
THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

A DYNAMIC IMAGE QUERY SYSTEM USING PHP

BY

YU WANG

A project submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

Major Professor: Dr. Xiuwen Liu

Degree Awarded

Fall Semester, 2002

 2

The members of the committee approve the Master’s Project of Yu Wang defended on
December 2, 2002

Dr. Xiuwen Liu
Major Professor

Dr. Hilbert Levitz

Committee Member

Dr. David Whalley
Committee Member

 3

ACKNOWLEDGEMENTS

I thank my major professor, Dr. Xiuwen Liu, for his continuous guidance, inspiration,

and enthusiasm. His timely suggestions and encouragement made the completion of this

project possible. Also, I would like to thank Dr. Levitz and Dr. Whalley for their time and

directions.

My whole heart thanks go to my former supervisor Dr. Wayne Sprague who has shown

me the true professionalism, given me career guidance, constantly encouraged me in

overcoming difficulties, and offered me unselfish supports. I would also like to thank my

friends in the system group and the department. They made my graduate study here at

FSU most memorable.

This work is dedicated to my parents and my wife for their great care and love.

 4

TABLE OF CONTENTS

Page

ABSTRACT.. 5

1. INTRODUCTION .. 6

2. BRIEF OVERVIEW OF SPECTRAL HISTOGRAMS... 7

3. DYNAMIC ONLINE IMAGE QUERY SYSTEM.. 9

 3.1 SYSTEM DESIGN PRINCIPLE.. 9

 3.2 SERVER SIDE IMPLEMENTATION .. 9

 3.3 PROGRAMMING LANGUAGE SELECTION.. 10

4. IMPLEMENTATION DETAILS OF THE QUERY SYSTEM................................... 11

 4.1 SYSTEM STRUCTURE .. 11

4.1.1 Main Page – index.php .. 13

4.1.2 Image submission selection system ... 14

4.1.3 Image uploading system .. 15

4.1.4 Image submission from collections ... 22

4.1.5 Results display ... 23

 4.2 SYSTEM SECURITY .. 26

4.2.1 Email notification... 26

4.2.2 Access control .. 26

4.2.3 File system automatic clean ... 27

4.2.4 File uploading format and size checking ... 27

4.2.5 Display page range checking ... 28

 4.3 SYSTEM SCALABILITY ... 28

 4.4 DESIGN CHALLENGES... 29

 4.5 SYSTEM INSTALLATION... 32

 4.6 PROJECT WORK LOADS.. 32

5. CONCLUSION... 32

REFERENCES ... 33

BIBLIOGRAPHY... 34

 5

ABSTRACT

As the digital images and videos become an important source of information,

effective ways of browsing large collections become a necessary tool for many

applications. Based on a spectral histogram representation, a preliminary program was

developed at Florida State University to query an image dataset based on perceptual

similarity, which, however, does not provide a user-friendly interface.

The focus of this project is to provide an effective interface for the preliminary query

program. The project was designed to provide such a dynamic image query system that

consists of a number of online interfaces for researchers and users to interact with the

image query system. These interfaces allow users to view and submit images to the image

query system online either from collections or from their own images. The dynamic

image query system then computes the image’s representation and displays pages of

matched images with the corresponding distance.

The dynamic image query system is written in PHP4 language. It adopts the server

side implementation. All the interfaces and pages are generated dynamically.

The project is implemented with security in mind. Carefully designed security

features made the system very robust.

 6

1. INTRODUCTION

With the advances of digital sensor technologies and ever increasing popularity of the

world wide web, digital images and videos become increasingly available and an

important source of information in many application areas. As browsing large collections

is inefficient and labor intensive, content-based image and video retrieval becomes an

important tool for many applications. A typical content-based image retrieval system

consists of two main modules. The first module is the representation of images and

videos, where essentially a perceptually meaningful distance between images needs to be

defined. The second module is the visualization of the results. As a typical dataset

consists of thousands of images, visualizing and navigating the results becomes an

important part of the system.

 In this project, we used spectral histograms to represent images and distance between

images is defined as the chi-square distance (or other distance measure) between the

corresponding spectral histograms. A preliminary image query system based on the

spectral histograms representation was built. Tests have shown the approach using the

Spectral Histograms is effective. However, without an efficient visualization module, it is

difficult to evaluate the results effectively, and thus difficult to carry the research further

in the most effective way.

