
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

ANOMALY-BASED SECURITY PROTOCOL ATTACK DETECTION

By

TYSEN GLEN LECKIE

A thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:
Fall Semester, 2002

The members of the Committee approve the thesis of Tysen Glen Leckie

defended on November 14, 2002.

Alec Yasinsac
Professor Directing Thesis

Lois Wright Hawkes
Committee Member

Daniel Schwartz
Committee Member

 ii

I dedicate this work to my loving parents, Marlene and Glen. Without their

support and driving force, this work might not have been completed.

 iii

TABLE OF CONTENTS

List of Figures ………………………………………………………… vi
Abstract ………………………………………………………………… viii

INTRODUCTION …..……………………………………….……………… 1

1. SEADS CONCEPT ………………………...……………………… 5

 Background …………………………...………………………….… 5
 Behavior-Based
 Security Protocols
 Taxonomy of Events …………………………...…………………. 9
 Time Granularities ………………………...………………………. 11

2. BSEADS SYSTEM COMPOSITION …….……………….……… 15

 Architecture …………………………...……………………………. 15

3. USER ACTIVITY …………………………………………………… 18

 Definition …………………………....………………………………. 18
 Normal User Profile ……………….………….……………………. 19
 User Activity Log
 Time Degradation
 Normal Profile Statistics
 Observed Profile …………………….……...……………………… 24
 Observed Activity Log
 Observed Statistics

4. BEHAVIORAL ANALYZERS ……….…………………………….. 27

 Definition …………………………...….……………………………. 27
 Parallel Session ……………………….…...………………………. 29

Failed Session ………………...……….……………..…….……… 31
 Weak Session …………………………....………………………… 32

 iv

 Replay Session …………………………...………………………. 33

5. METHODS OF DETECTION ……………………………………. 35

 Definition …………………………...……………………………… 35
 Measure of Spread …………………………...…………….……. 35
 Standard Deviation
 Measure of Normalcy …………………………...……………….. 38
 Chi-Square

6. EXPERIMENT …………………………...…………………..…… 41

 Overview …………………………...……………………………… 41
 Parallel Session Behavioral Analyzer ………………………….. 43
 Failed Session Behavioral Analyzer ……………………………. 45
 Weak Session Behavioral Analyzer ……………………………. 46
 Replay Session Behavioral Analyzer ………………………….. 48

CONCLUSION ……………………….……………………...………. 50

APPENDIX ……………………………………………………….. 51

REFERENCES …………………………..…………………………… 111

BIOGRAPHICAL SKETCH ……………………………………………… 114

 v

LIST OF FIGURES

1. Taxonomy of Events …..……………………………………….. 10

2. Time Categories …….………………………………………….. 13

3. SEADS Diagram ………………………………………………... 15

4. BSEADS Diagram …….………………………………………… 16

5. Time Degradation Calculator . …...……………………………. 22

6. B-IDE Diagram ………………………………………………….. 29

7. Variance and Standard Deviation ……………………….……. 37

8. Chi-Square Multivariate Model ………………………….…….. 39

9. Symbol Chart ……………………………………………..…….. 39

10. Upper Control Limit …………………………………………….. 40

11. Parallel Session Observed Activity ………………………..….. 43

12. Parallel Session Normal Profile Statistics …………..……….. 44

13. Parallel Session Observed Statistics …………………..…….. 44

14. Failed Session Observed Activity …………………………….. 45

15. Failed Session Normal Profile Statistics ……………….…….. 45

16. Failed Session Observed Statistics ………….……………….. 46

17. Weak Session Observed Activity ……………….…………….. 47

18. Weak Session Normal Profile Statistics ……………………… 47

19. Weak Session Observed Statistics …………………………… 47

 vi

20. Replay Session Observed Activity ……..……….…………….. 48

21. Replay Session Normal Profile Statistics ……..……….……… 49

22. Replay Session Observed Statistics …………..……….……… 49

 vii

ABSTRACT

Anomaly-based intrusion detection systems have traditionally been

plagued with a high false alarm rate coupled with a high overhead in the

determination of true intrusions. The viability of such systems is directly

correlated to the creation of the normal profiles that are then used to compare all

other observations from.

This paper presents a novel method to create a profile that accurately

reflects user behavior by storing user log activity in a static metadata

representation. A dynamically generated profile is computed from the stored log

activity.

Standard deviation is used to measure the uniform characteristics of

session activity over multiple time granularities. Chi-square is used to measure

the normality of data in relation to historical records. This environment is focused

on detecting intrusions upon security protocols without the added overhead of

analyzing the encrypted payload.

 viii

INTRODUCTION

The first step in defending against an information based attack is

determining that the attack has either already occurred or is currently in progress.

Intrusion Detection Systems (IDS) are used in the detection of unauthorized or

malicious behavior of computer activity or network traffic, preferably while such

activity is ongoing. A central facet of intrusion detection is to preserve the

confidentiality, integrity and availability of an organization’s technological

resources. Confidentiality is assurance that data is shared only among

authorized entities. Integrity is assurance that the information is authentic and

complete. Availability is assurance that systems responsible for storing, sending

and processing data are accessible when needed. Compromising one or more of

these attributes, renders an organization open to attack and the potential failure

of critical systems.

Organizations increasingly exploit information technology to support core

competencies focused in national security, military, utilities, transportation,

financials and other vital areas. In October 1997, the Presidential Commission on

Critical Infrastructure suggested increasing spending to a $1 billion level over the

next seven years on various important information security topics. The focus

included the areas of vulnerability assessment, intrusion detection and

information assurance technologies [20].

 1

The computer security problem is real. Ten major governmental agencies

had been compromised in previous years, with a success rate of 64% of the

attacks reported. The success rate has been doubling every year. Based on

previous research, the General Accounting Office (GAO) estimates that only 1%

to 4% of these attacks are detected and approximately 1% are reported [4].

In this paper we present an approach that employs an anomaly (behavior-

based) method called the Behavioral Secure Enclave Attack Detection System

(BSEADS). We examine the problem of anomaly detection as one of learning to

describe behaviors of security protocol activity in terms of temporal aspects of

user related session data. The purpose of this research is to detect attacks on

security protocols by employing a behavior-based method of detection based on

a chi-square test statistic. We further utilize standard deviation to measure the

uniform characteristics of session data occurring over multiple time granularities.

This gives us a richer and more accurate temporal view of our data sets.

In previous research there has been a noticeable lack of discussion in the

area of IDS within encrypted environments. Future networks must be secure.

These utilize a variety of mechanisms in conjunction with IDS such as firewalls,

access controls, secure shells, auditing and encryption techniques. The use of

encryption is especially important in communication over insecure mediums such

as the Internet. If the physical line is not secure then the transmitted data itself

must be. An issue of importance arises in the deployment of IDS in such

environments where the analysis of the encrypted payload is a slow or

 2

impossible task based on key space, key availability, processing power, amount

of data and system priorities.

 Our approach is novel because it is not focused upon the encrypted

payload of the security protocol sessions. Instead, we develop a method that

uses metadata to describe session activity without the resource-consuming task

of analyzing the encrypted payload, a potentially impossible undertaking.

Metadata is essentially an underlying definition of data about data. We use it to

aid in the identification, description and location of data. This Knowledge

Engineering approach extracts session-specific metadata that uniquely

characterizes security protocol activity in such a way as to facilitate attack

detection. This unique approach is vital in any secure environment where

encryption algorithms are used to encode payload, effectively negating

unproblematic deciphering.

The system we describe is based on a simulated networked environment

within an encompassing architecture called the Secure Enclave Attack Detection

System (SEADS) created in the Security and Assurance in Information

Technology (SAIT) Laboratory at Florida State University (FSU). The mission of

SAIT Laboratory is to support the demands of research, education, and outreach

in information assurance and security. FSU is a Center of Academic Excellence

in Information Security Education designated by the National Security Agency

(NSA).

This paper is divided into six parts. First, background information is

presented on previous applications with a discussion on methods of anomaly

 3

detection. Next, taxonomy of events is presented. This is followed by a

discussion of the time granularities we use to aid in intrusion detection. We then

present an overview of the BSEADS environment and go into further detail of its

essential components. This is followed by each of the Behavioral Analyzers that

represent our essential detection constructs. Finally, we detail our methods of

detection and present an experiment to test our concepts.

 4

CHAPTER 1

SEADS CONCEPT

Background

The SEADS concept was initially proposed in order to allow intrusion

detection in encrypted traffic [25]. SEADS was subsequently developed within

the SAIT environment in order to replicate security protocol activity. By

introducing attack behavior within the system, different intrusion detection

techniques could be tested and benchmarked in varied configurations.

We have two flavors employed within the SEADS environment, KSEADS

and BSEADS. The Knowledge Secure Enclave Attack Detection System

(KSEADS) is a knowledge-based (misuse) method used in the detection of

security protocol attacks [6][17][18][25]. Security protocol traffic is compared to

stored signatures of known attacks resulting in a decision on whether the

comparison results in a positive match for malicious behavior.

IDS are generally categorized in two main areas: misuse detection and

anomaly detection. Misuse methods aim to detect well-known attacks by having

a priori knowledge of those attacks. New attacks must be learned by the system

before they can be detected. Anomaly techniques assume that all intrusions

display anomalous characteristics, therefore rendering themselves detectable.

The assumption is that systems are insecure by definition and that malicious

 5

activities can be detected by analyzing system behavior. Given a “normal activity

profile” intrusions produce behavior that varies from an established historical

profile by statistically relevant amounts [9].

Misuse based methods generally have a high degree of accuracy. This is

the result of known attacks on the system being detected successfully, since their

attack patterns are known beforehand. The resulting benefit is a low incidence of

false positives. A problem arises in the limited degree of completeness. The

intrusions that are detected have a high probability of being actual intrusions but

new or previously unknown attacks remain undetected by the IDS. This

translates into a high false negative rate.

The predicament resides with the frequent updating of the known attack

database. New attack signatures must be added before those attacks can be

detected. This involves a high degree of overhead and does not guarantee that

new attacks will be detected in a timely manner. The continuous research to

analyze new attacks and find their signatures may ultimately fail because a slight

change in the attack sequence from polymorphic attacks may result in a bypass

of detection. Some traditional misuse based methods include a rule-base expert

system [13], a state transition analysis tool for Unix [8] and a state transition

network-based application [22].

BSEADS is a behavior-based method under the SEADS architecture that

is used in the detection of security protocol attacks. The joint KSEADS and

BSEADS initiatives within the SEADS umbrella will give us the benefit of both

misuse and anomaly focused initiatives, resulting in an enhancement of our

 6

intrusion detection capabilities. This paper details BSEADS and how it can be

used to detect previously unknown attacks within an encrypted environment.

Behavior-Based

This approach uses models of normal data. Attacks are detected by

observing deviations in the normal profile caused by observed data. It can detect

all attacks without relying on a priori knowledge of those attacks. This is because

all intrusions should display abnormal characteristics that render them

detectable. Abnormal behavior does not necessarily indicate an intrusion, but a

deviation from the historical profile. Once the historical long-term profile is built,

comparing a subject’s short-term observed behavior to this profile facilitates

detection of intrusions.

The focus on anomaly detection has been increasing ever sense the

seminal first comprehensive model of intrusion detection systems was proposed

by Denning [3]. In this frequently cited document, she discusses “anomaly

records” which are one of the six basic components of a generic intrusion

detection system. Many types of approaches have been attempted in the area of

anomaly detection. Neural networks were used to detect abnormalities in the

behavior of software programs [5], data mining of TCPdump audit data was

implemented [2] and also statistical profiling methods that search for anomalies

and maintain a database of profiles [1], [10], [16], [19].

Anomaly detection systems generally have a high degree of

completeness. This results in the benefits of a low false negative rate. This is the

consequence of detecting known and unknown attacks on the system, both of

 7

which deviate from the model of normal behavior in a noticeable and detectable

way. The high degree of completeness is offset by a low degree of accuracy.

Because this comparison is not performed by direct matching (signature) but

relies upon more arbitrary statistical methods, there is a level of error associated

with correctly labeling an attack thereby increasing the false positive rate. This

error is the main limiting factor of anomaly applications.

The success of a positive detection relies on the model of normal behavior

coupled with the thresholds and parameters set to signify an intrusion. Issues

that arise are observed activity that is an intrusion but displays no abnormal

behavior and a historical profile that is not entirely normal.

The viability of such systems is directly correlated to the creation of the

normal profile database. Attacks may not be detected if they fit the established

profile of the user. In this case we use a novel approach that dynamically creates

statistics based on a User Activity Log. This should increase our detection

abilities of security protocol attacks because we directly model normal behavior

from the past protocol session metadata of each individual user. Another

drawback is that a malicious user might train the anomaly detection algorithm to

learn his or her behavior as normal over time. To counter this scenario we

analyze multiple and larger time granularities for intrusive behavior.

Anomaly methods play an essential role in any IDS. A system based

solely on the misuse model is not a viable solution alone because of damage that

can occur from the time a new attack is detected to the time the attack sequence

has been recorded and logged. Also, to have predefined instances of hostile

 8

activity is a somewhat impossible task. An issue of coverage arises [11]. The

space of possible malicious behaviors is potentially infinite. Therefore, it is

difficult or impossible to have complete coverage of this entire space.

Security Protocols

A security protocol is a communications protocol that encrypts and

decrypts a message for the purposes of online transmission. Examples of

popular security protocols are SSL, SSH, HTTPS, S/MIME and IPSec. These are

used for purposes of authentication and to provide a secure communications link

using a method of encryption on the contents of the message. This data

encryption is especially important considering that all communication is

performed over an insecure medium. Therefore, the packet itself should be

encrypted if the physical link is not. The resulting benefit is a private, secure and

reliable method of data exchange.

Many protocols exist, and not all of them are free of errors. Flaws in

protocol design or implementation sometimes are not discovered until years after

the protocols are initially adopted. Security protocols are prone to attacks. The

encrypted payload can be compromised if the key used is known or discovered

by a malicious intruder. Replay techniques, masquerading, parallel session,

oracle, man-in-the-middle and guessing attacks are a few of the ways that

security protocols can be defeated [7], [15], [21], [23], [24].

Taxonomy of Events

The definition, creation and subsequent observation of contrasting

behaviors are pivotal to anomaly systems. Intrusions that display normal

 9

behavior are undetectable. For example, an IDS is programmed with the metric

of “LOGIN NUMBER”. It contains the normal count of this metric per user per

time of day. If a certain individual normally logs in five times during the hours of

noon to one, and the IDS records on a particular day this amount equals ten

times, then it will raise an alarm.

I Intrusions – The set of all actual
attacks.

D Detections – The set of all positive
detections reported by our IDS.

A Abnormal Behavior – This can be
detected by our system.

Initial State

N Normal Behavior –This represents

behavior that cannot be detected.

Y
True Positive – An abnormality that
was correctly determined to be an

intrusion.

Z
False Positive – An abnormality

that was incorrectly flagged to be
an intrusion.

X
True Negative – An abnormality

that was correctly flagged to
represent no intrusion.

Optimal State

 W
False Negative – A malicious

abnormality that went undetected
by our IDS.

Figure 1

This depends on the threshold or standard deviation from the mean the

system uses to signal such an intrusion. However, if the same individual logs in

five times during the same time period, but this time maliciously corrupts critical

system files then the IDS would not be able to detect this attack. This is because

it is not an abnormal deviation from the user’s normal behavior for the time frame

of noon to one for that individual metric. Different metrics would be needed,

rather than “LOGIN NUMBER” to detect this intrusion.

 10

The Venn diagrams in Figure 1 are a representation of all behavior.

Anomaly systems only detect (D) behavior that displays abnormal (A)

characteristics. Normal behavior (N) is undetected by our system even if this

behavior is an actual intrusion (I).

A non-optimized intrusion detection system that has inadequate metrics,

detection thresholds, or an irrelevant representation of normal behavior is

characterized by the initial state in Figure 1. This entails an unacceptably high

degree of false positives (Z) and false negatives (W) in conjunction with an

intolerably low rate of true positives (Y) and true negatives (X) the consequence

of which is intrusions that are allowed to execute undetected. False positives are

not as bad as false negatives. A false positive is basically an administrative

overhead. However, a false negative is no alert at all. Thus, limiting false

negatives is a high priority. If there are many false positives or false negatives

then one needs to reconsider how anomalous behavior is determined.

When the system corrects the problems listed in the initial state it reaches

an optimal state as depicted in Figure 1. This is distinguished by a noticeable

improvement in all the rates of detection. In the optimal state, most of the actual

intrusions display abnormal characteristics. A significant percentage of abnormal

behavior is correctly labeled an intrusion and a noteworthy number of intrusions

are detected.

