

The Florida State University

 Department of Computer Science

Analysis Of SET Protocol in CPAL-ES

 By

Shanmuga Raja Ramaswamy

 Major Professor: Dr. Alec F. Yasinsac

Project submitted to the Department of Computer Science

 in partial fulfillment of the requirements for the

 MASTER OF SCIENCE DEGREE (M.S.)

 2

The members of the committee approve the Master’s Project of Shanmuga Raja

Ramaswamy defended on

 Dr. Alec F. Yasinsac

 Major Professor

 Dr. Ladislav J. Kohout

 Committee Member

 Dr. Ernest L. McDuffie

 Committee Member

 3

 ACKNOWLEDGEMENTS

 I would like to thank my major professor, Dr. Alec F. Yasinsac, for his

mentorship in the project work. His timely suggestions, ideas, guidance and

encouragement made the completion of this project possible. Also, I would like to thank

the faculty, staff & many people in the Department Of Computer Science who helped me

in my graduate studies. I would also like to thank Philip Kovoor and Prative Chend for

their help, support and encouragement.

 This work will be dedicated to my symbol of inspiration and source of moral

strength: Mom and Dad.

 4

1.INTRODUCTION 5

2. BACKGROUND 8
2.1 CPAL-ES 8

2.2 SYNTAX OF CPAL: 9

2.3 SPECIFICATION OF A PROTOCOL IN CPAL: 10

2.4 THE VERIFICATION CONDITION GENERATOR: 12

2.5 VERIFYING PROTOCOLS USING CPAL-ES: 13

2.6 ANALYSIS OF THE TLS FAMILY OF PROTOCOLS: 15

3.SECURE ELECTRONIC TRANSACTION – SET 17
3.1 HISTORY 17

3.2 SCOPE OF THE SET PROTOCOL: 18

3.3 PAYMENT SYSTEM PARTICIPANTS: 20

3.4 USE OF CRYPTOGRAPHY IN SET 21

3.5 CERTIFICATE ISSUANCE 27

3.6 PAYMENT PROCESSING IN SET 29

4.CPAL SPECIFICATION OF THE SET PROTOCOL 34
4.1 ASSUMPTIONS 34

4.2 CPAL SPECIFICATION FOR SET PROTOCOL 34

4.3 CARDHOLDER-MERCHANT MESSAGES 37

4.4 ASSERTIONS 40

4.5 PROVING THE VERIFICATION CONDITION 42

5. CONCLUSION 44

BIBLIOGRAPHY: 45

APPENDIX A: CPAL SPECIFICATION OF THE SET PROTOCOL 47

 5

1.INTRODUCTION1.INTRODUCTION1.INTRODUCTION1.INTRODUCTION

Internet has been one of the most dominant technologies in the field of computers

in the last decade. The domain of internet usage ranges from sharing information,

enabling communication between people, sharing resources, remote education,

distributed computation, online shopping, etc. The advent of Internet led to the beginning

of a whole new set of technologies. One such technology that redefined the manner in

which business was conducted is Electronic Commerce (E-Commerce). [WBEC]

E-Commerce or E-Business is the method of conducting business and transactions

through networks and computers. E-Commerce involves buying and selling of goods,

business-to-business exchange of data and trading with the participating entities in

remote locations. Indeed, this was a very convenient way of doing business and soon

business through E-Commerce was a norm. But this convenience also brought along with

it some serious security concerns. [RS01]

All the transactions carried out through E-Commerce are monetary and it involves

the flow of money in some form from one remote place to another through networks.

The most common way in which money is transferred in E-Commerce is using a credit

card. Since the networks are inherently insecure it is possible for the malicious intruder to

break into a network and gain access to secure data (Ex. reading credit card number).

This requires securing communication channels by encrypting data, identifying and

authorizing participating entities, limiting access to resources and by implementing

security protocols to provide the needed security. [SEC01]

 6

Transport Layer Security (TLS) [TLS], Secure Sockets Layer (SSL) [SSL] and

Secure Electronic Transaction (SET) [SETBD] are some of the popular security

protocols. Transport Layer Security (TLS) is a protocol that ensures privacy between

communicating applications and their users on the Internet. Secure Socket Layer (SSL) is

a protocol developed by Netscape for transmitting private documents or data via the

Internet. SET (Secure Electronic Transaction) is a system for ensuring the security of

financial transactions on the Internet [SETBD].

The security protocols are a collection of algorithms that facilitate the secure

communication of data. Immaterial of the environment these protocols are used, the users

of these protocols depend highly on the correctness of these protocols. Any minor flaw in

these protocols could compromise the security of the data which these security protocols

are intended to protect. [SP01] , [SS99]

Due to the critical nature of data, documents or applications these security

protocols protect, it is doubly important to prove the correctness of these protocols.

Formal methods have been used in a wide variety of environments to verify whether

complex systems accomplish their intended functionality. One area where formal

methods received wide attention is in the area of security protocol verification[SS99].

Cryptographic Protocol Analysis Language – Evaluation System (CPALES) is a

framework developed by Dr.Alec Yasinsac that uses Weakest Precondition Reasoning in

the evaluation of protocols and has been shown to facilitate the detection of flaws and

inconsistencies in the security protocols (Ex.TLS). In this project we analyze the Secure

Electronic Protocol (SET) using the CPAL-ES. [YAS96], [YAS00], [YW93]

 7

 The paper will be organized as follows. Chapter 2 will give an overview of the

CPAL-ES environment with an example. Also the work of Justin Childs in verifying the

TLS protocol using CPAL-ES will be discussed. Chapter 3 will give an overview of the

SET protocol, which includes its history, architectural design and detailed design.

Chapter 4 will discuss the analysis of SET protocol using the CPAL-ES environment.

Chapter 5 will give the conclusion and the knowledge gained due to this work.

 8

2. BACKGROUND2. BACKGROUND2. BACKGROUND2. BACKGROUND

The analysis of SET was done in a framework known as the Cryptographic

Protocol Analysis Language - Evaluation System (CPAL-ES). [YW99]

2.1 CPAL2.1 CPAL2.1 CPAL2.1 CPAL----ES ES ES ES

CPAL-ES is an automated system that allows the analyst to formally define the

Cryptographic Protocol in a way that adds structure and simplicity to the protocol

evaluation process. Security protocols are expressed in the CPAL language, which

includes the assumptions, principal’s actions and goals of the protocols. The system

returns a Verification Condition (VC) for the given protocol. This verification

condition is then simplified in an attempt to make the predicate easier to understand.

The success of the security protocols depends on the truth or falsity of the VC.

The evaluation of protocols in CPAL-ES is a three-step process:

1.Encode the protocol actions in CPAL

2.Translate the specification into a Verification Condition and

3.Prove the Verification Condition. Using weakest precondition reasoning to

evaluate the protocols, the analyzer tries to find flaws or inconsistencies in the

protocol. At the end of the analysis, even if no flaws are found, a more thorough

analysis of the protocols are made, which increases the credibility of these protocols.

[AYMR01]

 9

2.2 Syntax of CPAL:2.2 Syntax of CPAL:2.2 Syntax of CPAL:2.2 Syntax of CPAL:

Assignment Statement:

 Messages are non-destructively assigned in CPAL [YAS96]. The source value is

copied into the memory location of the destination identifier. The statement A: X: =Y;

means that the value addressed by name Y is stored in the value of the address

referenced by name X in A’s address space. [YAS96]

Generation of nonce’s:

 A principal at any point in the protocol conversion process can generate a nonce

by assigning the value “new” to the variable. Ex. A: Na: = new;

Concatenation of values:

 Concatenated values produced during the cryptographic protocol runs are

represented using a structure called a compound value. Ex. A: X: = <A, B, C>; In

CPAL, provisions are there to retrieve concatenated messages into individual

message components. “DOT” operator is used for representing individual components

within the compound value. Ex. <A, B, C>.3 will mean C. Similarly, X.3 also means

C, which represents the third value in the above-concatenated statement.

Encryption/Decryption operators:

 In CPAL an encrypted value is enclosed in square brackets. It is then prefixed by

the operator “e” and suffixed with the key with which the value is encrypted. Ex.[x]k.

 10

The decryption operator is similar to the encryption operator except that it is replaced

by “d” instead of “e”. Ex. d[e[x]k]k (decrypting the message x which was encrypted

using key k).

If Statement:

 Traditional psuedocode languages do not carry decision operators along with

them. CPAL provides an “if” structure and the “then” and “else” structure as

alternatives to be executed. By providing these operators CPAL facilitates the

representation of change in the flow of control of the protocol steps.

