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Abstract

A schedulability test is presented for preemptive deadline scheduling of periodic or sporadic real-time tasks
on a single-queue m-server system. The new condition does not require that the task deadline be equal to
the task period. This generalizes and re�nes a utilization-based schedulability test of Goossens, Funk, and
Baruah, and also provides an independent and di�erent proof.

1 Introduction

This paper derives a simple suÆcient condition for schedulability of systems of periodic or sporadic tasks in a
multiprocessor preemptive deadline-based scheduling environment.

It has long been known that preemptive earliest-deadline-�rst (EDF) scheduling is optimal for single-processor
batch-oriented systems, in the sense that a set of independent jobs with deadlines is feasible if and only if it is
EDF-schedulable. In 1973 Liu and Layland[15] extended this result to systems of independent periodic tasks for
which the relative deadline of each task is equal to its period, proving that so long as the total processing demand
does not exceed 100 percent of the system capacity EDF will not permit any missed deadlines. Besides showing
that that EDF scheduling is optimal for such task systems, this utilization bound provides a simple and e�ective
a priori test for EDF schedulability.

It also well known that the optimality of EDF scheduling breaks down on multiprocessor systems[16]. For
example, consider a batch of jobs J1; : : : ; Jm+1 with deadlines d1 = mx; : : : ; dm = mx; dm+1 = mx + 1, and
compute times c1 = 1; : : : ; cm = 1; cm+1 = mx + 1, where x is an arbitrary constant, all released at time zero.
If job Jm+1 is allowed to monopolize one processor, all the tasks can be completed by their deadlines using m
processors, as shown in Figure 1. However, an EDF scheduler for m processors would schedule jobs J1 : : : Jm
ahead of Jm+1, causing Jm+1 to miss its deadline, as shown in Figure 2.

The example above generalizes immediately to a set of periodic tasks. Each batch job is replaced by a periodic
task with period Ti and relative deadline di equal to the deadline of the corresponding batch job. If we do this
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Figure 1: All jobs can be scheduled if Jm+1 is given its own processor.
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Figure 2: Jm+1 misses deadline with EDF scheduling.

the total utilization U of the task set is

U = (

mX
i=1

ci=Ti) + cm+1=Tm+1

= m=mx+ (mx+ 1)=(mx+ 1)

= 1 + 1=x

U can be made arbitrarily close to one by choosing x suÆciently large. That is, all but one of the m processors
will be idle almost all of the time.

Reasoning from such examples, it is tempting to conjecture that there is unlikely to be a useful utilization
bound test for EDF scheduling, and even that EDF is not a good real-time scheduling policy for multiprocessor
systems. However, neither conclusion is actually justi�ed.

In the example there are two kinds of tasks: \heavy" ones, with high ratio of compute time to deadline, and
\light" ones, with low ratio of compute time to deadline. It is the mixing of those two kinds of tasks that causes a
problem for EDF. A modi�ed EDF policy, that segregates the heavy tasks from the light tasks, on disjoint sets of
CPU's, would have no problem with this example. Examination of further examples leads one to conjecture that
such a segregated EDF scheduling policy would not miss any deadlines until a very high level of CPU utilization
is achieved, and may even permit the use of simple utilization-based schedulability tests.

Perhaps motivated by reasoning similar to that above, Srinivasan and Baruah[18] examined the deadline-based
scheduling of periodic tasks on multiprocessors, and showed that any system of independent periodic tasks for
which the utilization of every individual task is at most m=(2m�1) can be scheduled successfully on m processors
if the total utilization is at most m2=(2m� 1). They then proposed a modi�ed EDF scheduling algorithm that
gives higher priority to tasks with utilizations above m=(2m� 1), which is able to successfully schedule any set
of independent periodic tasks with total utilization up to m2=(2m � 1). Srinivasan and Baruah derived these
results indirectly, using a theorem relating EDF schedulability on sets of processors of di�erent speeds by Phillips,
Stein, Torng, and Wein[17]. Goossens, Funk, and Baruah [8] generalized these results, showing that a system
of independent periodic tasks can be scheduled successfully on m processors by EDF scheduling if the total
utilization is at most m(1� umax) + umax, where umax is the maximum utilization of any individual task.

