

Florida State University
College of Arts and Sciences

Department of Computer Science

A Method for Detecting Intrusions on Encrypted

Traffic
-Sachin Prakash Goregaoker

Project submitted to the Department of Computer Science

in partial fulfillment of the requirements for the

Master of Science degree (M.S.)

1

The members of the committee approve the Master’s Project of Sachin Goregaoker

defended on July 18th, 2001.

 Dr. Alec Yasinsac

Major Professor

Dr. Robert van Engelen

Committee Member

Dr. Lois Hawkes

Committee Member

2

Acknowledgements

The completion of this Master’s project would not have been possible without the timely
guidance and encouragement of my advisor, Dr. Alec Yasinsac. It was due to him that I
gained a better understanding of a field of computer science, which is relatively new to
me. I would also like to thank my parents who are a constant source of inspiration and
support to me. My brother, Sameer has also been supportive of me through my tough
years completing the Master’s degree. Lastly, but not least I’d like to thank the other
members of my research group, Nikhil Patel and Alex Melendez. I had the privilege of
working closely with them during my research, and have found them to be great
colleagues.

3

Table of Contents

1. Introduction …………………………………………………………………5
1.1. Need for Encryption …………………………………………………5
1.2. Flaws in Security Protocols ………………………………………….6
1.3. Detecting Attacks on Security Protocols …………… ………………6
1.4. Terminology …………………………………………………………6

2. Intrusion Detection Overview ………………………………………………8

2.1. Behavior Based Intrusion detection ………………………………….8
 2.1.1. Behavior Based Detection Models ……………………………8
2.2. Knowledge Based Intrusion Detection ………………………………10
 2.2.1. Signature Analysis Using State Transition Diagrams ………..10
 2.2.2. Colored Petri Nets ……………………………………………10

3. Scope of the Project …………………………………………………………11

3.1. Role of the IDE in SEADS ………………………………………….11
3.2. Assumptions ………………………………………………………...12
3.3. Functionality …………………………………………………….…..12

 4. Detection Methodology ………………………………………………….....15

4.1.Constructing Signatures of Attacks …………………………………..15
4.2.Use of Finite State Machines …………………………………………19
 4.2.1. Signature Format in the Knowledge Base …………………….19
 4.2.2. Construction of the Finite State Machine ……………………..21

 4.3.Attack Detection …………………………………...………………...22
 4.3.1. Single Session Attacks …..……………………………….......22
 4.3.2. Multi-session Attacks ……………………………………...….22
 4.3.2.1. Replay Attacks ……………………………………….23
 4.3.2.2. Parallel Session Attacks ……………………………...23
 4.3.3. Limitations to the Attack Detection Capabilities of the IDE ….24

 5. Design of the Intrusion Detection Engine …………………………………26

5.1.Architectural design …………………………………………………..26
5.1.1.Design Decisions ……………………………………………….26

 5.1.1.1.Functionality of Threads ………………………………..27
 5.2. Design Flowchart …………………………………………………….28

 6. The Graphical User Interface………………………………………………30

6.1.Reporting Attacks to the User…………………………………………30
6.2.Backup of the Active Attack Log File…………………………….…..30

7. Testing………………………………………………………………………..31

8. Conclusion……………………………………………………………………33

4

9. Future Work………………………………………………………………..34

10. Appendix……………………………………………………………………36

 11. References…………………………………………………………………..91

5

1. Introduction

In this day and age of unprecedented growth in the fields of web-communication and

more specifically, e-commerce, it is all the more important to ensure secure

communication between all parties involved. Web sites routinely establish transactions

over the Internet with their customers and in the process, credit card numbers and other

sensitive information about the customers, is sent. Ensuring the integrity and security of

such information has spawned a huge amount of research in the fields of network security

and cryptography. Intrusion detection systems aim to detect attacks against vulnerable

computer systems and networks. In this paper, we show how Intrusion Detection

technology can be used in encrypted environments.

1.1. Need for Encryption

Any data exchanges over public networks are susceptible to interception by malicious

parties. Unless cryptography is used in order to encrypt such exchanges, data is

vulnerable to passive listeners. Secure electronic communication relies on the application

of cryptography. A number of cryptographic algorithms exist to allow the involved

parties to ensure the level of data security that they need.

Generally algorithms such as DES (Data Encryption Standard), IDEA (International Data

Encryption Algorithm) and a host of others are used to encrypt the data. In addition to the

encryption algorithm the valid parties involved in the communication need to possess the

valid keys to encrypt and decrypt the information. A combination of the cryptographic

algorithm and encryption keys will result in an encrypted exchange of information

between the valid parties involved.

However even perfect encryption may not be enough to prevent communication from

being compromised. There have to be certain rules or protocols, which govern the

encrypted exchanges, to allow for key exchange, authentication and privacy.

6

1.2. Flaws in Security Protocols

Encryption backed by effective security protocols may still not be enough to prevent

sophisticated intruders from compromising the so-called secure communication. Even if

encryption is used to protect the data, there still exist flaws in security protocols, which

can be used by malicious parties to their benefit, so as to subvert the underlying protocol.

Intruders can still spoof the valid parties in any data exchange by using replay techniques,

whereby information from previous runs of any encrypted exchanges are used in the

current run. As a result, intruders may be able to masquerade as valid parties in

communication, steal keys etc. all of which leads to the inevitable compromise of the

encrypted exchange. It is clear that another level of protection must be provided for

encrypted data exchanges to detect attacks on the security protocols.

1.3. Detecting Attacks on Security Protocols

The future of network security revolves around secure enclaves. Secure enclaves are

environments where every, and only, recognized enclave members operate securely

within the environment. Environments where electronic communication is protected by

cryptography are secure enclaves as long as the members of the enclave are protected

from data loss, compromise and malicious attacks. In this project, I demonstrate a

technique to detect attacks on encrypted exchanges between parties in such a secure

enclave. The Intrusion Detection Engine is able to raise alerts upon detection of positive

attacks or suspicious activity within the secure enclave.

1.4. Terminology

Principal: A process running on a computer.

Enclave: A group of valid principals operating within a secure environment.

Intrusion Detection Engine (IDE): The working prototype developed as a result of this

 project.

SEADS: Secure Enclave Attack Detection System.

Knowledge Base: The database of attack signatures used by the IDE as a reference.

Activity Monitor: The monitoring component of SEADS, which gathers ongoing

7

 protocol activity dynamically as it happens within the secure enclave.

Signature: The trace of events, which correspond to a run of a single protocol session.

 Signatures may however correspond to correct protocol runs or protocol

 attacks.

8

2. Intrusion Detection Overview

The aim of intrusion detection systems is to detect attacks against computer systems and

networks. There has been growing interest in this particular field of computer security.

The research therein has yielded various methodologies of intrusion detection. The task

of intrusion detection systems is to monitor the usage of information systems and detect

the appearance of insecure states. Intrusion detection systems detect attempts by

legitimate users of the information systems or external parties, to abuse their privileges or

to exploit security vulnerabilities. The widespread research on intrusion detection

systems is due to the difficulty of ensuring that an information system will be free of

security flaws.

Since the seminal work by Denning [3], many intrusion detection models and prototypes

have been created. The most generic classification of intrusion-detection systems can be

based upon the model of detection. An intrusion detection system which detects

malicious activity/ intrusions based upon the behavior of the attacker uses the Behavior-

based or Anomaly Detection model of intrusion detection. An intrusion detection system

which uses a knowledge base of known attacks on the system being monitored or on the

security protocols being used for communication, follows the Knowledge-Based or

Misuse Detection model of intrusion detection.

2.1. Behavior Based Intrusion Detection

Behavior based intrusion detection systems use the information concerning the behavior

of users within the monitored environment. If any user exhibits unrecognized behavior,

then the intrusion detection engine will generate an alarm. Behavior based intrusion

detection systems will base their detection mechanism on deviations from the expected or

normal behavior of users.

2.1.1. Behavior Based Detection Models

Some important models for behavior based intrusion detection are:

• Statistics

9

• Expert Systems

• Neural Networks

Statistics

Statistical modeling [2] is a widely used tool for behavior based intrusion detection

systems. Over a period of time, user behavior is gathered and stored as profile

information. The time period may vary from a few hours to a few months, depending on

the profiling needs. Profile information may include login frequency, resource use,

session duration etc. User profiles are dynamically updated so that as user behavior

changes so do their profiles. This model has been widely used in various tools for

intrusion detection.

Expert Systems

Expert systems can be used for behavior based intrusion detection. In [3] the author

describes a prototype real time Intrusion Detection Expert System (IDES). This prototype

monitors users on a remote system, using audit records that characterize their activities.

As it is an expert system, it learns the normal behavior of each user and reports any

anomalous behavior.

The IDES monitors target system activity as it is recorded in audit records generated by

the target system. IDES examines the audit records as they are received from the target

system and ascertains whether the observed activity is abnormal with respect to the user

profile. The profiles themselves change dynamically on the basis of observed activity.

Neural Networks

Neural network algorithms [2] are emerging as a new artificial intelligence technique that

can be applied to real- life problems. The use of artificial intelligence for detecting

intrusions on computer systems is now widely considered as the only way to build

efficient and adaptive intrusion detection systems. Among the main uses of neural

networks for intrusion detection is to learn the behavior of actors (i.e. users, daemons) in

10

the system. However neural networks are still a computationally intensive technique and

are not widely used in intrusion detection.

2.2. Knowledge Based Intrusion Detection

Knowledge Based Intrusion Detection techniques base their detection mechanism on a

database comprised of specific attacks and system vulnerabilities. The intrusion detection

system contains information about these vulnerabilities and looks for attempts to exploit

them. When such an attempt by a malicious party to compromise the security of the

system is detected, an alarm is triggered. Knowledge based intrusion detection is also

known as misuse detection or detection by appearance, since it depends on recognizing a

known pattern of malicious activity.

2.2.1. Signature Analysis Using State Transition Diagrams

In this project, the intrusion detection methodology revolves around the knowledge-based

paradigm. The actual detection of attacks on the encrypted exchanges is done by using

state transition analysis of attack signatures, stored in the knowledge base. This approach

to knowledge based intrusion detection depends on the representation of attacks, on the

encrypted exchanges between principals, as signatures, which can be modeled as finite

state machines. Although this mechanism of knowledge-based intrusions is being used to

detect attacks in this project, the underlying detection model lends itself to other

mechanisms such as Colored Petri Nets (CPNs).

2.2.2. Colored Petri Nets

Colored Petri Nets (CPNs) [2] can also be used in order to represent signatures of attacks

on encrypted exchanges between principals. Positive aspects of petri nets are their

generality, simplicity and the fact that they can be represented graphically. Complex

signatures can be represented easily using colored petri nets due to their generality.

11

3. Scope of the Project

The Intrusion Detection Engine described here, uses knowledge based signature analysis

to detect attacks on encrypted exchanges between principals. The scope of the project,

underlying assumptions and the role of this prototype in SEADS is discussed below.

3.1. Role of the IDE in SEADS

The Secure Enclave Attack Detection System (SEADS) [6] is a network monitoring

system. Security protocols, which constitute encrypted exchanges between principals, are

excellent targets for attack by sophisticated intruders and are vulnerable to such attacks.

SEADS monitors executing protocols and detects malicious and questionable activity by

leveraging protocol-specific knowledge gleaned from formal method analysis and other

sources. SEADS protects trusted services and their users through dynamic analysis of

security protocols. It does this by ana lyzing ongoing secure enclave transmission activity

and comparing it against an accumulated knowledge base.

 Knowledge
 Intruder Base

 A

 Activity IDE
 B Monitor

 S

Figure 1: SEADS ATTACK

 Public
 Network

12

The three components of SEADS are the Activity Monitor, the Knowledge Base and the

Intrusion Detection Engine.

1) The Activity Monitor: The activity monitor is responsible for keeping track of the

ongoing security protocol activity. For instance, whenever a valid principal

wishes to start a secure protocol session with another valid principal, it informs

the activity monitor of its intent. Say a principal (A) wishes to start a protocol

session. Each time one of the principals sends or receives a message from another

principal, it informs the monitor about this event, and also provides information

about this event like protocol name, session number and message number. If we

assume protected communication between the monitor and principals, the monitor

will always have total information about all the protocol sessions being executed

within the secure enclave. This information allows the IDE to detect attacks.

2) The Knowledge Base: The knowledge base component of SEADS is a database of

attack signatures on the various security protocols. This database is populated

based on previous research or newly discovered attacks on security protocols. The

knowledge base grows dynamically as new attack signatures are added.

3) The Intrusion Detection Engine: The IDE is responsible for detecting anomalous

protocol activity within the secure enclave. It achieves this by comparing the

message events sent to it by the monitor against the stored attack signatures in the

knowledge base. If any protocol activity is found to be an attack or suspicious, the

IDE will generate an appropriate signal.

3.2. Assumptions

The following assumptions were made during the design and development of the IDE

prototype.

• Communication between the Monitor and principals is reliable and secure.

• Communication between the principals themselves is not secure, i.e. a principal

may send a message to another principal and tell the monitor that it did so, but the

13

monitor may never receive the message receipt confirmation from the other

principal.

• Communication between the Monitor and the IDE is reliable and secure.

Based upon research done during the development and design of this project, the

following points should be noted.

• The IDE can classify its detection in two broad categories: single session attack

detection and multi-session attack detection.

• The IDE attack detection is limited to those attack signatures, which exist in the

SEADS knowledge base.

3.3. Functionality

The IDE prototype provides the following functionality.

a) All attacks whose signatures exist in the knowledge base are signaled as

positive attacks.

b) Any attack whose signature does not exist in the knowledge base is

signaled as suspicious.

c) If any protocol session terminates abnormally, the IDE will report this

activity as being suspicious.

d) Normal protocol activity will not cause any notification signals.

e) The attack reports generated by the IDE will provide full details including:

• Principals involved in the attack session.

• Protocol Name

• Signature of the attack (if existing in the knowledge base)

• Time of the attack.

f) A graphical user interface (GUI) which allows the user to generate attack

reports for attacks on specific protocols, or attacks during specific times.

The GUI will also allow the user to back up the active attack report file to

which the IDE writes the detected attack information.

g) Along with the above functional features, the IDE will consistently

14

interface with the other two modular components of SEADS i.e. the

activity monitor and the knowledge base.

