

FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

PROBABILISTIC CONTEXT-FREE GRAMMAR BASED PASSWORD CRACKING:

ATTACK, DEFENSE AND APPLICATIONS

By

SHIVA HOUSHMAND YAZDI

A Dissertation submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

2015

 ii

Shiva Houshmand Yazdi defended this dissertation on July 8, 2015.

The members of the supervisory committee were:

 Sudhir Aggarwal

 Professor Directing Dissertation

 Washington Mio

 University Representative

 Piyush Kumar

 Committee Member

 Xin Yuan

 Committee Member

The Graduate School has verified and approved the above-named committee members, and

certifies that the dissertation has been approved in accordance with university requirements.

 iii

To the memory of my beloved grandmother
for her unconditional love and support

 iv

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor Professor Sudhir Aggarwal

for his mentorship and guidance throughout all these years. I cannot thank him enough for his

wisdom, patience and understanding. His enthusiasm for science and attention to mathematical

details has taught me to think critically and independently. I would like to thank him for his

constant support, advice, and encouragement throughout my graduate studies. For everything

you have done for me, I thank you.

I am sincerely grateful to my doctoral committee members Dr. Xin Yuan, Dr. Piyush

Kumar, and Dr. Washington Mio for their encouragement and valuable comments. Special

thanks to Dr. Kumar, his guidance and assistance has helped me grow professionally.

I would also like to thank all my friends who provided support, inspiration and

motivation along the way. I am thankful to my colleagues at Florida State University that made

this experience joyful. In particular I am grateful to Umit and Randy that helped and supported

me in this research work. Special thanks to my lifelong friends Azadeh, Noushin, Sanaz and

Saba who have always been there for me regardless of the physical distance between us.

I would like to express my appreciation to my loving family for their love and support.

Special thanks to my mother, for all the sacrifices she has made. She has empowered me with

strength and courage to tackle any challenge. I am truly indebted to her for making it possible for

me to pursue my dreams. To my eldest sister Shadi, for her constant support. Her determination

in life has encouraged me to endure the most difficult times. To my sister Shirin, for being the

most amazing friend and role model. Her hard work and determination in life has always

motivated me to strive to be the best. Her love and confidence in me has helped me become the

person I am today.

Most importantly I would like to thank my husband Omid, for his unconditional love,

endless support, and infinite patience. He has made many sacrifices to be by my side every step

of this journey, and has constantly comforted me, encouraged me and lifted me up whenever I

was down. I love him dearly and greatly appreciate his wholehearted devotion and belief in me.

 v

TABLE OF CONTENTS

List of Tables .. vii
List of Figures .. viii
Abstract ..x

1. INTRODUCTION ..1

2. PASSWORD CRACKING ...5

 2.1 Background and Related Work ..5
 2.1.1 Offline Password Cracking Techniques ..7
 2.1.2 Existing Password Cracking Tools ...8
 2.1.3 Probabilistic Password Cracking (PPC) ..12
 2.1.4 Recent Password Cracking Techniques ..15
 2.2 Characteristics of Datasets ...16

3. NEXT GENERATION PROBABILISTIC PASSWORD CRACKER19

 3.1 Keyboard Combinations ..19
 3.1.1 Finding Keyboard Patterns and Ambiguity Issues ..21
 3.1.2 Using a Training Dictionary ...25
 3.1.3 Probability Smoothing for Keyboard Patterns ..26
 3.1.4 Testing and Result ...27
 3.2 Enhancing Identification of Alpha Strings ..29
 3.2.1 Detecting Alpha String Patterns ..30
 3.2.2 Testing and Result ...34
 3.3 Attack Dictionaries ..37
 3.3.1 Background and Motivation ..37
 3.3.2 Measuring Effectiveness of a Dictionary ..39
 3.3.3 Testing and Result ...40
 3.3.4 Final Testing of NPC Compared to Other Password Crackers46

4. TARGETED PASSWORD CRACKING ...49

 4.1 Background ..49
 4.2 Collecting Data and Survey Result ..50
 4.2.1 Survey Result ..51
 4.3 Modeling the Differences ..53
 4.3.1 Using AMP Distance Function to Create a Grammar ...54
 4.3.2 Determining Password Changes ...56
 4.3.3 Merging Two or More Context-free Grammars ...60
 4.3.4 Testing and Result ...62

 vi

5. PASSWORD CHECKING/STRENGTHENING ...64

 5.1 Background and Motivation ..64
 5.2 Analyzing and Modifying Passwords ..66
 5.2.1 Setting the Threshold ..67
 5.2.2 Modifying a Weak Password ..68
 5.2.3 Updating the Grammar ..68
 5.3 Testing and Result ..69

6. IDENTIFYING PASSWORDS ON DISK ...72

 6.1 Retrieving Tokens from the Disk ...73
 6.1.1 Initial Filters ..74
 6.1.2 Specialized Alpha String Filters ...75
 6.2 Identifying Passwords ..75
 6.2.1 Ranking Algorithms ..76
 6.3 Testing and Result ..77
 6.3.1 Testing Ranking Algorithms ...78
 6.3.2 Testing Specialized Filtering ..80

7. CONCLUSION ...83

APPENDICES ...84

A. PSEUDO-CODE FOR MULTIWORD SEGMENTATION ..84
B. SURVEY QUESTIONNAIRE ..85
C. HUMAN SUBJECT APPROVAL LETTERS ...90
 C.1 Approval Letter ..90
 C.2 Re-Approval Letter ..91
D. SAMPLE CONSENT FORM ...93
E. PSEUDO-CODE FOR TARGETED ATTACK ...94
 E.1 Algorithm for Modeling Differences ...94
 E.2 Computation of Damerau-Levenshtein Edit Distance ...95
 E.3 Computation of Damerau-Levenshtein Backtracking ...96

