

The Florida State University
College of Arts and Science

Building An Algorithm for knowledge representation
using LDAGs.

Saeed Tarokh M.D.

June, 2002

A Master’s project submitted to the
Department of Computer Science

In partial fulfillment of the requirements for the
Degree of Master of Science

Major Professor: Dr. Daniel Schwartz

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...III

ABSTRACT...V

CHAPTER ONE: INTRODUCTION ... 1

1.1 OVERVIEW ... 1

CHAPTER TWO: THE DESIGN OF THE FIRST VERSION 2

2.1 THE SYSTEM STRUCTURE... 2
2.2 THE PROGRAMMING LANGUAGE ... 2
2.3 THE DATABASE ... 2

CHAPTER THREE: PROJECT IMPLEMENTATION.. 5

3.1 THE DATABASE ... 5
3.2 THE CLIENT PROGRAM... 7
3.3 THE ALGORITHM .. 15

CHAPTER FOUR: CONCLUSION AND FUTURE WORK.................................... 18

APPENDIX A: USER MANUAL .. 19

APPENDIX B: DATABASE DESIGN.. 21

REFERENCES .. 22

 iii

ACKNOWLEDGEMENTS

I would like to thank my major professor Dr. Daniel G. Schwartz for his guidance
and help. In addition, I would like to thank Dr. Hilbert Levitz and Dr. Sara Stoecklin for
their willingness to serve on my committee. I have benefited very much from these
professors’ course offerings and advice.

 iv

To: My Dear Mother and The Great

Memory of my Father

 v

ABSTRACT

In this project, we are trying to build an algorithm for knowledge representatio n
through the use of layered directed acyclic graphs (LDAGs). These LDAGs have been
built using multiple-parent, multiple child capability. In another word, each node in such
a graph has the capability of having multiple children as well as multiple parents. To
show the effectiveness of our algorithm, we have used two different programs. Both
programs have been written using java programming language and its awt package. The
first program benefits the existence of multiple tables in the database. Such a structure of
the database gives the program the ability to logically break the database to many parts
and use each part to build a small graph. On the other hand, the second version of the
program benefits the existence of only one table as its input and could build a large graph
to represent the existing data in the database. A combination of such these two programs
could let the system manager the ability to build different graphs using different logical
partitions of the database. To access the information, which are needed to build the
layered directed acyclic graphs; we have used an online database and the basic SQL
commands. Since all interactions with the database employ standard SQL, the database
system employed on the server side can be any SQL compliant database for which there
exists a JDBC driver.

We should mention that this program would serve as the first draft of such a

system. Having built the necessary algorithm for this program, we are certain that we can
use the same algorithm with some minor changes for future works.

The current project is to read the data from an online database and to build the

multiple- children multiple-parent layered directed acyclic graphs and eventually update
the database. The program benefits from a server. The server side creates and maintains a
MySQL relational database. All information is stored in this database. The output
program is implemented as a Java frame that runs under any standard java environment.
The server program is based on the Sun Microsystems Java Development Kit (JDK) 1.1.6
and uses Java Database Connectivity (JDBC) to perform SQL statement execution on the
MySQL database. The output program is based on JDK 1.2.2, which includes the Java
Swing package.

 1

CHAPTER ONE: INTRODUCTION

1.1 Overview

The layered directed acyclic graph aims to act as an interface for the content of
the remote databases. Therefore, our objective is to create a graphical layered directed
acyclic graph, which represents the relationships among the current data in the remote
database. This is used to show the classification of the data to the user through graphical
representation. Since all interactions with the database employ standard SQL, the
database system employed on the server side can be any SQL compliant database for
which there exists a JDBC driver.

Dr. Daniel Schwartz and Saeed Tarokh, by using multiple tables in the database,

created a first draft of such a system as a stand-alone application. In that draft, and in
order to build a parent-child relationship, we represented each node of the graph by a
separate table. With building a one-table database and adding the abilities to analyze the
starting table and to update the database as well as adding the dummy nodes, we built the
second (current) version of the system.