15

4. Detection Methodology

As mentioned in section 2.2.1 the detection mechanism of the IDE is based on the

knowledge-based paradigm. The IDE detects anomalous, malicious or suspicious

protocol activity occurring within the secure enclave of valid principals.

4.1. Constructing Signatures of Attacks

A very important feature of the IDE is that the detection mechanism does not rely upon

knowledge of the payload of the messages exchanged between the principals during

protocol sessions. This is because the IDE detects attacks based upon the signatures of

attacks on security protocols. We show how the formal definition of a security protocol is

translated into a signature, which can be used by the IDE to detect attacks.

Consider the Needham and Schroeder Conventional (symmetric) Key Protocol (NSCKP)

described in [5]. This protocol constitutes three principals: A, B and the trusted third

party server S. The aim of this protocol is to establish a secret key Kab that is to be used

by the principals A and B to encrypt their future exchanges.

Notation:

• Text following the “ : “ symbol constitutes the actual message payload

 exchanged between principals.

• E(K : D1, D2, D3) means that the plain text message (D1, D2, D3) is encrypted

under the key K.

• An arrow pointing right (A à B) indicates a message sent from A to B.

• An arrow pointing left (B ß A) indicates a message received by B from A.

The protocol is described as below:

1) A à S : A, B, Na

2) S à A : E(Kas: Na, B, Kab, E(Kbs : Kab, A))

3) A à B : E(Kbs : Kab, A)

16

4) B à A : E(Kab : Nb)

5) A à B : E(Kab : Nb – 1)

Here is a step-wise description of what the protocol achieves.

Step 1: The principal A requests from the server S, a key to be used for secure

 communication with B. A includes a random number generated specially for this

 run of the protocol. This nonce (random number) Na is used to ensure that

 message (2) is timely.

Step 2: S creates a key Kab (the secret key for both A and B to use in future exchanges),

 and creates message (2). Only A can decrypt this message successfully because it

 is encrypted with the key that it shares with S (Kas). In doing so A will obtain the

 key Kab and check that the message contains the nonce Na.

Step 3: A passes to B the encrypted message component E(Kbs: Kab, A) as message (3).

Step 4: Principal B decrypts this message to discover the key Kab and that it is to be

 used in communication with A. B then generates a nonce Nb, encrypts it (using

 the newly obtained key Kab), and sends the result to A as message (4).

Step 5: Principal A, who possesses the appropriate key Kab, decrypts it, forms Nb – 1,

 encrypts it and sends the result back to B as message (5). B decrypts this and

 checks that the message is correct.

At the end of a correct run of the protocol, both principals should be in possession of the

secret key Kab newly generated by the server S.

The above description of the protocol [1] in five steps includes information about the

payload data exchanged by the principals. However as previously mentioned, the IDE

17

does not rely on this information for its detection mechanism. The above protocol

description can be abstracted out into the following signature:

1) A à S

2) S ß A

3) S à A

4) A ß S

5) A à B

6) B ß A

7) B à A

8) A ß B

9) A à B

10) B ß A

Each step of the above signature can be considered to be an event. Thus A sending a

message to S is considered as a ‘send’ event from A to B and similarly S receiving a

message from A is a ‘receive’ event by S from A. An important feature of the above

protocol signature is that it also includes the message receiving events. This means that

principal A sending a message to principal S (as in event 1), and correspondingly

principal S receiving the same message (event 2) will be represented as two distinct

events in the protocol signature used by the IDE. All the events marked in bold are the

message receive events.

Consider a scenario during the run of the above protocol in the secure enclave. If

principal A sends a message to the server S as part of the first step of the protocol, it will

inform the activity monitor of SEADS about this. Since a public network is being used

for the message transfer between A and S on insecure lines, the message may get lost or

may be intercepted by an intruder. In either case the server S will never receive the

message sent by A. As a result S will not inform the monitor that it actually received a

message from A. Thus, the sequence of events logged in the monitor will show a message

18

sent by A to S, but not received by S, as evident by the lack of the receive notification by

S to the monitor. It is prudent therefore to include the message receipt as a separate

event in the protocol signature.

The above signature comprising of ten events is actually a signature of a normal run of

the Needham and Schroeder Conventional Key Protocol.

Let us illustrate how the above protocol is subject to an attack, which compromises what

the protocol is actually intended to achieve. This attack on the Needham and Schroeder

Conventional (symmetric) Key Protocol was demonstrated by Denning and Sacco [4].

Consider message (3) of the actual protocol description given above. Although B

decrypts this message and assumes legitimately that it was created by the server S, there

is nothing in the message to indicate that it was actually created by S as part of the

current protocol run. Thus, suppose, a previously distributed key K’ab has been

compromised (say by cryptanalysis) and is known to an intruder Z. Z might have

monitored the network when the corresponding run was executed and recorded message

(3) consisting of E(Kbs: K’ab, A). He can now fool B into accepting the key as new by

the following protocol.

(3) Z(A) à B : E(Kbs : K’ab, A)

(4) B à Z(A) : E(K’ab : Nb)

(5) Z(A) à B : E(K’ab : Nb –1) Note: The notation Z(A) stands for Z

 masquerading as A.

Now, B believes he is following the correct protocol. Z is able to form the correct

response in (5) because he knows the compromised key K’ab. He can now engage in a

communication with B using the compromised key and masquerade as A.

19

Let us generate a signature recognizable by the IDE for the above attack on the Needham

and Schroeder protocol.

1) B ß A

2) B à A

3) B ß A

The above signature comprises of only three events, two receive events and a send event.

Since the malicious intruder (Z), is not part of the secure enclave, it will not co-operate

with the activity monitor and hence will not inform the monitor whenever it sends or

receives messages. Thus the above attack signature will consist only of events, reported

by principal B (a valid principal), to the monitor.

4.2. Use of Finite State Machines

In section 4.1 we have described in detail how the attack signatures are constructed from

the description of security protocols. The IDE interfaces with the activity monitor to

receive events corresponding to protocol sessions executing within the enclave and

compares the events with the attack signatures stored in the knowledge base. The

comparison mechanism in the IDE is achieved by using Finite State Machines.

Each time the IDE receives an event from the monitor, which corresponds to the first

event of a new protocol session, it looks in the knowledge base and constructs a finite

state machine for each signature stored in the knowledge base for that particular protocol.

4.2.1. Signature Format in the Knowledge Base

Each signature is stored in the Knowledge Base in the following format:

begin XX NUM type

state1 principal (à/ß) principal state2 msgNum sessNum

state1 principal (à/ß) principal state2 msgNum sessNum

--

20

--

--

--

end

Notation:

begin/end: Ind icates that the signature starts/ends at this line.

XX: The abbreviated name of the protocol.

 NSCKP – Needham and Schroeder Conventional Key Protocol

NUM: A numeric value which indicates if the signature to follow is one of a correct

 run of the protocol or an attack.

 NUM >= 0 indicates that the signature is an attack signature

 NUM = -1 indicates that the signature is that of a normal run of the protocol.

type: Indicates the type of attack this signature represents. Possible values are:

 S – Single session attack.

 R – Replay attack.

 P – Parallel session attack.

 (See section 4.3 for a discussion about the above three attack types.)

state1: Indicates the Finite State Machine (FSM) state before the event (send or

 receive) takes place. (ss: start state, s1:state 1, etc.)

state2: Indicates the Finite State Machine (FSM) state after the event (send or

 receive) has taken place. (s1:state 1, …. fs :final state)

à/ß send or receive event.

principal: May be the single letter identifiers of principals viz. A, B, S etc.

21

msgNum: The message sequence number in the current run of the protocol.

sessNum: Unused field that may be used to add protocol session numbers if needed.

 This field will always be set to 1 in the current implementation.

Consider an actual signature in the knowledge base. This signature is of the attack

described in section 4.1 on the Needham and Schroeder Conventional Key Protocol

(NSCKP).

begin NSCKP 0 S

ss B ß A s1 1 1

s1 B à A s2 2 1

s2 B ß A fs 3 1

end

4.2.2. Construction of the Finite State Machine

The IDE constructs Finite State Machines for each signature stored in the knowledge

base, corresponding to a protocol session that the IDE is monitoring for attacks. The state

transition diagram for attack signature #0 on the NSCKP protocol (as described in section

4.2.1) is shown below.

Current State Event Next State Message Number
SS B ß A S1 1
S1 B à A S2 2
S2 B ß A FS 3

Initially the transition machine will be in the start state (SS). As the IDE receives events

from the monitor for this particular protocol session it will advance the FSM (for this

signature) if the events coming in match those in the attack signature. Upon a transition to

the final state (in any of the finite state machines corresponding to the attack signatures of

the protocol) the IDE will signal an attack notification if the signature is an attack

22

signature. If the finite state machine corresponding to the normal run of the protocol

reaches the final state (FS) the IDE will not raise any notification alerts, since a correct

run of the protocol has just concluded.

4.3. Attack Detection

The IDE uses distinct detection methodologies for protocol attacks, depending on the

number of sessions over which the attack takes place. Attacks on security protocols may

be over only a single session of the protocol or may utilize information gleaned over

previous runs of the protocol. Thus, attacks detected by the IDE may be classified as:

1.Single session attacks

2.Multi-session attacks

4.3.1. Single Session Attacks

Single session attacks are those attacks which may or may not use information gleaned

over previous sessions of the protocol like encryption keys. However they are not related

temporally in any way with those sessions. The attack demonstrated on the Needham and

Schroeder Conventional Key Protocol (NSCKP) in section 4.1. can be considered as a

single session attack even though its success depends on a previously compromised key

from another session. The detection of single session attacks by the IDE is simply a

matter of the relevant attack finite state machine reaching the final state, upon which the

IDE will signal a notification.

4.3.2. Multi-Session attacks

Multi-session attacks are those attacks which use information gleaned over previous

sessions of the protocol. However such attack sessions have to use the information within

a certain time period of the reference sessions (from which the information is taken), in

order to successfully subvert the protocol.

For the purposes of detecting multi-session attacks the IDE classifies all of them into one

of two categories:

23

• Replay Attacks

• Parallel Session Attacks

4.3.2.1.Replay Attacks

Replay attacks use information extracted from a normal run of a protocol. This

information is used before it expires (say within the FRESHNESS time, if the

information is actually a key) within the attack session of the same protocol. The

detection of such an attack on a protocol by the IDE will not only depend on the

successful passage through all the states of the finite state machine for the attack

signature, but also on the timing aspects relative to a normal run of the protocol.

The IDE will signal such activity as a positive attack only if it occurs within 10 seconds

of a normal run of the protocol. The wait constant has been chosen to be 10 seconds for

the IDE prototype, for demonstration purposes only. However the actual FRESHNESS

time may vary from protocol to protocol and may also depend on the type of application

being run by the principals. If the time difference between the attack session and the

reference session is greater than the wait time, the IDE will flag this activity as suspicious

behavior.

4.3.2.2.Parallel Session Attacks

A parallel session attack occurs when two or more protocol runs are executed

concurrently and messages from one are used to form messages in another. As a simple

example consider the following one-way authentication protocol [1]:

1) A à B : E(Kab : Na)

2) B à A : E(Kab : Na + 1)

Successful execution should convince A that B is operational since only B could have

formed the appropriate response to the challenge is sued in message (1). An intruder can

play the role of B both as responder and initiator. The attack works by starting another

protocol run in response to the initial challenge.

24

1.1) A à Z(B) : E(Kab : Na)

2.1) Z(B) à A : E(Kab : Na)

2.2) A à Z(B) : E(Kab :Na + 1)

1.2) Z(B) à A : E(Kab : Na + 1)

Here A initiates the first protocol with message (1.1). Z now pretends to be B and starts

the second run of the same protocol, with message (2.1), which is simply a replay of

message (1.1). A now replies to this challenge with message (2.2). But this is the precise

value A expects to receive back in the first protocol run. Z therefore provides this

message as message (1.2).

The IDE is capable of detecting such attacks by checking whether the time for which the

first protocol blocks at a particular step is long enough for another complete run of the

protocol to complete. After the second run is complete, the first protocol resumes and

completes its remaining steps.

4.3.3. Limitations to the Attack Detection Capabilities of the IDE

There are certain types of attacks on security protocols called man-in-the middle attacks,

where a malicious intruder may intercept exchanges between valid principals of the

enclave. However, the intruder modifies the message in such a manner that the structure

of the message is still what the receiving party expects. As a result principal A might

send a message to principal B. This message is intercepted by an intruder (say M). M

now modifies the message and forwards it to B.

Within the secure enclave, A reports the sending of the message to the activity monitor

and B also reports the receiving of the message from A, to the monitor. In such a manner

the entire protocol exchange will look like a correct run of the protocol to the IDE, and

such attacks may not be detected.

25

However strictly speaking, this limitation is actually a fundamental flaw of the protocol,

which allows messages to be altered in such a way as to maintain the correct structure of

the expected message. The receiving principal will therefore not have any reason to

believe that the message came from someone other than a valid principal belonging to the

enclave.

26

5. Design of the Intrusion Detection Engine

This section will provide an insight into the design that went towards implementing the

Intrusion Detection Engine. A justification of the major design decisions is also given in

the section. The design of the IDE uses the object-oriented paradigm. The entire problem

was broken down into smaller components, and appropriate classes were developed for

entities, where necessary.

5.1. Architectural Design

Here are some of the issues, which had to be taken into account in the design phase of

this project.

• Handling multiple concurrent sessions of different protocols executing within the

enclave and keeping track of each.

• Detecting attacks spanning over different active protocol sessions (Parallel

session and replay attacks).

• Ensuring detailed reporting of detected attacks and/or suspicious activities.

• Interfacing with the Monitor and the Knowledge Base

• Maintaining a consistent and reliable attack detection capability.

5.1.1 Design Decisions

The IDE is multi- threaded with a single thread to serve as the thread dispatcher. Every

time the IDE receives an event from the activity monitor, which corresponds to the first

event of a new protocol session, the IDE will spawn a thread to monitor all the FSMs for

that particular protocol. Protocol A Session 1

 Protocol A Session 2

 Activity Events IDE Thread
 Monitor Dispatcher Protocol B Session 1

 Protocol C Session 1

27

 Figure 2:Thread Design Channeling the events to the relevant thread
Any further events coming in from the activity monitor belonging to a protocol session

which is already being monitored by an IDE thread, are channeled to the relevant thread.

To keep track of all the threads existing within the system, a ThreadList class was

employed, which would hold the following information for each thread:

• Protocol Name

• Session Number

• Principals involved

• Thread identifier

• Signal to which the thread listens, whenever the IDE receives an event meant for

it.

