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ABSTRACT

Recognizing and representing objects of certain categories become increasingly important due to

the availability of high-resolution imaging technologies and the explosive amount of digital data.

In particular, semantic segmentation of given data (i.e.: two dimensional images or three dimen-

sional volumes) labels or extracts objects in the form of contiguous regions with similar semantic

interpretation. Hence semantic segmentation offers great rewards from object recognition and im-

age segmentation. However, the combination of difficulties from both fields also yields incredible

computational challenges. In practice, the appearance of objects is under the influence of views,

poses, colors, shapes, scales, occlusion, illumination conditions and intrinsic imaging limitations.

Thus an ideal semantic segmentation should tolerate both the considerable intra-class variance and

the noticeable inter-class similarities in terms of appearance.

The primary contribution of this thesis is the investigation on context cues that may improve

semantic segmentation. I first propose a novel two-stage framework to solve a special problem of

semantic segmentation, in which the target objects are much more likely to be observable under

the existence of context objects. In the first stage, global salient context objects are segmented

using appearance features. The second stage formulates multiple types of context cues, followed

by a model that combines both appearance and context cues. I then apply this framework to

the problem of spike segmentation and tattoo segmentation, resulting in a cryo-electron tomogram

segmentation system and a tattoo classification system. The first system allows biophysicists to

significantly accelerate their data processing by replacing manual annotation with semi-automatic

segmentation, whereas the second system explores for the first time the possibility of category-level

tattoo classification by machine. As shown by these two systems, the proposed models outperform

traditional object-centered models that purely focus on appearance features.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Image segmentation is one of the most fundamental and challenging problems in computer

vision. It is aimed at simplifying and/or changing the representation of a two-dimensional (2D)

or three dimensional (3D) image into some form that is more efficient for further processing such

as recognition, retrieval, and reconstruction. It has been demonstrated that segmentation and

recognition mutually benefit each other when they are combined in a single task, namely semantic

segmentation [118, 3]. More precisely, each target object is represented as a contiguous region with

similar semantic interpretation in semantic segmentation. The association between each pixel/voxel

and the object is represented by one of the K labels, where K is the number of possible objects

in the given data. Take images in Fig. 1.1 as an example. The first row shows four exemplar 2D

images of cars. If the cars in the images are the target objects, then the ground, the sky and the

buildings are the background. So the corresponding results of semantic segmentation on cars are

shown in the second row, in which the background regions are all marked as black.

Mathematically, semantic segmentation intends to find a general ’function’ f such that

y = f(x), (1.1)

where x is the original data (image) and y is the segmentation result (label map). In order to

achieve semantic segmentation, there are two key components in this problem: localization and

extraction of the interested objects. Object localization is a recognition process that finds out

where the objects are and object extraction is a segmentation process that separates the objects

from the background. Therefore, the function f can be further decomposed into the following form

in terms of three general functions:

f(x) = gn(l, d)(x). (1.2)
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Figure 1.1: Four semantic segmentation examples. Semantic segmentation on an image
groups together the pixels in a contiguous region with common semantic meaning. The
first row shows four 2D images, with their respective semantic segmentation on cars in
the second row.

Here the recognition function l(.) extracts the target object(s) and the segmentation function d(.)

localizes the target object(s); function g(f1, f2)(x) denotes any relationship between two functions,

such as f1(f2(x)) and f2(f1(x)); gn is defined as the n′th iteration of g, where n is a positive integer,

g1 = g (1.3)

and

gn+1 = g · gn. (1.4)

In the past few decades, semantic segmentation has managed to tackle a wide range of real-world

compute vision problems. For instance, it has been successfully applied in face recognition [127, 50],

pedestrian detection [74], iris recognition [54], and tumor detection [100]. It has also provided

powerful tools to address many challenging problems, such as video surveillance, scene analysis,

traffic control, autonomous car driving, and content-based image retrieval.
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1.2 Challenges

There are two issues that need to be tackled to make semantic segmentation more successful

– the computational complexity and the data quality. Traditional semantic segmentation tech-

niques [22, 30, 40, 121, 130, 41, 89] are primarily based on appearance features, such as intensity,

color, shape, texture and edge response. While the techniques of [22, 40, 121, 41] work well for

small 2D/3D dataset, these globalization-based techniques become computationally intractable and

inapplicable when faced with a large scale, such as an image with one million pixels. For exam-

ple, recent advances in a few imaging technologies with high resolution stimulate a great interest

from the biology community in modeling and analyzing biological structures that are too small to

be observed in the past. However, it is quite expensive to manually extract these structures for

further processing because significant human effort is required. Semantic segmentation on a large

scale thus becomes a bottleneck of the research on these biological structures. In addition, the

performance of semantic segmentation highly depends on the quality of the input data. With an

extremely low signal to noise ratio (SNR), most of the state-of-the-art methods in the literature,

especially those without globalization [30, 130, 89], fail to accurately localize small objects in the

data. This is primarily because of the appearance similarities between the small objects and the

background noise. Because globalization is computationally expensive and appearance features are

noise-sensitive, segmentation on small objects with low SNR is often achieved by human labor.

1.3 Related Work

This section reviews the methods that are related to semantic segmentation and attempt to

overcome the challenges mentioned in the previous section. The problems of each method are

summarized at the end of its introduction. In general, the related methods can be clustered

into three approaches: bottom-up segmentation (BUS), top-down segmentation (TDS) and the

combination of BUS and TDS.

The dominant and earliest segmentation approach is carried out in a bottom-up manner. It often

starts without the help from any model of the target object. Specifically, pixels in the image are

grouped into a number of homogeneous regions in terms of image-dependent and object-independent

local features such as texture, edge and color. Some globalization criteria often cooperate with the

local features to produce the segmentation as close to the object contours as possible. In order
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to achieve semantic segmentation, a recognition step is then applied to label regions as different

objects according to their image-independent and object-dependent features. In the most basic

form of bottom-up approach (when n = 1), we have y = f(x) = l(d(x)), which means recognition

is under the facilitation of segmentation.

Another approach is carried out in a top-down manner, primarily guided by the engineered or

learned models of the target object. Given an image, the target objects are localized at first and

then extracted under the guidance of the appearance prior, such as shape and texture. In its basic

top-down manner (when n = 1), we have y = f(x) = d(l(x)), which means segmentation is under

the facilitation of recognition.

As each region of interest is usually associated with a semantically meaningful object, semantic

segmentation is more challenging than the BUS. Even though the computation of the low-level

local features is often efficient, the BUS only favors the low-level homogeneity in each region and

thus often produces over-segmentation or under-segmentation results due to the lack of object class

models. In contrast, the process of semantic segmentation requires both bottom-up and top-down

cues in order to satisfy the homogeneity in terms of not only low-level texture but also high-

level semantic meaning. Therefore, object classes should be modeled appropriately for semantic

segmentation. However, due to the potential large intra-class variance in terms of object shape and

appearance, it is often very difficult to generate a group of top-down cues that describe the object

classes very well. Conversely, the shape and appearance of object parts from difference object

classes may be similar. Hence it is often very difficult to obtain bottom-up cues that are able to

distinguish similar regions from different classes.

Regarding the problems of BUS and TDS, it is difficult to obtain a model for semantic segmenta-

tion using bottom-up or top-down approach alone. Therefore, a well-defined function y = g(l, d)(x)

is necessary for semantic segmentation. There has been some sparse work in this direction, such

as OBJCUT ([67]), image parser ([126]) and jigsaw ([19]). In order to give a quick review on the

problems and the potentials of the state of the art methods in solving semantic segmentation, we

summarize the basic bottom-up methods (mainly focusing on the design of d(x)), the primary top-

down methods (concentrating on l(x)) as well as the methods combining these two (formulating

g(f1, f2)(x)) in the following sections.
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1.3.1 Bottom-Up Segmentation

The most straightforward way of segmentation is to find a threshold for splitting an image into

regions in the form of connected components. However, due to the variance in illumination and

intra-class statistics, a single threshold is rarely enough for image segmentation.

Watershed. An efficient alternative on gray scale images is watershed computation. The

concept of watershed comes from topography. A watershed line is a ridge of land that divides two

adjacent river systems (normally called catchment basins). In the watershed algorithm, an image is

interpreted as a topographic surface where the gray level for each pixel represents its altitude. The

goal of this algorithm is to segment an image into several catchment basins, which are homogeneous

in the sense that from all pixels inside the same catchment basin we can go downhill to find the

basin’s bottom (with minimum altitude). Therefore, the catchment basins correspond to the regions

of the segmented image and the high watersheds correspond to the region boundaries. An efficient

approach to watershed segmentation algorithm is to start flooding the catchment basins from the

bottom (all of the local minima). Through a breadth-first search, pixels belonging to potential

catchment basin members are put into a priority queue for further labeling in each flooding level.

Finally, ridges are labeled wherever two evolving regions meet ([130]). Since watershed computation

relies on the difference in altitudes between regions and ridges, it is usually applied on the smoothed

gradient magnitude images and color images. However, watershed segmentation suffers from over-

segmentation in that each local minimum is associated with a unique region. Thus it is usually

used in an interactive segmentation system, where the local minima are replaced by user’s markers.

Graph-based Merging. Felzenszwalb and Huttenlocher [40] proposed a segmentation al-

gorithm based on Kruskal’s minimum spanning tree (MST), which consists of a number of edges

selected from a graph. In Kruskal’s algorithm, all edges are unmarked at first. To generate a

Kruskal’s MST, the unmarked edge with the minimum weight keeps on being marked if it does not

close a circuit of all the marked edges until every node of the graph is reached out. In [40], each

pixel is a node in the graph and weights of each edge measure the dissimilarity between pixels.

Since an MST is a subset of a graph that connects all the nodes by edges with minimum-weights

and without any cycle, this algorithm is also called a graph-based approach. Edges in each tree are

taken into account in an increasing order of weight; any two adjacent regions are merged into a re-

gion if the graph maintains cycle-free, and if their difference is smaller than their minimum internal
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difference. By merging regions relying on the decreasing order of edge weights, the segmentation

result is thus neither too coarse nor too fine. However, it is difficult to involve multiple features in

this model to assist semantic segmentation. Thus it is limited to segmentation where one feature

is distinctive enough for semantic segmentation.

Normalized Cuts. This algorithm models pixels as vertices in a weighted undirected com-

plete graph G = (V,W ), where the weight wij of an edge (i, j) ∈ W represents the similarity

between vertices i and j. Based on this model, the problem of segmentation can be formulated as

a graph partitioning problem, trying to find a partition V1, V2, ..., Vk of the vertex set V such that,

according to some measure, the vertices in any partition Vi are highly similar whereas any pair

of vertices from two different partitions have low similarity. Considering figure-ground semantic

segmentation, the aim is to partition a graph G = (V,W ) into two disjoint sets, the figure A and the

background B, by removing a group of edges connecting these two sets. This group of eliminated

edges is called a cut in graph theory, and the total weight of these edges reflects the degree of

similarity between A and B:

cut(A,B) =
∑

i∈A,j∈B
wij . (1.5)

Consequently, the figure-ground segmentation problem becomes finding the minimum cut among a

set of potential cuts. To overcome the bias toward a cut to the edges between a small set of isolated

vertices and the remaining ones, the measure of cut cost is replaced by so-called normalized cut

(Ncut), a fraction of the cut cut(A,B) to all the vertices V in the graph ([121]):

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (1.6)

where assoc(A, V ) =
∑

i,twit is the total weight of edges from vertices in A to all vertices in the

graph G and assoc(B, V ) is similarly noted. Through this disassociation between two sets, even

the cut partitioning out small isolated vertices will have large Ncut value in that the cut value

will be the major contribution to the connections from that small set to the remaining vertices.

For cut(A,B) in the graph G, Ncut(A,B) measures the similarity between the figure and ground.

Similarly, the total similarity of vertices in the same set can be measured by normalized association:
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Nassoc(A,B) =
assoc(A,A)

assoc(A, V )
+
assoc(B,B)

assoc(B, V )
. (1.7)

Since Ncut(A,B) = 2 − Nassoc(A,B), a cut that minimizes the similarity between figure and

ground also maximizes the total similarity of vertices belonging to the same set simultaneously. Let

x be an indicator vector where xi = +1 if node is in A and xi = −1, otherwise. Let d(i) =
∑

j wij ,

D be an N × N diagonal matrix with d on its diagonal, and W be an N × N symmetric matrix

with Wij = wij , it was proved that

min
(A,B)

Ncut(A,B) = min
y

yT (D −W )y

yTDy
, (1.8)

subject to the constraints that y = ((1 + x)− b(1− x))/2 and yTD1 = 0. Minimizing Ncut(A,B)

subject to the constraint above is an NP-hard problem. However, if y is relaxed to take real values,

the optimal normalized cut solution can be approximated by bi-partitioning the graph with the

eigenvector y corresponding to the second smallest eigenvalue of a generalized eigenvalue system:

(D −W )y = λDy. (1.9)

Specifically, a splitting point can be chosen for bi-partition in multiple ways such as a constant value

(0 or 0.5), the median value or the value that minimizes Ncut(A,B). After the graph is partitioned

into two pieces, subdivision can be applied to each piece and repartition could repeat until the

value of Ncut is larger than a given threshold, indicating the non-existence of clear splitting point,

or the number of vertices in the piece is smaller than a given threshold. Even though normalized

cut can extract the salient contours regardless of the clustered background, it is impractical to be

applied on data with high resolution. As matrix D becomes too large because of the resolution,

solving such an eigenvalue system would be too expensive.

K-means. The methods introduced so far are deterministic, which means semantic segmen-

tation is formulated as a deterministic optimization problem, iteratively moving edges between

foreground and background toward an optimal location. Thus they share the problem of the de-

terministic approach – it lacks a general formulation that naturally allows arbitrary number of

distinctive features. To overcome this limit, semantic segmentation is also regarded as a stochastic

optimization problem: the probability distribution of the label variable is repeatedly estimated for

7



each pixel. The most well-known statistic algorithm is K-means – a classical clustering technique

that clusters a data set into K clusters, where K is given as a prior. When it is applied to seg-

mentation, an image is modelled as a parametric model of a probability density function, which is

the mixture of several underlying spherical symmetrical probability distributions in terms of the

Euclidean distances from their centers to pixels [86]. Each spherical symmetrical distribution cor-

responds to a cluster and feature vectors in each cluster are thus samples from the corresponding

distribution. K-means segmentation is aimed at breaking the image into regions while attempting

to minimize square error, the sum of square Euclidean distances in feature space between pixels

labelled as a cluster and the center of that cluster. Initialized from randomly chosen K pixels from

the input feature space as K cluster centers, it then iteratively assigns each pixel to the nearest

cluster followed by updating the location for each cluster center as the centroid of each cluster

until convergence. However, the segmentation performance of K-means depends on the choice of

initial cluster centers. These centers are hence usually initialized by selecting random seeds with at

least center distance Dmin between each other or using more sophisticated methods such as random

partition ([51]) and K-means++ ([5]). Another issue of the initialization is that the number of com-

ponent distributions k could be unknown in real-world applications ([41]). In such case, k should

be estimated from the data through strategies such as trying a number of k or minimizing a coding

length ([89]). Last but not the least, K-means segmentation is also sensitive to outliers because of

its minimization on a sum of squared Euclidean distances of pixels from their corresponding cluster

centers. K-medoids [64] was proposed to make it less sensitive.

Gaussian mixture model. Gaussian mixture model (GMM) is another machine learning

algorithm that has been used as a tool for statistical segmentation. In this model, pixels in the

given image are assumed to be samples from an underlying parametric model, the superposition of

several Gaussian density functions:

p(x|αk, µk,Σk) =
∑
k

αkN (x|µk,Σk), (1.10)

where αk, µk and Σk are the mixing coefficient, mean and covariance for the kth Gaussian density

function respectively:

N (x|µk,Σk) =
e−d

2(x,µk,Σk)

|Σk|
. (1.11)
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Similar to K-means, each Gaussian distribution corresponds to a segmented region (cluster) and

pixels in each region are thus samples from the corresponding distribution; in contrast, GMM-based

segmentation is aimed at splitting the image into k regions while finding the maximum likelihood

estimate of a mixture of Gaussian distributions. Instead of using the Euclidean distance in the

feature space, Mahalanobis distance

d(xi, µk,Σk) = ‖xi − µk‖Σ−1
k

=
√

(xi − µk)TΣ−1
k (xi − µk) (1.12)

is often used in Gaussian mixture models, where xi is the feature vector for the ith pixel, µk is

the center for the kth cluster, and Σk is the covariance estimate for the kth cluster. GMM-based

segmentation then entails approximating the GMM and labelling each pixel to the region with the

highest likelihood. Model estimation and segmentation can be coupled together by the expectation

maximization (EM) algorithm ( [35]), which is a greedy descent algorithm that iterates between

them to carry out maximum likelihood estimation (MLE) of GMM. There are two steps in EM: the

expectation step estimates the likelihood of each sample generated by each Gaussian distribution;

the maximization step updates the mixing coefficient, mean and covariance for each Gaussian

distribution. However, GMM suffers from the scale difference between the target object and the

background object. If the background object is much larger than the target object, it is more

than likely that the estimated GMM only describes the background object. Thus this approach

is not applicable for small object segmentation in cluttered background. Again, this model also

suffers from the initialization issue that the number of component distributions k may be difficult

to estimate in real-world applications.

Mean shift. Followed by the idea that a complicated probability density function for an image

can be decomposed into a group of Gaussian probability distributions, it is natural to consider if

pixels could be labelled relying on some properties of GMM without explicitly representing the

probability density function. A way that is straightforward for such purpose is to seek major peaks

in the image data distribution, rather than finding a parametric GMM. The main idea of this

smooth non-parametric model is to label pixels climbing up to the same peak as in the same region.

One of the most widely used approaches for estimating the density function is called Kernel density

estimation or Parzen windows [36]. In this approach, we convolve the data with a given kernel
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f(x) =
∑

xi∈N(x)

K(xi − x), (1.13)

where xi is the ith sample, N(x) is the neighborhood of x defined as a Parzen window (outside of

which K(x) = 0), and K(t) is a kernel function, e.g.: a Gaussian kernel, which is

K(xi − x) = ec‖xi−x‖
2

. (1.14)

Optimization methods like gradient descent can be applied later to find local maxima. However, in

the case of high-dimensional search space or even low-dimensional but extremely sparse space, it is

very difficult to evaluate the density function f(x). To overcome this problem, another optimization

technique named multiple restart gradient descent is used instead, where an input feature vector xi

can be randomly picked up from samples as an initial local maximum p0. Mean shift then computes

the gradient of the kernel density function f(x) centered at p0 followed by climbing up the hill in

that direction. Specifically, the gradient of the kernel density function is

∇f(x) =
∑

xi∈N(x)

(xi − x)G(x− xi) =
∑

xi∈N(x)

(xi − x)g

(
‖xi − x‖2

h2

)
, (1.15)

where g(t) = −k′(t) and k′(t) is the first derivative of k(t). Therefore, the weighted mean of the

current neighborhood (N(x)) can be written as

m(x) =

∑
xi∈N(x) xiG(xi − x)∑
xi∈N(x)G(xi − x)

. (1.16)

The gradient expression can then be re-written as:

∇f(x) =

[ ∑
xi∈N(x)

G(xi − x)

]
d(x), (1.17)

where d(x) = m(x) − x is so called the mean shift. In iteration k of mean shift, pk is replaced

by m(pk), recorded as pk+1 for the next iteration. This process repeats until it converges to a

local minimum of the data distribution f(x). However, as proved by [30], regular gradient descent

cannot guarantee the convergence unless proper step size is chosen.
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Graphical model. The statistic approach works under the existence of distinctive features.

Unfortunately, it may be difficult to engineer ideal features that make our target object distinctive.

Thus interactive segmentation is a strong tool to assist object localization and object feature learn-

ing. The user inputs are usually modeled as additional information combined appearance features

in a graphical model. A common objective of image segmentation is the desire to group pixels

with similar appearance while having boundaries between regions of short length and across visual

discontinuity. If we restrict the boundary measurements to be direct neighbors and compute region

membership statistics via summing over pixels in regions manually chosen as either the foreground

or the background, we can formulate the segmentation as an energy function using either regular-

ization or binary Markov random field (MRF). An early example of a discrete labelling problem

that combines both boundary-based and region-based energy term was proposed by [70], deriving

the energy function from minimum description length (MDL) coding. Given δ(f1(x) − f2(x)) is

0 if f1(x) = f2(x) and 1 otherwise, the segmentation problem can be modelled as minimizing a

combination of a region term and a boundary term:

E(f) =
∑
i,j

Er(i, j) + Eb(i, j), where

Er(i, j) = ES(I(i, j);R(f(i, j))), and

Eb(i, j) = sx(i, j)δ(f(i, j)− f(i+ 1, j)) + sy(i, j)δ(f(i, j)− f(i, j + 1)).

(1.18)

The region term Er(i, j) measures the coherence between the intensity value (or color) I(i, j) of

pixel and the statistics of region R(f(i, j)) chosen by user. Here R(f(i, j)) can simply be the

mean in gray level or color domain or be more complicated, such as region-based intensity value

histograms [22] or GMMs in color space [114]. For the boundary term Eb(i, j), it measures the

agreement between neighboring pixels proportioned by sx(i, j) and sy(i, j), which are horizontal

and vertical smoothness terms respectively. Normally the strength of the smoothness term is

inversely proportional to the discontinuity between neighboring pixels [114].

Generally, the gradient decent technique could be applied iteratively to minimizing the energy

function above. However, drawbacks of this technique are that it is slow as well as potentially

reaching local minima. Even though there are several known techniques for MRF-based energy

minimization, graph cuts is the most widely used one. Boycov and Jolly [22] were the first to apply
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this technique based on binary Markov random field (MRF) for figure-ground segmentation prob-

lem. In their method, seeds (pixels) from foreground and background are sampled by a user via

an image brush. The statistic priors (intensity or color histogram) can then be learned from these

foreground and background seeds. The nodes that are more compatible with either foreground

or background seeds will have a stronger link to the corresponding terminal. Meanwhile, neigh-

boring pixels with greater smoothness get stronger connections. In this way, image segmentation

is modelled as a minimum-cut/maximum-flow problem which can be solved in polynomial time

and is usually called min-cut for short. Each node will finally be assigned as either foreground or

background relying on the terminal to which they remain linked.

One major extension to the original figure-ground segmentation approach of [22] is GrabCut

segmentation system ([114]), where the region statistics are modelled as a GMM and user input

is minimized through a bounding box. The pixels around and inside the box outline are regarded

as the background and the foreground seeds respectively. The system iteratively re-estimates the

statistics of the interior region so that the foreground color model will migrate toward a better

estimate. Additional manual refinement is also allowed afterwards. However, the computational

cost of the graphical model increases dramatically with the resolution of the data [7].