We have approached the problem in a di�erent and more direct way. This leads to a di�erent and more general
schedulability condition, of which the above cited results turn out to be special cases. The rest of this paper
presents the derivation of this more general multiprocessor EDF schedulability condition, working through the
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stages by which we discovered it, followed by a discussion of its applications and an explanation of how it relates
to prior work.

2 De�nition of the Problem

Suppose one is given a set of n simple independent periodic tasks �1; : : : ; �n, where each task �i has minimum
interrelease time (called period for short) Ti, worst case compute time ci, and relative deadline di, where ci � di �
Ti. Each task generates a sequence of jobs, each of whose release time is separated from that of its predecessor
by at least Ti. (No special assumptions are made about the �rst release time of each task.) Time is represented
by rational numbers. A time interval [t1; t2), t1 6= t2, is said to be of length t2 � t1 and contains the time values
greater than or equal to t1 and less than t2.

Note that what we call a periodic task here is sometimes called a sporadic task. In this regard we follow Jane
Liu[16], who observed that de�ning periodic tasks to have interrelease times exactly equal to the period \has led
to the common misconception that scheduling and validation algorithms based on the periodic task model are
applicable only when every periodic task is truly periodic ... in fact most existing results remain correct as long
as interrelease times of jobs in each task are bounded from below by the period of the task".

In this paper we assume that the jobs of a set of periodic tasks are scheduled on m processors preemptively
according to an EDF policy, with dynamic processor assignment. That is, whenever there are m or fewer jobs
ready they will all be executing, and whenever there are more than m jobs ready there will be m jobs executing,
all with deadlines earlier than or equal to the jobs that are not executing.

Our objective is to formulate a simple test for schedulability, expressed in terms of the periods, deadlines, and
worst-case compute times of the tasks, such that if the test is passed one can rest assured that no deadlines will
be missed.

Our approach is to analyze what happens when a deadline is missed. We will consider a �rst failure of
scheduling for a given task set. That is, consider a sequence of job release times and compute times consistent
with the interrelease and worst-case compute time constraints that produces a schedule with the earliest possible
missed deadline. Find the �rst point in this schedule at which a deadline is missed. Let �k be the task of a job
that misses its deadline at this �rst point. Let t be the release time of this job of �k. We call �k a problem task,
the job of �k released at time t a problem job, and the time interval [t; t+ dk) a problem window.

τk τk

t

misses deadline

problem window

is released

t + d k

Figure 3: A problem window.

De�nition 1 (demand) The demand of a time interval is the total amount of computation that would need to
be completed within the window for all the deadlines within the interval to be met.

De�nition 2 (load) The load of an interval [t; t+�) is W=�, where W is the demand of the interval.

If we can �nd a lower bound on the load of a problem window that is necessary for a job to miss its deadline,
and we can guarantee that a given set of tasks could not possibly generate so much load in the problem window,
that would be suÆcient to serve as a schedulability condition.
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3 Lower Bound on Load

A lower bound on the load of a problem window can be established using the following well known argument,
which is also used by [17]:

Since the problem job misses its deadline, the sum of the lengths of all the time intervals in which
the problem job does not execute must exceed its slack time, dk � ck.

dkt + 

kd

τk τk
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����
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������
������
������
������

t

m( − x) x

iis released misses deadline

Figure 4: All processors must be busy whenever �k is not executing.

This situation is illustrated for m = 3 processors in Figure 4. The diagonally shaded rectangles indicate times
during which �k executes. The dotted rectangles indicate times during which all m processors must be busy
executing other jobs in the demand for this interval.