Ex. C: if (RRPID_RES == RRPID) then

 {assert (RRPID == RRPID_RES);}

 else {assert(error);}

 The secure send, receive, assert and assume operators are discussed in the next

section. [YAS96]

2.3 Specification of a protocol in CPAL:2.3 Specification of a protocol in CPAL:2.3 Specification of a protocol in CPAL:2.3 Specification of a protocol in CPAL:

This is the step in the evaluation process in which the analyst manually converts

the Cryptographic Protocol (CP) in consideration into the Cryptographic Protocol

Analysis Language (CPAL). CPAL provides sufficient expressiveness to enable

protocol analysts to specify complex CPs and to facilitate automated analysis of

CPAL coded protocols through formal methods. CPAL is similar to the Standard

Notation (SN) pseudocode previously used for specifying CPs. But, CPAL provides

great enhancements to SN to help the analyst to model the data in a protocol.

 11

The predominant difference between CPAL and SN is the identification of each

protocol action (sending, receiving, encryption, decryption etc.) by preceding them

with their principals. In CPAL, data is organized into specific address spaces that

each participating entity can see or have access to. A dot notation is used to identify

the address space where the value represented by the identifier resides, Ex. value A.k

resides in principal A’s address space. SN suffers with this shortcoming because it

uses global address space and so the origin of the value cannot be traced easily.

In CPAL, the analyst expressing the protocol also includes explicit receipt of

messages and also encryption and decryption of messages. This allows the analyst to

easily understand whether a value was encrypted or merely forwarded as an encrypted

value. The action of sending an encrypted value from one principal to another

principal is shown in both SN and CPAL.

SN: CPAL:

 A � B {msg} k A: => B (e [msg] k);

 B: � (msg’);

 B: msg: = d [msg’] k;

In the case of SN, only the send and encryption operations are explicit. The receipt,

decryption and name binding are implicit. In the case of CPAL send, receive, encrypt,

 12

decrypt and name binding are explicit which helps in the better understanding of the

protocols.

Protocol goals and assumptions cannot be expressed in SN. The goals and

assumptions relate to the comparative value of data elements before, during and after

protocol session. Often they are provided separately in some narrative form. In

CPAL, it is possible to encode the goals and assumptions of the principals into the

specification, expressed as predicates that the specifier ‘assumes’ or ‘asserts’ to be

true. Assumptions are encoded at the beginning of the protocol specification and

assertions can be specified at any point in the protocol. A detailed description of

CPAL is given in [YAS96].

2.4 The Verification Condition Generator:2.4 The Verification Condition Generator:2.4 The Verification Condition Generator:2.4 The Verification Condition Generator:

 The purpose of encoding a protocol is to allow the creation of its formal

definition. In CPAL-ES, this definition is known as Verification Condition (VC).

Assigning each CPAL statement with a weakest precondition definition produces the

VC. The weakest precondition technique has three components: the state prior

to the execution of the program statement, the program statement itself and a goal that

is to be true after the statement executes. Preconditions are formed from protocol

assumptions, assertions and actions. The final VC takes the form of a logical

predicate that can be simplified to TRUE if a given protocol correctly executes.

[YAS96]

 13

Weakest preconditions are a relatively simple and effective way of formally

defining the protocol statements. Most of the CPs are as short as the simple computer

programs. Sometimes, CPs can be quite large ex. SSL, TLS, SET. TLS protocol has

been analyzed by Justin Childs using the CPAL-ES environment [JUS00], [JUS01].

2.5 Verifying Protocols Using CPAL2.5 Verifying Protocols Using CPAL2.5 Verifying Protocols Using CPAL2.5 Verifying Protocols Using CPAL----ES:ES:ES:ES:

 An example is presented to illustrate CPAL-ES. The CPAL-ES evaluation of Woo

and Lam protocol is provided. Woo and Lam protocol offers a two-way

authentication and is a three party protocol that requires five transmissions to

complete authentication.

CPAL-ES of this protocol provides three components during this evaluation

1. Protocol specification listing.

2. The verification condition derived from the protocol statements before

simplification is performed.

3. The simplified verification condition for the protocol.

The listing below is taken directly from the CPAL-ES system [YAS96] .

X: assume ((S.Kbs == B.Kbs));

X: assume ((S.Kas == A.Kas));

X: => A (X.B);

A: <-(A.B);

X: => B (X.B);

B: <-(B.B);

A: => B (A.A);

B: <-(B.A);

B: => A (B.Nb);

 14

A: <-(A.Nb);

A: => B (e [<A.A, A.B, A.Nb>] A.Kas);

B: <-(B.tickA);

B: => S (e [<B.A, B.B, B.Nb, B.tickA>] B.Kbs);

S: <-(S.msg4);

S: (S.A, S.B, S.Nb, S.tickA): = d [S.msg4] S.Kbs;

S: S.A_B_Nb: = d [S.tickA] S.Kas;

S: assert ((S.A_B_Nb == <S.A, S.B, S.Nb>));

S: => B (e [<S.A, S.B, S.Nb>] S.Kbs);

B: <-(B.msg5);

B: B.A_B_Nb: = d [B.msg5] B.Kbs;

B: assert ((B.A_B_Nb == <B.A, B.B, B.Nb>));

*** End of Protocol ***

(TRUE and (B.Nb ==

d[e[d[d[e[<A.A,e[B.Nb]S.kas>]S.kbs]S.kbs.2]S.kas]S.kbs]S.kbs))

****** Simplified predicate follows.

TRUE

****** NO MORE PREDICATE

 Figure 1 CPAL version of Woo and Lam protocol

 The simplification of the initial verification condition removes all references to

variables, leaving the final verification condition to be TRUE.

 15

2.6 Analysis of the TLS family of protocols:2.6 Analysis of the TLS family of protocols:2.6 Analysis of the TLS family of protocols:2.6 Analysis of the TLS family of protocols:

 The Transport layer Security standard (TLS) is a refinement to the Secure Socket

Layer(SSL) developed by the Internet Engineering Task Force. The goal of the TLS

protocol is to provide privacy and data integrity between two communicating

applications.

 TLS protocol, like SSL, has provided a suite of protocols that could be agreed

upon by two communicating principals. This allowed different key systems, levels of

security and levels of authentication to be agreed upon by the two principals. In fact,

TLS has provided twenty-eight different cipher suite definitions. In TLS, a cipher

suite defines the key exchange method, a signature method, the authentication, the

encryption algorithm to be used and the hashing function used. This makes the

specifications complex in comparison to the older protocols.

Needham and Schroeder initiated cryptographic protocol analysis [NS78] in 1978.

For the next 20 years the analysis focussed on simple, serial protocols in a structured

and well-understood manner. During recent years, the advent of many new complex

protocols like SET, IKE, TLS and SSL made the early analysis methods difficult and

in some cases impossible. These complex protocols offer sub protocols that are

mutually agreed upon by participants in a protocol execution. Interactions between

the sub-protocols may allow the protocol to be subverted. Unfortunately, analyzing

sub-protocol interactions can lead to rapid increases in the cost of analysis as the

 16

number of possible interactions grows rapidly with the addition of sub-protocols

[JUS01].

Since the security protocols have been sequential in nature there were very few

tools to examine the sub-protocol interaction. Analysis tools had no reason to create

ways to model branching operations. The Cryptographic Protocol Analysis Language

Evaluation System (CPAL-ES) is based on a formal programming method, so a

branch operator was included from the outset. This inclusion allowed the tool to

represent and analyze protocols that include sub-protocols [JUS01].

One of the main problems with the security protocols is that they are difficult to

analyze and design securely with their large size. Justin Childs used CPAL-ES to

analyze sub-protocol interactions and illustrate the technique used to examine TLS

[JUS 00]. CPAL-ES becomes even more useful when interaction among sub-

protocols makes it even more difficult to keep track of effects of one subprotocol

upon another. The results of the extensive analysis and the specification methods used

to arrive at these results can b e found in [JUS00], [JUS01].

TLS was one of first complex modern protocol to be analyzed and verified using

CPAL-ES environment that gave the confidence to undertake the job of verifying

another modern complex protocol namely SET. A comprehensive analysis of the TLS

protocol using the CPALES can be found in [JUS00].