1.3.2 Top-down Segmentation

Even though the state-of-the-art segmentation algorithms using bottom-up cues provide im-

pressive results, their difficulties in semantic segmentation are still obvious. Despite the fact that

BU segmentation can be generally applied to any image in order to find image discontinuities that

indicate potential object boundaries, their major problems, however, include splitting an object

into regions and merging objects with the background. These drawbacks inherit from inevitable

ambiguities that can hardly be distinguished without prior knowledge of the object class, due to

the large intra-class variance in terms of color, texture, etc. for most objects. In addition, local

parts of a salient object are not necessarily salient in contrast to their background. The less salient

object parts may be merged with background.

Concerning these problems, another trend of figure-ground semantic segmentation is that of

a top-down visual process, in which segmentation is primarily based on the guidance of object

representations generated in the high-level: an object recognition step, sometimes called salient

object detection ([83]), is applied at first to identify which specific class the detected object belongs
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to. Then the object is segmented from its background aided by prior knowledge of the object class

in terms of its possible shape (contour) and appearance (patch). In other words, according to TDS

approach, segmentation is under the facilitation of recognition.

Parametric active contour. One way of TDS is to explicitly model the target object as

a parametric contour, for which a contour is initialized in the given image and evolves toward

the solution under the guidance of image discontinuities, such that both internal forces such as

smoothness constraints and external forces such as high level shape constraints are taken into

account. Besides cues in color space and spatial space, contours of objects can also be considered

as features for segmentation. In contour based segmentation, a segmentation of the image plane

Ω is achieved by locally minimizing the energy (or cost) of a curve relying on how well it fits the

desired contour. Invented by Kass et al. [63], a parametric active contour, named Snake, is defined

as an energy minimizing spline that evolves towards the closed contour of an object in the image.

The initial shape and location for such snake should be given near the desired contour via some

priors like human input, high level interpretations or data adjacent in spatial or time domain. Let

the position of a snake be represented explicitly as a parametric form f(s) = (x(s), y(s)), where

x(s), y(s) are x, y coordinates along the spline and the arc-length s ∈ [0, 1]. Then the energy

function of a snake is

E∗snake =

∫ 1

0
Esnake(f(s)) ds

=

∫ 1

0

(
Einternal(f(s)) + Eimage(f(s)) + Econstraint(f(s))

)
ds,

(1.19)

where

Einternal(f(s)) = α(s)

∣∣∣∣dfds
∣∣∣∣2 + β(s)

∣∣∣∣d2f

ds2

∣∣∣∣2,

Eimage(f(s)) = w1Eline + w2Eedge + w3Etermination.

(1.20)

The first term is the internal spline energy providing a smoothness constraint on the snake.

There are mainly two causes related to the change of smoothness: stretching and bending. Thus

it is composed of a first-order term controlled by a measure of the elasticity or the tension along

the snake, α(s), and a second-order term controlled by a measure of the rigidity of the snake, β(s).
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Therefore, a large α(s) penalizes distance variance between contour points, whereas a large β(s)

penalizes oscillations in the contour.

The second term is the external energy deriving from the image where the snake lies. It is a

weighted combination of three terms in that snake may be attracted to lines, edges and terminations

in an image. The line term is commonly defined as Eline = I(x, y) where I(x, y) denotes the image

gray level at location (x, y). Therefore, if w1 is positive the snake is attracted to light lines and if

negative then it is attracted to dark lines. The edge term is defined by |∇I(x, y)|2, which attracts

the snake towards edges with large image gradients. The termination term pushes the spline

toward line terminations and corners. Let G(x, y) = Sα(x, y) ∗ I(x, y) be a smoothed version of the

image I and θ = arctan(Gy/Gx) be the gradient angle, unit vectors along and perpendicular to the

gradient direction can then be represented by n = (cos θ, sin θ) and n′ = (− sin θ, cos θ) respectively.

Following this, the termination term can be written as

Etermination =
∂θ

∂n′

=
∂2G/∂n′2

∂G/∂n

=
(∂2G/∂y2)(∂G/∂x)2 − 2(∂2G/∂x∂y)(∂G/∂x)(∂G/∂y) + (∂2G/∂x2)(∂G/∂y)2

((∂G/∂x)2 + (∂G/∂y)2)3/2
.

(1.21)

The third term is responsible for imposing external constraints such as springs attached by the

user or high level shape information. On one hand, if the snake is near the desired local minimum,

the constraint term will pull the snake even closer. On the other hand, if the local minimum where

the snake locates is regarded as incorrect via a high level process, the constraint term will force the

snake away to another local minimum nearby. For example, a spring-based constraint term can be

defined as Econstraint = ki‖f(i)− p(i)‖2 where p(i) is the i′th anchor point.

Parametric active contour overcomes both the computational inefficiency and low SNR due to

its concerning on only the adjacent but global region of the active contour. However, it suffers from

the fact that it requires a sophisticated re-griding process to eliminate overlap of control or marker

points. Moreover, it lacks a meaningful statistical framework for extensional use [31].

Geometric active contour. Another way of TDS is to model the target object as a geometric

contour. Instead of being explicitly represented as a curve function, the contour is represented in an
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Figure 1.2: A curve, defined by the zero level set of the function Φ(·), is the boundary
between regions where ω : Φ(x, y) > 0 and Ω− ω : Φ(x, y) < 0.

implicit manner. In level set segmentation ([92], [128], [37]), curves are defined as the zero crossing

(also called zero level set) of some higher dimensional embedding function Φ in the image domain

Ω. An example level set function is shown in Fig. 1.2. The main idea of level set segmentation is to

update this time-dependent embedding function Φ(x, t) rather than the curve function f(s) in each

step. Consequently, the zero level set of each embedding function (Φ(f(t), t) = 0) defines the curve

that is propagated toward contours of the desired objects in the current step. The main advantage

of level set is that the zero level set may change topology (break, merge, etc.) during the evolution

while the embedding function always remains as a function. Cremers et al. [31] present a wonderful

survey of level set segmentation. However, it suffers from the regularization problem that shapes

the level set function properly. It is tricky to decide when to re-shape the level set function and

thus produce desired contours [92].

Interactive contour extraction. Active contour methods allow a user to give a rough

boundary of the interest and then have such a boundary evolve toward the desired contour. Some

user input constraints are often required for a desired result. As an alternative, intelligent scissor

developed by [99] allows real-time interaction, the contour keeps on being optimized while the user

is drawing. As shown in Fig. 1.3, when the user inputs a rough boundary, a better curve clinging to

the desired contour (green curves) is generated. To compute the optimized contour of the interest,
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each point in the image is associated with a cost indicating its potential of being a contour point.

Such cost is based on an N8 neighborhood and is computed by concerning not only the zero-crossing

but also the gradient in terms of its magnitude and orientation. When a user keeps on drawing,

the system continues to compute the path with the lowest cost from the starting seed point to the

current point. To prevent the curve from jumping around arbitrarily, the curve will be “frozen”

after it is stabilized for a period and the ending point of such curve is assigned as the new staring

point. Moreover, the optimal curve may jump onto the boundary with high contrast nearby. Thus

the intensity profile of the current optimized curve is learned as a constraint encouraging the curve

moving along current boundary. However, it is difficult to be extended into 3D due to the amount

of human workload involved.

Semi-global deformable template matching. In contrast to use initial contours to avoid

target object localization, semi-global deformable templates are usually for localization, in the form

of local patches with certain configuration. A collection of local patches for object class, a codebook,

is a visual dictionary with a large number of visual words. Each class of objects can be described

by a set of visual words. Leibe and Schiele [75] propose a probabilistic formulation for segmenting a

specific object based on a codebook learned from training images without segmentation. Through

an unsupervised way, the codebook is learned from cluttered scenes. Given a number of training

images containing objects of interest, image patches centered on Harris interest points are extracted

and then are separated into compact clusters via agglomerate clustering. The center of each compact

cluster is then stored as an entry of the codebook. Given a novel (test) image with extracted patches,

a straightforward way is to match them with the codebook entries and the best-matching codebook

entries will be used for recognition (e.g. [2]). Alternatively, [75] use a probability voting, activating

all entries with similarity larger than a threshold. All the activated locations related to the object

center with respect to each entry are saved for voting possible locations of the object center.

Mean-shift is then applied in the voting space in order to obtain a promising hypothesis consisting

of patches and their surroundings in possible locations. The figure-ground segmentation on an

extracted patch from a novel image is thus defined as calculating the probability of labelling each

pixel as figure or background, given the learned object hypothesis. The pixel-wise segmentation

probability can be obtained by combining segmentation masks of associated patches as in [20]
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(a) (b)

(c) (d)

Figure 1.3: A sample procedure of interactive segmentation on a 2D slice of the HIV
tomogram using Intelligent Scissor. (a) The original sample slice; (b) one intermediate
step; (c) another intermediate step; (d) the final outer surface segmentation of the chosen
membrane. The green dotted curves mean contours detected at that moment. To illustrate
the procedure in more detail, we manually mark the red, blue and green dots indicating
the start point, the end point of the fixed contour and the end point of the interactive
contour respectively.
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or involving location information as well. The result is a segmentation mask with a pixel-wise

confidence map showing the reliability of such segmentation.

The segmentation results may suffer from potential secondary hypotheses covering part of the

object. The Minimal Description Length (MDL) principle and an implicit shape model are used

in [73] to overcome this problem, where the pixels belonging to the overlap part will be labelled

as background with respect to the secondary hypotheses. An extended version of this approach

including multiple cues is introduced in [76]. The key is to generate a hypothesis for each cue so

as to obtain the basis to integrate these cues. Specifically, it consists of two stages: the first stage

ignores cue correlation and generates a codebook and a respective hypothesis for each cue; the

second stage reveals cue correlation via fusing cues’ probability maps into a common one. Rather

than a collection of a partial cover of the most discriminative parts above, the codebook in [20]

consists of patches fully covering the object along with their figure-ground labelling.

A number of covers are automatically learned for each object part and each cover can be moved

under the constraint of object spatial consistency. In such a way, a larger intra-class variance in

shape can be addressed more effectively. It is assumed that the number of covers for a region

roughly indicates the likelihood of a region belonging to a figure. Therefore, the likelihood of each

pixel belonging to foreground versus background is initialized via the number of covers and then

iteratively updated regarding the number of times such pixel occurs respectively. In order to be

robust to object deformations while maintain affordable cost of discriminatory power, Bernstein and

Amit [13] propose a statistical mixture model for local patches based on photometric invariant edge

features. It is assumed that edge features are conditionally independent on each given component.

Meanwhile, each component in the mixture model is regarded as a new local feature inheriting the

property of photometric invariance. The existence of multiple objects and occlusions can thus be

handled through the mixture model learned from a small training set.

Winn and Shotton [137] present a parts-based model incorporating spatial information between

connected parts. Arbitrary scaling is thus allowed but its ability to be applied to articulated

object categories is not clear. Additional details on top-down segmentation based on codebook

can be found in [26], [38] and [72]. Unfortunately, semi-global deformable template matching

requires labeled data for supervised learning and is computationally intractable in 3D data with

high resolution [7].
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Global deformable template matching. Another primary branch of deformable template

matching is a global model representing the global structure and appearance of given object class

([139], [45], [136], [119]). For instance, LOCUS [136] learns top-down class-specific prior in an

unsupervised manner under the assumption that the shape pattern of an object is consistent while

the variance in color and texture is limited in terms of a single instance. Thus, given a number of

images containing only one target object, it is reasonable to learn the object model – an “average”

shape in the form of a global figure-ground mask and a boundary illustrated by a global edge mask.

These two masks are designed to well describe the low color/texture variance for a single object

while allowing dramatic divergence in intra-class appearance among all the images in training. To

generate these two masks, top-down cues (shape and pose) and bottom-up cues (color and edge)

are incorporated through a hierarchical generative probabilistic model and the intra-class variances

in shape and texture are constrained by applying a smooth deformation field on these cues. In

detail, a deformation field and the position and size of an object are sampled followed by applying

their corresponding deformation, scaling and translating on the mask and edge image sampled in

respect with their prior distributions. The global binary mask is sampled from the transformed

mask image whilst the global edge mask is derived from a sampled foreground edge image and a

sampled background edge image. These two masks are then used for segmentation via probabilistic

inference. Such inference is approximated in an iterative manner. In each iteration, the object’s

position, size, pose and segmentation are successively refined based on training images. However,

the target object in each image should face a constant direction and thus some manual flips are

needed. In addition, the assumption that the intra-class variances of color and texture are low may

no longer hold, especially in gray level images, and thus derives a weak object model from original

images. Again, global deformable template matching requires labeled data for supervised learning

and is computationally intractable in 3D data with high resolution.

1.3.3 Combining Bottom-Up and Top-Down Segmentation

The state-of-the-art BU segmentation algorithms can produce impressive results due to their

ability of being applied to generic images and detect local image discontinuities indicating po-

tential object boundaries. In addition, the computation of low-level cues is straightforward and

efficient. However, their major shortcomings are the splitting of semantic meaningful foreground

(over-segmentation) and the merging of foreground parts with background (under-segmentation),
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due to unavoidable ambiguities that are difficult to be distinguished without additional knowledge

about the global structure of the object class. Meanwhile, the contrast between object part and

the background is not necessarily strong enough, potentially leading to merging of these two. In

contrast, up-to-date TDS algorithms succeed in resolving these BU local ambiguities under the

guidance of prior knowledge such as global shape and appearance. However, TDS algorithms have

difficulties mainly due to the large intra-class variance in terms of local edges and textures, which

limit the extended use of learned representations on general images, and the inefficient matching

between the TDS model and the image.

Taken the pros and cons of both BUS and TDS into account, several methods in the literature

have therefore suggested means of combining BUS and TDS in an attempt to achieve semantic

segmentation in more efficient and effective ways. In fact, the combination of BUS and TDS

is observed in various research areas focusing on how the human brain works. Psychophysical

and physiological research on the primate visual system has shown that figure-ground semantic

segmentation and object recognition interact with each other concurrently in the human vision

system (HVS) [107, 24, 101, 109, 109]. In addition, the cooperation between TDS and BUS processes

is supported by neurophysiological evidence as well. Depending on the relationships between figure

and background, neurons at higher-level of HVS are shown to have an influence on those at low-

levels such as visual areas V1 and V2 ([68], [144], [56], [124], [9]). It is observed that the response

of many low-level neurons toward the same edge varies depending on the relationships between

semantically meaningful foreground and background in an image. In what follows, let’s take a

review of the state of the art to combine BUS and TDS in either a deterministic or a statistic

manner.

Deterministic Approaches. One deterministic method of integrating the constraints of both

bottom-up and top-down processes is the jigsaw approach ([19]). It poses a binary segmentation

as finding an optimal solution of a cost function based on a segmentation tree. From the top of the

tree, the input image is split into segments using a coarse-to-fine strategy. Each level represents

a segmentation of the image containing segments with respect to different labelled nodes. The

bottom-up constraint enforces pixels in homogeneous regions toward the same segment, either

foreground or background. Meanwhile, the top-down constraint requires that the segments with

respect to foreground should be as close as possible to the initial top-down model. Each node is
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a finer segmentation given its parent segmentation. Correspondingly, each local cost function is

defined as a linear combination of top-down and bottom-up constraints. The top-down constraint

is only applied at the leaf level. It penalizes the dissimilarity between the final segmentation (leaf

nodes) and the initial top-down model. Since the top-down labelled model is based on segments

of a figure rather than the figure as a whole, this approach is usually called a jigsaw approach.

Moreover, the bottom-up constraint is taken into account between two adjacent levels. It encourages

the consistency in labelling as its parent if its parent segment is not salient, whereas it tolerates

different labels if its parent segment is salient. Hence, the BU constraint penalizes segment where

its label is inconsistent with its parent, unless it is a salient region. The sum-product algorithm

([66]) is applied to seek for an optimal labelling minimizing the given full cost function.

To solve the problem of labelling an arbitrary number of objects, Cremers et al. [32] integrate

the competition of shape priors into level set segmentation approach. An energy function is gen-

erated through a linear combination of shape-based labelling function and level set function. By

simultaneously optimizing the level set function and a number of transformation parameters in the

energy function through gradient descent, the evolution of contours is enforced by shape priors in

selected areas so as to reconstruct familiar shapes. In [119], an integration of elastic shape matching

is also discussed given only one shape prior. Given specific object priors, Yu and Shi [138] use a

two-layer graph to combine top-down and bottom-up cues. Nodes in one layer are patches derived

from top-down object models and edges between them indicate their compatibility. In the other

layer, nodes are pixels and the edge between two neighboring pixels implies their similarity (BU

cue). A binary segmentation is thus modelled as a hybrid grouping problem: grouping nodes in

both pixel-layer and patch-layer into two groups (foreground and background) via the normalized

cuts criterion [121]. The resulting optimization is constrained by the association between nodes

and patches, represented as edges between these two layers. The eigenvector with the smallest non-

trivial eigenvalue is the solution. Additional details on the algorithms of deterministic semantic

segmentation can be found in [118, 3, 111, 98].

Statistical Approaches. In these approaches, semantic segmentation is formulated as a

stochastic optimization problem. The probability distribution of label variable is repeatedly es-

timated for each pixel. For example, Zhao and Davis [141] directly estimate the probabilities of

each pixel belonging to foreground and background through a weighted sum of its respective prob-
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abilities in terms of hierarchical template matching and color-based binary segmentation. After

applying color-based kernel density estimation and contour-based template matching, the weight

is updated with respect to the probability of a person in windows produced by template matching.

Then, a new probability of pixel belonging to foreground is generated and the location, size and

shape of the windows are adjusted according to the updated foreground. This process repeats until

the foreground becomes stable.

Probabilistic graph models have also been widely used for semantic segmentation, such as the

Markov Random Field (MRF) model. It incorporates the spatial configuration among neighboring

labels as a Markov prior, encouraging the adjacent pixels to be labelled as the same class. For in-

stance, Huang et al. [55] propose a three-layer graphical model integrating bottom-up and top-down

cues. In order to tightly couple the MRF-based and the deformable model-based segmentation, a

new hidden state representing the underlying contour is added to the bottom of the traditional

MRF model. The nodes in the three layers are image pixels, labels of pixels and contour model

respectively. Segmentation is thus considered as a joint MAP problem, an estimation of the under-

lying contour C and region labels x that maximizing a joint posterior on C and x given an image.

Since exact inference in this model is intractable, the solution is approximated by decoupling the

three-layer model into an extended MRF model and a probabilistic deformable model. Estimation

of labels in the extended MRF model is achieved by Belief Propagation (BP) under the contour con-

straint from the deformable model. The estimated labels in turn contribute to a better estimation

of the contour in the probabilistic deformable model based on the variational approaches. In an-

other model named OBJCUT [67], the authors attempted to answer the following three questions:

1) how to make the segmentation conform to figure and background appearance model? 2) how to

encourage the segmentation to follow the edges in an image? 3) how to encourage the outline of the

segmentation to resemble the shape of the object? In this approach, the top-down shape constraint

is involved in figure-ground semantic segmentation via matching an object category model with

the given image. As usual, there are two issues in this method: how the top-down model is built

and how to integrate it to the segmentation system. Two kinds of objects are taken into account

for designing the object category model: non-articulated and articulated objects. The model for

the first kind of objects is defined as a set of exemplars (SOE) concerning object shape (boundary)

and appearance (texture). This model is learned through a number of manually segmented images
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containing the object of interest. In contrast, since large spatial variance should be allowed as well

in the case of articulated objects, the model for articulated objects is rather defined as a set of

layered pictorial structures (LPS) automatically learned from video sequences, which describe an

object as parts in a hierarchical manner and concern not only shape and appearance of each part

but also their pairwise configuration. After estimating the pose of the object, a number of samples

are obtained from the posterior of the object category model. OBJCUT then relies on an object

category specific contrast-dependent random field (CDRF) to model the conditional distribution

concerning a unary term, which consists of the appearance potential based on color and the shape

potential based on the spatial distance, and a pairwise term consisting of the labelling smoothness

prior and a contrast term based on discontinuity. Levin and Weiss [77] propose a fragment-based

segmentation on conditional random field that learns to combine bottom-up and top-down cues in

a supervised manner. A relatively small set of fragments are learned at first via a feature induction

algorithm on candidate fragments and then propagate the segmentation through measuring the

image similarity. Specifically, after obtained from an object detector, each path containing part(s)

of the object is segmented based on normalized correlation with a number of fragments. A full

edge-aligned segmentation is finally produced. This approach requires fewer fragments than pure

top-down manner whereas these fragments are local cues, only partially covering the object of in-

terest. Thus it may not only miss object parts but also weaken the propagation efficiency in case

of object with significant variance in appearance. In addition, the pairwise configuration between

fragments is not considered during matching them with an image. Hence some of the segmented

results are not object-like.

Liu et al. [82] proposed another graphical model combining top-down and bottom-up cues in a

hybrid manner. In this hybrid graph model, vertices are superpixels while directed and undirected

edges are derived from TDS (a codebook) and BUS (mid-level over-segmented regions) respectively.

The directed graph (the vertices with the directed edges) is associated with the undirected graph

(the vertices with the undirected edges) through a score vector indicating the probability of pixel

at hand belonging to each class. The costs of random walk on the directed graph and a minimal

cut on the undirected graph are linearly combined to form a new energy function. Hence, the final

solution should be a score vector that minimizes this energy function. Additional details on the

algorithms of probabilistic semantic segmentation can be found in [118, 3, 110, 140].
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1.4 Using Contextual Cues to Improve Semantic Segmentation

Contextual information exhibits representative configurations of objects, which reduces the

search space and is robust to noise. Thus it owns great potential in helping semantic segmentation

given the issues mentioned in the previous section. In fact, psychology and vision community

have explored the role of contextual information in visual search and recognition for years [6, 15,

104]. Biederman et al. [14] claimed five different types of relations between objects and scenes:

support (objects rest on the surfaces of other objects), interposition (objects are surrounded by the

background), probability (the possibility of being existed in some scene), familiar size (a limited

set of size relations between objects) and position (the possible and impossible locations of an

object in a scene given its existence). The first two, often called syntactic relations, reflect the

general constraint of gravity and the occlusion due to opaque objects in front of the boundary of

another object. The other three, often called semantic relations, are based on object identity. Since

semantic relations provide details of interactions among objects in a scene, they are often referred

to as contextual features.