Lemma 3 (lower bound on load) If W=dk is the load of the interval [t; t + dk), where t + dk is a missed
deadline of �k, then

W

dk
> m(1�

ck
dk

) +
ck
dk

Proof: Let x be the amount of time that the problem job executes in the interval [t; t+ dk). Since �k misses its
deadline at t + dk, we know that x < ck. A processor is never idle while a job is waiting to execute. Therefore,
during the problem window, whenever the problem job is not executing all m processors must be busy executing
other jobs with deadlines on or before t+dk. The sum of the lengths of all the intervals in the problem window for
which all m processors are executing other jobs belonging to the demand of the interval must be at least dk � x.
Summing up the latter demand and the execution of �k itself, we have W � m(dk � x) + x > mdk � (m� 1)ck.
If we divide both sides of the inequality by dk, the lemma follows.2

Note that the argument used in Lemma 3 is very coarse. It does not take into account any special characteristics
of the scheduling policy other than that it never idles a processor while a job is waiting to execute. This kind of
scheduling algorithm is called a \busy algorithm" by Phillips et al.[17].

4 Upper Bound on Load

We now try to derive an upper bound on the load of a window leading up to a missed deadline. If we can �nd
such an upper bound � > W=� it will follow from Lemma 3 that the condition � � m� (m�1)ck=dk is suÆcient
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to guarantee schedulability. The upper bound � on W=� is the sum of individual upper bounds �i on the load
contribution Wi=� for each individual task in the window. It then follows that

W

�
=

nX
i=1

Wi

�
<

nX
i=1

�i

While our immediate interest is in a problem window, it turns out that one can obtain a tighter schedulability
condition by considering an extension of the problem window. Therefore, we look for a bound on the load of
an arbitrary downward extension [t; t+�) of a problem window, which we call a window of interest, or just the
window for short.

For any task �i that can execute in the window of interest, we divide the window into three parts, which we
call the head, the body, and the tail of the window with respect to �i, as shown in Figures 5-7. The contribution
Wi of �i to the demand in the window of interest is the sum of the contributions of the head, the body, and the
tail. To obtain an upper bound on Wi we look at each of these contributions, starting with the head.

4.1 Demand of the Head

The head is the initial segment of the window up to the earliest possible release time (if any) of �i within or beyond
the beginning of the window. More precisely, the head of the window is the interval [t; t+minf�; Ti��)g), such
that there is a job of task �i that is released at time t0 = t � �, t < t0 + Ti < t + Ti, 0 � � < Ti. We call such
a job, if one exists, the carried-in job of the window with respect to �i. The rest of the window is the body and
tail, which are formally de�ned closer to where they are used, in Section 4.3.

id

c i

t + ∆

iT

headt’ t

εφ

δ

Figure 5: Window with head only (�+� � Ti).

iT iT

c i c i

iT

t + ∆

c i

id id

headt’ t tailbody

δεφ
. . . . . .

Figure 6: Window with head, body, and tail.

Figures 5 and 6 show windows with carried-in jobs. The release time of the carried-in job is t0 = t� �, where
� is the o�set of the release time from the beginning of the window. If the minimum interrelease time constraint
prevents any releases of �i within the window, the head comprises the entire window, as shown in Figure 5.
Otherwise, the head is an initial segment of the window, as shown in Figure 6. If there is no carried-in job, as
shown in Figure 7, the head is said to be null.

The carried-in job has two impacts on the demand in the window:
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Figure 7: Window with body and tail only (� = 0).

1. It constrains the time of the �rst release of �i (if any) in the window, to be no earlier than t+ Ti � �.

2. It may contribute to Wi.

If there is a carried-in job, the contribution of the head to Wi is the residual compute time of the carried-in
job at the beginning of the window, which we call the carry-in. If there is no carried-in job, the head makes no
contribution to Wi.

De�nition 4 (carry-in) The carry-in of �i at time t is the residual compute time of the last job of task �i
released before t, if any, and is denoted by the symbol �. This is illustrated in Figures 5 and 6.

