the amount of time that the problem job executes in the interval [t; t+ dk). Since �k misses its
deadline at t + dk, we know that x < ck. A processor is never idle while a job is waiting to execute. Therefore,
during the problem window, whenever the problem job is not executing all m processors must be busy executing
other jobs that can preempt �k. The sum of the lengths of all the intervals in the problem window for which all
m processors are executing jobs belonging to the competing demand of the window must be at least dk�x, so we
have

P
i6=kWi > m(dk � x). Since x < ck and the value of the expression on the right is decreasing with respect

to x, we have
P

i6=kWi > m(dk � ck) and
P

i6=k
Wi

dk
> 1� ck

dk
. Adding in the load of �k , we have

W

dk
=

kX
i=1

Wi

dk
> m(1�

ck
dk

) +
ck
dk

2

Note that the argument used in Lemma 3 is very coarse. It does not take into account any special characteristics
of the scheduling policy other than that it never idles a processor while a job is waiting to execute. This kind of
scheduling algorithm is called a \busy algorithm" by Phillips et al.[15].

4 Upper Bound on Load

We now try to derive an upper bound on the load of a window leading up to a missed deadline. If we can �nd
such an upper bound � > W=� it will follow from Lemma 3 that the condition � � m(1� ck

dk
) + ck

dk
is suÆcient

to guarantee schedulability. The upper bound � on W=� is the sum of individual upper bounds �i on the load
Wi=� due to each individual task �i that can preempt �k in the window, and �k for �k itself. It then follows that

W

�
=

kX
i=1

Wi

�
<

nX
i=1

�i

While our immediate interest is in a problem window, it turns out that one can obtain a tighter schedulability
condition by considering an extension of the problem window. Therefore, we look for a bound on the load of an
arbitrary downward extension [t; t +�) of a problem window. We call this extension the window of interest, or
just the window for short.

We divide the window of interest into three parts, which we call the head, the body, and the tail of the window
with respect to �i, as shown in Figures 5-7. The contribution Wi of �i to the demand in the window of interest
is the sum of the contributions of the head, the body, and the tail. To obtain an upper bound on Wi we look at
each of these contributions, starting with the head.

4.1 Demand of the Head

The head is the initial segment of the window up to the earliest possible release time (if any) of �i within or beyond
the beginning of the window. More precisely, the head of the window is the interval [t; t+minf�; Ti��)g), such
that there is a job of task �i that is released at time t0 = t � �, t < t0 + Ti < t + Ti, 0 � � < Ti. We call such
a job, if one exists, the carried-in job of the window with respect to �i. The rest of the window is the body and
tail, which are formally de�ned closer to where they are used, in Section 4.3.

Figures 5 and 6 show windows with carried-in jobs. If the interrelease constraint prevents any releases of �i
within the window, the head comprises the entire window, as shown in Figure 5. Otherwise, the head is an initial
segment of the window, as shown in Figure 6. If there is no carried-in job, as shown in Figure 7, the head is said
to be null.
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Figure 5: Window with head only (�+� � Ti).
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Figure 6: Window with head, body, and tail.

The carried-in job has two impacts on the demand in the window:

1. It constrains the time of the �rst release of �i (if any) in the window, to be no earlier than t+ Ti � �.

2. It may contribute to Wi.

If there is a carried-in job, the contribution of the head to Wi is the residual compute time of the carried-in
job at the beginning of the window, which we call the carry-in. If there is no carried-in job, the head makes no
contribution to Wi.

De�nition 4 (carry-in) The carry-in of �i at time t is the residual compute time of the last job of task �i
released before before t, if any, and is denoted by the symbol �. This is illustrated in Figures 5 and 6.

It is not hard to �nd a coarse upper bound for �. If there are no missed deadlines before the window of
interest (or if we assume that uncompleted jobs are aborted when they miss a deadline) no demand of the job of
�i released at time t0 can be carried past t0 + di. In particular, � = 0 unless � < di. Therefore, for determining
an upper bound on �, we only need to look at cases where � < di. Since the carry-in must be completed between
times t0 + � and t0 + di, it follows that � � di � �.