References ..97

Biographical Sketch ...102

 vii

LIST OF TABLES

2.1 Example of a Probabilistic Context-Free Grammar ...13

2.2 Password Length Information ..18

2.3 Password Characters Information ..18

3.1 Keyboard Base Structures during Training ..24

3.2 Keyboard Shapes and Patterns ..26

3.3 Classifications of Alpha Strings...30

3.4 Example of Derivation for Alpha Strings ..31

3.5 Coverage and Precision with Respect to Combined-test ...41

3.6 Coverage and Precision for Target Sets ...43

3.7 Numbers of Components in Grammars Created by NPC and PPC ...47

4.1 Example of EGrammar for the Given Password “alice123!” ..55

4.2 Guesses Generated by MGrammar ..61

4.3 Test Result of Targeted Attack ..63

5.1 Password Cracking Results using John the Ripper ..70

5.2 Password Cracking Results using Probabilistic Password Cracker (PPC)70

6.1 Test Disk Images ..77

6.2 Reduction of Tokens due to All Filters ..77

6.3 Number of Found Passwords (Out of 5 from CSDN) ...78

6.4 Number of Found Passwords (Out of 15 from CSDN) ...79

6.5 Number of Found Passwords (Out of 15 from RockYou) ...80

 viii

LIST OF FIGURES

2.1 Screenshot of L0phtcrack Password Cracker ...9

2.2 Screenshot of John the Ripper v1.7.9-jumbo-7 Options ..11

3.1 Example Keyboard ...20

3.2 Derivation Trees with an Ambiguous Natural Language Grammar 22

3.3 Derivation Trees for an Ambiguous Grammar using K-Structures ...22

3.4 Results for Keyboard Versions using Combined-set for Early (up to 20 million), Middle (1-2
billion), and Late (40-85 billion) ...28

3.5 Comparing Password Crackers using Combined-set ...29

3.6 Comparing Grammars with Keyboard and Multiwords using Combined-set in Log Scale34

3.7 Comparing Password Crackers using Combined-set ...35

3.8 Improvement of Crackers Against Each Other using Combined-set36

3.9 Comparing Password Crackers using Combined-set: A) Hashcat using Best64 Rule Set. B)
Hashcat using Deadone Rule Set ...36

3.10 Primary Attack Dictionaries with Different Coverage and Precision in Log Scale A) Using
Yahoo-test as Target. B) Using Rockyou-test as Target ..41

3.11 Dic0294 Variants with Precision Fixed at 0.06: A) Using Yahoo-test as Target. B) Using
Rockyou-test as Target ..42

3.12 Dic0294 Variants with Coverage Fixed at 0.55: A) Using Yahoo-test as Target B) Using
Rockyou-test as Target ..44

3.13 Cracking Yahoo-set with Several Secondary Dictionaries ..45

3.14 Varying the Sizes of the Secondary Dictionaries Cracking Yahoo-test in Log Scale45

3.15 Results of NPC with Combined-training and Yahoo-test in Log Scale46

3.16 Comparing NPC with the Reported Results of Figure 3 of Veras et al.48

3.17 Comparing NPC with the Best Markov Model Reported in Figure 2b of Ma et al.48

 ix

4.1 Result of Survey Questions: (a) Highest Education Level (b) Number of Accounts52

4.2 Result of Survey Question: Do you Create Unique Passwords for Each Account52

4.3 Result of Survey Questions: (a) How Do you Create Passwords (b) How Do you Store
Passwords ...53

4.4 The Edit Distance Matrix for Simple Base Structures (LDS and DLS)58

4.5 The Edit Distance Matrix for Passwords (123alice!$ and 12alice$!)59

5.1 Example of Inconsistencies across Different Password Meters ..65

5.2 Using AMP for Different Time Thresholds ...71

6.1 Comparison of Specialized Filters as N Varies ...81

 x

ABSTRACT

Passwords are critical for security in many different domains such as social networks,

emails, encryption of sensitive data and online banking. Human memorable passwords are thus a

key element in the security of such systems. It is important for system administrators to have

access to the most powerful and efficient attacks to assess the security of their systems more

accurately. The probabilistic context-free grammar technique has been shown to be very

effective in password cracking. In this approach, the system is trained on a set of revealed

passwords and a probabilistic context-free grammar is constructed. The grammar is then used to

generate guesses in highest probability order, which is the optimal off-line attack. The initial

approach, although performing much better than other rule-based password crackers, only

considered the simple structures of the passwords. This dissertation explores how classes of new

patterns (such as keyboard and multi-word) can be learned in the training phase and can be used

to substantially improve the effectiveness of the probabilistic password cracking system.

Smoothing functions are used to generate new patterns that were not found in the training set,

and new measures are developed to compare and improve both training and attack dictionaries.

The results on cracking multiple datasets show that we can achieve up to 55% improvement over

the previous system. A new technique is also introduced which creates a grammar that can

incorporate any available information about a specific target by giving higher probability values

to components that carry this information. This grammar can then help in guessing the user’s

new password in a timelier manner. Examples of such information can be any old passwords,

names of family members or important dates. A new algorithm is described that given two old

passwords determines the transformations between them and uses the information in predicting

user’s new password.

A password checker is also introduced that analyzes the strength of user chosen

passwords by estimating the probability of the passwords being cracked, and helps users in

selecting stronger passwords. The system modifies the weak password slightly and suggests a

new stronger password to the user. By dynamically updating the grammar we make sure that the

guessing entropy increases and the suggested passwords thus remain resistant to various attacks.

New results are presented that show how accurate the system is in determining weak and strong

passwords.

 xi

Another application of the probabilistic context-free grammar technique is also

introduced that identifies stored passwords on disks and media. The disk is examined for

potential password strings and a set of filtering algorithms are developed that winnow down the

space of tokens to a more manageable set. The probabilistic context-free grammar is then used to

assign probabilities to the remaining tokens to distinguish strings that are more likely to be

passwords. In one of the tests, a set of 2,000 potential passwords winnowed down from 49

million tokens is returned which identifies 60% of the actual passwords.