To illustrate the role of contextual information in object recognition, one experiment is shown

in Fig. 1.4. After capturing an image of the night scene from the roof of a garage (the lower left

image), we manually moved a street lamp next to the moon and generated a new image in the

lower right corner. Given this new image, subjects described the upper part of the scene as the

moon and a star in the sky. Clearly, the local appearances from the respective images (light dots

in the first row) are exactly the same and are hence insufficient for recognizing it as a street lamp

or a star. Instead, the distance of the relocated street lamp from the moon and the ground makes

it be perceived as a star.

We are interested in using contextual information provided by salient objects (easily segmented

using appearance features) to segment target objects with low quality based on context features,

namely context-sensitive semantic segmentation system. For example, take a look at a 1400 ×

600 cross-section of a 600 × 1400 × 432 cryo-electron tomogram in Fig. 1.5, which contains both

membranes and spikes of nano-scale microvilli. In Fig. 1.5(a), we show four exemplar local windows

that potentially includes our target object (spike). In fact, only the two green windows in Fig. 1.5(b)

mark the true spikes. Because of the limitation of the imaging devices, the SNR and the contrast

are both quite poor in this high-resolution tomogram. Small object segmentation in such noisy and
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big data is still an open problem. All traditional semantic segmentation techniques reviewed in this

chapter break down when trying to segment the spikes in the nano-scale tomogram. However, at

a first glance, the membranes (dark long curves) in Fig. 1.5(b) are more observable (salient) than

the spikes and are somewhat distinguishable from the background. Thus, even though it may be

difficult to segment the spikes directly, it makes sense to first segment the microvillus membranes

and then induce the spikes based on the co-occurrence of membranes and spikes (semantic relation

of position). How can we represent the contextual features that describe the relationships between

objects and use them for semantic segmentation? Unfortunately, it is not an easy task to organize

contextual information in a reasonable framework, which is the main problem this dissertation

intends to address.

1.5 Summary of Contributions

The main contributions of my thesis are as follows:

• We have formulated the problem of context-sensitive semantic segmentation as a well-defined

statistic model, proposed a two-stage framework, analyzed its efficiency, and showed how it

can be applied to semantic segmentation tasks. In addition, we have developed generalized a

context-sensitive algorithm that allows extensive use of features in terms of both appearance

and context.

• We have developed two segmentation algorithms of nano-scale membranes in terms of their

closeness and varied profile shapes, which is useful for many applications in visualizing plane-

like structures of noisy data with high resolution. Further, in related work on surface recon-

struction, we have developed an algorithm of reconstructing the semantic surface from 3D

light microscopic images.

• We have implemented context-sensitive spike segmentation. Our method is the first algorithm

that incorporates context features into nano-scale spike visualization and thus enables auto-

matic spike segmentation. We have also demonstrated excellent performance of our method

in the tasks of microvillus and HIV spike segmentation.

• We have applied context-sensitive semantic segmentation to tattoo images. Given the poten-

tial tattoo patterns generated from tattoo segmentation, we have demonstrated the state-of-

the-art performance in various tasks of tattoo classification.
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(a)

(b)

Figure 1.5: This example illustrates a typical context-sensitive semantic segmentation
problem. The context information provided by dark and long context objects (membranes
in (b)) plays an important role for semantic segmentation of small target objects (spikes
in green windows of (b)) when the SNR is extremely low and thus the appearance of the
target objects (as shown in (a)) is not sufficient to distinguish them from the background
noise (i.e.: yellow dotted windows of (b)).

1.6 Organization

This dissertation is organized as follows. Chapter 2 describes a two-stage statistic framework of

context-sensitive semantic segmentation, with theoretical analysis on its potential of outperforming

traditional object-centered segmentation methods. Chapter 3 presents the implementation of the

first stage of the proposed framework, salient context segmentation, on the problem of automatic

microvillus membrane segmentation in cryo-electron tomogram. Chapter 4 extends the first stage to

handle semi-automatic but more general segmentation problems in contrast to chapter 3. Chapter 5

formulates multiple context cues and present a hybrid context sensitive model that makes faint spike
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segmentation in nano-scale cryo-electron tomogram tractable, with extensive experimental results in

exploring the influence of context sensitivity coefficient on semantic segmentation. Chapter 6 tests

our framework on natural images for tattoo segmentation and various tasks of tattoo classification.

Chapter 7 presents the future works and concludes the dissertation with a summary of contributions.
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CHAPTER 2

FRAMEWORK

2.1 Introduction

As mentioned in the previous chapter, the state-of-the-art methods in the literature are not

efficient and practical for segmenting objects in data with high resolution that are only percepti-

ble under the existence of large-scale context objects because of challenging imaging conditions.

Thus there is an emerging demand of having a semantic segmentation framework that is general

enough to be extensively used for different applications while being efficient enough to minimize

its sensitivity towards the scale of data. Based on our analysis on the related works, the segmen-

tation methods with a statistical form is easier to be extensively used than the others. Using the

Bayesian rule, we can easily factorize the segmentation ”function” so that arbitrary number of

useful features can be involved for segmentation. In this chapter, we review the classical statistic

semantic segmentation framework, followed by presenting our more general statistical framework

of context-sensitive semantic segmentation, along with a discussion on the relationship between the

classical framework and our framework.

2.2 Classical Semantic Segmentation Framework

Semantic segmentation is aimed at assigning a discrete label {oi}Ni=1, which takes one of the K

values oi ∈ {1, 2, ...,K}, to each of the N basic units in the given data indicating which of the K

objects it belongs to. Here the form of the unit can be any region representation of given data,

such as pixels, voxels, superpixels, supervoxels, segments, etc. We will use voxels in the rest of this

chapter, even though obviously it is not limited to voxels. In a general statistic framework, semantic

segmentation is modeled as finding the label oi that maximizes the following object likelihood

function:

oi = arg max
oi

Pr(oi|fi), (2.1)
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where {fi}Ni=1 is a set of features given at each of the N voxels. Here Pr(oi|fi) is the conditional

probability density function (PDF) of the presence of the object oi given a set of features fi.

Consider the fundamental case of semantic segmentation – foreground/background segregation,

where foreground is the set of target objects in the given data. Semantic segmentation on multiple

object classes can be split into multiple sub-problems of foreground/background segregation. In

this fundamental case, oi = 1 when voxel i belongs to the target object, whereas oi = 0 when it

belongs to the background. In the classical framework for semantic segmentation, the main source

of information derives from local appearance features presented in the target object or its small and

primitive spatial neighborhood, such as color, edge, texture and shape. In that sense, objects in

the background are assumed to have independent features and are thus considered as distractors,

rather than cues, for semantic segmentation. Since this framework is purely based on appearance

features of the target, it is often called object-centered semantic segmentation. Respectively, the

PDF in Eq. 2.1 is re-written as:

Pr(oi = 1|fi) ' Pr(oi = 1|fAi ), (2.2)

where fAi is a set of local appearance features on the target object.

Unfortunately, the assumption of the object-centered framework does not often hold in nano-

scale. The intrinsic object appearance features fA are often not distinctive enough for accurate

semantic segmentation when SNR is extremely low (see Appendix A for a detailed analysis). An-

other drawback of the object-centered segmentation framework is its computational cost. Note that

fAi is a feature set, and every feature needs to be generated through measurements across different

locations and scales of the entire volume. Thus the scalability of this framework is intrinsically

limited by the large search space.

2.3 Context-Sensitive Semantic Segmentation Framework

Due to the problems mentioned above, it is necessary to segment the salient context objects

in the given data and utilize the possible context cues provided by them to approach the target

object segmentation. Salient objects are defined as objects that stand out relative to their spatial

neighborhoods in an observer’s view [21] and thus their appearance feature responses are strong
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enough for object-centered segmentation. Instead of modeling the background with context ob-

jects as noise, we propose context-sensitive semantic segmentation, a new semantic segmentation

framework that is sensitive to context features provided by context objects in the background. In

other words, the new framework takes into account the information of detailed interactions among

the target object and the context objects in the background. To employ the context features, the

problem of semantic segmentation on the target object is re-modeled as two stages: context object

segmentation and target object segmentation.

2.3.1 Stage One: Model of Context Object Segmentation

Since the SNR is extremely low, even local appearance features of context objects are not

distinguishable enough to produce segmentation. Thus it is necessary to employ semi-global features

(e.g.: size of connected components, shape model, etc.) in the first stage. Correspondingly, the

context object likelihood function in Eq. 2.1 is extended to Pr(oi = 1|fAi ), where fAi is the semi-

global appearance feature response of context object in voxel i, oi = 1 means semi-global context

object and 0 otherwise. As a binary segmentation problem, Eq. 2.1 could be replaced by the

thresholding strategy for simplicity:

oi =

{
1 if Pr(oi = 1|fAi ) ≥ t,
0 otherwise,

(2.3)

where t is a threshold. Note that fAi could be any specific object features in any specific problem,

relying on which objects provide the context information. This stage ignores context cues. Indeed,

it has no other choice since context cues can only be measured relative to the context objects, which

are only available after the first stage.

2.3.2 Stage Two: Model of Context-Sensitive Target Object Segmentation

Given the hard segmentation of context objects O = {oi}Ni=1, it is tractable to compute the

context features of target objects. To employ both appearance features (fA
′

i ) and context fea-

tures (fC
′

i ), the target object segmentation is modeled as finding a discriminant function Pr(oi
′ =

1|fA′i , fC
′

i ) that predicts the posterior probability of a target object at the i′th voxel given both

features. Here fA
′

i and fC
′

i are used to summarize all types of appearance and context features

for target objects at the i′th voxel in the volume, oi
′ = 1 means target object and 0 otherwise. A

factorization could be applied on this conditional probability:
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Pr(o′i = 1|fA′i , fC
′

i )

=
Pr(o′i = 1, fA

′
i , fC

′
i )

Pr(fA
′

i , fC
′

i )

=
Pr(fA

′
i )× Pr(o′i = 1|fA′i )× Pr(fC

′
i |o′i = 1, fA

′
i )

Pr(fA
′

i , fC
′

i )

=
Pr(o′i = 1|fA′i )× Pr(fC

′
i |o′i = 1)

Pr(fC
′

i |fA
′

i )

∝ Pr(o′i = 1|fA′i )× Pr(fC
′

i |o′i = 1).

(2.4)

Note that the context feature response fC
′

i fully depends on the world state o′i. Thus the appearance

feature response fA
′

i in Pr(fC
′

i |o′i = 1, fA
′

i ) is redundant and is omitted. In addition, as the

denominator Pr(fC
′

i |fA
′

i ) of (2.4) is independent of the world state o′i, we only need to consider

the numerator Pr(o′i = 1|fA′i ) Pr(fC
′

i |o′i = 1). The first term of (2.4), Pr(o′i = 1|fA′i ), is simply the

classical object-centered model based on appearance features. The second term, Pr(fC
′

i |o′i = 1), is a

likelihood term that favors context feature responses that are consistent with our prior knowledge

about the target. For instance, if it is known that the targets are cars, then the likelihood term will

be much larger for road regions than for sea regions. This top-down context cue on known target

search is consistent with the discovery that a maximum likelihood strategy is employed for human

eye movement to search the most likely locations of the targets.

As a starting point for context sensitive semantic segmentation, we consider the classification

of context cues in [46] and thus extend the model into the following form:

fC
′

i = {fCse
i , f

Csp

i , fCsc
i }, (2.5)

where fCse
i , f

Csp

i and fCsc
i are the semantic context (e.g: probability of coexistence), the spatial

context (e.g.: position and orientation) and the scale context (e.g.: size) of the target object with

respect to another nearby large-scale object respectively. Hence Eq. 2.4 can be decomposed into

four terms, the last three of which take an additional type of context information into account

sequentially:
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Pr(o′i = 1|fA′i , fC
′

i )

∝ Pr(o′i = 1|fA′i )× Pr(fC
′

i |o′i = 1)

= Pr(o′i = 1|fA′i )× Pr(fCse
i , f

Csp

i , fCsc
i |o′i = 1)

= Pr(o′i = 1|fA′i )× Pr(fCse
i |o′i = 1)× Pr(fCsc

i |fCse
i , o′i = 1)× Pr(f

Csp

i |fCsc
i , fCse

i , o′i = 1).

(2.6)

In our work, we focus on how to utilize different types of context information to gradually not

only improve the accuracy but also significantly accelerate semantic segmentation on a large-scale

volume.

2.4 Information Theoretical Analysis

Both the classical object-centered framework and our context-sensitive framework can be con-

cerned from the view of information theory. As logarithm is a monotonically increasing function,

we can re-write the object-centered framework (Eq. 2.2) into the following log probability:

log Pr(oi = 1|fAi ) ' log Pr(fAi |oi = 1)︸ ︷︷ ︸
Log-likelihood

− log Pr(fAi )︸ ︷︷ ︸
Self-information

+ log Pr(oi = 1)︸ ︷︷ ︸
Location prior

. (2.7)

The first term on the right side, log Pr(fAi |oi = 1), is a log-likelihood that reflects how likely it

is to observe the feature response of fAi in the presence of the target object. Thus it encodes the

top-down prior knowledge of the target object. For instance, if we know that our task is to segment

green apples from an image, then the log-likelihood of a green pixel will be much higher than that

of a blue pixel.

The second term in Eq. 2.7, − log Pr(fAi ), does not include the label variable oi and is hence

independent of any prior knowledge of the target object. In information theory, it is known as

the self-information of the appearance feature fA, which increases when the probability of the

appearance features fA decreases. It thus implies that rarer features are more informative for

semantic segmentation. Returning to our example of segmenting green apples, even if we can make

a strong assumption that the target apple is absolutely green (Pr(fA = green|oi = 1) = 1), this

information still become helpless when everything in this world is green. Conversely, the color in

such case even makes it more difficult to segment the target from the background. Therefore,

appearance features of the target object are more useful when they are relatively rare in the
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background. Note that this term is purely data-driven, it is also called bottom-up saliency in

the literature of vision science.

The third term in Eq. 2.7, log Pr(oi = 1), depends only on the object label oi at location i of the

given data and is thus independent of the appearance features fA. It biases the prior knowledge

of object location and thus favors the one that is most likely to appear in current location. It is

usually assumed to be uniform over the possible object labels.

As the third term contributes equally to each class of objects when assumed uniform, it is often

omitted from Eq. 2.7. Then we can re-write this equation into the following form:

log Pr(oi = 1|fAi )

' log Pr(fAi |oi = 1)︸ ︷︷ ︸
Top-down

prior

− log Pr(fAi )︸ ︷︷ ︸
Bottom-up

saliency

= log
Pr(fAi |oi = 1)

Pr(fAi )

= log
Pr(fAi , oi = 1)

Pr(fAi ) Pr(oi = 1)︸ ︷︷ ︸
Pointwise

mutual information

.

(2.8)

In information theory, this new equation formulates the classical object-centered framework as the

pointwise mutual information between the appearance features and the presence of a target object.

Therefore, it intuitively favors the appearance feature values that are more usual in the presence

of the target object rather than in the absence of the target object. Returning to the example

of segmenting green apples, if everything in this world is green, green is then a poor appearance

feature because of its presence in both green apples and the other objects.

Our context-sensitive semantic segmentation framework can be analyzed in a similar manner.

As the first stage of our context-sensitive segmentation framework is classical object-centered frame-

work, we will focus on analysis of the second stage. The log probability of the second stage in our

context-sensitive framework (Eq. 2.4) is:

log Pr(o′i = 1|fA′i , fC
′

i )

' log Pr(o′i = 1, fA
′

i , fC
′

i )− log Pr(fA
′

i , fC
′

i )

= log Pr(o′i = 1) + log Pr(fA
′

i |o′i = 1) + log Pr(fC
′

i |o′i = 1, fA
′

i )− log Pr(fA
′

i , fC
′

i ).

(2.9)
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Based on the previous assumption that appearance features fA and context features fC are condi-

tionally independent given the target, we can re-write Eq. 2.9 into the following form:

log Pr(o′i = 1|fA′i , fC
′

i )

' log Pr(fA
′

i |o′i = 1) + log Pr(fC
′

i |o′i = 1)︸ ︷︷ ︸
Log-likelihood

− log Pr(fA
′

i , fC
′

i )︸ ︷︷ ︸
Self-information

+ log Pr(o′i = 1)︸ ︷︷ ︸
Location prior

. (2.10)

Again, the first term on the right side, log Pr(fA
′

i |o′i = 1), is the log-likelihood that reflects how

likely it is to observe the response of appearance feature fA
′

i in the presence of the target object.

Similarly, the second term, log Pr(fC
′

i |o′i = 1), is the log-likelihood that reflects the probability of

observing the response of context feature fC
′

i in the presence of the target object. Recalling our

task of segmenting green apples from an image, the log-likelihood of finding a green apple on a tree

will be much higher than that of finding it in the sky. These two terms encode the top-down prior

knowledge of the target object.

The third term in Eq. 2.10, − log Pr(fA
′

i , fC
′

i ), does not include the label variable o′i and is

hence independent of any prior knowledge of the target object. It is the self-information of all

the available features (both fA
′

i and fC
′

i ), which increases when the joint probability of all the

available features decreases. It also implies that rarer features are more informative for semantic

segmentation.

The forth term in Eq. 2.10, log Pr(o′i = 1), still depends only on the object label oi and is thus

independent of any feature. Again, it biases the prior knowledge of objects and thus favors the one

that is most likely to appear. It is usually assumed to be uniform over the possible object labels

and is often omitted from Eq. 2.10. Then we can re-write this equation into the following form:

log Pr(o′i = 1|fA′i , fC
′

i )

' log Pr(fA
′

i |o′i = 1) + log Pr(fC
′

i |o′i = 1)− log Pr(fA
′

i , fC
′

i )

= log
Pr(fA

′
i , o′i = 1)

Pr(fA
′

i ) Pr(o′i = 1)︸ ︷︷ ︸
Original pointwise
mutual information

+ log
Pr(fC

′
i , o′i = 1)

Pr(fC
′

i ) Pr(o′i = 1)
− log

Pr(fA
′

i , fC
′

i )

Pr(fA
′

i ) Pr(fC
′

i )︸ ︷︷ ︸
Additional pointwise
mutual information

.
(2.11)

In information theory, this new equation consists of three terms of pointwise mutual information.

Similar to the object-centered segmentation framework, the first term is the point-wise mutual
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information between the appearance features and the presence of a target object. It intuitively

favors the appearance feature values that are more usual in the presence of the target object rather

than in the absence of the target object. The second and third term together provide additional

information in semantic segmentation. The second term is the point-wise mutual information

between the context features and the presence of a target object, whereas the third term concerns

the point-wise mutual information between the appearance features and the context features of a

target object. Therefore, the second term favors the context feature values that are more usual

in the presence of the target object rather than in the absence of the target object, whereas the

third term penalizes the correlation between appearance features and context features used for

segmentation.

2.5 Summary

In this chapter, we reviewed the classical semantic segmentation framework at first. As this

framework is not efficient for segmenting objects that are only perceptible under the existence of

large-scale context objects, we then proposed a novel two-stage statistical framework for context-

sensitive semantic segmentation. By analyzing them in the view of information theory, additional

information employed by our context-sensitive model is explicitly presented. Varied features are

allowed to be used in our framework because of its statistic formulation. In the next three chapters,

we will apply this framework in the problem of nano-scale spike segmentation in cryo-electron

tomogram and tattoo segmentation in more natural images, showing the merits of our context-

sensitive semantic segmentation framework in contrast to the traditional framework of object-

centered semantic segmentation.
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CHAPTER 3

3D SALIENT CONTEXT OBJECT

SEGMENTATION ON NANO-SCALE

3.1 Introduction

As mentioned in the previous chapter, our method consists of a number of steps that can be

grouped into basically two sequential stages: salient context object segmentation and context-

sensitive faint target segmentation. This chapter explores the implementation of the first stage on

one difficult situation – the data imaged at nano scale.

Nano-scale imaging technologies have been commonly used for visualizing in three-dimensions

(3D) the structures of size less than 100 nanometers (i.e.: molecules, proteins, viruses, etc.). Thus

they benefit a wide range of applications such as biophysics, biochemistry, material science, envi-

ronmental technologies, micro-processor manufacturing and medicine [113, 142]. For example, the

top image of Fig. 3.1 shows a slice from a volumetric image (tomogram) of microvilli, acquired by

3D cryo-electron microscopy [87]. For visualization purpose, it is the low-passed filtered image.

Such data is critical for biophysicists, as it provides the access to the internal organization of the

microvilli at an unprecedented detail that is possible for the identification and the quantitative

analysis of spikes, which are the workhorse of protein production. The nano-scale imaging allows

us to investigate structures that are very close to their native states and potential spatial relations

between them.

Generally, nano-scale structure studies rely on several critical stages: imaging process, seg-

mentation, 3D classification, 3D reconstruction, and statistical analysis [42]. Among these stages,

segmentation is of utmost importance. From an image processing perspective, this task aims at

extracting target structural components in nanometers from a volumetric image by labeling the

voxels that compose them. The common and natural way of nano-scale semantic segmentation

is carried out manually, using some visualization tools such as IMOD [65] and Fiji [117]. This is

not only subjective but also labor-expensive, especially when the rapid advances in automation of

nano-scale imaging have led to a dramatic increase in the speed of data collection. Therefore, the
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Figure 3.1: In this chapter, we address the task of context object (in our example, mem-
brane) segmentation on a 3D tomogram, which is the first stage of our context-sensitive
semantic segmentation. An exemplar “slice” of a 3D cry-electron tomogram is shown in
the top image. One sample membrane is marked by a green curve in the bottom image.

growing amount of human effort required in segmentation becomes the bottleneck of nano-scale

research.

There exists a large number of segmentation algorithms in the computer vision literature that

attempt to automate the segmentation process, represented by watershed [130], active contour [17,

8], level set [31], sliding window [33], graphcut [23], normalized cut [121] and Gaussian Mixture

Model (GMM) [90]. However, these algorithms achieve limited success in nano-scale data [113, 42].