Time Granularities

In this section we describe how time granularities and temporal sequence

learning assist us in refining our definition of behavior over multiple aspects of

 11

daily activity. Time is an essential descriptive identifier of any event. As a result

of the dynamic nature of the networked environment, activity is time varying.

Usage will differ with hour of day, day of week, season, holiday, non-work days,

etc. For an IDS to truly be useful it must consider the time varying characteristics

of the environment and adapt to changes as users utilize a myriad network of

changing components.

Recording when events occur and noting their relative duration can assist

intrusion detection by refining to a more accurate and granular aspect the

definition of behavior. User activity is different per time period. The total activities

of an intruder last from a few seconds to multiple hours. Patterns may only

appear in analysis gathered from a number of different metrics, possibly spread

over multiple regions of time. Our objective is to understand these nuances and

to more richly describe the notion of behavior in order to span multiple time

granularities. As a consequence of this, we are able to detect attacks that display

abnormal behavior in an individual time category, multiple time categories, or an

entire day’s worth of activity.

The time characteristics that we are concerned with are the ones that

might be encountered during an average workday. We want to be able to

describe behavior that accurately portrays the time that session activity happens

by mapping it to pre-determined categories of the day. It is often difficult to

classify a single user session as normal or abnormal because of the erratic

behavior of most people. By grouping session activity within time categories we

are able to more richly and accurately portray their behavior not for just individual

 12

sessions, but for entire groupings of sessions. Because attack behavior takes a

nonfinite time to develop it is essential that we analyze groupings of sessions for

malicious behavior. In a networked environment, metrics are sometimes

interdependent. Only a few metric values contribute significantly in changing the

overall statistics. Abnormal activities do not just affect the magnitude of the

associated metrics but also their relationship with other metrics. It is difficult to

detect abnormal behavioral patterns by analyzing individual metrics only.

Therefore, multivariate methods are a superior approach.

Time Categories
Category Coverage of Day

Early Morning 0 – 6 hours
Morning 6 – 11 hours

Afternoon 11 – 16 hours
Evening 16 – 19 hours

Night 19 – 24 hours
Entire Day 0 – 24 hours

Figure 2

Figure 2 contains the categories of time that partition our system. Each

category relates to a predefined portion of the day represented by the associated

time coverage for that category. By analyzing these groupings of session activity

at the conclusion of their time periods, we are able to detect a change in

behavioral state after a manageable and controllable duration. This aids in the

detection of intrusions by refining our search space, which is imperative because

the early detection of problems is important in order to minimize damage.

The categories are defined by dividing a 24-hour day into the notion of

early morning, morning, afternoon, evening, night and entire day. By developing

 13

an expanding degree of granularity, we are able to further refine the specificity of

these segments to detect variations of workload occurring in different periods.

We define a generation schedule that essentially is a predetermined time

during any given day that the Behavioral Intrusion Detection Engine (B-IDE)

performs a check on system behavior. After each of the listed time categories in

Figure 2 expire, the system performs a behavioral analysis to determine the

presence of intrusive activity for that recently completed time category. Once the

night category has been exceeded the system performs an overall entire day

check. By checking the system during multiple time periods, we are more likely

able to catch behavior that shows recent signs of deviations in either one or

many time categories. By checking the behavior at the conclusion of the day,

thereby analyzing the total accrued session activity, we notice any flux in

behavior that took a protracted time to develop.

 14

CHAPTER 2

BSEADS SYSTEM COMPOSITION

Architecture

The system is an extension of the SEADS environment. This is displayed

in Figure 3. SEADS is composed of a group of principals (computer processes)

operating within a secure environment. Security protocol sessions are

transmitted between communicating principals. These principals send session

specific data to a Monitor via a secure link. The Monitor is responsible for

gathering all session data. This repository is what is used as the basis for the

training of BSEADS.

BSEADS is essentially an

Activity Logs are trained using a

based off the representation and

SEADS environment. Attack beh

S

EADS Diagram

Figure 3
 extension of the SEADS environment. The User

ttack-free data from a Monitor Activity File that is

 structure of the Monitor repository within the

avior is not inserted into the session stream

15

during this period. The User Activity Logs for each user are populated with the

training data, the majority of which occurs during the normal working hours of

8:00 a.m. to 5:00 p.m. The output of this process is a profile that we call normal,

which depicts behavior during periods when there are no intrusions. This serves

as a set to which observed data will later be compared during the detection

phase, which follows the training phase.

An Event Handler (EH) is

session activity from the Monito

activity to determine which princ

inserts session specific metada

for each principal. The diagram

main objects, relationships and

BSEADS Diagram

Figure 4
 used to dynamically capture ongoing protocol

r. This is a continuous process. It parses the

ipals are involved in the communication and

ta within the corresponding Observed Activity Log

 of Figure 4 represents a top-level view of the

interdependencies between components.

16

The Activity Handler (AH) maintains each principal’s Observed Activity

Log and executes method calls upon the log, as requested by the B-IDE. The

return structure of these method calls is each user’s Observed Statistics.

A Profile Handler (PH) maintains each principal’s User Activity Log. This is

the permanent historical repository that was populated during the initial training

phase. The PH has the responsibility of executing method calls upon the log, as

requested by the B-IDE. The return structure of these method calls is each user’s

Normal Profile Statistics.

The responsibility of the B-IDE is to retrieve Observed Statistics and

Normal Profile Statistics from the AH and PH respectively, for each Behavioral

Analyzer (BA). This occurs periodically at the conclusion of each time category

(early morning, morning, afternoon, evening, night, entire day).

The B-IDE measures and checks each user’s BA at the finish of every

time category using both standard deviations to determine any non-uniform

characteristics and chi-square to analyze any abnormal behavior. If the result of

an analysis signifies an intrusion then the system transitions into an Attack State.

 17

CHAPTER 3

USER ACTIVITY

Definition

User activity is represented as a particular user’s security protocol

sessions. It takes on two main forms: observed activity and normal activity.

Observed activity is activity that has not yet passed the inspection of the B-IDE. It

is the activity that is used as the comparison set to normal activity. Normal

activity is the historical non-attack representation of past behavior that was

initially trained into the system.

Within the user log files, the temporal metadata information stored in the

fields include start time and end time, which are expressed using the format of

year, month, day, hour, minute and second.

Our behavioral profile is initially trained with a representation of normal

behavior. After this initial training any subsequent updates are performed on a

periodic basis. This is a benefit, because it prevents users from slowly

broadening their profile by phasing in maliciously abnormal activities that would

then be considered normal once included in the user’s profile description.

 18

Normal User Profile

Future events can be predicted by realizing past behavior. A normal profile

is a representation of historical behavior. It contains no attack characteristics. If it

did contain intrusions then any future occurrences of those same attack types

might go unnoticed. This is an unacceptable factor.

Traditionally, in anomaly detection, profiles were constructed using

different characteristics, such as consumed resources, command count,

command sequences, typing rate, etc. The main focus of our approach is to

apply methods to the extensively gathered metadata in order to compute

statistics that accurately capture the behavior of normal activities in such a way

as to facilitate attack detection. This approach significantly reduces the need to

manually analyze and encode behavior patterns and is also effective because it

is computed using a large amount of session metadata, thereby normalizing the

results.

Normal user profiles generally use two main methods to train models of

behavior: “synthetic” and “real” [13]. Synthetic techniques generate behavior by

executing the application in as many normal modes as possible. This means that

security protocol sessions are executed in varied normal configurations and

settings. It is within this synthetic environment that the definition of normal is

developed. Observing the security protocol sessions in a live user environment

signifies the real method.

The synthetic method works well when a replication of the result is needed

and it incurs lower overhead in manpower and resources. We can also be

 19

confident in the results, because we are certain that no intrusion activity

contaminates the profile. A real method contains problems in the collection and

evaluation of activity. This occurs because of the uncertainty that anomalistic

behavior is not present. It has the benefits of attaining a very diverse and actual

representation of a user’s security protocol behavior.

The User Activity Log represents a user’s entire session activity that was

created during the training phase using an approach based on a realistic

representation of session activity for each user. This metadata representation is

then used as the basis for our Normal Profile Statistics that are calculated from

this log. Our definition of a normal profile is essentially a combination of all

relevant statistics for the time granularities.

The B-IDE compares the statistical values that are returned with the

observed statistics dynamically. Multiple methods of detection are used in the

final classification of attack behavior.

User Activity Log

A User Activity Log is a static representation of metadata based on user

session activity. It is the main repository of stored historical data created during

the training phase. During creation we ensure that no attack characteristics are

included within these logs. Each user in the system has a corresponding log that

contains all activity the user executed during the running of the training phase.

 The User Activity Log for a particular user contains all trained activity for

that principal. The format of the repository includes an extensive set of fields that

uniquely describe each of the sessions. Start time (ST) and end time (ET) are

 20

included to understand when the session occurred and the duration. The protocol

used (PR) signifies the protocol corresponding to the session. There are a total of

four principals (P1, P2, P3, P4) that can be involved in any one session.

Principal one (P1) is the initiator of the session. Principal two (P2) is the

recipient of the initiators first message. Principals three and four (P3, P4) are

optional participants of the session that are realized sometime after the first

message is exchanged. These are optional participants because some sessions

would only require a total of two principals involved. Session completion (C) is

included to illustrate whether the session failed or succeeded. The encryption key

strength (KS) describes the level of encryption used. The unique session

identifier (SID) is a unique number per session stored.

The reason that all of these fields are included is to support the job of

each of the Behavioral Analyzers (BA) which are our main detection constructs.

Each BA signifies a particular behavioral pattern that we are monitoring within the

system. These are the essential constructs that we use in determining whether

malicious behavior is present. The BA depends on all of the fields mentioned

above.

Time Degradation

When the method calls are executed upon the User Activity Log, a

structure of Normal Profile Statistics is retrieved for every BA. These are used in

the comparison to Observed Statistics. One of the main issues that the design of

our system had to solve is how to correctly represent past behavior. We

developed an algorithm that is executed upon past behavior to ensure that older

 21

activity carries less weight than more recent activity. This is an essential factor

because a user’s more recent past behavior is a better indication or prediction of

current behavior than older past behavior.

In a realistic setting the difficulty noticed is that human behaviors are

dynamic. This means that the definition of normal behavior is likely to change

over time, thereby limiting the lifetime of a static user profile. Thus, we developed

a method of degradation that assigned an increasing weighted value as session

activity increased in age. We are more concerned with recent activity because it

is an enhanced and more current representation of user behavior. The fresher it

is, the more weight it should carry in any subsequent calculations.

We use a Time De

execution of this algorithm

Activity Log and is reflecte

standard deviation is initia

accumulated BA value co

of the normal profile BA. F

Analyzer is called using th

calculated upon the four w

T
User Activity Log R

1 Week Old
2 Weeks Old
3 Weeks Old
4 Weeks Old

Weekly Standa
Deviation

ime Degradation Calculator
ange Degradation Factor

40% 20% 10%
60% 30% 15%
80% 40% 20%

100% 50% 25%
rd 0 = Low > 10 = Moderate > 20 = High

Figure 5

gradation Calculator as represented in Figure 5. The

 occurs when the methods are called upon the User

d in the returned Normal Profile Statistics. The weekly

lly determined based on the four total weekly-

unts. The values that we are analyzing are within each

or example, when the Parallel Session Behavioral

e Normal Profile Statistics, standard deviation is

eeks of prior activity by determining the number of

22

parallel sessions that are occurring and measuring their level of volatility over this

multiple week time span. Depending on this value, a different degradation factor

is used. This is a continuous refinement of our definition of normal behavior

incorporating a premium on more recent activity. If the standard deviation

between the entire four-week periods is over 20, then we can be relatively certain

that there is high volatility involved.

Therefore, this activity carries more significance because of its non-

uniform characteristics. This is degraded less than activity that carries a

moderate or low volatility level. In all cases, as the activity increases with age the

degradation factor also increases. Individual activity entries can be manually

removed from the input to the calculator in order to avoid skewing final results.

Examples would be one-time events such as holidays, vacation time or sick

leave.

 These are removed because we want an accurate reflection of past

behavior that is a close mirror or match to current behavior in the circumstances

in which it is present. For example, if in a prior week only three working days

contained session activity while the other two days occurred during a holiday,

then we would not want that occurrence to negatively skew in comparison to a

current week in which all five days have session activity.

We want to be able to manually modify the input to the calculator so that

we use the last known good week of a full five days of session activity. This

would result in a more accurate comparison to present activity.

 23

Normal Profile Statistics

These are dynamically generated from method calls upon the User Activity

Log. The Time Degradation Calculator is used in the result in order to increase

the weight of more current data while decreasing the weight of older data. Our

algorithms sift through the data and retrieve metric information in order to

assemble each Behavioral Analyzer (BA). The result is a structure that satisfies

our requirement of a normal activity profile, as the outcome contains no attack

data. Therefore, this helps define our concept of normal activity for comparison

purposes.

The count of each BA’s metric value is returned in the result data set. The

Normal Profile Statistics are used to construct each BA. This structure is returned

at the conclusion of every time category in order to display the accumulated

statistics for that specific time period.

Observed Profile

The observed profile is a representation within the system of ongoing

activity for each user. This data might contain malicious activity; therefore it must

be analyzed. It is a temporary data repository that will be used as the comparison

set to normal activity. When the Event Handler initially retrieves session activity

from the Monitor, it is immediately inserted into the observed profile for each

corresponding communicating principal or user. This is accomplished by placing

it within the Observed Activity Log for that particular user.

Periodically, at the conclusion of each time category, the B-IDE requests

each user’s Observed Statistics from the Activity Handler that are created from

 24

method calls upon the Observed Activity Log. These will be used to run a test of

uniformity using standard deviation in order to determine any volatile or

concentrated session behavior and also as the comparison set to the Normal

Profile Statistics in order to detect any abnormal behavior.

Observed Activity Log

A user’s Observed Activity Log is a static representation of recent protocol

sessions for each principal. It is a listing, much like the format of the User Activity

Log, of session activity in a metadata format.

Once activity is initially observed for a user it is placed within their

corresponding Observed Activity Log. The log contains all relevant session

information that will be used to construct each Behavioral Analyzer. The structure

of the log is similar to that of the User Activity Log used to construct the Normal

Profile Statistics. The start time (ST), end time (ET), protocol used (PR),

principals involved (P1, P2, P3, P4), Boolean session completion result (C), key

strength (KS) and unique session identifier (SID) are all represented.

Observed Statistics

We classify Observed Statistics as a dynamically generated execution

upon the Observed Activity Log instigated by the Activity Handler using method

calls in order to create the Behavioral Analyzers (BA). The resulting statistics

represent behavior that is important to each BA used to detect attacks. Each BA

metric count is returned within the resulting data structure. The B-IDE constructs

the Observed Statistics at the conclusion of each time category.

 25

Each BA metric and corresponding value for the eclipsed time period is

returned. This is used to aid in the detection of attacks for each time period.

Upon the return of this structure we have an accurate portrayal of the observed

activity behavior during the respective slice of time that we are analyzing.

 26

CHAPTER 4

BEHAVIORAL ANALYZERS

Definition

An intrusion is an attack on system security that derives from an intelligent

threat. It is a deliberate attempt to evade and preempt detection while violating

the security policy of an information system.

The fundamental concept of our system is the monitoring of behavioral

patterns to detect the attacks instigated by potential malicious intruders. There

are some assumptions that we must define for the role of the intruder. An intruder

can alter, record, intercept and communicate any data traveling on the network.

He has the basic capacity of encryption and decryption, as do all legitimate users

in the system.

Quantifying security risks in the system is a nontrivial task. We have

partitioned the monitoring activity into modules called Behavioral Analyzers (BA).

The BAs that we are most concerned with are parallel sessions, failed sessions,

replay sessions and weak encryption sessions.

These BAs represent many of the forms that characterize attacks on

security protocols. By monitoring activity in these areas we increase our chances

of detecting an attack by focusing on deviating behavior that constitutes a high

degree of confidence in representing an actual intrusion. Because a large

 27

number of attacks result in a behavioral fluctuation in one or more of these BAs,

the monitoring of such behavior is prudent. This will result in a more accurate and

correct diagnoses of abnormalities by the B-IDE.

An open issue in anomaly detection is the selection of measures to

monitor. Exact measures that accurately predict intrusive behavior are not known

in any context. It seems that a combination of static and dynamic determination

of the set of measures is beneficial.