The focus of this project is to develop a visualization module for the preliminary

content-based image retrieval system. The system can be accessed through the Internet

using traditional web browsers any where in the world. It allows users to submit query

images from displayed collections or from uploading their own images. When the image

query system receives the submitted image, it computes the image’s spectral histograms

and returns users matched images with the corresponding distances. Side by side display

makes it easy to do comparisons and evaluate the accuracy of the result. Thus, users can

make more constructive suggestions to the research.

In order to make the system dynamic, a server side implementation has been used and

PHP, a high performance programming language that was designed specifically for this

purpose, was selected to build the system.

The system is designed with future expansion in mind. Current implementation has

two independent modules: Color Images and B&W Texture Images. Each module uses its

 7

own program files and configuration files and runs independently. If in the future we

want to add new image systems, we can simply copy a whole set of modules and change

or add several configuration files and put a link into main page. At this point the new

system is ready to run.

Accuracy of the query results and response time are two main factors to evaluate the

performance of the dynamic image query system. The system was designed to have high

performance to reflect the advancement of the research.

This report is organized as follows. Chapter 2 gives a very brief overview of spectral

histograms. Chapter 3 summarizes the design principles and design choices while

Chapter 4 provides implementation details and features of the system; screenshots are

provided for illustration. Chapter 5 concludes the report with some suggestions on further

improvement of the system.

2. BRIEF OVERVIEW OF SPECTRAL HISTOGRAMS

Based on psychophysical and neurophysiological data, it is widely accepted that the

human visual system transforms a retinal image into a local spatial/frequency

representation. Such a representation can be simulated by a bank of filters with tuned

frequencies and orientations and finds applications in many areas. For texture modeling,

filter responses themselves are not adequate. Based on psychophysical studies,

histograms of filtered images are shown to be effective to characterize textures. This

motivates a generic representation of images, which we call spectral histograms. A

spectral histogram consists of marginal responses of a chosen set of filters, or histograms.

As colors are responses at different wavelengths, visual patterns are responses of

different filters. Analogous to color spectrum, we name the visual feature spectral

histograms. Extensive studies have demonstrated that the spectral histogram exhibits

desirable properties that are consistent with human visual perception. For example, it

exhibits a nonlinearity which matches the psychophysical data on texture perception very

well.

 8

The following table shows four texture images along with its spectral histogram of

eight filters. Each texture has a unique spectral histogram. Similar textures tend to have

similar spectral histograms as shown in these examples.

Texture Image Spectral Histogram

Table 2.1

The spectral histogram provides a way to overcome some of the problems in texture

modeling, classification, and segmentation. Besides texture modeling, spectral histograms

have also been used for face recognition and 3D object recognition. The universality of

the spectral histograms on various kinds of images makes it a good candidate as a

 9

representation in a content-based image retrieval. Please refer to [1] and references

therein for further details.

3. DYNAMIC ONLINE IMAGE QUERY SYSTEM

3.1 System design principle

The main purpose of the dynamic online image query system is to provide a

“window” to allow other researchers and users to “view” our research and to evaluate the

Spectral Histograms representation in real time. We took advantage of the Internet and

the World Wide Web to design and set up a web environment to access the image query

system. Through the web environment, researchers and users can view and submit query

images to the image query system and see the results computed and returned by the query

system immediately. By interacting with the image query system in real time, other

researchers and users can evaluate the performance of the system. It also provides useful

feedback to help us to further improve the representation based on spectral histograms.

Since the online dynamic image query system is an important window to the world

for our research, our design principle is to make the query system a professional

appearance, a quick response, and a friendly environment with easy to use interfaces and

highly secure mechanisms.

In order to fulfill the principle design, I have worked with my major professor, Dr.

Liu, closely and have made a careful selection of the system structure and programming

language.

3.2 Server side implementation

In the modern implementation of dynamic web programming (DHTML), there are

two major methods: server side implementation and client side implementation. Server

side implementation or programming is the kind of implementation that runs on the

remote web server side, does web processing on the server side and outputs the web

pages to the client’s web browser. Client side implementation is to put dynamic contents

 10

in the client side. For example, we can use JavaScript and Flash to make some dynamic

effects.

This online image query system mainly used the server side implementation. The

benefits of the server side implementation are:

• On the server we can make our programs read through large amount of data

without the client having to download them first.