The task of automation on nano-scale segmentation is primarily hindered by the coexistence of two

problems: the low signal-to-noise (SNR) ratio and the large scale. The first problem is intrinsic

38



to nano-scale imaging because of how the image is produced. In an attempt to image nano-scale

objects, it is necessary to use enough doses of electrons to capture measurable contrast. On the

other hand, an increase in the use of electron does tend to damage the structure of nano-scale

objects. Based on this trade-off, it is common to observe nano-scale data with low SNR and low

contrast (as shown in Fig. 3.1). Most of the state-of-the-art in segmentation assumes relatively high

SNR and thus all fail on nano-scale data. One way to alleviate this problem is to apply smoothing

before segmentation [108, 131]. But it also reduces the resolution of edges and features. Thus it

sacrifices the accuracy of semantic segmentation, which is especially important for further analysis

on fine-scale interests. Traditional anisotropic filters [16, 59, 43, 44] attempt to inhibit noise while

preserving edges. However, these strategies also do not work well under the exsistence of extremely

low SNR. The second problem, the large scale, derives from the first problem. Due to the low SNR,

the extremely fine-scale structures (such as the spikes with magenta labels in Fig. 1.5 (b)) can only

be distinguished from the cluttered background under the existence of some larger-scale context

cues (such as the membrane marked by a green curve in the bottom image of Fig. 3.1). Thus it

is necessary to capture both larger-scale and fine-scale structural components in the data, which

requires high resolution (more than 360 million voxels). Consequently, all the methods mentioned

above, based on sophisticated operations, are intractable and inapplicable concerning the size of

the nano-scale data.

Since the existing methods are inefficient, we need to design a novel segmentation algorithm for

nano-scale data. It should capture the fine-scale structures in big data under extremely low SNR,

and voxel-wise segmentation must be accurate and efficient. Indeed, faint nano-scale objects can

only be distinguished from the cluttered background under the existence of nearby salient objects.

Thus salient object segmentation in nano-scale data is inevitable for producing the context cues

that aid nano-scale object segmentation. To address these concerns, we have developed a spike

segmentation algorithm on nano-scale tomogram, as an application showing the advantages of our

framework in the previous chapter. In what follows, we talk about the salient context segmentation,

using membrane segmentation as an exemplar and, in the next chapter, about context-sensitive

spike segmentation using context cues.
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3.2 Algorithm

Based on the prior knowledge from data collection, voxels with high intensity value have great

potential of belonging to a nano-scale object rather than the background. The assumption of our

framework is that the appearance features for larger-scale context object are distinguishable enough

for segmentation despite the extremely low SNR. Therefore, our first stage is to segment the larger-

scale objects (membranes) that supply strong contextual constraints to the fine-scale faint targets

(spikes). This stage comprises the following steps: scale selection, context object segmentation

based on generative model, thresholding and globalization.

3.2.1 Scale Space

Based on scale space theory in discrete signals, features can be segregated according to the scale

[80]. At a given scale, the features sized larger than or equal to this scale are preserved, whereas

the other features are filtered out. Since SNR is extremely low in our case, the context objects

are seriously corrupted by the noise in the finest scale (the original input). Thus the appearance

features in the finest scale are ambiguous for segmentation. Our first step is to explore the scale

space and identify the appropriate scale, in which noise on the context objects is mostly inhibited

whereas the edge responses of the context objects are almost preserved. To simplify the details and

thus emphasize our framework, we just applied context segmentation in 2D on a slice-by-slice basis

and stacked the segmented contours in 3D. This is also reasonable for nano-scale data because the

resolution in its z-direction is reduced due to the missing wedge effect [60]. More sophisticated

2D/3D large-scale object detectors under extremely low SNR [47, 95, 96] could be used in practice.

To achieve such purpose, we first create a Gaussian scale space on the original slice I and

manually select scale k, for which noise on the membrane is filtered out in the respective scale

image Sk. Mathematically speaking, Sj+1 = Sj ∗ Gσ such that j = 1, 2, ..., k, S1 = I, ∗ means

convolution, Sj is the scale image in the j’th scale and Gσ is the Gaussian filter of certain standard

deviation σ. Here we assume that membrane features share the similar thickness (approximately

3 voxels) in our case and thus only the scale k is desired for membrane segmentation. For context

object features with different scales, the appropriate scales need to be explored for remaining

procedures. In practice, this step is replaced by a convolution of tomogram with a Gaussian filter

whose standard deviation is close to the sum of the thickness of the membrane.
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Figure 3.3: A linear Difference-of-Gaussian (DoG) filter that models the off-center/on-
surround receptive field.

3.2.2 Context Object Likelihood Channel

Membrane Model. Due to extremely low SNR, the context objects are seriously blurred in

the selected scale that inhibits most of noise. Since the targets are assumed to be dark on a bright

background in nano-scale data because of the means of imaging, we use an off-center/on-surround

receptive field model to ’activate’ the regions corresponding to the smoothed target. More precisely,

given the thickness of the membrane, we applied a 3D linear Difference-of-Gaussian (DoG) filter

fdi,do with the diameter of the inner Gaussian di close to the thickness of the membrane on the

scale image Sk (the central 2D slice cut of which is illustrated in Fig. 3.3). A half-wave rectifier

function R(x) = max(0, x) was then applied on the resultant feature response map to produce an

initial map hs indicating the regions of smoothed membrane:

hs = R(fdi,do ∗ Sk) =

{
fdi,do ∗ Sk , if fdi,do ∗ Sk > 0,

0 , otherwise.
(3.1)

Membrane Likelihood Channel. So far we have enhanced the connectedness of the mem-

brane at the sacrifice of their local contrast. To recover the contrast for accurate segmentation,

we observed that the gradient strength map of the smoothed image M = ∇xSk2 + ∇ySk2 itself

carries more accurate contour information of the membrane. More precisely, the center (ridge) of

the membrane is extended into a smooth region in M , showing as a local minimum in the profile

of gradient values across the membrane. Meanwhile, the two sides of the membrane on such profile

are shown as two peaks. We thus combine the initial membrane map with the gradient strength

map, deriving the final membrane-likelihood

42



Pr(oi = 1|fA) = ‖Υ(
hs

M + ε
)‖, (3.2)

where i = 1, ..., N where N is the number of voxels in the tomogram, ‖.‖ indicates the normalization

operator that rescales the values to the range [0, 1], Υ(x) means non-maximum suppression (NMS)

on input image x, and ε > 0 is a sufficiently small scalar to avoid dividing by zero. Figure 3.2

shows the exemplar region in original image I with its corresponding Sk, hs, M and Pr(oi = 1|fA).

3.2.3 3D Thresholding and Globalization

Based on the membrane-likelihood channel of all the slices as local features, we are able to de-

velop semi-global features for membrane segmentation based on its connectedness. Since contextual

objects are the largest objects in the given data, the size deriving from threshold is a reasonable

semi-global feature for segmentation. For simplicity, we just use a threshold t to control the seg-

mentation. A voxel will be marked as the membrane if its respective membrane-likelihood is larger

than the threshold t. Similar to the last step of Canny edge detector [25], we can replace the single

thresholding strategy by first adopting a high threshold th on the 3D membrane-likelihood channel

gm and producing the largest N 3D connected components {Ci|i = 1, 2, ..., N} as seed voxels. Then

a lower threshold tl was also applied on gm. The connected components overlapping any one of

{Ci} are labelled as membranes, denoted {Mk|k = 1, 2, ..., N ′} and N ′ 6 N . As the context objects

appear to be large structures in our case, the largest K connected components in 3D are marked

as the final segmentation. The choice of K depends on not only the number of membranes in the

given tomogram but also how many of them break into separate pieces because of missing wedge

effects. More sophisticated and efficient hysteresis thresholding strategies can be found in [95].

3.3 Experiment

3.3.1 Dataset and Experimental Setup

For the experiment, the tomogram is acquired using a 600×1400×432 cryo-electron microscope,

where the SNR and the contrast are very low. Microvillus membranes are the most salient objects

in the tomogram. The z axis is the direction parallel to the electron beam, along which the missing

wedge effect gives rise to a loss of the resolution. Hence we present the segmentation result in 2D

slices along the z axis for the visualization purpose at first. In our tomogram, the spikes are densely
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Slice 120

Slice 160

Slice 200

Slice 240

Slice 280

Slice 320

Slice 360

Figure 3.4: Visualization of microvillus membrane segmentation in 2D view. The first
column is the original slice, whereas the second is the respective segmentation with mem-
branes marked by green curves.
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arrayed on the outer surface of the membrane. Hence the contour of the membrane and its spikes as

a whole presents a relatively clear contrast. Hence, we set the standard deviation in the scale-space

step as the sum of the general thickness of the microvillus spikes and the thickness of the membrane,

σ = 20. A sample slice of the resultant 3D scale image Sk is shown in Fig. 3.2(b). Meanwhile,

given another prior knowledge that the general thickness of the microvillus membrane is 3, we set

the diameter of the inner Gaussian di = 3 and the one for the outer Gaussian do = 2 × di. A

sample slice of the resultant 3D membrane likelihood channel Pr(oi = 1|fA) is shown in Fig. 3.2(e),

with two terms in its division hs and M shown in Fig. 3.2(c) and Fig. 3.2(d) respectively. The

threshold t is set to preserve 0.004×N voxels, where N again is the number of tomogram voxels.

This threshold allows us to control the number of false positive based our visual estimation of the

number of the membrane voxels in the given tomogram. Finally, the number of marked connected

components is set as K = 10 to produce the final segmentation.

3.3.2 Visualization of Segmentation Result in 2D Slices

In Fig. 3.4, we sample a number of 2D slices from the microvillus tomogram to show our

segmentation result of the largest membrane, which is presented as the largest ellipse-like contour

that is closest to the right boundary of each slice. The first column of Fig. 3.4 shows the original

slices (low-filtered by a 3D Gaussian with standard deviation σ = 3 for visualization purpose),

whereas the second column shows the respective membranes marked by green curves. It shows

that our segmentation manages to extract the desired contour of microvillus membranes, regardless

of the low SNR and the low contrast. Since our segmentation is carried out on the entire 3D

tomogram, segmentation of other membranes may also show up in these sample slices.

We can clearly observe the missing wedge effect on the largest membrane from the first column

of slice 120 and slice 360 in Fig. 3.4. As mentioned in our previous analysis, missing wedge effect

gives rise to loss of contrast along the z axis. Because the local surface of the largest membrane is or-

thogonal to the electron beam in these two slices, the contrast of the membrane surface is extremely

poor. In contrast, the spikes arrayed on this membrane grow in the direction that is orthogonal to

local membrane surface. Thus the missing wedge effect on them is minor. Consequently, in these

two slices, we observe a large number of spikes (appear as small dark dots) grouped as a shape

that roughly matches the shape of the respective membrane boundary in nearby respective slice

160 and slice 320. As shown in the second column of slice 120 and slice 360, our method is sensitive
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Figure 3.5: Visualization of segmentation result in 3D space.

to the missing wedge effect. On one hand, it considers the boundaries shaped by the spikes as the

boundary of the membrane, which produces false positives for segmentation. On the other hand, it

somewhat preserves the shape of the membrane and thus benefits the observation of the membrane

structure with limited information.

3.3.3 Visualization of Segmentation Result in 3D Space

Figure 3.5 is a screen shot of the 3D view of the largest 10 segments (connected components)

of the final membrane segmentation, centered at the largest membrane for visualization purpose.

Each connected component in 3D space is marked with one color. Thus the spatial relationships

among different membranes are well preserved for the connected component analysis. It shows

clearly that the 2D contours in Fig. 3.4 are connected throughout the tomogram to represent the

voxels belonging to the same membrane piece as a whole. Note that the result is in 3D and they

can thus be visualized from different view angles. Another valuable observation in 3D space is a 3D

view of the missing wedge effect. It is easy to observe that the largest two membranes are separated

into two pieces because of missing information on two sides along their ridges. For example, the

largest membrane is separated into two pieces with spring green and midnight blue respectively.

With the segmented outer surface of each membrane, the normal of the surface on each voxel can

be computed easily and then provides potential context cues of spikes arrayed on the outer surface.
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Clearly the segmentation allows systematic study of nano-scale membrane in noisy tomogram with

high resolution and makes large scale studies feasible.

3.4 Summary

As one of the most critical steps in analysis of data captured by nano-scale imaging, the segmen-

tation of nano-scale objects is critical for researchers to investigate their structures and functions.

In this chapter, we have developed a nano-scale membrane segmentation technology that allows

visualization of microvillus membranes at nanometer resolutions in 3D. Thus it satisfies the intrin-

sic demand on designing explicit models that succeed in extracting implicit nano-structures. By

utilizing the power of the membrane model inspired by receptive field in human visual system, we

managed to overcome the intrinsic difficulties of nano-scale imaging deriving from low SNR, low

contrast and large data scale. In contrast, existing segmentation methods, including commonly

used manual segmentation and computer vision algorithms developed for segmentation, often fail

on nano-scale data.

Our experimental results allow us to illustrate the missing wedge effect in a straightforward

manner. The loss of information along the direction that is parallel to the electron beam is easy

to be observed in both 2D and 3D view of our segmentation results. Thus it may provide a tool

for the researchers to observe and/or estimate the missing wedge effect on a given data by visually

comparing the extracted structure and the expected structure.

In this chapter, we have developed the first stage of our context-sensitive framework, assumed

that the membrane is ridge-like. As the texture inside the microvillus membranes is somewhat

homogeneous, this assumption works well. However, it is more often that various types of structures

or tissues may appear inside the membrane. Despite the ridge-like shape of the membrane in reality,

its profile may partially appears as other shape in the data because of other inside structures

attached on the membrane surface. Thus there is a natural demand in the first stage of our

framework to answer how to deal with membranes appeared in varied shapes. In addition, the prior

knowledge of microvillus structures allows us to assume that only context objects (membranes) and

small target objects (spikes) are supposed to appear in cryo-electron tomograms. In a wider range

of tomograms, it is more than likely that the context objects are not the only salient objects in the

given data. In such case, it is no longer reasonable to consider the salient object segmentation in
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the first stage of our framework as the context object. How to identify the context objects that

provide context cues for the target objects is also a non-trivial question. To answer these two

questions which hinder the extensive use of our method proposed in this chapter, we will propose

an alternative and more general solution in the next chapter before moving to demonstrate the

second stage of our framework.
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CHAPTER 4

INTERACTIVE SEGMENTATION OF CONTEXT

OBJECT IN 3D SPACE

4.1 Introduction

In the previous chapter, the context object segmentation engineers a local appearance model of

the context object, fits this mathematical model to the given data, and thresholds on the posterior

probability of voxels belonging to the context object (describing how well they fit the proposed

context object model). As discussed in the end of the previous chapter, it is based on two assump-

tions that may limit its extensive use in other context-sensitive semantic segmentation problem.

However, it is often difficult to find a general mathematical model that appropriately describes

objects with context information.

First of all, such difficulty arises from the fact that cluttered background may consist of noise

objects from other categories. As noise objects are usually indistinguishable from the context ob-

jects in terms of local appearances, they may also yield strong feature responses of model fitting.

Hence, the presence of noise objects results in a large number of false positives. Take Fig. 4.1 for in-

stance, the circle-like or ellipsoid-like salient structures are membranes of human immunodeficiency

viruses (HIV’s) and we are interested in segmenting the spikes arrayed on the HIV membranes. In

contrast to the microvillus tomogram in the previous chapter, the existence of structures inside the

membrane may change the intensity values along the profile that is perpendicular to the membrane

surface. The green profile in Fig. 4.1, similar to the profile of microvilli tomogram, is ridge-like as

its density value decreases as a distance function in term of the center of the membrane. Instead,

the red and blue profiles appear to be edge-like as the intensity values on one side of the membrane

are similar to that of the membrane. Figure 4.2 shows these three profiles in terms of the inten-

sity values with the corresponding colors. There is a number of work in the literature attempting

to model different types of membranes [116, 94]. Similarly, methods have been proposed for seg-

menting other specific nano-scale structures, such as micro-tubules [133] and filaments [115, 135].
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Figure 4.1: This example illustrates the existence of cluttered background both inside
and outside the context object. The left image is the original 2D exemplar slice from a
3D tomogram of HIV. The extremely low SNR hinders us in observing many objects in
this slice. Thus, for visualization purpose, on the right is a low-pass filtered image of the
original slice using a 2D Gaussian filter with variance σ = 5.

Figure 4.2: This example illustrates the intensity values on each profile of Fig. 4.1 with the
corresponding color. The profile index increases from the inside end point to the outside
end point.
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However, due to the complexity of nano-scale structures, these methods are hard to be used in the

general case (i.e. for all types of nano-scale structures).

In addition, the context objects are often not the only large scale objects in the given data. The

size of a region in such case is no longer a good semi-global feature for refining the segmentation

result of local appearance models. Even worse, if the shape of the context object is irregular,

it is also difficult in designing a shape model as global appearance model for segmentation. For

example, the structures inside the red box of Fig. 4.1 are a group of noise objects in the background

appearing as a salient object. The surfaces of these structures are also edge-like. Thus localization

of the object we are interested in becomes a more challenging problem. For visualization purpose,

the slice images listed in the rest of this chapter are all low-pass filtered if not specified otherwise.

Taken the difficulty of designing specific object features into account, we need a more general

and applicable means of object localization for further segmentation. This is a basic problem

of foreground/background segmentation. A typical way of efficiently approaching this task is to

involve 2D interactive tools, such as Magic Wand in Adobe Photoshop 7 using texture information,

Intelligent Scissors [99] using edge information, Bayes matting [99] using color distributions, or

Graph Cut [49, 22, 23] combining both textures and edges. The difficulty then lies in how to

extend the result of 2D interactive segmentation into 3D accurately and smoothly. In this chapter,

two interactive foreground/background segmentation algorithms were proposed to overcome such

difficulties. The first algorithm was used to solve a novel problem of Drosophila (fruit-fly) head

segmentation in 3D microscopic images. The second one was used for segmenting HIV membranes

for further analysis on HIV spikes.

4.2 Interactive Segmentation of Drosophila Head in 3D Space

4.2.1 Motivation

As drosophila is widely used as a model for human diseases (e.g. [88]) and has a relatively rapid

generation time, it is an ideal species for testing phenomic approaches. This leads to the require-

ments of efficient acquisition and modeling of three dimensional parts of drosophila. However, the

acquisition and modeling present unique computational and algorithmic challenges. For example,

while a typical drosophila is about two millimeters in length, it has very complicated forms and
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Figure 4.3: Several images in a z stack (300 images) of a drosophila.

underlying geometric shapes (see Fig. 4.3 for examples). These constraints and requirements render

most existing three dimensional acquisition methods not applicable.

We have developed a prototype system for estimating three dimensional parts of drosophila

based on microscopic image stacks; image stacks with systematic focus changes allow us to estimate

the depth through estimation of focus. As the measurements are inherently noisy, we model body

parts using thin plat spline models [132], which result in parametric models and can be used for

further processing and measurements.

4.2.2 A Model of Microscopic Image Stacks

While drosophila are small in size, their external morphology contains very rich features and

variations [34]. To illustrate the complexity of drosophila body part forms, Fig. 4.3 shows several
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images of one z stack of a drosophila. Clearly these complex phenotypic features make the three

dimensional segmentation difficult. The images in Fig. 4.3 also show that we can estimate the depth

by estimating the sharpness of a given small region. Here the images are acquired by changing the

focus of the microscope systematically where the parts-in-focus show clear details while out-of-focus

parts are significantly blurred. By estimating the blur of a small window around each pixel, we

can estimate the depth of the pixel, resulting in a range image. Note that also certain features can

be occluded by other parts from a particular view and we use multiple stacks when necessary to

reconstruct occluded parts.

More formally, given a particular view angle, a drosophila can be modeled by a textured range

image. For each pixel (x, y), z(x, y) determines the depth of the model relative to a fixed z coordinate

and c(x, y) determines the color of the pixel when the pixel is ideally focused on. To generate an

image stack, the z position of the model is varied systematically from z1 to zn, where n is the total

number of z positions. Image Ii in the stack is given by

Ii = P (z − zi, c), (4.1)

where P is an imaging model of the microscope. Under this formulation, we need to recover both

c(x, y) and z(x, y) relative to a fixed but arbitrary origin of z. Here the images are automatically

registered under the condition that the microscope is static except the movement along the z axis.

As shown in Fig. 4.3, the imaging process P can be approximated by a blurring process

(e.g. [105]). The underlying reason for the model is that a typical microscope (as it is the one

used for all the experiments) can be modeled by a thin lens model, given by

1

f
=

1

do
+

1

di
, (4.2)

where f is the focus length of the microscope, di specifies the image plane relative to the center of

the aperture, and do is the depth of the object to be ideally focused. When f and di are fixed in

all the cases here, given zi, then the pixels whose z(x, y)− zi satisfies Equation (4.2) are in perfect

focus; the pixels whose z(x, y)−zi larger than the ideal do or smaller than do will become a blurred

circle, the radius of the circle or the amount of blur depends on |z(x, y)− zi − do|.
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Figure 4.4: Diagram of a thin lens model.

4.2.3 Algorithm for Interactive 3D Surface Extraction

Given the model of the stack, we can algorithmically estimate the underlying z(x, y) and c(x, y)

from a stack acquired at a particular angle. According to the thin lens model, given f and di, we

can estimate do by estimating the amount of blur at a particular pixel. This estimation, however,

requires estimation of f and di or known f and di. Here we use a simpler algorithm but does not

require known f and di. As the imaging process P can be approximated by a blurring process,

which can be modeled by a Gaussian smoothing with a variance (or the amount of smoothing) that

depends on |z(x, y)− zi−do|. In a local area with pixel variations, Gaussian smoothing will reduce

the variation in the area; so the local variance is the largest when the pixels in the local area are

in focus. This leads to an efficient depth estimation algorithm. For each pixel, we simply need to

estimate the variance at each pixel and the underlying true depth will be the one with the largest

variance.

The accuracy of the above depth algorithm is limited to the step size between two adjacent

images with zi and zi+1. For practical purpose, the step size in z has to be as large as possible

to avoid large number of images; but a large step size limits the resolution of estimation in z. To

achieve a step size depth estimation, we fit a quadratic function using variances in a neighborhood
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of the largest variance and find the maximum as the estimation of depth. This leads to a sub-pixel

depth estimation algorithm but is efficient.

Parametric Models. The above algorithm gives a dense point cloud representing the contour

of the surface to be reconstructed. However, the sampling is typically noisy due to occlusions and

the roughness of the imaged surface. Thus, in order to compare and more reliably estimate shapes,

we interpolate a parametric surface through the noisy point cloud for more accurate measurements

and estimations. We use a thin-plate-spline (TPS) model for surface segmentation. The TPS

interpolator is the function that minimizes the functional

E(f) =
1

N

∑
(x,y)

‖ z(x, y)− f(x, y) ‖2 +λJ(f), (4.3)

on an appropriate reproducing kernel Hilbert space; we refer the reader to [132, 18] for details.

Here, J(f) denotes the thin-plate elastic energy, z(x, y) is the estimated depth at pixel (x, y), f is

the function to be estimated, N is the total number of points and λ is a parameter that controls the

smoothness of the model. When λ = 0, the model will fit the given points tightly. As λ increases,

the interpolator f will be smoother, but not as faithful to the original data. An optimal λ-value can

be chosen to give a minimal leave-one-out model error, as discussed in [132]. This is the selection

criterion for the parameter λ used in this paper. An advantage of using the TPS model is that the

minimization of the energy can be solved analytically and the problem is reduced to a set of linear

equations.