 1

CHAPTER 1

INTRODUCTION

Despite much research in newer authentication techniques such as biometric based

techniques or graphic based authentication, passwords still remain the primary method for

authentication. Passwords are critical for security in many different domains such as social

networks, emails, encryption of sensitive data and online banking. Because of the fairly universal

use of passwords, it is often necessary for law enforcement to be able to crack passwords and

thus it has been important to make progress in cracking techniques. It is also important for

system administrators to have access to the most powerful and efficient attacks to assess the

security of their systems more accurately.

In an offline password cracking session, the attacker has already obtained the password

hashes or encrypted files. Since the hash functions used to store passwords are one-way

functions and cannot be easily inverted, the attacker repeatedly makes a password guess, applies

the same hash algorithm to the guess and then compares it with the obtained hash to check

whether they match or not. An important advance in password cracking was the work proposed

by Weir et al. [1]. In this approach a probabilistic context-free grammar was used to generate

guesses in highest probability order. This approach, although shown to be very effective

compared to other password crackers, only considered the simple structures of the passwords and

represented passwords simply as sequences of symbols, digits and alphabet characters.

The novel contributions in this dissertation can be categorized into the followings: (1) I

improve the probabilistic password cracking technique of Weir et al. [1] by learning new classes

of patterns (such as keyboard and multi-word patterns) in the training. I also develop new metrics

for comparing and analyzing attack dictionaries and show that these techniques can improve the

efficiency of password cracking by 55%; (2) I develop a new technique to perform targeted

password cracking by incorporating the available information about the target into the

probabilistic context-free grammar; (3) I then describe a system that can leverage from the

knowledge gained from password cracking techniques and use it to estimate the strength of user

chosen passwords and help users to create stronger passwords; and (4) I show another

 2

application of the probabilistic context-free grammars by developing a system that aims to find

stored passwords on disk and media in order to help investigators in digital forensics area.

In this dissertation I explore how a class of new patterns (such as keyboard and multi-

word patterns) can be learned in the training phase and can be used systematically to continue

cracking in highest probability order and to substantially improve the effectiveness of the

password cracker. It was assumed that keyboard patterns result in strong passwords because they

create seemingly random strings but can nevertheless be easily remembered. Multi-words (or

passphrases) have been also widely proposed as a way to build stronger and more memorable

passwords. They are also often used when longer passwords are required because they are

supposedly more resistant to brute force attacks. These two main classes of patterns are used

commonly in passwords and the typical approach to attack such patterns is to add a list of

common patterns into an attack dictionary. In this dissertation I first identify the patterns in the

training password list, and then learn the patterns by incorporating them into the probabilistic

context-free grammar. I also explore the use of smoothing functions to generate new patterns that

were not found in the training set.

In dictionary-based attacks, a list of words called an attack dictionary is used along with

different mangling rules to create password guesses. Therefore in order to correctly guess a

password the attacker needs to not only apply the right mangling rule but the right word also

needs to be included in the dictionary. Typically, the attacker uses a dictionary that has been

shown to be effective previously. In this dissertation I develop new measures to compare and

analyze attack dictionaries. The experiments show that choosing the right dictionary can improve

the password cracking up to 30%.

I also introduce a new method for targeted attacks. Studies show that when users change

their passwords, they often slightly modify their old password instead of creating a new one. I

describe how the information we have about targets can be used to help crack such passwords.

Information could be names of family members, dates (such as birthday), as well as any previous

passwords. I also describe an algorithm that given a set of one or more password sequences

detects the differences between two or more old passwords and predicts the new password.

This research not only improves password cracking and reduces the amount of time

required for cracking without any additional hardware, but also is applicable in many other areas.

There have been many attempts to quantify password strength. National Institute of Standards

 3

and Technology (NIST) publication used entropy to represent the strength of a password [2],

however, researchers [3, 4] showed that the use of Shannon entropy as defined in NIST is not an

effective metric for gauging password strength. I have also shown that the probabilistic context-

free grammar technique can be used to create a password checker that analyzes the strength of

user chosen passwords by estimating the probability of the passwords being cracked and helps

users in selecting stronger passwords [5]. This system modifies the weak password slightly and

suggests a new stronger password to the user. The system also dynamically updates the grammar

that generally ensures the guessing entropy increases and the suggested passwords thus remain

resistant to various attacks. In this dissertation I review this work and discuss new result of using

this approach in estimating the strength of passwords. Our tests show that weak passwords can

be distinguished from strong ones with an error rate of 1.43%. The system can also modify weak

passwords to a set of strong passwords of which only 0.27% could be cracked.

The importance of this work can be seen in its applications in different areas. With the

growing number of accounts users need to keep track of and with more complex password

policies, users increasingly tend to store their passwords in some manner. Many users store their

passwords on their computers or cellphones in plaintext. In a recent survey, it was found that

73% of users store their passwords and 34% of those save them on computers or cell phones

without any encryption. In this dissertation, the problem of “identifying passwords on media” is

proposed in which strings on the disk that are more likely to be passwords are identified.

Automated identification could be very useful to investigators who need to recover potential

passwords for further use. The problem is nontrivial because the media typically contains many

strings in different locations on disk. I developed a novel approach that can successfully

determine a good set of candidate strings among which the stored passwords are very likely to be

found. By training on a set of revealed passwords and creating the probabilistic context-free

grammar using our new patterns, we have a very good model of the way users create their

passwords. This allows us to identify regular strings from passwords successfully.

In chapter 2, I explore related work and review existing techniques for password

cracking. In chapter 3 I discuss our new approach of learning new patterns including keyboard

and multiword; I also discuss our new metrics for comparing and improving attack dictionaries.

In chapter 4, I introduce the work on targeted attack and how to create grammars that capture

targeted information about the individuals. In chapter 5, I review how to use the probabilistic

 4

context-free grammar technique to estimate the strength of passwords and I discuss the results. In

chapter 6, I discuss our approach in identifying stored passwords on large disk. Finally, in

chapter 7, I present conclusion and future work.