• Only the output is sent to the client. This means we can make our program

invisible from the end-user and prevent them from looking at the source code to

get some sensitive data.

• We can make multiple programming languages work together to take advantage

of each programming language.

The drawback is that once the output is sent to the end user it cannot do anything

more. That is where client side implementation kicks in. Many designers combine the

two to maximize the dynamic effects. Since our purpose is to dynamically query the

image query system, we did not exploit client side implementation features heavily. We

only created several Flash buttons and embedded them into some interfaces to give the

system some better interfaces.

3.3 Programming language selection

ASP (Active Server Page), PHP (PHP Hypertext Preprocessor), and JSP (Java Server

Page) are three main programming languages used by current server side implementation.

ASP runs mainly on a Windows platform while PHP and JSP can run on any platform.

For JSP the web server must have JVM (Java Virtual Machine) and Tomcat installed; for

PHP the Zend engine must be installed.

We selected PHP as the programming language to build the system for the reasons

listed below:

• PHP is incorporated with Apache so it is multi-threaded, which means the

program loaded into memory can be shared by multiple requests to decrease the

use of system resources.

 11

• PHP is created to manage images and web applications. PHP has rich build in

functions that make image manipulation much easier. For instance, the

getimagesize() function in PHP can be used to check if a file is an image file. If it

is an image file, the function can also determine what type of image file it is. This

gives us great convenience when we check user uploaded image file types.

• PHP has already been implemented in our department’s system. This is one of the

important factors that made us decide to use PHP. We do not have to put extra

work load on our system group and they will take care of upgrades and security

fixes.

• PHP is a scripting language. There is no compilation required. That means we do

not have to worry about our program’s platform compatibility issue.

• PHP is based on Perl and adopted C program style. Programmers who have C

program experience or training can learn it quickly. PHP also has Perl’s flexibility

in string manipulation.

• PHP has wide user bases. People from all over the world help each other. I ran

into several technical problems and was able to solve them through exchanging

ideas with others.

• Finally, database support is one of the PHP’s most significant features. With PHP,

creating web pages with dynamic content from a database is remarkably simple.

Although at this time we do not have a database implemented in this system, PHP

gives us the possibility to move in that direction when we need it in the future.

4. IMPLEMENTATION DETAILS OF THE QUERY SYSTEM

4.1 System structure

The dynamic image query system consists of a number of web interfaces. Each web

interface’s action depends on the input (action) sent from another interface. Each

interface is also capable of passing its data to another interface. The logical relationship

among these interfaces and actions are as shown in Figure 4.1:

Figure 4.1 Diagram of interface

Main Web
Interface

Error

File
format/size

check

Users select
image category

Upload
image

interface

Display
error

Full images
display

Upload user’s imag

R
e
-
u
p
l
o
a
d

Users select upload
own image or from

collections
12

s and actions relationships

Choose
Shape,
Color,
Speed
factor,
View
options

From collections

OK

e

S

Pass image and
factors to
QUERY IMAGE
program

 Ic

Submit
Click icon
to get full
image view
elect image
and set
factors

on view

Full view

Icon images
display

Full image

 13

Details of implementations of interfaces and actions are described as follows.

4.1.1 Main Page – index.php

The index.php script displays the main page which greets visitors as shown in Figure

4.2. It provides users two major image query systems: Color Image query system and

B&W Texture Image query system.

Figure 4.2 Main Interface

By clicking the flash links, the user enters the corresponding image query system.

Since Color Image and B&W Texture Image have similar system implementations and

the Color Image system is slightly more complicated than B&W Text Image system, we

will use the color system to do the illustration.

The main page also displays link to FSU Vision Group’s main page. It shows the

visitor’s IP address and host name for greeting and for tracking.

 14

4.1.2 Image submission selection system

The imgformcolor.php and imgformbw.php scripts give users two choices for

submitting images to the image query system: upload their own images or submit from

displayed collections (Figure 4.3)

Click the UPLOAD IMAGES link will enter the image file uploading system. If user

does not want to upload their own images, they can choose images from displayed

collections.

Figure 4.3 Image submission selection interface

There are hundreds of images in the query system’s database. In order for users to

comfortably view the collections, we display them in multiple pages. In each page, we

display a limited number of images. The limit can be set by changing the value in the

configuration file.