The amount of carry-in is also bounded above by ci, the full compute time of �i, but that bound is too coarse
to be useful. The larger the value of � the longer is the time available to complete the carried-in job before
the beginning of the window, and the smaller should be the value of �. We make this reasoning more precise in
Lemmas 5 and 9.

iT

c i c i

iT

t + ∆

δ

tailt body

. . . . . .

Figure 7: Window with body and tail only (� = 0).
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Lemma 5 (carry-in bound) If t0 is the last release time of �i before t, � = t � t0, and y is the sum of the
lengths of all the intervals in [t0; t) where all m processors are executing jobs that can preempt �i, then

1. If the carry-in � of task �i at time t is nonzero, then � = ci � (�� y).

2. The combined load of the interval [t0; t) with respect to �i is at least (m� 1)(�� ci + �)=�+ 1.

c i

t’ t +

all m processors busy on other jobs of other tasks

m

εy x

φ
t ∆ 

Figure 8: Carry-In depends on competing demand.

Proof: Suppose �i has nonzero carry-in. Let x be the amount of time that �i executes in the interval [t0; t0 + �).
For example, see Figure 8. Then, by the de�nition of �, � = ci � x. Since the job of �i does not complete in the
interval, whenever �i is not executing during the interval all m processors must be executing other jobs that can
preempt that job of �i. This has two consequences:

1. x = �� y, and so � = ci � (�� y)

2. The combined load of the interval [t0; t0 + �) with respect to �i is at least (my + (�� y))=�.

From the �rst observation above, we have y = �� ci + �. Putting these two facts together gives

my + (�� y)

�
= (m� 1)

y

�
+ 1 = (m� 1)

�� ci + �

�
+ 1

2

4.2 Busy Interval

Since the size of the carry-in, �, of a given task depends on the speci�c window and on the schedule leading up
to the beginning of the window, it seems that bounding � closely depends on being able to restrict the window
of interest. Previous analysis of single-processor schedulability (e.g., [13, 4, 7, 12]) bounded carry-in to zero by
considering the busy interval leading up to a missed deadline, i.e., the interval between the �rst time t at which
a task �k misses a deadline and the last time before t at which there are no pending jobs that can preempt �k.
By de�nition, no demand that can preempt �k is carried into the busy interval. By modifying the de�nition of
busy interval slightly, we can also apply it here.

De�nition 6 (�-busy) A time interval is �-busy with respect to task �k if the combined load with respect to �k
in the interval is strictly greater than m(1 � �) + �. A downward extension of an interval is an interval that
has an earlier starting point and shares the same endpoint. A maximal �-busy downward extension of a �-busy
interval is a downward extension of the interval that is �-busy and has no proper downward extensions that are
�-busy.

c 2003 T.P. Baker. All rights reserved. 7
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Lemma 7 (�-busy extension) Any problem interval for task �k has a unique maximal �-busy downward ex-
tension for � = ck

dk
.

Proof:

Let [t0; t0 + dk) be any problem window for �k. By Lemma 3 the problem window is �-busy, so the set of
�-busy downward extensions of the problem window is non-empty. The system has some start time, before which
no task is released, so the set of all �-busy downward extensions of the problem window is �nite. The set is totally
ordered by length. Therefore, it has a unique maximal element. 2

De�nition 8 (busy window) For any problem window, the unique maximal ckdk -busy downward extension whose

existence is guaranteed by Lemma 7 is called the busy window, and denoted in the rest of this paper by [t; t+�).

Observe that the busy window for �k contains a problem window for �k, and so � � dk.

Lemma 9 (�-busy carry-in bound) Let [t; t + �) be a �-busy window window. Let t � � be the last release
time of �i before time t. If � � di the carry-in of �i at t is zero. If the carry-in of �i at t is nonzero it is between
zero and ci � ��.

Proof: The proof follows from Lemma 5 and the de�nition of �-busy. 2

4.3 Completing the Analysis

We are looking for a close upper bound on the contribution Wi of each task �i to the demand in a particular
window of time. We have bounded the contribution to Wi of the head of the window. We are now ready to derive
a bound on the whole of Wi , including the contributions of head, body, and tail.

The tail of a window with respect to a task �i is the �nal segment, beginning with the release time of the
carried-out job of �i in the window (if any). The carried-out job has a release time within the window and an
earliest-permitted next release time beyond the window. That is, if the release time of the carried-out job is t00,
t00 < t+� < t00 + Ti. If there is no such job, then the tail of the window is null. We use the symbol Æ to denote
the length of the tail, as shown in Figures 6 and 7.