 5

CHAPTER 2

PASSWORD CRACKING

Internet based systems such as online banking and online commerce continue to rely on

passwords for authentication security. Passwords are the most common authentication technique.

Human memorable passwords are thus a key element in the security of such systems. Passwords

are easy to use in different domains such as social networks, emails, encryption of files and

disks, and online banking protecting our sensitive data. Passwords have very convenient features

such as no additional hardware to carry, ease of change, user acceptance and compatibility with

encryption systems. Passwords have been important to both attackers that try to gain

unauthorized access to services, and legitimate users trying to protect their clients’ data or their

own information. In this chapter I first give an overview of general password cracking

approaches. I describe what we mean by password cracking; discuss some offline password

cracking techniques, and review research work in this area. I specifically review the probabilistic

password cracking technique (PPC) of [1] in some detail that is the basis for understanding the

new approach proposed in this dissertation in chapter 3. I also describe the characteristics of the

datasets used for training and testing throughout this dissertation. More detailed background

work in each specific area is explored and presented at the beginning of each chapter.

2.1 Background and Related Work

In general, there are two types of password cracking: online and offline. In an online

password cracking the system is still operational. The attacker enters a pair of username and

password to the system, and the server verifies whether they match or not. A simple example of

such attack is someone trying to get access to someone else’s facebook account by guessing their

passwords, or trying to find a pin code to unlock a cell phone. The attacker can use different

tools to generate password guesses and try them on the website. The speed of online password

cracking is closely related to the Internet connection speed and the target server since every

guess needs to be sent over to the server. Various security features have been implemented in

order to protect accounts against online attacks. Some of the common ways to prevent online

password cracking include:

 6

1. Account locking: The most common approach is to allow only a limited number of failed

logins for each account. After a limited number of tries the system might lock the account

and no further tries are allowed, sometimes for a period of time or sometimes other security

questions are asked to prevent any unauthorized access. However, this method is vulnerable

to global online dictionary attacks in which the attacker tries a password for all accounts in

the system or each time for a different account to avoid account locking.

2. Delayed response: In this approach the server does not respond immediately after getting the

username and password, but delays the response for a while. In this way, the attacker cannot

try a large number of passwords in a reasonable time. The attacker can still try different

accounts in parallel.

3. CAPTCHAS: Captchas have been used to distinguish human beings from computers. In this

approach, the client is asked to enter information from a visual image with twisted words in

addition to entering the username and password. Sometimes the captcha only appears after

the first failed attempt. Nowadays many techniques have been developed to automatically

break captchas. However, many new captcha schemes are still being proposed.

In an offline password cracking attack, on the other hand, the attacker has already

obtained the password hashes or encrypted files and then tries to decrypt the file, or find the

password. The attacker has already evaded the security features on the server. At this point the

attacker can try different guesses at the speed his hardware supports. Since the hash functions

used to store passwords are one-way functions and cannot be easily inverted, the attacker needs

to repeatedly make password guesses, apply the same hash algorithm used for the target hash and

compare the two hash values. If they match the password is broken, if not this process is repeated

until a match is found or the attacker runs out of time. In this approach there is no limitation on

the number of guesses the attacker can make to find the password, except the time he is willing

to spend since the attacker is no longer limited by the system’s policies and can crack the

passwords at his leisure. The speed of the cracking is dependent on the resources available to the

attacker. Using multiple machines or a GPU can make the cracking thousands of times faster [6].

Offline password cracking is often used as a post exploit method after an attacker has gained

access to a computer or a website to retrieve more information about other users or other

resources in the system. The attacker can use the cracked passwords to login to the user’s

 7

account on the same system and possibly other systems since many users reuse their passwords

between different websites.

Password cracking is typically considered as an attack to gain unauthorized access to a

system. However, offline password cracking can be quite useful for other purposes such as

helping users recover their forgotten passwords. It is often necessary for law enforcement to

crack passwords for an account, a password protected file, or to decrypt an encrypted disk in

order to solve their cases. System administrators often try cracking users’ passwords in order to

assess the security of the system. Corporations also try offline password cracking techniques to

find passwords of machines for which the password has been forgotten or for which the

password is no longer available because an employee has left. Therefore, it is important to have

access to the most powerful and efficient password cracking techniques. In this work we mainly

focus on offline password cracking.

2.1.1 Offline Password Cracking Techniques

In offline password cracking, the attacker repeatedly makes guesses, applies the hash

algorithm and compares the hash with the target hash value. Thus the most important aspect of

password cracking is generating the guesses. We can categorize the most common approaches

for generating guesses in offline password cracking into three main categories as follows:

(1) Dictionary attacks: In this approach the attacker tries a list of common words called a

dictionary. The dictionary can also be used along with mangling rules that modify words and

create different password guesses. A mangling rule, for example, can be appending a specific

digit to the end of a dictionary word, or lower casing the dictionary word. This technique is

usually fast and very popular, but attackers are still limited by the number of word-mangling

rules they can apply. For example, adding a two-digit number to the end of each word in the

dictionary will make the number of guesses a hundred times larger. This might delay trying other

guesses that might be more useful. As can be seen, the most important challenge for most of the

dictionary attacks is choosing the right mangling rules since each rule results in a large number

of guesses when the input dictionary is large. The dictionary used in these types of attacks is

usually a list of words that are more likely to be used by users as passwords or even passwords

that have been cracked previously. Additional words from different languages can also be added

 8

to the dictionary, particularly in cases where such linguistic information can be associated with

the target of attack.

(2) Brute force attacks: In this approach the idea is to try the entire possible password space until

the correct one is found. For example for a six-character password using a full key space, we can

create over 697 billion combinations. While this technique is guaranteed to find the password, it

is not feasible for very long passwords due to time and resource constraints. A brute force attack

takes a lot of resources and a lot of time to perform so it is usually better to try this type of attack

at the end of the cracking session when there is no better option. Because of this, attackers try to

use more computationally efficient techniques to crack at least some of the passwords in the

collection of accounts in their possession in a reasonable time.