 In order to address this issue we developed the BA to be composed of

dynamically generated metrics from a static representation. Metrics are

observations of a user’s actions that can be grouped to create a profile of user

behavior. Each BA uses a unique set of metrics that characterize the purpose

and functionality of that particular BA. The metrics used are counters that

measure the number of events that have occurred. The BA is invoked at the

conclusion of each time period by the B-IDE. Our BAs are created from the

Normal Profile Statistics and the Observed Statistics.

For example, in order to detect a parallel session attack, we invoke the

parallel session BA from the Normal Profile Statistics. This BA satisfies our

requirement for a trained normal data set. We also invoke a parallel session BA

from the Observed Statistics for the corresponding time period. This satisfies the

test requirement for data that will be used as the comparison set to normal data.

Each of the other BAs are constructed in a similar way. Therefore, it is

appropriate to assume that a BA can either be a normal BA or an observed BA.

These are then compared together for the normality check.

 28

New sets of BAs are creat

the conclusion of each time perio

Statistics and another set is creat

are then compared using chi-squ

deviations. Also, the BA created f

determine any non-uniform chara

of any of these checks display ab

an Attack State.

B

P

Whenever two or more pro

session results. This in itself is no

occur normally. An attack can ha

-IDE Diagram

Figure 6
ed within the B-IDE as displayed in Figure 6 at

d. BAs are created from the Normal Profile

ed from the Observed Statistics. These two sets

are in order to determine any abnormal

rom the Observed Statistics is analyzed to

cteristics using standard deviation. If the result

normal behavior then the system transitions into

arallel Session

tocols are executed concurrently, a parallel

t indicative of an attack as parallel sessions can

ppen though that takes advantage of parallel

29

sessions. This occurs when messages from one session are used to form

messages in another. The purpose of a parallel session attack is that an attacker

is able to glean information in one session that is useful in an attack in another

session.

The protocol created by Woo and Lam [24] contains a well-known flaw

that allows a malicious user to perform a parallel session attack. This flaw allows

the intruder (Mallory) to convince a legitimate user (Alice) to accept the same key

that was used in the initial session to be used during the parallel session.

One possibility of the attack is that Alice believes that she is in a secure

session with another legitimate user (Bob), but Bob is not involved and is not

aware that there is an ongoing session. Mallory could have used Alice as an

oracle in order to masquerade as Bob. For example, Alice and Bob are involved

in a protocol session. Mallory is involved as a man-in-the-middle and intercepts

all transmissions to receiver Bob. Mallory than initiates a parallel session to

receiver Alice, masquerading as Bob.

A masquerade is when one principal illegitimately poses as another in

order to gain access to it or to gain greater privileges than they are authorized

for. Masquerading is an active form of wiretapping in which the intruder intercepts

and selectively modifies data in order to masquerade as one or more of the

entities involved in a communication. The attacker sniffs network packets,

potentially modifies them and inserts them back into the network stream. An

oracle occurs when the attacker convinces other entities (oracles) to perform an

action on the attackers behalf.

 30

The Parallel Session Behavioral Analyzer returns the number of parallel

sessions that are occurring. The smallest granularity that is represented is the

per hour accumulation.

Failed Session

A failed session is the result of a failed initiation of a session or a failure

while the session is ongoing. Intruders do not usually succeed during their first try

at breaking into a system or maliciously interfering in a protocol session.

Sometimes multiple session failures result as a byproduct of an intruder’s blatant

intervention.

A brute force attack is represented as a cryptanalysis technique, or similar

kind of attack involving an exhaustive process that tries all possibilities, one-by-

one. It is a trial and error technique used by intruders to decode encrypted data

such as passwords or Data Encryption Standard (DES) keys, through

comprehensive effort (brute force) rather than employing intellectual strategies.

Brute force is considered to be an infallible, although time-consuming, approach.

The Secure Shell (SSH) protocol version 1 contains a flaw that allows a brute

force attack to succeed [7].

One type of brute force attack is called the dictionary attack. An intruder

that implements a brute-force technique of successively trying all the words in

some large, exhaustive list characterizes this form. An example of this would be

a dictionary of known words used in order to discover a password. Another

scenario involves an attack on encryption by encrypting some known plaintext

 31

phrase with all possible keys so that the key for any given encrypted message

containing that phrase may be obtained by lookup of the value.

Just as a thief might crack a safe by trying all possible combinations, a

brute force attempt proceeds through all possible combinations of legal values

sequentially. The reality is that success on the first try is an unlikely scenario;

therefore we employ a Failed Session Behavioral Analyzer to monitor this form of

activity. This analyzer returns the number of failed sessions that are occurring.

The smallest granularity that is represented is the per hour accumulation.

Weak Session

Encryption standards should be in place to use the highest form of

encryption supported between two communicating principals. Sessions that are

encoded using a weak form of encryption are prone to many forms of attacks. An

increase in the success of a brute force attack occurs because of a limited key

space. This aids an intruder by limiting the amount of keys needed to try.

Masquerade attacks benefit from weak authentication, because it is much

easier for an intruder to gain access to system resources. Once the attacker

gains access to critical data they may be able to modify and delete software or

make changes to network components and configurations.

Another type of attack that is characterized by a weak form of encryption

is called a cipher suite rollback attack. This occurs when an active attacker edits

the cleartext list of cipher suite preferences (encryption strengths) in the initial

handshake messages.

 32

The purpose is to maliciously force two parties to use a weaker form of

encryption. This weaker form of encryption is lower than what Alice and Bob are

capable of using in their communications. The attacker could force a domestic

user to use export-weakened encryption. A variation of the cipher suite rollback

attack is performed by exploiting a flaw in the SSL 2.0 protocol [23].

The Weak Session Behavioral Analyzer returns the number of weak

sessions that are occurring. The smallest granularity that is represented is the

per hour accumulation of sessions.

Replay Session

A replay occurs when recorded sessions are replayed on the network at a

later time. In a replay attack, a hacker uses a protocol analyzer to monitor and

copy packets as they are transmitted via the network. Once the hacker has

captured the required amount of packets, he then can filter them and extract the

packets that contain things of need. Examples of this are digital signatures or

various authentication codes. After the necessary packets have been extracted,

they can be put back on the network (replayed), thereby giving the intruder the

desired access.

For example, suppose an intruder collects session traffic that satisfies his

needs. After an arbitrary amount of time, he replays the previously collected

traffic into the message stream. This kind of attack could be used to replace

signals that contain session data with signals showing ambient readings. It could

also be used to do the exact opposite, create sessions when the sensors are

receiving no such signals.

 33

Variations of the Needham-Schroeder, Neuman-Stubblebine and Yahalom

protocols are all susceptible to replay attacks [21]. A way to prevent replay

attacks is to time-stamp each session or use some other form of unique identifier

in order to notice if that session occurs at a later time, thereby violating the

ordering of events.

 The Replay Session Behavioral Analyzer returns the number of replay

sessions that are occurring. The smallest granularity that is represented is the

per hour accumulation.

 34

CHAPTER 5

METHODS OF DETECTION

Definition

This section details the methods of detection employed within BSEADS.

We are interested in analyzing two main components of our Behavioral

Analyzers: measure of spread and measure of normalcy. Measure of spread is

focused on observed activity and its uniform or non-uniform spread

characteristics. This is based on our Observed Statistics. We use standard

deviation for our uniformity test based on each of the Behavioral Analyzers.

Our measure of normalcy centers on comparing our Observed Statistics to

our historical Normal Profile Statistics. The statistical method we employ is the

chi-square test statistic.

Measure of Spread

Our definition of spread is in the form of session activity spread throughout

an entire 24-hour period. Is this activity predominantly located or concentrated at

certain times? If so, then it might not pass our test for spread uniformity. A major

advance of our method over other IDS is that it considers the time locality and

frequency of placement in the determination of attacks. By analyzing the

 35

Observed Statistics we are able to detect volatile spread characteristics without

having to rely on a normal comparison set.

Because attack behavior usually happens at certain times, and in high

concentrations, our measure of spread will detect abnormally high occurrences of

any of our Behavioral Analyzers that is not evenly distributed over individual time

categories or throughout the entire day.

Lee and Stolfo developed algorithms for detecting abnormalities in system

audit calls within categories of time but did not measure the spread

characteristics [12]. We believe our method is a superior approach.

Standard Deviation

The standard deviation is a common measure of spread. It measures the

uniform characteristics of a given data set. It is derived from the variance. The

variance is the arithmetic mean of all the squared distances between the data

values and their arithmetic mean. The standard deviation is defined as the

square root of the variance.

This computation indicates how well the calculated measure of location

describes the data. The result shows whether the data is accumulated close to

the average or spread out over the whole scale.

Because the standard deviation weights the distances proportional to their

absolute value, it places greater emphasis on larger rather than smaller

distances. This could be the determining factor in capturing volatile session

activity. The outliers that the standard deviation is sensitive to could be an

 36

indication of attack behavior. A model of the calculation of variance and standard

deviation is presented in Figure 7.

V

We perform ou

Analyzers based on th

larger than 1, we signa

standard deviation is a

activity.

We determined t

during each of our categ

deviation by more than

sessions, we noticed an

increased standard dev

greater than 1; therefore

The dispersion o

The larger the dispersio

volatility. The smaller th

lower the volatility. User

environment. But when

ariance and Standard Deviation

()
VarianceDeviation Standard

XX
N
1Variance

2n

1i
arii

=

−= ∑
=

Figure 7
r standard deviation test on each of the Behavioral

e Observed Statistics. If the result of this calculation is

l this as a non-uniform spread. A value of more than 1

 warning sign of a non-uniform distribution of session

he limit of 1 by measuring normal user protocol activity

ories of time. Rarely do sessions deviate in standard

1. When we introduced attack behavior within the

 increase in the concentrations of attack behavior. This

iation instigated by attack behavior displayed a result of

 we came to our conclusion of limit.

f values around the mean should indicate limited volatility.

n is, the higher the standard deviation and the higher the

e dispersion, the lower the standard deviation and the

 behavior is sometimes erratic especially in a networked

an intruder is manipulating sessions or instigating

37

sessions of his or her own, the result is a higher concentration of activity. This is

the determining factor of attack behavior.

Measure of Normalcy

The definition of normal within BSEADS is comprised of the Normal Profile

Statistics that are dynamically generated from the trained historical User Activity

Logs.

The observed activity that is represented by the dynamically generated

Observed Statistics from the Observed Activity Log is compared to the Normal

Profile Statistics. This comparison is used to help us classify observed behavior

as either malicious or non-malicious. We use chi-square to satisfy our test of

normal behavior. We measure the session normalcy after each time category has

been eclipsed.

Chi-Square

Chi-Square is a non-parametric test of statistical significance. It allows us

to attain a degree of confidence in accepting or rejecting a hypothesis. Our

hypothesis is a mathematical measurement of whether or not the Behavioral

Analyzers composed of the Observed Statistics and Normal Profile Statistics are

dissimilar enough to warrant an attack classification. Figure 8 is a model of the

chi-square test for normality performed within BSEADS. Figure 9 is a list of the

symbols and their meanings.

Chi-square does not require the sample data to be more or less normally

distributed (as parametric tests such as t-tests do). It relies on the assumption

 38

that the variable is normally distributed in the population from which the sample is

drawn.

Chi-Square Multivariate Model

∑
=

−=
n

1i i

2
ii2

E
)EX(X

Figure 8

Our chi-square method is similar to the one employed in [26]. It is

essentially a distance measure of observed metric values from expected metric

values. It distinguishes a correlation among two or more metrics used in attack

detection and contains the benefit of a low computational cost. This is essential,

because of the frequency that this test will be performed during program

execution. We use numerous metric values in the actual chi-square formula.

These metrics are accumulations of BA count values within multiple granularities

of time.

S
Xi Obse
Ei Expe
n

X²
Chi-Sq

if an

We measure the size of the

expected frequencies. Squaring th

we end up with an absolute value

by the expected frequency essent

ymbol Chart
rved value of the ith metric
cted value of the ith metric
Number of metrics

uare test statistic. X² is small
observation is close to the

expectation
Figure 9
 difference between the pair of observed and

e difference ensures a positive number, so that

 of differences. Dividing the squared difference

ially removes the expected frequency from the

39

equation. Therefore, the remaining measures of observed and expected

difference are comparable across all cells.

Once we have computed the chi-square test statistic we must have a

baseline or calculation to use as our comparison value. This is obtained by

implementing an upper control limit. This calculation is essentially the threshold

that the chi-square result is compared to. As noticed, the upper control limit is

entirely computed from the historical normal profile.

Upper Control Limit

SX 2 Limit ControlUpper +=
Figure 10

As shown in Figure 10, the Upper Control Limit is determined to be the

Normal Profile Statistics sample mean plus 2x the Normal Profile Statistics

standard deviation. The reason for this is because it should be the quantitative

comparison measurement based solely on the Normal Profile Statistics, whereas

the chi-square value takes into effect the observed behavior. The chi-square test

for normalcy is computed for each Behavioral Analyzer at the conclusion of every

time category. If the computed chi-square is larger than our upper control limit,

we signal the presence of abnormal activity.

 40

CHAPTER 6

EXPERIMENT

Overview

 In this section we illustrate our theory and experiment with building our

methods of approach in order to test its efficacy in detecting intrusions. The

objective of our study is to test whether the distribution of protocol session

activity follows the trained normal profile and whether the session spread is

represented uniformly.

We employ the use of two Monitor Activity Files within this experiment.

The first Monitor Activity File, to be used during the initial training phase, was

constructed of attack-free protocol session activity. This represented a

simulation of the Monitor within the SEADS environment. Most of the data

inserted fell within the working hours of 8:00 a.m. to 5:00 p.m.

The major objective of the experiment was to validate the assumptions

stated in previous sections; that we can create a normal and observed user

representation and that we can dynamically generate the statistical structures

required from the static storage. Finally, we are able to detect variations in

session spread and also abnormal deviations at the conclusion of each time

category with the last category analyzed being the entire day.

The first activity of BSEADS was to construct the User Activity Log by

 41

dynamically training it with metadata from the Monitor Activity File. This signified

the training phase. Four weeks worth of data was accumulated.

 Our simulation was performed using the Windows 2000 platform. The

application was coded in standard C++ code using the Standard Template

Library (STL) and utilizing the Visual C++ development environment.

 We began the simulation at hour 0 (12:00 a.m.) by the EH requesting

Monitor activity represented within a second Monitor Activity File that contained

activity that reflected attack characteristics. These attack characteristics

represented each of our Behavioral Analyzers of parallel, failed, weak and replay

sessions. This simulated the capturing of protocol sessions within a real-time

environment.

 As sessions were transmitted to the EH, events were parsed by principal

and the metadata was placed within each communicating principal’s Observed

Activity Log. Once the conclusion of the early morning (EM) time category was

realized, at the end of hour 6, the analysis began by checking each of the

Behavioral Analyzers. We searched for volatility within the session spread of the

EM category based upon the Observed Statistics. The normalcy within the EM

was checked using both the Observed and Normal Profile Statistics employing

chi-square.

 Activity was checked throughout each time category (morning, afternoon,

evening, night). Once the night category had been exceeded, we proceeded to

check the entire days behavior (24-hours). We began by checking the spread;

our first check for uniformity was based on each of the individual time categories.

 42

Once this was determined we checked the uniformity based on each of the

individual 24 hours.

Finally, we ran our test for normalcy based on the entire day’s activity. We

now present examples of each of our Behavioral Analyzers as they would be

used in a real detection scenario.

Parallel Session Behavioral Analyzer

Observed Activity
ST ET PR P1 P2 P3 P4 C KS SID

1200 1220 SSL A M Null Null Y 128 342332
1200 1220 SSL M A Null Null Y 128 948032

Figure 11

In Figure 11, Observed Activity is captured from the Monitor Activity File

by the Event Handler (EH) representing the total accumulated activity for the

afternoon time category. The first row signifies a session between the principals

A and B. M acting as a man-in-the-middle, intercepted all messages intended for

B. Therefore, A believed that it was involved in a session with B, but this was not

the case. This was a parallel session between M and A.

Once captured, the Observed Activity was immediately placed within the

Observed Activity Log for each principal by the EH. Once the afternoon category

was realized, the B-IDE proceeded to check the entire afternoon accumulated

behavior. It began by requesting the Normal Profile Statistics from the Profile

Handler (PH) which when retrieved, were modified by the Time Degradation

Calculator. This ensured the freshness of activity.

