
���������
	���
���������������������	���	�������� �
�!��"#�$������%&�!���

')(

%+*-,/.1032/45�768�79;:)(

	=<1>$?�@-23,/A
B�?1,C9;D�2/:1A
EF9;'1D�* AGA�23BH* :�<10/>IAG* 0/4�JK9;4-JG* 4 4 D�2/:1A
?1JLAG.M2
>$23NO9;* >$2/D�2/:1A�EPJ�?�>�AG.M2!B�2CQO>$232!?1J

%+03EIA�2/>P?1J
�R,/*-2/:M,32�* :��S?�D�<)9;A�2/>P�R,/*-2/:M,32

T 4-?�>I*-BR0!�UAG0/A�2�V�:1* W;2/>$EI* AK(

	X<1>I* 4 YRZR[U[�\

	X<�<�>I?;W523B�')(�]
�P.10/* >I<M2/>E?�:�?1J
�O9;<M2/>FW5*-E$?�>F(��S?�D�D�* AGA�232

]�]
]�]
]�]

�^>$?;QO>I0/D_	!9;AG.M?�>I* `823B
AG?a��JGJ�2 >Lb�2CQc>I232�]

b�0 A�2d]�]

T 4-?�>I*-BR0!�UAG0/A�2�V�:1* W;2/>$EI* AK(

	X'MEIAG>I03,/A

���a� �7�L	!�7
G�!���^�S�������S���+	X��	!�
�X�R�$�
����"��I�S�a��%+�����

')(X%+*-,/.1032/45�768�79;:)(

��.10/* >�<12 >$EI?R:�?�J1AG.12��O95<12 >FW5*-EI?�> (��S?RDaD�* A A�2/2 � �^>$?1J�23E$E$?�>�	X4-23,���03EI* :MEI03,
b�2/<10/>IAGD�2/:1A
?1J
�S?�D�<)9;A�2/>P�R,/*-2/:M,32

�I: AG.1*-EM<10/<M2/>IY��#2PEI.M?�� .M?�� AG.M2P�P>F(c<1A�?;QO>I0/<1.1*-,��^>$?�A�?1,3?�4 	X:10/4 (OEI*-E ��0/:)Q89;0CQ52���W50/4 9;0/AG*-?�:H�c(cE�AG2 D��-���M	���

�!����*-E^9)E$23B A�?a23J�J�23,/AG* W;2/4 (�0/:10/4 (c`82�,/>F(c<1A�?;QO>I0/<1.1*-,S<1>$?�A�?1,3?�4-E
* :a0
	 * :MB�?��#E
��� 2/:)W5* >$?�:1D�2/:1AI6�	X:�23BR* A�?�>

0/:MB+E$?1JGA���0/>$2H4 * '1>I0/>F(��#2/>$2aB�2CW;2/4-?�<M23B A�?+0/4 4-?�� J�?�>!AG.M2H* :1A�2CQO>I0/AG*-?�:�?1J��7�L	!�7
G�!��* :1A�? 0 .M?�D�?;Q52/:M?;9)E

B�2CW;2/4-?�<1D�2/:1A�0/:MB!0/:10/4 (OEI*-EL2/:)W5* >$?�:1D�2/:1AI6^	�B�BR* AG*-?�:10/4 4 (cY8�7�L	!�7
G�!�
��03E 9;<MBR0/A�23B!0/:MB!D�?;W;23B�J >I?RD 0 :!%+�U

b�����2/:)W5* >$?�:1D�2/:1APA�?�0�	 * :MB�?��#ES���=2/:)W5* >$?�:1D�2/:1AI6�	X4 4M?1J�AG.M2�A�?1?�4-ESD�2/:1AG*-?�:M23B��#2/>$2 B�2CW;2/4-?�<M23B�* :

?�>$B�2/> A�?�0/4 4-?�� JK9;AK9;>$2�D�2/D�'M2/>$EH?1J!AG.M2�0/:10/4 (OEI*-E A�2/0/D A�? 23J�J�23,/AG* W;2/4 (��#?�>�����* AG. AG.M2��7�L	!�7
G�!��6�	 2

B�2/D�?�:MEIAG>I0/A�2�.M?�� AG.M2!23BR* A�?�>�J�?�>��7�L	!����03E�,3?�:MEIAG>F9),/A�23B 0/:MB .M?��=* ALJK9;:M,/AG*-?�:ME 6�	�B�BR* AG*-?�:10/4 4 (cY��#2�EI.M?��

.M?��_AG.M2HE$?1JGA���0/>$2 4 * '1>I0/>F(�*-E�D�0/* :1AG0/* :M23B�0/:MB�.M?��d* APJK9;:M,/AG*-?�:ME 6 T * :10/4 4 (cY��#2 EI.M?��d.M?��_�7�L	!�7
G�!����03E