The body is the middle segment of the window, i.e., the portion that is not in the head or the tail. Like the
head and the tail, the body may be null (provided the head and tail are not also null).

Unlike the contribution of the head, the contributions of the body and tail to Wi do not depend on the
schedule leading up to the window. They depend only on the release times within the window, which in turn are
constrained by the period Ti and by the release time of the carried-in job of �i (if any).

Let n be the number of jobs of �i released in the body and tail. If both body and tail are null, � = Æ � �,
n = 0, and the contribution of the body and tail is zero. Otherwise, the body and or the tail is non-null, the
combined length of the body and tail is � + �� Ti = (n� 1)Ti + Æ, and n � 1.

Lemma 10 (combined demand) For any busy window [t; t+�) of task �k (i.e., the maximal �-busy downward
extension of a problem window) and any task �i, the demand Wi of �i in the busy window is no greater than

nci �maxf0; ci � ��g

where n = b(�� Æi)=Tic+ 1, � = nTi + Æi ��, Æi = ci if i < k, and Æi = di if i = k.

c 2003 T.P. Baker. All rights reserved. 8
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Proof:

We will �rst consider the case where i < k. We will identify a worst-case situation, where Wi achieves the
largest possible value for a given value of �. For simplicity, we will risk overbounding Wi by considering a wide
range of possibilities, which might include some cases that would not occur in a speci�c busy window. We will
start by considering all conceivable patterns of release times, then narrow down the set of possibilities by stages,
until only the worst case is left.

iT

iT − φ

iT

(n−1) T i

c i

iTiT

t + ∆

c i c i

φ

headtt’

δ

tailbody

busy window

Figure 9: Dense packing of jobs.

By the deadline monotonic scheduling policy, �i can preempt �k if and only if i < k, i.e., if and only if di < dk.
Since ci � di � dk and � � dk, we have � � ci.

Looking at Figure 9, it is easy to see that the maximum possible contribution of the body and tail to Wi is
achieved when successive jobs are released as close together as possible. Moreover, if one imagines shifting all the
release times in Figure 9 earlier or later, as a block, one can see that the maximum is achieved when the last job
is released just in time to have its complete execution �t within the window. That is, the maximum contribution
to W from the body and tail is achieved when Æi = ci. In this case there is a tail of length ci and the number of
complete executions of �i in the body and tail is n = b(�� ci)=Tic+ 1.

From Lemma 9, one can see that the contribution � of the head to Wi is a nonincreasing function of �.
Therefore, � is maximized when � is as small as possible. However, reducing � increases the size of the head, and
so may reduce the contribution to Wi of the body and tail. This is a trade-o� that we will analyze further.

iT

c ic ic i

id

iT − φ

c i

iT iTiT

(n−1) T i

t + ∆

φ

headtt’ body tail

=c iδ

. . .

Figure 10: Densest possible packing of jobs.

Looking at Figure 10, we see that the length of the head, Ti � �, cannot be larger than � � ((n � 1)Ti + ci)
without pushing at least part of the �nal execution of �i outside the window. Reducing � below nTi+ci�� results
in at most a linear increase in the contribution of the head, accompanied by and exactly linear decrease of ci in
the contribution of the body and tail. Therefore we expect the value of Wi to be maximized for � = nTi+ ci��.

To make this reasoning more precise, consider the situation where Æ = ci and � = nTi + ci ��, as shown in
Figure 10. The value of Wi in this case is �+ nci, and Lemma 9 tells us that � � maxf0; ci � ��g.

Suppose � is increased by any positive value � < Ti � �. All the release times are shifted earlier by �. This

c 2003 T.P. Baker. All rights reserved. 9
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does not change the contribution to Wi of any of the jobs, except for possibly the carried-in job, which may have
some of its demand shifted out of the window. Obviously, increasing � cannot increase the value of Wi.

Now suppose � is reduced by any positive value � � �. All the release times are shifted later by �. This
shifts the the last job released in the window, resulting in a reduction of Wi by �. At the same, time � may
increase by at most ��. The net change in � is �(� � 1) � 0. Therefore, there is no way that reducing � below
� = nTi + ci �� can increase the value of Wi.