5.1.1.1.Functionality of Threads

Given below are the functions that each thread performs for the IDE.

• Advance the FSM for each signature (normal or attack) for that particular

protocol, if an event match occurs.

• Raise alerts upon detection of an attack or conclusion of a normal protocol

session.

• Write the detailed attack information to a text file.

• A thread will die upon detection of an attack/normal session or suspicious

activity. However if a particular protocol hangs with no further events coming

into the IDE, the thread will die after a timeout period and it will signal the

activity as an abnormal termination

• When a thread dies the corresponding entry from the ThreadList will be removed.

The reason threads are chosen as an option for the IDE is:

• The upper limit on the number of concurrent threads spawned by a process is

limited only by the virtual memory on the system.

• There are no synchronization issues to be taken care of as all the threads have

their own memory space and can also access the global variables. Any data

28

structure that is accessed by all the threads, has been protected by means of a

critical section.

5.2. Design Flowchart

The overall design of the IDE can be represented by means of flow chart for greater

clarity. (See figure 3.)

29

 Activity
 Monitor

 IDE
 (Thread Dispatcher)

 YES
 New Create New
 Session?? Thread

 NO

 Channel the Event NO
 Event to the relevant Match? Suspicious

 monitoring thread
 Timeout

 YES

 Advance …….. Advance
 FSM FSM

 Continue monitoring NO YES
 Notify and
 for attacks Attack? Write to attack
 log file

Figure 3: Design Flowchart

30

6. The Graphical User Interface

In this project, a graphical user interface (GUI) was implemented for an overall view of

the attacks / suspicious activities detected within the enclave. The GUI provides the

following capabilities.

6.1. Reporting Attacks to the user

The user can specify the time duration and the protocol name to obtain a detailed report

of all the attacks (on the specific protocol) that took place during that period.

The report includes:

• The name of the protocol subject to attack.

• The principals involved in that session.

• The attack signature from the Knowledge base corresponding to that attack

• The time that the attack took place.

• The type of that attack.

6.2. Backup of the Active Attack Log File.

The GUI also allows the user to back up the active attack report file to another file. The

GUI will still read from both files to create the attack reports, but the IDE threads will

only be writing to the newly empty active file.

31

7. Testing

Upon completion of each significant milestone, the IDE was tested to ensure that the

existing product as well as the new additions functioned correctly. Test cases were

developed in order to ensure that the IDE does indeed provide all the functionality that is

mentioned in section 3.3.

Accordingly we will mention each individual functional claim and provide the test results

to prove that it is satisfied.

a) Detection of Positive Attacks: The environment being monitored by the

IDE was systematically subjected to attacks of each of the three types viz.

Single session, Replay and Parallel Session attacks. The IDE was able to

detect all three types of attacks.

b) Detection of suspicious activity: Event sequences not corresponding to

any attacks or normal protocol runs were simulated for protocols. The IDE

was correctly able to report such activity as unrecognizable suspicious

activity.

c) Detection of abnormal termination: A protocol session was simulated in

which there is abnormal termination before the current run has reached its

completion. In such a case, the IDE thread monitoring this session, times

out after the TIMEOUT period and reports abnormal termination of the

protocol.

d) Detailed Reporting Capability: In each of the above three cases, the IDE

will generate a detailed report about the attack and add this information to

the attack log file.

 The attack reports generated by the IDE will provide full details including

• Principals involved in the attack session.

32

• Protocol Name

• Signature of the attack (if existing in the knowledge base)

• Time of the attack.

• Type of the attack.

e) Graphical User Interface: The GUI was tested to check whether a user

could get a comprehensive report on the attacks specified by him, over the

specified time duration.

f) Consistent Interface with the Activity Monitor: During its normal

functioning, the IDE seamlessly interfaced with the Monitor and there

were no losses of events between these two modules, or any loss of

functionality of one due to the other.

33

8. Conclusion

In this project I have designed and implemented a Knowledge Based Intrusion Detection

Engine to detect attacks on security protocols executing within a secure enclave. This

project will provide the necessary extra level of protection for encrypted exchanges,

which was mentioned in section 1.2.

Extensive research on the characteristics of security protocols enabled this detection

methodology to achieve its desired functionality. Extracting the description of security

protocols into sequences of events, allows the IDE to detect attacks on those protocols.

The IDE will detect any attacks or suspicious activity on security protocols executed by

valid principals operating within a secure enclave. The detection of the IDE compares

protocol activity gathered by the Activity Monitor against the attack signatures stored in

the Knowledge base.

A Graphical User Interface (GUI) was also developed in order to facilitate an overall

report of attacks that have been detected by the IDE, along with their occurrence times.

34

9. Future Work

In this project the Intrusion Detection mechanism uses the Knowledge Based paradigm

and incorporates state transition analysis to represent attacks on protocols. A further

direction that this research could take is to use Colored Petri Nets (CPNs) mentioned in

section 2.2.2. to detect attacks on the protocols.

Consider an example [2] of the functionality provided by CPNs for intrusion detection. If

our knowledge base contains information, that a person attempting to login 5 times

unsuccessfully within the span of one minute, is a malicious intruder, then we have the

following CPN.

 t = T1 t = T2

 Unsuccessful Unsuccessful Unsuccessful Unsuccessful Unsuccessful
 Login Login Login Login Login

S1 S2 S3 S4 S5 S6

(start) (final)

 Figure 4. CPN

Figure 4. shows a CPN, which will issue an alarm when the number of unsuccessful

logins within one minute exceeds five. Each vertical bar represents the transitions. A

transition, from say state S1 to state S2 can only occur if there is a token in state S1 and

there has been an unsuccessful login attempt. The time of the first unsuccessful login

attempt is stored in the token variable t. The final transit ion from state S5 to state S6 can

.

35

only occur if there is a token in S5, an unsuccessful login attempt and the time difference

between this attempt and the first unsuccessful login attempt is less than a minute.

Behavior based intrusion detection is also another possible way to detect intrusions in

secure enclaves. Neural networks could be used in order to learn legitimate protocol

behavior and use this as a leverage to detect any anomalous or abnormal activity in the

secure enclave.

36

10. Appendix

A. Resources used during the project

Project Development Environment: This project was implemented using the Microsoft

Visual C++ development environment. All the code was written in C++.

For the Graphical User Interface, the Microsoft Foundation Class library was used to

develop the graphical windows and other components.

In order to manage the multi- threading aspects of the implementation, the Win32 API

was also used.

Lessons from this project

Over the course of this Master’s project I was able to enhance and hone my skills in a

number of aspects of Computer science. I learnt a great deal about Network Security and

the execution of security protocols. In addition to the implementation aspects of this

project, a major issue was handling the interfaces with the other modules of SEADS,

which was a good experience. Due to the nature of this project I learnt a lot about multi-

threaded Windows programming and developing graphical user interfaces.

37

B. Class Diagrams

The Class Diagrams for classes which provide the core functionality of the back end of

the IDE, along with a brief description of their attributes are given below. Each class

diagram has a header that is the name of the class. All the attributes and the methods are

given below the header.

1) Event

Attributes

p1: string

type: string

 p2:string

msgSeqNum : int

timestamp: time_t

Objects of the event class are used to store information about a single event such as

A à B or B ßA

• p1 is a string, which represents the first principal of an event.

• p2 is a string, which represents the second principal of an event.

• type is a string which holds the type of the event i.e. “send” or “receive”

• msgSeqNum is an integer, which holds the message sequence number in the

protocol.

• timestamp is an object of the time_t class used to hold the time at which the event

occurs.

38

2) EventIndex

protocolName: string

principals : map<string,string>

sessionNum: int

sessionId: int

vectorIndex : int

vectorSize : int

The objects of the EventIndex class are used to reference individual events in the data

structure of events maintained by the Activity Monitor.

• protocolName: string value which holds the protocol name for that particular

event.

• principals: Standard template Library (STL) map structure which maps actual

principal names to single letter names like A, B, S etc. This variable indicates the

principals involved in the protocol.

• sessionNum: an integer value, which stores the session number (sequential) for

each protocol involving the same principals.

• sessionId: A number generated by the principals when they begin a protocol

session.

• vectorIndex: Index of the event in the data structure which is a STL vector.

• vectorSize: Length of the protocol session (in terms of number of events) as

stored in the data structure.

39

3) FSM

fsmNumber : int

currentState : int

protName string

numEvts : int

machineType : string

FA : vector<Event>

stopFSM : int

advanceFSM(…)

createMachine(…)

checkAttackSeq(….)

checkAttackReplay(….)

checkAttackParallel(…)

checkNormalSession(….)

writeToFile(….)

Objects of the FSM class are used to hold all information about a single finite state

machine for a particular signature existing in the knowledge base. This class is the

software implementation of the finite state machine.

• fsmNumber: integer value, which indicates which signature in the Knowledge

base, the FSM corresponds to.

• currentState: integer, which holds the current state of the FSM.

40

• protName: string value, which indicates which protocol this FSM has been

created for.

• numEvts: number of events existing in the knowledge base signature

corresponding to this FSM.

• machineType: string, which indicates if this FSM is one monitoring, attacks on a

normal protocol signature or an attack signature.

• FA: a STL vector structure, which holds all the events corresponding to the

signature for this FSM.

• stopFSM: a flag indicating if the FSM is still active or terminated.

Methods:

• advanceFSM(): This method will advance the state of the finite state machine

upon occurrence of an event match.

• createMachine(): This method reads the knowledge base of signatures and

populates the FSM object with relevant information based on reading a particular

signature.

• checkAttackSeq() : This method checks whether the FSM has advanced to its

final state for a single session attack to be signaled.

• checkAttackReplay() : This method checks whether the FSM has advanced to its

final state for a replay attack to be signaled.

• checkAttackParallel() : This method checks whether the FSM has advanced to its

final state for a parallel session attack to be signaled.

• checkNormalSessionl() : This method checks whether the FSM has advanced to

its final state for a normal run of the protocol to have concluded.

• writeToFile(): This method will write the information about the detected attack or

suspicious activity to the attack log file.

41

 4) ThreadInfo

protName : string

sessionNum : int

sessionId : int

principals : map<string,string>

threadId : unsigned int

threadEventHand le : HANDLE

Objects of the ThreadInfo class hold information about each thread monitoring individual

protocol sessions. Each protocol session is uniquely identified by the protocolName,

session number and the principals involved in the protocol.

• protName: string variable, which is used to store the protocol name.

• sessionNum: an integer value, which stores the session number (sequential) for

each protocol involving the same principals.

• sessionId: an integer value which is a random number generated by the principals.

• threadId: an unsigned integer value (corresponding to DWORD in Win32) used to

store the thread identifier.

• threadEventHandle: a Win32 HANDLE to the signal event signaled by the

dispatcher IDE thread, when it receives an event belonging to a protocol session

which is being monitored by this thread.

42

5) ThreadList

 threadManager list<ThreadInfo>

An object of this class is used to store the global information about all the threads

spawned by the IDE, which are currently active.

• threadManager: This is an STL list data structure comprising of objects of the

ThreadInfo class.

43

C. The IDE Source Code

The code that went into the project is attached in the following pages. The code is

organized into the following files:

IDE Backend

1.Seads_Util.h: This header file contains the class declarations and global function

 prototypes, which are used by the IDE.

2.Seads_Util.cpp: This is the implementation file containing the function definitions of

the various class member functions and global functions.

3.Seads_General.h: This header file contains classes shared between the Activity

monitor implementation and the IDE.

4.Seads_Monitor.cpp: This implementation file contains the code for the

interface between the Activity Monitor and the IDE. The Activity Monitor actually

creates an IDE thread, which runs continuously. Only relevant code from this file has

been attached.

IDE Graphical User Interface

1.Dialogs.h: This is the header file, which contains the declarations for the Attack Report
Dialog Box class.

2.Dialogs.cpp: This file contains the implementation for the methods declared in
“Dialogs.h”.

3.CIDEDoc.h: This header file contains the declarations for the CIDEDoc class (a
Document class), which is part of the Document/View, architecture of the Microsoft
Foundation Class library (MFC) used to develop the GUI.

4.CIDEDoc.cpp: This file contains the CIDEDoc class method definitions.

5.CIDEView.h: This header file contains the declarations for the CIDEView class (a
View class) - another part of the Document/View architecture of MFC.

6.CIDEView.cpp: This file contains the CIDEView class method definitions.

Some of the other code, which is primarily generated by the development environment,
has not been attached.

44

///////////////
// SEADS_Util.h
///////////////

#ifndef _SEADS_UTILITY_H
#define _SEADS_UTILITY_H

#include <string> // For the string STL container
#include <vector> // For the vector STL container
#include <map> // For the STL maps
#include <list> //

#include <process.h>

#include <fstream>
#include <ctime>

#include "SEADS_General.h"

#define KBASE "SEADS_Signature_File.txt"
#define OUTFILE "attackReport.txt"
#define OUTFILE_GUI "report.txt"

using namespace std;

// Class to keep track of each session monitoring thread
// Holds all the relevant information for a single thread
class ThreadInfo
{
public:

 string protName; // protocol name
 int sessionNumber; // session number (sequential)
 int sessionId; // session nonce (random generated)
 nameMap principals; // principals involved
 // protName, sessionNumber and principals uniquely
identifies a session
 DWORD threadId; // unique thread identifier
 HANDLE threadEventHandle; // handle to the event which the dispatcher thread will
signal.
};

// Class to keep track of all session threads created.
class ThreadList
{
 public:
 list<ThreadInfo> threadManager; // list of individual ThreadInfo objects.
 // corresponding to the number of alive sessions.