4.2.4 Result Visualization

For the experiments, the image stacks were acquired using a Nikon AZ 100, equipped with

automatic z-stepping. The entire microscope system can be approximated well by a thin lens

model. Depending on the estimated depth range of the drosophila at a particular angle, image

stacks were acquired covering the entire depth range.

Figure 4.5 shows several parts of a drosophila from several z stacks from different view angles.

The reconstructed range image z(x, y) is texture mapped using the corresponding computed most

focused image, which is an estimation of c(x, y). The textures show clearly the depth estimation is

accurate for most parts, even though there are noisy depth measurements as most of the pixels are
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(a)

(b)

Figure 4.5: Reconstructed different parts of a drosophila from several z stacks of images.

in focus. Note that the results are three dimensional and they can be rendered from different view

angles. Here no thin-plate-spline model is applied.

Figures 4.6 and 4.7 show several typical segmented eyes of drosophila from different species,

among many examples we have reconstructed. Here the underlying range image z(x, y) is estimated

first along with c(x, y) and then we segment the eye part out from the stack. In this paper, an

outline was specified manually. The estimation gives a large number of points in each range image.

We then estimate the underlying surface using the thin-plate-spline parameter model. In all the

cases, the estimated thin-plate-spine model gives a more reliable estimate of the eye component

that is more robust and less sensitive to noisy points. It is evident that the reconstructed models

characterize well the underlying surfaces and phenotypic features can be extracted for phenotype-

genotype relationship study.
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Figure 4.6: A 3D segmentation of a drosophila eye, rendered from different views. Here
the segmentation is computed using the thin-plate-spline model of the local surface to
remove noise and estimate a parametric surface model that facilitates further processing
such as registration and metric reconstruction.

With the estimated parametric surface of a particular body part, phenotypes can be computed

using the models and then drosophila with different genetic variations can be compared quanti-

tatively. Clearly the prototype allows systematic study of phenotypic variations with respect to

genetic variations and makes large scale studies feasible.

There are several improvements that can be made. Currently each body part to be modeled

needs to be segmented out manually. By establishing a common atlas, we can achieve automated

segmentation by registering estimated range image to the atlas; this is possible because drosophila

are often similar, even though they have complex forms. Another algorithmic improvement is to

utilize the estimated amount of blur to estimate the depth (e.g. [105]); an advantage of such a
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(a)

(b)

Figure 4.7: More examples of reconstructed eyes: (a) a typical eye with the underlying
mesh shown; (b) two more examples of different drosophila.

method is to reduce the number of images needed in a stack for reliable surface estimation. These

improvements along with parallel computing, will make high throughput fruit fly surface modeling

and large scale phenotyping realizable, which is being investigated.

4.3 Interactive Segmentation of HIV Membrane in 3D Space

4.3.1 Motivation

The use of cryo-electron microscopes allows the biophysicists to observe nano-scale structures

of HIV, such as spikes that the HIV virus uses to bind cells. Thus a possible quantitative analysis

of these nano-scale spikes owns great potential in guiding efforts to develop HIV vaccines and

treatments. As the first step of quantitative analysis, HIV spike segmentation is inevitable for

generating the sub-tomograms containing the HIV spikes.

Based on the fact that the HIV membrane consists of 3D segments that are either ridge-like

or edge like in terms of their profiles, I have developed a novel system for segmenting the HIV

membrane by circumventing the problem of modeling the HIV membrane. As context information

derives from geometric relationship between the context object and the target object, the perfor-
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mance of reconstructing the outer surface of the HIV membrane is more important than that of

segmenting the exact membrane. Thus my key idea is that, rather than modeling and then localiz-

ing the HIV membrane, it is more reasonable and efficient to consider the membrane segmentation

as a 3D surface reconstruction problem. Then only the gradient is needed to be involved in an

interactive segmentation tool to achieve the outer surface reconstruction.

In our method, a 3D tomogram is considered as a stack of 2D slices along one axis. Thus each

outer surface Ŝ consists of a number of 2D contours Ŝ = {Ĉn|n = 1, 2, ..., N}, where N is the

number of slices with the contour of the outer surface. The extraction of each connected membrane

surface Ŝk is then split into two parts: 1) applying 2D interactive segmentation on the very first

slice to extract the initial closed contour Ĉ1; 2) propagating Ĉ1 in the 3D space or, in other words,

iteratively detecting the contour Ĉn of the current slice based on the gradient information of the

current slice and the context constrain from the detected contour of the previous slice (Ĉn−1).

As gradient is a general local appearance feature, our method can be extensively used for other

context object segmentation, under the assumption that the context object has a closed contour.

In the first part, we use Intelligent Scissor [99], an interactive segmentation algorithm, to extract

the desired contour with arbitrary shape in the very first slice. A level set segmentation algorithm

is proposed to then segment the contours in nearby slices so as to extend the outer surface in 3D.

Our algorithm differ from existing ones [134, 94] in the manner that the surface is extended from

one slice to the next, and in the implementation of the energy functions. With high-resolution data,

algorithms working directly in three-dimensional space are really expensive in terms of required

computation, and are thus impractical for on-line interactive segmentation, which is more flexible

for accurate contour detection of context objects.

Closest to our method is the method of Macke et al. [91], which relies on level set segmentation

for the very first slice and then trains a classifier to determine whether a segment belongs to the

context object. Therefore, the segmentation of the very first slice can only be captured accurately

with available labeled data. Moreover, the extension of the contour in 3D is through the traditional

level set method that requires re-initialization in their method. Thus it can suffer from the ad hoc

re-initialization [79]. In the following subsections, I will discuss each step of my method in detail.
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4.3.2 Segmentation of the First 2D Slice

To avoid the problem of context object localization, the Intelligent Scissor was used for gener-

ating the closed contour of the HIV membrane outer surface in the very first slice. This slice was

manually chosen to be the one with the smallest missing wedge effect (usually the central slice of

the HIV tomogram in practice). This is the only slice that requires interactive segmentation. As

context objects are large and salient objects in the data, the number of context objects and the

respective interactive segmentation operations is quite small. Thus the workload of user input is

efficiently controlled. Similar to microvilli membrane segmentation in the previous chapter, we also

explore the scale space of the very first image and manually select the scale where the gradient of

the HIV outer surface is strong. After applying the Intelligent Scissor, we have the very first closed

contour Ĉ1. The corresponding image plane Ω ⊂ <2 is thus split into two parts: the foreground

region Ω+ inside the closed contour and the background region Ω− outside the closed contour.

A sample procedure of 2D segmentation on an HIV outer surface (shown as green contours) is

illustrated in Fig. 1.3.

4.3.3 Contour Extension in 3D Space

General Active Contour Model. To extend the very first 2D closed contour Ĉ1 toward

the 3D outer surface, we need to iteratively detect the contour of the outer surface in the nearby

unsegmented slices. In each slice, a proposed evolution will drive an initial boundary toward the

desired contour. Here we assume the continuity of the context surface cross nearby slices. Then

the detected contour of the precious slice Ĉn−1 can be utilized to localize the rough location of the

desired contour Ĉn in the current slice. This significantly narrows the searching space for contour

initialization. Specifically, despite the contour detection of the very first slice, the contour detection

in each slice starts from an initial boundary Cn(0) – the boundary of a morphologically dilated

mask generated by filling the contour of the nearby segmented slice Ĉn−1:

Cn(0) = τ(ζ(Ĉn−1)⊕ Er), (4.4)

where ζ(x) is the morphological filling, ⊕ is the morphological dilation, Er is a ball of radius r, and

τ is a morphological operation of boundary extraction on binary image. When the value of r gets
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larger, the 3D extension will be less sensitive to continuity, whereas more iterations will be taken

to converge.

Concerning the representation of the contour and the implementation of propagating it toward

the desired contour, there are basically two ways to model the contour propagation in each slice

Ω: parametric active contour and geometric active contour. Both ways achieve segmentation by

minimizing appropriate energy functions E(·). Specifically, the parametric active contours (such as

Snake [63] and Watersnake [102]) are represented explicitly as dynamic parametric boundaries

C(s, t) : [0, 1]× [0,∞)→ Ω. (4.5)

Here s is a spatial parameter in [0, 1] for the points in the contour and t a temporal variable. The

key idea of the propagation is then to evolve the boundary C(s, t) (a number of control or marker

points at evolution t) from some initialization C(s, 0) in the direction of the local negative energy

gradient by implementing the following gradient descent equation:

∂C(s, t)

∂t
= −∂E(C(s, t))

∂C(s, t)
. (4.6)

The geometric active contours, on the other hand, are implicitly represented as the zero level set

of some function with a higher dimension in an Eulerian framework

C = {x ∈ Ω|φ(x, t) = 0}. (4.7)

Here φ(x, t) is the level set function parametrized by a spatial variable x in the image domain Ω

and a temporal variable t ≥ 0. To avoid unstable evolution and numerical computation error, a

signed distance function of the image plane Ω is usually used as the level set function [28]. The

signed distance function determines the distance of a given point x from the contour in Ω, with the

sign determined by whether x is inside the contour. Let’s define this function as having positive

values at points x inside the contour (Ω+). Starting from the center of Ω+, the signed distance

function decreases in value as x approaches the contour of Ω where this function is equal to zero,

and then takes negative values outside of the contour Ω−. Therefore, it will maintain the level set

function neither too flat nor too steep. The key idea of the propagation is then to evolve the level

set function φ(x, t) from some initialization φ(x, 0) in the direction of the local negative energy

gradient by implementing the following gradient descent equation:
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∂φ(x, t)

∂t
= −∂E(φ(x, t))

∂φ(x, t)
. (4.8)

Correspondingly, the zero level set of the level set function gradually approaches the 2D contour

of the outer surface in the current slice. As the implementation of parametric active contour

propagation requires a re-griding process to eliminate overlap of control or marker points and

lacks a meaningful statistical framework for extensional use, we have proposed a geometric active

contour model to solve our problem. For simplicity, we use h, φ and φ0 instead of the current stop

function hn(x), the current level set function φn(x, t) and the final level set function φn−1(x, t) of

the previous slice respectively in the rest of this chapter.

Our Statistical Model. Let φ and g = |∇Gσ ∗ I| be the level set function and the gradient

map of a slice I respectively, where ∗ means convolution and Gσ is the Gaussian kernel with

standard deviation σ. We want to find an optimized contour represented by the zero level set of

function φ given g and the level set function from the previous (nearby) slice φ0. According to our

statistical framework in Chapter 2, we can formulate our task as maximizing the following posterior

probability:

Pr(φ|g, φ0) ∝ Pr(g|φ, φ0)× Pr(φ|φ0). (4.9)

Here φ is a representation of the segmentation of the current slice while g and φ0 can be interpreted

as local appearance features and global feature of shape respectively. For simplicity, the gradient

map of the current slice g is assumed to be independent of the segmentation of the previous slice

φ0. Thus Eq. 4.9 can be re-written as

Pr(φ|g, φ0) ∝ Pr(g|φ)× Pr(φ|φ0). (4.10)

As logarithm is a monotonically increasing function, maximization of Eq. 4.10 is identical to mini-

mization of its negative logarithm, resulting in a general energy function of propagating the contour

in 3D space to recover a surface

E(φ) = − log(Pr(g|φ))− log(Pr(φ|φ0))

= Eex + Ein.
(4.11)
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The first term Eex on the right side is based on the slice information. Thus it is image-dependent

and is called an external energy function. This function drives the zero level set of the level set

function toward the desired contour. The second term Ein is image-independent and is thus called

an internal energy function. This function penalizes the deviation of the level set function φ from

its intrinsic properties, such as being a signed distance function and being similar to the contour

φ0 in the previous slice. In what follows, we will specify these two terms in detail.

The External Energy Function. Aimed at propagating the initial contour towards the

contour of the outer surface in the current slice, we explicitly define an external energy function

that is able to move the zero level set of a signed distance function φ toward this desired contour

with strong gradient. To minimize the energy function, we follow the seminal work of geometric

active contour [27] and use the stop function based on the gradient

h =
1

1 + |g|p
, (4.12)

where p = 1 or 2. The value of this function decreases when it gets closer to a strong edge. Our

external energy function is defined as a gradient-based length term

Eex = EL

= λL ×
∫

Ω
h| 5H(φ)|dx

= λL ×
∫

Ω
hδ(φ)| 5 φn|dx.

(4.13)

Here H(·) is the Heaviside step function

H(y) =

{
1 , if y ≥ 0,

0 , otherwise,
(4.14)

and δ(·) is the corresponding Dirac function

δ(y) =
d

dy
H(y). (4.15)

The term EL is a modified version of the length term in [29], which was designed to penalize

the length of the contour between foreground and background and hence favors smooth curve. By

involving the stop function h, such term computes the integral along the zero level set of function
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φ. Thus it enforces the zero level set of the function φ to approach contours with strong gradient

(where h takes small values) while maintaining the smoothness of the zero level set. By calculation

of partial derivative function, the Gateaux derivative (first variation) of the energy function EL

with respect to the level set function φ is then:

∂EL
∂φ

= −λL × δ(φ)5 ·
(
h
5φ
| 5 φ|

)
= −λL × δ(φ)

[
5h · 5φ

| 5 φ|
+ h ·K

]
,

(4.16)

where

K = 5 ·
( 5φ
| 5 φ|

)
(4.17)

is the curvature.

The Internal Energy Function. Even though the level set function is initialized as a signed

distance function at the beginning of the evolution for each slice, this property does not hold during

the level set function evolution. Such irregularity can develop sharp or flat shape during evolution

and thus causes numerical errors, which can finally destroy the stability of the level set function

evolution. To overcome the problems due to irregularity, re-initialization is widely used in the

literature of the level set methods [27, 92, 28, 29, 128, 91] as a critical and inevitable step. This

strategy periodically ”reshapes” the level set function φ to be a signed distance function by enforcing

it to satisfy the signed distance property | 5 φ| = 1. A standard way to implement this strategy is

to solve the following partial derivative equation:

∂φ

∂t
=

φ0

|φ0|
(| 5 φ| − 1), (4.18)

where φ0 is the initial level set function. Ideally, the steady state of this equation is a desired

signed distance function that does not only maintain the sign of Ω+ and Ω− but also satisfy the

signed distance property. However, re-initialization suffers from the possibility to move the zero

level set away from the desired contour. Meanwhile, it is ad hoc to decide when and how to apply

re-initialization in practice. Concerning these problem of re-initialization, we follow [79] and involve

a regularization term in our internal energy function to implicitly regularize the level set function.

With such term, we no longer need to reinitialize the level set function during its evolution.
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Moreover, it is important to remain the smoothness (continuity) between contours of nearby

slices as our final task in context object segmentation to extract the outer surface in 3D. Thus we

need a smoothness term to penalize the difference between the level set functions of adjacent slices.

This term helps the propagation of the zero level set contour to favor the contour location of the

previous adjacent slice.

Taken the two concerns above into account, our internal energy function is defined as follows

Ein = ER + ES (4.19)

such that

ER = λR ×
∫

Ω

1

2
(| 5 φ| − 1)2dx (4.20)

and

ES = λS ×
∫

Ω

1

2
R(|φ− φ0| − θ)2dx. (4.21)

Here R(y) is a half rectified function such that

R(y) =

{
y , if y ≥ 0,

0 , otherwise.
(4.22)

The first term ER is designed to register the level set function φn(x) as a signed distance

function. As any function φ that satisfies the signed distance property is the signed distance

function plus a constant [4], ER measures the integral of how close the current level set function

is to a signed distance function in image domain. By calculation of partial derivative function, the

Gateaux derivative of the energy function ER with respect to the level set function φn(x) is then:

∂ER
∂φ

= −λR × (4φ−K), (4.23)

where 4 is the Laplacian operator.

The second term ES is a smoothness term that is designed to penalize the deviation of current

level set function φn(x) from the final level set function φn−1(x) in the previous adjacent slice [91].

Therefore, minimization of this term improves the smoothness between segmentation of nearby
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slices by favoring the segmentation which is similar to the one in the previous slice in the slice-by-

slice procedure of segmentation. The half rectified function R(·) is employed to allow reasonably

small variance of level set functions between adjacent slices. When the variance is smaller than

the threshold θ, we will ignore the penalty on the variance. By calculation of partial derivative

function, the Gateaux derivative of the energy function ES with respect to the level set function

φn(x) is then:

∂ES
∂φ

= −λS ×R(|φ− φ0| − θ)
φ− φ0

|φ− φ0|
. (4.24)

Solution by Gradient Descent. The way to propagate the zero level set of φ toward the

desired contour in each slice is achieved by iteratively minimizing the total energy function (4.11)

in terms of φ. Let ∂Ω+ be all the points on the initial contour generated by Eq. (4.4), we initialize

the level set function of the current slice as a binary step function

φ0 =

{
c0 , if x ∈ Ω+,

−c0 , otherwise,
(4.25)

where c0 is a constant scalar. For the iteration other than the first one, based on Eq. 4.8, we have

φn+1 − φn

4t
= −∂E(φ)

∂φ
, (4.26)

where4t is the time step. Then we have the following equation that updates φ and thus propagates

its zero level set toward the desired contour:

φn+1 = φn −4t∂E(φ)

∂φ

= φn −4t(∂Eex(φ)

∂φ
+
∂Ein(φ)

∂φ
)

= φn −4t(∂EL(φ)

∂φ
+
∂ER(φ)

∂φ
+
∂ES(φ)

∂φ
).

(4.27)

Post processing. The result of the previous step is a 2D binary map (zero level set) indicating

the pixels of the current slice that potentially belong to the outer surface of the selected membrane.

Without knowing the first and the last slice containing the contour of the outer surface beforehand,

this step is carried out across all the slices. To remove the false positives in the 3D binary map,

our aim in the post processing is to identify the actual outer surface voxels based on semi-global
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gradient analysis. As a feature shared by context object, the size of the membrane outer surface

makes it distinctive from the cluttered background. Thus the gradient in terms of a semi-global

region makes the outer surface more salient. After smoothing the gradient values of the potential

surface voxels in terms of its local surface region, a threshold tg is then introduced to control the

voxels that are considered as the ones on the actual membrane outer surface. Again, the single

thresholding could be replaced the hysteresis thresholding strategy to improve the connectedness

of each membrane outer surface. Finally, a morphological opening operation is applied to smooth

the outer surface in that the existence of spikes arrayed on the surface may destroy the smoothness

of the outer surface.

4.4 Experiments

4.4.1 Visualization of Evolution in 2D Slices

For the experiments, the tomogram was acquired using a cryo-electron microscope. The z axis

is the direction parallel to the electron beam, along which the missing wedge effect gives rise to a

loss of the resolution. Hence our tomogram is considered as a stack of 2D slices along the z axis.

Fig. 4.8 shows the evolution of the level set functions on several typical HIV membranes in the

86’th slice, with their respective zero level sets shown as red curves in Fig. 4.9. Here the 87’th slice

is manually chosen as the very first slice as the missing wedge effect on this slice is quite small. The

interactive Intelligent Scissor was applied on slice 87 at first. After the operation of Eq. 4.4 on the

segmentation results of slice 87, we have the initial contours c0 for the next slice (slice 86). Due to

the assumption that the changes of slices throughout the membranes are quite small, the parameter

r in Eq. 4.4 does not need to be very large. In practical, we find r = 5 is large enough to tolerate

the changes among slices in our tomogram. Analytically, the larger the change is among slices, the

larger the value of r should be, along with more iterations needed to reach a stable energy of the

evolution.

The first column of Fig. 4.9 illustrates three sample initial contours ∂Ω+ in slice 86, with their

corresponding initial level set functions φ0 shown in the first column of Fig. 4.8 by applying the

operation in Eq. 4.25 on c0. The membrane in the first row is the simplest case in which the

textures inside the membrane are close to homogeneous. The profile of the membrane is ridge-like.

In the second row, the membrane is also ridge-like. But the texture inside the membrane is no
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longer homogeneous because of the existence of some other tissues. For the third case (the third

row), the upper-right part of the membrane is edge-like rather than ridge-like due to some inner

tissues attached to the membrane. In all three cases, our zero level set succeeded in reaching the

desired contour after the revolution. Thus our model based on the gradient of the outer surface

of the membrane and the prior from the previous slice gives a reliable segmentation that is more

robust and much less sensitive to the noisy inside of the membrane. To visualize the function of the

length term based on gradient, we plot the external energy in the first column of Fig. 4.10 (the red

solid line). It is obvious that our external energy gradually enforces the zero level set to approach

the ideal contour by minimizing the integral on Eq. 4.12, or in other words maximizing the integral

on the gradient map while encourage the smoothness of the curve.

As we discussed in section 4.3.3, the level set function may produce either sharp or flat shape

during evolution because of irregularity. Fig. 4.8 (b) shows an exemplar intermediate state where

our level set function is too flat, whereas Fig. 4.8 (e) shows an exemplar intermediate state where

there is a sharp jump in our level set function. Because of our regularization term in Eq. 4.23,

the level set functions are both intrinsically and automatically regularized and thus the final states

(the last column of Fig. 4.8) are all neither too flat nor too steep. To visualize the function of

the regularization, we also plot the regularization energy in the first column of Fig. 4.10 (the blue

dash-dot line). It is clear that our regularization term keeps adjusting the shape of our level set

function by steadily minimizing the difference of our level set function from being a signed distance

function. By automatically minimizing the total energy consisting of these three energy terms

simultaneously, shown as the green solid lines in the second column of Fig. 4.10, the evolution

allows us to extract desired closed object contours in 2D.

4.4.2 Visualization of Contour Extension in 3D Space

Figure 4.11 shows a number of sampled slices from the final 3D segmentation of the given

tomogram. Again, green curves delineate the contours of the outer membrane surface in such

slice. By involving our smoothness term (4.24), the segmentation is shown to still reach the desired

contours after propagating the contour in slice 87 (the very first slice) for more than 40 slices,

regardless of the noisy and the low contrast (i.e.: the segmentation of slice 40 and 120 in Fig. 4.11).