Figure 12 is a representation of the afternoon Parallel Session Behavior

Analyzer Normal Profile Statistics retrieved for user M. Once this was

 43

accomplished, the B-IDE requested the Observed Statistics from the Activity

Handler (AH). Figure 13 details this. We measured the spread of the Observed

Statistics using standard deviation. The result of this calculation was 1.304. This

told us that the events did not occur uniformly over this time period.

Normal Profile Statistics
Metric Value

Number of Parallel Sessions Hour 12 0
Number of Parallel Sessions Hour 13 0
Number of Parallel Sessions Hour 14 2
Number of Parallel Sessions Hour 15 0
Number of Parallel Sessions Hour 16 0

Total 2
Figure 12

Observed Statistics
Metric Value

Number of Parallel Sessions Hour 12 1
Number of Parallel Sessions Hour 13 0
Number of Parallel Sessions Hour 14 3
Number of Parallel Sessions Hour 15 0
Number of Parallel Sessions Hour 16 0

Total 4
Figure 13

As mentioned earlier, the larger the dispersion was, the higher the

volatility. Our calculated result signified that the observed values were slightly

volatile because anything more than one standard deviation was a sign of

concern.

 The B-IDE next checked for any abnormal characteristics based on the

Observed and Normal Profile Statistics. The result of this calculation was 2. We

obtained the upper control limit, which was 1.50. This aided in our determination

that there was abnormal behavior as a result of our chi-square value being larger

than our upper control limit.

 44

We therefore signaled an attack was occurring that showed a non-uniform

spread in conjunction with abnormal behavior.

Failed Session Behavioral Analyzer

Observed Activity
ST ET PR P1 P2 P3 P4 C KS SID

1832 1832 SSH M B Null Null N 64 341342
1833 1833 SSH M B Null Null N 64 123214
1834 1834 SSH M B Null Null N 64 325421
1835 1835 SSH M B Null Null N 64 462243

Figure 14
In Figure 14, Observed Activity is captured from the Monitor Activity File

by the EH. This occurred during the evening time category. The rows

represented multiple failed sessions between M and B. This was warrant for

concern. Once this Observed Activity was captured, representing the entire

activity for that time period, it was placed within each communicating parties

Observed Activity Log. This was performed by the EH.

As the evening category ended, the B-IDE performed a system check on

the behavior. The PH returned the Normal Profile Statistics and the AH returned

the Observed Statistics. Once again, the Time Degradation Calculator as

mentioned earlier modified the Normal Profile Statistics upon retrieval.

Normal Profile Statistics
Metric Value

Number of Failed Sessions Hour 17 0
Number of Failed Sessions Hour 18 1
Number of Failed Sessions Hour 19 0

Total 1
Figure 15

Figure 15 is a representation of the evening Failed Session Behavior

Analyzer Normal Profile Statistics retrieved for user M. Figure 16 shows the

 45

Observed Statistics. We measured the spread of the Observed Statistics using

our method of standard deviation resulting in the calculation of 2.31, a sign of

alarm. By falling above our upper threshold, it signified that the metric values

were not occurring uniformly over this time period. This volatile dispersion

warranted an attack classification.

Observed Statistics
Metric Value

Number of Failed Sessions Hour 17 0
Number of Failed Sessions Hour 18 4
Number of Failed Sessions Hour 19 0

Total 4
Figure 16

 The B-IDE proceeded to analyze the behavioral characteristics based on

the Observed and Normal Profile Statistics. The chi-square result of this

calculation was 9. We obtained the upper control limit, which was 1.49. This lets

us come to the conclusion that there was a definite observation of abnormal

behavior since our chi-square result was significantly larger than our upper

control limit. We therefore signaled an attack was occurring that showed a non-

uniform spread in conjunction with abnormal behavior.

Weak Session Behavioral Analyzer

In Figure 17, Observed Activity is captured by the EH while in the morning

time category. The rows represented sessions between A and B. Intruder M

forced A and B to use weak encryption. The Observed Activity was placed within

the Observed Activity Log of each principal by the EH. The B-IDE procedure was

repeated to check the entire accumulated behavior.

 46

Observed Activity
ST ET PR P1 P2 P3 P4 C KS SID

0800 0810 SSL A B M Null Y 32 345222
0920 0930 SSL A B M Null Y 32 423453
0930 0935 SSL A B M Null Y 32 634523
0940 0950 SSL A B M Null Y 32 545223

Figure 17

Normal Profile Statistics
Metric Value

Number of Sessions Using Weak Encryption Hour 7 0
Number of Sessions Using Weak Encryption Hour 8 1
Number of Sessions Using Weak Encryption Hour 9 0

Number of Sessions Using Weak Encryption Hour 10 1
Number of Sessions Using Weak Encryption Hour 11 0

Total 2
Figure 18

Observed Statistics
Metric Value

Number of Sessions Using Weak Encryption Hour 7 0
Number of Sessions Using Weak Encryption Hour 8 1
Number of Sessions Using Weak Encryption Hour 9 3

Number of Sessions Using Weak Encryption Hour 10 0
Number of Sessions Using Weak Encryption Hour 11 0

Total 4
Figure 19

During data accumulation, the B-IDE requested the time degradation

modified Normal Profile Statistics from the PH. Figure 18 is a representation of

the morning Weak Session Behavior Analyzer Normal Profile Statistics for user

M. Once this was retrieved, the B-IDE obtained the Observed Statistics from the

AH. Figure 19 shows this recovery.

The B-IDE next measured the spread of the Observed Statistics using

standard deviation. The result of this calculation was 1.30, a classification of

statistics not occurring uniformly over this time period. As mentioned earlier, the

larger this dispersion value was, the higher the volatility.

 47

The B-IDE subsequently checked for any abnormal characteristics based

on the Observed and Normal Profile Statistics. The result of this calculation was

2. We obtained the upper control limit, which was 1.50. This aided in our

determination that there was abnormal behavior because our chi-square result

was greater than our upper control limit. We therefore signaled an attack was

occurring that showed a non-uniform spread in conjunction with abnormal

behavior.

Replay Session Behavioral Analyzer

Observed Activity
ST ET PR P1 P2 P3 P4 C KS SID

1220 1230 NS M B Null Null Y 128 546456
1230 1240 NS M B Null Null Y 128 546456
1240 1250 NS M B Null Null Y 128 546456

Figure 20
In Figure 20, Observed Activity is captured by the EH representing the

entire accumulated afternoon time category. The rows represented replay

sessions between M and B. The Observed Activity was immediately placed

within the Observed Activity Log as mentioned before. Once the afternoon

category was realized, the B-IDE performed the system check.

The B-IDE requested the time degradation Normal Profile Statistics as

displayed in Figure 21. After this was complete, the B-IDE retrieved the

corresponding Observed Statistics as displayed in Figure 22.

Next, the measure of spread was performed, resulting in the calculation of

1.34. This showed that the metric values were not occurring uniformly over this

 48

time period. The B-IDE next checked for any abnormal characteristics. The

result of this calculation was 0.50.

N

Numb
Numb
Numb
Numb
Numb

We obtained the uppe

from previous calculations. I

noticeable degree of abnorm

smaller than our upper contr

anomaly based system will b

though, we were aided by ou

alarm. We therefore signale

spread.

Numb
Numb
Numb
Numb
Numb

ormal Profile Statistics

Metric Value
er of Replay Sessions Hour 12 0
er of Replay Sessions Hour 13 0
er of Replay Sessions Hour 14 2
er of Replay Sessions Hour 15 0
er of Replay Sessions Hour 16 0

Total 2
Figure 21
r c

t s

al

ol

e

r t

d a

O

er o
er o
er o
er o
er o
bserved Statistics

Metric Value
f Replay Sessions Hour 12 0
f Replay Sessions Hour 13 0
f Replay Sessions Hour 14 3
f Replay Sessions Hour 15 0
f Replay Sessions Hour 16 0

Total 3
Figure 22
ontrol limit, which was 1.50. This was different

eems that this attack behavior was not showing a

ity. This is shown by the chi-square result being

limit. This can and will happen because no

accurate 100% of the time. In this situation

est of uniformity because it raised the attack

n attack was occurring that showed a non-uniform

49

CONCLUSION

In this paper we presented an anomaly-based system that can be a viable

solution for intrusion detection in systems where payloads are encrypted. The

system uses a representation of a normal profile to model historical behavior. It

utilizes collected observed data for the purpose of measuring the spread during

each time category. We are then able to detect any high concentrations of

session activity, in any one of our time granularities.

A model of normal behavior is created using an algorithm that places a

premium on more current data. By measuring for normalcy using the Normal and

Observed Statistics we are able to determine what is normal or abnormal

depending on temporal differences for each Behavioral Analyzer. The system

calculates and analyzes behavior in real time so that the most accurate and

current behavior is represented. This allows us to have a streamlined process of

gathering data, creating and then subsequently evaluating models.

Our demonstration of the detection of abnormal session activity for each of

our Behavioral Analyzers shows that based on multiple attack detection methods

we can have a high degree of certainty in our final conclusions. These combined

methods give us a powerful detection tool in the pursuit of capturing malicious

behavior within a realistic time frame. The appendix shows the source code of

the BSEADS program. It includes the entire header and definition C++ files.

 50

APPENDIX

The below code was made in standard C++. This is the BSEADS.h class header
file.

// BSEADS.h: Header file for the BSEADS classes
// Classes Contained: BIDE, ACTIVITYHANDLER, PROFILE
//
//

#if
!defined(AFX_BSEADS_H__DBCBCF7F_5B6E_4DF0_9892_834E96ADCB63__
INCLUDED_)
#define
AFX_BSEADS_H__DBCBCF7F_5B6E_4DF0_9892_834E96ADCB63__INCLUD
ED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

//Included files
#include <stdio.h>
#include <vector>
#include <iostream>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <string>
#include <fstream>
#include <sstream>
#include <math.h>
#include <strstream>

//Use C++ standard library
using namespace std;

//ACTIVIVTYHANDLER class. User to handle observed activity.
class ACTIVITYHANDLER
{
public:

 51

//Constructor
 ACTIVITYHANDLER();

 //Get monitor activity
 void getObservedActivity(char *);

 //Initialize observed activity
 void createObservedActivityLogs();

 //Write to observed activity logs
 void writeObservedActivityLog(string,int);

 //Print Monitor sessions
 void printMonitorVector();

 //Print Observed activity logs
 void printObservedLogs();

 //Clears observed logs
 void clearObservedLogs();

 //Returns monitor sessions
 vector<vector<string> > getMonitorActivity();

 //Contains userA observed activity
 vector<vector<string> > a;
 //Contains userB observed activity
 vector<vector<string> > b;
 //Contains userS observed activity
 vector<vector<string> > s;
 //Contains userM observed activity
 vector<vector<string> > m;

private:

 //Contains the monitor activity
 vector<vector<string> > v;

 char * observedLogA; //File for user A observed log activity
 char * observedLogB; //File for user B observed log activity
 char * observedLogS; //File for user S observed log activity
 char * observedLogM; //File for user M observed log activity

};

 52

//PROFILEHANDLER class. Holds normal user profiles
class PROFILEHANDLER
{
public:
 //Constructor
 PROFILEHANDLER();

 //Loads user profile logs
 void loadUserProfile(char *);

 //Prints normal user profile logs
 void printNormalProfileLogs();

 //Contains userA normal profile
 vector<vector<string> > a;
 //Contains userB normal profile
 vector<vector<string> > b;
 //Contains userS normal profile
 vector<vector<string> > s;
 //Contains userM normal profile
 vector<vector<string> > m;

private:

};

//BIDE class - Intrusion Detection Engine Class - Main Controller Class
class BIDE
{
public:
 //Constructor
 BIDE();

 //Constructs instance of ACTIVITYHANDLER Class
 ACTIVITYHANDLER startActivityHandler();

 //Constructs instance of PROFILEHANDLER Class
 PROFILEHANDLER startProfileHandler();

 //Intrusion detection simulation starts here
 void startSimulation(ACTIVITYHANDLER &,PROFILEHANDLER &);

 //Accumulate hourly activity
 void accumulateActivity(int,ACTIVITYHANDLER &);

 //Generate statistics for hourly activity

 53

 void generateStatistics(string, ACTIVITYHANDLER &,
PROFILEHANDLER &);

 //Counter for normal profile statistics
 void countStatistics(PROFILEHANDLER &, int, int);

 //Counter for observed statistics
 void countStatistics(ACTIVITYHANDLER &, int, int);

 //Print statistics to screen
 void printStatistics(string, int []);

 //Print statistics to screen
 void printStatistics();

 //Used to clear variables
 void clearVariables();

 //Measure standard deviation/volatility/uniformity of session activity
 void measureSpread(string, int [], int);

 void performChiSquare(string, int [], int [],int);

 double chiSqr(int [], int []);

 double chiSqr(int, int);

 double upperLimit(double);

 //Print header of software program
 void printHeader();

 //Check to see if the standard deviation is uniform
 void checkBehavior(double, string);

 void checkBehavior(double, double, string);

 //Transition to attack state if spread is not uniform
 void attackState(string,string);

 //Determine average for standard deviation
 double avg(int [], int);

 //Determine standard deviation
 double std(int [], int, double);

 54

private:

 //Variables
 int aCount;
 int bCount;
 int sCount;
 int mCount;
 int count;
 string sTime;
 string eTime;
 string replayObservedID[1000];
 string replayProfileID[1000];

 double stdDevLimit;

 //Parallel Session Observed Statistic Container
 int parallelSessionObservedStatistics[24];

 //Failed Session Observed Statistic Container
 int failedSessionObservedStatistics[24];

 //Weak Session Observed Statistic Container
 int weakSessionObservedStatistics[24];

 //Replay Session Observed Statistic Container
 int replaySessionObservedStatistics[24];

 //Normal Profile Statistic Containers
 int parallelSessionProfileStatistics[24];
 int failedSessionProfileStatistics[24];
 int weakSessionProfileStatistics[24];
 int replaySessionProfileStatistics[24];

};

#endif //
!defined(AFX_BSEADS_H__DBCBCF7F_5B6E_4DF0_9892_834E96ADCB63__
INCLUDED_)

The below code was made in standard C++. This is the BSEADS.cpp class
definition file.