,3?�:)W;2/>IA�23BaJG>$?�D 0/:�%&�R
Gb����H2/:)W5* >$?�:1D�2/:1ALA�?a0�	 * :MB�?��#E���� 2/:)W5* >$?�:1D�2/:1AI6

��	������ � T �!��� ����� �X�

\86!��:�A >$?�B59), AG* ?R: \

��?;QO*-,3E �

	 2/0 �R2/EIA)�^>I2/,/?�:1BR* AG* ?�:H�S2/03EI?R:1* :)Q �

�aA .12/> 	�:10/4 (OEI*-E^��?�?�4-E �

Z�6!�R2/,C95>I* A (��H>$?;95<a�U?1J A���0 >$27��* '�>I0/> (\U\

� 6!�7�M	��7
 �!� � T >I?RD b����!AG?�	 * :MBR?��#E \��

	 6��7.M2S�7�M	�� ��BR* AG?R> ZR[

 6!�P?R:M,/4 9)EI* ?R: Z 	

	X<�<12 :MBR* ��	 � �P?�B�2S�U0 D�<14 23E Z��

* *

���/�;� � T T � �+V���� �

�������	��
 ��
����

\86��7.M27�^>I?RAG?�,/?�4O	�:10/4 (OEI*-E^� >I?1,/23E$E Z

Z�6��7.M2P��232/BU.10 D 0 :MB �R, .�>I?12/B�2 >^� >I?RAG?1,/?�4 	

� 6��7.M2Pb�2 :�:1* :)QX0 :MBH�U0/,/?#	�A AG0/, �

	 6 	 * :1��"��!%+0/* :��U,/>I2/2 : \/Z

 6 	 * :1��"�� T 4 ?���, .10 >IA \ 	

�R6!�H:M��� � � T 95:M, AG* ?R:��P?�B�2 \��

�R6 �7.12S��2 �=�7�L	���
 �!� ZUZ

* * *

	����H�+��	 ����b ��%���� �X�

��.M2�0C9;AG.M?�> ��*-EI.M23E�A�?aAG.10/: � b�> 6c��03EI* :MEI03,!J�?�>�<)9;AGAG* :)Q�9;<���* AG.�D�2!J�?�>PE$?a4-?�:)Q;6

\

1. INTRODUCTION

The objective of this project is to create a homogeneous development environment

for the analysis of cryptographic protocols. It is the first step in a workbench of tools that

will be developed in order to aid in the timely and accurate analysis of these protocols.

These tools are being brought together in a way which will facilitate future users’ detailed

analysis of protocols and the search for new protocols.

 These tools include a syntax-directed editor, and a front-end program, both of

which were developed to enhance the functionality of the CPAL Evaluation System

(CPAL-ES). CPAL-ES was developed by Dr. Alec Yasinsac in the early 1990’s to

evaluate and analyze cryptographic protocols [Yasinsac]. The existing CPAL-ES code,

written by Dr. Yasinsac was translated from C to C++ and was changed from an MS-DOS

based program to a Windows-based program. The editor and front-end were written to

make CPAL-ES easier to use and more productive. Additionally, a piece of open source,

public domain software was obtained and set up to create a software library where

version control and access to protocol code and source code could be controlled. The full

process for evaluation of protocols can be seen in the figure below.

Z

Figure 1

 The analysis of cryptographic protocols is a field which is growing in importance by

the day. The widespread use of networking has made necessary a method of securing

communications over public channels. Cryptographic protocols were developed in order

to help accomplish this. The fact that these protocols are supposed to secure

communications means that we have to make sure that the protocols themselves are

sound and not vulnerable to attack.

�

Network security is a growing and increasingly important field. Because of the

large number of networks currently in existence, and the need for secure communications

and transactions over these networks, reliable network security is becoming increasingly

necessary. Secure communications are used in a variety of different situations and

applications. Ensuring that these communications are secure is the job of protocols that

have been designed expressly for this purpose. These protocols have been developed

through years of research and there are many different protocols that have been used or

proposed for secure communications.

 The fundamental technology that allows these protocols to protect our networks is

encryption. [Walker] Reliable encryption is essential to these protocols and this

encryption can be done in several different levels, such as Link-level, Network-level, and

Transport-level encryption. [Nessett] The level of encryption used depends on how much

of the information transmitted you wish to keep secret and how much overhead you are

willing to deal with to encrypt your information.

There are several different types of threats to network security. Passive attacks

are those that cause unauthorized release of information; active attacks are those that

cause unauthorized information modification or denial of service. [Voydock] Because of

the fact that network security can be compromised in this manner, we cannot assume that

any given network environment is benign. Anyone can pretend to be someone else in

order to fool people into giving them session keys or other vital information. Because of

	

this, it is necessary to authenticate that the person you think that you are talking to is

indeed who they say they are.

Encryption may be used for authentication and many of the network security

protocols that exist today have the concept of authentication built into them. It is an

important duty of many protocols to authenticate who is sending and receiving information

in order to ensure that the information is being sent to the correct party and not an

intruder who may know the protocol steps.

One example of a network security protocol is the Needham and Schroeder

protocol. In this protocol, the principals (A and B) contact an authentication server (AS)

and, using nonces I1 and I2, are given a secure key (CK) for communication by the

server. Nonces are unique numbers that are only used once and are not repeated

through the course of the protocol. With ka and kb being shared keys between A and AS

and B and AS respectively, the steps of the protocol are:

1. A->AS: B, I1

2. AS->A: ka[I1,B,CK,kb[CK,A]]

3. A->B: kb[CK,A]

4. B->A: CK[I2]

5. A->B: CK[I2 + 1]

Figure 2

ka[x] denotes encryption of x using key ka

 In this example, I1 and I2 are nonces that have been generated for this particular

protocol run. Nonces are usually random numbers that are generated mainly for the

purpose of having a unique identifier for the protocol run. In the first step, principal A

sends a message to the authentication server (AS) requesting a session key for use with

principal B. The nonce I1 is generated solely for this run of the protocol and will be unique

from other nonces that have been generated in past protocol runs. The authentication

server sends back to A a session key (CK) along with a package to send to B. A then

passes this along to B who exchanges a nonce (I2) with A to make sure that the key is

fresh and is not an old key from a previous session. There are many other security

protocols besides Needham and Schroeder (such as the Otway and Rees protocol

[Otway]). These protocols are used for a wide variety of things such as key distribution,

digital signatures, authentication, etc.

Because protocols are simply algorithms for interaction between principals, they

are subject to the same kinds of flaws to which other algorithms are subject to. For

example, Denning and Saco found this flaw in the Needham-Schroeder protocol:

4’. C->B: kb[CK,A]

5’. B->A: CK[I]

6’. C->B: CK[I + 1]

Figure 3

�

 In this attack, a third party has intercepted the first three messages of the

Needham-Schroeder protocol and can then pretend to be someone they are not by

communicating with one of the other principals using an old key. In this example, the

intruder, C, has intercepted A's requests to the authentication server and then uses an

old, compromised key to communicate with B. The intruder may or may not know what

the contents of kb[CK,A] are but they know that the step in the protocol tells them that this

is used to establish a session with principal B. Principal B has no way of knowing that the

person that they are communicating with is actually an intruder. Principal B assumes that

the key that C has given to them is valid, when in fact, it is an old key from a previous

session that has been compromised.