It is not hard to �nd a coarse upper bound for �. If there are no missed deadlines before the window of interest
(or if we assume that uncompleted jobs are aborted when they miss a deadline) no execution of the job of �i
released at time t0 can be carried past t0 + di. In particular, � = 0 unless � < di. Therefore, for determining an
upper bound on �, we only need to look at cases where � < di. Since the carry-in must be completed between
times t0 + � and t0 + di, it follows that � � di � �.

The amount of carry-in is also bounded above by ci, the full compute time of �i, but that bound is too coarse
to be useful. The larger the value of � the longer is the time available to complete the carried-in job before
the beginning of the window, and the smaller should be the value of �. We make this reasoning more precise in
Lemmas 5 and 9.

Lemma 5 (carry-in bound) If t0 is the last release time of �i before t, � = t � t0, and y is the sum of the
lengths of all the intervals in [t0; t) where all m processors are executing jobs that can preempt �i, then

1. If the carry-in � of task �i at time t is nonzero, then � = ci � (�� y).

2. The load of the interval [t0; t) is at least (m� 1)(�� ci + �)=�+ 1.

c i

t’ t +

all m processors busy on other jobs of other tasks

m

εy x

φ
t ∆ 

Figure 8: Carry-in depends on competing demand.

Proof: Suppose �i has nonzero carry-in. Let x be the amount of time that �i executes in the interval [t0; t0 + �).
For example, see Figure 8. By de�nition, � = ci � x. Since the job of �i does not complete in the interval,
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whenever �i is not executing during the interval all m processors must be executing other jobs that can preempt
that job of �i. This has two consequences:

1. x = �� y, and so � = ci � (�� y)

2. The load of the interval [t0; t0 + �) is at least (my + (�� y))=�.

From the �rst observation above, we have y = �� ci + �. Putting these two facts together gives

my + (�� y)

�
= (m� 1)

y

�
+ 1 = (m� 1)

�� ci + �

�
+ 1

2

4.2 Busy Interval

Since the size of the carry-in, �, of a given task depends on the speci�c window and on the schedule leading up
to the beginning of the window, it seems that bounding � closely depends on being able to restrict the window
of interest. Previous analysis of single-processor schedulability (e.g., [15, 3, 10, 14]) bounded carry-in to zero by
considering the busy interval leading up to a missed deadline, i.e., the interval between the �rst time t at which
a task �k misses a deadline and the last time before t at which there are no pending jobs that can preempt �k.
By de�nition, no demand that can compete with �k is carried into the busy interval. By modifying the de�nition
of busy interval slightly, we can also apply it here.

De�nition 6 (busy intervals) A time interval is �-busy if its combined load is at least m(1��)+� and there
are no missed deadlines prior to the end of the interval. A downward extension of an interval is an interval that
has an earlier starting point and shares the same endpoint. A maximal �-busy downward extension of a �-busy
interval is a downward extension of the interval that is �-busy and has no proper downward extensions that are
�-busy.

Lemma 7 (busy window) Any problem interval for task �k has a unique maximal �-busy downward extension
for � = ck

dk
.

Proof:

Let [t0; t0 + dk) be any problem window for �k. By Lemma 3 the problem window is �-busy, so the set of
�-busy downward extensions of the problem window is non-empty. The system has some start time, before which
no task is released, so the set of all �-busy downward extensions of the problem window is �nite. The set is totally
ordered by length. Therefore, it has a unique maximal element. 2

De�nition 8 (busy window) For any problem window, the unique maximal ck
dk
-busy downward extension whose

existence is guaranteed by Lemma 7 is called the busy window, and denoted in the rest of this paper by [t; t+�).

Observe that a busy window for �k contains a problem window for �k, and so � � dk.

Lemma 9 (�-busy carry-in bound) Let [t; t + �) be a �-busy window. Let t � � be the last release time of
�i, where i 6= k, before time t. If � � di the carry-in of �i at t is zero. If the carry-in of �i at t is nonzero it is
between zero and ci � ��.