// BSEADS.cpp: implementation of the PROFILE class.
//

 55

//

#include "BSEADS.h"

//BIDE CLASS
BIDE::BIDE()
{
 //Initialize variables
 stdDevLimit = 1.0;
 aCount = 0;
 bCount = 0;
 sCount = 0;
 mCount = 0;
 count = 0;
 sTime = "Null";
 eTime = "Null";

 //Initialize observed and profile statistic holders
 for (int k = 0; k < 24; k++)
 {
 parallelSessionObservedStatistics[k] = 0;
 failedSessionObservedStatistics[k] = 0;
 weakSessionObservedStatistics[k] = 0;
 replaySessionObservedStatistics[k] = 0;
 parallelSessionProfileStatistics[k] = 0;
 failedSessionProfileStatistics[k] = 0;
 weakSessionProfileStatistics[k] = 0;
 replaySessionProfileStatistics[k] = 0;
 }

 //Initialized for replay session purposes
 for (k = 0; k < 1000; k++)
 {
 replayObservedID[k] = "Null";
 replayProfileID[k] = "Null";
 }
}

//Start activity handler
ACTIVITYHANDLER BIDE::startActivityHandler()
{
 //Monitor sessions are stored here
 char * activityFile = "monitorActivity.csv";

 //Start Activity handler
 cout << "Activity Handler Starting Up............................";

 56

 ACTIVITYHANDLER run = ACTIVITYHANDLER();
 cout << "OK" << endl;

 //Get observed monitor activity
 cout << "Activity Handler Interfacing with Monitor...............";
 run.getObservedActivity(activityFile);
 cout << "OK" << endl;

 //Initialize observed activity logs
 cout << "Initializing Observed Activity Logs.....................OK" << endl;
 run.createObservedActivityLogs();

 //Return ACTIVITYHANDLER object
 return run;
}

//Start PROFILEHANDLER
PROFILEHANDLER BIDE::startProfileHandler()
{
 //User normal profile activities are stored in these files
 char * profileA = "profileLogA.csv";
 char * profileB = "profileLogB.csv";
 char * profileS = "profileLogS.csv";
 char * profileM = "profileLogM.csv";

 //Create PROFILEHANDLER instance
 cout << "Profile Handler Starting Up.............................";
 PROFILEHANDLER run = PROFILEHANDLER();
 cout << "OK" << endl;

 //Load normal user profile logs
 cout << "Loading User A Profile..................................";
 run.loadUserProfile(profileA);

 cout << "Loading User B Profile..................................";
 run.loadUserProfile(profileB);

 cout << "Loading User S Profile..................................";
 run.loadUserProfile(profileS);

 cout << "Loading User M Profile..................................";
 run.loadUserProfile(profileM);

 //Return PROFILEHANDLER object
 return run;
}

 57

//Print entire hourly statistics
void BIDE::printStatistics()
{
 //Print normal profile statistics
 cout << endl << endl;
 cout << "******NORMAL PROFILE STATISTICS******" << endl << endl;
 cout << " Parallel Session" << endl;
 cout << " ----------------" << endl;
 printStatistics("Parallel", parallelSessionProfileStatistics);
 cout << " Failed Session" << endl;
 cout << " --------------" << endl;
 printStatistics("Failed", failedSessionProfileStatistics);
 cout << " Weak Session" << endl;
 cout << " ------------" << endl;
 printStatistics("Weak", weakSessionProfileStatistics);
 cout << " Replay Session" << endl;
 cout << " --------------" << endl;
 printStatistics("Replay", replaySessionProfileStatistics);
 cout << endl;

 //Print observed statistics
 cout << "******OBSERVED STATISTICS******" << endl << endl;
 cout << " Parallel Session" << endl;
 cout << " ----------------" << endl;
 printStatistics("Parallel", parallelSessionObservedStatistics);
 cout << " Failed Session" << endl;
 cout << " --------------" << endl;
 printStatistics("Failed", failedSessionObservedStatistics);
 cout << " Weak Session" << endl;
 cout << " ------------" << endl;
 printStatistics("Weak", weakSessionObservedStatistics);
 cout << " Replay Session" << endl;
 cout << " --------------" << endl;
 printStatistics("Replay", replaySessionObservedStatistics);
 cout << "**" << endl;
 cout << "********************IDS SIMULATION ENDING*****************" <<
endl;
 cout << "**" << endl <<
endl;

}

//Print entire hourly statistics
void BIDE::printStatistics(string type, int array[])
{

 58

 for (int k = 0, t = 1, total = 0; k < 24; k++,t++)
 {
 cout << "Number of " << type << " Sessions Hour "<< t << " " <<
array[k] << endl;
 total+=array[k];
 if (t == 6)
 {
 cout << "Number of " << type << " Sessions Early Morning
Period " << total << endl << endl;
 total = 0;
 }
 else if(t == 11)
 {
 cout << "Number of " << type << " Sessions Morning Period "
<< total << endl << endl;
 total = 0;
 }
 else if(t == 16)
 {
 cout << "Number of " << type << " Sessions Afternoon
Period " << total << endl << endl;
 total = 0;
 }
 else if(t == 19)
 {
 cout << "Number of " << type << " Sessions Evening Period "
<< total << endl << endl;
 total = 0;
 }
 else if(t == 24)
 {
 cout << "Number of " << type << " Sessions Night Period "
<< total << endl << endl;
 total = 0;
 }
 }
 cout << endl;
}

void BIDE::printHeader()
{
 cout << "**" << endl;
 cout << "*Welcome to the Behavior-Based Intrusion Detection System*"
<< endl;
 cout << "* *" << endl;
 cout << "*Version 1.0 *" << endl;

 59

 cout << "*Created by Tysen Leckie *" << endl;
 cout << "*Florida State University *" << endl;
 cout << "*Computer Science Department *" << endl;
 cout << "**" << endl <<
endl;
}

//Start Intrusion Detection Simulation
void BIDE::startSimulation(ACTIVITYHANDLER & observedActivity,
PROFILEHANDLER & userProfiles)
{

 cout << endl << "**" <<
endl;
 cout << "********************IDS SIMULATION STARTING***************" <<
endl;
 cout << "**" << endl <<
endl;
 //Accumulate hourly activity
 cout << "Accumulating Hour 1 Session Activity....................OK" << endl;
 accumulateActivity(1,observedActivity);
 cout << "Accumulating Hour 2 Session Activity....................OK" << endl;
 accumulateActivity(2,observedActivity);
 cout << "Accumulating Hour 3 Session Activity....................OK" << endl;
 accumulateActivity(3,observedActivity);
 cout << "Accumulating Hour 4 Session Activity....................OK" << endl;
 accumulateActivity(4,observedActivity);
 cout << "Accumulating Hour 5 Session Activity....................OK" << endl;
 accumulateActivity(5,observedActivity);
 cout << "Accumulating Hour 6 Session Activity....................OK" << endl <<
endl;
 accumulateActivity(6,observedActivity);

 //Check Behavior
 cout << "**" << endl;
 cout << "Running Behavior Check on Early Morning Activity.........." <<
endl;
 generateStatistics("EM",observedActivity, userProfiles);
 measureSpread("EM",parallelSessionObservedStatistics,0);
 performChiSquare("EM",parallelSessionObservedStatistics,parallelSessio
nProfileStatistics,0);
 measureSpread("EM",failedSessionObservedStatistics,1);
 performChiSquare("EM",failedSessionObservedStatistics,failedSessionPr
ofileStatistics,1);
 measureSpread("EM",weakSessionObservedStatistics,2);

 60

 performChiSquare("EM",weakSessionObservedStatistics,weakSessionPro
fileStatistics,2);
 measureSpread("EM",replaySessionObservedStatistics,3);
 performChiSquare("EM",replaySessionObservedStatistics,replaySessionP
rofileStatistics,3);
 cout << "**" << endl <<
endl;

 //Accumulate hourly activity
 cout << "Accumulating Hour 7 Session Activity....................OK" << endl;
 accumulateActivity(7,observedActivity);
 cout << "Accumulating Hour 8 Session Activity....................OK" << endl;
 accumulateActivity(8,observedActivity);
 cout << "Accumulating Hour 9 Session Activity....................OK" << endl;
 accumulateActivity(9,observedActivity);
 cout << "Accumulating Hour 10 Session Activity...................OK" << endl;
 accumulateActivity(10,observedActivity);
 cout << "Accumulating Hour 11 Session Activity...................OK" << endl
<< endl;
 accumulateActivity(11,observedActivity);

 //Check Behavior
 cout << "**" << endl;
 cout << "Running Behavior Check on Morning Activity................" << endl;
 generateStatistics("M",observedActivity, userProfiles);
 measureSpread("M",parallelSessionObservedStatistics,0);
 performChiSquare("M",parallelSessionObservedStatistics,parallelSession
ProfileStatistics,0);
 measureSpread("M",failedSessionObservedStatistics,1);
 performChiSquare("M",failedSessionObservedStatistics,failedSessionProfi
leStatistics,1);
 measureSpread("M",weakSessionObservedStatistics,2);
 performChiSquare("M",weakSessionObservedStatistics,weakSessionProfi
leStatistics,2);
 measureSpread("M",replaySessionObservedStatistics,3);
 performChiSquare("M",replaySessionObservedStatistics,replaySessionPr
ofileStatistics,3);
 cout << "**" << endl <<
endl;

 //Accumulate hourly activity
 cout << "Accumulating Hour 12 Session Activity...................OK" << endl;
 accumulateActivity(12,observedActivity);
 cout << "Accumulating Hour 13 Session Activity...................OK" << endl;
 accumulateActivity(13,observedActivity);
 cout << "Accumulating Hour 14 Session Activity...................OK" << endl;

 61

 accumulateActivity(14,observedActivity);
 cout << "Accumulating Hour 15 Session Activity...................OK" << endl;
 accumulateActivity(15,observedActivity);
 cout << "Accumulating Hour 16 Session Activity...................OK" << endl
<< endl;
 accumulateActivity(16,observedActivity);

 //Check Behavior
 cout << "**" << endl;
 cout << "Running Behavior Check on Afternoon Activity.............." << endl;
 generateStatistics("A",observedActivity, userProfiles);
 measureSpread("A",parallelSessionObservedStatistics,0);
 performChiSquare("A",parallelSessionObservedStatistics,parallelSession
ProfileStatistics,0);
 measureSpread("A",failedSessionObservedStatistics,1);
 performChiSquare("A",failedSessionObservedStatistics,failedSessionProfil
eStatistics,1);
 measureSpread("A",weakSessionObservedStatistics,2);
 performChiSquare("A",weakSessionObservedStatistics,weakSessionProfil
eStatistics,2);
 measureSpread("A",replaySessionObservedStatistics,3);
 performChiSquare("A",replaySessionObservedStatistics,replaySessionPro
fileStatistics,3);
 cout << "**" << endl <<
endl;

 //Accumulate hourly activity
 cout << "Accumulating Hour 17 Session Activity...................OK" << endl;
 accumulateActivity(17,observedActivity);
 cout << "Accumulating Hour 18 Session Activity...................OK" << endl;
 accumulateActivity(18,observedActivity);
 cout << "Accumulating Hour 19 Session Activity...................OK" << endl
<< endl;
 accumulateActivity(19,observedActivity);

 //Check Behavior
 cout << "**" << endl;
 cout << "Running Behavior Check on Evening Activity................" << endl;
 generateStatistics("E",observedActivity, userProfiles);
 measureSpread("E",parallelSessionObservedStatistics,0);
 performChiSquare("E",parallelSessionObservedStatistics,parallelSession
ProfileStatistics,0);
 measureSpread("E",failedSessionObservedStatistics,1);
 performChiSquare("E",failedSessionObservedStatistics,failedSessionProfil
eStatistics,1);
 measureSpread("E",weakSessionObservedStatistics,2);

 62

 performChiSquare("E",weakSessionObservedStatistics,weakSessionProfil
eStatistics,2);
 measureSpread("E",replaySessionObservedStatistics,3);
 performChiSquare("E",replaySessionObservedStatistics,replaySessionPro
fileStatistics,3);
 cout << "**" << endl <<
endl;

 //Accumulate hourly activity
 cout << "Accumulating Hour 20 Session Activity...................OK" << endl;
 accumulateActivity(20,observedActivity);
 cout << "Accumulating Hour 21 Session Activity...................OK" << endl;
 accumulateActivity(21,observedActivity);
 cout << "Accumulating Hour 22 Session Activity...................OK" << endl;
 accumulateActivity(22,observedActivity);
 cout << "Accumulating Hour 23 Session Activity...................OK" << endl;
 accumulateActivity(23,observedActivity);
 cout << "Accumulating Hour 24 Session Activity...................OK" << endl
<< endl;
 accumulateActivity(24,observedActivity);

 //Check Behavior
 cout << "**" << endl;
 cout << "Running Behavior Check on Night Activity.................." << endl;
 generateStatistics("N",observedActivity, userProfiles);
 measureSpread("N",parallelSessionObservedStatistics,0);
 performChiSquare("N",parallelSessionObservedStatistics,parallelSession
ProfileStatistics,0);
 measureSpread("N",failedSessionObservedStatistics,1);
 performChiSquare("N",failedSessionObservedStatistics,failedSessionProfi
leStatistics,1);
 measureSpread("N",weakSessionObservedStatistics,2);
 performChiSquare("N",weakSessionObservedStatistics,weakSessionProfil
eStatistics,2);
 measureSpread("N",replaySessionObservedStatistics,3);
 performChiSquare("N",replaySessionObservedStatistics,replaySessionPro
fileStatistics,3);
 cout << "**" << endl <<
endl;

 //Check Behavior
 cout << "**" << endl;
 cout << "Running Behavior Check on Day Activity Per Hour..........." <<
endl;
 generateStatistics("DHOUR",observedActivity, userProfiles);
 measureSpread("DHOUR",parallelSessionObservedStatistics,0);

 63

 performChiSquare("DHOUR",parallelSessionObservedStatistics,parallelS
essionProfileStatistics,0);
 measureSpread("DHOUR",failedSessionObservedStatistics,1);
 performChiSquare("DHOUR",failedSessionObservedStatistics,failedSessi
onProfileStatistics,1);
 measureSpread("DHOUR",weakSessionObservedStatistics,2);
 performChiSquare("DHOUR",weakSessionObservedStatistics,weakSessio
nProfileStatistics,2);
 measureSpread("DHOUR",replaySessionObservedStatistics,3);
 performChiSquare("DHOUR",replaySessionObservedStatistics,replaySess
ionProfileStatistics,3);
 cout << "**" << endl <<
endl;

 //Check Behavior
 cout << "**" << endl;
 cout << "Running Behavior Check on Day Activity Per Time Category.." <<
endl;
 generateStatistics("DTIME",observedActivity, userProfiles);
 measureSpread("DTIME",parallelSessionObservedStatistics,0);
 performChiSquare("DTIME",parallelSessionObservedStatistics,parallelSes
sionProfileStatistics,0);
 measureSpread("DTIME",failedSessionObservedStatistics,1);
 performChiSquare("DTIME",failedSessionObservedStatistics,failedSessio
nProfileStatistics,1);
 measureSpread("DTIME",weakSessionObservedStatistics,2);
 performChiSquare("DTIME",weakSessionObservedStatistics,weakSessio
nProfileStatistics,2);
 measureSpread("DTIME",replaySessionObservedStatistics,3);
 performChiSquare("DTIME",replaySessionObservedStatistics,replaySessi
onProfileStatistics,3);
 cout << "**" << endl <<
endl;
}

double BIDE::chiSqr(int oTotal, int pTotal)
{

 int subResult;
 double powResult;

 subResult = oTotal - pTotal;
 powResult = pow(subResult,2);

 if (pTotal == 0)

 64

 return (powResult/1);
 else
 return (powResult/pTotal);
}

double BIDE::chiSqr(int oTemp[], int pTemp[])
{
 int subResult;
 double powResult;
 double divResult;
 double totResult = 0;

 for (int z = 0; z < 5; z++)
 {
 subResult = oTemp[z] - pTemp[z];
 powResult = pow(subResult,2);
 if (pTemp[z] == 0)
 {
 divResult = powResult/1;
 }
 else
 {
 divResult = powResult/pTemp[z];
 }
 totResult += divResult;
 }
 return totResult;
}

double BIDE::upperLimit(double StdDev)
{
 return 2*StdDev;
}

void BIDE::performChiSquare(string type,int observedStatistics[],int
normalStatistics[],int index)
{
 if (type == "EM")
 {
 int oTotal = 0;
 int pTotal = 0;
 int pTemp[] = {0,0,0,0,0,0};
 int size = 6;
 double ChiSquare, uLimit, StdDev;
 for (int z = 0; z < 6; z++)
 {

 65

 pTemp[z] = normalStatistics[z];
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 }
 //Parallel Session Chi-Square
 if (index == 0)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Early Morning Parallel Session Chi-Square Value:
"<< ChiSquare << endl;
 cout <<"Early Morning Parallel Session Upper Control Limit:
" << uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"EM");
 }
 //Failed Session Chi-Square
 else if (index == 1)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Early Morning Failed Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Early Morning Failed Session Upper Control Limit: "
<< uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"EM");
 }
 //Weak Session Chi-Square
 else if (index == 2)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Early Morning Weak Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Early Morning Weak Session Upper Control Limit: "
<< uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"EM");
 }
 //Replay Session Chi-Square
 else if (index == 3)
 {

 66

 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Early Morning Replay Session Chi-Square Value:
"<< ChiSquare << endl;
 cout <<"Early Morning Replay Session Upper Control Limit: "
<< uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"EM");
 }
 }
 else if (type == "M")
 {
 int oTotal = 0;
 int pTotal = 0;
 int pTemp[] = {0,0,0,0,0};
 int size = 5;
 double ChiSquare, uLimit, StdDev;
 int y = 0;
 for (int z = 6; z < 11; z++)
 {
 pTemp[y] = normalStatistics[z];
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 y++;
 }
 //Parallel Session Chi-Square
 if (index == 0)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Morning Parallel Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Morning Parallel Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"M");
 }
 //Failed Session Chi-Square
 else if (index == 1)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);

 67

 cout <<"Morning Failed Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Morning Failed Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"M");
 }
 //Weak Session Chi-Square
 else if (index == 2)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Morning Weak Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Morning Weak Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"M");
 }
 //Replay Session Chi-Square
 else if (index == 3)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Morning Replay Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Morning Replay Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"M");
 }
 }
 else if (type == "A")
 {
 int oTotal = 0;
 int pTotal = 0;
 int pTemp[] = {0,0,0,0,0};
 int size = 5;
 double ChiSquare, uLimit, StdDev;
 int y = 0;
 for (int z = 11; z < 16; z++)
 {
 pTemp[y] = normalStatistics[z];
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];