Protocol verification is an essential part of the analysis of cryptographic protocols.

We must know that the protocols are acting in the method that they are intended to act.

Finding weaknesses such as the Denning and Saco flaw is a big part of this. Additionally,

protocols must impart the necessary information to the principals without compromising

the security of the communication. For example, protocols should be able to deliver the

session keys to both principals involved in a communication without allowing those keys

to be compromised.

Logics

 Several logics were developed as a formal way to verify that protocols met their

goals. These logics represented a paradigm shift in the way that protocols were looked at

because they introduced the idea of belief in addition to actions and data. The first logic

�

was developed by Burrows, Abadi, and Needham and is called BAN logic. [Burrows]

BAN logic provided a formal way to describe an authentication protocol. In addition to the

formal notation that the authors developed, several types of logical postulates were also

developed. For example, the nonce verification rule states that if principal P believes that

nonce N is fresh and that principal Q once said X, then P will believe that Q believes X.

This notion of belief in dealing with cryptographic protocols was new. It allowed for a

more in-depth analysis of how principals related to each other in protocols and how their

actions would affect each other down the line.

 Others expanded on the logics that Burrows, Abadi, and Needham developed by

adding more logical operators and extending the logics further. The GNY [Gong] logic, for

example, added the idea of implication to the logic. It provided a way to distinguish

between the content of a message and the information implied by the message. [Gong]

Additionally, logical operators were added, such as, the unless operator added by Moser.

[Moser]

Weakest Precondition Reasoning

 Weakest precondition reasoning was first used by Yasinsac in the evaluation of

protocols [Yasinsac]. Weakest precondition reasoning allows us to take a set of

postconditions that we would like to result from a protocol run and find out what the

weakest set of preconditions for those postconditions would be. It takes the actions of a

protocol into account as it is determining what the weakest preconditions for the given

postcondition are.

�

 For example, P{S}Q is a logical statement, which can be evaluated as either true

or false. In this case, P is a set of preconditions, S is a protocol, and Q is the desired

outcome expanded as a set of postconditions. So, if P is true when S begins executing,

then Q will be true after S is finished. The objective, then, is to find a precondition, P, that

when run through S will result in Q being true.

 Suppose we have a program statement, y := x/k and a desired postcondition of x =

y. The weakest precondition for this statement would be the statement that insures that x

would be equal to y after the program segment executes. In this simple case, it is easy to

see that in order for this to be true, k must equal one. So, given our notation, the entire

statement can be expressed as: k = 1{y := x/k}x = y.

 In the realm of protocol analysis, weakest preconditions are used to find a desired

precondition that will verify the correctness of a protocol. This is called the verification

condition. This verification condition takes the form of a logical predicate that can be

simplified to TRUE if a given protocol correctly executes. This is done using predicate

calculus and using logical axioms in order to simplify the predicate.

 Preconditions are formed from protocol assumptions, assertions, and actions. For

example, in order to properly verify a protocol, we might have to assume that principal A

holds the same session key as principal B. Actions can also represent a valid

precondition. Actions such as retrieving a key from a key server, or making sure that a

nonce is fresh by verifying it with the other party to the communication, may be necessary

to a successful run of the protocol.

 The CPAL-ES system produces a verification condition for a given protocol. This

verification condition is then simplified in an attempt to make the predicate easier to

�

understand. By evaluating protocols using weakest precondition reasoning, we seek to

find flaws that exist in these protocols. Additionally, if no new flaws are found, a more

thorough understanding of the workings of the protocol is gained.

Other Analysis Tools

There are several other analysis methods that can be used to evaluate protocols,

including CSP, the Interrogator [Millen], and the Naval Research Laboratory Protocol

Analyzer (NRL PA) [Meadows]. All of these tools have been developed in order to allow

for the automatic verification and analysis of protocols. Instead of having to do this

verification by hand, these tools allow us to evaluate protocols much more quickly, which,

in turn, allows us to evaluate the more complex protocols that are being developed every

day.

The NRL PA was developed by the Naval Research Laboratory for the analysis of

cryptographic protocols that are used to authenticate principals and services and

distribute keys in a network. It is programmed in Prolog and uses many features of that

language to speed up the development cycle and allow for rapid changes to the program

if necessary. The basic technique used by the NRL PA is one that uses an insecure state

as its start state (it is actually a final state) and then tries to find out if that state is

reachable by the protocol. Unreachable states are discounted and the number of

protocol runs can be unlimited, allowing for an in depth analysis of the protocol.

\3[

In addition, Artificial Intelligence (AI) can be used to evaluate protocols. The

Interrogator is one example of a tool that uses AI for this type of analysis. [Millen] It is

programmed in Prolog and uses the AI capabilities of Prolog to narrow its search for

weaknesses in the protocol. It can be directed by the user of the program to search for

specific weaknesses or flaws. It is a goal-directed program, which means that it will

avoid futile paths that cannot be taken by an intruder.

The primary tool with which we are concerned is CPAL-ES. The rest of this paper

will show how an integrated workbench is being developed which allows for easier use of

CPAL-ES. First, the development of a software library, which allows for version control

and parallel development of code will be discussed. Second, the conversion of the

CPAL-ES code from MS-DOS based to Windows NT based code will be covered,

including the development of a front-end program designed to make execution of the

CPAL-ES easier. Finally, the development of a syntax-directed editor for CPAL will be

discussed along with further goals for the workbench. These steps comprise the majority

of the work involved in creating a homogeneous environment in which the evaluation of

protocols would be both easier and quicker.

\U\

���������
	��
�
��������������������	����������
���� !��"��#�
�$�

The first focus of developing the integrated workbench was to find a solution for

version control of the code that was being developed. A software library in which

various versions of the code being developed could be stored was the desired outcome.