(3) Rainbow tables: In offline password cracking the attacker makes a guess and then applies the

hash function to the password guess. Often, the time consuming part is the hashing part

depending on the type of hash being used. A rainbow table is a pre-computed lookup table that

contains plaintext password guesses along with their hashes. In this approach, the attacker does

not need to generate the guesses, but just looks up the target hash in the rainbow table. This can

reduce the time of the password cracking tremendously. However, rainbow tables are not

beneficial when salted hash values are used (a random data called salt is used along with the

password to the hash function). The rainbow tables usually use a time-memory trade off

technique known as chains to decrease the space requirements. The chain length value is

determined when creating the rainbow table. When using a rainbow table with longer chain

length, more hashes can be stored in the same amount of disk space, but it will make the speed of

the look up slower and the possibility of the collisions higher [7]. For further information about

rainbow tables please see [8]

2.1.2 Existing Password Cracking Tools

There are many existing tools available for password cracking. When choosing the right

tool for password cracking many requirements need to be considered such as the platform you

want to use the tool on, the capability of running it in parallel or on GPUs, whether or not it can

be distributed among different systems, and also whether it is an offline or online password

cracking tool. For example AirCrack [9] is a tool for WEP and WPA key cracking. It is free and

open source and has been used for penetration testing. It works both on Linux and Windows.

 9

The rainbow crack project [8] is a general-purpose implementation of Philippe Oechslin’s

faster time-memory trade-off technique [10]. It cracks hashes with rainbow tables. It takes a long

time to pre-compute the tables but it can be hundreds of times faster than a brute force cracker

once the pre-computation is finished. PasswordLastic [11] is a Windows and Office password

recovery tool. THC Hydra [12], Ncrack [13] and Medusa [14] are Online Password Crackers

specifically for network services and online websites.

In Medusa the brute-force testing can be performed against multiple hosts, users or

passwords concurrently because of its parallel capabilities. It also has a modular design, which

makes it easy to modify and add different features to it. Fgdump [15] is a newer version of the

pswdump tool for extracting NTLM and LanMan password hashes from Windows. It also

attempts to disable antivirus software before running. Brutus [16] is another Brute force online

password cracker. It is free and only available for Windows.

Fig. 2.1 Screenshot of L0phtcrack Password Cracker

L0phtCrack [17] cracks Windows passwords from hashes, which it can obtain (given

proper access) from stand-alone Windows workstations, networked servers, primary domain

 10

controllers, or Active Directory. It was marketed for penetration testing of system administrators.

It has a very nice GUI and uses pre-computed password dictionaries, gives summary reports and

supports foreign character sets for brute force attacks. A screenshot of this software can be seen

in Figure 2.1.

Cain & Abel [18] is a password recovery tool for Microsoft Operating Systems. It can

recover passwords by sniffing the network, cracking encrypted passwords using dictionary,

brute-force and cryptanalysis attacks, recording VoIP conversations, decoding scrambled

passwords, revealing password boxes, uncovering cached passwords and analyzing routing

protocols. What makes Cain & Abel popular is that it is very effective in collecting passwords

and password hashes from computers on local network. The downside of this program is that the

password cracking tool is only effective in cracking weak passwords since its word mangling

rules are limited. It has a built in support for creating rainbow tables and can use online hash

databases.

ElcomSoft [19] is password recovery software, which recovers passwords protecting

office documents, ZIP and RAR archives. It can perform password cracking on multiple

computers, CPU cores and networked workstations to speed up the recovery. The same group

has also recently released a forensic tool providing access to information stored in disks and

volumes encrypted with BitLocker, PGP and TrueCrypt. The product can attack plain-text

passwords protecting the encrypted containers with a range of advanced attacks including

dictionary, mask and permutation attacks in addition to brute force. Although the tool supports

brute force it mostly takes advantage of a variety of smart attacks that include a combination of

dictionary attacks, masks and advanced permutations. The downside however is that it does not

allow the attacker to use their own custom word mangling rules to use in a dictionary based

attack.

AccessData [20] also has a decryption and password cracking software. It leverages

graphic processing units on Microsoft Windows machines with CUDA-enabled GPUs. It can

analyze multiple files at one time. It also has the ability to recover multilingual passwords. It

supports a distributed network attack, which uses the power of machines across the network to

decrypt passwords. DNA (Distributed Network Attack) manager coordinates the attack,

assigning small portions of the key search to machines distributed in the network. It provides a

 11

nice and easy GUI to read statistics and graphs. It also lets users add dictionaries and optimize

for password attacks for specific languages. It also supports rainbow table attacks.

John the Ripper [21] is a fast password cracker for UNIX/Linux and Mac OS X. Its

primary purpose is to detect weak Unix passwords, though it supports hashes for many other

platforms as well. There is an official free and open source version and a community-enhanced

version (with many contributed patches). It has many hash functions built into it and it has the

ability to accept guesses from an external program piped into it. Therefore, it is easy to use the

hash functions implemented by John the Ripper for different password sets and for testing. It is

also possible to export guesses generated by it to other programs in order to get statistics for

testing and comparing purposes. John the Ripper is one of the most recognized password

crackers, is easy to use and has a community that keeps adding on patches and more capabilities

to it. Screenshot of John the Ripper options are shown in Figure 2.2.

Fig. 2.2 Screenshot of John the Ripper v1.7.9-jumbo-7 Options

 12

Hashcat [22] is a command line interface application designed to take advantage of

multiple cores of modern CPUs for faster password cracking. Hashcat works with both CPU and

GPUs and supports multi-threading. It supports more than 40 different hash types and many

attack modes such as dictionary attacks, rule-based attacks, table lookups, and brute force.

The main difference between the existing tools is not the technique they are using for

generating the guesses, but the different types of hashing algorithms that they support or the

operating systems they work on. Almost all of these password crackers use the brute force

technique or use dictionary attacks with mangling rules. Some can combine both and make brute

force faster with some improvements. There wasn’t much work or improvement in the algorithm

used for password guessing until the probabilistic password cracking work (PPC) [1] in which a

context-free grammar is constructed by training on real user passwords. The grammar in turn is

used to generate guesses in highest probability order. We review this work next. We later

compare the result of our improved password cracker with PPC and two of the most popular

password crackers (John the Ripper and Hashcat) described above.