 17

3.Sec3.Sec3.Sec3.Secure Electronic Transaction ure Electronic Transaction ure Electronic Transaction ure Electronic Transaction –––– SET SET SET SET

3.1 History 3.1 History 3.1 History 3.1 History

 MasterCard and VISA developed SET in collaboration from leading technology

companies, which includes Microsoft, IBM, Netscape, SAIC, GTE, RSA, Terisa Systems

and VeriSign. On February 1st, 1996 these companies announced the single technical

standard for safeguarding the payment card purchases made over open networks. This

standard is called the SET Secure Electronic Transaction specification. SET specification

includes digital certificates, which is a way of verifying the actual identity of the parties

participating in the transaction. By using these sophisticated cryptographic techniques,

SET protocol, aims to make cyberspace a safer place for conducting business and thereby

increase consumer confidence in E-Commerce. [SETBD]

SET was developed to address these major requirements in the online shopping industry:

1 Provide confidentiality of information -- accomplished by the use of message

encryption

2 Ensure the integrity of all transmitted data – accomplished by the use of digital

signatures

3 Authenticate a cardholder meaning that he is the legitimate user of the branded

payment card – accomplished by the use of digital signatures and cardholder

certificates

 18

4 Authenticate a merchant to accept payment card transactions and assure his

relationship with an acquiring financial institution – accomplished by the use of

digital signatures and merchant certificates

5 Protect all legitimate parties involved in the transaction using the best security

practices

6 Facilitate interoperability among software and network providers – accomplished

by the use of specific protocols and message formats. [SETBD]

3.2 Scope of the SET protocol:3.2 Scope of the SET protocol:3.2 Scope of the SET protocol:3.2 Scope of the SET protocol:

The following are within the scope of the SET protocol

1. Application of cryptographic algorithms

Data Integrity, Confidentiality of Information, Cardholder account

authentication, merchant authentication and interoperability are some of

Certificate Authority

CardHolder

Merchant

Acquirer

Fig 2. Participants in a SET protocol & their Interactions

Electronic
Payment

 19

the features of the SET specification. These features are ensured through

the application of cryptographic algorithms

2. Certificate messages and object formats

Certificates strengthen authentication of the participating entities.

Certificate Authority could supply certificates that offer a high assurance

of personal identity.

3. Purchase messages and object formats

It checks the status of the processing of an order after the purchase the

response has been received. It also indicates the status of authorization,

capture and credit processing.

4. Authorization messages and object formats

Authorization messages are sent between the participating entities and the

payment gateway. It consists of a Request-Response pair.

5. Capture messages and object formats

Digitally signed Capture Request containing information about the

transaction is encrypted using a newly generated symmetric key and is

sent to the Payment Gateway which then approves the Request in its

Response message.

6. Message protocol between participants

Participants in the SET compliant application message transfer should

adhere to the protocol defined by the SET specification.

The following are outside the scope of the SET protocol

 20

1. Payments beyond the domain of payment cards

SET provides security for financial transactions carried through SET

compliant merchants, cards and participating entities. Security for other

forms of financial transactions is not supported by SET.

2. Screen formats of order entry forms as defined by each merchant.

Screen formats including the content, presentation and layout of order

entry forms are dependent on each merchant.

3. Protection for participating system

Security of data on cardholder, merchant, and payment gateway systems

including protection from viruses, Trojan horse programs, and hackers

[SETBD]

3.3 Payment System Participants:3.3 Payment System Participants:3.3 Payment System Participants:3.3 Payment System Participants:

 In SET the electronic processing begins with the cardholder. The set of

participants in a SET protocol are represented in Fig 2.

Cardholder: A cardholder uses a payment card that has been issued by the

Issuer. SET ensures that the cardholder’s interactions with the merchant and the

payment card information remain confidential.

Issuer: It is a financial institution. It establishes an account for the cardholder. It

also issues the payment card. The Issuer also guarantees payment for authorized

transactions using the payment card

 21

Merchant: The merchant offers goods or services in exchange for a payment. In

order to accept payment cards the merchant must have a relationship with an

Acquirer

Acquirer: A financial institution that establishes an account with a merchant and

process payment card authorizations and payments.

Payment Gateway: It is a device operated by an Acquirer or a designated third

party that processes merchant payment messages, including payment instructions

from cardholders.

Brand: Financial Institutions came up with payment card brands in order to

protect and advertise the brand. It creates an atmosphere conducive to establishing

and enforcing rules for use and acceptance of their respective payment cards. It

also provides a network to interconnect the financial institutions.

Third Parties: Issuers and Acquirers sometime assign processing of payment

card transactions to these third-party processors. [SETBD]

3.4 Use of Cryptography in SET3.4 Use of Cryptography in SET3.4 Use of Cryptography in SET3.4 Use of Cryptography in SET

 SET relies heavily on cryptography to ensure message integrity, confidentiality

and validity. Messages are initially encrypted using a randomly generated symmetric

 22

encryption key. The next step is to encrypt this key using the message receiver’s public

key. This combination of messages is referred to as the “digital envelope” and this is sent

along with the encrypted message to the receiver (Fig 5). Upon receiving the digital

envelope, the recipient decrypts it using its private key to obtain the randomly generated

symmetric key and then uses the symmetric key to unlock the original message (Fig 6).

Some of the basic concepts in the field of cryptography are explained below.

Symmetric Key Cryptography: It uses the same key to encrypt and decrypt the

messages. The sender and the receiver of the message must share the same key. This

requires trust between the parties who share the messages and share the key. Example of

this kind of cryptography is the Data Encryption Standard (DES), used by financial

institutions to share the personal identification numbers (PINs). This type of

cryptography is also known as Secret-key Cryptography. The main drawback of this

concept is that it is impractical for exchanging messages with a large group of previously

unknown individuals over a public network. Fig 3 represents Symmetric Key

Cryptography.

Public-Key Cryptography: In this approach, each participant creates two unique keys.

One is called the “public key” which is published to all and the other is called the

“private key” which the participant keeps it secret from others. Also, one key is used for

encrypting the data while the other key is used for decrypting the data. Moreover, the two

Entity1 message

K

Entity2

Decodes message
using key K Fig 3. Symmetric Key Cryptography

 23

keys are mathematically related and so the data encrypted with either key can only be

decrypted using the other key. The user distributes the public key. Because of the

mathematical relationship between the two keys, the user and others who receive the

public key can be assured that the data encrypted by the public key and sent to the user

can only be decrypted by the user when he uses the private key. An example of the

public-key cryptography is the well-known RSA algorithm (named after the inventors

Rivest, Shamir and Adleman). This kind of cryptography is well suited in situations

where the user has to share his key to many unknown participants. Also, it is 10 to 10,000

more computation intensive than Symmetric Key Cryptography. Fig 4 illustrates

Asymmetric Key Cryptography.

Digital Signatures: A digital signature provides a way to associate the message with the

sender. It helps in ensuring the authenticity and integrity of the message. When combined

with message digests, encrypting messages using private keys allows users to digitally

sign the messages. A message digest is a unique value generated for that particular

message. Passing the message through a one-way cryptographic function generates a

message digest. This message digest is then encrypted using the sender’s private key and

is appended to the original message resulting in the digital signature of the message. The

recipient of the digital signature can be sure that the message really came from the sender

because changing even one character in the message changes the message digest in an

unpredictable way.

 24

Digital Certificates: Before two-entities start using public key cryptography, each has to

make sure that the other entity is authenticated. It is done by the use of a trusted third-

party to authenticate that the public-key belongs to the intended person. The third-party in

this case is called the Certificate Authority (CA). Initially the participant who wishes to

be authenticated will have to prove his identity to the CA. Once the participant proves his

identity, the CA creates a message containing the participant’s name and its public key.

The CA digitally signs this message known as the certificate.

The summary of cryptographic activities (encryption/decryption) carried out

during the message transfer is explained below. Assume the transaction is between

participants A and B. Participant A wish to sign some sensitive data and send it as an

encrypted message to participant B.

Encryption: (A’s side)

Step I: ‘A’ runs the message through a one-way cryptographic function to

generate the message digest. The value of the message digest is unique. This

Entity1
11010111010111
01101111010001

10011101001110
10011010111101

Entity2

M Encode with Public Key E2

Decode with Private Key E2

Fig 4. Asymmetric Key Cryptography

 25

message digest is then encrypted with A’s private signature key to produce the

digital signature.

Step II: A creates a random symmetric key. The message, digital signature and a

copy of A’s certificate (which contains his public key) are encrypted using the

newly created random symmetric key.

Step III: A encrypts its symmetric key using B’s public key, which it should have

obtained prior to the beginning of the transaction. The encrypted key known as

the digital envelope, along with the encrypted message will be sent to B.[SETBD]

At the end of the encryption process, A sends the following message

components to B: Symmetrically encrypted message, signature and certificate and

the digital envelope. This is illustrated in Figure 5 in the next page.