};

class GlobalVariables
{
public:
 GlobalVariables();
 ~GlobalVariables();

 // Globals shared between dispatcher thread and FSM threads
 CRITICAL_SECTION outfile_cs; // critical section for the output file
 CRITICAL_SECTION tList_cs; // critical section to access the ThreadList
 CRITICAL_SECTION cout_cs; // critical section for console output
 ThreadList tList;
};

45

// Class for shared objects between the monitor and the IDE.
class ThreadParameters
{
public:
 GlobalVariables gv;
 HANDLE evtHandle;
 Monitor *mPtr;
};

// FSM class which holds a SINGLE attack/ normal signature.
class FSM
{

public:

 FSM();
 int advanceFSM(ThreadParameters *,Event,EventIndex);
 void createMachine(int, vector<string>, int);
 int checkAttackSeq(ThreadParameters *,EventIndex);
 int checkAttackReplay(ThreadParameters *,EventIndex);
 int checkAttackParallel(ThreadParameters *, EventIndex);
 int checkNormalSession(ThreadParameters *);
 int writeToFile(ThreadParameters *, EventIndex, string);
 int stopFSM;
 string detectType; // if attack detected by FSM..what type?

private:

 int fsmNumber;

 int currentState;
 string protName;
 int numEvts;
 string machineType; // attack or normal
 vector<Event> FA;
 string attackType; // sequential or replay or parallel session. (S/R/P)
 int blockTime; // time for which the session should block for parallel session
attacks
 int blockEvt; // event at which the session should block.

};

// Thread Procedure
unsigned __stdcall SessionAttackFunc (LPVOID holder);

// Utility functions
void getThreadInfo(ThreadParameters *, ThreadInfo *, DWORD);
HANDLE getEventHandle (ThreadParameters *,EventIndex *ei);
void evtToString(Event, char *);
int numSignatures(const char *, vector<string> *, int *);
int eventCompare(Event, Event);

int writeSuspicious(ThreadParameters *,EventIndex ,string,string);
void removeThreadEntry(DWORD, ThreadParameters *);
int checkTime(ThreadParameters *,EventIndex);
int checkTimeParallel(ThreadParameters *,EventIndex, int, int);

#endif

46

/***************************************
 SEADS_Util.cpp
 Sachin Goregaoker
 Last Modified: 7/5/2001
 Intrusion Detection Engine
**/

/***
 This File contains the utility function definitions as well as
 the various class member function definitions for the IDE.
 The dispatcher thread method is contained in this file.
**/

#include <string> // For the string type
#include <iostream>
#include <fstream> // File reading and writing
#include "SEADS_Util.h" // Header file with the class definitions

/***
 This function compares two Event class objects and determines if
 they are the same.
 Return value: 1 if there is an event match.
 0, otherwise
 ***/

int eventCompare(Event A, Event B)
{
 if(A.p1==B.p1 && A.type==B.type && A.p2==B.p2)
 return 1;
 else return 0;
}

// Constructor for the class GlobalVariables
// Contains the initializations for the critical sections

GlobalVariables::GlobalVariables()
{
 InitializeCriticalSection(&outfile_cs);
 InitializeCriticalSection(&tList_cs);
 InitializeCriticalSection(&cout_cs);
}

// Destructor for the class GlobalVariables.
// Deletions of the critical sections are contained in the destructor.

GlobalVariables::~GlobalVariables()
{
 DeleteCriticalSection(&outfile_cs);
 DeleteCriticalSection(&tList_cs);
 DeleteCriticalSection(&cout_cs);

}

// Constructor for the class FSM.

FSM::FSM()
{
 stopFSM=0; // Indicating the status of the particular FSM
 numEvts=0; // Number of events in the FSM
 currentState=0; // Current State of the FSM
 blockTime = 0; // blocking time for parallel session attacks.
}

/***

47

 This function reads from the vector which contains the
 signatures read in from the KBASE. Then it will create
 the FSM for each signature belonging to the protocol
 being monitored for attacks.

 This function will populate the FA vector with individual
 events.
 ***/

void FSM::createMachine(int id, vector<string> buffer, int bufLength)
{

 int i=0,j=0;
 int fsmCreated=0;
 char *temp=new char[100];
 char *charid=new char[100];
 char *token;
 char *delimiter=" ";

 while(i<bufLength && !fsmCreated)
 {
 strcpy(temp,buffer[i++].c_str());
 token=strtok(temp,delimiter);

 if(strcmp(token,"begin")==0)
 {
 protName=strtok(NULL,delimiter);
 token=strtok(NULL,delimiter);

 if(strcmp(token,itoa(id,charid,10))==0)
 {

 if(id<0)
 machineType="normal";
 else
 {
 machineType = "attack";
 attackType = strtok(NULL, delimiter);
 }

 fsmNumber=id;

 while(1)
 {

 Event evt;
 strcpy(temp,buffer[i++].c_str());

 token=strtok(temp,delimiter);

 if(strcmp(token,"end")!=0)
 {

 token=strtok(NULL,delimiter);

 evt.p1=token;
 token=strtok(NULL, delimiter);

 if(strcmp(token,"->")==0)
 evt.type="send";
 else
 evt.type="recv";

 token=strtok(NULL,delimiter);

 evt.p2=token;
 token = strtok(NULL,delimiter);
 evt.msgSeqNum=atoi(strtok(NULL,delimiter));

48

 FA.push_back(evt);
 // get the session number
 strtok(NULL,delimiter);
 // get the block time if parallel session attack

 char *s = 0;
 s = strtok(NULL,delimiter);
 if(s)
 {
 blockEvt = numEvts;
 blockTime = atoi(s);
 }

 numEvts++;

 j++;
 }
 else
 {

 fsmCreated=1;
 break;
 }
 }

 }

 }

 }

}

/***
 This function will advance the state of the FSM, and if there
 happens to be an attack, it will display the appropriate
 attack notification.

 Returns 1 if an attack protocol session has terminated
 Returns 2 if an normal protocol session has terminated
 Returns 0 otherwise.
**/

int FSM::advanceFSM(ThreadParameters *tp,Event evt,EventIndex ei)
{

 if(!stopFSM)
 {
 if(eventCompare(evt ,FA[currentState]))
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout<< " An event match has occurred in FSM #" << fsmNumber << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 currentState++;

 // check if the fsm is a fsm monitoring replay attacks
 if(attackType.compare("R") == 0)
 {
 int check = checkAttackReplay(tp,ei);
 if(check)
 return 1;
 else return 0;
 }

49

 // single session attacks
 else if(attackType.compare("S") == 0)
 {
 int check = checkAttackSeq(tp,ei);
 if(check)
 return 1;
 else
 return 0;
 }

 // parallel session attack
 else if(attackType.compare("P") == 0)
 {
 int check = checkAttackParallel(tp,ei);
 if(check)
 return 1;
 else
 return 0;

 }
 else
 {
 if(checkNormalSession(tp))
 return 2;
 else return 0;
 }

 }
 else
 {
 stopFSM = 1;
 return 0;
 }
 }
 else
 {
 //stopFSM=1;
 return 0;
 }

}

/***
 This function will determine if the FSM has advanced
 sufficiently such that the attack in progress exactly
 matches one from the KBASE which is a single session
 attack.
 Returns 1 if an attack activity has occurred.
 Returns 0 otherwise.
 ***/

int FSM::checkAttackSeq(ThreadParameters *tp, EventIndex ei)
{
 if(currentState==numEvts && strcmp(machineType.c_str(),"attack")==0)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << endl << "*********************************" << endl
 << "******SINGLE SESSION ATTACK******" << endl
 << "*********************************" << endl
 << endl;

 writeToFile(tp,ei,"S");

 cout<< "A single session attack on the " << protName
 << " protocol [FSM #" << fsmNumber << "] has been detected!!" << endl <<
endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 stopFSM = 1;
 detectType = "attack";

50

 return 1;

 }

 else return 0;
}

/***
 This function will determine if the FSM has advanced
 sufficiently such that the attack in progress exactly
 matches one from the KBASE which is a multi-session
 replay attack.
 Returns 1 if an attack or suspicious activity has occurred.
 Returns 0 otherwise.
 ***/

int FSM::checkAttackReplay(ThreadParameters *tp,EventIndex ei)
{
 if(currentState==numEvts && strcmp(machineType.c_str(),"attack")==0)
 {

 if(checkTime(tp,ei))
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << endl << "*********************************" << endl
 << "*********REPLAY ATTACK***********" << endl
 << "*********************************" << endl
 << endl;

 writeToFile(tp,ei,"R");

 cout << "A REPLAY attack on the " << protName
 << " protocol [FSM #" << fsmNumber << "] has been detected!!" << endl
<< endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 stopFSM = 1;
 detectType = "attack";
 return 1;
 }
 else
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << endl << "*********************************" << endl
 << "*******SUSPICIOUS ACTIVITY*******" << endl
 << "*********************************" << endl;

 writeToFile(tp,ei,"SS");
 cout << "Suspicious behaviour was detected on the "<< protName
 << " protocol!! "<< endl << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 stopFSM = 1;
 detectType = "attack";
 return 1;
 }

 }

 else return 0;

}

/***
 This function will determine if the FSM has advanced
 sufficiently such that the attack in progress exactly
 matches one from the KBASE which is a Parallel-session

51

 attack.
 Returns 1 if an attack or suspicious activity has occurred.
 Returns 0 otherwise.
 ***/

int FSM::checkAttackParallel(ThreadParameters *tp, EventIndex ei)
{
 if(currentState==numEvts && strcmp(machineType.c_str(),"attack")==0)
 {
 if(blockTime == 0)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << "***" << endl
 << "There is a possibility that a parallel session attack" << endl
 << " is under way!!" << endl
 << "***" << endl <<
endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 stopFSM = 1;
 detectType = "attackPP";
 return 1;
 }
 else
 {
 int check = checkTimeParallel(tp,ei,blockTime,blockEvt);
 if(check)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << endl << "*********************************" << endl
 << "****PARALLEL SESSION ATTACK******" << endl
 << "*********************************" << endl
 << endl;

 writeToFile(tp,ei,"P");

 cout << "A PARALLEL SESSION attack on the " << protName
 << " protocol [FSM #" << fsmNumber << "] has been detected!!" <<
endl << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 stopFSM = 1;
 detectType = "attackP";
 return 1;

 }
 else
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << endl << "*********************************" << endl
 << "*******SUSPICIOUS ACTIVITY*******" << endl
 << "*********************************" << endl;

 writeToFile(tp,ei,"SS");
 cout << "Suspicious behaviour was detected on the "<< protName
 << " protocol!! "<< endl << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 detectType = "attack";
 stopFSM = 1;
 return 1;
 }
 }
 }
 else
 return 0;

}

/***

52

 This function will determine if the FSM has advanced
 sufficiently such that the session in progress exactly
 matches a normal session from the KBASE.
 Returns 1 if an normal session has occurred.
 Returns 0 otherwise.
 ***/
int FSM::checkNormalSession(ThreadParameters *tp)
{
 if(currentState == numEvts && strcmp(machineType.c_str(),"normal") == 0)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << "***" <<
endl;
 cout << "A normal session of the " << protName << " protocol has concluded"
 << endl;
 cout << "***" <<
endl << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 stopFSM = 1;
 detectType = "normal";
 return 1;
 }
 else
 return 0;

}

/***
 This function is used for detecting parallel session
 attacks to check if a previously concluded normal session
 has concluded within the time frame that an attack
 session blocks.

 Returns 1 if the time elapsed between the two sessions
 [reference session and attack session] allows for the
 possiblity of a parallel session attack.
 Returns 0 otherwise.
 ***/

int checkTimeParallel(ThreadParameters *tp, EventIndex ei,int blockTime,int blockEvt)
{
 Event evtRef1,evtRef2,evtPar1,evtPar2; // Event object holder variables.
 EventIndex tempIndex;
 ei.vectorIndex = blockEvt - 1;
 evtRef1 = tp->mPtr->queryMonitor(&ei);
 ei.vectorIndex = blockEvt;

 evtRef2 = tp->mPtr->queryMonitor(&ei);
 int numSessions;
 vector<PrincipalsSessions> ps;
 ps=tp->mPtr->querySessions(ei.protocolName);
 int size = ps.size();
 for (int i=0; i<size; i++)
 {
 if(ps[i].principals == ei.principals)
 {
 numSessions = ps[i].numSessions;
 break;
 }
 }

 int nextSession = ei.sessionNum + 1;
 for(int j=nextSession; j < numSessions; j++)
 {
 ei.vectorIndex = 0;
 ei.sessionNum = j;
 tp->mPtr->queryMonitor(&ei);
 ei.vectorIndex = ei.vectorSize-1;
 Sleep(500);

53

 evtPar2 = tp->mPtr->queryMonitor(&ei);
 // Check if the second interleaved session is a parallel attack session.
 if(evtPar2.type.compare("attackParallelSessionOver") == 0)
 {

 ei.vectorIndex = 0;
 evtPar1 = tp->mPtr->queryMonitor(&ei);

 if((difftime(evtPar2.timeStamp,evtPar1.timeStamp) <= (float) blockTime)
 && (difftime(evtPar1.timeStamp,evtRef1.timeStamp) > 0)
 && (difftime(evtRef2.timeStamp,evtPar2.timeStamp) > 0))
 {
 return 1;
 }
 }
 }

 return 0;
}

/***
 This function is used for detecting Replay attacks
 to check if a previously concluded normal session
 has concluded within the FRESHNESS time for a Replay
 attack to possibly take place.