 15

In considering that users may have slow network connection and we also want to

display as many images per screen as possible, the system displays icon images in its

collections. If users want to submit an image, they can click the icon image to view a full

size version image.

4.1.3 Image uploading system

If users want to submit their own images, the Flash button link (Figure 4.3) will bring

them to an interface (Figure 4.4) to allow them to upload their images (procolorfile.php

and probwfile.php).

Figure 4.4 File uploading interface

The two scripts provide users interfaces to upload their images. Each interface

displays the image system identification, Color or B&W Texture, and specifies what kind

of image type the system will accept and the size limitation (Figure 4.4).

 16

User can browse their file system to choose the image they want to submit (Figure

4.5). If the user clicks the “send image” button without supplying any file name, an error

message will be displayed (Figure 4.6).

Figure 4.5 File browsing window

 17

Figure 4.6 File not supplied error

For security reason, the image size checking is performed to prevent malicious users

from uploading big files to our file system (Figure 4.7). The file format is then checked.

Only gif and jpeg files are accepted. If a user tries to upload different format files, an

error message will be displayed. Due to the PHP’s built in function we are able to

distinguish the file format accurately even a user changes an .exe file name to .gif or .jpg.

The secret is that the function reads the file’s signature only and does not care about the

file name and its extension (Figure 4.8)

 18

Figure 4.7 File too big error

Figure 4.8 File format unknown error

 19

If a user submits an image file with a format other than gif or jpg, for example, bmp

format, the system also displays error message and asks the user to upload a correct

image file (Figure 4.9).

Figure 4.9 File format not supported error

While users must submit valid image format with a correct image size, users need to

decide to select Shape and Color factors, which tells the image query program to do

shape matching or color matching or both.

A user also needs to choose either icon view or full view. Icon view displays the

results in icon image first and then the user can click each icon image to view a full sized

image. This will yield display results fast. Full view, otherwise, displays the full sized

image directly but the user will see fewer number of images per page and loading may

take a little longer depends on the user’s network connection speed.

 20

A user then needs to choose a speed factor. The speed factor is used to tell the query

system to run slower (better quality) or faster (worse quality) and provides a compromise

between speed and quality. The allowed range is 1 – 20 with the 1 indicating the slowest

speed and 20 the fastest speed. If a user’s input value is out of the range, then an error

message will be displayed (Figure 4.10).

Figure 4.10 Speed factor out of range error

After the user submits the correct format and sized image, the system does a self-

processing call to upload the image to a designated directory. For security reason, the

image is renamed. The system then converts the image from either gif or jpeg into ppm

(color) or pgm (B&W) format and passes it to the image query program. The image query

program computes the image’s spectral histograms, retrieves images from database, and

displays the results (Figure 4.11 – 4.12) through the script procolorfile.php or

probwfile.php. If users select icon view, they can click any icon image to view its full

sized image displayed by upcolordisp.php or upbwdisp.php.

 21

Figure 4.11 Query results in icon view

Figure 4.12 Full size image display from icon view with uploaded image renamed

 22

4.1.4 Image submission from collections

A user can select images from displayed collections by calling imgformcolor.php or

imgformbw.php. Since the system has many collections, icon images and multiple page

displays have been designed for better performance and for viewing convenience. The

user clicks one of the icons shown in Figure 4.3. A full size image will be shown

(displayed by imgcoloraction.php or imgbwaction.php). If users decide to submit their

own image, as before they need to choose if they want to view result in icon view or full

view, check or uncheck the Shape flag and Color flag. They also need to supply a speed

factor ranging from 1 to 20 (Figure 4.13). A range check is performed here too as shown

in Figure 4.9.

Figure 4.13 Submit image from collections

 23

4.1.5 Results display

After the image is submitted to the query image program, the imgcolormultact.php or

imgbwmultact.php accepts the inputs and calls the convert program to convert the gif or

jpeg image into ppm or pgm format for Color image system or B&W Texture image

system, respectively. The ppm or pgm image is then passed to the image query program,

query_image. The query_image program computes the supplied image, compares against

its database, and displays the matched images and matching distances (Figure 4.14).

Figure 4.14 Results of submission from collection

If users choose icon view, all results are displayed in icon images first by

imgcolormultact.php or imgbwmultact.php. The user can click any of the icons to view a

full size image view (figure 4.15) displayed by the imgcolordisp.php or imgbwdisp.php

script.