Decryption: (B’s side)

Step I: On receiving the message from A, B will decrypt the digital envelope

using its private key to retrieve the random symmetric key.

Step II: Using the retrieved random symmetric key, B will then decrypt the

encrypted message to retrieve the message, digital signature and the certificate

and runs the message through the same one-way cryptographic function to

generate the message digest for the message to be compared later.

Step III: A’s digital signature is decrypted using its public key obtained from its

certificate. Thus, B retrieves the original message digest. B compares this

message digest with the message digest calculated in Step II. If they are equal,

 26

then it means that the message is not tampered and its integrity and validity are

proved. Moreover, through the use of digital signatures and certificates B also

gets to know that the message indeed came from A. In case of message digest

mismatch, B will come to know that somewhere the message was tampered. B

can now notify A that it is ending the transaction. The entire decryption process is

illustrated in Figure 6.

Step I

Customer

 Step II

 Step III

Finally

message d Message Digest d
Digital
Signature

message

 +
Digital Signature

 +
 Certificate

Random Symmetric Key Encrypted
Message

Random Symmetric Key Merchants public key Digital
Envelope

Digital
Envelope

Encrypted
Message + Merchant

Figure 5. Encryption process in A’s
d

 27

3.5 Certificate Issuance3.5 Certificate Issuance3.5 Certificate Issuance3.5 Certificate Issuance

 Each participating entity in the SET protocol is given a certificate that function as

electronic representation of the participating entity. Certificates are given to cardholders,

merchants, payment gateway, acquirers and issuers.

Cardholder Certificate:

As stated earlier, cardholder certificates function as electronic representation of

the payment card. A financial institution digitally signs the cardholder certificates.

This makes it impossible for a third party to alter it. Encoding the account

information and a secret value through a one-way hashing function generates the

cardholder certificate. This certificate is passed to merchants with purchase

Figure 6.Decryption process in B’s

Digital
Envelope

Merchants private key Random Symmetric Key

Encrypted
Message Random Symmetric Key

message

 +
Digital Signature

 +
 Certificate

Message
Digest

Digital Signature d A’s Public key Message Digest

Compare

 28

requests and payment instructions. The merchant can be assured that the financial

institution responsible for issuing the card has validated the account number of the

cardholder.

Merchant Certificate:

This certificate is an electronic representation that the merchant has a relationship

with a financial institution allowing it to accept the payment card brand. Since the

financial institution digitally signs them a third party cannot alter them. These

certificates are just an assurance that the merchants hold a valid agreement with

an Acquirer. A merchant has at least one pair of certificates to participate in the

SET environment. Basically, it has a pair of certificates for each payment card

brand it accepts.

Payment Gateway Certificate:

Acquirers who process authorization and capture messages obtain payment

gateway certificate. Payment gateway certificates are issued to the Acquirer by

the payment brand.

Acquirer Certificate:

In order to accept and process certificate requests from merchants over public and

private networks, an acquirer must have a certificate. Acquirers receive their

certificates from their payment card brand.

Issuer Certificate:

Similar to the Acquirer, the Issuer possesses a certificate to accept and process

certificate requests from cardholders over public and private networks. Also, they

 29

receive the certificate from the payment card brand. If the Acquirer or the Issuer

chose to have the payment card brand process the certificate requests, they will

not require certificates because they are not processing SET messages. [SETBD]

3.6 Payment Processing in SET3.6 Payment Processing in SET3.6 Payment Processing in SET3.6 Payment Processing in SET

 The payment processing in SET involves the transfer of messages between the

participating entities. The following messages are transferred in any SET payment

transaction: Cardholder Registration, Merchant Registration, Purchase Request, payment

Authorization and Payment Capture. At any point during the SET payment flow the

following enquiry messages can be transferred, although they are optional: Certificate

status inquiry, Purchase inquiry, Authorization reversal, Capture Reversal, Credit

Reversal and Error Message. The messages that are transferred during SET payment flow

are described in brief, in the following paragraphs. [SETBD].

Cardholder Registration:

 Cardholders must register with a Certificate Authority (CA) before they can send

SET messages to merchants. The entire registration process goes through the following

steps.

 30

1. The cardholder computer initiates the registration process by sending the

INITIATE REQUEST message to CA. The CA sends a response to the request

by sending the INITIATE RESPONSE to the cardholder.

2. The cardholder receives the response from the CA and requests the

registration form by sending the REGISTRATION FORM REQUEST to the CA.

The CA processes the request and sends the registration form through the

REGISTRATION FORM message.

3. The cardholder then sends the CARDHOLDER CERTIFICATE REQUEST

message to the CA. The CA upon receiving the request message will process

that and eventually respond by sending the cardholder’s certificate by sending

the CARDHOLDER CERTIFICTAE

4. The above sequence of sending and receiving of messages ends when the

cardholder receives his certificate. At any point during the transfer of

messages if something is amiss, either one of the participating entities will

send the ERROR message and the transaction will be aborted.

The transfer of many messages characterizes SET protocol. Each message has a specific

format and giving the format of these messages is tedious. They are given in the SET

Specification: Formal Protocol Definition [SETFPD]. The overall flow of these messages

will be explained in detail.

Merchant registration:

 Like cardholders, the merchants must register with a Certificate Authority (CA)

before they can receive SET payment messages from cardholders or process SET

 31

transactions through a payment gateway. The registration process starts when the

merchant software requests a copy of the CA’s key exchange certificate and the

appropriate registration form. The entire merchant registration flow of messages is

summarized below.

1. Initially, the merchant computer requests the registration form from the CA by

sending the INITIATE REQUEST. The CA on receiving the request from the

merchant processes the request and sends the registration form through the

REGISTRATION FORM message.

2. On receiving the registration from message the merchant requests the

certificate by sending the MERCHANT CERTIFICATE REQUEST message to

the CA. The CA processes the request and generates the certificates and

passes to the merchant through the MERCHANT CERTIFICATE messages.

Purchase Request:

 The SET protocol is invoked after the cardholder has completed browsing,

selection and ordering. Before the flow begins the cardholder will be presented with a

completed order form and approved its contents. As is the norm, the cardholder initiates

the transfer of messages by sending the request. The purchase request flow of messages is

summarized below.

1. The cardholder computer sends INITIATE REQUEST to the merchant

computer. The merchant computer on receiving the request sends its

certificates through the INITIATE RESPONSE message.

 32

2. The cardholder after receiving the response from the merchant will then send

a PURCASE REQUEST message to the merchant computer. The merchant then

processes the request and then sends the PURCHASE RESPONSE message.

Payment Authorization:

 During the processing of an order from the cardholder, the merchant will have to

authorize the transaction. The merchant software generates and digitally signs an

authorization request, which includes the amount to be authorized. The payment

authorization is a one step process. Initially the merchant computer sends the

AUTHORIZATION REQUEST message to the payment gateway. The payment gateway

processes the authorization request and sends the AUTHORIZATION RESPONSE to the

merchant. The merchant then processes the response message to observe whether the

payment has been authorized.

Customer

Issuer Acquirer

Merchant
Begin Transaction

Merchant confirms Sale

Bank
Confirms
Payment

Merchant
Requests
Funds

Request Authorization

Authorizes payment

Fig 7 Merchant – Bank Transaction

 33

Payment Capture:

 After completing the processing of an order from the cardholder the merchant

requests the payment. There will be often be a significant time lapse between the message

requesting authorization and the message requesting payment. The flow contains only a

single capture request but the merchant software is permitted to batch multiple requests

into a single message. The merchant software generates and digitally signs a CAPTURE

REQUEST and sends it to the payment gateway. The payment gateway processes the

request and then sends the CAPTURE RESPONSE to the merchant.[SETBD]

Described above is a high level view of the exchange of messages between

different participating entities in a transaction adhering to the SET specification. The

message exchange is represented in Fig.7. These messages will be converted to CPAL

format and then passed on to the CPALES for obtaining the Verification Condition (VC).

The VC will then be analyzed to find the presence of flaws in the protocol. The

conversion of these messages to CPAL and the resulting analysis will be the discussion in

the next chapter.

 34

4.CPAL Specification of the SET protocol4.CPAL Specification of the SET protocol4.CPAL Specification of the SET protocol4.CPAL Specification of the SET protocol

 Our objective of this project is to gain a thorough understanding of a complex

security protocol and to verify the correctness of the protocol, which directly led us to

choosing SET as our main protocol of study. While implementing SET protocol in CPAL

many assumptions were made regarding the representation of the protocol to keep the

specification manageable and to eliminate details that did not have any effect upon the

security of the protocol, given our assumptions.