To visualize the function of the our smoothness term, we also plot the smoothness energy in the

first column of Fig. 4.10 (the magenta dashed line). It is clear that our smoothness term steadily
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8: Sample evolution of level set function on 3 different membranes. Each row
illustrates the evolution for one membrane. The initial level set function, an intermediate
level set function and the final level set function are shown from left to right.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: The respective zero level sets of the level set functions in Fig. 4.8 (red curves).
For visualization, we only show the local window of the current slice that contains one
member. Again, each row illustrates the evolution for this membrane. The zero level sets
of the initial level set functions, the intermediate level set functions and the final level set
functions are shown from left to right.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: The respective energies of the level set functions in Fig. 4.8. Again, each row
illustrates the evolution for one membrane. The first column shows the plots of EL, ER
and ES , whereas the second column shows the plots of the total energy.
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minimizes the distance between our level set function and the level set function deriving from the

segmentation of the previous slice.

While Fig. 4.11 shows the accuracy of our method on extracting the outer surface of the mem-

brane, Fig. 4.12 visualizes the whole 3D point cloud of the outer membrane surfaces from two view

angles. As each color labels one connected component in 3D, it shows clearly the contours in 2D are

connected throughout the tomogram to represent the voxels belonging to the same outer surface as

a whole because of our smoothness term. Thus the spatial relationships among different membranes

are well preserved for the connected component analysis. Another valuable observation in 3D space

is a 3D view of the missing wedge effect. For example, it is easy to observe a hole inside the indigo

membrane outer surface in the second view of Fig. 4.12. This is because of missing information on

two sides of this membrane along the z axis.

With the segmented outer surface of each membrane, the normal of the surface on each voxel

can be computed easily and therefore provides potential spatial context cues of spikes arrayed on

the outer surface. Clearly the segmentation allows systematic study of nano-scale membrane with

respect to variations of inside texture and makes large scale studies feasible.

4.5 Summary

In the first part of this chapter, a prototype system has been proposed to reconstruct the outer

surface of salient object in light microscopic images. Such system facilitates systematic studies of

the relationship between the phenotype and genotype using the drosophila as the model organism.

Due to short development cycle and easy genetic manipulations, the drosophila is an ideal model

organism that is widely used to model certain human diseases; additionally, understanding of the

phenotype and genotype map can further our understanding of evolution biology and better model

fundamental aspects of biology as many genetic traits are preserved in the drosophila. To derive

phenotypes, we estimated a model (consisting of a range image and texture map) from a particular

view angle by estimating the most focused pixels along the stack. The algorithm is derived based on

a thin lens model. The estimated depth points are then fitted using a thin-plate-spline parameter

model that is used to compute reliable and stable outer surface of salient object in light microscopic

images.
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Slice 30 Slice 40 Slice 50

Slice 60 Slice 70 Slice 80

Slice 90 Slice 100 Slice 110

Slice 120 Slice 130 Slice 140

Figure 4.11: Sample 2D slices illustrating the automatic extension of the contours in slice
87 (the very first slice) throughout the entire 3D space. For each sample slice, there is
a pair. The original slice is shown on the left and the one with the extracted contours
(green curves) is shown on the right.
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Figure 4.12: Illustration of membrane outer surface reconstruction from two views in 3D.
Each color is associated with one membrane outer surface.

In the second part of this chapter, a new HIV membrane segmentation algorithm is proposed

to be robust to cluttered background both inside and outside the membranes. The shape of the

level set function is maintained by a regularization term, whereas the segmentation smoothness

across the tomogram is favored by a smoothness term. By using low-level appearance feature

(gradient), our algorithm is also general enough to extract membranes with different profile shape.

Our experiments have shown that our segmentation result does not only capture the accurate

contours in 2D but also maintain small changes of the 2D contours throughout the tomogram.

With the reliable extraction of membranes, in the next chapter, we will discuss the possibility of

74



designing and utilizing the context cues from membrane segmentation for a even more challenging

problem – spike segmentation.
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CHAPTER 5

3D CONTEXT-SENSITIVE SPIKE

SEGMENTATION

5.1 Introduction

In Chapter 3, a salient context object segmentation stage is applied by running various filters

over the scale-space for microvillus membrane segmentation. By taking into account the existence

of the contextual cues provided by the membranes, the searching space for the target spikes in the

original resolution is considerably reduced. In the previous chapter, we extended the ability of our

first stage to deal with context object in more general cases. It thus creates the possibility for

us to compute contextual cues over extended neighborhoods for a small amount of all the voxels

in the original resolution. As our contextual cues are distinguishable to noise, they allow us to

apply segmentation strategies such as thresholding to produce per-voxel semantic segmentation

and achieve dramatic improvement in detectability.

In this chapter, we focus on the task of spike segmentation based on contextual cues. This task

is illustrated in Fig. 5.1, where two sample spikes in a 2D slice are marked by yellow windows.

There are three primary sub-problems in this chapter: 1) what the possible context cues are; 2)

how to generate them efficiently; 3) how to design a model that combines all these cues. In what

follows, we describe the details for calculating the conditional probability of each voxel belonging

to a spike in terms of different type of cues, following the same notation as in Chapter 2.

5.2 Appearance Cues

As spike heads are somewhat darker than the local background in certain scale space, they

appear as local minima in the 3D tomogram. Thus we process tomogram I by smoothing it with

isotropic Gaussian filter G of variance σ′, H = I ∗Gσ′ , and then generate the appearance model:

Pr(oi
′ = 1|fA′i ) =

{
ψ(Hi) , if i = arg maxj∈Ni

Hj ,

0 , otherwise,
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Figure 5.1: Illustration of our task in this chapter, spike segmentation on the exemplar
slice in Fig 3.1. The green curve indicates a membrane and yellow windows show two
sample spikes arrayed on this membrane.

such that

ψ(Hi) =
max(H)−Hi

max(H)−min(H)
. (5.1)

Here Ni is the i′th voxel with its 26 neighbor voxels in 3D tomogram. An exemplar slice with local

minima marked as red crosses can be seen in Fig. 5.2(b).

5.3 Context Cues

5.3.1 Scale Context

One potential problem of appearance feature in 5.1 is due to the fact that membrane voxels and

noise voxels in the background may also appear as local minima. Moreover, the membrane voxels

are as dark as or even darker than the spike voxels. Thus their inclusion can deteriorate the spike

segmentation performance.

To reduce these false-positive local minima, we rely on the scale context cues to detect spikes in

more likely spatial locations and scales. For a microvilli tomogram, spikes are always perpendicular

to the surface of the arrayed membrane and the ratio between the length of the spike and the

thickness of the membrane is often known (e.g., approximately 20: 3 for microvilli). This scale

context may facilitate faint target segmentation in that it significantly reduces the need of multi-
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scale search [47] and hence focuses on the appropriate scale. Let t and h be the thickness of the

membrane and the maximum possible length of a spike respectively. Given the 3D binary mask

of all membranes M = {Mk} from the previous chapter, we need to form a number of zones to

exclude the local minima due to not only membranes but also background noise that is far from

the membrane in contrast to spike heads. These exclusion zones are computed by morphologically

dilating the 3d membrane mask M by two balls: Et of radius t and Eh of radius h. The difference

between these two dilated masks, as shown in Fig. 5.2(c), defines the scale context feature for spike:

fCsc
i = M ⊕ Eh −M ⊕ Et, (5.2)

where ⊕ denotes the 3D morphological dilation. Correspondingly, the likelihood of scale context

feature is as follows:

Pr(fCsc
i |fCse

i , oi
′ = 1) =

{
fCse
i , if fCsc

i = 1,

1− fCse
i , otherwise,

(5.3)

where fCse
i = 1 if the root of the spike that contains voxel i is labeled as 1 in membrane segmentation

result M , whereas fCse
i = 0 if the respective root is labeled as 0 in M . In our scale context model,

we formulate the fact that the scale context cue must be satisfied (fCsc
i = 1) if the labels of the

target (the spike head) and the context (the respective spike root on the membrane) are both given.

On the other hand, if the scale context cue is not satisfied (fCsc
i = 0) given the target label, the

corresponding context label must be mis-labeled as 0 in M .

5.3.2 Spatial Context

Another problem is that appearance features may lead to unnecessarily exploring the inside of

membranes, which ignores the prior knowledge that no spike exists inside and thus causes not only

inefficiency but also detection errors.

To overcome the problem by inside search, we also design a spatial context feature, describing

the spatial relationship between the context object and the faint target. As spikes are known to

grow perpendicularly towards the outside of the arrayed membrane, the shape of which is convex in

general, we make an intuitive assumption that the centroid index ck of every membrane mask Mk

is inside the membrane. In that sense, it is most likely that the root of each spike (where the spike

is attached on the membrane) should be closer to the membrane centroid than the spike head. An
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example is shown in Figure 5.2(c). Let d(., .) be the Euclidean distance between two voxels given

their indexes. We can compute the spatial context feature as:

f
Csp

i =
d(ck, i)

d(ck, i
′
M )

, (5.4)

where i is the index of the potential spike head and i′M is the index of the corresponding spike root

on membrane segmentation M . As we assume the local membrane as a plane, localizing the spike

root i′M is approximated by finding the membrane voxel in M that is closest to the spike head. As

f
Csp

i is larger than 1 if the voxel i is outside the membrane, the likelihood of spatial context feature

is as follows:

Pr(f
Csp

i |fCse
i , oi

′ = 1) =

{
fCse
i , if f

Csp

i > 1,

1− fCse
i , otherwise.

(5.5)

The definition of fCse
i is the same as in Eq. (5.3). Similarly, here we model the spatial context

cue that a spike root must be closer to the center of the arrayed membrane than its respective

spike head is, indicating the outside of the membrane. Vise verse, if the spatial context cue is not

satisfied (f
Csp

i <= 1) given the target label, the corresponding context label must be mis-labeled

as 0 in M .

5.3.3 Semantic Context

Clearly, both our scale context model and spatial context model depend on the semantic context

cue fCse
i . This is straightforward in that it is impossible to obtain any reliable context cues given

context that is erroneously identified. In microvilli tomogram for example, due to the intrinsic

property of nano-scale imaging, parts of the membranes M are heavily blurred or even missed

because of noise and missing wedge effect. The spikes, on the other hand, may maintain somewhat

of the contour that is similar to the arrayed membrane and are thus marked as membrane voxels

in M , especially when they are dense enough. In such region, our scale context feature and spatial

context feature both produce false negatives for spike segmentation.

In order to reduce the effect of nano-scale imaging on spike segmentation, one way is to take

the membrane likelihood channel gm into account, as a semantic context cue that represents the

co-existence of the context object and the target based on the membrane likelihood. Specifically, a

reliable membrane mask M ′ could be defined as

80



M ′ = H(M × gm − α), (5.6)

where α is a threshold that controls the confidence of the membrane segmentation and H(.) is

the nonlinear heaviside step function in (3.1). Correspondingly, the scale context feature (5.2) is

replaced by

fCsc
i = M ⊕ Eh −M ′ ⊕ Et, (5.7)

and the spatial context feature (5.4) is remodeled as

f
Csp

i =
d(ck, i)

d(ck, i
′
M ′)

, (5.8)

where i′M is the index of the corresponding spike root on reliable membrane segmentation M ′.

However, the disadvantage of this model is that the contribution of the semantic context cue on

semantic segmentation is somewhat not quite straightforward.

Instead of intrinsically modeling the semantic context in the context object segmentation, we ex-

plicitly model the semantic context cue as the coefficient in a hybrid model, determining the relative

contribution of appearance features and context features in semantic segmentation. Specifically,

we directly model the likelihood of the semantic context feature as follows:

Pr(fCse
i |o′i = 1) =

{
λ, if fCse

i = 1,

1− λ, if fCse
i = 0.

(5.9)

If we assume the scale context feature fCsc
i and the spatial context feature f

Csp

i are condition-

ally independent of each other given the semantic context feature and the target label, the spike

likelihood channel, Eq. 2.6, is further modeled as:

Pr(o′i = 1|fA′i , fCsc
i , f

Csp

i , fCse
i )

∝ Pr(o′i = 1|fA′i )× Pr(fCse
i |o′i = 1)× Pr(fCsc

i |fCse
i , o′i = 1)× Pr(f

Csp

i |fCsc
i , fCse

i , o′i = 1)

= λΨC + (1− λ)ΨA,

such that
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ΨC = Pr(o′i = 1|fA′i )× Pr(fCsc
i |fCse

i = 1, o′i = 1)× Pr(f
Csp

i |fCse
i = 1, o′i = 1),

ΨA = Pr(o′i = 1|fA′i ).
(5.10)

(see Appendix B for a detailed proof). In this model, the semantic context cue is explicitly formu-

lated by λ, which we call sensitivity coefficient, describing how sensitive the target segmentation

is to the context cues. When λ is equal to 0, meaning no contribution from context for segmenta-

tion, this model is identical to the classic object-centered semantic segmentation. Thus the classic

object-centered semantic segmentation is a special case of our model. When λ increases, more

contributions from the context cues are taken into account in semantic segmentation and the seg-

mentation is thus more sensitive to the context. When λ is equal to 1, our model is close to the

context integration models [122, 123, 125].

5.4 Experiment on Microvillus Tomogram

In this experiment, we evaluated our semantic segmentation method on a 3D tomogram of

microvilli. The performance of our method was assessed on the task of spike head detection.

In this section, we first describe the dataset and our evaluation methodology. We then use our

dataset to evaluate the accuracy of our method in terms of the number of spikes that are correctly

detected. As we have known so far, there is no other method working on segmenting microvillus

spikes algorithmically. Hence we use the method based on only local appearance as a baseline and

compare it with our method.

5.4.1 Dataset and Evaluation Methodology

The dataset was acquired from the microvilli of insect flight muscle. We have a volume with

a size of 600 × 1400 × 432, or nearly 363 million voxels. An example slice is shown in the top

image of Fig. 3.1. As mentioned previously, there is a large number of faint and small spikes

(named spikes for microvillus) in the tomogram, which is quite noisy, the annotation is extremely

time-consuming. Thus it is difficult to annotate all the spikes in such a tomogram. To reduce the

labeling cost, a microvillus expert partially annotated 89 spike heads on one target membrane in

our dataset, leaving most of the spikes unannotated. To avoid false positives caused by unannotated

spikes, the performance of our method was assessed on two slices where most of the spikes arrayed

on the target membrane (27 in total) were annotated.
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Data Annotation. Spike labeling is an ill-posed problem. There are ways like 3D binary

mask for spike roots, spike centers, the entire spike profiles, or spike heads. Even though from

Section 5.3.2 we can have scores for all the membrane voxels indicating its possibility of being a

spike root, the validation based on the roots of spikes is not straightforward. As spikes usually only

stand out from the background because their headers appear dark enough, their roots are usually

indistinguishable from the background. Thus benchmarks for spike roots are unreliable. For the

same reason, benchmarks for spike centers are not preferred for validation of segmentation algorithm

as well. The last representation, marking the entire spike profile, is ideal for classic segmentation

[93] as it is straightforward to generate the standard validation measure – the precision-recall curve.

Unfortunately, due to the low SNR, extremely heavy workload is required for experts to repeatedly

refine parameters so as to manually mark every spike voxel. And it is also impossible for experts

to accurately mark most region of a spike if the background is too noisy. Thereafter, binary masks

of spike profiles are seldom used in reality.

For reasons above, spike head voxels are more often marked by experts as ground truth to localize

the spike, followed by alignment and average to generate 3D models for spike. Respectively, our

segmentation algorithm also predicts the spike heads, even though it takes similar time cost in

producing the other three representations. In detail, we assign the value calculated by Eq. 5.10 to

each voxel, predicting its possibility of being a spike head.

Evaluation Methodology. Finally, our segmentation algorithm produce a spike likelihood

Pr(o′i = 1|fA′i , fCse
i , fCsc

i , f
Csp

i ) that indicates the posterior probability of a spike head at each voxel.

It is crucial to have a proper voxel-wise evaluation for judging the qualities of different segmentation

methods. As the spike segmentation is usually followed by aligning and averaging sub-tomograms

(3D bounding box) centered at each spike for 3D reconstruction, we formulate spike segmentation as

a problem of detecting the spike heads. In general, we need to design a methodology that evaluates

detector performance in an unbiased and informative way.

To compare detectors based on different sets of cues, we plotted the number of missed spikes

(false negative) against the number of false positives, namely MFN curve. Each point on the

curve is generated independently by thresholding on Pr(o′i = 1|fA′i , fCse
i , fCsc

i , f
Csp

i ) to produce a

3D binary segmentation mask and then matching it with the ground truth. This is preferred to

traditional precision-recall curves as it is easier for the biologists to set an upper bound on the
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accepted number of false positives independent of the spike density. However, to compute false

negative and false positive is not straightforward. One could simply count the overlaps between

the 3D binary segmentation mask and the ground truth as true positives, declaring all unmatched

voxels either false positives or false negatives. However, this measure is unable to tolerate minor

localization errors even though the algorithm may generate useful detection results that may be

1 to 2 voxels away from the ground truth. In fact, due to extremely low SNR, most of the faint

targets are not annotated at the exact location in the ground truth by human experts. Thus a

measure that tolerates minor localization difference is necessary for evaluating nano-scale semantic

segmentation algorithms.

For the above issue, we perform tomogram evaluation using a modified version of the evaluation

protocol in the PASCAL visual object detection challenges [39]. A detected voxel and a ground-

truth voxel form a potential match if their Euclidean distance is smaller than a threshold d, namely

matching distance threshold. Each detected voxel and ground-truth voxel may be matched at most

once. If a ground truth voxel matches several detected voxels, the potential match with the smallest

distance is counted as true positive (ties are broken arbitrarily). Finally, unmatched ground truth

voxels were counted as false negatives whereas unmatched detected voxels were counted as false

positives.

Besides, we use the average miss rate (AMR) for each MFN curve to summarize the performance

of each detector, approximated by averaging the miss rate at 31 MFN rates evenly spaced in the

range 0 to 300 false positives. For curves that stop before reaching a given MFN rate, the smallest

miss rate achieved is used. This measure is intuitively similar to the average precision in PASCAL

challenge because the entire curve was described by a single value. As the number of ground-truth

voxels is quite small in contrast to the number of voxels in the entire tomogram, our measure in

terms of the average miss gives a more informative and stable illustration of the performance.

5.4.2 Detection Accuracy

Given the evaluation methodology above, we need to compare our voxel-wise segmentation

algorithm with a baseline algorithm. However, as explained previously, the low SNR and the large

size yield difficulty in using most up-to-date segmentation methods. It is hence very challenging

to construct a good baseline technique for comparison. To show the contribution of context cues

84



Figure 5.3: Spike head segmentation performance on the microvillus tomogram for differ-
ent value of matching distance thresholds d’s, by thresholding the baseline object-centered
model (magenta crosses), the complete context-sensitive model (red squares), and its two
ablation models (black triangles and blue circles). Our context-sensitive models yield sig-
nificantly better performance than the baseline model and our complete model achieves
the best performance at all values of d. See the text for a description of each model.
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Table 5.1: Average miss rate for our model (4), the ablations of our model (2,3) and a
baseline appearance-based model (1) with 3 different d’s. Our context-sensitive models
outperform the baseline model for all values of d. See the text for a description of each
model.

Model d = 5 d = 10 d = 15

(1) A 0.46 0.39 0.26

(2) AC 0.36 0.28 0.20

(3) ACP 0.30 0.20 0.18

(4) ACPE 0.25 0.20 0.18

in context-sensitive semantic segmentation, we apply thresholding on (5.1) as a baseline algorithm

that is purely based on the appearance feature.

Table 5.1 shows the performance for each model to demonstrate the improvement due to different

types of context cues. Model names are shown as follows: (1) is our baseline object-centered

segmentation, (4) is our complete model, and (2) and (3) are incomplete models using subsets

of the context cues in (4). The model name implies what features are used: ’A’ for appearance

feature in Section 5.2, ’C’ for scale context feature in Section 5.3.1, ’P’ for spatial context feature

in Section 5.3.2, and ’E’ for semantic context feature in Section 5.3.3 (here λ = 0.8). We also

present Fig. 5.3, which plots the number of missed spikes against the number of false positives at

different matching distance thresholds. In Fig. 5.4 and Fig. 5.5, we visualize two exemplar slice

cuts of several sample output spikes of several models, along with the ground truth annotation in

the cropped original tomogram. In Table 5.3, we present the performance for each model on the

HIV data set.

As shown in our results, the helpfulness of different types of context cues is quite clear. The

baseline algorithm based on appearance feature does a worse job in contrast to algorithms with

additional context cue(s). In addition, our complete model outperforms each algorithm that uses

a subset of all the three context cues. Thus all types of context cues contribute helpful and com-

plimentary information for context-sensitive semantic segmentation. By thresholding our complete

context-sensitive model, we have the spike heads, based on which we can generate the respective

spike roots with the method mentioned in the spatial context. As the general shape of small spikes

is close to a cylinder, it is easy to generate the ridge of each spike given its head and root, or even
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Figure 5.6: Illustration of a sample spike segmentation visualized in 3D, where each ma-
genta segment represents the ridge of a spike.

the sub-tomogram centered at the center of each spike given the general width of a spike. Figure 5.6

illustrates a sample 3D view of our segmentation in which the ridge of each spike is represented as

a magenta segment. Note that the result is in 3D and they can thus be visualized from different

view angles. By tuning the threshold based on the observation of the segmentation result and other

prior knowledge, researchers are able to control the number of potential spikes in an interactive

manner, which is convenient for further processing such as averaging. Thus our method provides

an efficient tool of nano-scale small object segmentation with great flexibility for researchers.

5.4.3 Choice of Context Sensitivity Coefficient

As the proposed complete model involves coefficient λ describing the sensitivity of the seman-

tic segmentation to context, we also designed an experiment to show the influence of λ on the

segmentation performance (the average missing rate). In this experiment, λ was sampled by di-

viding the interval [0, 1] into 51 equal parts. Fig. 5.7 shows the average miss rate of our complete

model (d=5) as a function of λ. We have two observations: 1) there is an optimal solution be-

tween object-centered segmentation and context-integration model, indicating a trade-off between

the false negatives caused by appearance and context cues; 2) such optimized performance nearly
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Figure 5.7: The segmentation performance (average miss rate ) of our complete model for
different values of the context sensitivity coefficient (λ). The horizontal axis represents λ
in our complete model (5.10) and the vertical axis shows the segmentation performance.
Our model achieves the best performance (0.2447) at λ = 0.28.

holds for a wide range of λ, the lower bound of which naturally and explicitly describes the context

sensitivity of semantic segmentation in terms of specific problems.

5.4.4 Computational Complexity

In terms of computational cost, our method is much faster than annotating by an expert, spend-

ing around 1˜2 hours and marking only 89 spikes for the given tomogram. Table 5.2 summarizes

the time cost for each step of our model and the total timecost, which is 3 to 6 times faster than

manual annotation. Note that, in the case of annotating thousands of spikes in this tomogram, the

time required for the human annotation would be an order of magnitude higher than our method.