 Returns 1 if the time elapsed between the two sessions
 [reference session and attack session] is less than
 Freshness time
 Returns 0 otherwise.
 ***/

int checkTime(ThreadParameters *tp,EventIndex ei)
{

 const double FRESHTIME = 10;
 EventIndex holder;
 holder.principals = ei.principals;
 holder.protocolName = ei.protocolName;
 Event prevEvent,currEvent;
 currEvent = tp->mPtr->queryMonitor(&ei);

 int numSessions =ei.sessionNum;
 for(int j=0; j < numSessions ; j++)
 {
 holder.sessionNum = j;
 holder.vectorIndex = 0;
 tp->mPtr->queryMonitor(&holder);
 holder.vectorIndex = (holder.vectorSize - 1);
 prevEvent = tp->mPtr->queryMonitor(&holder);
 /* cout << " The two time stamps are :" << endl ;
 cout << " New Event: " << currEvent.timeStamp << endl;
 cout << " Old Event: " << prevEvent.timeStamp << endl;*/
 cout << "Time waited between sessions is: "
 << difftime(currEvent.timeStamp,prevEvent.timeStamp) << endl;
 if(prevEvent.type.compare("normalSessionOver") == 0)
 {
 if(difftime(currEvent.timeStamp,prevEvent.timeStamp) <= FRESHTIME)
 {
 return 1;
 //break;
 }

 }

 else continue;

 }

54

 return 0;
}

/***
 This function will enable the reporting of attack information
 by means of a text file. This file will have information like:
 Protocol name, type of attack, time of attack,parties involved.
 ***/

int FSM::writeToFile(ThreadParameters *tp,EventIndex ei,string type)
{
 //
 char *lockFile = "lock.txt";
 HANDLE fHandle;
 while(1)
 {
 fHandle = (HANDLE) CreateFile(lockFile, GENERIC_READ, 0, NULL,
 CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);

 if(fHandle == INVALID_HANDLE_VALUE)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << "File already locked" << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 //Sleep(5000);
 CloseHandle(fHandle);

 }
 else
 break;
 }

 //

 //ofstream outReportFile(OUTFILE, ios::app);
 ofstream outGuiFile(OUTFILE_GUI,ios::app);
 if(!outGuiFile)
 {
 cerr << "File could not be opened for writing!" << endl;

 CloseHandle(fHandle);
 DeleteFile(lockFile);
 return 0;
 }

 /*if(!outReportFile)
 {
 cerr << "File could not be opened for writing!" << endl;

 CloseHandle(fHandle);
 DeleteFile(lockFile);
 return 0;
 }*/
 outGuiFile << "Attack" << "\n";
 outGuiFile << protName << "\n";

 time_t ltime;
 time(<ime);
 outGuiFile << ltime << "\n";

 string st;
 string atType;
 // Parallel session detected
 if(type == "P")
 {
 atType = "Parallel Session";
 st = "There was a PARALLEL SESSION attack on the ";

55

 }
 // Replay attack detected
 else if(type == "R")
 {
 atType = "Replay";
 st = "There was a REPLAY attack on the ";
 }
 // single session attack detected
 else if(type == "S")
 {
 atType = "Single Session";
 st = "There was a SINGLE SESSION attack on the ";
 }
 // suspicious activity detected
 else if(type == "SS")
 {
 atType = "Suspicious behavior";
 st = "Suspicious behaviour was detected on the ";
 }
 char temp[30];
 st.append(protName);
 st.append(" protocol");

 st.append(" [Signature #");

 st.append(itoa(fsmNumber,temp,10));
 st.append("].");

 st.append("\n");
 st.append("This attack involved the following principals:\n");
 int i=1;
 map<string,string>::iterator pos;
 for(pos = ei.principals.begin(); pos != ei.principals.end(); ++pos)
 {
 st.append(itoa(i,temp,10));
 st.append(". ");
 st.append(pos->second);
 outGuiFile << pos->second << " ";
 st.append(": ");
 st.append(pos->first);
 outGuiFile << pos->first << " ";
 st.append("\n");
 i++;
 }
 outGuiFile << "!" << "\n";
 outGuiFile << atType << "\n";
 outGuiFile << fsmNumber << "\n" << "\n";

 outGuiFile.close();

 /*outReportFile << "***\n";
 outReportFile << st << '\n' << "Attack Detected on: " << ctime(<ime) << '\n';

 outReportFile.close();*/

 CloseHandle(fHandle);
 DeleteFile(lockFile);
 return 1;

}

/***
 This function will enable the reporting of attack information
 such as abnormal termination or suspicious protocol activity
 by means of a text file. This file will have information like:
 Protocol name, type of attack, time of attack,parties involved.
 ***/

int writeSuspicious(ThreadParameters *tp,EventIndex ei,string protName,string type)
{

56

 char *lockFile = "lock.txt";
 string atType; // abnormal termination or suspicious behavior
 HANDLE fHandle;

 while(1)
 {
 fHandle = (HANDLE) CreateFile(lockFile, GENERIC_READ, 0, NULL,
 CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);

 if(fHandle == INVALID_HANDLE_VALUE)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 //cout << "File already locked" << endl;
 //Sleep(5000);
 LeaveCriticalSection(&tp->gv.cout_cs);
 CloseHandle(fHandle);

 }
 else
 break;
 }

 //ofstream outReportFile(OUTFILE, ios::app);
 ofstream outGuiFile(OUTFILE_GUI,ios::app);
 /*if(!outReportFile)
 {
 cerr << "File could not be opened for writing!" << endl;

 CloseHandle(fHandle);
 DeleteFile(lockFile);
 return 0;
 }*/
 if(!outGuiFile)
 {
 cerr << "File could not be opened for writing!" << endl;

 CloseHandle(fHandle);
 DeleteFile(lockFile);
 return 0;
 }

 outGuiFile << "Attack" << "\n";
 outGuiFile << protName << "\n";

 time_t ltime;
 time(<ime);
 outGuiFile << ltime << "\n";
 string st;

 // suspicious activity detected
 if(type == "SU")
 {
 st = "Suspicious behaviour was detected on the ";
 atType = "Suspicious behavior";
 }
 else if(type == "AB")
 {
 st = "Abnormal termination was detected on the ";
 atType = "Abnormal termination";
 }
 st.append(protName);
 st.append(" protocol");

 st.append("\n");
 st.append("This attack involved the following principals:\n");
 int i=1;

57

 map<string,string>::iterator pos;
 char temp[10];
 for(pos = ei.principals.begin(); pos != ei.principals.end(); ++pos)
 {
 st.append(itoa(i,temp,10));
 st.append(". ");
 st.append(pos->second);
 outGuiFile << pos->second << " ";
 st.append(": ");
 st.append(pos->first);
 outGuiFile << pos->first << " ";
 st.append("\n");
 i++;
 }
 outGuiFile << "!" << "\n";
 outGuiFile << atType << "\n";
 outGuiFile << "-1" << "\n" << "\n";

 /*outReportFile << "***\n";
 outReportFile << st << '\n' << "Attack Detected on: " << ctime(<ime) << '\n';
 outReportFile.close();*/
 outGuiFile.close();
 CloseHandle(fHandle);
 DeleteFile(lockFile);
 return 1;

}

/***
 Entry function for the threads monitoring
 attacks on distinct sessions.
 ***/

unsigned __stdcall SessionAttackFunc (LPVOID lp)
{
 // Local variables
 int attack=0;
 vector<string> buffSig;
 DWORD thStatus;
 int vecLen=0;
 FSM *fs;

 int sigs=0, evtIndex=0;
 bool newEvent = true;
 bool evtSignal = false;
 buffSig.clear();
 ThreadInfo thInfo;
 DWORD currThreadId;

 currThreadId = GetCurrentThreadId();
 EventIndex ei;
 int suspicious = 0;
 int waitTime = 0;

 ThreadParameters *tp = (ThreadParameters*)lp;

 getThreadInfo(tp, &thInfo, currThreadId);

 ei.principals = thInfo.principals;
 ei.protocolName = thInfo.protName;
 ei.sessionNum = thInfo.sessionNumber;
 ei.sessionId = thInfo.sessionId;
 bool killThread = false;
 int numWaits = 0;
 while(1)
 {
 bool didTimeOut = false;
 int machineOver = 0;

58

 thStatus = WaitForSingleObject(thInfo.threadEventHandle, 3000);

 if(thStatus == WAIT_OBJECT_0)
 {
 if(numWaits > 0)
 numWaits = 0;
 didTimeOut = false;
 evtSignal = true;
 }

 else if(thStatus == WSA_WAIT_TIMEOUT)
 {
 didTimeOut = true;
 //cout << "IN TIMEOUT" << endl ;
 evtSignal = true;
 if(numWaits > 6) // Timeout period == 18 seconds
 {
 killThread = true;
 break;
 }
 }

 else
 {
 cout << " Problems!! " << endl;
 evtSignal = false;
 }

 if(evtSignal)
 {
 while(1)
 {

 if(newEvent)
 {
 sigs = numSignatures(thInfo.protName.c_str(),&buffSig, &vecLen);
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << "\nThere are "<< sigs << " signatures of the "
 << thInfo.protName << " protocol." << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);

 fs=new FSM[sigs];
 for(int j=0;j<sigs;j++)
 fs[j].createMachine((j-1),buffSig, vecLen);
 }
 newEvent = false;
 //query monitor
 ei.vectorIndex = evtIndex;
 Event e = tp->mPtr->queryMonitor(&ei);

 if(e.type == "NoEvent")
 {
 evtSignal = false;
 if(didTimeOut)
 {
 numWaits++;
 }
 break;
 }
 machineOver = 0;
 for(int j=0;j<sigs;j++)
 {
 fs[j].advanceFSM(tp,e,ei);
 if(fs[j].stopFSM == 1)
 {
 machineOver++;
 }
 }
 if(machineOver == sigs)

59

 {
 int regAttack = 0;
 for(j=(sigs-1);j>=0;j--)
 {
 if(fs[j].detectType == "attackPP")
 {
 regAttack = 0;
 attack = 3;
 evtIndex++;
 ei.vectorIndex = evtIndex;
 break;
 }
 if(fs[j].detectType == "attackP")
 {
 regAttack = 0;
 attack = 1;
 evtIndex++;
 ei.vectorIndex = evtIndex;
 break;
 }
 else if(fs[j].detectType == "normal")
 {
 regAttack = 0;
 attack = 2;
 evtIndex++;
 ei.vectorIndex = evtIndex;
 break;
 }
 else if(fs[j].detectType == "attack")
 {
 regAttack = 1;
 attack = 1;
 }

 }
 if(attack == 1 && regAttack)
 {
 evtIndex ++;
 ei.vectorIndex = evtIndex;

 }
 if(attack)
 break;
 else
 {
 suspicious = 1;
 }

 }
 evtIndex++;

 }// end inner while

 } // end outer if
 if(attack)
 break;
 } // end outer while

 if(suspicious && killThread)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << "**" << endl;
 cout << "There is a possibility of suspicious activity on the " << endl
 << thInfo.protName << " protocol." << endl;
 cout << "**" << endl << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 tp->mPtr->deleteSession(&ei,"attackSessionOver");
 writeSuspicious(tp,ei,thInfo.protName,"SU");
 }

60

 else if(killThread)
 {
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << "***" << endl;
 cout << "Wait TIMEOUT expired!!" << endl
 << "Abnormal Termination was detected on the " << endl
 << thInfo.protName << " protocol." << endl;
 cout << "***" << endl << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);

 tp->mPtr->deleteSession(&ei,"attackSessionOver");
 writeSuspicious(tp,ei,thInfo.protName,"AB");
 }
 else
 {
 if(attack == 3)
 {
 tp->mPtr->deleteSession(&ei,"attackParallelSessionOver");
 }
 if(attack == 1)
 {
 tp->mPtr->deleteSession(&ei,"attackSessionOver");
 }
 else if(attack == 2)
 {
 tp->mPtr->deleteSession(&ei,"normalSessionOver");
 }
 }
 EnterCriticalSection(&tp->gv.cout_cs);
 cout << "Thread just died!!" << endl;
 LeaveCriticalSection(&tp->gv.cout_cs);
 //cout << "Alive threads: " << tp->gv.tList.threadManager.size() << endl;
 removeThreadEntry(currThreadId,tp);
 return 0;

}

/**
 This function will retrieve the event handle
 for the particular thread, monitoring a session
 and protocol combination.

 Returns a HANDLE.
 **/

HANDLE getEventHandle (ThreadParameters *tp, EventIndex *ei)
{
 list<ThreadInfo>::iterator pos;
 HANDLE tHandle;
 EnterCriticalSection(&tp->gv.tList_cs);
 for(pos = tp->gv.tList.threadManager.begin(); pos != tp-
>gv.tList.threadManager.end(); ++pos)
 {
 if(!(pos -> protName.compare(ei->protocolName)) && (pos -> sessionNumber == ei-
>sessionNum) && (pos ->principals == ei->principals))
 {
 tHandle = pos -> threadEventHandle;
 break;
 }
 }
 LeaveCriticalSection(&tp->gv.tList_cs);

 return tHandle;

}

/**
 This function will return information about a thread and

61

 populate a ThreadInfo object, given a ThreadId.
 **/

void getThreadInfo(ThreadParameters *tp, ThreadInfo *thInfo, DWORD thID)
{
 list<ThreadInfo>::iterator pos;
 EnterCriticalSection(&tp->gv.tList_cs);
 for(pos = tp->gv.tList.threadManager.begin(); pos != tp-
>gv.tList.threadManager.end(); ++pos)
 {
 if(pos -> threadEventHandle == tp->evtHandle)
 {
 pos -> threadId = thID;
 thInfo->principals = pos->principals;
 thInfo->protName = pos->protName;
 thInfo->sessionNumber = pos->sessionNumber;
 thInfo->sessionId = pos->sessionId;
 thInfo->threadEventHandle = pos->threadEventHandle;
 thInfo->threadId = pos->threadId;
 break;
 }
 }
 LeaveCriticalSection(&tp->gv.tList_cs);

}

/**
 This function will remove the entry for a terminated thread
 from the tList vector which keeps track of all the alive
 threads.
 **/

void removeThreadEntry(DWORD thId,ThreadParameters *tp)
{

 list<ThreadInfo>::iterator pos, pos1;
 EnterCriticalSection(&tp->gv.tList_cs);
 for(pos = tp->gv.tList.threadManager.begin(); pos != tp-
>gv.tList.threadManager.end(); ++pos)
 {

 if(pos ->threadId == thId)
 {
 tp->gv.tList.threadManager.erase(pos);
 break;
 }
 }
 LeaveCriticalSection(&tp->gv.tList_cs);

}

/***
 This function will read the KBASE of signatures, given a protocol Name
 and will populate a vector container (of strings) with all the attack/normal
 signatures corresponding to this protocol.
 ***/

int numSignatures(const char *prName, vector<string> *buffer, int *vecLen)
{
 char inBuffer[256], *token, *delimiter = " ";
 int endOfSig = 0;

62

 int numSig = 0;
 int i=0;

 ifstream fin;
 fin.open(KBASE);

 if(fin.fail())
 {
 cout << "Cannot open " << KBASE << endl;
 return 0;
 }

 while(!fin.eof() && !(endOfSig))
 {
 fin.getline(inBuffer,256,'\n');
 char *temp=new char[100];
 strcpy(temp,inBuffer);
 token = strtok(inBuffer, delimiter);

 if(strcmp(token,"begin") == 0)
 {
 token = strtok(NULL, delimiter);

 //read signatures for this protocol
 if(strcmp(token,prName) == 0)
 {
 buffer->push_back(temp);
 i++;
 while(1)
 {
 fin.getline(inBuffer,256,'\n');
 buffer->push_back(inBuffer);
 i++;
 token = strtok(inBuffer, delimiter);

 if(strcmp(token,"end") == 0)
 {

 numSig++;
 if(fin.eof())
 break;

 continue;
 }

 if(strcmp(token,"begin") == 0)
 {
 strtok(NULL, delimiter);
 token = strtok(NULL, delimiter);

 if(strcmp(token,"-1") == 0)
 {
 endOfSig = 1;
 i--;
 break;
 }
 continue;