2.1.3 Probabilistic Password Cracking (PPC)

The explanations in this section are drawn from Weir et al. [1] where the authors used

probabilistic context-free grammars to model the derivation of real user passwords and the way

users create their passwords. The basic idea of this work is that not all the password guesses have

the same probability of being the target password. For example, appending the number “2015” to

a password guess might be more probable than appending a random number “6710” at the end of

a dictionary word since users are more likely to use dates and year in their passwords. The main

idea is then to generate guesses in a decreasing order of probability.

A context-free grammar is defined as G = (V, Σ, S, P), where: V is a finite set of

variables (or non-terminals), Σ is a finite set of terminals, S is the start variable, and P is a finite

set of productions of the form α → β, where α is a single variable and β is a string consisting of

variables or terminals. The set of all strings derivable from the start symbol is the language of the

grammar. Probabilistic context-free grammars [23] have probabilities associated with each

production such that for a specific left-hand side variable, all the associated production

probabilities add up to 1. In Weir et al. [1], strings consisting of alphabet symbols are denoted as

L, digits as D, special characters as S and Capitalization as C. The authors also associate a

 13

number to show the length of the substring. For example, the password “football123!$” would be

L8D3S2. Such strings are called the base structures. There are two steps for this technique: the

first is constructing the probabilistic context-free grammar from a training set of publicly

disclosed real user passwords, and the second is generating the actual guesses in decreasing

probabilistic order using the context-free grammar.

2.1.3.1 Training. The first step is to automatically derive all the observed base structures

from the training set of passwords and their frequency of appearance in the training set. Then the

same information for the probability of the digits, special characters and capitalization will be

obtained from the training set.

 The probability of any string derived from the start symbol is then the product of the

probabilities of the productions used in its derivation. Table 2.1 shows a very simple example of

a probabilistic context-free grammar.

Table 2.1 Example of a Probabilistic Context-Free Grammar

Left Hand Side Right Hand Side Probability
Sà D3L3S1 0.8
Sà S2L2 0.2
D3à 123 0.76
D3à 987 0.24
S1à ! 0.52
S1à # 0.48
S2à ** 0.62
S2à !@ 0.21
S2à !! 0.17
L3à dog 0.5
L3à cat 0.5

Using this grammar, for example, we can derive password “987dog!” with probability

0.04992. Note that in this work the words replacing the L part of base structures come from the

dictionary with probabilities equal to one over the number of words of length i.

S à D3L3S1 à 987L3S1à987dogS1à987dog!

0.8 × 0.24 × 0.5 × 0.52 = 0.04992

 14

2.1.3.2 Probability Smoothing. No matter how large the training set, it will not include

all possible values for digits, special symbols and base structures. There are many numbers and

combinations of the special characters that may not occur in the training set. If a specific number

is not included in the grammar, it will not be used when generating guesses. Ideally, a good

password cracker needs to try all possible values. In order to solve this problem, the authors [7]

added the values that were not found in the training set to the context-free grammar with lower

probability values. Let C be number of different categories, and Ni be the number of items found

in ith category. They used a variant of Laplace smoothing where the probability of each element

i is as follows:

𝒑𝒊 =
𝑵𝒊!𝜶
𝑵𝒊!𝑪𝜶

 (2.1)

where α is between 0 and 1. This has been implemented only for digits and special symbols

below a certain length.

 As an example, if we consider smoothing the probabilities of digits of length two, C=100

since there are 100 different numbers of length 2. Suppose α = 0.1 and we have found “11” 8

times, “99” 12 times, and “22” 30 times. The probability of all the other digits that are not found

in the training set can be calculated as follows:

𝑝! =
0+ 0.1

8+ 12+ 30 + 100 ×0.1 =
0.1
60 = 0.0016

2.1.3.3 Guess Generating. After obtaining the probabilistic context-free grammar by

training on a set of real user passwords, the guess generator generates password guesses in a

decreasing order of the probability using the context-free grammar obtained from the previous

step. It uses an attack dictionary to replace the alpha strings in base structures. It can take more

than one dictionary with different probabilities associated to each. While it is not hard to

generate the most probable password guess (you just need to replace all the base structures with

the highest probability pre-terminals and then selects the pre-terminal with the highest

probability), generating the next password guesses is not trivial. The authors have developed an

algorithm called “Deadbeat Dad” which uses a priority queue and is also efficient in terms of

memory usage. As each pre-terminal is popped from the queue and password guesses related to

that pre-terminal are generated, the function determines which children of that node have to be

pushed into the priority queue [7].

 15

Their experiments show that using a probabilistic context free grammar to create the

word-mangling rules through training over known password sets can be a good approach. It

allows us to quickly create a rule set to generate password guesses for use in cracking unknown

passwords. When compared against the default rule set used in John the Ripper, this method

outperformed it by cracking 28% - 129% more passwords, given the same number of guesses.

Since this password cracker is one the most recent techniques and has been shown to be very

effective in cracking passwords, we built upon this system to capture more patterns in passwords.

I was fortunate to have access to all the relevant code, and was able to use the system as a basis

for my work to implement the new password cracker, discussed in chapter 3.

2.1.4 Recent Password Cracking Techniques

The most well-known password cracking algorithms are those that are based on Markov

models [24] and the probabilistic context-free grammar [1]. In this dissertation we mainly focus

on the probabilistic context-free grammar approach of Weir et al. [1] and compare our results

against this work since it is often cited by many authors [25, 26] as the state-of-the-art in

password cracking. In this section, however, we discuss two of the most recent studies in

password cracking that claim to perform better than the original PPC [1]. Later in chapter 3, the

result of our new password cracker is compared against these two approaches.