Proof: The proof follows from Lemma 5 and the de�nition of �-busy. 2
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4.3 Completing the Analysis

We are looking for a close upper bound on the contribution Wi of each task �i to the demand in a particular
window of time. We have bounded the contribution to Wi of the head of the window. We are now ready to derive
a bound on the whole of Wi , including the contributions of head, body, and tail.

The tail of a window with respect to a task �i is the �nal segment, beginning with the release time of the
carried-out job of �i in the window (if any). The carried-out job has a release time within the window and its next
release time is beyond the window. That is, if the release time of the carried-out job is t00, t00 < t+� < t00 + Ti.
If there is no such job, then the tail of the window is null. We use the symbol Æ to denote the length of the tail,
as shown in Figures 6 and 7.

The body is the middle segment of the window, i.e., the portion that is not in the head or the tail. Like the
head and the tail, the body may be null (provided the head and tail are not also null).

Unlike the contribution of the head, the contributions of the body and tail to Wi do not depend on the
schedule leading up to the window. They depend only on the release times within the window, which in turn are
constrained by the period Ti and by the release time of the carried-in job of �i (if any).

Let n be the number of jobs of �i released in the body and tail. If both body and tail are null, � = Æ � �,
n = 0, and the contribution of the body and tail is zero. Otherwise, the body and or the tail is non-null, the
combined length of the body and tail is � + �� Ti = (n� 1)Ti + Æ, and n � 1.

Lemma 10 (combined demand) For any busy window [t; t+�) of task �k (i.e., the maximal �-busy downward
extension of a problem window) and any task �i, let n = b(� � di)=Tic+ 1 if � � di and n = 0 otherwise. The
demand Wi of �i in the busy window is no greater than

nci +maxf0; ci � ��g

where � = nTi + di ��.

Proof:

We will identify a worst-case situation, where Wi achieves the largest possible value for a given value of �.
For simplicity, we will risk overbounding Wi by considering a wide range of possibilities, which might include
some cases that would not occur in a speci�c busy window. We will start by considering all conceivable patterns
of release times, and narrow down the set of possibilities by stages, only the worst case is left.

iT

iT − φ

iT

(n−1) T i

c i

iTiT

t + ∆

c i c i

id
φ

headtt’

δ

tailbody

Figure 9: Dense packing of jobs.

We will start out by looking only at the case where � � di, then go back and consider later the case where
� < di.

Looking at Figure 9, it is easy to see that the maximum possible contribution of the body and tail to Wi

is achieved when successive jobs are released as close together as possible. Moreover, if one imagines shifting all
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the release times in Figure 9 earlier or later, as a block, one can see that the maximum is achieved when the
last job is released just in time to have its deadline coincide with the end of the window. That is, the maximum
contribution to W from the body and tail is achieved when Æ = di. In this case there is a tail of length di and
the number of complete executions of �i in the body and tail is n = b(�� di)=Tic+ 1.

From Lemma 9, we can see that the contribution � of the head to Wi is a nonincreasing function of �.
Therefore, � is maximized when � is as small as possible. However, reducing � increases the size of the head, and
may reduce the contribution to Wi of the body and tail. This is a trade-o� that we will analyze further.

t + ∆

iTiT

c i c i

iTiT

iT − φ (n−1) T i

c ic i

δ i=d

t

φ

bodyhead tailt’

Figure 10: Densest possible packing of jobs.

Looking at Figure 10, we see that the length of the head, Ti � �, cannot be larger than �� ((n� 1)Ti + di)
without pushing all of the �nal execution of �i outside the window. Reducing � below nTi + di �� results in at
most a linear increase in the contribution of the head, accompanied by a decrease of ci in the contribution of the
body and tail. Therefore we expect the value of Wi to be maximized for � = nTi + di ��.

To make this reasoning more precise, consider the situation where Æ = di and � = nTi + di ��, as shown in
Figure 10. The value of Wi in this case is �+ nci, and Lemma 9 tells us that � � maxf0; ci � ��g.

Suppose � is increased by any positive value � < Ti � �. All the release times are shifted earlier by �. This
does not change the contribution to Wi of any of the jobs, except for possibly the carried-in job, which may have
some of its demand shifted out of the window. So, increasing � cannot increase the value of Wi.