 68

 y++;
 }
 //Parallel Session Chi-Square
 if (index == 0)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Afternoon Parallel Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Afternoon Parallel Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"A");
 }
 //Failed Session Chi-Square
 else if (index == 1)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Afternoon Failed Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Afternoon Failed Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"A");
 }
 //Weak Session Chi-Square
 else if (index == 2)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Afternoon Weak Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Afternoon Weak Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"A");
 }
 //Replay Session Chi-Square
 else if (index == 3)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));

 69

 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Afternoon Replay Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Afternoon Replay Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"A");
 }

 }
 else if (type == "E")
 {
 int oTotal = 0;
 int pTotal = 0;
 int pTemp[] = {0,0,0};
 int size = 3;
 double ChiSquare, uLimit, StdDev;
 int y = 0;
 for (int z = 16; z < 19; z++)
 {
 pTemp[y] = normalStatistics[z];
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 y++;
 }
 //Parallel Session Chi-Square
 if (index == 0)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Evening Parallel Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Evening Parallel Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"E");
 }
 //Failed Session Chi-Square
 else if (index == 1)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);

 70

 cout <<"Evening Failed Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Evening Failed Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"E");
 }
 //Weak Session Chi-Square
 else if (index == 2)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Evening Weak Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Evening Weak Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"E");
 }
 //Replay Session Chi-Square
 else if (index == 3)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Evening Replay Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Evening Replay Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"E");
 }
 }
 else if (type == "N")
 {
 int oTotal = 0;
 int pTotal = 0;
 int pTemp[] = {0,0,0,0,0};
 int size = 5;
 double ChiSquare, uLimit, StdDev;
 int y = 0;
 for (int z = 19; z < 24; z++)
 {
 pTemp[y] = normalStatistics[z];
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];

 71

 y++;
 }
 //Parallel Session Chi-Square
 if (index == 0)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Night Parallel Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Night Parallel Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"N");
 }
 //Failed Session Chi-Square
 else if (index == 1)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Night Failed Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Night Failed Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"N");
 }
 //Weak Session Chi-Square
 else if (index == 2)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Night Weak Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Night Weak Session Upper Control Limit: " << uLimit
<< endl;
 checkBehavior(ChiSquare,uLimit,"N");
 }
 //Replay Session Chi-Square
 else if (index == 3)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(pTemp, size, avg(pTemp,size));

 72

 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Night Replay Session Chi-Square Value: "<<
ChiSquare << endl;
 cout <<"Night Replay Session Upper Control Limit: " <<
uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"N");
 }
 }
 else if (type == "DHOUR")
 {
 int oTotal = 0;
 int pTotal = 0;
 int size = 24;
 double ChiSquare, uLimit, StdDev;
 for (int z = 0; z < 24; z++)
 {
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 }
 //Parallel Session Chi-Square
 if (index == 0)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(normalStatistics, size,
avg(normalStatistics,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Parallel Session Chi-Square Result Per Hour:
"<< ChiSquare << endl;
 cout <<"Day Parallel Session Upper Control Limit Per Hour: "
<< uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"DHOUR");
 }
 //Failed Session Chi-Square
 else if (index == 1)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(normalStatistics, size,
avg(normalStatistics,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Failed Session Chi-Square Result Per Hour:
"<< ChiSquare << endl;
 cout <<"Day Failed Session Upper Control Limit Per Hour: "
<< uLimit << endl;

 73

 checkBehavior(ChiSquare,uLimit,"DHOUR");
 }
 //Weak Session Chi-Square
 else if (index == 2)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(normalStatistics, size,
avg(normalStatistics,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Weak Session Chi-Square Result Per Hour: "<<
ChiSquare << endl;
 cout <<"Day Weak Session Upper Control Limit Per Hour: "
<< uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"DHOUR");
 }
 //Replay Session Chi-Square
 else if (index == 3)
 {
 ChiSquare = chiSqr(oTotal, pTotal);
 StdDev = std(normalStatistics, size,
avg(normalStatistics,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Replay Session Chi-Square Result Per Hour:
"<< ChiSquare << endl;
 cout <<"Day Replay Session Upper Control Limit Per Hour: "
<< uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"DHOUR");
 }
 }
 else if (type == "DTIME")
 {
 int oTotal = 0;
 int pTotal = 0;
 int pTemp[] = {0,0,0,0,0};
 int oTemp[] = {0,0,0,0,0};
 int size = 5;
 double ChiSquare, uLimit, StdDev;
 //Accumulate category totals for early morning period
 for (int z = 0; z < 6; z++)
 {
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 }
 if (oTotal > 0)

 74

 {
 oTemp[0] = oTotal;
 oTotal = 0;
 }
 if (pTotal > 0)
 {
 pTemp[0] = pTotal;
 pTotal = 0;
 }
 //Accumulate category totals for morning period
 for (z = 6; z < 11; z++)
 {
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 }
 if (oTotal > 0)
 {
 oTemp[1] = oTotal;
 oTotal = 0;
 }
 if (pTotal > 0)
 {
 pTemp[1] = pTotal;
 pTotal = 0;
 }
 //Accumulate category totals for afternoon period
 for (z = 11; z < 16; z++)
 {
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 }
 if (oTotal > 0)
 {
 oTemp[2] = oTotal;
 oTotal = 0;
 }
 if (pTotal > 0)
 {
 pTemp[2] = pTotal;
 pTotal = 0;
 }
 //Accumulate category totals for evening period
 for (z = 16; z < 19; z++)
 {
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];

 75

 }
 if (oTotal > 0)
 {
 oTemp[3] = oTotal;
 oTotal = 0;
 }
 if (pTotal > 0)
 {
 pTemp[3] = pTotal;
 pTotal = 0;
 }
 //Accumulate category totals for night period
 for (z = 19; z < 24; z++)
 {
 oTotal += observedStatistics[z];
 pTotal += normalStatistics[z];
 }
 if (oTotal > 0)
 {
 oTemp[4] = oTotal;
 oTotal = 0;
 }
 if (pTotal > 0)
 {
 pTemp[4] = pTotal;
 pTotal = 0;
 }
 //Parallel Session Chi-Square
 if (index == 0)
 {
 ChiSquare = chiSqr(oTemp, pTemp);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Parallel Session Chi-Square Result Per Time
Category: "<< ChiSquare << endl;
 cout <<"Day Parallel Session Upper Control Limit Per Time
Category: " << uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"DTIME");
 }
 //Failed Session Chi-Square
 else if (index == 1)
 {
 ChiSquare = chiSqr(oTemp, pTemp);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);

 76

 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Failed Session Chi-Square Result Per Time
Category: "<< ChiSquare << endl;
 cout <<"Day Failed Session Upper Control Limit Per Time
Category: " << uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"DTIME");
 }
 //Weak Session Chi-Square
 else if (index == 2)
 {
 ChiSquare = chiSqr(oTemp, pTemp);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Weak Session Chi-Square Result Per Time
Category: "<< ChiSquare << endl;
 cout <<"Day Weak Session Upper Control Limit Per Time
Category: " << uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"DTIME");
 }
 //Replay Session Chi-Square
 else if (index == 3)
 {
 ChiSquare = chiSqr(oTemp, pTemp);
 StdDev = std(pTemp, size, avg(pTemp,size));
 uLimit = upperLimit(StdDev);
 cout <<setiosflags(ios::fixed)<<setprecision(2);
 cout <<"Day Replay Session Chi-Square Result Per Time
Category: "<< ChiSquare << endl;
 cout <<"Day Replay Session Upper Control Limit Per Time
Category: " << uLimit << endl;
 checkBehavior(ChiSquare,uLimit,"DTIME");
 }
 }

}

void BIDE::measureSpread(string type, int array[], int index)
{

 if (type == "EM")
 {
 int temp[] = {0,0,0,0,0,0};
 int size = 6;
 double StdDev;

 77

 for (int z = 0; z < 6; z++)
 {
 temp[z] = array[z];
 }
 //Parallel Session Spread
 if (index == 0)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Early Morning Parallel Session Standard Deviation:
"<< StdDev << endl;
 checkBehavior(StdDev, "EM");
 }
 //Failed Session Spread
 else if (index == 1)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Early Morning Failed Session Standard Deviation:
"<< StdDev << endl;
 checkBehavior(StdDev, "EM");
 }
 //Weak Session Spread
 else if (index == 2)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Early Morning Weak Session Standard Deviation:
"<< StdDev << endl;
 checkBehavior(StdDev, "EM");
 }
 //Replay Session Spread
 else if (index == 3)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Early Morning Replay Session Standard Deviation:
"<< StdDev << endl;
 checkBehavior(StdDev, "EM");
 }
 }
 else if (type == "M")
 {
 int temp[] = {0,0,0,0,0};
 int size = 5;
 double StdDev;

 78

 int y = 0;
 for (int z = 6; z < 11; z++)
 {
 temp[y] = array[z];
 y++;
 }
 //Parallel Session Spread
 if (index == 0)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Morning Parallel Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "M");
 }
 //Failed Session Spread
 else if (index == 1)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Morning Failed Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "M");
 }
 //Weak Session Spread
 else if (index == 2)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Morning Weak Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "M");
 }
 //Replay Session Spread
 else if (index == 3)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Morning Replay Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "M");
 }
 }
 else if (type == "A")
 {
 int temp[] = {0,0,0,0,0};

 79

 int size = 5;
 double StdDev;
 int y = 0;
 for (int z = 11; z < 16; z++)
 {
 temp[y] = array[z];
 y++;
 }
 //Parallel Session Spread
 if (index == 0)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Afternoon Parallel Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "A");
 }
 //Failed Session Spread
 else if (index == 1)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Afternoon Failed Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "A");
 }
 //Weak Session Spread
 else if (index == 2)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Afternoon Weak Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "A");
 }
 //Replay Session Spread
 else if (index == 3)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Afternoon Replay Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "A");
 }

 }

 80

 else if (type == "E")
 {
 int temp[] = {0,0,0};
 int size = 3;
 double StdDev;
 int y = 0;
 for (int z = 16; z < 19; z++)
 {
 temp[y] = array[z];
 y++;
 }
 //Parallel Session Spread
 if (index == 0)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Evening Parallel Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "E");
 }
 //Failed Session Spread
 else if (index == 1)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Evening Failed Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "E");
 }
 //Weak Session Spread
 else if (index == 2)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Evening Weak Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "E");
 }
 //Replay Session Spread
 else if (index == 3)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Evening Replay Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "E");

 81

 }
 }
 else if (type == "N")
 {
 int temp[] = {0,0,0,0,0};
 int size = 5;
 double StdDev;
 int y = 0;
 for (int z = 19; z < 24; z++)
 {
 temp[y] = array[z];
 y++;
 }
 //Parallel Session Spread
 if (index == 0)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Night Parallel Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "N");
 }
 //Failed Session Spread
 else if (index == 1)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Night Failed Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "N");
 }
 //Weak Session Spread
 else if (index == 2)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Night Weak Session Standard Deviation: "<< StdDev
<< endl;
 checkBehavior(StdDev, "N");
 }
 //Replay Session Spread
 else if (index == 3)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);

 82

 cout<<"Night Replay Session Standard Deviation: "<<
StdDev << endl;
 checkBehavior(StdDev, "N");
 }
 }
 else if (type == "DHOUR")
 {
 int size = 24;
 double StdDev;
 //Parallel Session Spread
 if (index == 0)
 {
 StdDev = std(array, size, avg(array,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Parallel Session Standard Deviation Per Hour:
"<< StdDev << endl;
 checkBehavior(StdDev, "DHOUR");
 }
 //Failed Session Spread
 else if (index == 1)
 {
 StdDev = std(array, size, avg(array,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Failed Session Standard Deviation Per Hour:
"<< StdDev << endl;
 checkBehavior(StdDev, "DHOUR");
 }
 //Weak Session Spread
 else if (index == 2)
 {
 StdDev = std(array, size, avg(array,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Weak Session Standard Deviation Per Hour:
"<< StdDev << endl;
 checkBehavior(StdDev, "DHOUR");
 }
 //Replay Session Spread
 else if (index == 3)
 {
 StdDev = std(array, size, avg(array,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Replay Session Standard Deviation Per Hour:
"<< StdDev << endl;
 checkBehavior(StdDev, "DHOUR");
 }
 }

 83

 else if (type == "DTIME")
 {
 int temp[] = {0,0,0,0,0};
 int size = 5;
 double StdDev;
 int total = 0;

 //Accumulate category totals for early morning period
 for (int z = 0; z < 6; z++)
 {
 total += array[z];
 }
 if (total > 0)
 {
 temp[0] = total;
 total = 0;
 }
 //Accumulate category totals for morning period
 for (z = 6; z < 11; z++)
 {
 total += array[z];
 }
 if (total > 0)
 {
 temp[1] = total;
 total = 0;
 }

 //Accumulate category totals for afternoon period
 for (z = 11; z < 16; z++)
 {
 total += array[z];
 }
 if (total > 0)
 {
 temp[2] = total;
 total = 0;
 }

 //Accumulate category totals for evening period
 for (z = 16; z < 19; z++)
 {
 total += array[z];
 }
 if (total > 0)
 {

 84

 temp[3] = total;
 total = 0;
 }

 //Accumulate category totals for night period
 for (z = 19; z < 24; z++)
 {
 total += array[z];
 }
 if (total > 0)
 {
 temp[4] = total;
 total = 0;
 }

 //Parallel Session Spread
 if (index == 0)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Parallel Session Standard Deviation Time
Category: "<< StdDev << endl;
 checkBehavior(StdDev, "DTIME");
 }
 //Failed Session Spread
 else if (index == 1)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Failed Session Standard Deviation Time
Category: "<< StdDev << endl;
 checkBehavior(StdDev, "DTIME");
 }
 //Weak Session Spread
 else if (index == 2)
 {
 StdDev = std(temp, size, avg(temp,size));
 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Weak Session Standard Deviation Time
Category: "<< StdDev << endl;
 checkBehavior(StdDev, "DTIME");
 }
 //Replay Session Spread
 else if (index == 3)
 {
 StdDev = std(temp, size, avg(temp,size));

 85

 cout<<setiosflags(ios::fixed)<<setprecision(2);
 cout<<"Day Replay Session Standard Deviation Time
Category: "<< StdDev << endl;
 checkBehavior(StdDev, "DTIME");
 }
 }
}

//Check standard deviation
void BIDE::checkBehavior(double StdDev, string timePeriod)
{
 if (StdDev > stdDevLimit)
 attackState(timePeriod, "UNIFORMLY");
}

//Check chi square and control limit values
void BIDE::checkBehavior(double ChiSqr, double uLimit, string timePeriod)
{
 if (ChiSqr > uLimit)
 attackState(timePeriod, "NORMALY");
}

//Transformation to attack state. Intrusion behavior was noticed
void BIDE::attackState(string timePeriod, string type)
{
 if (timePeriod == "EM")
 {
 cout << endl << "WARNING: ACTIVITY IS NOT OCCURRING " <<
type << " OVER THE EARLY MORNING TIME PERIOD" << endl << endl;
 }
 else if (timePeriod == "M")
 {
 cout << endl << "WARNING: ACTIVITY IS NOT OCCURRING " <<
type << " OVER THE MORNING TIME PERIOD" << endl << endl;
 }
 else if (timePeriod == "A")
 {
 cout << endl << "WARNING: ACTIVITY IS NOT OCCURRING " <<
type << " OVER THE AFTERNOON TIME PERIOD" << endl << endl;
 }
 else if (timePeriod == "E")
 {
 cout << endl << "WARNING: ACTIVITY IS NOT OCCURRING " <<
type << " OVER THE EVENING TIME PERIOD" << endl << endl;
 }

 86

 else if (timePeriod == "N")
 {
 cout << endl << "WARNING: ACTIVITY IS NOT OCCURRING " <<
type << " OVER THE NIGHT TIME PERIOD" << endl << endl;
 }
 else if (timePeriod == "DHOUR")
 {
 cout << endl << "WARNING: ACTIVITY IS NOT OCCURRING " <<
type << " OVER DAY PERIOD PER HOUR" << endl << endl;
 }
 else if (timePeriod == "DTIME")
 {
 cout << endl << "WARNING: ACTIVITY IS NOT OCCURRING " <<
type << " OVER DAY PERIOD PER TIME CATEGORY" << endl << endl;
 }
}

//Determine average for standard deviation purposes
double BIDE::avg(int ArrInt[], int size)
{
 long sum = 0;
 for(int i = 0; i < size; i++)
 {
 sum = sum + ArrInt[i];
 }

 if(size != 0)
 {
 return (double) sum/size;
 }
 return 0;
}

//Determine standard deviation
double BIDE::std(int ArrInt[], int size, double average)
{
 double variance = 0;

 for(int i = 0; i < size;i++)
 {
 variance = variance + pow((average - ArrInt[i]),2);
 }
 return sqrt(variance / size);
}