5.5 Experiment on HIV Tomogram

In this experiment, we evaluated our semantic segmentation method on a 3D tomogram of HIV.

The performance of our method was assessed on the task of HIV spike head detection.
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Table 5.2: Timecost for each step of our method, using 8 threads on the same 64-bit
GNU/Linux, and the timecost of annotation by experts.

Step Time (min.) Multi-threads

Stage 1

Scale space 1.40 No

Local detector 10.98 No

Global analysis 1.17 No

Stage 2

A 3.13 No

C 0.76 No

P 1.58 Yes

E 0.62 No

Total time by our method 19.64

Total time by the expert 60˜120

Table 5.3: Average miss rate for our model (4), the models using subsets of our context
features (2,3) and a baseline appearance-based model (1). Our context-sensitive methods
also outperform the baseline model. See the text for a description of each model.

Model (1) A (2) AC (3) ACP (4) ACPE

AMR 0.79 0.64 0.30 0.30

5.5.1 Dataset

The dataset was acquired from the HIV. We have a volume with a size of 864 × 686 × 174, or

more than 103 million voxels. Example slice cuts are shown in Fig. 4.1. Similar to the microvilli

case, we use 56 spike heads in the tomogram annotated by an expert and the same evaluation

methodology to compare detectors based on different set of cues.

5.5.2 Detection Accuracy

To show the contribution of context cues in context-sensitive semantic segmentation, we apply

thresholding on (5.1) as a baseline algorithm that is purely based on the appearance feature.

Table 5.3 shows the performance for each model to demonstrate the improvement due to different

types of context cues. Model names are shown as follows: (1) is our baseline object-centered

segmentation, (4) is our complete model, and (2) and (3) are models using subsets of the context cues

in (4). The model name implies what features are used: ’A’ for appearance feature in Section 5.2,
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’C’ for scale context feature in Section 5.3.1, ’P’ for spatial context feature in Section 5.3.2, and

’E’ for semantic context feature in Section 5.3.3 (here λ = 0.8). We also present Figure 5.8, which

plots the number of missed spikes against the number of false positives when matching distance

threshold d = 15.

Figure 5.8: Spike head segmentation performance on the HIV tomogram for d = 15,
by thresholding the baseline object-centered model based on appearance cue (magenta
crosses), the complete context-sensitive model (red squares), and two incomplete models
(black triangles and blue circles).

As shown in our results, the helpfulness of context cues is also quite clear. The baseline algorithm

based on appearance feature does a worse job in contrast to the algorithms with additional context

cue(s). In addition, our complete model outperforms each algorithm that uses a subset of all the

three context cues. Thus all types of context cues contribute helpful and complimentary information

for context-sensitive semantic segmentation.

5.5.3 Computational Complexity

In terms of computational cost, our method on HIV tomogram also takes less than half an hour

to finish all the steps. In contrast the microvillus tomogram, the number of spikes in the HIV

92



tomogram is much fewer and the quality of the HIV tomogram is generally much better. Thus the

corresponding annotation timecost for an expert is close to the timecost of our method.

5.6 Summary

So far, we have presented the use of our novel framework for the problem of nano-scale semantic

segmentation, demonstrated on 3D cryo-electron tomogram of spikes on microvilli and HIV. The

low SNR and large size of our data make most up-to-date segmentation methods intractable. In

contrast, our method has achieved efficient voxel-wise segmentation through context features that do

not only tolerate the extremely noisy background, but also reduce the searching space dramatically.

We have presented three types of context cues appropriate for nano-scale faint target segmentation

– a scale context feature that describes the sizes in which targets are usually found in a scene,

a semantic context feature which encodes the co-occurrence of other objects in the scene, and a

spatial context feature that offers a specific configuration in which targets and other objects are

usually found. Our method models the true posterior probability of a spike head at every voxel,

which is significant for further processing such as alignment and averaging. We have also defined

a methodology for benchmarking nano-scale segmentation algorithms. Based on a quantitative

evaluation on a 600× 1400× 432 tomogram with 27 annotated microvilli spikes and a 864× 686×

174 tomogram with 56 annotated HIV spikes, we have shown that our complete context model

outperforms models using subsets of the context features. Meanwhile, all context-based models are

superior to purely appearance-based method concerning the segmentation performance. Therefore,

our results indicate that an appropriate treatment of context cues is essential for segmenting objects

in nano-scale.

Besides advancing image processing, our work has the benefit of handling a critical and unsolved

problem in spike research that of semi-automatically localizing spikes. By producing nano-scale

semantic segmentation in an efficient and accurate manner, our method allows spike researchers to

focus on the data analysis rather than data processing and thus enables breakthrough biological

research at a large scale.

Due to the limited imaging conditions of biological samples, the image quality in nano scale is

usually very poor and thus context information often plays a critical role in object identification.

To demonstrate our proposed framework is useful for not only nano-scale images but also more
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natural images, we will present the application of our framework on the task of tattoo classification

based on tattoo image segmentation in the next chapter.
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CHAPTER 6

CONTEXT-SENSITIVE TATTOO SEGMENTATION

AND TATTOO CLASSIFICATION

6.1 Introduction

In the previous chapters, we have seen the efficiency and effectiveness of our framework on

segmentation of a challenging data type – cryo-electron tomograms. In this chapter, we will show

that our framework can also be applied to natural images to improve semantic segmentation.

To achieve this, in this chapter, we will apply our two-stage framework on the task of tattoo

segmentation, which benefits tattoo classification applications, such as gang identification and

tattoo artist identification.

Scars, Marks and Tattoos (SMT) are useful clues for criminal identification and personal iden-

tification in criminal conviction and medical forensics respectively. Besides the canonical biometric

identifiers such as fingerprint, DNA and iris, a large amount of tattoo images have also been taken

from victims, suspects and incarcerated personnel for identification in law enforcement [57]. These

biometrics are collected, maintained and analyzed by national security systems like the Integrated

Automated Fingerprint Identification System (IAFIS) for retrieval purposes [103]. Manual tattoo

searches over a large dataset are very time-consuming and inefficient. Several Content-Based Image

Retrieval (CBIR) systems have been proposed for tattoo matching and retrieval [57, 58, 1, 71, 52].

The performances of these systems are sensitive to tattoo segmentation, which is a pre-processing

step to remove varied background. Our goal in this chapter is to demonstrate the effectiveness of

our context-sensitive framework on natural images by designing a tattoo segmentation system to

automatically mark tattoo regions.

The objective of tattoo segmentation systems is to extract regions solely containing compo-

nent(s) of tattoos in an image. Tattoo segmentation requires that each extracted region has a

semantic component of tattoo. This is more than traditional bottom-up image segmentation [30,

130, 22, 121], which only requires that each segmented region be homogeneous, known as over-

segmentation. As bottom-up segmentation is sensitive to intra-object variance, various forms of
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top-down cues are usually combined with bottom-up cues for the purpose of obtaining semantic

meaningful results. For example, Schitman et al. [118] found that a group of patch sets (one for

each class and labels are known) can help label the homogeneous regions obtained from bottom-up

over-segmentation. Each set contains patches sampled from one class in the labeled training im-

age and the cost of the assignment to each class is computed for each over-segmented region. A

graph-cut optimization based on these costs is used to find a globally optimal segmentation. Car-

reira et al. [61] applied multi-scale binary segmentation on an image using the parametric min-cuts

technique. Then a feature-based regressor is trained to rank the pool of segmentation results to

predict the likelihood of each segment being an object. Such regressor is learned from the statistical

distribution of a large number of features (related to graph, region and Gestalt properties) among

a set of annotated images. To avoid manually labeling the training set, a large number of images

containing the same object were simultaneously segmented in [82], assuming that the common

parts of an object will appear frequently while the effect from varied background will diminish. In

such an approach, superpixels and interest points are re-organized as mid-level over-segmentation

results and visual words representations from bottom-up and top-down priors of a hybrid graph

model respectively.

Since bottom-up segmentation is well studied [61, 82, 143, 118], the key of tattoo segmentation

is how to incorporate top-down priors. Unfortunately, obtaining top-down priors for tattoo is

very challenging due to large variances in tattoo appearance, shapes and spatial connectedness.

Each gang has different tattoo patterns with its own symbol system. It could be a particular

number, an animal or a combination of several meaningful components. Despite the fact that

the number of gangs is limited, the appearance of the tattoo patterns (such as letters, numbers

and animals) in a gang still varies from person to person in general. Take the tattoos of a gang

named four corner hustlers for instance 1, the tattoo pattern with the semantic meaning of four is

shared among the tattoos of this gang. Even though the number four is often observed in these

gang tattoos, it is obvious that the appearances (such as texture, color and writing style) of the

number fours are significantly different. Sometimes the number one and number four in the tattoo

pattern are inked in different fonts. Moreover, the tattoo pattern four may also appear as either the

Roman numeral four (IV) or even a diamond with four corners. Such varied appearances induce

1Tattoo images are available at http://gangink.com/index.php?pr=FOUR_CORNER_HUSTLERS/ [48].
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large intra-class variance of the tattoo pattern of the gang four corner hustlers. On the other

hand, some number fours are even surrounded by characters like C and H indicating corner and

hustlers in the gang’s name. Such disturbances in the tattoo may also increase the variance of

the tattoo appearances of this gang. There also exists a considerable spatial variance of the tattoo

patterns. A tattoo may not be a collection of spatially related components, such as rabbit head and

letters. Therefore, the neighborhood of components is often difficult to be involved in segmentation

model as spatial constraints for region aggregation, which attempts to obtain the object as a

whole. Suffering from the shortcomings mentioned above, it is difficult to segment tattoos from

the background directly through any prior on location or shape of tattoo as a whole. Thus this

problem has been rarely discussed [57, 58, 1]. Jain et al. [58] proposed a tattoo image retrieval

system via image matching based on SIFT features. However, in contrast to the performance using

their segmentation algorithm, better performance was reported when tattoo images were manually

cropped to extract the foreground as well as suppressing the background, which is really time-

consuming. Acton and Rossi [1] proposed a segmentation approach based on active contour and

vector field convolution. Nonetheless, the contour initialization is difficult to be given when the

structure of tattoo is complicated.

Here we propose a tattoo segmentation system combining both bottom-up and top-down priors.

We make the assumption that each component (e.g., a letter or a number) in a tattoo is arbitrarily

located in spatial space of a tattoo image. Moreover, we consider skin and tattoo as a whole

at first and deal with a figure-ground segmentation for both skin and tattoo as the foreground.

Figure-ground segmentation is a recognition process that needs to figure out the aimed object(s).

Thus top-down priors should be involved for this step. After obtaining regions with skin and tattoo,

another figure-ground segmentation distinguishes the tattoo from skin. Similar to the segmentation

in the previous step, top-down priors are learned from the image. This two-stage process agrees

with the hierarchy and adaptivity of the human visual system for visual scene understanding [120].

The rest of this chapter is organized as follows: Section 6.2 presents the proposed system for

tattoo segmentation in details, followed by experimental results. In section 6.3, a novel gang iden-

tification system is proposed based on tattoo segmentation in section 6.2, along with a comparison

between the tattoo recognition with and without our tattoo segmentation results. A discussion on

some further improvements and a conclusion are given in Section 6.5.
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Figure 6.1: The outline of context-sensitive tattoo segmentation.

6.2 Context-Sensitive Tattoo Segmentation

Regarding the complexity and intra-class variance of tattoo, our main idea is to transfer the

tattoo segmentation into skin detection followed by a figure-ground segmentation. The outline of

our algorithm is depicted in Fig. 6.1. First, a clustering technique is used on the range domain

(color space) to separate the tattoo image into over-segmented regions in a bottom-up manner.

This is a very important step in that regions containing both skin and tattoo are much more non-

homogeneous than these over-segmented regions. Then, based on top-down cues learned from the

image itself, a region merging step is introduced to group skin regions together. Through this split-

merge process, skin and tattoo are distinguished from the background. Finally, K-means algorithm

is applied for figure-ground segmentation, where now the tattoo is the foreground and the skin is

the background.

6.2.1 The First Stage: Split-Merge Skin Detection

Preprocessing. In skin detection, an image is usually regarded as a group of feature vectors.

Each pixel corresponds to a feature vector fAi in a multi-dimensional feature space. The statistical

properties of the histograms or the distributions built on these dimensions are widely discussed

[62, 129]. To simplify our system, we begin by a preprocessing step that represents an image as

a set of homogeneous regions in terms of certain properties, namely superpixels, I = ∪Si. Here

i = 1, ..., N and N is the number of superpixels. Specifically, an initial clustering process is carried

out on the gray-scale distribution h(I) of the image. Let {fAg

i } be the set of the intensity values

from the gray-scale image of I, while the function h(x) evaluates the density estimate covering the

range of x. Since pixels from the same cluster are more likely to have a similar intensity, we segment

the tattoo images according to the local minima of the gray-scale distribution. In that sense, the
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pixels with intensity values between either two closest local minima are labeled as a cluster. To this

end, other clustering algorithms like watershed and mean-shift could be used as alternatives. After

applying the histogram-based clustering, d1 local minima in the gray-scale distribution produce

d clusters in the gray-scale space. Obviously, the resulting initial segmentation (superpixels) may

suffer from under-segmentation due to background with similar intensity and over-segmentation due

to illuminant variations on the skin. However, the following steps can help alleviate such problems:

Initialization. Since only weak prior information in detecting tattoos can be obtained in a

given image, the segmentation system needs to be initialized, where an initial model of skin (with

tattoos) needs to be estimated. Based on the observation that the center region in almost all the

tattoo images in the database contains skin, we use a center in focus initialization, in which the

statistical properties of the central region are considered as prior knowledge for skin detection.

Clearly, this initialization step is not universal and could be replaced if some prior information

about the skin color is available.

Connected Structure. Although skin with tattoo may be split into several regions (clusters)

due to shading and intra-class variance of tattoo components, these regions are more likely to be

connected to each other in spatial space. If the main pattern of tattoo is not in the center of an

image, it may still be merged since its background in the cluster (the skin) may be adjacent to the

pure-skin region in the center. Therefore, it is reasonable to use the neighborhood of clusters in

spatial domain as a top-down cue for merging potential skin regions.

Following these two points above, an m × n patch p0 in the center of I is sampled from I for

obtaining prior knowledge (empirically, m and n is half of the height and width of I correspondingly).

How to obtain the seeds for learning the top-down prior of the objects is widely discussed in

figure-ground segmentation [61, 82]. Joao et al. [61] randomly pick up foreground seeds from a

group of pixels uniformly distributed over the spatial space for several times. The background

seeds are those on the boundary of an image. Liu et al. [82] use interest points obtained from

a large amount of images containing the same object as the prior for such an object. Regarding

our initialization, clusters covering the major area of p0 are most likely to be skin and tattoo.

Thus in our work, a region sampled from the image is regarded as the seeds containing top-down

priors. In detail, the number of overlapped pixels between p0 and each cluster ci are sorted as

{(nj , i)|nj > nj+1 and i, j = 1...d}. The first k clusters with the largest number of overlapping
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pixels are labeled as potential foreground (skin and tattoo) under the constraint that their overlap

ratio
∑

l=1,...,k nl∑
l=1,...,d nl

exceeds a threshold t (typically 75%). In most cases, such potential foreground

may contain arbitrary number of regions merged by clusters. However, only the region with overlap

in the sample patch is labeled as foreground due to the connected structure of skin. Therefore, only

one region with sample patch inside is segmented as skin. If either skin or tattoo dominates the

sample path, regions belonging to the other may be excluded from the segmented region. Thus an

operator filling the holes inside such regions should be applied as a post-process of skin detection.

6.2.2 The Second Stage: Figure-Ground Tattoo Segmentation

To this point, we transferred a problem of tattoo segmentation with unknown number of clusters

to a skin-tattoo binary segmentation, where skin is the context of tattoo. This is based on the

spatial context that tattoos almost always appear on skins. In this section, skin pixels should be

distinguished from pixels belonging to tattoos. In that sense, a skin pixel in this section indicates

merely the skin pixel that is not covered by tattoos. Since we already know the number of potential

clusters now, a k-means algorithm (k = 2) can be applied on the RGB color space of the foreground

(skin). Now the issue is which cluster should be tattoo. If distinction between tattoo and skin is

needed, the pixels on the contour of the skin region are more likely to be skin pixels rather than

pixels in tattoo. Because, otherwise, skin is fully covered by tattoo and distinguishing tattoo from

skin is thus unnecessary. Following this rule, the cluster with more pixels on the contour of the

foreground is labeled as the skin and the other the tattoo. If the structure of tattoo is preferred

rather than the whole region containing tattoos in applications, an alternative way of marking the

tattoo is to apply a ridge or edge detector [81, 25] on the skin region. This is reasonable since

tattoo is a kind of man-made painting with clear boundaries while skin regions are textureless in

contrast.

6.2.3 Experiments

Experiment on a single tattoo from different views. First, we have tested our algorithm

on a single tattoo taken from different views. As shown in the first column of Fig. 6.2, the images

of a military tattoo were taken from different views. Our context-sensitive segmentation captures

the military tattoos accurately regardless of the views.
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Figure 6.2: Our segmentation results of a tattoo from different views. Each row is one view.
The first column shows the original images, whereas the second shows our segmentation
results.

101



Table 6.1: More details of the accuracy and the F measure of proposed algorithm.

Min Max Mean Variance

Accuracy 0.7989 0.9614 0.8983 0.0014

F measure 0.4204 0.7854 0.5866 0.0061

An Experiment on a Tattoo Database. We have also tested our proposed algorithm over

a collection of 256 tattoo images 2. Each tattoo is unique in the sense that no two images were

taken from the same tattoo under different views or illuminant conditions.

Figure 6.3 shows the accuracy distribution of the proposed algorithm. Here the segmentation

accuracy is the most widely used evaluation metric defined as follows:

Accuracy =
|Sf |+ |Sb|
|S|

, (6.1)

where Sf and Sb are correctly assigned foreground and background pixels correspondingly and S

is the image. |X| means the number of data (pixels) in the set X. Since bad segmentation may

receive a good accuracy if tattoo is small, as suggested by Liu et al. [82], our algorithm was also

evaluated under a popular measure for information retrieval, called F-measure:

Fα =
(1 + α) ·Rr ·Rp
α ·Rp +Rr

, (6.2)

where α is a balance parameter for precision

Rp =
|A ∩B|
|A|

(6.3)

and recall

Rr =
|A ∩B|
|B|

, (6.4)

where A indicates the man-made ground truth segmentation and B the result of proposed segmen-

tation algorithm. α is usually set as 2. Its distribution is shown in Fig. 6.4. More details of the

accuracy and the F measure of proposed algorithm are shown in Table 6.1.

2Images are available at http://gangink.com/ [48].
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Figure 6.3: The accuracy of our algorithm. The x axis is the accuracy and the y axis is
the number of images involved in each accuracy.

Figure 6.4: The F measure of our algorithm (α = 2). The x axis is the F measure and
the y axis is the number of images involved in each F measure.
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Our experiment shows that our algorithm can separate the tattoo regions from most of the

backgrounds although in some examples certain small tattoo regions are further eliminated. This

is not a big problem for tattoo classification since these regions are small in contrast to the whole

tattoo and the main patterns of the tattoo are still well reserved.

6.3 Tattoo Classification

6.3.1 Motivation

Human adoption of SMT was typically observed in two groups: military and gangs. Some

gangs are closely affiliated to terrorist groups, such as MS-13 (US) & MS-18 (San Salvador) in

Mara Salvatrucha and PEN1 in Public Enemy Number 1. Prison gangs also cause trouble such as

strong-arm extortion and conflicts between gangs in prisons. Thus the identity encoded in gang

tattoos can be a matter of life or death. On the other hand, in the past ten years, we have also

seen a large increase in the adoption of tattoos by mainstream media (i.e., movies Blade and Pop-

Culture) and wider population. As reported by Laumann et al. [69] in 2006, 24% of people aged

18 to 50 in the USA have at least one tattoo, and this number is still increasing. Thus there is a

growing demand in building a gang identification system based on tattoo classification to increase

the possibility of preventing potential violence and crime.

There are only a few researches in the computer vision community that are close to our task.

Jain et al. [57] proposed a tattoo image matching system, called Tattoo-ID, to find the most

similar tattoo images in the database. This system extracts interest points via scale invariant

feature transform (SIFT) and then measure the distance between the query tattoo image and every

image in the tattoo image database by an unsupervised ranking algorithm based on the points.

The performance of this work was improved in [71] by developing more robust matching metric

and using a forensic oriented image database with metadata. In a similar work, Acton et al. [1]

proposed another tattoo image matching system by active contour and global-local image features

(i.e., color and shape). Han et al. [52] extended the tattoo image retrieval from the image-to-image

matching to the sketch-to-image matching. However, all the works above suffer from the fact that

the input images must be manually cropped to remove background noise beforehand. In addition,

given some distance metric that measures the similarity between images, all these works are aimed

at finding the most similar tattoo images in the tattoo image database. Thus their application on
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gang identification is limited by their assumption that the query image is close to a duplication of

some images in the database. To the best knowledge of ours, no work has been reported for tattoo

classification based on automatic tattoo segmentation.

Even though a tattoo usually consists of arbitrary number of connected components, the typical

distinctive components between gang tattoos are often one or two particular patterns embedded in

the tattoos. They usually appear as semantic level patterns, such as number four and rabbit head.

We call them tattoo patterns. In other words, tattoo patterns are the connected components in a

tattoo with special structure contributing to gang identification. Figure 6.5 shows the connected

components for some tattoos based on the ridge detection of our segmented tattoo regions. The

tattoo patterns like rabbit head, numbers and human head pop up in terms of connected com-

ponent with different colors. Despite the difficulty of representing the entire tattoo in an image

as a meaningful structure, tattoo classification based on shape analysis is reasonable when taking

tattoo patterns into account. Therefore, in contrast to find a ”near duplicate” image from the

database, it is more reasonable for gang identification to consider a matching between the tattoo

pattern sets from the query image and the images of known gangs. Following our context-sensitive

tattoo segmentation system, it is straightforward to further represent tattoos in the query and the

database as their patterns, in the form of connected components. In our work, we rely on advanced

data structures to support efficient large scale search. It allows the identification of the gang to

which the tattoo at hand belongs based on matching features with all known and new gang tattoo

patterns. In what follows, I will describe the details of our gang identification system based on

tattoo classification.