The present system extends our initial work further by adding the ability to create

dummy nodes and adding these dummy nodes to the database. This can help us to get rid
off some of the line overlapping that might happen when we build the graph. In addition,
to avoid having multiple tables in the database, we have created a one-table database,
which represents the parent- child relationships. The database system employed here is
the well-known freeware MySQL.

The project started with defining what we had done to build the first version, and

later we describe the second version of the software. The biggest challenge in such a
system was to build an algorithm, which determines the x-derivate of each node on the
graph. After addressing the second version of the software, we address an algorithm,
which we have built to determine the x-derivates of the nodes in the graphs.

Later on, we will describe the opportunities for possible future developments and

what we will need to do to make more steps towards the overall goal of a fully functional
system.

 2

CHAPTER TWO: THE DESIGN OF THE FIRST VERSION

2.1 The System Structure

 The system has been designed using a MySQL database, a Java Database
Connection (JDBC) program, and an output-producing program.

2.2 The Programming Language

Java was chosen as the programming language for this project, not only because it
is popular, easy to use, easy to understand, but also because of its portability and its
convenience for GUI design. Java’s graphical capability and compatibility with the major
web browsers make it the first choice to do the web-based application programming.

The output program is written with JDK 1.4. This is the latest version in our
department system. It includes the Java Swing library package for doing graphical
programming.

Since the database MySQL does not yet have a driver that works with JDK 1.4,
we have used JDK 1.1.6 for the Java Database Connection (JDBC), which acts as the
interface of server program, and the database, Java is an excellent language for server-
side database applications.

2.3 The Database

The database is the central part, which is used to store and retrieve information.
Currently, the database is located on the following server: dbsrv.cs.fsu.edu. However, we
can use any kind of MySQL database. MySQL, a freeware SQL (Structured Query
Language) database is used in this project. It is a very fast, truly multi- threaded, multi-
user, and robust SQL database. But it is not as functional as some current commercial
database products, such as, Oracle, MS SQL Server. Since it’s free, it’s good to be used
in the school as educational purposes. But our database system could be easily changed to
be one of the commercial products as mentioned above. The future project
implementations could try to switch to Oracle database, as it is available now in our
department system.

2.4 Connection between server and database

When the server is started, it establishes a connection with the MySQL database
through Java Database Connectivity (JDBC) as described in Figure 2.1.

 3

Figure 2.1 Java Database Connectivity

JDBC is Java API that allows Java application program to access relational
databases using SQL. Each database system is accessed via a specific JDBC driver that
implements the java.sql.Driver interface. For MySQL, we use the following statement to
load and link the MySQL database driver,

Class.forName("org.gjt.mm.mysql.Driver");

After loading the database driver, the JDBC DriverManager needs to open a
connection to the database, where the database is specified by a specially formatted URL.
The connection statements are as follows,

String dbUrl = "jdbc:mysql://dbsrv/tarokhdb";
Connection connection =

DriverManager.getConnection(dbUrl,
user, password);

After finishing the connection, we can directly implement SQL statement inside our
applications, for instance,

Statement statement =

connection.createStatement();

ResultSet ParentSet = statement.executeQuery

 (“SELECT * FROM Links “);

 while(resultSet.next())
 {

 4

Association A2= new Association();

A2.setName(resultSet.getString("Child")) ;

 store.addElement(A2);
 A2.parentName.addElement(resultSet.getString

("Parent"));
}// end While Loop

 5

CHAPTER THREE: PROJECT IMPLEMENTATION

3.1 The Database

 In the first version, the database contains the tables created by the user. These
tables represent those nodes in the graph that have children. For the child- less nodes,
regardless of what level they have in the graph, there is no need for a separate table.
However, the user can create an empty table for the child- less nodes. Since the program
tries to read a table for each node in the graph from the database, there is a need to catch
the exception, when the table is not available. To do this, we use the following piece of
code:
 catch (SQLException sqlException)
{
 //System.out.println("Where is this table?");
}