This library would keep track of the different versions of code that it contained. The tool

would also be able to manage protocol versions so that we could improve protocols and

then verify the improvements. Additionally, it would enable members of the security

group to check out pieces of code in order to update or revise them. In doing so, the

tool would ideally keep track of who made what changes, and which version was the

most current version of the code. The platform for the software was to be Windows NT.

The best solution obtained was via a piece of public domain software named

WinCVS. This software is an open source program that was developed by a group

looking for a Windows front-end to the popular UNIX CVS program. WinCVS contains

many of the features that we desired for our version control system. Other software

such as QVCS and JCVS were evaluated but they were deemed ineffective for the job

that we had in mind. WinCVS presented the best options and was actually designed to

mix with other operating systems such as UNIX and the MacOS in addition to a

Windows environment.

WinCVS is a menu-driven configuration management system. The first step in

using WinCVS is creating a “module”. This module contains all of the code which the

user wants protected and monitored. The directory hierarchy that the user wants to be

\/Z

part of the library is imported into the CVS server. Once there, it can be checked out,

viewed, or archived. A password file maintained on the server determines who can or

cannot access the files that are being protected by WinCVS.

The figure below shows a sample main window and what it looks like when

populated with a module.

Figure 4

The buttons at the top of the screen allow the user to check out or check in files,

lock them so no one else can use them, add labels to them, and compare them with

previous versions of the file in addition to several other operations. The main window of

\ �

the program shows the directory structure of the server on the left side, along with the

files that are contained within the currently selected project on the right-hand side.

Below the file list is a window that contains debug information on particular commands,

as well as a command line where CVS commands can be entered without using the

menu options. Additionally, information is displayed in the bottom window when

revision histories and file information is asked for.

The WinCVS software allows us to control access to source code for the various

components of the security workbench. Anyone can create a module for code that they

are working on and allow whomever they want to have access to those files.

Additionally, older revisions of code are stored so that they can be accessed at a later

date if necessary. A wide variety of reports can also be created that show how

revisions have been made as well as who made them. Command-line utilities are also

provided that allow for automation of some configuration management tasks.

\ 	

Figure 5

As an added bonus, WinCVS allows for what it calls “branching”. Branching is

where several different versions of code can be simultaneously developed along

different “branches”. Whenever the code is in working order, these branches can be

merged back together into a single piece of code. The “branches” can also be

maintained independently for an indefinite period of time.

The main obstacle to setting up the software library was becoming familiar with

the software and how to install it properly. For instance, the software uses a password

file that must be located within the root directory of the install. However, it only

recognizes an encrypted password, much like a Unix password file. The encrypted

passwords necessitated the use of a separate piece of software that allowed for the

\

creation of the password file. Additionally, the default install directory was not used for

our library since a more central location that existed on a shared drive was desired.

The login process by the user was another one of the problems faced in

implementing this piece of software. The password file was one issue but another was

how the person checking out the files would actually log in to allow them to do so. This

is done from the main screen of WinCVS. In the ‘CVSAdmin’ menu, there is a Login

selection. This was originally thought to apply only to administrators of the software

library, but is in fact, the general login that all users would use. The documentation and

upgrades to the software are located at http://www.wincvs.org.

\��

3. ����� �����	
	�� ���

���� 	��$��� ������� ���

The second focus of the development environment was to port CPAL-ES to

Windows NT from an MS-DOS environment. This consisted of several steps, beginning

with the initial conversion to Windows-based code, conversion from that code into C++

code, and finally, the development of a Windows-based front-end for the CPAL

Evaluation System.

The conversion of the code into usable code that could be compiled and executed

within a Windows environment was the first step in getting the workbench up and running.

The first step in this process involved creating a project and workspace within the

Microsoft Visual C++ development environment for the CPAL-ES system. This was

accomplished without major problems. The next step consisted of testing the program

and verifying that it compiled and ran under Windows NT. There were some conversions

from C code to C++ code that were done at this step in order to port the program. Things

such as array initialization and how to get the program to run in a console window were

the main hurdles to obtaining running code.

The code was compiled within the Visual C++ development environment and then

tested using several previously coded protocols. However, the code still required an MS-

DOS environment to run, albeit a windowed one which operated under Windows NT. It

was still command-line driven which was a hindrance to the operation of the system in a

Windows environment.

\��

The conversion of the CPAL-ES code from C to C++ was partially done by a

member of the Young Scholars Program, Will Gross. He converted most of the functional

code to C++ and created classes and methods that operate on those classes while still

retaining the functionality of the program. The conversion of the LEX and YACC files,

was done by myself along with the conversion of the previous main() function from the

legacy C code. There are some conversions that remain to be done including some

functions, methods, constructors and destructors but, for the most part, the entire

program now exists in C++ form. This includes the parser files that were generated by

LEX and YACC given the existing grammar.

However, even after this conversion to C++ code, the program was still a

command-line program and not a true Windows application. For this, we elected to

develop a front end that would use the existing code but present a GUI that was Windows

oriented.

The Windows-based front-end for the code was created from within the Visual C++

development environment. A Microsoft Foundation Class (MFC) based program was

developed that utilized the existing CPAL-ES program and allowed the user to input the

protocol that they desired to be evaluated in a dialog box. The MFC libraries allow for use

of standard Windows functions and portability of the code across various Windows

platforms. This dialog box then launches the CPAL-ES application with the given protocol

as input.

\��

Using the Dialog classes that are part of the MFC library, the program creates a

dialog box that contains an edit box which asks the user for the location of the protocol

which they wish to evaluate. Upon entering the name of the file containing the protocol

specification, the program then calls the CPAL-ES program with the filename as an

argument. The CPAL-ES system still uses the Windows console to display its temporary

output and, finally, the files that are created for analysis are opened by the program so

that the user can continue their evaluation of the protocol.