We have shown that the value of Wi is maximized for i < k when Æi = ci and � = nTi + ci ��.

Wi � nci + � � nci +maxf0; ci � ��g

Now, we consider the special case where i = k. For the case i < k, we saw that the demand of �i in the body
and tail is maximized when Æi = ci. However, that is not possible for �k. Since �k is the problem job, it must
have a deadline at the end of the busy window. That is, instead of the situation in Figure 10, for �k the densest
packing of jobs is as shown in Figure 11.

t + ∆

Tk k(n−1) T 

TkTk TkTk

c kc k c k c k

dk

φ

headtt’ body tail

− φ = d kδ

. . .

Figure 11: Densest possible packing of jobs for �k.

The only di�erence between this case and the one analyzed above is that the length Æi of the tail is di
instead of ci. Making the corresponding adjustments to the analysis, we see that for the number of periods of �k
spanning the busy window we still have n = b(�� Æi)=Tic+1, and the maximum contribution of the head is still
� = maxf0; ci � ��g. All di�erences are accounted for by the fact that Æi = di instead of ci. 2

Lemma 11 (upper bound on load) For any busy window [t; t+�) with respect to task �k the load Wi=� due
to �i, i < k, is at most

�i =

(
ci
Ti
(1 + Ti�Æi

dk
) if � � ci

Ti
ci
Ti
(1 + Ti�Æi

dk
) + ci��Ti

dk
if � < ci

Ti

where Æi = ci for i < k, and Æk = dk.

Proof:

The objective of the proof is to �nd an upper bound for Wi=� that is independent of �. Lemma 10 says that

Wi

�
�

nci +maxf0; ci � ��g

�

Let �(�) be the function de�ned by the expression on the right of the inequality above. We will analyze � to �nd
the maximum with respect to �, for � � dk. This analysis of � involves consideration of two cases, depending
on whether maxf0; ci � ��g = 0.

Case 1: maxf0; ci � ��g = 0.

c 2003 T.P. Baker. All rights reserved. 10
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We have ci � �� � 0, and since � < Ti, we have � � ci
Ti
. From the de�nition of n, we have

n �
�� Æi
Ti

+ 1 =
�� Æi + Ti

Ti

�(�) =
nci
�

�
ci
Ti

�� Æi + Ti
�

�
ci
Ti
(1 +

Ti � Æi
�

)

Since � � dk and Ti � Æi � 0, it follows that

�(�) �
ci
Ti
(1 +

Ti � Æi
dk

) = �i (1)

Case 2: maxf0; ci � ��g 6= 0.

We have ci � �� > 0. Since � = nTi + Æi ��,

�(�) =
nci + ci � ��

�

=
nci + ci � �(nTi + Æi ��)

�

=
n(ci � �Ti) + ci � �(Æi ��)

�

We have two subcases, depending on the sign of ci � �Ti.

Case 2.1: ci � �Ti > 0. That is, � < ci
Ti
.

From the de�nition of n, it follows that

n �
�� Æi
Ti

+ 1 =
�� Æi + Ti

Ti

�(�) =
n(ci � �Ti) + ci � �(Æi ��)

�

�
��Æi+Ti

Ti
(ci � �Ti) + ci � �(Æi ��)

�

�
(�� Æi + Ti)(ci � �Ti) + ciTi � �(Æi ��)Ti

�Ti

�
ci�� ciÆi + ciTi ���Ti + Æi�Ti � �T 2

i + ciTi � Æi�Ti +��Ti
�Ti

�
ci�� ciÆi + ciTi � �T 2

i + ciTi
�Ti

�
ci
Ti
(1 +

Ti � Æi
�

) +
ci � �Ti

�

Since � � dk, Ti � Æi � 0, and ci � �Æi > 0, we have

�(�) �
ci
Ti
(1 +

Ti � Æi
dk

) +
ci � �Ti

dk
= �i (2)

Case 2.2: ci � �Ti � 0. That is, � � ci
Ti
.

c 2003 T.P. Baker. All rights reserved. 11
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From the de�nition of n, it follows that

n >
�� Æi
Ti

�(�) =
n(ci � �Ti) + ci � �(Æi ��)