 The various tables created for this purpose are:

Table Name Description
Root The only node that appears in the first level

of the graph. The existence of this node and
the corresponding table is a must for the
program. There is a possibility to change
the name of the root table. To do this, we
have the following implementation.
String root_name;
This is the variable that we can assign the
name of the root to, for example:
root_name ="Science";

In this section, we provide an example for the root table and show the output of the
program. Here is the example of a root table, which has been named as Science:

Table Science
Biology
Philosophy

And this an output which shows the relationship between the Science and its children:

 6

In the second version of the program, we have made some changes to the structure of the
database.

The various tables created for this purpose are:

 Table Name Description
Links In this table, the user stores the relationships

between the parent and children. Each record
in this table has two attributes, parent and
child.

Nodes This table is invisible from the user. This is
to store the name of all the nodes in the
database. To do this, the program updates the
content of the Nodes based on the content of
the Links table. There is only one attribute
for each record in this table, which is the
name of the node.

NodeLevel This table is used to store the name of the
nodes and the level, they will appear on the
graph in. In this table, we have two attributes

 7

for each record, which are the level and the
name.

NodexLevel This table is used to store the name, the x-
coordinate and the level of each node. In this
table, we have three attributes for each
record, which are the level and the name, and
the x-coordinate.

The detailed design of each of these tables can be found in the appendix.

3.2 The Client Program

3.2.1 First Version: In the first version of the program, we have used seven
different classes. In this section, we are going to describe these classes shortly and
explain their behaviors.

3.2.1.1 Association.java: This class is a very important part of our program. Since,

we have the possibility that a node has multiple parents and/or multiple children, we need
to somehow build an association among a node and its children and parents. To do so, we
have implemented the class Association. To store the name of the parents of each node,
we have added a vector to the class Association. Similarly, to store the name of the
children of each node, we have added another vector to the class Association. Other
important elements of this class are:

 private int Level;
 private double x;
 private double y;
 private String name;

 Obviously, we have used an integer to store the level that each node will appear

in. We have used similar implementations to keep the Y-Coordinates as well as X-
Coordinates of the nodes. The reason for using the double instead of integer for X and Y
coordinates is to have flexibility at the time that the program wants to determine these
values.

3.2.1.2 Print_Data.java: This class is very important, in the case that we need to

make any change to the implementation of the program. This class has been implemented
to show the actual values that we have stored in each object of the class Association.
Since each object of the class Association represents a node in this program, using the
class Print_Data.java, we can actually see where each node will be put. This class is for
the debugging purposes. Once we finish all the changes that we intend to make, we will
not need to have this class to create the GUI output. Here is a short sample of the output
created by the class Print_Data.java created for the simple program in section 3.1:

 8

My Name is: Science
My Level is: 0
My Height is: 87
My width is: 250.0
Here are my children:
---------Biology

---------Philosophy

Here are my Parents:
My Name is: Biology
My Level is: 1
My Height is: 387
My width is: 62.0
Here are my children:
Here are my Parents:
---------Science

My Name is: Philosophy
My Level is: 1
My Height is: 387
My width is: 438.0
Here are my children:
Here are my Parents:
---------Science

3.2.1.3 Read_Data.java: This class is to give us the ability to read all the necessary

data from the database, and store that in the program. To do this, we need to read multiple
tables from the database and store the data in a vector that acts as our primary run-time
storage. This vector has been declared in the class MyProject.java. To provide the ability
to store the data, class Read_Data.java reads the content of each table and creates an
instance of class Association.java and stores that in the vector.

3.2.1.4 XCoordinate.java: This class is the location of the algorithm that we have

created and implemented. Upon a call to this class, the program will determine the value
of the x-coordinates for each node and store those in the corresponding fields of each
node (instances of the class Association.java).