The method that allows this to happen is a method called OnOk(). This method is

called when the user presses the OK button in the dialog box. It first saves the

information in the edit box that the user has input to a CString variable. This is the string

class developed for use with MFC applications. This string is then converted to a form

that can be passed to the CPAL-ES program. Following this, the ShellExecute()

command is used to execute the CPAL-ES program with the parameter specified by the

user. When its execution has completed, the console window closes and the three files

that have been created by CPAL-ES are opened for evaluation.

void CFrontendDlg::OnOK()

{ UpdateData(); // This allows the value in the edit box to be used

// The next line executes the CPAL program with the parameter m_edit1

// which is the file name entered in the dialog box.

ShellExecute(NULL,"open","cpal.exe",m_edit1,NULL,SW_SHOW);

Sleep(500);

ShellExecute(NULL,"open", "protocol.out", NULL, NULL, SW_SHOW);

ShellExecute(NULL,"open", "assume.out", NULL, NULL, SW_SHOW);

ShellExecute(NULL,"open", "tst.out", NULL, NULL, SW_SHOW);

CDialog::OnOK();}

Fi gur e 6

\��

Figure 4 shows the OnOk() method. This is the method that executes the CPAL-

ES program and also opens the relevant documents after execution. The call to

UpdateData() allows the string entered in the edit box to be used as a Cstring and passed

to the CPAL-ES program as a parameter. Following the UpdateData() call, the CPAL-ES

program is executed via a ShellExecute() command with m_edit1 as a parameter. The

value in m_edit1 is the name of the protocol that has been entered by the user. Finally,

the three ShellExecute() commands at the end open the files that are output by CPAL-

ES.

This front-end program makes the execution of CPAL-ES in a Windows

environment a reality. It does not change the functionality of the previously existing code

thereby allowing one to use a command line interface if one so desires. However, it does

make it easier to use within the Windows context. It may eventually be phased out as the

workbench becomes more integrated and more functional but for now, it provides an easy

interface with which to interact in order to use the CPAL-ES system.

ZR[

4. The CPAL Editor

The final step in creating the integrated work environment was the development of

a syntax-directed editor for CPAL. This editor highlights syntax much like most Windows-

based programming tools do. Additionally, it identifies syntax errors to the person using it

and compiles the protocols if asked to do so. The editor was developed in order to

facilitate the translation of protocols into CPAL so as to allow people who will translate

these protocols to do their job more quickly and efficiently with fewer mistakes.

The CPAL editor was designed as an SDI (Single Document Interface) application

with MFC support. The framework for the editor was actually created by Microsoft Visual

C++. Additional support was added after the basic framework was already in place to

highlight the syntax and allow for compilation of the protocol being edited from within the

editor itself.

The document/view architecture of MFC works by associating a particular view

with each document. In this case, the CCPALEditorView class implements the

functionality of the syntax highlighting and the compilation. CCPALEditorView is a child of

the CRichEditView class. This class is one which is usable by all MFC applications in

order to implement not only common editing functions such as cut and paste, but also

character formatting and other more complicated operations. Both the CRichEditView

and the CEditView class deal with operations having to do with text editing. The use of

the CRichEditView class was necessary in order to provide coloration to the text.

Z1\

The document view (e.g. – CCPALEditorView) is, basically, the actual editing

window that we are using at the moment. The first thing that is done upon creation of the

view is to execute the OnCreate() function of the CCPALEditorView class. This function,

listed in Appendix A, first creates a list of keywords that the editor will use for syntax

highlighting. It does this through use of the GetTokenTypes() function. GetTokenTypes()

retrieves the names of the keywords from a structure that is generated whenever the

YACC grammar specifying the language is compiled. In this way, the grammar of the

language can be changed without having to change the editor.

The keywords of the language are added to a static list by the AddKeywords()

function. This list is then used as a basis of comparison while editing in order to effect the

syntax coloring. Nonces and keys are also set up in the OnCreate() function. Basically,

any nonce or key will be highlighted accordingly as it is typed in.

The remainder of the work is done throughout the CCPALEditorView class. The

FormatTextRange() function is the most important one as it does all of the syntax

highlighting as the user types in the protocol. Shown below, the code first creates a

buffer and then checks this buffer against the known types of keywords, comments, etc..

Whenever it finds a word that is reserved, it colors it accordingly using the designated

color that we determined earlier in the code. It processes comments, nonces, keys,

numbers, keywords, and constants all from within the same function.

This FormatTextRange() function is called whenever the text in the view is

changed. The range on which the formatting is done is determined by the operation that

ZUZ

is changing the text. When typing in text, the range is just the current cursor position.

However, operations for cut and paste, etc. were added to insure that all of the text will

remain formatted with the syntax coloring.

Figure 7

The other main addition to the simple editor view is the addition of a compile button

in the toolbar. The button is a simple C (standing for Compile) that was added to the end

of the toolbar. When the button is pressed, a message is passed which calls the

OnCompile() function of the CCPALEditorView class. This function streams the text out

Z �

to a temporary file which is then passed to the parser created by LEX and YACC. Some

modification of the standard error function created by LEX and YACC was necessary as

well in order to have message boxes pop up which detail any syntax errors encountered

in the code. Following successful compilation, the three output files created by CPAL-ES

are opened for analysis. The code used to call the parser and implement the CPAL-ES

are mostly unchanged from the original implementation of the program.

The files are all closed after their use which allows the ShellExecute() command to

open the three documents that are created by the CPAL-ES. Additionally, the temporary

file that was created in order to use as input to the parser is destroyed as it merely

contains a text representation of what is already contained in the editor.

Z 	

5. Conclusion

The widespread development and use of cryptographic protocols for security has

brought with it a necessity to analyze these protocols, not only to find flaws, but also to be

able to understand the protocols and how they work more effectively. The use of logics

and formal methods in this field were developed expressly to do just that. These logics

are combined with weakest precondition reasoning in the CPAL-ES.

The development of a full-scale workbench for use with CPAL-ES is just

beginning. These are only the first few steps in a process which will eventually lead to an

integrated tool that enables users to easily enter protocol specifications in CPAL, run

them through CPAL-ES, and analyze their results. This workbench will facilitate the

development of more secure network protocols by exposing flaws that may be discovered

or just by allowing a more in-depth understanding of what makes a good or bad protocol.