4.1 Assumptions4.1 Assumptions4.1 Assumptions4.1 Assumptions

 The intended use of SET protocol is in Electronic Shopping. It is assumed that

browsing and shopping, Merchant and Item Selection, Negotiation, Payment selection

and Delivery of goods is not supported by SET protocol. SET supports three phases’ in a

transaction a) payment authorization and transport b) confirmation and enquiry and c)

merchant reimbursement. To keep the project manageable, our project concentrates only

on payment authorization, transport and confirmation. The reason we leave enquiry and

merchant reimbursement is because they are special cases that do not occur in a normal

SET transaction.

 Only transactions that take place in Internet are considered. MOTO (Mail Order /

Telephone Order) transactions are not considered.

4.2 CPAL specification for SET protocol4.2 CPAL specification for SET protocol4.2 CPAL specification for SET protocol4.2 CPAL specification for SET protocol

 The transfer of messages in a transaction adhering to the SET protocol

specification is sequential. The first step in the verification of the SET protocol is to

 35

identify the flow of the messages between different entities and to convert them into

CPAL specification. The messages that are exchanged in a SET transaction can be

broadly classified into three major categories.

 The three major categories of SET messages along with the list of messages in

each category with their abbreviation in CPAL is listed below. The CPAL representation

of these messages can be found in Appendix A.

1. Certificate Management messages

�� Cardholder Certificate Initiation Request (CardCInitReq)

�� Cardholder Certificate Initiation Response (CardCInitRes)

�� Merchant-Acquirer Certificate Initiation (Me-AqCInitReq)

�� Merchant-Acquirer Initiation Response (Me-AqCInitRes)

�� Certificate Request Message from End-Entities (Cardholder, Merchant

or Payment Gateway) (CertReq)

�� Certificate Response Message from Certificate Authority (CertRes)

2. Cardholder-Merchant messages

�� Purchase Initialization Request (PinitReq)

�� Purchase Initialization Response (PinitRes)

�� Purchase Request (PReq) & Payment Response (PRes)

 36

3. Merchant-Payment Gateway messages

�� Authorization Request (AuthReq) & Authorization Response

(AuthRes)

�� Capture Request (CapReq) & Capture Response (CapRes)

�� Credit Request (CredReq) & Credit Response (CredRes)

In this chapter, for terseness, only Cardholder-Merchant messages will be discussed. The

format of these messages and the method in which these messages were converted to

CPAL and verified using CPALES will be explained. The entire CPAL specification of

the SET protocol is given in Appendix A. The overall transfer of messages between

Cardholder/Merchant and Merchant/Payment Gateway is illustrated in Figure 7.

 PInitReq

 PInitRes

 PReq AuthReq

 AuthRes

 PRes

 CapReq

 CapRes

Cardholder Merchant Acquirer Payment Gateway

 37

Legend: PinitReq/PInitRes � Payment Initialization Request/Response

 PReq/PRes � Payment Request/ Response

 AuthReq/AuthRes � Authorization Request/Authorization Response

 CapReq/CapRes � Capture Request/Response

Fig 7. Cardholder/Merchant and Merchant/Payment Gateway Message Transfer

4.3 Cardholder4.3 Cardholder4.3 Cardholder4.3 Cardholder----Merchant messages Merchant messages Merchant messages Merchant messages

 Two pairs of messages are transferred between the cardholder and the merchant

during this phase. They are the Payment Initialization Request/Response messages and

the Purchase Order Request/ Response messages. Another pair of messages called the

Inquiry Request/Response may be transferred but they are optional.

 The process of generating the Payment Initialization request message goes

through the following steps in the SET protocol.[SETPG]

1. Generate RRPID for matching the message and the matching response

message.

2. Populate language of the cardholder’s choice.

3. Generate LID_C, Local Identification for Cardholder

4. If Merchant has already supplied a LID_M in the SET initiation process then

copy it into the message.

5. Generate a fresh Chall_C

6. Populate BIN (first 6 digits of the cardholder’s account number)

7. Save RRPID, LID_C, LID_M (if available) and Chall_C

8. Invoke Compose Message Wrapper to send the message to Merchant.

 38

These steps are defined in the SET Protocol Specification: Programmers Guide[SETPG].

The PInitReq message will now have the following components in it.

PInitReq {RRPID, Language, LID_C, LID_M, Chall_C, BrandID, BIN}

All the messages transferred under the SET protocol are wrapped using a

MesageWrapper. The MessageWrrapper contains the Version of the SET protocol, the

revision, the date and the Software Identification number, in addition to the message to be

wrapped. So the MessageWrapper is applied to PinitReq and the Message wrapped

PinitReq has the following format.

MWPInitReq {Version, Revision, Date, PinitReq, SWIdent}

The CPAL version of the message wrapped Payment Initialization Request message is

given in Figure 4.

1. -- Action : Initiate Transaction
2. -- Message : Purchase Initialization Request (PInitReq)
3. -- Initiated by : Customer
4. C: RRPID: = new;
5. C: Chall_C: = new;
6. C: PInitReq: = <RRPID, Language, LID_C, LID_M, Chall_C, BrandID,BIN>
7. C: TransRec: = <RRPID, LID_C, LID_M, Chall_C>;
8. C: MWPinitReq: = <Version, Revison, Date, PInitReq, XID>;
9. C: => M (MWPInitReq);
10.M: <- (MWPInitReq);
11.M: (Version, Revision, PInitReq, XID): = MWPInitReq;
12.M: (RRPID, Language, LID_C, LID_M, Chall_C, BrandID, BIN): =

PinitReq;

Figure 8. CPAL specification of the PinitReq message

 The first three lines are comment lines allowed by the CPAL editor to help in the

better representation of the CPAL version of cryptographic protocols. Line numbers 4

 39

and 5 represents the generation of nonces for Request Response pair and Chall_C. In line

6, the message components are concatenated and stored in a single message called

PinitReq. As required by the SET specification, message components RRPID, LID_C,

LID_M and Chall_C are stored in the TransRec of C’s address space in Line 7. Since

PinitReq is a SET message, it is wrapped using the MessageWrapper in line 8 and stored

in MWPInitReq. This message is then sent from the Customer address space to the

merchant address space using the secure send (=>) operator in line 9. Line 10 represents

the receipt of the message MWPInitReq by the Merchant. Lines 11 and 12 represent the

breaking of the concatenated message into its individual message components in the

Merchant side. Thus, a single message called Payment Initialization request is transferred

from the Customer to Merchant in accordance to the SET protocol specification and the

corresponding CPAL specification the message is shown above.

 In a similar manner the entire SET protocol is converted into a single CPAL

specification and the resulting CPAL specification is then fed to the Cryptographic

Protocol Analysis Language-Evaluation System (CPALES) to produce the Verification

Condition.

 After generating syntax-error free CPAL specification, the formal semantics for

the protocol is automatically generated by CPAL-ES. The derivation is accomplished in

two steps:

 40

1. Each statement is applied to an initial predicate with value TRUE and

beginning from the last protocol statement the control is progressed in reverse

to the first statement.

2. Assumptions are applied wherever possible. The resulting predicate is scanned

for conditions allowing replacement. [YAS96]

4.4 Assertions4.4 Assertions4.4 Assertions4.4 Assertions

 CPAL extends the functionality of the pseudocode by allowing the participating

principals to encode protocol goals and assumptions directly into the specification that

the protocol analyst assumes or asserts to be true.

 Now we consider how a combination of assume and assert statements are used to

represent the assumptions and goals specified by the SET protocol. We consider the

transfer of Cardholder Certificate Initiation Request Message for illustration.(Appendix

A, 1st message). The SET protocol desires to assume that the Request/Response pair ID

(RRPID) for the cardholder may be the same before and after a message wrap. The

protocol analyst converting the SET protocol to CPAL specification can denote the

assume statement as

 C: assume (C.RRPID_MWREQ == C.RRPID_REQ);

 41

 The above statement means that in the Cardholder’s address space (C) it is

assumed that the Request/Response pair ID (RRPID) before message wrap (i.e.

C.RRPID_REQ) and the RRPID after message wrap (i.e. C.RRPID_MWREQ) are the same.