3.2.1.5 Dummy_Data.java: To provide a better output for the program, we need to

consider that some nodes in the program might not have any children. Because we don’t
want the children of the other nodes to appear in the location of the children of these
children-free nodes, we will need to create some dummy children to keep the shape of the
output acceptable for the casual user. To do so, we have implemented a class to create
this kind of dummy data. This class gives us the ability to recognize these children-free
nodes, create the dummy children for them, and avoid the appearance of these dummy
nodes on the final output.

 9

The following is an Example of the program output and its corresponding
database content when some of the nodes don’t have any children.
Table Science
Biology
Philosophy
Math

Table Biology
BM
BC
BN

3.2.1.6 MyProject.java: This class is to work as the heart of the implementation of

our program. In this class, not only we create objects of the above-mentioned classes, but
also we give other abilities to the program to make it more and more powerful. In this
class, we have created the GUI, which is the output of the program. To do so, we have
used the capabilities of the class JFrame.java. Also we are using the package java.sql, to
establish the connection to the remote database.

 10

3.2.1.7 Main.java: This class is to create an instance of the class MyProject.java,
and to launch the application.

3.2.2 Second Version: In the second version of the program, we have used sixteen

different classes. Although the implementation of the classes Main.java, Association.java,
XCoordinate.java, and Print_Data.java have been preserved, but other classes have gone
through some modifications. Also, we have added more classes to provide new abilities.
In the following section, we will review the new classes as well as the modifications that
we have made to the old classes, which we have inherited from the first version.

3.2.2.1 Levels_Determination.java: In this version of the program, since we don’t

have as many tables as we had for the first version in the database, we are supposed to
read the data from a single table. This single table only allows us to understand the
parent-child relationships. Due to this, we need to somehow determine the levels of the
nodes. To do this, we have implemented the class Levels_Determination.java. This class,
with the help of the other classes in this program, creates a level zero. The level zero has
only one node and that is what we have determined as the Root. After allocating level
zero to the Root, and based on the parent-child relationships, the program determines
other levels.

3.2.2.2 Assign_Children.java: After we read the data from the database, we need to

determine all the children of each node and assign those to the parents. In another word,
we need to add the names of children to the vector children in the object of class
Association, which is actually our node. The class Assign_Children.java does this task
for us.

3.2.2.3 Eliminate_Duplicates.java: One of the problems that we might encounter

is to have some duplicate nodes. In another word, if we have multiple parent-child
relationships for a node, then we will create multiple copies of those nodes. The problem
gets more complicated when a node is represented in two different levels. This can also
happen if a node is the child of two different parents, which are in two different levels.
This can provide a completely confusing diagram for our end users. To avoid such a
situation, we eliminate the duplicate nodes by just preserving one of the copies and
adding the name of all parents to its parentName vector.

On the other hand, if we have the same node in two different levels of the

diagram, we will eliminate the node in the higher level and keep the one in the lower
level. Using this method, we avoid the existence of horizontal lines to represent the child-
parent relationships.

3.2.2.4 Make_Distance_Nodes.java: To have a proper empty space under the

children- less nodes, we have created this class. This class creates a proper number of the
Distance nodes. These nodes act as the children for the children- less nodes and preserve
the empty space right under their children- less parents. This is to help us to provide an
acceptable and non-confusing output for our users.

 11

3.2.2.5 MyProject.java: This class is an extension of the class MyProject.java
from the first version. However, we can easily observe major modifications from the first
version to the second version. In this version, we have given this class the ability to
update the database. Once all the nodes and their attributes were determined, we update
the content of the tables in the database. Similar to the older version, we have kept the
graphical part of the program in this class.

3.2.2.6 Class Read_Links_Data.java : This class has been constructed by modifying

the class Read_Data.java from the first version. Once the connection to the database was
established, this class gives the program the ability to read the content of the database and
create objects of the class Association.java for each node. Once the program creates these
objects, it will store the objects in the main storage utility, in this case a vector, for the
further use.

3.2.2.7 Root_Level_Initialization.java: Since the existence of the root is a must for

this program, we need to determine the location of the root. The location of the root will
act as a basis for the further location determination of the other nodes. This class will
analyze the content of the database, and will determine the location of the root.