Ma et al. [25] explored different probabilistic models for password cracking extensively.

The authors conducted studies on different Markov models with different normalization

techniques and compared it against original PPC [1] and found that the whole-string Markov

model outperforms PPC. Whole string Markov model has been used in John the Ripper password

cracker [21] and the adaptive password strength meter [27]. In an n-gram Markov model the

probability of each character is conditioned on the probability of the n characters that come

before it. The probability of each string is then calculated by multiplying the conditioned

probabilities. The work by Ma et al. [25] does not generate guesses in highest probability order.

The authors only estimate the probability of passwords and in order to show the effectiveness of

the cracker they generate probability-threshold graphs in which they only calculate the

probability of each password to see where it would have appeared if they were trying to crack it.

Veras et al. [28] created a system to semantically classify passwords and generate guesses

by combining the probabilistic context-free grammar approach [1] with the natural language

 16

processing technique. In this section we briefly review their work. Later in chapter 3 I show the

result of comparing our work and discuss how their approach is different than ours.

Veras et al. [28] focus on classifying words by their semantic content. The authors first

generate all possible segmentations of a password and then determine the ones with the highest

coverage using a source corpus. N-gram probabilities from a reference corpus are used to select

the most probable segmentation with a back-off approach. Once the words are broken down, the

authors tag each word with its part of speech using NLTK. The authors use WordNet to classify

the words into semantic categories and use these categories to develop a context-free grammar.

While this work has some drawbacks as explained later, it can be a useful guide in our future

work applying smoothing to multiwords.

2.2 Characteristics of Datasets

Throughout this research study we use real user password lists that have been publicly

disclosed as a result of hacking attacks. Hackers usually post the obtained password sets to

forums or on compromised web servers. Some of the datasets have been captured as plaintext as

a result of a phishing attack or because the webserver stored passwords in plaintext.

Unfortunately, not all passwords in these datasets represent real passwords. For example, in

some phishing attacks, some users recognized the phishing site and entered irrelevant data. Other

datasets have been obtained as hash sets and have been broken by hackers and password

communities.

We test the effectiveness of our system throughout this work using several different

datasets of revealed passwords. In our tests, we always randomly select a number of the

passwords as our training and test sets. We ensure that the test set is always different from our

training set. In this section, we describe the revealed password sets, and how we create our

datasets using these password sets. We also explore some characteristics and statistics of the

datasets referenced throughout this dissertation.

(1) Yahoo Set: This set is one of the most recent plaintext password sets that has been

leaked by hackers in 2012. It contains about 453,000 login credentials. The data appears to have

originated from Yahoo Voices platform and is a result of an SQL injection attack [29]. We have

randomly chosen 300,000 passwords from this set as our training set and we call this set Yahoo-

training. The remaining 142,762 passwords create our test set (Yahoo-test).

 17

(2) Combined Set: Our goal in general in our tests was to have reasonable and similar

sized test sets wherever possible. We also wanted to use as many revealed password sets as we

could for training. In this set, we used a mix of passwords from different revealed sets.

Combined-training contains ½ million from Rockyou [30], combined with 30,998 MySpace [31]

and 4,874 from Hotmail [32] passwords. Combined-test contains the same number of passwords

from the original lists as in Combined-training. Note that these two sets do not overlap and

contain different passwords.

The Rockyou list [30] contains over 32 million plaintext passwords and is a result of an

SQL injection attack in 2010 on Rockyou.com, which made applications for social networking

websites such as Facebook and MySpace. The MySpace list is the result of a phishing attack on

MySpace.com. The list contains about 62 thousands plaintext passwords and was publish on

October 2006. The Hotmail list has been obtained in October 2009 and contains about 10

thousands passwords [32]. Since the Hotmail and MySpace passwords lists are fairly small, we

have combined them with Rockyou password set.

(3) CSDN Set: The CSDN set is the result of an attack on csdn.net, a Chinese language

Software Developer Network forum in 2011 and it contains about 6 million passwords [33].

There were a few passwords that contained Chinese characters, which we have removed from

this set. We then created CSDN-training set with 300,000 passwords randomly chosen from this

set. The CSDN-test set contains 150,000 passwords. It is shown in Table 2.2 that compared to

other password sets, CSDN set has fewer passwords with lengths less than 8. As seen in Table

2.3, CSDN also has more passwords containing digits than other password sets.

In the password cracking tests throughout this dissertation we use dict-0294 [34] as the

primary attack dictionary and common_passwords [21] as the secondary dictionary with 0.05 and

0.5 probability values respectively, unless stated otherwise. We created a training dictionary by

augmenting the EOWL [35] list by common proper names [36] and top words from television

and movie scripts [37]. EOWL was originally designed for Scrabble style word games.

Table 2.2 shows the password length distributions for sets used in this dissertation. In

Yahoo set, passwords with lengths between 7 and 11 represent about 87% of all passwords.

Passwords with lengths between 6 and 10 contains about 96.6% of all passwords in Combined

set, and in CSDN set, passwords with lengths between 8 and 12 cover about 90.5% of all

passwords. Table 2.3 shows the statistics of containing digits, alpha strings, special symbols,

 18

keyboard and multiword (as discussed in chapter 3) for the above password sets. It shows that

data sets are similar in having higher percentages of passwords containing digits and lower case

alpha strings, and fewer passwords containing upper case alpha strings and special symbols.

However, CSDN has more passwords containing digits and fewer passwords containing alpha

strings and multiword than other password sets. In fact CSDN has an unusually large number of

passwords consisting of only digits (3 times as often as Combined set).