The next step in the SET protocol involves having to prove that the message

wrapped RRPID in the address space of Cardholder Certificate Authority is the same as

the RRPID that it received from the Cardholder’ CardCIntiReq message (Cardholder

Certificate Initiation Request). The goal of proving this equality of the Request/Response

Pair ID’s is represented in the SET specification as

 CCA: assert (RRPID_MW == RRPID_C);

 The above CPAL statement asserts the goal that in Cardholder Certificate

Authority’s (CCA) address space, the message wrapped RRPID and the RRPID received

from the cardholder are the same. Only after the assertion of this goal, the CCA separates

the individual message components sent by the Cardholder. If the goal of RRPID equality

is not met the CCA sends an error message back to the Cardholder and the transaction is

halted.

 The transfer of messages in SET protocol is a cycle of many request/response pairs.

So for the Cardholder Certificate Initiation Request (CardCInitReq) message sent from

Cardholder to CCA there will be a Cardholder Certificate Initiation Response

(CardCInitRes) message sent from the CCA to the Cardholder. Among many message

components that are part of this message one of them will be RRPID_RES

(Request/Response Pair ID _ Response). The goal of the SET protocol is that the initial

 42

RRPID in the Cardholder’s address space before the transfer of CardCInitReq and

RRPID_RES from the CardCInitRes message from the CCA should be equal. This goal is

asserted in the CPAL specification as

 C: if (RRPID_RES == RRPID) then
{assert(RRPID_RES == RRPID);}

 At the Cardholder’s address space, the equality for RRPID_RES and RRPID are

checked and if they are equal we can assert that the messages CardCInitReq and

CardCInitRes were not tampered while they were sent from their respective source to the

destination.

 By using a combination of assume and assert statements in the CPAL specification

we were able to effectively represents the assumptions and goals of the SET protocol and

also assert that the goals of the protocol for each message cycles.

4.5 Proving the Verification Condition4.5 Proving the Verification Condition4.5 Proving the Verification Condition4.5 Proving the Verification Condition

This is the last step in the CPAL-ES process of verifying cryptographic protocols.

The predicate resulting from the previous step is analyzed for repeated logical conditions

that can be reduced through routine simplification. More often, the analysis will be left

with more challenging predicate to prove, as was the case with the SET protocol. The

analysis of these complex predicates revealed the assumptions that are necessary in order

 43

to complete the proof. In the case of SET four assume statements were needed to prove

the final verification condition to be true.

 44

5. Conclusion5. Conclusion5. Conclusion5. Conclusion

 Initially the process of verifying cryptographic protocols using the powerful tool

called CPAL-ES was understood by proving relatively smaller and simpler cryptographic

protocols. SET protocol specification was then analyzed and understood. Initial steps in

the understanding of the protocol was the grouping of messages that are transferred

between different participating entities in the SET protocol based transaction and

identifying and understanding each individual message components. Later on, the

daunting task of converting the entire SET protocol specification into a single CPAL

document was accomplished. The CPAL specification was then analyzed using the

CPAL-ES environment, which gave the Verification Condition. Further analysis of the

Verification Condition resulted in the simplified predicate to be TRUE in the end

meaning that the SET protocol is verified. Since the SET protocol specification is

inherently large, we have made several assumptions during the conversion of the SET

specification into a CPAL document.

 By converting the SET protocol into a CPAL specification and verifying against

the CPAL-ES environment, we are able to assert the correctness of the SET protocol,

given our assumptions (4.1). Asserting the correctness of the SET protocol increases the

credibility of the protocol.

 45

Bibliography:Bibliography:Bibliography:Bibliography:

��[YAS96] Alec F Yasinsac, “A Formal Semantics for Evaluating Cryptographic

Protocols”, University of Virginia, January 1996.

��[YW99] Alec F Yasinsac and William A Wulf, “ A Framework for A

Cryptographic Protocol Evaluation Workbench”, Proceedings of the Fourth

IEEE International High Assurance Systems Engineering Symposium

(HASE99), Washington D.C., Nov. 1999

��[YW96] Alec F Yasinsac and William A Wulf, ”Using Weakest Precondition to

Evaluate Cryptographic Protocols”, Cambridge International Workshop on

Cryptographic Protocols, March 1996

��[SETPG] “SET Secure Electronic Transaction Specification: A Programmer’s

Guide”, http://www.setco.org/

��[SETBD] “SET Secure Electronic Transaction Specification: Business

Description”, http://www.setco.org/

��[JUS00] Justin Childs,” Evaluating the TLS Family of Protocols with Weakest

Precondition Reasoning", Dept. Of Computer Science, Florida State University,

June2000.

��[JUS01] Justin Childs and Alec Yasinsac, "Using Weakest Preconditions to

Evaluate the Transport Layer Security Protocol", The Sixth IEEE International

Symposium on High Assurance Systems Engineering, Boca Raton, FL, Oct 24-

26, 2001

 46

��[[[[YR01]]]] Alec F Yasinsac and Michael P Runy, “The Weakest Precondition

Protocol Analysis Environment”, TR 010502 Dept. Of Computer Science, Florida

State University, June2001

��[WEBC] Web Based Education Commission . The Power of the Internet for

Learning: Moving from Promise to Practice. http://www.ed.gov/pubs/edpubs.html

��[RS] The Future of E Commerce. INTERNET-DRAFT.
http://www.iboost.com/manage/business/trends/20024.htm

��[TLS] The TLS Protocol Version 1.0 RFC 2246

��[SSL] The SSL Protocol Version 3.0, Transport Layer Security Working Group,

Netscape Communications

��[SP01] Security On The Internet, The Froehlich/Kent Encyclopedia of

Telecommunications vol. 15. Marcel Dekker, New York, 1997, pp. 231-255.
http://www.cert.org/encyc_article/tocencyc.html

��[YAS00] Alec Yasinsac, “Dynamic Analysis Of The Security Protocols”,

Proceedings of the New Security Paradigms Workshop 2000, pp 77-87

��[YW93] Alec Yasinsac and William A Wulf, “Evaluating Cryptographic

Protocols”, Univ. Of Virginia, Technical Report #CS-93-53, August 1993

��[SS99] Strand Spaces: Proving Security Protocols, Appears in Journal Of

Computer Security, 7 (1999)

 47

Appendix A: CPAL specification of the SET protocolAppendix A: CPAL specification of the SET protocolAppendix A: CPAL specification of the SET protocolAppendix A: CPAL specification of the SET protocol

-- Certificate Management in SET
-- Action : Generate Certificate Initiation Request
-- Message : Cardholder Certificate Initiate Request
-- Initiated by : Cardholder

C: assume (C.RRPID_MWREQ == C.RRPID_REQ);
C: RRPID := new;
C: LID_E := new;
C: Chall_EE := new;
C: CardCInitReq := <RRPID,LID_EE, Chall_EE,BrandID>;
C: MWCardCInitReq :=
<Version,Revision,Date,RRPID,SWIdent,CardCInitReq,XID>;
C: => CCA(MWCardCInitReq);
CCA: <- (MWCardCInitReq);
CCA: (Version, Revision, Date, RRPID_MW, SWIdent, CardCInitReq, XID) :=
MWCardCInitReq;
CCA: (RRPID_C, LID_EE, Chall_EE, BrandID) := CardCInitReq;
CCA: TransRec := <RRPID, LID_EE, Chall_EE, BrandID>;
CCA: assert (RRPID_MW == RRPID_C);

-- Action : Generate Certificate Initiation Response
-- Message : Cardholder Certificate Initiate Response
-- Initiated by : Cardholder

CCA: LID_CA := new;
CCA: CardCInitResData := <TransRec, LID_CA,CAEThumb>;
CCA: CardCInitRes := S (CCA,CardCInitResData);
CCA: MWCardCInitRes :=
<Version,Revision,Date,RRPID_C,SWIdent,CardCInitRes,XID>;
CCA: => C (MWCardCInitRes);
C: <- (MWCardCInitRes);
C: (Version,Revision,Date,RRPID_RES,SWIdent,CardCInitRes,XID) :=
MWCardCInitRes;
C: (RRPID_C,LID_EE,Chall_EE,LID_CA,CAEThumb) := CardCInitRes;
C: assert(RRPID_MWREQ == RRPID_REQ);
CCA: TransRec := <RRPID_REQ,RequsetType,LID_EE,Chall_EE,LID_CA>;
CCA: Chall_CA := new;
CCA: RegTemplate := <RegFormID,BrandLogoURL,CardLogoURL,RegFieldSeq>;
CCA: ReferralData:= <Reason,ReferralURLseq>;
CCA: RegFormData := <RegTemplate,PolicyText>;
CCA: RegFormOrReferral := <RegFormData,ReferralData>;
CCA: RegFormResTBS :=
<RRPID,LID_EE,Chall_EE,LID_CA,Chall_CA,RequestType,RegFormORReferral>;
CCA: RegFormRes := S(CA,RegFormResTBS);
CCA: MWRegFormRes :=
<Version,Revision,Date,RRPID_RES,SWIdent,RegFormRes,XID>;
CCA: => C(MWRegFormRes);
C: <- (MWRegFormRes);
C: (Version,Revision,Date,RRPID_RES,SWIdent, RegFormRes,XID) :=
MWRegFormRes;
C:
(RRPID_R,LID_EE,Chall_EE,LID_CA,Chall_CA,RequestType,RegFormORReferral)
:= RegFormRes;
C: if(RRPID_RES == RRPID) then