//Accumulate hourly activity

 87

void BIDE::accumulateActivity(int hour, ACTIVITYHANDLER & observedActivity)
{
 //Local variables
 string sTime;
 string eTime;

 //Temporary container for monitor data
 vector<string> tTwoDim(10);
 vector<vector<string> > v(20, tTwoDim);

 v = observedActivity.getMonitorActivity();

 //Contains users
 vector<string> users;
 users.push_back("A");
 users.push_back("B");
 users.push_back("S");
 users.push_back("M");

 //Used because hours are represented as strings
 switch(hour)
 {
 case 1:
 sTime = "0000";
 eTime = "0100";
 break;
 case 2:
 sTime = "0100";
 eTime = "0200";
 break;
 case 3:
 sTime = "0200";
 eTime = "0300";
 break;
 case 4:
 sTime = "0300";
 eTime = "0400";
 break;
 case 5:
 sTime = "0400";
 eTime = "0500";
 break;
 case 6:
 sTime = "0500";
 eTime = "0600";
 break;

 88

 case 7:
 sTime = "0600";
 eTime = "0700";
 break;
 case 8:
 sTime = "0700";
 eTime = "0800";
 break;
 case 9:
 sTime = "0800";
 eTime = "0900";
 break;
 case 10:
 sTime = "0900";
 eTime = "1000";
 break;
 case 11:
 sTime = "1000";
 eTime = "1100";
 break;
 case 12:
 sTime = "1100";
 eTime = "1200";
 break;
 case 13:
 sTime = "1200";
 eTime = "1300";
 break;
 case 14:
 sTime = "1300";
 eTime = "1400";
 break;
 case 15:
 sTime = "1400";
 eTime = "1500";
 break;
 case 16:
 sTime = "1500";
 eTime = "1600";
 break;
 case 17:
 sTime = "1600";
 eTime = "1700";
 break;
 case 18:
 sTime = "1700";

 89

 eTime = "1800";
 break;
 case 19:
 sTime = "1800";
 eTime = "1900";
 break;
 case 20:
 sTime = "1900";
 eTime = "2000";
 break;
 case 21:
 sTime = "2000";
 eTime = "2100";
 break;
 case 22:
 sTime = "2100";
 eTime = "2200";
 break;
 case 23:
 sTime = "2200";
 eTime = "2300";
 break;
 case 24:
 sTime = "2300";
 eTime = "2400";
 break;
 default:
 //Value undefined
 cout << "FAILURE";
 break;
 }

 //Search Monitor Log
 for(int z = 0; z < v.size(); z++)
 {
 //Add corresponding monitor activity to user's observed activity log
 if((v[z][0] >= sTime) && (v[z][1] <= eTime))
 {
 for(int k = 0; k < users.size(); k++)
 {
 if((v[z][3] == users[k]) || (v[z][4] == users[k]) || (v[z][5] ==
users[k]) || (v[z][6] == users[k]))
 {
 //User A
 if (k == 0)
 {

 90

 observedActivity.a[aCount][0] = v[z][0];
 observedActivity.a[aCount][1] = v[z][1];
 observedActivity.a[aCount][2] = v[z][2];
 observedActivity.a[aCount][3] = v[z][3];
 observedActivity.a[aCount][4] = v[z][4];
 observedActivity.a[aCount][5] = v[z][5];
 observedActivity.a[aCount][6] = v[z][6];
 observedActivity.a[aCount][7] = v[z][7];
 observedActivity.a[aCount][8] = v[z][8];
 observedActivity.a[aCount][9] = v[z][9];
 //Write observed activity to observed activity
log

observedActivity.writeObservedActivityLog("A",z);
 aCount++;
 }
 //User B
 else if (k == 1)
 {
 observedActivity.b[bCount][0] = v[z][0];
 observedActivity.b[bCount][1] = v[z][1];
 observedActivity.b[bCount][2] = v[z][2];
 observedActivity.b[bCount][3] = v[z][3];
 observedActivity.b[bCount][4] = v[z][4];
 observedActivity.b[bCount][5] = v[z][5];
 observedActivity.b[bCount][6] = v[z][6];
 observedActivity.b[bCount][7] = v[z][7];
 observedActivity.b[bCount][8] = v[z][8];
 observedActivity.b[bCount][9] = v[z][9];
 //Write observed activity to observed
activity log

 observedActivity.writeObservedActivityLog("B",z);
 bCount++;
 }
 //User S
 else if (k == 2)
 {
 observedActivity.s[sCount][0] = v[z][0];
 observedActivity.s[sCount][1] = v[z][1];
 observedActivity.s[sCount][2] = v[z][2];
 observedActivity.s[sCount][3] = v[z][3];
 observedActivity.s[sCount][4] = v[z][4];
 observedActivity.s[sCount][5] = v[z][5];
 observedActivity.s[sCount][6] = v[z][6];
 observedActivity.s[sCount][7] = v[z][7];

 91

 observedActivity.s[sCount][8] = v[z][8];
 observedActivity.s[sCount][9] = v[z][9];
 //Write observed activity to observed
activity log

 observedActivity.writeObservedActivityLog("S",z);
 sCount++;
 }
 //User M
 else if (k == 3)
 {
 observedActivity.m[mCount][0] = v[z][0];
 observedActivity.m[mCount][1] = v[z][1];
 observedActivity.m[mCount][2] = v[z][2];
 observedActivity.m[mCount][3] = v[z][3];
 observedActivity.m[mCount][4] = v[z][4];
 observedActivity.m[mCount][5] = v[z][5];
 observedActivity.m[mCount][6] = v[z][6];
 observedActivity.m[mCount][7] = v[z][7];
 observedActivity.m[mCount][8] = v[z][8];
 observedActivity.m[mCount][9] = v[z][9];
 //Write observed activity to observed
activity log

 observedActivity.writeObservedActivityLog("M",z);
 mCount++;
 }
 }
 }

 }
 }

}

//Count profile statistics
void BIDE::countStatistics(PROFILEHANDLER & userProfiles, int z, int hour)
{
 int keyStrength;

 //Determine parallel session activity
 if(sTime == "Null" || eTime == "Null")
 {
 sTime = userProfiles.m[z][0];
 eTime = userProfiles.m[z][1];
 }

 92

 else
 {
 if((sTime == userProfiles.m[z][0]) && (eTime ==
userProfiles.m[z][1]))
 {
 if(parallelSessionProfileStatistics[hour] < 1)
 {
 parallelSessionProfileStatistics[hour]++;
 parallelSessionProfileStatistics[hour]++;
 }
 else
 {
 parallelSessionProfileStatistics[hour]++;
 }
 }
 }

 //Determine replay session activity
 replayProfileID[z] = userProfiles.m[z][9];

 count = 0;
 string temp[1000];
 int e = 0;
 for (int h = 0; h < 1000; h++)
 {
 if (replayProfileID[h] != "Null")
 {
 temp[e] = replayProfileID[h];
 e++;
 }
 }

 string tempString = "";
 for (h = 0; h < e; h++)
 {
 if (h == 0)
 {
 tempString = temp[h];
 }
 else
 {
 if (tempString == temp[h])
 {
 replaySessionProfileStatistics[hour]++;
 }

 93

 else
 tempString = temp[h];
 }
 }

 //Determine failed session activity
 if(userProfiles.m[z][7] == "N")
 failedSessionProfileStatistics[hour]++;

 //Conversion of string to integer
 istringstream(userProfiles.m[z][8]) >> keyStrength;

 //Determine weak encryption activity
 if(keyStrength <= 64)
 weakSessionProfileStatistics[hour]++;
}

//Count statistical behavior
void BIDE::countStatistics(ACTIVITYHANDLER & observedActivity, int z, int
hour)
{
 int keyStrength;

 //Parallel session count
 if(sTime == "Null" || eTime == "Null")
 {
 sTime = observedActivity.m[z][0];
 eTime = observedActivity.m[z][1];
 }
 else
 {
 if((sTime == observedActivity.m[z][0]) && (eTime ==
observedActivity.m[z][1]))
 {
 if(parallelSessionObservedStatistics[hour] < 1)
 {
 parallelSessionObservedStatistics[hour]++;
 parallelSessionObservedStatistics[hour]++;
 }
 else
 {
 parallelSessionObservedStatistics[hour]++;
 }
 }
 }

 94

 //Determine replay session activity
 replayObservedID[z] = observedActivity.m[z][9];

 count = 0;
 string temp[1000];
 int e = 0;
 for (int h = 0; h < 1000; h++)
 {
 if (replayObservedID[h] != "Null")
 {
 temp[e] = replayObservedID[h];
 e++;
 }
 }

 string tempString = "";
 for (h = 0; h < e; h++)
 {
 if (h == 0)
 {
 tempString = temp[h];
 }
 else
 {
 if (tempString == temp[h])
 {
 replaySessionObservedStatistics[hour]++;
 }
 else
 tempString = temp[h];
 }
 }

 //Failed session count
 if(observedActivity.m[z][7] == "N")
 failedSessionObservedStatistics[hour]++;

 //Used to convert string to integer
 istringstream(observedActivity.m[z][8]) >> keyStrength;

 //Weak session count
 if(keyStrength <= 64)
 weakSessionObservedStatistics[hour]++;
}

 95

//Used to clear variables
void BIDE::clearVariables()
{
 sTime = "Null";
 eTime = "Null";
 for (int k = 0; k < 1000; k++)
 {
 replayObservedID[k] = "Null";
 replayProfileID[k] = "Null";
 }
}

//Generate statistics
void BIDE::generateStatistics(string type, ACTIVITYHANDLER &
observedActivity, PROFILEHANDLER & userProfiles)
{

 //Early morning period
 if (type == "EM")
 {
 for (int z = 0; z < userProfiles.m.size(); z++)
 {
 if((userProfiles.m[z][0] >= "0000") && (userProfiles.m[z][1] <=
"0100"))
 {
 countStatistics(userProfiles,z,0);
 }
 else if((userProfiles.m[z][0] >= "0100") &&
(userProfiles.m[z][1] <= "0200"))
 {
 countStatistics(userProfiles,z,1);
 }
 else if((userProfiles.m[z][0] >= "0200") &&
(userProfiles.m[z][1] <= "0300"))
 {
 countStatistics(userProfiles,z,2);
 }
 else if((userProfiles.m[z][0] >= "0300") &&
(userProfiles.m[z][1] <= "0400"))
 {
 countStatistics(userProfiles,z,3);
 }
 else if((userProfiles.m[z][0] >= "0400") &&
(userProfiles.m[z][1] <= "0500"))

 96

 {
 countStatistics(userProfiles,z,4);
 }
 else if((userProfiles.m[z][0] >= "0500") &&
(userProfiles.m[z][1] <= "0600"))
 {
 countStatistics(userProfiles,z,5);
 }
 }
 clearVariables();
 for (z = 0; z < observedActivity.m.size(); z++)
 {
 if((observedActivity.m[z][0] >= "0000") &&
(observedActivity.m[z][1] <= "0100"))
 {
 countStatistics(observedActivity,z,0);
 }
 else if((observedActivity.m[z][0] >= "0100") &&
(observedActivity.m[z][1] <= "0200"))
 {
 countStatistics(observedActivity,z,1);
 }
 else if((observedActivity.m[z][0] >= "0200") &&
(observedActivity.m[z][1] <= "0300"))
 {
 countStatistics(observedActivity,z,2);
 }
 else if((observedActivity.m[z][0] >= "0300") &&
(observedActivity.m[z][1] <= "0400"))
 {
 countStatistics(observedActivity,z,3);
 }
 else if((observedActivity.m[z][0] >= "0400") &&
(observedActivity.m[z][1] <= "0500"))
 {
 countStatistics(observedActivity,z,4);
 }
 else if((observedActivity.m[z][0] >= "0500") &&
(observedActivity.m[z][1] <= "0600"))
 {
 countStatistics(observedActivity,z,5);
 }
 }
 clearVariables();
 }
 //Morning period

 97

 else if (type == "M")
 {
 for (int z = 0; z < userProfiles.m.size(); z++)
 {
 if((userProfiles.m[z][0] >= "0600") && (userProfiles.m[z][1] <=
"0700"))
 {
 countStatistics(userProfiles,z,6);
 }
 else if((userProfiles.m[z][0] >= "0700") &&
(userProfiles.m[z][1] <= "0800"))
 {
 countStatistics(userProfiles,z,7);
 }
 else if((userProfiles.m[z][0] >= "0800") &&
(userProfiles.m[z][1] <= "0900"))
 {
 countStatistics(userProfiles,z,8);
 }
 else if((userProfiles.m[z][0] >= "0900") &&
(userProfiles.m[z][1] <= "1000"))
 {
 countStatistics(userProfiles,z,9);
 }
 else if((userProfiles.m[z][0] >= "1000") &&
(userProfiles.m[z][1] <= "1100"))
 {
 countStatistics(userProfiles,z,10);
 }
 }
 clearVariables();
 for (z = 0; z < observedActivity.m.size(); z++)
 {
 if((observedActivity.m[z][0] >= "0600") &&
(observedActivity.m[z][1] <= "0700"))
 {
 countStatistics(observedActivity,z,6);
 }
 else if((observedActivity.m[z][0] >= "0700") &&
(observedActivity.m[z][1] <= "0800"))
 {
 countStatistics(observedActivity,z,7);
 }
 else if((observedActivity.m[z][0] >= "0800") &&
(observedActivity.m[z][1] <= "0900"))
 {

 98

 countStatistics(observedActivity,z,8);
 }
 else if((observedActivity.m[z][0] >= "0900") &&
(observedActivity.m[z][1] <= "1000"))
 {
 countStatistics(observedActivity,z,9);
 }
 else if((observedActivity.m[z][0] >= "1000") &&
(observedActivity.m[z][1] <= "1100"))
 {
 countStatistics(observedActivity,z,10);
 }
 }
 clearVariables();
 }
 //Afternoon period
 else if (type == "A")
 {
 for (int z = 0; z < userProfiles.m.size(); z++)
 {
 if((userProfiles.m[z][0] >= "1100") && (userProfiles.m[z][1] <=
"1200"))
 {
 countStatistics(userProfiles,z,11);
 }
 else if((userProfiles.m[z][0] >= "1200") &&
(userProfiles.m[z][1] <= "1300"))
 {
 countStatistics(userProfiles,z,12);
 }
 else if((userProfiles.m[z][0] >= "1300") &&
(userProfiles.m[z][1] <= "1400"))
 {
 countStatistics(userProfiles,z,13);
 }
 else if((userProfiles.m[z][0] >= "1400") &&
(userProfiles.m[z][1] <= "1500"))
 {
 countStatistics(userProfiles,z,14);
 }
 else if((userProfiles.m[z][0] >= "1500") &&
(userProfiles.m[z][1] <= "1600"))
 {
 countStatistics(userProfiles,z,15);
 }
 }

 99

 clearVariables();
 for (z = 0; z < observedActivity.m.size(); z++)
 {
 if((observedActivity.m[z][0] >= "1100") &&
(observedActivity.m[z][1] <= "1200"))
 {
 countStatistics(observedActivity,z,11);
 }
 else if((observedActivity.m[z][0] >= "1200") &&
(observedActivity.m[z][1] <= "1300"))
 {
 countStatistics(observedActivity,z,12);
 }
 else if((observedActivity.m[z][0] >= "1300") &&
(observedActivity.m[z][1] <= "1400"))
 {
 countStatistics(observedActivity,z,13);
 }
 else if((observedActivity.m[z][0] >= "1400") &&
(observedActivity.m[z][1] <= "1500"))
 {
 countStatistics(observedActivity,z,14);
 }
 else if((observedActivity.m[z][0] >= "1500") &&
(observedActivity.m[z][1] <= "1600"))
 {
 countStatistics(observedActivity,z,15);
 }
 }
 clearVariables();
 }
 //Evening period
 else if (type == "E")
 {
 for (int z = 0; z < userProfiles.m.size(); z++)
 {
 if((userProfiles.m[z][0] >= "1600") && (userProfiles.m[z][1] <=
"1700"))
 {
 countStatistics(userProfiles,z,16);
 }
 else if((userProfiles.m[z][0] >= "1700") &&
(userProfiles.m[z][1] <= "1800"))
 {
 countStatistics(userProfiles,z,17);
 }