Now suppose � is reduced by any positive value � � �. All the release times are shifted later by �. This shifts
the deadline of the last job released in the window, so that the deadline is outside the window and the job no
longer contributes anything to Wi, resulting in a sudden reduction of Wi by ci. At the same, time � may increase
by at most ��. This increase in � is necessarily less than ci. Therefore, there is no way that reducing � below
� = nTi + di �� can increase the value of Wi.

We have shown that if � � di the value of Wi is maximized when Æ = di and � = nTi + di � �, and this
maximum is no greater than

nci + � � nci +maxf0; ci � ��g

It is now time to consider the special case where � < di. In this case there can be no body or tail contribution,
since it is impossible for a job of �i to have both release time and deadline within the window. If Wi is nonzero,
the only contribution can come from a carried-in job. Lemma 9 guarantees that this contribution is at most
maxf0; ci � ��g.

For n = b��di
Ti

c+ 1 = 0 we have

Wi � maxf0; ci � ��g � nci +maxf0; ci � ��g

2
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Lemma 11 (upper bound on load) For any �-busy window [t; t+�) with respect to �k the load Wi=� due to
�i is at most �i, where

�i =

(
ci

Ti
(1 + Ti�di

dk
) if � � ci

Ti
ci

Ti
(1 + Ti�di

dk
) + ci��Ti

dk
if � < ci

Ti

(1)

Proof:

The objective of the proof is to �nd an upper bound for Wi=� that is independent of �. Lemma 10 says that

Wi

�
�

nci +maxf0; ci � ��g

�

Let � be the function de�ned by the expression on the right of the inequality above, i.e.,

�(�) =
nci +maxf0; ci � ��g

�

There are two cases, depending on whether maxf0; ci � ��g = 0.

Case 1: maxf0; ci � ��g = 0.

We have ci � �� � 0, and � � ci=�. Since we also know that � < Ti, we have � �
ci

Ti
. From the de�nition of

n, we have

n = b
�� di
Ti

c+ 1 �
�� di
Ti

+ 1 =
�� di + Ti

Ti

�(�) =
nci
�

�
ci
Ti

�� di + Ti
�

�
ci
Ti
(1 +

Ti � di
�

)

Since � � dk, it follows that

�(�) �
ci
Ti
(1 +

Ti � di
dk

) = �i (2)

Case 2: maxf0; ci � ��g 6= 0.

We have ci � �� > 0. Since � = nTi + di ��,

�(�) =
nci + ci � ��

�

=
nci + ci � �(nTi + di ��)

�

=
n(ci � �Ti) + ci � �(di ��)

�

We have two subcases, depending on the sign of ci � �Ti.

Case 2.1: ci � �Ti > 0. That is, � < ci

Ti
.
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From the de�nition of n, it follows that

n �
�� di
Ti

+ 1 =
�� di + Ti

Ti

�(�) =
n(ci � �Ti) + ci � �(di ��)

�

�
��di+Ti

Ti
(ci � �Ti) + ci � �(di ��)

�

�
(�� di + Ti)(ci � �Ti) + ciTi � �(di ��)Ti

�Ti

�
ci�� cidi + ciTi ���Ti + di�Ti � �T 2

i
+ ciTi � di�Ti +��Ti

�Ti

�
ci�� cidi + ciTi � �T 2

i
+ ciTi

�Ti

�
ci
Ti
(1 +

Ti � di
�

) +
ci � �Ti

�

Since � � dk, we have

�(�) �
ci
Ti
(1 +

Ti � di
dk

) +
ci � �Ti

dk
= �i (3)

Case 2.2: ci � �Ti � 0. That is, � � ci

Ti
.