3.2.2.8 Set_Levels.java: After we read the data from the database Links table, we

will need to determine the level of each node. As we mentioned earlier, this task has been
done by class Levels_Determination.java. On the other hand, this class gives us the ability
to avoid the horizontal lines in the graph. Since we don’t want to have any horizontal line
to represent the parent-child relationship, we will move the child to a lower level and
change the values of the related attribute in the instances of the class Association.java.

3.2.2.9 Sort_Nodes.java: This class is to provide a simple sorting ability for the

current existing nodes in our main vector. The sorting is done based on the values of the
attribute level of the nodes. A bubble sort algorithm has been used to implement this
sorting utility.

3.2.2.10 Sort_Nodes.java: Once the primary sorting is done, we will need to

have a more sophisticated sorting ability. The reason is the order in which we read the
data from the database may not correspond to what we may wish to have as our output.
Therefore, we have implemented this class to gives the program an ability to sort the
nodes based on the location of their parents in the picture.

3.2.2.11 YCoordinate.java: This is a simple class that calculates the y

coordinate of each node in the graph.

3.2.2.12 Make_Dummy_Nodes.java: In this version of the project, we decided to

create dummy nodes whenever we have a parent- child relationship in which the
difference of the level between parent and child is more than one. In this class, we have
given the software the ability to recognize this kind of parent-child relationships and to
create these dummy nodes. We have to mention that the user is not able to see such a
dummy node in the output. The only thing that will appear in the output is a line that

 12

moves from some upper level to a lower level. However, this line is not going to appear
as a straight line, but it will appear as a broken line. The breaking point will be in the
intermediate levels. After we create these dummy nodes, we update the database by
adding these dummy nodes to the tables. To do so, we remove the primary parent- child
relationship, and we create some new relationship using the dummy nodes. For example;
if we have a record like the following in the Links table:

Parent Child
Biology Genetics

in which Biology is in the level one and Genetics in level three, then we will create a
dummy node and place the dummy node in the second level of the picture. Then we will
update the database in the following manner:

Parent Child
Biology Dummy Node
Dummy Node Genetics

In the following page, we can observe an example of the output in a similar

program: Looking at the program output, we observe that genetics has two different
parents, Biology and Pathology. However, Biology is in the level one and pathology in
level two. In such a situation, we create a dummy node as we have already mentioned.
The other point about this output is the presence of the Logic, which is the common child
among Philosophy, Mathematics, and Computer Science. The third thing to pay attention
about is the presence of the empty space right under some nodes, which don’t have any
children. The examples of this kind of node are AI, Physics, Logic, Calculus, and
Algebra.

 13

In addition, we should mention the content of the database before and after the execution
of the program. The only table present in the database before the execution of the
program is the Links table. Here is the content of the table Links before the execution of
the above-mentioned program:

 14

Parent Child
Root Biology
Mathematics Algebra
Mathematics Calculus
Root Mathematics
Root Philosophy
Root C.S.
Biology Genetics
Mathematics Logic
C.S. Logic
C.S. A.I.
Biology Pathology
Philosophy Logic
Pathology Genetics
Root Physics

However, after the execution of the program, we will have some additional tables:

Table NodexLevel

Node X-Coordinate Level
Genetics 733 3
A.I. 685 2
DummyNode1 592 2
Pathology 500 2
Logic 407 2
Calculus 314 2
Algebra 222 2
Physics 667 1
C.S. 583 1
Philosophy 500 1
Biology 416 1
Mathematics 333 1
Root 500 0

 15

Table NodeLevel

Node Level
Genetics 3
A.I. 2
DummyNode1 2
Pathology 2
Logic 2
Calculus 2
Algebra 2
Physics 1
C.S. 1
Philosophy 1
Biology 1
Mathematics 1
Root 0

Table Nodes

Node
Genetics
A.I.
DummyNode1
Pathology
Logic
Calculus
Algebra
Physics
C.S.
Philosophy
Biology
Mathematics
Root

3.3 The Algorithm

In this section, we will describe the algorithm that we have created and

implemented to make the output of the program.