 24

Figure 4.15 Result display from icon view and from collection submission

If users choose full view, all full size images will be displayed in the result page (Figure

4.16).

 25

Figure 4.16 Result in full view of submission from collections

The results may contain too many images to display in a single page. Thus, multiple

pages are needed to display the results. The system is designed to be able to handle this

kind of situation. As shown in Figure 4.16, the total results are 6800. We can display 48

full size images per page and we therefore have 142 pages. The system displays page

links at the bottom of the page to allow user to navigate the results (see Figure 4.17).

 26

Figure 4.17 Page navigation links

4.2 System security

As the amount of hacking and denial of service (DOS) has been increased

dramatically in recent years, system security becomes an important factor that must be

considered into the system design and implementation. We have built several security

mechanisms in the query system.

4.2.1 Email notification

When a user uploads an image file to the system, the system sends an email message

which contains the user’s basic information such as IP and hostname to the image

system’s administrator. The administrator can then check the uploaded file.

4.2.2 Access control

 27

If we believe a certain user or host is not friendly, we can put their IP into the

blacklist file. Each time when a visitor tries to access the image uploading page, the

blacklist is checked. If the visitor’s IP is found in the blacklist, the visitor will not be able

to access the file uploading system.

Figure 4.18 Access denied from checking the blacklist

4.2.3 File system automatic clean

Periodically, a Perl script, cleanfile.pl, runs to check the file uploading directory. If

the number of files or the total size in the directory exceeds a predefined limit, the script

can clean the directory. We put this clean program in a scheduled job (cron job) which

runs every night. This will keep the file system clean without adding work load to the

image query system’s administrator.

4.2.4 File uploading format and size checking

The file uploading system has another security feature: file format and size checking.

If a user attempts to upload a non-gif or a non-jpeg file or an over sized file, the system

will give an error message as shown in Figure 4.6 – 4.10 to ask the user to submit again.

 28

The built-in PHP function does this checking automatically and all attempts to fool the

program are supposed to fail.

4.2.5 Display page range checking

The query results are displayed in a multiple page format. The user can navigate the

result pages by clicking the page numbers listed at the bottom of each result page. If a

user tries to go beyond the page number by manually changing the page number

parameter submitted to the system, a page out of range error will be displayed (see Figure

4.19). This prevents malicious visitors from hijacking the system.

Figure 4.19 Page out of range error

4.3 System scalability

In our design, we also considered the possibilities of the future system growth. The

system is designed to become a module to accommodate different image systems.

 29

Currently, the environment has two distinguished systems: Color and B&W texture. Later

if we need to add more image systems, such as a face system and a medical records

system, we can simply copy the module and modify some configuration parameters and

put a link in the main page. The system will then be up and running.

The system uses a self designed multi-page display system. It can handle display

images numbers from small to very big without affecting performance.

All the scripts share common header files and footer files. This makes changing style

and header messages much easier.

All configuration information and settings are in the conf directory. The path

configuration file defines file path, image path, and program path. The size configuration

file defines the file upload size limit and image numbers to display per page. Script reads

those configuration files and dynamically assigns them to the variables in the script. Thus

the entire system has unified configuration information, which minimizes the possibility

of using inconsistent configuration information among scripts.

4.4 Design challenges

Three major challenges I have faced throughout the building of the project are the

following:

1. How to seamlessly call the query_image program (C program) from PHP,

pass inputs to the query program, and get results from it.

The PHP has a safe mode for handling security related issues. If a script

needs to do system calls, like system() or exec(), the safe mode only allows

script to call programs allocated in a pre-specified directory. So in order to

run the system, we need to get permission from the system administrator of

the Department of Computer Science and ask them to put the convert and

query_image into a designated directory that is specified in the php.ini file.

Passing inputs to the query_image is as easy as passing arguments to a

program in the command line. However, to get results from the program

 30

took me a while and much effort to realize. First, I attempted to have the

value by catching the query_image program’s return value. But that failed.

Next, I tried to let the query_image write results into a file and the dynamic

image query system read the file and display the results. When all the

systems were finished and loaded into web server for testing, no results were

displayed. By doing extensive study, I found that for security reason a called

program cannot write any files to the system even though the program is set

to world executable and the program and directory is owned by me. Our

PHP programs call convert and query_image and both of the two C

programs attempts write files to the system.