From the de�nition of n, it follows that

n >
�� di
Ti

�(�) =
n(ci � �Ti) + ci � �(di ��)

�

<
��di
Ti

(ci � �Ti) + ci � �(di ��)

�

<
(�� di)(ci � �Ti) + ciTi � �(di ��)Ti

�Ti

<
ci�� cidi ���Ti + di�Ti � �T 2

i
+ ciTi � di�Ti +��Ti

�Ti

<
ci�� cidi + ciTi

�Ti

<
ci
Ti
(1 +

Ti � di
�

)

Since � � dk, we have

�(�) <
ci
Ti
(1 +

Ti � di
dk

) = �i (4)

Observe that inequalities (2) and (4) cover the cases where � � ci

Ti
, and that inequality (3) covers the case

where � < ci

Ti
in the de�nition of �i. 2

c 2003 T.P. Baker. All rights reserved. 11



T.P.Baker EDF Schedulability on Multiprocessor

5 Schedulability Condition

Using the above analysis, we can now prove the following theorem, which provides a suÆcient condition for EDF
schedulability.

Theorem 12 (EDF schedulability test) A set of periodic tasks �1; : : : ; �n is schedulable on m processors using
preemptive EDF scheduling if, for every task �k,

nX
i=1

minf1; �ig � m(1�
ck
dk

) +
ck
dk

(5)

where � is as de�ned in Lemma 11.

Proof: The proof is by contradiction. Suppose some task misses a deadline. We will show that this leads to a
contradiction of (5).

Let �k be the �rst task to miss a deadline and [t; t + �) be a busy window for �k, as in Lemma 7. Since
[t; t+�) is �-busy for � = ck

dk
, we have W=� > m(1� �) + �. By Lemma 11, Wi=� � �i, for i = 0; : : : ; n. Since

t+� is the �rst missed deadline, we know that Wi=� � 1. It follows that

nX
i=1

minf1; �ig �
W

�
> m(1�

ck
dk

) +
ck
dk

The above is a contradiction of (5).2

The schedulability test above must be checked individually for each task �k. If we are willing to sacri�ce some
precision, there is a simpler test that only needs to be checked once for the entire system of tasks.

Corollary 13 (simpli�ed test) A set of periodic tasks �1; : : : ; �n is schedulable on m processors using preemp-
tive EDF scheduling if

nX
i=1

minf1;
ci
Ti
(1 +

Ti � di
dmin

)g � m(1� �) + � (6)

where � = maxf ci
di

j i = 1; : : : ; ng and dmin = minfdk j i = 1; : : : ; ng.

Proof:

Corollary 13 is proved by repeating the proof of Theorem 12, adapted to �t the new de�nition of �. Let �k be
the �rst task to miss a deadline and let [t; t+�) be the busy window whose existence is guaranteed by Lemma 7.
By Lemma 7, we know that [t; t+�) is ck

dk
-busy, and so

W

�
> m(1�

ck
dk

) +
ck
dk

= m� (m� 1)
ck
dk

Since ck

dk
� � and m� 1 � 0, we have

W

�
> m� (m� 1)

ck
dk

� m� (m� 1)� = m(1� �) + �
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By Lemma 11, Wi=� � �i, for i = 0; : : : ; n. Since � � ci

di
� ci

Ti
, only the �rst case of the de�nition of �i applies,

i.e., �i =
ci

Ti
(1 + Ti�di

dk
). It follows that

nX
i=1

ci
Ti
(1 +

Ti � di
dmin

) =

nX
i=1

minf1; �ig

�
W

�
> m(1� �) + �

The above contradicts (6).2

6 Relation to Prior Work

Srinivasan and Baruah[18] de�ned a periodic task set f�1; �2; : : : �ng to be a light system on m processors if it
satis�es the following properties:

1.
Pn

i=1
ci

Ti
� m

2

2m�1

2. ci

Ti
� m

2m�1
, for 1 � i � n.

They then proved the following theorem:

Theorem 14 (Srinivasan and Baruah[18]) Any periodic task system that is light on m processors is scheduled
to meet all deadlines on m processors by EDF.