//We have three primary parameters to pass to this algorithm. The first one is an integer
//which shows the width of the picture. The second one is the container, which has been
//used to store all the nodes. The third one is another integer, which is to show the highest
//level that has been assigned to the nodes.

 16

X Coordinate Determination (integer Picture width, Vector storage, integer Level)
{

//We have determined a constant integer, which is to decide how much
//empty space we would like to leave between the top of the picture and
//where the root appears.

 Constant integer const;
 //The next two doubles are used to show the maximum and minimum

//amount of the values, which could be assigned to the x-coordinates.
//In the beginning, we initialize these numbers, but later on and for each
//level we will decrease the difference of these two values.
Lowest Limit = picture width/ const;
Highest Limit= picture width – (picture width/const);

 // Using a for loop, we can go through the Vector and determine the
//number of the nodes that we have in each level. At first, we start with the
//highest level.
Integer my;
Double temp22, temp33;
For (integer count=Level; count>0; count--)

 {
 // This is an integer to count the number of nodes in each level.
 Integer NodeCounter=0;
 For (int x = 0; x < storage . size (); x++)
 {
 if(storage. get(x).get Level() = = Count)
 {
 NodeCounter++;
 }

 }
 // After we find the number of the nodes for each level, we

//determine the location of the first node with such a level
// in the vector.

 For (my = 0;my <storage. Size ();my ++)
 {
 if(storage .get(my). get Level() = = count)
 break;
 }
 // Here we are using a temporary variable to keep the value of the

// Lowest Limit before we overwrite its value.
 temp22=Lowest Limit;
 // Here we are to determine the distance between the nodes in each
 // Level, and store the value in the variable temp33.
 temp33=(Highest Limit – Lowest Limit)/(true_counter-1);
 // After we determine the distance among the nodes, we start from

// the point in which we had found the first node in this level and
// and we assign the value of the x coordinate of each node.

 17

 For (int xxx = my; xxx < my + NodeCounter; xxx++)
 {
 (storage . get(xxx)).setX(temp22) ;
 temp22 =temp22 +temp33;
 }

// After we finish the task for each level, we need to re- initialize
//our temporary variables to zero.

 temp22 =temp33=0;
 //Now, we are moving to the upper levels, and we are making the
 // area in which nodes appear smaller and smaller.
 Lowest Limit = Lowest Limit + picture width/const;
 Highest Limit = Highest Limit - picture width/const;
 }
 }
}

This algorithm could be used for both small and large graphs.

 18

CHAPTER FOUR: CONCLUSION AND FUTURE WORK

Based on the work done in our first version, a more sophisticated version of the
System was implemented and debugged. The current system takes care of generation and
manipulation of tables and creation of more sophisticated outputs. Not only, it allows
defining relations between tables, but also it is able to provide us a more sophisticated
output from a minimum amount of input data.
This system, which we had started on experimental basis, has now taken shape to develop
into a big system. It provides a kind of interface, which allows a casual or professional
user to learn a lot about the content of an on- line database and the relationship among its
tables. The design of the system is done so as to accommodate further work on it.
Additional functionality can easily be added into the system so that the program can
provide more sophisticated output. We believe the current algorithm could be used for
both small and large graphs.

There are some potential future development work could be done.

1. Now that we have found the location of each node on the graph, we can swipe the

location of these nodes to provide the least number of line crossings. Substantial work
could be in this part.

2. In the Current version, the data is derived only from one table. However, in the first
version, we have been reading the data from multiple tables. There will be an
opportunity to work toward combining these two different versions, and give the
program an ability to accept different kinds of outputs.

3. As relations can be defined between tables, the part to implement keeping check of
referential integrity when rows are added into tables and also handling cascading
updates need to be done.