 }

 }

 }

 }

 }

63

 fin.close();
 *vecLen=i;
 return numSig;
}

64

/////////////////////////////
// SEADS_General.h
/////////////////////////////

#ifndef SEADS_GENERAL_H
#define SEADS_GENERAL_H

#define FD_SETSIZE 10000

#include <winsock2.h>
#include <iostream>
#include <fstream>

#include <string>
#include <vector>
#include <queue>
#include <list>
#include <map>
#include <set>

#include <process.h>

#include <cstdio>
#include <cstdarg>
#include <cstdlib>
#include <cstring>
#include <ctime>

using namespace std;

typedef map<string,string> nameMap;

class EventIndex
{
public:
 string protocolName;
 nameMap principals; //parties involved
 int sessionNum; //Id generated by monitor (sequential order)
 int sessionId; //Id generated by principals
 int vectorIndex; //order in which session msgs are recv. Not
neccesarily the same as Event::msgSeqNum
 int vectorSize; //current size of vector...this is subject to
change
};

// Event class which corresponds to all the
// information for events reported to the IDE by the
// monitor. (A send B 1 timestamp)

class Event
{
public:
 string p1;
 string type;
 string p2;
 int msgSeqNum;
 time_t timeStamp;
};

//this class contains the number of sessions per group of principals
class PrincipalsSessions
{
public:
 nameMap principals;
 int numSessions;
};

class Monitor
{

65

public:

 Monitor();
 ~Monitor();

 void start();
 void processMessages();
 void welcomeMessage();
 void printContents();
 void storeEvent(Event*,EventIndex*);
 int parseMessage(char*,Event*,EventIndex*);

 //Monitor's interface used by the IDE
 void deleteSession(EventIndex*,string);
 Event queryMonitor(EventIndex *);
 vector<PrincipalsSessions> querySessions(string);

 DWORD eventTotal;

 HANDLE hProducer,hConsumer,hIDE;
 unsigned int producerID, consumerID, ideID;
private:
 CRITICAL_SECTION cs;
 CRITICAL_SECTION monitorDB_CS;
};

#endif

66

//
// Relevant parts of code from SEADS_Monitor.cpp
// (IDE – Monitor) interface code portions.
// Collaboration with Alex Melendez (Activity monitor project)
//

void main()
{
 Monitor m;

 m.hProducer = (HANDLE) _beginthreadex(NULL,0,theProducer,(void *)&m,0,&m.producerID);
 m.hConsumer = (HANDLE) _beginthreadex(NULL,0,theConsumer,(void *)&m,0,&m.consumerID);
 m.hIDE = (HANDLE) _beginthreadex(NULL,0,theIDE ,(void *)&m,0,&m.ideID);

 HANDLE threadList[3];
 threadList[0] = m.hProducer;
 threadList[1] = m.hConsumer;
 threadList[2] = m.hIDE;

 DWORD waitResult;

 waitResult = WaitForMultipleObjects(3,threadList,TRUE,INFINITE);

 if(waitResult == WAIT_OBJECT_0)
 {

 DWORD exitCode;
 GetExitCodeThread(m.hProducer,&exitCode);
 cout << "The producer has finished!" << endl;
 Sleep(10000);
 }

}

unsigned __stdcall theIDE(LPVOID lp)
{
 Monitor *m = (Monitor*)lp;

 // ** main.cpp declarations
 ThreadParameters tp;
 HANDLE hChildThread[1000]; // create handles for threads.
 //hChildThread = new HANDLE[10];
 DWORD waitResult;
 int i=0,dumpIndex=0;
 bool evtIndexSignal = false;
 Event e;
 EventIndex ei;
 // ** end of main.cpp declarations
 //DWORD threadId;

 Sleep(2000);
 m->welcomeMessage();

 cout<< "***\n"
 "**** Intrusion Detection Engine Operational ****\n"
 "***\n"
 << endl;

 while(1)
 {
 waitResult = WaitForSingleObject(signalIDE, 10000);

 if(waitResult == WAIT_OBJECT_0)
 {
 evtIndexSignal = true;
 }

 else if(waitResult == WSA_WAIT_TIMEOUT)

67

 {

 EnterCriticalSection(&evtIndexCS);
 if(!evtIndexQueue.empty())
 evtIndexSignal = true;
 LeaveCriticalSection(&evtIndexCS);

 if(dumpIndex++ > 3)
 {
 m->printContents();
 EnterCriticalSection(&tp.gv.cout_cs);
 EnterCriticalSection(&tp.gv.tList_cs);
 cout << "Alive Threads : " << tp.gv.tList.threadManager.size();
 LeaveCriticalSection(&tp.gv.tList_cs);
 LeaveCriticalSection(&tp.gv.cout_cs);
 dumpIndex=0;
 }
 }

 if(evtIndexSignal)
 {

 while(1)
 {

 //need to read the queue
 EnterCriticalSection(&evtIndexCS);
 if(!evtIndexQueue.empty())
 {
 ei = evtIndexQueue.front();
 evtIndexQueue.pop();
 e = m->queryMonitor(&ei);
 }
 else
 {
 evtIndexSignal = false;
 LeaveCriticalSection(&evtIndexCS);
 break;
 }
 LeaveCriticalSection(&evtIndexCS);

 //if initial event
 if(e.msgSeqNum == 0)
 {
 EnterCriticalSection(&tp.gv.cout_cs);
 cout << "**** NEW SESSION ****" << endl;
 LeaveCriticalSection(&tp.gv.cout_cs);

 // Create the event kernel object which will be used
 // to signal that thread in the future.
 DWORD threadId;

 tp.evtHandle = CreateEvent(NULL, FALSE, FALSE, NULL);
 tp.mPtr = m;

 ThreadInfo tInfo;
 tInfo.threadEventHandle = tp.evtHandle;
 tInfo.protName = ei.protocolName;
 tInfo.sessionNumber = ei.sessionNum;
 tInfo.sessionId = ei.sessionId;
 tInfo.principals = ei.principals;

 EnterCriticalSection(&tp.gv.tList_cs);
 tp.gv.tList.threadManager.push_back(tInfo);
 LeaveCriticalSection(&tp.gv.tList_cs);

 // Create the session FSM thread
 hChildThread[i++] = (HANDLE) _beginthreadex(NULL, 0,
SessionAttackFunc, (void *) &tp, 0, (unsigned *) &threadId);
 /*if(i == 9)

68

 {
 delete [] hChildThread;
 hChildThread = new HANDLE[10];
 i = 0;

 }*/
 // Get the event handle to signal the relevent thread.
 HANDLE tHandle = getEventHandle (&tp,&ei);
 BOOL evtStatus = SetEvent(tHandle);

 if(!evtStatus)
 cout << "Unable to set manual event!!" << endl;

 Sleep(50);
 }
 else
 {
 //not a new session
 HANDLE tHandle = getEventHandle (&tp, &ei);
 BOOL evtStatus = SetEvent(tHandle);
 Sleep(50);
 }
 /*** end of Sachin's code ***/
 }
 }

 }
 cout << "\n**the IDE has died**\n" << endl;
 return 0;
}

69

#if !defined(AFX_DIALOGS_H__5BD05A04_2B7F_4F1F_B059_D5161DF17CDC__INCLUDED_)
#define AFX_DIALOGS_H__5BD05A04_2B7F_4F1F_B059_D5161DF17CDC__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
///////////////////////////
// Dialogs.h : header file
//

struct comboHolder
{
 // Varibles to store previous combo box selection value.
 int n_FromApm;
 int n_FromDay;
 int n_FromHour;
 int n_FromMin;
 int n_FromMonth;
 int n_ToApm;
 int n_ToDay;
 int n_ToHour;
 int n_ToMin;
 int n_ToMonth;

};

// Arrays to fill up the combo boxes.

static CString months[12] =
{

 "Jan",
 "Feb",
 "Mar",
 "Apr",
 "May",
 "Jun",
 "Jul",
 "Aug",
 "Sep",
 "Oct",
 "Nov",
 "Dec"
};

/*static int hours[12] =
{
 1,2,3,4,5,6,7,8,9,10,11,12
};*/

static CString hours[12] =
{
 "01","02","03","04","05","06","07","08","09","10","11","12"
};

static int days[31] =
{
 1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20,
 21,22,23,24,25,26,27,28,29,30,
 31
};

/*static int mins[60] =
{
 01,02,03,04,05,06,07,08,09,10,
 11,12,13,14,15,16,17,18,19,20,
 21,22,23,24,25,26,27,28,29,30,
 31,32,33,34,35,36,37,38,39,40,

70

 41,42,43,44,45,46,47,48,49,50,
 51,52,53,54,55,56,57,58,59
};
*/

static CString mins[60] =
{
 "00","01","02","03","04","05","06","07","08","09","10",
 "11","12","13","14","15","16","17","18","19","20",
 "21","22","23","24","25","26","27","28","29","30",
 "31","32","33","34","35","36","37","38","39","40",
 "41","42","43","44","45","46","47","48","49","50",
 "51","52","53","54","55","56","57","58","59"
};

static CString apm[2] =
{
 "AM","PM"
};

///
// CReportInfoDialog dialog

class CReportInfoDialog : public CDialog
{
// Construction
public:
 CReportInfoDialog(int fCall,struct comboHolder cHold, CWnd* pParent = NULL); //
standard constructor

// Dialog Data
 //{{AFX_DATA(CReportInfoDialog)
 enum { IDD = IDD_REPORT_INFO };
 CComboBox m_comboFromApm;
 CComboBox m_comboToMonth;
 CComboBox m_comboToMin;
 CComboBox m_comboToHour;
 CComboBox m_comboToDay;
 CComboBox m_comboToApm;
 CComboBox m_comboFromMonth;
 CComboBox m_comboFromMin;
 CComboBox m_comboFromHour;
 CComboBox m_comboFromDay;
 CString m_protName;
 //}}AFX_DATA

 // combo data holder variables
 CString m_FromApm;
 int m_FromMonth;
 int m_FromMin;
 int m_FromHour;
 int m_FromDay;
 CString m_ToApm;
 int m_ToMonth;
 int m_ToMin;
 int m_ToHour;
 int m_ToDay;

 int firstCall;
 struct comboHolder cHolder;

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CReportInfoDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

71

 //}}AFX_VIRTUAL

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(CReportInfoDialog)
 virtual BOOL OnInitDialog();
 afx_msg void OnSelchangeCombo();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif // !defined(AFX_DIALOGS_H__5BD05A04_2B7F_4F1F_B059_D5161DF17CDC__INCLUDED_)

72

// Dialogs.cpp : implementation file
//

#include "stdafx.h"
#include "IDE.h"
#include "Dialogs.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//#include "IDEDoc.h"

///
// CReportInfoDialog dialog

CReportInfoDialog::CReportInfoDialog(int fCall,struct comboHolder cHold, CWnd* pParent
/*=NULL*/)
 : CDialog(CReportInfoDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CReportInfoDialog)
 m_protName = _T("");
 //}}AFX_DATA_INIT
 firstCall = fCall;
 cHolder = cHold;

}

void CReportInfoDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CReportInfoDialog)
 DDX_Control(pDX, IDC_FROM_APM_COMBO, m_comboFromApm);
 DDX_Control(pDX, IDC_UPTO_MONTH_COMBO, m_comboToMonth);
 DDX_Control(pDX, IDC_UPTO_MIN_COMBO, m_comboToMin);
 DDX_Control(pDX, IDC_UPTO_HOUR_COMBO, m_comboToHour);
 DDX_Control(pDX, IDC_UPTO_DAY_COMBO, m_comboToDay);
 DDX_Control(pDX, IDC_UPTO_APM_COMBO, m_comboToApm);
 DDX_Control(pDX, IDC_FROM_MONTH_COMBO, m_comboFromMonth);
 DDX_Control(pDX, IDC_FROM_MIN_COMBO, m_comboFromMin);
 DDX_Control(pDX, IDC_FROM_HOUR_COMBO, m_comboFromHour);
 DDX_Control(pDX, IDC_FROM_DAY_COMBO, m_comboFromDay);
 DDX_Text(pDX, IDC_PROTOCOL_EDIT, m_protName);
 DDV_MaxChars(pDX, m_protName, 70);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CReportInfoDialog, CDialog)
 //{{AFX_MSG_MAP(CReportInfoDialog)
 ON_CBN_SELCHANGE(IDC_FROM_APM_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_FROM_DAY_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_FROM_HOUR_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_FROM_MIN_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_FROM_MONTH_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_UPTO_APM_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_UPTO_DAY_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_UPTO_HOUR_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_UPTO_MIN_COMBO, OnSelchangeCombo)
 ON_CBN_SELCHANGE(IDC_UPTO_MONTH_COMBO, OnSelchangeCombo)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CReportInfoDialog message handlers

73

BOOL CReportInfoDialog::OnInitDialog()
{

 CDialog::OnInitDialog();
 char str[30];

 // TODO: Add extra initialization here
 // Load the months of the year into the combo box.
 for(int i=0; i<12; i++)
 {
 m_comboFromMonth.AddString(months[i]);
 m_comboToMonth.AddString(months[i]);
 }
 // Load the days of the month into the combo box.
 for(i=0; i<31; i++)
 {
 m_comboFromDay.AddString(itoa(days[i],str,10));
 m_comboToDay.AddString(itoa(days[i],str,10));
 }
 // Load the hours into the combo box.
 for(i=0; i<12; i++)
 {
 m_comboFromHour.AddString(hours[i]);
 m_comboToHour.AddString(hours[i]);
 }
 // Load the minutes into the combo box.
 for(i=0; i<60; i++)
 {
 m_comboFromMin.AddString(mins[i]);
 m_comboToMin.AddString(mins[i]);
 }
 // Load AM/PM into the combo box.
 for(i=0; i<2; i++)
 {
 m_comboFromApm.AddString(apm[i]);
 m_comboToApm.AddString(apm[i]);
 }