�

<

��Æi
Ti

(ci � �Ti) + ci � �(Æi ��)

�

<
(�� Æi)(ci � �Ti) + ciTi � �(Æi ��)Ti

�Ti

<
ci�� ciÆi ���Ti + Æi�Ti � �T 2

i + ciTi � Æi�Ti +��Ti
�Ti

<
ci�� ciÆi + ciTi

�Ti

<
ci
Ti
(1 +

Ti � Æi
�

)

Since � � dk, we have

�(�) <
ci
Ti
(1 +

Ti � Æi
dk

) = �i (3)

2

5 Schedulability Condition

Using the above analysis, we can now prove the following theorem, which provides a suÆcient condition for
deadline monotonic schedulability:

Theorem 12 (schedulability test) A set of periodic tasks is schedulable on m processors using preemptive
deadline-monotonic scheduling if, for every task �k,

k�1X
i=1

�i � m(1�
ck
dk

) (4)

where �i is as de�ned in Lemma 11.

Proof: The proof is by contradiction. Suppose some task misses a deadline. We will show that this leads to a
contradiction of (4).

Let �k be the �rst task to miss a deadline and [t; t + �) be a busy window for �k, as in Lemma 7. Since
[t; t+�) is �-busy for � = ck

dk
, we haveW=� > m(1��)+�. By Lemma 11, Wi=� � �i for i = 0; : : : ; k. Observe

that

�k =
ck
Tk

(1 +
Tk � dk

dk
) =

ck
dk

It follows that

�k +

k�1X
i=1

�i �
Wk

�
+

k�1X
i=1

Wi

�
=

W

�
> m(1� �) + �

c 2003 T.P. Baker. All rights reserved. 12
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Since �k =
ck
dk

= �, we can subtract � from both sides of the inequality, and obtain a contradiction of (4).2

The schedulability test above must be checked individually for each task �k. If we are willing to sacri�ce some
precision, there is a simpler test that only needs to be checked once for the entire system of tasks.

Corollary 13 (simpli�ed test) A set of periodic tasks �1; : : : ; �n is schedulable on m processors using preemp-
tive DM scheduling if

nX
i=1

ci
Ti
(1 +

Ti � Æi
dk

) � m(1� �) + � (5)

where � = maxf cidi j i = 1; : : : ; ng, Æi = ci for i < k, and Æk = dk.

Proof:

Corollary 13 is proved by repeating the proof of Theorem 12, adapted to �t the new de�nition of �.

Let �k be the �rst task to miss a deadline and let [t; t+�) be the busy window whose existence is guaranteed
by Lemma 7. Since [t; t+�) is ck

dk
-busy, we have

W

�
> m(1�

ck
dk

) +
ck
dk

= m� (m� 1)
ck
dk

Since ck
dk

� � and m� 1 � 0, we have

W

�
> m� (m� 1)

ck
dk

� m� (m� 1)� = m(1� �) + �

By Lemma 11, Wi=� � �i, for i = 0; : : : ; n. Since � � ci
di
� ci

Ti
, only the �rst case of the de�nition of �i applies,

i.e., �i =
ci
Ti
(1 + Ti�Æi

dk
). It follows that

kX
i=1

ci
Ti
(1 +

Ti � Æi
dk

) =

kX
i=1

�i �
W

�
> m(1� �) + �

Since k � n, the above contradicts (5).2

If we assume the deadline of each task is equal to its period the schedulability condition of Lemma 13 for
deadline monotone scheduling becomes a lower bound on the minimum achievable utilization bound for rate
monotone scheduling on a multiprocessor.

Corollary 14 (utilization bound) A set of periodic tasks, all with deadline equal to period, is guaranteed to
be schedulable on m processors, m � 2, using preemptive rate monotonic scheduling if

nX
i=1

ci
Ti

�
m

2
(1� �) + � (6)

where � = maxf ciTi j i = 1; : : : ; ng.