 48

{assert(RRPID_RES == RRPID);}

-- Action : Merchant-Acquirer Certificate Initiation Processing
-- Message : Me-AqCInitReq
-- Initiated By : Merchant-Acquirer

M: RRPID := new;
M: LID_EE := new;
M: Chall_EE := new;
M: MerchantAcqId := <MerchantBIN,MerchantID>;
M: AcqId := <AcqBIN,AcqBusinessID>;
M: IDData := <MerchantAcqId,AcqId>;
M: Me_AqCInitReq :=
<RRPID,LID_EE,Chall_EE,RequestType,IDData,BrandID,Language>;
M: MWMe_AqCInitReq :=
<Version,Revision,Date,RRPID,SWIdent,Me_AqCInitReq,XID>;
M: => CCA(MWMe_AqCInitReq);
CCA: <- (MWMe_AqCInitReq);
CCA: (Version,Revision,Date,RRPID_MW,SWIdent,Me_AqCInitReq,XID) :=
MWMe_AqCInitReq;
CCA: (RRPID_MCA,LID_EE,Chall_EE,RequestType,IDData,BrandID,Language) :=
Me_AqCInitReq;
CCA: assert(RRPID_MW == RRPID_MCA);
CCA: TransRec := <RRPID,LID_EE,Chall_EE,BrandID,IDData,Language>;

-- Action : Response for the Me_AqCertificate Initiation message
-- from Merchant or Acquirer
-- Message: Me_AqCInitRes
-- Initiated by : Certificate Authority (CA)

CCA: Chall_CA := new;
CCA: Me_AqCInitResData :=
<RRPID,LID_EE,Chall_EE,Chall_CA,ReqType,RegFormOrReferral>;
CCA: Me_AqCInitRes := S(CA,Me_AqCInitResData);
CCA: MWMe_AqCInitRes :=
<Version,Revision,Date,RRPID,SWIdent,Me_AqCInitRes,XID>;
CCA: => M(MWMe_AqCInitRes);
M: <- (MWMe_AqCInitRes);
M: (Version,Revision,Date,RRPID_MW,SWIdent,Me_AqCInitRes,XID) :=
MWMe_AqCInitRes;
M: (RRPID_MCARes,LID_EE,Chall_EE,Chall_CA,ReqType,RegFormOrReferral) :=
Me_AqCInitRes;
M: if(RRPID_MCARes == RRPID) then {

assert(RRPID_MCARes == RRPID);
}

-- Action : Certificate request message from End Entities
-- (Cardholder,Merchant or Payment Gateway)
-- Message: CertReq
-- Initiated By : End Entities

EE: RRPID := new;
EE: PANData := <PAN,CardExpiry,CardSecret,EXNonce>;
EE: AcctData:= <AcctIdentification,EXNonce>;
EE: AcctInfo := <PANData,AcctData>;

 49

EE: CertReqData :=
<RRPID,LID_EE,Chall_EE,LID_CA,Chall_CA,ReqType,ReqDate,IDData,RegFormID
>;
EE: MWCertReqData := <Version,Revision,Date,CertReqData,XID>;
EE: => CCA(MWCertReqData);
CCA: <- (MWCertReqData);
CCA: (Version,Revision,Date,CertReqData,XID) := MWCertReqData;
CCA:
(RRPID,LID_EE,Chall_EE,LID_CA,Chall_CA,ReqType,ReqDate,IDData,RegFormID
) := CertReqData;

-- Action : Certificate Response Message from Cert Authority
-- Message: CertRes
-- Initiated By: Certificate Authority

CCA: CaMsg := <CardLogoURL,BrandLogoURL,Currrency,CardHolderMsg>;
CCA: CertStatus := <CertStatusCode,EEMessage,CaMsg>;
CCA: CertResData := <RRPID,LID_EE,Chall_EE,LID_CA,CertStatus>;
CCA: CertRes := <S(CA,CertResData),Enc(CAKeyData,CA,CertResData)>;
CCA: MWCertRes := <Version,Revision,Date,RRPID,SWIdent,CertRes,XID>;
CCA: => EE(MWCertRes);
EE: <- (MWCertRes);
EE: (Version,Revision,Date,RRPID_CRes,SWIdent,CertRes,XID) :=
MWCertRes;
EE: (RRPID_CRData,LID_EE,Chall_EE,LID_CA,CertStatus) := CertResData;
EE: if(RRPID == RRPID_CRes) then {

assert(RRPID == RRPID_CRes);
}

-- Action : Initiate Transaction
-- Message : Purchase Initialization Request (PInitReq)
-- Initiated by : Customer

C: Chall_C := new;
C: PInitReq := <RRPID,Language,LID_C,LID_M,Chall_C, BrandID, BIN>;
C: TransRec := <RRPID,LID_C,LID_M,Chall_C>;
C: MWPinitReq := <Version, Revison, Date, PInitReq, XID>;
C: => M(MWPInitReq);
M: <- (MWPInitReq);
M: (Version,Revision, PInitReq, XID) := MWPInitReq;
M: (RRPID,Language,LID_C,LID_M,Chall_C,BrandID,BIN) := PInitReq;

-- Action : Response to PInitReq
-- Message : Purchase Initialization Response (PInitRes)
-- Initiated by : Merchant

M: TransRec := <RRPID,Language,LID_C,LID_M,Chall_C,BrandID,BIN>;
-- Need to give an error message when LID_M is not matched
M: XID := new;
M: Chall_M := new;
M: PInitResData := <TransRec,XID,Chall_M,BrandCRLIdentifier,PEThumb>;
-- BrandCRLIdentifier and Cert_PE are to be processed in the
Certification
-- Generation Process
M: SPInitResData := S(M,PInitResData);
-- S(M,PInitResData) --> SignedData(M,PInitResData) in PKCS #7 format

 50

M: MWSPInitResData := <Version,Revision,Data,SPInitResData,XID>;
M: => C(MWSPInitResData);
C: <- (MWSPInitResData);

-- Action : Check the received Response for PInitReq
-- Performed By : Customer

C: assume(C.LID_C == C.TLID_C);
C: assume(C.LID_M == C.TLID_M);
C: assume(C.RRPID == C.TRRPID);
C: (Version,Revision,SPInitResData,XID) := MWSPInitResData;
-- Need to perform Receive SignedData
C: (M,PInitResData) := SPInitResData;
C: (TransRecRes,XID,Chall_M,BrandCRLIdentifier,PEThumb) :=
PInitResData;
C: (RRPID,Language,LID_C,LID_M,Chall_C,BrandID,BIN) := TransRecRes;
C: (TRRPID,TLID_C,TLID_M,TChall_C) := TransRec;
C:if (LID_C == TLID_C) then {

if (LID_M == TLID_M) then {
if (RRPID == TRRPID) then {

assert(LID_C == TLID_C);
assert(LID_M == TLID_M);
assert(RRPID == TRRPID);

}else
{assert(error);}

}
}

-- Action : Purchase Message
-- Message : Purchase Request (PReq)
-- Initiated by : Customer

C: OIData := <TransID,RRPID,Chall_C,HOD,Chall_M,BrandID,BIN>;
C: RRPID := new;
C: ODSalt := new;
C: HODInput := <OD,PAmt,ODSalt>;
C: HOD := DD(HODInput);
C: Inputs := <HOD,PAmt>;
C: PIHead := <TransID,Inputs,MerchantID,InstallRecurInd,SWIdent>;
C: PANData := <PAN,CardExp,PANSecret,EXNonce>;
C: PANToken := <PAN,CardExp,EXNonce>;
C: PIData := <PIHead,PANData>;
C: OIDualSigned := L(PIData,OIData);
C: PReqDualSigned := <PIDualSigned,OIDualSigned>;
C: => M(PReqDualSigned);
M: <- (PReqDualSigned);