 // Initial Display
 if(firstCall == 0)
 {
 //firstCall = 1;
 m_comboFromMonth.SetCurSel(0);
 m_comboToMonth.SetCurSel(0);
 m_comboFromDay.SetCurSel(0);
 m_comboToDay.SetCurSel(0);
 m_comboFromMin.SetCurSel(0);
 m_comboToMin.SetCurSel(0);
 m_comboFromApm.SetCurSel(0);
 m_comboToApm.SetCurSel(0);
 m_comboFromHour.SetCurSel(0);
 m_comboToHour.SetCurSel(0);

 // Initializations of dialog box variables (attached to combo box controls)
 m_FromApm = apm[m_comboFromApm.GetCurSel()];
 m_FromMonth = m_comboFromMonth.GetCurSel();
 m_FromDay = days[m_comboFromDay.GetCurSel()];
 m_FromHour = atoi((const char *) hours[m_comboFromHour.GetCurSel()]);
 m_FromMin = atoi((const char *) mins[m_comboFromMin.GetCurSel()]);
 m_ToApm = apm[m_comboToApm.GetCurSel()];
 m_ToMonth = m_comboToMonth.GetCurSel();
 m_ToDay = days[m_comboToDay.GetCurSel()];
 m_ToHour = atoi((const char *) hours[m_comboToHour.GetCurSel()]);
 m_ToMin = atoi((const char *) mins[m_comboToMin.GetCurSel()]);
 }
 else
 {
 m_comboFromMonth.SetCurSel(cHolder.n_FromMonth);
 m_comboToMonth.SetCurSel(cHolder.n_ToMonth);
 m_comboFromDay.SetCurSel(cHolder.n_FromDay);
 m_comboToDay.SetCurSel(cHolder.n_ToDay);

74

 m_comboFromMin.SetCurSel(cHolder.n_FromMin);
 m_comboToMin.SetCurSel(cHolder.n_ToMin);
 m_comboFromApm.SetCurSel(cHolder.n_FromApm);
 m_comboToApm.SetCurSel(cHolder.n_ToApm);
 m_comboFromHour.SetCurSel(cHolder.n_FromHour);
 m_comboToHour.SetCurSel(cHolder.n_ToHour);

 // Initializations of dialog box variables (attached to combo box controls)
 m_FromApm = apm[m_comboFromApm.GetCurSel()];
 m_FromMonth = m_comboFromMonth.GetCurSel();
 m_FromDay = days[m_comboFromDay.GetCurSel()];
 m_FromHour = atoi((const char *) hours[m_comboFromHour.GetCurSel()]);
 m_FromMin = atoi((const char *) mins[m_comboFromMin.GetCurSel()]);
 m_ToApm = apm[m_comboToApm.GetCurSel()];
 m_ToMonth = m_comboToMonth.GetCurSel();
 m_ToDay = days[m_comboToDay.GetCurSel()];
 m_ToHour = atoi((const char *) hours[m_comboToHour.GetCurSel()]);
 m_ToMin = atoi((const char *) mins[m_comboToMin.GetCurSel()]);
 }

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

void CReportInfoDialog::OnSelchangeCombo()
{
 // TODO: Add your control notification handler code here
 //m_protName = dlg.m_protName;

 m_FromApm = apm[m_comboFromApm.GetCurSel()];
 m_FromMonth = m_comboFromMonth.GetCurSel();
 m_FromDay = days[m_comboFromDay.GetCurSel()];
 m_FromHour = atoi((const char *) hours[m_comboFromHour.GetCurSel()]);
 m_FromMin = atoi((const char *) mins[m_comboFromMin.GetCurSel()]);
 m_ToApm = apm[m_comboToApm.GetCurSel()];
 m_ToMonth = m_comboToMonth.GetCurSel();
 m_ToDay = days[m_comboToDay.GetCurSel()];
 m_ToHour = atoi((const char *) hours[m_comboToHour.GetCurSel()]);
 m_ToMin = atoi((const char *) mins[m_comboToMin.GetCurSel()]);

 cHolder.n_FromMonth = m_comboFromMonth.GetCurSel();
 cHolder.n_ToMonth = m_comboToMonth.GetCurSel();
 cHolder.n_FromDay = m_comboFromDay.GetCurSel();
 cHolder.n_ToDay = m_comboToDay.GetCurSel();
 cHolder.n_FromMin = m_comboFromMin.GetCurSel();
 cHolder.n_ToMin = m_comboToMin.GetCurSel();
 cHolder.n_FromApm = m_comboFromApm.GetCurSel();
 cHolder.n_ToApm = m_comboToApm.GetCurSel();
 cHolder.n_FromHour = m_comboFromHour.GetCurSel();
 cHolder.n_ToHour = m_comboToHour.GetCurSel();
}

75

// IDEDoc.h : interface of the CIDEDoc class
//
///

#if !defined(AFX_IDEDOC_H__B57ECC08_4DF7_4EEF_8125_60D8E4FDEFE7__INCLUDED_)
#define AFX_IDEDOC_H__B57ECC08_4DF7_4EEF_8125_60D8E4FDEFE7__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "Dialogs.h"
#include "BackupDialog.h"
#include <fstream>

#include <vector>
#include <string>
#include <map>
#include <time.h>

#define INFILE "report.txt"
#define BACKUPFILE "backup.txt"

using namespace std;

// This class holds the members which will be used to display lines of
// output to the GUI

class Disp : public CObject
{
public:
 // Methods
 Disp();
 virtual void Serialize(CArchive &ar);

 // Data members
 CString attack;
 CString involves;
 CString principals;
 CString blankLine;
 CString time;
};

// This class contains all the information about a single attack
// The active attack report file is read into objects of this class
// one by one.

class AttackInfo
{
public:
 AttackInfo();

 CString protName; // protocol on which the attack takes place.
 int attacktime; // time of the attack
 CString attackType; // type of attack - single session/ replay etc.
 int fsmNumber; // attack signature number
 map<string,string> nameMap; // principals involved
};

class CIDEDoc : public CDocument
{
protected: // create from serialization only
 CIDEDoc();
 DECLARE_DYNCREATE(CIDEDoc)

// Attributes
public:
 // variables to hold the dialog box input from the user

76

 CString m_protName; // protocol name field input
 CString m_display; // display string
 CString m_welcome; // string for the welcome message
 CString m_FromApm; // AM/PM selection
 int m_FromDay; // Day of the month selection
 int m_FromHour;
 int m_FromMin;
 int m_FromMonth;
 CString m_ToApm;
 int m_ToDay;
 int m_ToHour;
 int m_ToMin;
 int m_ToMonth;
 int firstCreateDialog;
 struct comboHolder cHolder; // structure to hold previous selections of the combo
box.

 int displayNum; // 0 if welcome message to be displayed, 1 otherwise
 vector<AttackInfo> reportData; // vector to hold the attack info. from file.
 time_t initTime;
 time_t finalTime;
 int numAttacks;
 CString openLine;
 Disp *display; // data class to hold the report output to be displayed

// Operations
public:
 int ReadAttackFile(CString);
 void CreateDisplay(Disp *,int);
 void ConstructTime();
 void fileBackup();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CIDEDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);
 virtual void DeleteContents();
 virtual void OnCloseDocument();
 //}}AFX_VIRTUAL

// Implementation
public:
 void GetDocSizes(int,CSize&,CSize&,CSize&);
 virtual ~CIDEDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CIDEDoc)
 afx_msg void OnToolReport();
 afx_msg void OnMenuBackup();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif // !defined(AFX_IDEDOC_H__B57ECC08_4DF7_4EEF_8125_60D8E4FDEFE7__INCLUDED_)

77

// IDEDoc.cpp : implementation of the CIDEDoc class
//

#include "stdafx.h"
#include "IDE.h"

#include "IDEDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW

#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CIDEDoc

IMPLEMENT_DYNCREATE(CIDEDoc, CDocument)

BEGIN_MESSAGE_MAP(CIDEDoc, CDocument)
 //{{AFX_MSG_MAP(CIDEDoc)
 ON_COMMAND(ID_TOOL_REPORT, OnToolReport)
 ON_COMMAND(ID_MENU_CREATE, OnToolReport)
 ON_COMMAND(ID_MENU_BACKUP, OnMenuBackup)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CIDEDoc construction/destruction

CIDEDoc::CIDEDoc()
{
 // TODO: add one-time construction code here
 m_welcome = "Welcome to the IDE Report Generator!";
 m_display = " ";
 displayNum = 0;
 numAttacks = 0;
 openLine = " ";
 cHolder.n_FromApm = 0;
 cHolder.n_FromDay = 0;
 cHolder.n_FromHour = 0;
 cHolder.n_FromMin = 0;
 cHolder.n_FromMonth = 0;
 cHolder.n_ToApm = 0;
 cHolder.n_ToDay = 0;
 cHolder.n_ToHour = 0;
 cHolder.n_ToMin = 0;
 cHolder.n_ToMonth = 0;
 firstCreateDialog = 0;
}

CIDEDoc::~CIDEDoc()
{
}

BOOL CIDEDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add reinitialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}

///
// CIDEDoc serialization

78

void CIDEDoc::Serialize(CArchive& ar)
{

}

///
// CIDEDoc diagnostics

#ifdef _DEBUG
void CIDEDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CIDEDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CIDEDoc commands

// Handler when the user hits the create report button.
void CIDEDoc::OnToolReport()
{
 // TODO: Add your command handler code here
 DeleteContents();
 CReportInfoDialog dlg(firstCreateDialog,cHolder);
 firstCreateDialog = 1;
 dlg.m_protName = m_protName;

 ofstream fout;
 fout.open("debug.txt");
 int modal = dlg.DoModal();

 if(modal == IDCANCEL)
 {
 displayNum = 0;
 UpdateAllViews(NULL);
 return;
 }
 else if(modal == IDOK)
 {
 // Retrieve value entered by the user
 cHolder = dlg.cHolder;
 m_protName = dlg.m_protName;
 m_FromMonth = dlg.m_FromMonth;

 m_FromApm = dlg.m_FromApm;
 m_FromDay = dlg.m_FromDay;
 m_FromHour = dlg.m_FromHour;
 m_FromMin = dlg.m_FromMin;
 m_ToApm = dlg.m_ToApm;
 m_ToDay = dlg.m_ToDay;
 m_ToHour = dlg.m_ToHour;
 m_ToMin = dlg.m_ToMin;
 m_ToMonth = dlg.m_ToMonth;

 fout << "From Month: " << m_FromMonth << endl;
 fout << "From Day: " << m_FromDay << endl;
 fout << "To Month: " << m_ToMonth << endl;
 fout << "To Day: " << m_ToDay << endl;

 }
 fout.close();
 ConstructTime();
 numAttacks = ReadAttackFile(m_protName);

79

 display = new Disp[numAttacks];

 if(numAttacks >0)
 {
 openLine = "Attack Report";
 CreateDisplay(display,numAttacks);
 }
 else
 m_display = "There are no attacks at this time matching your specifications!!";

 displayNum = 1;
 UpdateAllViews(NULL);

}

//
/// readAttackFile
/// This function reads the attack Report file and
/// extracts relevant information to be displayed to the GUI
//

int CIDEDoc::ReadAttackFile(CString protName)
{
 // File locking code follows
 char *lockFile = "lock.txt";
 HANDLE fHandle;

 while(1)
 {
 fHandle = (HANDLE) CreateFile(lockFile, GENERIC_READ, 0, NULL,
 CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);
 if(fHandle == INVALID_HANDLE_VALUE)
 {
 DWORD gle = GetLastError();
 CloseHandle(fHandle);
 }
 else
 break;
 }
 // End of file locking code
 HANDLE fileHandle;
 fileHandle = (HANDLE) CreateFile(INFILE,GENERIC_READ,0,NULL,OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,NULL);
 if(fileHandle == INVALID_HANDLE_VALUE)
 {
 return -1;
 }
 DWORD fileSizeLow, fileHigh,*fileSizeHigh;
 fileSizeHigh = &fileHigh;
 fileSizeLow = GetFileSize(fileHandle,fileSizeHigh);
 ofstream fout;
 fout.open("debug.txt",ios::app);
 fout << fileSizeLow << endl;
 fout << *fileSizeHigh << endl;
 fout.close();
 CloseHandle(fileHandle);
 if(fileSizeLow > 20000)
 fileBackup();

 ifstream inReportFile(INFILE, ios::in);

 if(!inReportFile)
 {
 //cerr << "File could not be opened for writing!" << endl;
 return -1;
 }
 // parse the file contents for relevant information

80

 int i=0;
 char *delimiter = " ";
 string smallName, longName;
 char buffer[100];
 reportData.clear();
 // Read from the active SEADS file viz "report.txt"

 while(!inReportFile.eof())
 {

 inReportFile.getline(buffer,60,'\n');
 if(strcmp(buffer,"Attack") == 0)
 {
 AttackInfo ai;
 inReportFile.getline(buffer,60,'\n');
 if(protName == buffer || protName == "ALL")
 {
 ai.protName = buffer;
 inReportFile.getline(buffer,60,'\n');
 ai.attacktime = atoi(buffer);
 inReportFile.getline(buffer,60,'\n');
 smallName = strtok(buffer,delimiter);
 longName = strtok(NULL,delimiter);

 ai.nameMap.insert(map<string,string>::value_type(smallName,longName));
 smallName = strtok(NULL, delimiter);
 while(smallName != "!")
 {
 longName = strtok(NULL, delimiter);

 ai.nameMap.insert(map<string,string>::value_type(smallName,longName));
 smallName = strtok(NULL, delimiter);

 }
 inReportFile.getline(buffer,60,'\n');
 ai.attackType = buffer;
 inReportFile.getline(buffer,60,'\n');
 ai.fsmNumber = atoi(buffer);
 if(ai.attacktime <= finalTime && ai.attacktime >= initTime)
 {
 reportData.push_back(ai);
 i++;
 }
 }

 }
 }
 CloseHandle(fHandle);
 DeleteFile(lockFile);

 // Read from the back up file "backup.txt"
 ifstream inBackupFile(BACKUPFILE,ios::in);

 if(!inBackupFile)
 {
 //cerr << "File could not be opened for writing!" << endl;
 return -1;
 }

 while(!inBackupFile.eof())
 {

 inBackupFile.getline(buffer,60,'\n');
 if(strcmp(buffer,"Attack") == 0)
 {
 AttackInfo ai;
 inBackupFile.getline(buffer,60,'\n');
 if(protName == buffer || protName == "ALL")
 {
 ai.protName = buffer;