Proof: Suppose some task misses a deadline. We will show that this leads to a contradiction of (6). Let �k be
the �rst task to miss a deadline and let [t; t+�) be the busy window whose existence is guaranteed by Lemma 7.
Since [t; t+�) is ck

dk
-busy, we have

W

�
> m(1�

ck
dk

) +
ck
dk

(7)

c 2003 T.P. Baker. All rights reserved. 13
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By the deadline monotonic property, we have di � dk, and since we are assuming di = Ti, we have

ci
Ti
(1 +

Ti � ci
di

) �
ci
Ti
(1 +

Ti � ci
dk

) = �i

ci
Ti
(1 +

Ti � ci
Ti

) � �i

ci
Ti
(2�

ci
Ti
) � �i

2
ci
Ti

� �i

Summing up the loads due to �1; : : : ; �k, and applying (7) we have

ck
Tk

+

k�1X
i=1

2
ci
Ti

�
ck
Tk

+

k�1X
i=1

�i

�
Wk

�
+

k�1X
i=1

Wi

�

�
W

�

> m(1�
ck
dk

) +
ck
dk

Subtracting ck
Tk

from both sides, we have

k�1X
i=1

2
ci
Ti

> m(1�
ck
dk

)

k�1X
i=1

ci
Ti

>
m

2
(1�

ck
dk

)

Adding back ck
Tk

to both sides, we have

kX
i=1

ci
Ti

>
m

2
(1�

ck
dk

) +
ck
dk

=
m

2
�

ck
dk

(
m

2
� 1)

Since m
2 � 1 � 0 and ck

dk
� �, we have

m

2
�

ck
dk

(
m

2
� 1) �

m

2
� �(

m

2
� 1) =

m

2
(1� �) + �

Since k � n, the above contradicts (6). 2

Theorem 12 and Corollaries 13 and 14 are intended for use as schedulability tests. They can be applied directly
to prove that a task set will meet deadlines with DM or RM scheduling, either before run time for a �xed set
of tasks or during run time as an admission test for a system with a dynamic set of tasks. With Corollaries 13
and 14, one computes � = maxni=1

ci
di

and then checks the schedulability condition for this value of �. With
Theorem 12, one checks the schedulability condition for each task. In the latter case the speci�c value(s) of k for
which the test fails provide some indication of where the problem lies.

6 Untightness of Utilization Bound

These schedulability tests are only suÆcient conditions for schedulability. They are very conservative. In par-
ticular, the reasoning used to obtain the lower bound on demand in Lemma 3 does not take into account the
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relations between the periods of the tasks. For example, consider the following set of four tasks, to be scheduled
on m = 3 processors:

i ci Ti(= di)
1 1 2
2 1 2
3 1 3
4 5 6

Because the period of task �3 is relatively prime to the period of tasks �1 and �2, release times (and deadlines)
of these tasks can coincide at most once in every 6 time units. It follows that one processor is available for �4 to
execute for at least 5 out of every 6 time units, and so every task will be able to make its deadline. However, if
we apply Corollary 14 to this set we see that it does not pass the test:

nX
i=1

ci
Ti

=
3

6
+

3

6
+

2

6
+

5

6
=

13

6

>
13

12
=

3

2
(1�

5

6
) +

5

6
=

m

2
(1� �) + �

To shed some light on how much room for improvement there is in the lower bound on the minimum achievable
utilization given by Corollary 14, we present the worst-behaved task set that we have been able to �nd, and then
analyze it.

Theorem 15 (upper bound on minimum achievable RM utilization) There exist task sets that are not
feasible with preemptive RM scheduling on m processors and have utilization arbitrarily close to � +m ln( 2

1+� ),
where � is the maximum single-task utilization.

Proof: The task set and analysis are derived from Liu and Layland[13]. The di�erence is that here there are m
processors instead of one, and the utilization of the longest-period task is bounded by a �.

The task set contains n = km+ 1 tasks where k is an arbitrary integer greater than or equal to 1. The task
execution times and periods are de�ned in terms of a set of parameters p1; : : : ; pk+1 as follows:

T(i�1)�m+j = pi for 1 � i � k; 1 � j � m

c(i�1)�m+j = pi+1 � pi for 1 � i � k; 1 � j � m

Tn = pk+1

cn = Tn � 2

kX
i=1

(pi+1 � pi)

= Tn � 2pk+1 � 2

kX
i=2

pi + 2

kX
i=2

pi + 2p1

= 2p1 � Tn

These constraints guarantee that task �n barely has time to complete if all n tasks are released together at time
zero. The RM schedule will have allm processors busy executing tasks �1; : : : ; �n�1 for

Pk
i=1 2(pi+1�pi) = Tn�cn

out of the Tn available time units, leaving exactly cn units to complete �n.
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If cn
Tn

= �, we have

�Tn = cn = 2p1 � Tn

Tn =
2p1
1 + �

= pk+1

We will choose p1; : : : ; pk+1 to minimize the total utilization, which is

U = �+

kX
i=1

m
pi+1 � pi

pi

= �+m

 
(

kX
i=1

pi+1
pi

)� k

!