-- Action : Check the Purchase request from the customer
-- Performed By : Merchant

M: (PIDualSigned,OIDualSigned) := PReqDualSigned;

-- Action : Payment response
-- Message : PRes
-- Performed by : Merchant

 51

M: Results := <AcqCardMsg,AuthStatus,CapStatus,CredStatusReq>;
M: PResPayload := <CompletionCode,Results>;
M: PResData :=
<TransID,RRPID,Chall_C,BrandCRLidentifier,PResPayloadSeq>;
M: PRes := S(M,PResData);
M: => C(PRes);
C: <- (PRes);
C: (TransID,RRPID_PRes,Chall_C,BrandCRLidentifier,PResPayloadSeq) :=
PResData;
C: if(RRPID == RRPID_PRes) then {

assert (RRPID == RRPID_PRes);
}

-- Merchant-Payment Gateway Message Transfer
-- Action : Authorization Request
-- Message : AuthReq
-- Initiated by : Merchant

M: MerchData := <MerchCatCode,MerchGroup>;
M: AuthReqPayload := <SubAuthInd,AuthReqAmt,ReqCardtype,MerchData>;
M: MerTermsID := <MerchantID,TerminalID,AgentNum>;
M: RRPID := new;
M: RRTags := <RRPID,MerTermsID,Date>;
M: TransIDs := <LID_C,LID_M,XID,PReqDate>;
M: AuthTags := <RRTags,TransIDs,AuthRetNum>;
M: AuthReqItem := <AuthTags,AuthReqPayload>;
M: AuthReqData := <AuthReqItem,CaptureNow,SaleDetail>;
M: OIData := <TransID,RRPID,Chall_C,HOD,Chall_M,BrandID,BIN>;
M: PIHead := <TransID,Inputs,MerchantID,InstallRecurInd,SWIdent>;
M: PANData := <PAN,CardExp,PANSecret,EXNonce>;
M: PANToken := <PAN,CardExp,EXNonce>;
M: PIData := <PIHead,PANData>;
M: PI := <PIData,OIData>;
M: AuthReq := Enc(M,P,AuthReqData,PI);
M: MWAutheReq := <Version,Revision,Date,RRPID,SWIdent,AuthReq,XID>;
M: => PG(MWAuthReq);
PG: <- (MWAuthReq);

-- Action : Authorization Response
-- Message : AuthRes
-- Initiated by : Payment Gateway
PG: (Version,Revision,Date,RRPID,AuthReq,AuthReq,XID) := MWAuthReq;
PG: (AuthReqData,PIData,OIData) := AuthReq;
PG: (PIHead,PANData) := PIData;
PG: (TransID_PI,Inputs,MerchantID,InstallRecurInd,SWIdent) := PIHead;
PG: (TransID_OI,RRPID_OI,Chall_C,HOD,Chall_M,BrandID,BIN) := OIData;
PG: if (TransID_OI == TransID_PI) then

{ assert(TransID_OI == TransID_PI); }
PG: if(RRPID == RRPID_OI) then

{ assert(RRPID == RRPID_OI);}
PG: ResData := <AuthVal,CardType>;
PG: AuthHeader := <AuthAmt,AuthCode,ResData,BatchStatus,CurrConv>;
PG: PANToken := <PAN,CardExp,EXNonce>;
PG: RRTags := <RRPID,MerTermsID,Date>;
PG: AuthTags := <RRTags,TransIDs,AuthRetNum>;
PG: CheckDg := <HOIData,HOIHead>;
PG: TransIDs := <LID_C,LID_M,XID,PReqDate>;

 52

PG: AuthResData := <AuthTags,AuthResPayload>;
PG: AuthRes := Enc(PG,M,AuthResData,PANToken);
PG: MWAuthRes := <Version,Revision,Date,RRPID,SWIdent,AuthRes,XID>;
PG: => M(MWAuthRes);
M: <- (MWAuthRes);
M: (Version,Revision,Date,RRPID,SWIdent,AuthRes,XID) := MWAuthRes;
M: (AuthResData,PANToken) := AuthRes;
M: (AuthTags,AuthResPayload) := AuthResData;
M: (RRTags,TransIDs,AuthRetNum) := AuthTags;
M: (RRPID_Res,MerTermsID,Date) := RRTags;
M: if(RRPID_Res == RRPID) then

{ assert(RRPID_Res == RRPID);}

-- Action : Capture Request
-- Message : CapReq
-- Initiated by : Merchant

M: CapPayload := <CapDate,CapreqAmt,AuthReqAmt,AuthResPayload>;
M: TransIDs := <LID_C,LID_M,XID,PReqDate>;
M: CapItem := <TransID,AuthRRPID,CapPayload>;
M: RRPID := new;
M: RRTags := <RRPID,MerTermID,Date>;
M: PANToken := <PAN,CardExp,EXNonce>;
M: CapReqData := <RRTags,CapItemSeq>;
M: CapReq := Enc(M,PG,CapReqData,PANToken);
M: MWCapReq := <Version,Revision,Date,RRPID,SWIdent,CapReq,XID>;
M: => PG(MWCapReq);
PG: <- (MWCapReq);
PG: (Version,Revision,Date,RRPID,SWIdent,CapReq,XID) := MWCapReq;
PG: (CapReqData,PANToken) := CapReq;
PG: (RRTags,CapItemSeq) := CapReqData;
PG: (RRPID_CReq,MerTermID,Date) := RRTags;
PG: (TransID,AuthRRPID,CapPayload) := CapItem;
PG: (LID_CReq,LID_M,XID_CReq,PReqDate) := TransID;
PG: if (RRPID_CReq == RRPID) then {

if (XID == XID_CReq) then {
if (LID_C == LID_CReq) then {

assert (RRPID_CReq == RRPID);
assert (XID == XID_CReq);
assert (LID_C == LID_CReq);

}
}

}

-- Action : Capture Response
-- Message : CapRes
-- Initiated by : PaymentGateway

PG: CapResPayload := <CapCode,CapAmt,BatchID,BatchSeqNum>;
PG: TransID := <LID_C,LID_M,XID,PReqDate>;
PG: RRPID := new;
PG: RRTags := <RRPID,MerTermID,Date>;
PG: CapResItem := <TransID,AuthRRPID,CapResPayload>;
PG: CapResData := <RRTags,CapResItemSeq>;
PG: CapRes := Enc(PG,M,CapResData);
PG: MWCapRes := <Version,Revision,Date,RRPID,SWIdent,CapRes,XID>;
PG: => M(MWCapRes);

 53

M: <- (MWCapres);
M: (Version,Revision,Date,RRPID,SWIdent,CapRes,XID) := MWCapRes;
M: (RRTags,CapResItemSeq) := CapResData;
M: (RRPID_CRes,MerTermID,Date) := RRTags;
M: (TransID,AuthRRPID,CapResPayload) := CapResItem;
M: if (RRPID_CRes == RRPID) then {

if (LID_MCRes == LID_M) then {
assert (RRPID_CRes == RRPID);
assert (LID_MCRes == LID_M);
}

}

-- Action : Credit request
-- Message : CredReq
-- Initiated by : Merchant

M: CredReqPayload := <CredCode,CredAmt,BatchID,BatchSeq>;
M: PANToken := <PAN,CardExp,EXNonce>;
M: CredReq := Enc(M,PG,CredReqPayload,PANToken);
M: MWCredReq := <Version,Revision,Date,RRPID,SWIdent,CredReq,XID>;
M: => PG(MWCredReq);
PG: <- (MWCredReq);
PG: (Version,Revision,Date,RRPID_CrReq,SWIdent,CapRes,XID) :=
MWCredReq;
PG: if(RRPID_CrReq == RRPID) then {

assert(RRPID_CrReq == RRPID);
}

-- Action : Credit Response
-- Message : CredRes
-- Initiated by : Payment Gateway

PG: CredResData := <CredCode,CredAmt,BatchID,BatchSeq>;
PG: CredRes := Enc(M,PG,CredResData);
PG: MWCredRes := <Version,Revision,Date,RRPID,SWIdent,CredRes,XID>;
PG: => M(MWCredRes);
M: <- (MWCredRes);
M: (Version,Revision,Date,RRPID_CrRes,SWIdent,CredRes,XID) :=
MWCredRes;
M: (CredCode,CredAmt,BatchID,BatchSeq) := CredResData;
M: if(RRPID_CrRes == RRPID) then {

assert(RRPID_CrRes == RRPID) ;
}