6.3.2 Tattoo-Based Gang Identification

Tattoo Dictionary. For identification purposes, tattoo patterns are normally distinguishable

among the connected components due to their better connectedness. Therefore, it is reasonable to

sort the connected components regarding their sizes and label the largest k components as potential

tattoo patterns for further analysis. Given the segmentation of a set of tattoo images from a target

group (i.e.: tattoos for a specific gang or a specific artist), we apply morphological filling on each

connected component and then generate a collection of the potential tattoo patterns, namely the

tattoo dictionary. Meanwhile, we will also generate the potential tattoo patterns from the query

tattoo image.
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Figure 6.5: Illustration of connected components in tattoos. The first row shows the tattoo
segmentation results from the ridge-based descriptor and the second row shows different
connected components associated with different colors.

Feature Extraction. To include global information of tattoo patterns for classification, we

have developed algorithms for producing both appearance-based descriptors (scale invariant feature

transform, or SIFT) [85] and shape-based descriptors (Shape-DNA) [112]. The former is a vector

showing the statistics of a semi-global region centered around a point which is given by a detector.

The point is usually given by some widely used interest point detectors, such as Harris interest point

detector [53] and SIFT detector [85]. Harris interest point detector is affine-invariant and marks a

set of points in an image with local maxima of the cornerness. Here corners are defined as locations

where the image signal varies significantly in both directions and thus cornerness reflects how much

the variation is. However, it is sensitive to change in image scale. As reported by Moreels and

Perona [97], the combination of Harris detector and SIFT descriptor is best for lighting changes.

On the other hand, SIFT detector marks a set of points in an image with scale-space extreme. Thus

it is scale-invariant. In contrast to SIFT, Shape-DNA is not only scale invariant but also reserves

unique shape signature. Moreover, it dramatically reduces the discriminative information needed

to be stored. It is the eigenvalues (i.e. the spectrum) of a Laplace-Beltrami operator in terms of a

given shape:

∆f = div(∇f), (6.5)

where ∇ is the gradient and div(x) is the divergence of x on the manifold. Due to the merits

mentioned above, our use of Shape-DNA from potential tattoo patterns has great potential in
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outperforming the use of SIFT for gang tattoo classification.

6.3.3 Experimental Results

Basic Strategies. To focus on the performance of different features used, the nearest neighbor

(NN) search is used as the classification strategy in this part. For each tattoo image, we set k = 5

and thus the largest five potential tattoo patterns are collected for feature extraction. To test the

performance of our proposed method, we adopt the commonly used leave-one-out testing procedure.

Let N be the number of images with known label (known class) and each of them contains a number

of SIFT descriptors. Each time, we leave one image out as the query image and use the remaining

N − 1 images in the database as the training set. To each SIFT descriptor of the query image, we

find in the training set its closest SIFT descriptor, named a match. The test image is classified as

the cluster with most matches. The leave-one-out testing procedure continues until all the N images

are left out once. The significant difference between the task of tattoo image retrieval and ours is

that, rather than image-oriented, our work is SIFT-descriptor-oriented. In contrast to return the

most similar training images, our approach seeks for the most similar SIFT descriptor (a match) in

the whole training set for each SIFT descriptor from the query image, followed by classifying the

query image based on a SIFT-feature (match) voting. The query image is classified as the cluster

with most matches.

Professional and Non-Professional. Since professional tattoos are usually more compli-

cated than non-professional tattoos and SIFT point detection can thus be time-consuming, the

Harris interest point detector and SIFT descriptor are used. We have applied our classification on

a set of 40 tattoo images, 20 with professional tattoos and 20 with non-professional tattoos. Our

experiment has achieved 85% accuracy of distinguishing professional tattoos from non-professional

tattoos.

Gang and Non-Gang. Since gang tattoos contain certain patterns which may appear in

different scales, scale-invariance is more important than the previous problem. Hence, to distinguish

gang tattoos from non-gang tattoos, here we have used both SIFT detector and SIFT descriptor.

We have applied our classification on a set of 40 tattoo image, 20 with gang tattoos and 20 with

non-gang tattoos. Our experiment has achieved 77.5% accuracy of distinguishing gang tattoos

from non-gang tattoos.
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Continent United States Gangs (CONUS) and Outside the Continent United States

Gangs (OCONUS). CONUS and OCONUS have similar agendas such as extortion, murder,

drug trafficking and terrorist affiliation. Meanwhile, SMT are used heavily by both. However,

CONUS have their origins in American Penal Systems, whereas OCONUS are politically tied to

an impacted Social Group. Thus it is also necessary to design a classifier for distinguishing tattoos

from these two groups. Due to limited number of SIFT key points from tattoos of these two gangs,

we have used Harris interest point detector instead, followed by SIFT descriptor. We have applied

our classification on a set of 40 tattoo image, 20 from CONUS gangs (such as Crips, Bloods) and

another 20 from OCONUS (such as MS-13 and Russian Mafia). Our method has approached the

accuracy of 70%.

Sets and Sub-Sets. Sets here are typically sub-sets of a known gang separated by streets,

cities, and states. In fact, set on set violence is higher than gang on gang violence. Thus it is

also necessary to design a classifier for distinguishing tattoos from these two groups. Similarly,

SIFT key points and SIFT descriptors are used. We have tested our method on 15 tattoo images

from AB and 15 tattoo images from MS-13&18. Our experiment has achieved 73.33% accuracy

of distinguishing MS-13&18 from AB.

Signature of Artist. Even though the SMT may be different, the artist that created them

may be the same. Sets typically have an internal artist do their work. Thus the classification of

the tattoo based on the intrinsic properties of the artist may also allow traceability and affiliation

of members. Similarly, SIFT key points and SIFT descriptors are used. We have applied our

classification on a set of 30 tattoo images from three artists (10 images from each). Our experiment

has achieved 95% accuracy of style identification of three artists.

Gang-tattoo Identification. Tattoos from each gang, in most cases, have their own tattoo

patterns with distinguishable shapes, rather than appearance, which can be identified by a unique

shape signature called Shape-DNA. Therefore, our gang-tattoo identification is based on Shape-

DNA instead. Our experiments on a database containing tattoos from both 12th Street Players

and Familia Stones have shown that the performance of Shape-DNA on gang-tattoo identification

is better than that of SIFT, which is 81.25% versus 62.5% in accuracy. Figure 6.6 illustrates some

examples of the largest potential tattoo patterns for extracting the Shape-DNA. The first two rows
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Figure 6.6: Some examples of the largest potential tattoo patterns extracted from the
tattoos of 12th Street Players (the first row) and Familia Stones (the second row) for
producing the Shape-DNA’s.

of Fig. 6.7 are shape-DNAs for the first two patterns in the first row of Fig. 6.6, whereas the last

two rows are shape-DNAs for the first two patterns in the second row of Fig. 6.6 respectively.

6.4 Discussion

Given the tattoo segmentation of an image, we can also represent the shape of each connected

component by its ridges. By computing the eigenvalue of the Hessian matrix [81], ridges appear to

be the local extreme pixels along the largest surface curvature. The third row of Fig. 6.5 illustrates

some example of the ridge responses deriving from the segmented regions. After applying the

ridge detector, a set of images with connected components can be collected. Each connected ridge

can be regarded as a potential tattoo pattern. In other words, each tattoo is cropped into finer

components with less semantic meaning but clearer shape structure. Based on those unit connected

components, the shape-like features and the ink style features can be modeled separately for each

part of tattoos. After that, the database is built up by those connected components based features.

For ink style features, it will be gradient-like features (measuring the sharpness of the lines) and

kernel-density estimation of the color distributions. For shape-like features, there are a number

of choices such as spectral histogram features [84], shape context [11] and other features that are

more sensitive to shapes. For shape context, we can borrow the method from the previous work

in [12]. This kind of shape recognition has been applied well to recognize silhouettes, trademarks,
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and handwritten digits. Since the similar properties between tattoos and those types of data, the

shape context features are intuitively a strong potential method for tattoo. Given a new query

tattoo image, the steps above can be repeated to generate a set of features based on connected

components. Through similarity measurements, we can label the query tattoo by one of the known

classes in the database. Despite the simplified design of the algorithm proposed as a prototype

system, its process is quite general for tattoo segmentation and the performance of each step can

be improved by more effective methods such as those mentioned in each step.

In terms of the classification strategies, there are also alternatives such as shape matching

method based on sliding wavelets [106] and approximate nearest neighbor (ANN) searching ap-

proaches [10]. The classification performance of the former was reported above 85% on shape

and thus has great potential in tattoo-shape classification. For a given expected nearest neighbor

matching accuracy of 90%, for a 1M SIFT dataset, the running time for per query feature is about

3ms. If per given query image yields 1000 features, it can be classified or recognized in about 3s

from an image dataset in the size of 1000.

6.5 Summary

In this chapter, we extended the use our context-sensitive framework on natural images. In the

problem of tattoo segmentation, our first stage managed to segment skin regions, which provides

spatial context information for tattoo segmentation. By splitting each tattoo image into clusters

through a bottom-up process, we learned to merge the clusters containing skin and then distinguish

tattoos from the other skin via top-down prior in the image itself. Tattoo segmentation with

unknown number of parts is hence transferred to the second stage of our framework, a figure-ground

segmentation concerning tattoo and skin. By running our algorithm on a tattoo database and

evaluating the segmentation performance in terms of both accuracy and F-measure, the efficiency

of our framework on tattoo segmentation was proved.

Beside directly evaluating the segmentation performance, we have also illustrated the benefit

of tattoo segmentation on various tattoo classification tasks. By automatically segmenting the

tattoo patterns, we managed to exclude noise from the background and proposed a novel tattoo

classification system based on features from the tattoo patterns rather than the image. Also, our

results show that our classifier based on shape-DNA outperforms the one based on SIFT. Therefore,
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our system allows identification of the gang to which the tattoo at hand belongs and efficient large

scale search.
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CHAPTER 7

CONCLUSION

7.1 Summary of Contributions

7.1.1 Framework of Context-Sensitive Semantic Segmentation

We formulated the problem of context-sensitive semantic segmentation as a well-defined statistic

model, proposed a two-stage framework, analyzed its efficiency, and showed how it can be applied to

semantic segmentation tasks. Specifically, we developed a generalized context-sensitive framework

that allows the use of not only appearance features but also context features. Through Bayes’

theorem, we showed that the classical object-centered model is a special case of our context-sensitive

model. The efficiency due to narrowing the searching space by context features is also explicitly

explained. Further, we analyzed our framework in the form of the log probability, showed its

relationship with the information theory and proved its efficiency in this view as well. By factorizing

the context term using the chain rule in probability theory, we showed how our framework can be

extensively used to employ varied context features and hence improve the performance of the

context-sensitive semantic segmentation.

7.1.2 Context Object Segmentation in Nano Scale

In addition, we developed two algorithms of context object segmentation for spike segmen-

tation. These algorithms first allow researchers to segment nano-scale membranes according to

their closeness and varied profile shape, which is useful for many applications in visualization of

plane-like structures in noisy data with high resolution. In the first algorithm, we developed the

membrane segmentation on the local model of ridge-like membrane and thus it does not require the

closed surface of the context object. We show its efficiency by applying on microvillus membrane

segmentation. The use of receptive field model in the segmentation may also show its robustness

in processing the noisy visual input. In the second algorithm, we developed the membrane seg-

mentation on a global model based on level set function evolution. On one hand, it assumes the

closed surface of the context object in each single slice along the axis that is parallel to the direc-
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tion of the electron beam. On the other hand, it can tolerate the membrane with different profile

shapes by considering membrane segmentation as a problem of object surface reconstruction. Such

robustness derives from our hybrid model that combines appearance feature, the shape prior of the

level set function and the localization prior propagated along the slices. The efficiency of our sec-

ond membrane segmentation algorithm is demonstrated by applying on the task of HIV membrane

outer surface reconstruction. Further, in related work on surface reconstruction, we developed an

algorithm of reconstructing the semantic surface on 3D light microscopic images. By exploring the

depth of field, we developed a prototype system that allows efficient acquisition of 3D drosophila

reconstruction using a thin plate spline model. Therefore, our work provides the possibility to carry

out context-sensitive semantic segmentation on not only electron microscopic images abut also light

microscopic images.

7.1.3 Context-Sensitive Small Object Segmentation in Nano Scale

We also proposed context-sensitive small object segmentation on 3D data captured by nano-scale

imaging. Our method is the first algorithm that allows automatic context-sensitive small object

segmentation in nano-scale data and thus significantly reduces the workload of researchers in nano-

scale visualization. The design and use of different context features help us reduce the search space

of our target object accordingly. By incorporating them using our context-sensitive model in the

second stage of our framework, nano-scale small object segmentation is efficiently achieved, where

in comparison the state of the art semantic segmentation methods fail due to low SNR, low contrast,

and high resolution. The excellent performance of our method was demonstrated on the tasks of

microvillus and HIV spike segmentation. By comparing the time cost of the manual annotation

and our algorithm on a tomogram with hundreds of thousands of spikes, we also demonstrated our

algorithm can significantly accelerate the spike visualization procedure.

7.1.4 Context-Sensitive Tattoo Segmentation

We developed a context-sensitive semantic segmentation algorithm for extracting tattoos from

images. Based on the idea of split-merge, our algorithm splits each tattoo image into clusters

through a bottom-up process, learns to merge the clusters containing skin and then distinguishes

tattoo from the other skin regions via top-down prior in the image itself. Tattoo segmentation

with unknown number of clusters is thus transferred to a figure-ground segmentation. We applied
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our context-sensitive segmentation algorithm on a single tattoo with different views and a tattoo

dataset. The results demonstrated that our tattoo segmentation system is efficient. Based on the

potential tattoo patterns provided by our tattoo segmentation, we further developed the first tattoo

classification system based on tattoo patterns. We demonstrated state-of-the-art performance in

various tasks of tattoo classification and also showed the superior of shape-DNA over SIFT in tattoo

classification.

7.2 Future Work and Open Questions

7.2.1 Hierarchical Feature Space Exploration

In the sections 3 for context object segmentation, we manually select the scale where the context

objects are salient for segmentation. According to the description of Section 2.4 of Chapter 2, the

appearance features of the context objects in such scale presents relatively stronger bottom-up

saliency in contrast to them in the other scales. One disadvantage of this strategy is that it may

be tricky to manually tune the parameter σ to produce the image with the appropriate scale for

feature extraction. More importantly, manual scale selection is limited by the assumption that the

context objects should be only salient in certain scales. Unlike electronic and light microscopic

images, objects in some more general and natural images often consist of different parts that are

salient in different scales. Thus it is insufficient to select a single scale where the object as whole

appears to be salient. Thus there is a natural desire in having a hierarchical feature space where

the feature responses from different scales that contribute to the saliency of the context object as

whole are extracted for semantic segmentation.

7.2.2 Strategies in Context-Sensitive Semantic Segmentation

The method we have proposed is a step forward in nano-scale biological research to detect and

visualize faint objects under extremely low SNR. However, there are still many open problems in

this area. One of the major limitations of our method is its reliance on the performance of context

object segmentation (membrane segmentation in the case of microvilli and HIV tomogram). Once

a context object is missed, the related targets will be missed as well. On the other hand, context

cues may be applied on the false-positive context objects and hence behave problematically. While

we have developed means by which to control this trade-off (see semantic context cues in 5.3.3 for
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details), this remains a serious limitation of our method. Indeed, one possible solution is to design

context features based on context object likelihood, rather than the hard segmentation results.

Nano-scale context-sensitive semantic segmentation also presents problems in method evalua-

tion. Most of the state-of-the-art methods on nano-scale semantic segmentation have always been

plagued by the question of how to quantitatively evaluate the segmentation performance [108].

The gold standard is evaluation by annotations from experts on large datasets. Unfortunately, it

is too expensive to fully annotate a nano-scale noisy dataset in practice. We avoided this problem

by using data from a number of regions in the tomogram that are fully annotated by expert and

thus were able to evaluate precisely which voxels were correctly identified. The existence of fully

annotated dataset is indeed necessary for evaluation.

Last but not least, it is worth keeping in mind that the intrinsic limitation of electron tomog-

raphy results in artifacts in nano-scale data and the segmentation results may not reflect the real

nano-scale structure. Specifically, the limited tilt range produces a pair of regions with empty

information in the Fourier space of the data. As a result, single-tilt axis leads to the missing wedge

effect, which produces artifacts such as elongating, blurring or even fading the spatial features in

real space. A detailed explanation of this effect and some possible solutions could be found in [60].

A model concerning the missing wedge effect should be included for the nano-scale segmentation

model in the future.

7.2.3 Tattoo Segmentation

Similar to previous analysis that spike segmentation is sensitive to the membrane segmentation,

tattoo segmentation and classification are also sensitive to skin segmentation. So far, our skin

segmentation is based on the location prior that skin with tattoo more often appears in the center

of the tattoo image in that tattoos are captured in purpose. This assumption limits the use of our

methods in more general applications where the tattoos in the image is not captured in purpose

(i.e.: surveillance) or does not appear as the most salient objects that draw our attention. To allow

more general use of our tattoo segmentation and classification system, one way is to add the skin

tone into skin segmentation. For the inhomogeneity due to shades on the skin, namely bias in the

literature [78], an estimate of the bias field can be involved to overcome its influence. Another way is

to involve mutual context information in an iterative manner. In our algorithm, the context object

segmentation on skin narrows the searching space for the target object segmentation on tattoos.
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Conversely, tattoo segmentation can also behave as context object segmentation to improve the

target object segmentation on skin in fact. Thus it intuitively generates a loop between skin and

tattoo segmentation that may iteratively improve the segmentation performance on both types of

objects.

7.3 Closing Remarks

This thesis has explored the problem of semantic segmentation that is sensitive to context. As

one solution for this problem, we have proposed a two-stage framework in which appearance fea-

tures cooperate with varied context features to overcome the difficulties in semantic segmentation.

By applying our framework on nano-scale spike segmentation and tattoo segmentation, we have

demonstrated the efficiency of our novel framework in solving this challenging problem. Given

that the quality of features substantially affects the performance of semantic segmentation, feature

engineering is one of the most critical issues in semantic segmentation. Modeling and incorporating

context features will allow more efficient processing and analysis on fundamental but sophisticated

structures that are used to be done manually.
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APPENDIX A

ANALYSIS ON THE PROBLEM OF

OBJECT-CENTERED SEGMENTATION

Let the true labels of the noise and the target object be 1 and 2 respectively. Given a volume with

extremely low SNR, for each of the N voxels in the volume, the appearance feature responses from

object and noise are fairly close, which means Pr(fAi |oi = 1) ≈ Pr(fAi |oi = 2). Based on the Bayes’

rule and Eq.(2.2), we can write the object likelihood function in Eq.(2.1) as:

Pr(oi|fi) '
Pr(fAi |oi)
Pr(fAi )

Pr(oi). (A.1)

Consequently, we have the discriminant function

g(fi) =
Pr(oi = 1|fi)
Pr(oi = 2|fi)

' Pr(fAi |oi = 1)

Pr(fAi |oi = 2)
× Pr(oi = 1)

Pr(oi = 2)

(A.2)

and use the following decision rule: labeled as the target object voxel if g(fAi ) > 1; otherwise

labeled as voxel of noise. The discriminant function is decomposed in two factors: the ratio of

object likelihoods and priors respectively. Since the first factor is close to 1, the segmentation

significantly depends on the ratio of the object and the noise priors, which is smaller than 1

because the SNR is quite low. Therefore, voxels are always classified as noise.
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APPENDIX B

PROOF OF HYBRID SEMANTIC CONTEXT

MODEL

Proof. As we assume the scale context feature fCsc
i and the spatial context feature f

Csp

i are con-

ditionally independent of each other given the semantic context feature fCse
i and the target label

o′i = 1, we have

Pr(o′i = 1|fA′i , fCsc
i , f

Csp

i , fCse
i )

∝ Pr(o′i = 1|fA′i )× Pr(fCse
i |o′i = 1)× Pr(fCsc

i |fCse
i , o′i = 1)× Pr(f

Csp

i |fCsc
i , fCse

i , o′i = 1)

= Pr(o′i = 1|fA′i )× Pr(fCse
i |o′i = 1)× Pr(fCsc

i |fCse
i , o′i = 1)× Pr(f

Csp

i |fCse
i , o′i = 1)

According to Eq. (5.9),

Pr(o′i = 1|fA′i , fCsc
i , f

Csp

i , fCse
i )

∝ Pr(o′i = 1|fA′i )× Pr(fCse
i = 1|o′i = 1)× Pr(fCsc

i |fCse
i = 1, o′i = 1)× Pr(f

Csp

i |fCse
i = 1, o′i = 1)

+ Pr(o′i = 1|fA′i )× Pr(fCse
i = 0|o′i = 1)× Pr(fCsc

i |fCse
i = 0, o′i = 1)× Pr(f

Csp

i |fCse
i = 0, o′i = 1)

= Pr(o′i = 1|fA′i )× λ× Pr(fCsc
i |fCse

i = 1, o′i = 1)× Pr(f
Csp

i |fCse
i = 1, o′i = 1)

+ Pr(o′i = 1|fA′i )× (1− λ)× Pr(fCsc
i |fCse

i = 0, o′i = 1)× Pr(f
Csp

i |fCse
i = 0, o′i = 1)

= λΨC + (1− λ)ΨA,

such that

ΨC = Pr(o′i = 1|fA′i )× Pr(fCsc
i |fCse

i = 1, o′i = 1)× Pr(f
Csp

i |fCse
i = 1, o′i = 1)

and

ΨA = Pr(o′i = 1|fA′i )× Pr(fCsc
i |fCse

i = 0, o′i = 1)× Pr(f
Csp

i |fCse
i = 0, o′i = 1).

Base on Eq. (5.3) and Eq. (5.5), we have

119



ΨA = Pr(o′i = 1|fA′i )× Pr(fCsc
i |fCse

i = 0, o′i = 1)× Pr(f
Csp

i |fCse
i = 0, o′i = 1)

= Pr(o′i = 1|fA′i )× Pr(fCsc
i |fCse

i = 0, o′i = 1)× [Pr(f
Csp

i = 0|fCse
i = 0, o′i = 1)

+ Pr(f
Csp

i = 1|fCse
i = 0, o′i = 1)]

= Pr(o′i = 1|fA′i )× Pr(fCsc
i |fCse

i = 0, o′i = 1)× [Pr(f
Csp

i > 1|fCse
i = 0, o′i = 1)

+ Pr(f
Csp

i 6 1|fCse
i = 0, o′i = 1)]

= Pr(o′i = 0|fA′i )× Pr(fCsc
i |fCse

i = 0, o′i = 1)

= [Pr(fCsc
i = 1|fCse

i = 0, o′i = 1) + Pr(fCsc
i = 0|fCse

i = 0, o′i = 1)]× Pr(o′i = 1|fA′i )

= Pr(o′i = 1|fA′i ).
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