The tools that have been created so far: The CPAL Editor, and Front-end

combined with the software engineering environment supplied by the QVCS program will

allow continued development of this workbench. They are the first components in what

will eventually be a much more robust tool.

Z

�X� �����/� ����	 �7���

� �P9;>I>$?��#E�� �P9;>I>$?��#EIYU%+*-,/.1032/4 YO	X'103BR* YU%+0/>IAG* :1YU0/:MB ��2323BR.10/D�YU�S?;Q52/> 6�� 	!9;AG.M2/:1AG*-,/0/AG*-?�: � 	 �^>I03,/AG*-,/0/4
�UAK9)B5(X* : ��2/4 *-23JL0/:MB#	�,/AG*-?�:1Y � b�* QO* AG0/4R�!NO9;* <1D�2/:1A
�S?�>I<L6U�O(OEIA�2/D�E��S23E$2/0/>$,/.��S2/:1A�2/> 6

� b�2/:1:1* :)Q�� b�2/:1:1* :)QOYRb�?�>$?�AG.)(X��680/:MBa�U03,3,3?�Y �a*-?;W50/:1:1*R%+0/>I* 086�� ��* D�23EIAG0/D�<ME�* : � 2C(�b�*-EIAG>I* ')9;AG*-?�:
�^>$?�A�?1,3?�4-EIY �	��
 � � �
�����
����
 ���
 � ��� ��� ��� Y5"�?�4 68Z 	 YR��?M6 �8Y5	!9RQ89)EIAP\�� ��\86

� ��?�:)Q�� ��?�:)QOY7��* YP��2323BR.10/D�YP�S?;Q52/>IYP0/:MB ��0/.10/4-?�D�YP�P0/<1.1032/4 6��3�S2/03E$?�:1* :)Q 0/'M?;9;A ��2/4 *-23J * :
�P>F(c<1A�?;QO>I0/<1.1*-,��^>$?�A�?1,3?�4-EIY � * : �

 � �������������
 � ��� �	 �!"!$#&%�'�'�')(+* �-,
 �.� ���
 �0/ �.� �
�
����1���
(��� �
����*
���� �
���2
��* YM\�� �U[R6

� %&2/03B�?��#E�� %&2/03B�?��#EIY
�P0/AG.M2/>I* :M2863� ��.M2H���7� �^>$?�A�?1,3?�4 	X:10/4 (c`82/> � 	X:&��W;2/>FW5*-2 ��Y �54-
 �
���
�6
 �879
 �:���
�

 ��

	� �;����� Y5"�?�4 68Z��8YR��?M68ZUY T 2/'1>F9;0/>F(�\�� � �R6

� %+* 4 4-2/:<� %+* 4 4-2/:1Y-=O?�:10/AG.10/: �H6 YL�P4 0/>��UYL�U*-BR:M2C(���6 YM0/:MB T >$2323BRD�0/:1YL�U.M2/>F(c4 ��6>� ��.M2H�I:1A�2/>I>$?;QO0/A�?�> �
�^>$?�A�?1,3?�4��R23,C9;>I* AK(!	X:10/4 (OEI*-EIY � %�'�'�'@?

�����
������
 ���
 �A(
 � ��B
�
��<'C���:��������
������ YO"�?�4 68�U�!
$\ � YU��?M6
ZUY T 2/'1>F9;0/>F(�\�� � �R6

� %&?1E$2/>�� %&?1E$2/>IY5�7?;9;*-E$2���6�� 	 �7?;QO*-,�?1J ��:M?���4-23B5Q52S0/:MB ��2/4 *-23JLJ�?�>
�S2/03E$?�:1* :)QX0/'M?;9;AL�S?�D�<)9;A�2/>
�R23,C9;>I* AK(cY ��b�2/<10/>IAGD�2/:1A
?1J
�S?�D�<)9;A�2/>P�R,/*-2/:M,32�V�:1* W;2/>$EI* AK(�?1J
�P0/4 *-J�?�>I:1* 086

� ��2323BR.10/DD� ��2323BR.10/D�Y �S?;Q52/> %�6 0/:MB �R,/.1>$?123B�2/>IY�%+*-,/.1032/4�b 6 �UV!EI* :)Q ��:M,/>F(c<1AG*-?�: J�?�>
	!9;AG.M2/:1AG*-,/0/AG*-?�:H* :#��0/>FQ52P��2/A��#?�>��RE
?1J1�S?�D�<)9;A�2/>$EIY �E��
 � � �
�����
����
 ���
 � ��� �-� ��� Y "�?�4 6 Z1\/Y
��?M6�\/ZUYRb�23,32/D�'M2/>�\�� � �R6

� ��23EE2/AGA+� ��23EE2/AGAGY3b 6 %�6�� T 03,/A�?�>$E 	�J�J�23,/AG* :)Q�b�*-EIAG>I* ')9;A�23B��O(OEIA�2/D �R23,C9;>I* AK(cY � ��0 ��>$2/:M,32��^* W52 >�D�?R>I2
��0/AG*-?�:10/45��0/'M?�>I0/A�?�>F(cYM\�� � �R6

� �aA���0C(�� �aA���0C(cY�b�0CW;2/Y�0/:MB �S2323EIY ���#2/:L6F�3�!J�JG*-,/*-2/:1A�0/:MB ��* D�2/4 (% 9;AK9;0/4�	!9;AG.M2/:1AG*-,/0/AG*-?�:1Y �
G , ��

��������9(+*H��� � �A�I/ ��2�� �.B Y5"�?�4 68Z1\/YR��?M6�\/YJ=c0/:)9;0/>F(�\�� � �8Y5�LQ5E 6 �U
$\3[

� "�?;(OB�?1, �:� "�?;(OB�?1, �UY�"X*-,/A�?�>���6P0/:MB � 2/:1AGY!�UA�2/<1.M2/:=��6K�8�R23,C9;>I* AK(%&23,/.10/:1*-EID�E�* : �a* QO.M
K�72CW;2/4
��2/A��#?�>����^>$?�A�?1,3?�4-EIY �	��
 �-, ���������9(�
�2 � *H� Y5"�?�4 6�\
 YR��?M6 ZUYJ=39;:M2 \�� � � 6

� 	 0/4 �R2/>�� 	 0/4 �R2/>IYU�UA�2/<1.M2/:#��6A�3��2/A��#?�>��!�R23,C9;>I* AK(� ��.M2��^0/>IA�EL?1J;��.M2P�O9;D�Y ����>F9)EIA�23B��I:MJ�?�>ID�0/AG*-?�:
�O(OEIA�2/D�EIY��I:M,86 Y�\�� � �R6

� ��03EI* :MEI03,L� ��03EI* :MEI03,/Yc	X4-23,86;� 	 T ?�>ID�0/48�R2/D�0/:1AG*-,3ELJ�?�>M��W50/4 9;0/AG* :)Q��P>F(c<1A�?;QO>I0/<1.1*-,��^>$?�A�?1,3?�4-EIY ���^.L6 b 6
b�*-EE2/>IAG0/AG*-?�:1Y1V�:1* W;2/>$EI* AK(�?1J "X* >FQO* :1* 0/YJ=c0/:)9;0/>F(�\�� � �R6

���

�������	��

���������������������! �"#��$&%

The following function is the OnCreate() function. This details what happens when the main editor
window is created.

i nt CCPALEdi t or Vi ew: : OnCr eat e(LPCREATESTRUCT l pCr eat eSt r uct)

{ i nt i ndex = 256;

 CSt r i ng Keywor ds(" ") ;

 whi l e((i ndex >= 256) && (i ndex <= 304))

 { Keywor ds += Get TokenTypes(i ndex) ;

 Keywor ds += " " ;

 i ndex++;

 AddKeywor ds(Keywor ds) ;

 }

 i f (CRi chEdi t Vi ew: : OnCr eat e(l pCr eat eSt r uct) == - 1)

 r et ur n - 1;

 I ni t i al i ze() ;

 Set CaseSensi t i ve(FALSE) ;

 Set Nonce(_T(" N")) ;

 Set Key(_T(" k")) ;

 AddKeywor ds(szKeywor ds) ;

 AddConst ant s(szConst ant s) ;

 r et ur n 0;

}

���

The FormatTextRange() function is the function that goes through the text in the editor window and formats its color,
etc..

voi d CCPALEdi t or Vi ew: : For mat Text Range(i nt nSt ar t , i nt nEnd)

{ i f (nSt ar t >= nEnd)

 r et ur n;

 m_bI nFor cedChange = TRUE;

 CHARRANGE cr Ol dSel ;

 Get Ri chEdi t Ct r l () . Get Sel (cr Ol dSel) ;

 LockWi ndowUpdat e() ;

 Get Ri chEdi t Ct r l () . Hi deSel ect i on(TRUE, FALSE) ;

 TCHAR * pBuf f er = NULL;

 t r y { Get Ri chEdi t Ct r l () . Set Sel (nSt ar t , nEnd) ;

 pBuf f er = new TCHAR[nEnd - nSt ar t + 1] ;

 l ong nLen = Get Ri chEdi t Ct r l () . Get Sel Text (pBuf f er) ;

 ASSERT(nLen <= nEnd - nSt ar t) ;

 pBuf f er [nLen] = 0;

 TCHAR * pSt ar t , * pPt r ;

 pSt ar t = pPt r = pBuf f er ;

 TCHAR* pSymbol St ar t = NULL;

 Symbol Col or i c ;

 whi l e (* pPt r ! = 0)

 { TCHAR ch = * pPt r ;

 i f (ch == ' - ')

 { pSymbol St ar t = pPt r ;

 ch = * (++pPt r) ;

 i f (ch == ' - ') {

 do {

 ch = * (++pPt r) ;

 } whi l e (ch ! = 0 && ch ! = ' \ r ') ;

 i c = m_i cComment ;

 }

 } el se i f (I sNonce(ch)) { / / Pr ocess Nonces

 pSymbol St ar t = pPt r ;

 TCHAR ch1 = ch;

 do {

 ch = * (++pPt r) ;

 } whi l e (ch ! = 0 && ch ! = ch1 && ch ! = ' \ r ' && (_i s t al pha(ch) | | ch == ' \ ' ')) ;

 i f (ch == ch1) pPt r ++;

 i c = m_i cNonce;

 } el se i f (I sKey(ch)) { / / Pr ocess Keys

���

 pSymbol St ar t = pPt r ;

 TCHAR ch1 = ch;

 do {

 ch = * (++pPt r) ;

 } whi l e (ch ! = 0 && ch ! = ch1 && ch ! = ' \ r ' && (_i s t al pha(ch) | | ch == ' \ ' ')) ;

 i f (ch == ch1) pPt r ++;

 i c = m_i cKey;

 } el se i f (_i s t di gi t (ch)) { / / Pr ocess number s

 pSymbol St ar t = pPt r ;

 _t cst od(pSymbol St ar t , &pPt r) ;

 i c = m_i cNumber ;

 } el se i f (_i s t al pha(ch) | | ch == ' _') { / / Pr ocess keywor ds

 pSymbol St ar t = pPt r ;

 do {

 ch = * (++pPt r) ;

 } whi l e (_i s t al num(ch) | | ch == ' _') ;

 * pPt r = 0;

 i nt nPos = I sKeywor d(pSymbol St ar t) ;

 i f (nPos >= 0) {

ChangeCase(nSt ar t + pSymbol St ar t - pBuf f er , nSt ar t + pPt r - pBuf f er , m_st r Keywor ds. Mi d(nPos+1, pPt r
- pSymbol St ar t)) ;

 i f (_t cs i cmp(m_st r Comment , pSymbol St ar t) == 0) {

 * pPt r = ch;