 100

 else if((userProfiles.m[z][0] >= "1800") &&
(userProfiles.m[z][1] <= "1900"))
 {
 countStatistics(userProfiles,z,18);
 }
 }
 clearVariables();
 for (z = 0; z < observedActivity.m.size(); z++)
 {
 if((observedActivity.m[z][0] >= "1600") &&
(observedActivity.m[z][1] <= "1700"))
 {
 countStatistics(observedActivity,z,16);
 }
 else if((observedActivity.m[z][0] >= "1700") &&
(observedActivity.m[z][1] <= "1800"))
 {
 countStatistics(observedActivity,z,17);
 }
 else if((observedActivity.m[z][0] >= "1800") &&
(observedActivity.m[z][1] <= "1900"))
 {
 countStatistics(observedActivity,z,18);
 }
 }
 clearVariables();
 }
 //Night period
 else if (type == "N")
 {
 for (int z = 0; z < userProfiles.m.size(); z++)
 {
 if((userProfiles.m[z][0] >= "1900") && (userProfiles.m[z][1] <=
"2000"))
 {
 countStatistics(userProfiles,z,19);
 }
 else if((userProfiles.m[z][0] >= "2000") &&
(userProfiles.m[z][1] <= "2100"))
 {
 countStatistics(userProfiles,z,20);
 }
 else if((userProfiles.m[z][0] >= "2100") &&
(userProfiles.m[z][1] <= "2200"))
 {
 countStatistics(userProfiles,z,21);

 101

 }
 else if((userProfiles.m[z][0] >= "2200") &&
(userProfiles.m[z][1] <= "2300"))
 {
 countStatistics(userProfiles,z,22);
 }
 else if((userProfiles.m[z][0] >= "2300") &&
(userProfiles.m[z][1] <= "2400"))
 {
 countStatistics(userProfiles,z,23);
 }
 }
 clearVariables();
 for (z = 0; z < observedActivity.m.size(); z++)
 {
 if((observedActivity.m[z][0] >= "1900") &&
(observedActivity.m[z][1] <= "2000"))
 {
 countStatistics(observedActivity,z,19);
 }
 else if((observedActivity.m[z][0] >= "2000") &&
(observedActivity.m[z][1] <= "2100"))
 {
 countStatistics(observedActivity,z,20);
 }
 else if((observedActivity.m[z][0] >= "2100") &&
(observedActivity.m[z][1] <= "2200"))
 {
 countStatistics(observedActivity,z,21);
 }
 else if((observedActivity.m[z][0] >= "2200") &&
(observedActivity.m[z][1] <= "2300"))
 {
 countStatistics(observedActivity,z,22);
 }
 else if((observedActivity.m[z][0] >= "2300") &&
(observedActivity.m[z][1] <= "2400"))
 {
 countStatistics(observedActivity,z,23);
 }
 }
 clearVariables();
 }
 else if (type == "DTIME")
 {
 //Activity already counted above

 102

 }
 else if (type == "DHOUR")
 {
 //Activity already counted above
 }

}

//ACTIVITYHANDLER CLASS
ACTIVITYHANDLER::ACTIVITYHANDLER()
{
 //Observed activity logs
 observedLogA = "observedLogA.csv";
 observedLogB = "observedLogB.csv";
 observedLogS = "observedLogS.csv";
 observedLogM = "observedLogM.csv";

 //Initialize the vector that holds all monitor activity
 vector<string> twoDim(10);
 vector<vector<string> > vec(20, twoDim);
 v = vec;
}

//Initialize observed activity
void ACTIVITYHANDLER::getObservedActivity(char * file)
{
 //Local variables
 int i = 0, j = 0;

 //Each row of data
 string line;

 //Open the infile
 ifstream in(file, ios::in);

 //Make sure that it was opened correctly
 if (!in.is_open())
 {
 cout << "FAILURE" << endl;
 exit(1);
 }

 //Read in each line of the infile and populate the vector
 while(getline(in,line,','))
 {

 103

 if (i == 8)
 {
 v[j][i] = line;
 i++;
 getline(in,line);
 v[j][i] = line;
 i++;
 }
 if (i == 10)
 {
 i = 0;
 j++;
 getline(in,line,',');
 v[j][i] = line;
 i++;
 }
 else
 {
 v[j][i] = line;
 i++;
 }
 }
 in.close();
}

//Write observed activity to logs
void ACTIVITYHANDLER::writeObservedActivityLog(string user, int count)
{
 char * file;

 //Determine log
 if (user == "A")
 file = observedLogA;
 else if (user == "B")
 file = observedLogB;
 else if (user == "S")
 file = observedLogS;
 else if (user == "M")
 file = observedLogM;

 //Open the outfile
 ofstream out(file, ios::app);

 //Make sure that it was opened correctly
 if (!out.is_open())
 {

 104

 cout << "FAILURE" << endl;
 exit(1);
 }

 for (int k = 0; k < v[count].size(); k++)
 {
 out << v[count][k];
 if (k != 9)
 out << ",";
 }
 out << endl;

 out.close();
}

void ACTIVITYHANDLER::createObservedActivityLogs()
{
 //Initialize the vector that holds userA observed activity log
 vector<string> aTwoDim(10);
 vector<vector<string> > avec(20, aTwoDim);
 cout << "Creating User A Observed Activity Log...................";
 a = avec;
 cout << "OK" << endl;

 //Initialize the vector that holds userB observed activity log
 vector<string> bTwoDim(10);
 vector<vector<string> > bvec(20, bTwoDim);
 cout << "Creating User B Observed Activity Log...................";
 b = bvec;
 cout << "OK" << endl;

 //Initialize the vector that holds userS observed activity log
 vector<string> sTwoDim(10);
 vector<vector<string> > svec(20, sTwoDim);
 cout << "Creating User S Observed Activity Log...................";
 s = svec;
 cout << "OK" << endl;

 //Initialize the vector that holds userM observed activity log
 vector<string> mTwoDim(10);
 vector<vector<string> > mvec(20, mTwoDim);
 cout << "Creating User M Observed Activity Log...................";
 m = mvec;
 cout << "OK" << endl;
}

 105

//Output all monitor activity to the screen
void ACTIVITYHANDLER::printMonitorVector()
{
 for (int z = 0; z < v.size(); z++)
 {
 for (int k = 0; k < v[z].size(); k++)
 {
 cout << v[z][k] << " ";
 }
 cout << endl;
 }
}

void ACTIVITYHANDLER::clearObservedLogs()
{
 //Clear User Observed Activity Logs
 ofstream clearA("observedLogA.csv", ios::trunc);
 ofstream clearB("observedLogB.csv", ios::trunc);
 ofstream clearS("observedLogS.csv", ios::trunc);
 ofstream clearM("observedLogM.csv", ios::trunc);

 //Close files
 clearA.close();
 clearB.close();
 clearS.close();
 clearM.close();
}

//Output all user observed log activity to the screen
void ACTIVITYHANDLER::printObservedLogs()
{
 for (int z = 0; z < a.size(); z++)
 {
 for (int k = 0; k < a[z].size(); k++)
 {
 cout << a[z][k] << " ";
 }
 cout << endl;
 }

 for (z = 0; z < b.size(); z++)
 {
 for (int k = 0; k < b[z].size(); k++)
 {
 cout << b[z][k] << " ";
 }

 106

 cout << endl;
 }

 for (z = 0; z < s.size(); z++)
 {
 for (int k = 0; k < s[z].size(); k++)
 {
 cout << s[z][k] << " ";
 }
 cout << endl;
 }

 for (z = 0; z < m.size(); z++)
 {
 for (int k = 0; k < m[z].size(); k++)
 {
 cout << m[z][k] << " ";
 }
 cout << endl;
 }
}

//Return monitor activity
vector<vector<string> > ACTIVITYHANDLER::getMonitorActivity()
{
 return v;
}

//PROFILEHANDLER CLASS
PROFILEHANDLER::PROFILEHANDLER()
{
 //Initialize the vector that holds userA normal profile data
 vector<string> aTwoDim(10);
 vector<vector<string> > avec(20, aTwoDim);
 a = avec;
 //Initialize the vector that holds userB normal profile data
 vector<string> bTwoDim(10);
 vector<vector<string> > bvec(20, bTwoDim);
 b = bvec;
 //Initialize the vector that holds userS normal profile data
 vector<string> sTwoDim(10);
 vector<vector<string> > svec(20, sTwoDim);
 s = svec;
 //Initialize the vector that holds userM normal profile data
 vector<string> mTwoDim(10);
 vector<vector<string> > mvec(20, mTwoDim);

 107

 m = mvec;
}

void PROFILEHANDLER::loadUserProfile(char * file)
{
 //Temporary container for normal profile data
 vector<string> tTwoDim(10);
 vector<vector<string> > v(20, tTwoDim);

 //Local variables
 int i = 0, j = 0;

 //Each row of data
 string line;

 //Open the infile
 ifstream in(file, ios::in);

 //Make sure that it was opened correctly
 if (!in.is_open())
 {
 cout << "FAILURE" << endl;
 exit(1);
 }

 //Read in each line of the infile and populate the vector
 while(getline(in,line,','))
 {

 if (i == 8)
 {
 v[j][i] = line;
 i++;
 getline(in,line);
 v[j][i] = line;
 i++;
 }
 if (i == 10)
 {
 i = 0;
 j++;
 getline(in,line,',');
 v[j][i] = line;
 i++;
 }
 else

 108

 {
 v[j][i] = line;
 i++;
 }
 }

 //Determine user
 if (file == "profileLogA.csv")
 a = v;
 else if(file == "profileLogB.csv")
 b = v;
 else if(file == "profileLogS.csv")
 s = v;
 else
 m = v;

 cout << "OK" << endl;
 in.close();
}

//Output all user normal profile log activity to the screen
void PROFILEHANDLER::printNormalProfileLogs()
{
 for (int z = 0; z < a.size(); z++)
 {
 for (int k = 0; k < a[z].size(); k++)
 {
 cout << a[z][k] << " ";
 }
 cout << endl;
 }

 for (z = 0; z < b.size(); z++)
 {
 for (int k = 0; k < b[z].size(); k++)
 {
 cout << b[z][k] << " ";
 }
 cout << endl;
 }

 for (z = 0; z < s.size(); z++)
 {
 for (int k = 0; k < s[z].size(); k++)
 {
 cout << s[z][k] << " ";

 109

 }
 cout << endl;
 }

 for (z = 0; z < m.size(); z++)
 {
 for (int k = 0; k < m[z].size(); k++)
 {
 cout << m[z][k] << " ";
 }
 cout << endl;
 }
}

int main()
{
 //Create instance of BIDE class
 BIDE run = BIDE();

 run.printHeader();

 cout << "Intrusion Detection Engine Starting Up..................OK" << endl;
 ACTIVITYHANDLER observedActivity = run.startActivityHandler();

 PROFILEHANDLER userProfiles = run.startProfileHandler();

 //observedActivity.printMonitorVector();

 //userProfiles.printNormalProfileLogs();

 observedActivity.clearObservedLogs();

 run.startSimulation(observedActivity,userProfiles);

 //observedActivity.printObservedLogs();

 //run.printStatistics();

 return 0;
}

 110

REFERENCES

[1] Anderson, Frivold, Valdes, “Next-Generation Intrusion Detection Expert

System (NIDES) A Summary”, In
http://www.sdl.sri.com/papers/4/s/4sri/4sri.pdf, Computer Science Laboratory,
SRI International, May 1995.

[2] Barbara, Couto, Jajodia, Popyack, Wu, "ADAM: Detecting Intrusions by Data

Mining", In Proceedings of the 2001 IEEE Workshop on Information
Assurance and Security, West Point NY, June 2001, pp. 11-16.

[3] Denning, "An Intrusion-Detection Model", In Proceedings of the IEEE

Computer Society Symposium on Research in Security and Privacy, April
1986, pp. 118-132.

[4] General Accounting Office, “Information Security: Computer Attacks at

Department of Defense Pose Increasing Risks”, In GAO/AIMD-96-84, May
1996.

[5] Ghosh, Wanken, Charron, "Detecting Anomalous and Unknown Intrusions

Against Programs", In Proceedings of the 1998 Computer Security
Applications Conference, IEEE CS Press, Los Alamitos CA, 1998, pp. 259–
267.

[6] Goregaoker, “A Method for Detecting Intrusions on Encrypted Traffic”, In

Technical Report TR-010703, Computer Science Department, Florida State
University, 2001.

[7] Hallivuori, Kousa, “Denial of Service Attack against SSH Key Exchange”,

Telecommunications Software and Multimedia Laboratory, Helsinki University
of Technology, November 2001.

[8] Ilgun, “USTAT: A Real-Time Intrusion Detection System for UNIX”, In

Proceedings of the IEEE Symposium on Research in Security and Privacy,
Oakland CA, May 1993, pp. 16-28.

[9] Jones, Li, “Temporal Signatures for Intrusion Detection”, In Proceedings of the

17th
 Annual Computer Security Applications Conference, New Orleans LA,

December 2001, pp. 252-261.

 111

http://www.sdl.sri.com/papers/4/s/4sri/4sri.pdf

[10]Kohout, Yasinsac, McDuffie, "Activity Profiles for Intrusion Detection", In
Proceedings of the North American Fuzzy Information Processing Society-
Fuzzy Logic and the Internet (NAFIPS-FLINT 2002), New Orleans LA, June
2002.

[11]Lane, Brodley, "Temporal Sequence Learning and Data Reduction for

Anomaly Detection", In Proceedings of ACM Transactions on Information and
System Security, Vol. 2, No. 3, August 1999, pp 295-331.

[12]Lee, Stolfo, "A Framework for Constructing Features and Models for Intrusion

Detection Systems", In Proceedings of ACM Transactions on Information and
System Security, November 2000, pp. 227-261.

[13]Lee, Stolfo, “Data Mining Approaches for Intrusion Detection”, In Proceedings

of the 7th USENIX Security Symposium”, San Antonio TX, January 1998, pp.
26-29.

[14]Lindqvist, Porras, “Detecting Computer and Network Misuse Through the

Production-Based Expert System Toolset (P-BEST)”, In Proceedings of the
1999 IEEE Symposium on Security and Privacy, Oakland CA, May 1999, pp.
146-161.

[15]Lowe, “Some New Attacks upon Security Protocols'', In Proceedings of the

9th IEEE Computer Security Foundations Workshop, March 1996, pp. 162-
169.

[16]Lunt, Jagannathan, “A Prototype Real-Time Intrusion-Detection Expert

System”, In Proceedings of the IEEE Symposium on Security and Privacy,
IEEE Computer Society, Oakland CA, April 1988, pp. 59-66.

[17]Melendez, “The Monitor and Principals”, In Technical Report TR-010701,

Computer Science Department, Florida State University, 2001.

[18]Patel, “Knowledge Base for Intrusion Detection System”, In Technical Report

TR-011203, Computer Science Department, Florida State University, 2001.

[19]Porras, Neumann, “EMERALD: Event Monitoring Enabling Responses to

Anomalous Live Disturbances”, In Proceedings of the National Information
Systems Security Conference, October 1997, pp. 353-365.

[20]Presidential Commission on Critical Infrastructure Protection. Commission

Report “Critical Foundations: Protecting America’s Infrastructures”, In
http://www.pccip.gov/report_index.html, October 1997.

[21]Syverson, “A Taxonomy of Replay Attacks”, In Proceedings of the 7th

Computer Security Foundations Workshop, June 1994, pp. 131-136.

 112

http://www.pccip.gov/report_index.html

[22]Vigna, Kemmerer, “NetStat: A Network-Based Intrusion Detection Approach”,

In Proceedings of the 14th Annual Information Theory: 50 Years of Discovery
Computer Security Application Conference, Scottsdale AZ, December 1998,
pp. 25-34.

[23]Wagner, Schneier, “Analysis of SSL 3.0 Protocol”, In Proceedings of the 2nd

USENIX Workshop on Electronic Commerce, Oakland CA, November 1996,
pp. 29-40.

[24]Woo, Lam, “Authentication for Distributed Systems”, In Computer, Vol. 25 No.

1, January 1992, pp. 39-52.

[25]Yasinsac, "An Environment for Security Protocol Intrusion Detection", In The

Journal of Computer Security, Vol. 10, No. 1-2, January 2002, pp. 177-188.

[26]Ye, Chen, “An Anomaly Detection Technique Based on a Chi-Square

Statistic for Detecting Intrusions into Information Systems”, In Proceedings of
Quality and Reliability Engineering International, Vol. 17, No. 2, 2001, pp. 105
- 112.

 113

BIOGRAPHICAL SKETCH

Tysen Leckie is a graduate student at Florida State University working on the
Master of Science in Computer Science degree. He is a member of the ACM,

IEEE and IEEE Computer Society.

 114