The partial derivatives of U with respect to pi are

@U

@p1
= m(

2

(1 + �)pk
�

p2
p21
)

@U

@pi
= m(

1

pi�1
�

pi+1
p2i

) for 1 < i < k

@U

@pk
= m(

1

pk�1
�

2p1
(1 + �)p2k

)

Since the second partial derivatives are all positive, a unique global minimum exists when all the �rst partial
derivatives are zero. Solving the equations above for zero, we get

p2
p1

=
2

(1 + �)pk
=

pk+1
pk

pi+1
pi

=
pi
pi�1

for 1 < i � k

Let x =
pk+1
pk

= � � � = p2
p1
. It follows that

xk =

kY
i=1

pi+1
pi

=
pk+1
p1

=
2

(1 + �)

x = (
2

1 + �
)
1
k

U = �+m(kx� k) = �+mk

�
(

2

1 + �
)
1
k � 1

�

L'Hôpital's Rule can be applied to �nd the limit of the above expression for large k, which is

lim
k!1

U = lim
n!1

�+mk(
2

1 + �

1
k

� 1)

= �+m lim
k!1

k(
2

1 + �

1
k

� 1)

= �+m lim
k!1

2
1+�

1
k � 1
1
k
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= �+m lim
k!1

d
dn(

2
1+�

1
k � 1)

d
dn

1
k

= �+m lim
k!1

2
1+�

1
k ln( 2

1+� )
�1
k2

�1
k2

= �+m lim
k!1

2

1 + �

1
k

ln(
2

1 + �
)

= �+m ln(
2

1 + �
) lim
k!1

2

1 + �

1
k

= �+m ln(
2

1 + �
)

2

The task set above is constructed so as to achieved the minimum utilization among a speci�c family of task sets
that are barely schedulable on m processors, following Liu and Layland's worst-case analysis for RM scheduling
on a single-processor. However, at the time of this writing we have not been able to show that this family captures
the worst case for multiprocessors, i.e., that there is no task set outside this family that fully utilizes the processors
and achieves a lower utilization.

We have spent some time looking at examples of task sets, including some where the critical zone property
fails, and not yet found one where the achievable utilization is lower than � +m ln( 2

1+� ). Therefore we still are
led to conjecture that this may be the actual minimum achievable utilization.

Figure 12 shows howmuch of a gap there is between the lower bound on the minimum achievable RM utilization
given by Corollary ?? and the upper bound given by Theorem 15.

lower bound
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upper bound
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      10
       5
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15

20

25

utilization bound

Figure 12: Comparison of upper and lower bounds on minimum achievable utilization.
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Figure 13: Ratio of upper bound to lower bound on minimum achievable utilization.

7 Relation to Prior Work

Andersson, Baruah, and Jonsson[1] de�ned a periodic task set f�1; �2; : : : �ng to be a light system on m processors
if it satis�es the following properties:

1.
Pn

i=1
ci
Ti

� m2

3m�2

2. ci
Ti

� m
3m�2 , for 1 � i � n.

They then proved the following theorem:

Theorem 16 (Andersson, Baruah, Jonsson) Any periodic task system that is light on m processors is sched-
uled to meet all deadlines on m processors by the preemptive Rate Monotonic scheduling algorithm.