 * pSymbol St ar t = m_chComment ;

 i f (pSymbol St ar t [1] ! = 0 && m_chComment 2 ! = 0)

 pSymbol St ar t [1] = m_chComment 2;

 pPt r = pSymbol St ar t ;

 pSymbol St ar t = NULL;

 cont i nue;

 }

 i c = m_i cKeywor d;

 } el se {
 / / Pr ocess Const ant s

 nPos = I sConst ant (pSymbol St ar t) ;

 i f (nPos >= 0) {

ChangeCase(nSt ar t + pSymbol St ar t - pBuf f er , nSt ar t + pPt r - pBuf f er , m_st r Const ant s. Mi d(nPos+1,
pPt r - pSymbol St ar t)) ;

 i c = m_i cConst ant ;

 } el se {

 pSymbol St ar t = NULL;

 }

 }

���

 * pPt r = ch;

 } el se {

 pPt r ++;

 }

 i f (pSymbol St ar t ! = NULL) {

 ASSERT(pSymbol St ar t < pPt r) ;

Set For mat Range(nSt ar t + pSt ar t - pBuf f er , nSt ar t + pSymbol St ar t - pBuf f er , FALSE, RGB(0, 0, 0)) ;

Set For mat Range(nSt ar t + pSymbol St ar t - pBuf f er , nSt ar t + pPt r - pBuf f er , i c . bBol d, i c . c l r Col or) ;

 pSt ar t = pPt r ;

 pSymbol St ar t = 0;

 } el se i f (* pPt r == 0)

Set For mat Range(nSt ar t + pSt ar t - pBuf f er , nSt ar t + pPt r - pBuf f er , FALSE, RGB(0, 0, 0)) ;

 }

 } cat ch(. . .) { }

 del et e [] pBuf f er ;

 Get Ri chEdi t Ct r l () . Set Sel (cr Ol dSel) ;

 Get Ri chEdi t Ct r l () . Hi deSel ect i on(FALSE, FALSE) ;

 Unl ockWi ndowUpdat e() ;

 m_bI nFor cedChange = FALSE;

}

���

The OnCompile() function is executed when the compile button is pushed within the editor. It runs the protocol
through CPAL-ES.

voi d CCPALEdi t or Vi ew: : OnCompi l e()

{ CRi chEdi t Ct r l & r = Get Ri chEdi t Ct r l () ;

 CFi l e f Wr i t e(" c: \ \ t est . t x t " , CFi l e: : modeCr eat e | CFi l e: : modeWr i t e) ;

 EDI TSTREAM st r m;

 s t r m. dwCooki e = (DWORD) &f Wr i t e;

 s t r m. pf nCal l back = Wr i t eEdi t Dat a;

 r . St r eamOut (SF_TEXT, s t r m) ;

 f Wr i t e. Cl ose() ;

 ext er n STMT_PTR st ar t , l s t _st mt ;

 ext er n PREDI CATE Q = NULL;

 ext er n GI VEN assumpt i ons;

 yy i n = f open(" c: \ \ t est . t x t " , " r ") ;

 s t ar t _st ack() ;

 msgct r = 0;

 t ot mem = 0;

 out _pt r = f open(" t s t . out " , " w") ;

 out _l i s t = f open(" pr ot ocol . out " , " w") ;

 assume_l i s t = f open(" assume. out " , " w") ;

 assumpt i ons = NULL;

 pr i nt f (" i n wp. c, s t ar t = %l d\ n" , (l ong) st ar t) ;

 pr i nt f (" \ n- \ n\ n") ;

 i f (! yypar se())

 {

 Q = new pr ed(_BOOL) ;

 Q- >bool = TRUE;

 pr i nt f (" \ nFi ni shed par s i ng, r eady t o gener at e pr edi cat e. \ n\ n") ;

 Q = st ar t - >wp(Q) ;

 del et e s t ar t ;

 pr i nt f (" Pr i nt i ng UNSI MPLI FI ED pr edi cat e\ n\ n") ;

 f pr i nt f (out _l i s t , " \ n\ n\ n* * * * * * I ni t i al WP pr edi cat e f ol l ows. \ n\ n") ;

 Q- >pr i nt _pr ed() ;

 f pr i nt f (out _l i s t , " \ n\ n\ n* * * * * * Si mpl i f i ed pr edi cat e f ol l ows. \ n\ n") ;

 pr i nt f (" \ n\ n* * * Secondar y Si mpl i f i cat i on \ n\ n") ;

 Q = Q- >si mp() ;

 f pr i nt f (out _l i s t , " \ n\ n\ n* * * * * * Si mpl i f i ed pr edi cat e f ol l ows. \ n\ n") ;

���

 pr i nt f (" \ n\ n* * * PRI NTI NG s i mpl i f i ed pr edi cat e. \ n\ n") ;

 Q- >pr i nt _pr ed() ;

 f pr i nt f (out _l i s t , " \ n\ n* * * * * * NO MORE PREDI CATE\ n") ;

 pr i nt f (" Al l i s f i ni shed, t ot mem = %l d, t ot f r e = %l d. \ n" , t ot mem, t ot f r e) ;

 pr i nt f (" %d cal l s t o copy_val . \ n" , t mpct r) ;

 pr i nt f (" %d cal l s t o copy_pr ed. \ n" , pr edct r) ;

 }

 f c l ose(out _l i s t) ;

 f c l ose(yy i n) ;

 f c l ose(out _pt r) ;

 f c l ose(assume_l i s t) ;

 f Wr i t e. Remove(" c: \ \ t est . t x t ") ;

 Shel l Execut e(NULL, " open" , " pr ot ocol . out " , NULL, NULL, SW_SHOW) ;

 Shel l Execut e(NULL, " open" , " assume. out " , NULL, NULL, SW_SHOW) ;

 Shel l Execut e(NULL, " open" , " t s t . out " , NULL, NULL, SW_SHOW) ;

}