More:
1. Currently both programs are using single-threaded client-server approach. Obviously,

it is impractical to run just one client at one time. So these programs need to be
extended to be multi-threaded programs, so that more clients can operate concurrently
with one server.

2. Since Oracle database is more functional and popular than MySQL, and Oracle is
available for use now in the department system, it would be better to switch to use
Oracle database before the program evolves to be bigger and more complicated.

 19

APPENDIX A: USER MANUAL

1. System Requirements

 Package name location on diablo

JDK 1.1.6 /usr/local/jdk1.1.6/
JDK 1.2.2 /usr/local/jdk1.2.2/
MySQL database server /usr/local/mysql/
JDBC-MySQL driver /usr/local/mysql/twz1/

Plug- in Java 2 Runtime Environment

Version 1.2.2, or higher

2. Installation

 1) Set up:

• Set up server machine environment. Add the following paths to your .tcshrc
file
setenv CLASSPATH
/usr/local/mysql/twz1/jdbc/mysql:/usr/local/mysql:/usr/local/java/lib/class.zip

• The program should have information about the current user name, database

account password, and the name of the database. An example is as follows,
 user = tarokh
 password = project
 db = tarokhdb

2) Compile the server program and initialize the database. In the server directory,
run the following commands,
 /usr/local/jdk1.1.6/javac setupTable.java
 /usr/local/jdk1.1.6/java setupTable

3) Determine the name of the root.
 Root_name = “Science”;

1. Execution

1) Run client. Start the client program with entering java Main to the command line.

2) My URL is: http://www.cs.fsu.edu/~tarokh/project will have enough information

to help the future users.

2. How to manually access the database

 20

To access the database manually using SQL statements, the user can use the mysql
command provided in the MySQL server. The following command connects to the
MySQL database under the command line. Once the database is connected, you can use
standard SQL statement to manually access your database tables.

 dbsrv> /usr/local/mysql/bin/mysql –u tarokh -p tarokhdb
 Enter password: project

 21

APPENDIX B: DATABASE DESIGN

Links:

Column Name Type Description
Parent VARCHAR(30) Stores the name of the

parent.
Child VARCHAR(30) Stores the name of the

Child.

NodexLevel
Column Name Type Description
Node VARCHAR(30) Stores the name of the

Node.
X NUMBER Stores the X-Coordinate of

the Node.
Level NUMBER Stores the Level of the

Node.

NodeLevel
Column Name Type Description
Node VARCHAR(30) Stores the name of the

Node.
Level NUMBER Stores the Level of the

Node.

Nodes
Column Name Type Description
Node VARCHAR(30) Stores the name of the

Node.

 22

REFERENCES

[1] Larry Stephens, Michael Huhns, “Consensus Ontologies Reconciling the semantics of
webpages and agents”, October 2001, IEEE Internet Computing, Pages: 92 –95.

[2] Kevin Mukhar, David Shanes, James De Carli, Todd Lauinger, Ron Phillips,
“Beginning Java Databases: JDBC, SQL, J2EE, EJB, JSP, XML”, August 2001, Wrox
Press Inc, ISBN 1861004370

[3] Ivor Horton, “Beginning Java 2 SDK 1.4 Edition”, 2002, Wrox Press Inc, ISBN:
1861005695

[4] Cay S. Horstmann, Gary Cornell, “Core Java Vol. I, II”, Sun Microsystems Press,
1999, ISBN 0130819344.

[5] Bruce Eckel, “Thinking in Java”, 2nd Edition, Prentice Hall, 2000, ISBN 0130273635.

[6] Online java tutorial at http://java.sun.com/docs/books/tutorial/

[7] Paul DuBois, Michael Widenius, “MySQL”, New Riders Publishing; ISBN:
0735709211; 1st edition (December 28, 1999)

[8] Harvey M. Deitel, Sean E. Santry, Paul J. Deitel, “Advanced Java 2 How to
Program”, Prentice Hall; ISBN: 0130895601; 1st edition (September 15, 2001)

 23