I did many experiments and found the script can catch the stdout output of

the called C program. Dr. Liu modified the query_image program to output

results via stdout. This critical issue finally got resolved.

2. How to combine displaying file uploading form, checking error condition,

processing file uploading, calling image query program, and displaying

multiple results into one PHP processing program.

In the file uploading system, the image query system needs to display a file

uploading form to the user to allow them to browse their file system. After

the user clicks the “send image” button, the image query system needs to

check if the user uploaded a file or not at all, if the file size is within the

limit, and if the file is a gif or jpeg image. After a series of checks, the

uploaded image needs to be saved into a designated directory. The

query_image program is then called to process the uploaded image. Results

are displayed either in icon view choice or in full view choice. When the

user navigates the results, the system retrieves results within the page range

and displays them.

Initially I tried to use multiple scripts to accomplish this goal. However,

there are technical difficulties that made this approach almost impossible.

 31

For example, if the “send image” button calls a different PHP script, then

how can we display an error message and the re-upload form in a single

page? What script should the re-upload “send image” button call? What if

the second time the uploaded file is still in error state? Do we call a third

script to handle this? If so, we will end up with a chain of scripts.

After studying the problem, I used a technology called self-processing to

handle this complicated situation. Self-processing means we use one script

to handle all of the tasks. This, however, brings another technical challenge

that we need to resolve. Since all actions are processed by one script, we

need to make sure those actions do not mix up and confuse the script. We

defined three actions: action 0, action 1, and action 2. Upon calling the file

uploading script first time, the action is set to 0 so the script displays the

uploading form. After the user clicks the “send image” button, the action

becomes 1. The script does error checking and displays the uploading form

if necessary or calls the query_image and passes the image to it and displays

the results in multi-page format. When user navigates the results by clicking

the page numbers in the result page, action 2 is assigned and the script

displays the corresponding results and does not call the query_image again

to get the results.

3. Form submission variations.

This dynamic image query system handles and displays lots of images and

forms. Besides using traditional submit button, we used three other formed

“buttons”. When the user chooses icon view, we want to let them click the

icon to show the corresponding full sized image. If we put a submit button

next to each icon, it would ruin the page layout and takes up additional

display spaces. We used the icon image itself as the submit button to give us

neat looking pages and display more images. We also designed Flash

buttons to enrich our webpage’s dynamic effects. The last form button we

 32

used is the text “button”. The text page number listed in the results display

page invokes a form action and passes parameters to the called scripts.

4.5 System Installation

Since the PHP is a scripting language, no compilation is needed. One simply copies

those scripts to a designated directory. There is an INSTALL file that tells one how to

modify configurations and settings.

We need to ask system to copy the query_image and convert program into a system

defined directory and set them world executable.

4.6 Project work loads

Thirteen PHP scripts, five configuration files, two common files, one admin file, 17

pictures and flash buttons have been written and created for this project. Total PHP codes

are over 3200 lines.

5. CONCLUSION

The dynamic online image query system provides a convenient way to interact with

the image query system in real time. Visitors can visit the system at any time without pre-

notification to the query system researchers. The whole system is designed to show the

high performance of the image query system. The system has reached the expectations of

the initial designs in both the presentation and performance. There are also areas for

which we can improve the system:

• Use a database instead of files to take advantages of the PHP’s database

manipulation abilities.

• Provide an access controlled GUI interface for the administrator to set

configurations, such as file path and image size.

• Design non-flash alternative interfaces for users who do not have a flash player

installed.

 33

REFERENCES

[1] Xiuwen Liu and DeLiang Wang (2002) A spectral histogram model for texton

modeling and texture discrimination. Vision Research, vol. 42, pp. 2617-263.

[2] Xiuwen Liu and DeLiang Wang (2001) Appearance-Based Recognition Using

Perceptual Components. International Joint Conference on Neural Networks, vol. 3, pp.

1943-1948.

[3] Rasmus Lerdorf and Kevin Tatroe (2002) Programming PHP. Creating dynamic web

pages. O’Reilly & Associates, Inc.

[4] PHP manuals online http://www.zend.net/.

[5] Hugh Williams and David Lane (2002) Web Database Applications with PHP &

MySQL. O’Reilly & Associates, Inc.