Goossens, Funk, and Baruah[8] re�ned the above work, showing the following:

Theorem 15 (Goossens, Funk, and Baruah[8]) A set of periodic tasks �1; : : : ; �n, all with deadline equal to
period, is guaranteed to be schedulable on m processors using preemptive EDF scheduling if

nX
i=1

ci
Ti

� m(1� �) + �

where � = maxfci=Ti j i = 1; : : : ; ng.

Their proof is derived from a theorem in [7], on scheduling for uniform multiprocessors, which in turn is based
on [17]. They then showed that the above utilization bound is tight, in the sense that there is no utilization
bound Û > m(1� �) + �+ �, where � > 0 and � = maxfci=Ti j i = 0; : : : ; ng, for which U � Û guarantees EDF
schedulability.

We have an independent proof of the above utilization bounds as a special case of Corollary 13, by replacing
di by Ti. We have gone beyond the above results of [18] and [8] in the following ways:

1. We have provided an independent direct analysis of EDF schedulability, that does not depend on the Phillips
et al. speedup result[17].

2. Theorem 12 and Corollary 13 can be applied to tasks with pre-period deadlines. This is important for
systems were some tasks have bounded jitter requirements.
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Srinivasan and Baruah[18] proposed adapting their utilization-bound schedulability condition to situations
where there are a few high-utilization tasks in the form of the following priority scheduling algorithm, which they
call EDF-US[m=(2m� 1)]:

(heavy task rule) If ci=Ti > m=(2m� 1) then schedule �i's jobs at maximum priority (e.g., deadline = 0).

(light task rule) If ci=Ti � m=(2m� 1) then schedule �i's jobs according to their normal deadlines.

They then proved the following theorem:

Theorem 16 (Srinivasan and Baruah[18]) Algorithm EDF-US[m=(2m�1)] correctly schedules on m proces-
sors any periodic task system whose utilization is at most m2=(2m� 1).

Their proof is based on the observation that their upper bound on total utilization guarantees that the number
of heavy tasks cannot exceed m. The essence of the argument is that Algorithm EDF-US[m=(2m� 1)] can do no
worse than scheduling each of the heavy tasks on its own processor, and then scheduling the remainder (which
must must be light on the remaining processors) using EDF.

Theorem 12 and Theorem 15 suggest the above hybrid scheduling algorithm can be generalized further. For
example, Algorithm EDF-US[m=(2m� 1)] can be generalized as follows:

Algorithm EDF-US[�]

(heavy task rule) If ci=Ti > � then schedule �i's jobs at maximum priority (e.g., deadline = 0).

(light task rule) If ci=Ti � � then schedule �i's jobs according to their normal deadlines.

Theorem 17 Algorithm EDF-US[�] correctly schedules on m processors any periodic task system such that only
k tasks (0 � k � m) have utilization greater than � and the utilization of the remaining tasks is at most
(m� k)� ((m� k)� 1)�.

Proof: As argued by Srinivasan and Baruah, the performance of this algorithm cannot be worse than an algorithm
that dedicates one processor to each of the heavy tasks, and uses EDF to schedule the remaining tasks on the
remaining processors. Theorem 15 then guarantees the remaining tasks can be scheduled on the remaining
processors. 2

If there is a need to support preperiod deadlines, this idea can be taken further, by changing the \heavy task
rule" to single out for special treatment a few tasks that fail the test conditions of Theorem 12 or Corollary 13,
and run the rest of the tasks using EDF scheduling.

7 Conclusion

We have demonstrated an eÆciently computable schedulability test for EDF scheduling on a homogeneous mul-
tiprocessor system, which allows preperiod deadlines. It can be applied statically, or applied dynamically as
an admission test. Besides extending and generalizing previously known utilization-based tests for EDF multi-
processor schedulability by supporting pre-period deadlines, we also provide a distinct and independent proof
technique.

The notion of �-busy interval, used to derive an EDF schedulability condition here, has broader applications.
In[4] we use the same approach to improve on the utilization bound result of Andersson, Baruah, and Jonsson[1]
for rate monotone scheduling on multiprocessors.
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