The above result is a special case of our Corollary 14. If we take � = m=(3m� 2), it follows that the system
of tasks is schedulable to meet deadlines if

nX
i=1

ci
Ti

�
m

2
(1�

m

3m� 2
) +

m

3m� 2
=

m2

3m� 2

Baruah and Goossens[5] prove the following similar result.

c 2003 T.P. Baker. All rights reserved. 18



T.P.Baker Deadline-Monotonic Schedulability on MP

Corollary 17 (Baruah & Goossens) A set of tasks, all with deadline equal to period, is guaranteed to be
schedulable on m processors using rate monotonic scheduling if ci

Ti
� 1=3 for i = 1; : : : ; n and

nX
i=1

ci
Ti

� m=3

This, too, follows from a special case of our Corollary 14. If we take � = 1=3, it follows that the system of
tasks is schedulable to meet deadlines if

n�1X
i=1

ci
Ti

�
m

2
(1� 1=3) + 1=3 = m=3 + 1=3

Our results generalize and extend the above cited results in the following ways:

1. Theorem 12 can be applied to tasks with pre-period deadlines. This is important for systems were some
tasks have bounded jitter requirements.

2. Theorem 12 can be applied to any set of periodic tasks, without an arbitrary upper bound on individual
task utilizations.

3. If the maximum utilization of all tasks is very low, Corollary 14 can guarantee higher levels of total utilization
than m2=(3m � 2) without missed deadlines. For example, if ck

dk
� 1=4 the system is guaranteed by

Corollary 14 to be schedulable up to utilization 3
4m+1=4, as compared to Baruah and Goossens'm2=(3m�2).

4. If the total utilization is lower than m
2 (1��)+� Corollary 14 can accommodate a few tasks with utilization

higher than m=(3m� 2).

Andersson, Baruah, and Jonsson[1] proposed the following hybrid scheduling algorithm, which they call RM-
US[m=(3m� 2)]:

(heavy task rule) If ci
Ti

> m=(3m� 2) then schedule �i's jobs at maximum priority.

(light task rule) If ci
Ti

� m=(3m�2) then schedule �i's jobs according to their normal rate monotonic priorities.

They then proved the following theorem:

Theorem 18 (Andersson, Baruah and Jonsson) Algorithm RM-US[m=(3m � 2)] correctly schedules on m
processors any periodic task system whose utilization is at most m2=(3m� 2).

The proof is based on the observation that the upper bound on total utilization guarantees that the number
of heavy tasks cannot exceed m. The essence of the argument is that Algorithm RM-US[m=(3m� 2)] can do no
worse than scheduling each of the heavy tasks on its own processor, and then scheduling the remainder (which
must must be light on the remaining processors) using RM.

Theorem 12 and Corollary 14 suggest similar hybrid scheduling algorithms. For example, Algorithm RM-
US[m=(3m� 2)] can be generalized as follows:

Algorithm RM-US[�]

(heavy task rule) If ci
Ti

> � then schedule �i's jobs at maximum priority.

(light task rule) If ci
Ti

� � then schedule �i's jobs according to their normal rate monotonic priorities.
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Theorem 19 Algorithm RM-US[�] correctly schedules on m processors any periodic task system such that only k
tasks (0 � k � m) have utilization greater than � and the utilization of the remaining tasks is at most m(1��)+�.

Proof: As argued by Baruah and Goossens, the performance of this algorithm cannot be worse than an algorithm
that dedicates one processor to each of the heavy tasks, and uses RM to schedule the remaining tasks on the
remaining processors. Corollary 14 then guarantees the remaining tasks can be scheduled on the remaining
processors. 2

8 Conclusion

We have demonstrated an eÆciently computable schedulability test for DM and RM scheduling on a homogeneous
multiprocessor system, which allows preperiod deadlines. This improves on previously known multiprocessor RM
schedulability conditions by relaxing the assumption that deadline equal period.

For the case where periods equal deadlines this test reduces to a simple lower bound on the minimum achievable
utilization. That is, a system of independent periodic or aperiodic tasks can be scheduled by RM to meet all
deadlines if the total utilization is at most m

2 (1��)+�, where � is the maximum of the individual task utilizations.
This result can be used to verify the RM schedulability of systems of tasks with suÆciently low individual
processor utilization, or combined with a hybrid scheduling policy to verify the schedulability of systems with
a few high-utilization tasks. It can be applied statically, or applied dynamically as an admission test. This
improves on previously known utilization-based multiprocessor RM schedulability tests, by allowing both higher
total utilizations and higher individual task utilizations.

In addition to the new lower bound on the minimum achievable RM utilization, we derived an upper bound
of �+m ln( 2

1+� ), which we conjecture may eventually be proven to be a tight lower bound.
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