81

 inBackupFile.getline(buffer,60,'\n');
 ai.attacktime = atoi(buffer);
 inBackupFile.getline(buffer,60,'\n');
 smallName = strtok(buffer,delimiter);
 longName = strtok(NULL,delimiter);

 ai.nameMap.insert(map<string,string>::value_type(smallName,longName));
 smallName = strtok(NULL, delimiter);
 while(smallName != "!")
 {
 longName = strtok(NULL, delimiter);

 ai.nameMap.insert(map<string,string>::value_type(smallName,longName));
 smallName = strtok(NULL, delimiter);

 }
 inBackupFile.getline(buffer,60,'\n');
 ai.attackType = buffer;
 inBackupFile.getline(buffer,60,'\n');
 ai.fsmNumber = atoi(buffer);
 if(ai.attacktime <= finalTime && ai.attacktime >= initTime)
 {
 reportData.push_back(ai);
 i++;
 }
 }

 }
 }

 return i;
}

///
// This function will construct the time in seconds elapsed
// since January 1 1970, based
// upon the users input for day/month/hour/minutes and seconds.
///

void CIDEDoc::ConstructTime()
{

 struct tm timestruct;
 if(m_FromApm == "PM")
 {
 if(m_FromHour == 12)
 timestruct.tm_hour = 0;
 else
 timestruct.tm_hour = m_FromHour + 12;
 }

 else
 timestruct.tm_hour = m_FromHour;
 timestruct.tm_isdst = -1;
 timestruct.tm_mday = m_FromDay;
 timestruct.tm_min = m_FromMin;
 timestruct.tm_mon = m_FromMonth;
 timestruct.tm_sec = 0;

 timestruct.tm_year = 101;

 initTime = mktime(×truct);
 struct tm timestruct1;
 if(m_ToApm == "PM")
 {
 timestruct1.tm_hour = m_ToHour + 12;
 }
 else
 timestruct1.tm_hour = m_ToHour;
 timestruct1.tm_isdst = -1;

82

 timestruct1.tm_mday = m_ToDay;
 timestruct1.tm_min = m_ToMin;
 timestruct1.tm_mon = m_ToMonth;
 timestruct1.tm_sec = 0;
 timestruct1.tm_year = 101;

 finalTime = mktime(×truct1);
}

///
//This function will create the GUI attack report display to show
//the attack information.
///
void CIDEDoc::CreateDisplay(Disp *d,int i)
{

 for(int j=0; j<i; j++)
 {
 char str[20];
 d[j].attack += itoa(j+1,str,10);
 d[j].attack += ". ";
 if(reportData[j].attackType == "Suspicious behavior" || reportData[j].attackType ==
 "Abnormal termination")
 {
 d[j].attack += reportData[j].attackType + " was detected on the ";

 }
 else
 {
 d[j].attack += "A " + reportData[j].attackType + " attack was detected on the ";
 }

 d[j].attack += reportData[j].protName + " protocol.";
 char temp[30];

 if(reportData[j].fsmNumber >=0)
 {
 CString num = itoa(reportData[j].fsmNumber,temp,10);
 d[j].attack += " (Signature #" + num + ")";

 }

 d[j].involves += " The following principals were involved: ";

 int k=1;
 map<string,string>::iterator pos;
 for(pos = reportData[j].nameMap.begin(); pos != reportData[j].nameMap.end(); ++pos)
 {
 d[j].principals += " ";
 d[j].principals += itoa(k,str,10);
 d[j].principals += ". ";
 d[j].principals += pos->first.c_str();
 d[j].principals += ": ";
 d[j].principals += pos->second.c_str();
 d[j].principals += ".";
 k++;
 }
 d[j].blankLine = " ";
 int timeSec = reportData[j].attacktime;
 struct tm *tm1 = localtime((const long *) &timeSec);

 d[j].time += " Attack Time: ";
 d[j].time += asctime(tm1);

 }

}

83

///
//Handler for the action the user takes by hitting the
//menu backup button. This button will back up the
//active attack report file.
///
void CIDEDoc::OnMenuBackup()
{
 // TODO: Add your command handler code here

 // Handler for backing up the attack report file.
 CBackupDialog cdlg;
 if(cdlg.DoModal()==IDOK)
 {
 displayNum = 0;
 UpdateAllViews(NULL);
 // do nothing
 }
 // File backup code written below.
 char *lockFile = "lock.txt";
 HANDLE fHandle;

 while(1)
 {
 fHandle = (HANDLE) CreateFile(lockFile, GENERIC_READ, 0, NULL,
 CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);
 if(fHandle == INVALID_HANDLE_VALUE)
 {
 //cout << "File already locked" << endl;
 CloseHandle(fHandle);
 }
 else
 break;
 }
 // End of file locking code

 fileBackup();
 CloseHandle(fHandle);
 DeleteFile(lockFile);

 // File locking code follows

}

//
//Function which results in the backing up of the active attack
//report file "report.txt" to another file "backup.txt"
//
void CIDEDoc::fileBackup()
{

 HANDLE hSrc, hDest;

 DWORD dwRead, dwWritten;

 char pBuffer[1024];

 hSrc = CreateFile(INFILE, GENERIC_READ, 0, NULL,

 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

 hDest = CreateFile(BACKUPFILE, GENERIC_WRITE, 0, NULL,

 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);

 do

 {

84

 ReadFile(hSrc, pBuffer, sizeof(pBuffer), &dwRead, NULL);

 if (dwRead != 0)

 WriteFile(hDest, pBuffer, dwRead, &dwWritten, NULL);

 } while (dwRead != 0);

 CloseHandle(hSrc);
 CloseHandle(hDest);
 ofstream fout;
 time_t ltime;
 time(<ime);

 fout.open(INFILE,ios::out);
 fout << "Last backup on ";
 fout << ctime(<ime) << "\n\n" ;
 fout.close();

}

void CIDEDoc::GetDocSizes(int m_HeightLine, CSize &sizeTotal, CSize &sizePage, CSize
&sizeLine)
{
 int nHeight;
 int nWidth;
 const int FUDGE_H = 400;
 const int FUDGE_V = 400;
 if(displayNum == 0)
 {
 nHeight = 200 + FUDGE_H;
 nWidth = 200 + FUDGE_V;
 sizeTotal = CSize(nWidth, nHeight);
 }
 else
 {
 nHeight = numAttacks * 10 * m_HeightLine + FUDGE_H;
 nWidth = 200 + FUDGE_V;
 sizeTotal = CSize(nWidth, nHeight);
 }

 sizePage = CSize(sizeTotal.cx /10, sizeTotal.cy /10);
 sizeLine = CSize(sizePage.cx /10, sizePage.cy /10);

}

AttackInfo::AttackInfo()
{

 //do nothing
}

//
// Disp class implementation

//IMPLEMENT_SERIAL(Disp, CObject, 1)

Disp::Disp()
{

 // do nothing

}

85

void Disp::Serialize(CArchive &ar)
{
 // do nothing
}

BOOL CIDEDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 // TODO: Add your specialized creation code here

 return TRUE;
}

void CIDEDoc::DeleteContents()
{
 // TODO: Add your specialized code here and/or call the base class

}

void CIDEDoc::OnCloseDocument()
{
 // TODO: Add your specialized code here and/or call the base class

 CDocument::OnCloseDocument();

}

86

// IDEView.h : interface of the CIDEView class
//
///

#if !defined(AFX_IDEVIEW_H__53E7EC96_D841_45F9_A4CD_769E9D2BAB29__INCLUDED_)
#define AFX_IDEVIEW_H__53E7EC96_D841_45F9_A4CD_769E9D2BAB29__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CIDEView : public CScrollView
{
protected: // create from serialization only
 CIDEView();
 DECLARE_DYNCREATE(CIDEView)

// Attributes
public:
 CIDEDoc* GetDocument();
 int m_nHeightLine;
 int m_nPageWidth;
 int m_nPageHeight;
 int m_nMapMode;

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CIDEView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void OnInitialUpdate();
 virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NULL);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnPrint(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CIDEView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CIDEView)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in IDEView.cpp
inline CIDEDoc* CIDEView::GetDocument()
 { return (CIDEDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}

87

// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif // !defined(AFX_IDEVIEW_H__53E7EC96_D841_45F9_A4CD_769E9D2BAB29__INCLUDED_)

88

// IDEView.cpp : implementation of the CIDEView class
//

#include "stdafx.h"
#include "IDE.h"

#include "IDEDoc.h"
#include "IDEView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CIDEView

IMPLEMENT_DYNCREATE(CIDEView, CScrollView)

BEGIN_MESSAGE_MAP(CIDEView, CScrollView)
 //{{AFX_MSG_MAP(CIDEView)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CScrollView::OnFilePrintPreview)
END_MESSAGE_MAP()

///
// CIDEView construction/destruction

CIDEView::CIDEView()
{
 // TODO: add construction code here

}

CIDEView::~CIDEView()
{
}

BOOL CIDEView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CScrollView::PreCreateWindow(cs);
}

///
// CIDEView drawing

const int MARGIN_LEFT = 30;
const int LINES = 30;

void CIDEView::OnDraw(CDC* pDC)
{
 CIDEDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 CSize sizeTotal,sizePage,sizeLine;
 sizeTotal = sizePage = sizeLine = CSize(0,0);

 // TODO: add draw code for native data here
 if(pDoc->displayNum == 0)
 {

 pDoc->GetDocSizes(m_nHeightLine, sizeTotal, sizePage, sizeLine);
 SetScrollSizes(MM_TEXT, sizeTotal, sizePage,sizeLine);

89

 //pDC->TextOut(100,100,pDoc->m_welcome);
 CBitmap bitmap;
 CDC dcMemory;
 bitmap.LoadBitmap(IDB_BITMAP1);
 dcMemory.CreateCompatibleDC(pDC);
 dcMemory.SelectObject(&bitmap);

 pDC->BitBlt(250,100,500,500,&dcMemory,0,0,SRCCOPY);
 }
 else
 {

 ASSERT(m_nHeightLine > 0);

 int nLines = 5;
 if(pDoc -> numAttacks <=0)
 {
 pDoc->GetDocSizes(m_nHeightLine, sizeTotal, sizePage, sizeLine);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage,sizeLine);
 pDC->TextOut(MARGIN_LEFT, -nLines * m_nHeightLine, pDoc->m_display);
 }
 else
 {
 pDoc->GetDocSizes(m_nHeightLine, sizeTotal, sizePage, sizeLine);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage,sizeLine);
 pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine, pDoc->openLine);
 for(int i=0;i < pDoc ->numAttacks;i++)
 {

pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].blankLine);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].attack);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].blankLine);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].involves);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].blankLine);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].principals);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].blankLine);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].blankLine);
pDC->TextOut(MARGIN_LEFT, -nLines++ * m_nHeightLine,
pDoc->display[i].time);

 nLines++;
 }
 }

 }
}

///
// CIDEView printing

BOOL CIDEView::OnPreparePrinting(CPrintInfo* pInfo)
{
 /////////////////////
 CIDEDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CSize sizeTotal, sizePage, sizeLine;
 sizeTotal = sizePage = sizeLine = CSize(0,0);

 pDoc->GetDocSizes(m_nHeightLine,sizeTotal,sizePage,sizeLine);

 int numPages = (int) sizeTotal.cy/(m_nPageHeight);

 if(numPages < 1)

90

 numPages = 1;

 pInfo->SetMaxPage(numPages);

 // default preparation
 return DoPreparePrinting(pInfo);
}

void CIDEView::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{
 // TODO: add extra initialization before printing
 // Get the printer's resolution in millimeters
 int nHorzSize = pDC->GetDeviceCaps(HORZSIZE);
 int nVertSize = pDC->GetDeviceCaps(VERTSIZE);

 m_nPageWidth = (double)nHorzSize / 25.4 * 100.0;
 TRACE("m_nPageWidth = %d\n",m_nPageWidth);

 m_nPageHeight = (double)nVertSize /25.4 * 100.0;
 TRACE("m_nPageHeight = %d\n",m_nPageHeight);

}

void CIDEView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

///
// CIDEView diagnostics

#ifdef _DEBUG
void CIDEView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CIDEView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CIDEDoc* CIDEView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CIDEDoc)));
 return (CIDEDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CIDEView message handlers
void CIDEView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 // TODO: Add your specialized code here and/or call the base class
 CClientDC dc(this);
 // Declare a TEXTMETRIC variable.
 TEXTMETRIC tm;

 // fill up the variable info.
 dc.GetTextMetrics(&tm);
 m_nHeightLine = tm.tmHeight + tm.tmExternalLeading;
 m_nMapMode = MM_LOENGLISH;
 CSize sizeTotal,sizePage,sizeLine;
 sizeTotal = sizePage = sizeLine = CSize(0,0);

 CIDEDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

91

 pDoc->GetDocSizes(m_nHeightLine,sizeTotal,sizePage,sizeLine);

 SetScrollSizes(m_nMapMode, sizeTotal, sizePage,sizeLine);

}

void CIDEView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 // TODO: Add your specialized code here and/or call the base class

 CScrollView::OnPrepareDC(pDC, pInfo);
 if(pDC->IsPrinting())
 {
 int nPages = pInfo->m_nCurPage - 1;
 int y = (nPages) * -m_nPageHeight;

 pDC->SetWindowOrg(0, y);
 }
}

void CIDEView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 // TODO: Add your specialized code here and/or call the base class
 ASSERT_VALID(pDC);
 {

 }
 CScrollView::OnPrint(pDC, pInfo);
}

92

11. References

[1] John Clark & Jeremy Jacob, “Attacking Authentication Protocols”, High Integrity

 Systems 1(5):465-474, August 1996.

[2] H.Debar, M.Dacier, A.Wespi, “Towards a Taxonomy of Intrusion Detection

 Systems”, Elsevier Science B.V 31 (1999) 805-822

[3] Dorothy E. Denning, “An Intrusion-Detection Model”, From 1986 IEEE computer

 Society Symposium on Research in Security and Privacy.

[4] Dorothy Denning and G.Sacco, “Timestamps in Key Distribution Protocols”,

 Communications of the ACM, 24(8), August 1981, pp. 533-534.

[5] Roger M. Needham and Michael Schroeder, “Using Encryption for Authentication in

 Large Networks of Computers”, Communications of the ACM, 21(12), December

 1978, pp. 994-995.

[6] Alec Yasinsac, “Detecting Intrusions in Security Protocols”, Proceedings of First

 Workshop on Intrusion Detection Systems, in the 7th ACM Conference on Computer

 and communications Security, June 2000, pp. 5-8.