Table 2.2 Password Length Information

Length Yahoo
test
(%)

Yahoo
training
(%)

Combined
test
(%)

Combined
training
(%)

CSDN
test
(%)

CSDN
training

(%)
2 0.03 0.02 0.0046 0.003 0.007 0.004
3 0.02 0.01 0.023 0.02 0.013 0.014
4 0.06 0.07 0.22 0.21 0.09 0.13
5 0.59 0.63 3.96 3.94 0.54 0.53
6 1.2 1.2 25.63 25.76 1.28 1.32
7 18.13 17.91 19.36 19.32 0.28 0.27
8 14.79 14.83 20.12 20.02 36.45 36.36
9 26.9 26.91 12.28 12.31 24.09 24.17
10 14.93 14.88 9.21 9.27 14.43 14.46
11 12.31 12.4 3.59 3.58 9.83 9.72
12 4.76 4.81 2.09 2.09 5.74 5.71
13 4.86 4.92 1.31 1.28 2.59 2.64
14 0.6 0.6 0.86 0.85 2.42 2.44
15 0.33 0.34 0.54 0.55 1.16 1.17
16 0.19 0.19 0.41 0.39 0.77 0.76
17-30 0.3 0.28 0.39 0.41 0.31 0.3

Table 2.3 Password Characters Information

 Yahoo
test (%)

Yahoo
training(%)

Combined
test(%)

Combined
training(%)

CSDN
test(%)

CSDN
training(%)

Contains digits 64.64 64.78 55.14 55.08 86.95 87.14
Contains lower 92.85 92.82 80.98 80.98 51.43 51.35
Contains upper 8.49 8.51 6.03 5.97 4.65 4.61
Contains symbol 2.86 2.83 4.05 4.02 3.67 3.62
Contains keyboard 6.67 6.47 5.3 5.29 7.56 7.43
Contains multiword 26.77 26.86 26.97 26.82 11.43 11.28

 19

CHAPTER 3

NEXT GENERATION PROBABILISTIC PASSWORD CRACKER

While the probabilistic password cracker of Weir et al. [1] was very successful at the

time, there was not much improvement in password crackers following this work. The

probabilistic password cracker although performs much better than other rule-based password

crackers, but considers fairly simple components, containing only alpha strings, digits and

special characters to represent user passwords. In practice, users with more knowledge about

security create more complex passwords and a password cracker needs to be adapted to these

changes. Passwords containing keyboard patterns, Leetspeaks (replacing characters and digits for

alphabets in a word such as: P@ssword), multi-words and phrases that do not exist in common

password cracking dictionaries, are examples of such techniques that is generally not addressed

directly by password crackers. In most cases, the approaches simply add the common keyboard

combinations and common words with leetspeaks into the dictionary. In this chapter we discuss

learning new patterns that are more likely to appear in real user passwords as an extension to the

probabilistic password cracker of Weir et al. [1]. By assigning probabilities to these new patterns

through the use of probabilistic context-free grammar, we can capture both appropriate words

and fine-grained word mangling rules, in a unified framework. Furthermore, this enables us to

keep generating guesses in highest probability order, which is the optimal attack. In this chapter I

describe the work that I have done on extending patterns for probabilistic password cracking and

developing new metrics for improving attack dictionaries. The work in this chapter has been

accepted for publication [38].

3.1 Keyboard Combinations

The goal of this section is to understand how users use keyboard patterns and how it can

be incorporated into the probabilistic password cracker. A keyboard pattern is a sequence of

keystrokes that are made on the keyboard without paying attention to the actual characters and

their relation to each other except their closeness on the keyboard. This closeness helps users

remember keyboard combination passwords better. We define a keyboard pattern as a sequence

of at least three contiguous characters starting from some particular key. Contiguous characters

 20

are keys that are physically next to a certain key or it can be the same character repeated. For

example in the keyboard shown in Figure 3.1 contiguous keys for character j can be: u (upper

left), i (upper right), h (left), j (same), k (right), n (lower left), m (lower right). A typical

example of a keyboard pattern used as a password is “qwerty”. This pattern can be also

combined with other components to create the password, for example “qwerty952!”.

Fig. 3.1 Example Keyboard

Typical password crackers incorporate such patterns by adding them in the attack

dictionary. However, dictionaries do not differentiate patterns by their probability of occurrences

and one can only afford to add a limited number of such patterns. We instead solve the problem

by modifying the probabilistic context-free grammar. Using this approach the incorporation of

the keyboard patterns becomes automatic during training and cracking. By smoothing the

keyboard probabilities (described in section 3.1.3), we can automatically generate new patterns

that have not been seen in the training set. There are not many studies that explore the keyboard

patterns, their strength and how often they are used as passwords. De Luca et al. [39] have

studied PINs used for authentication and have learned that users create an overlaying shape and

memorize the geometrical figure instead of memorizing the actual numbers. The authors

introduced PassShape, an authentication method that uses the shapes without the numbers, which

is easier to remember for users. Schweitzer et al. [40] describe a way to pictorially illustrate a

shape on the keyboard. They connected sequentially pressed keys with an arc. To visualize a key

that has been pressed multiple times, they create concentric petals. In a small experiment, they

gave 161 users a brief tutorial on how to create patterns, and they gathered 250 unique patterns.

They then generated a number of keyboard patterns from the most common shapes found, and

added these to a dictionary for use in a standard attack (a common way of using keyboard

patterns). For their testing, they obtained 11 passwords from their institution and used the

 21

dictionary for password cracking. They were able to crack 2 of the passwords while John the

Ripper was not able to crack any. While their work in regard to visualizing the pattern and

identifying the most common patterns was interesting, the attack shown by this work is not

different from previous typical keyboard attacks. In the next section I discuss how we identify

keyboard patterns in the training data, and how to use this information in the cracking phase.

3.1.1 Finding Keyboard Patterns and Ambiguity Issues

As mentioned previously, a keyboard pattern is modeled as a sequence of at least three

contiguous characters on the keyboard. We allow both upper case and lower case characters. The

algorithm looks for the longest keyboard pattern in a password without being concerned about

what type of characters they are. We use the symbol K to represent a keyboard component in the

grammar. For example, given the password “qw34%rt952”, the original probabilistic password

cracker would have parsed this password to L2D2S1L2D3, while our new algorithm considers this

as K7D3 (qw34%rt: keyboard pattern of length 7 and 952: digit of length 3). It is also possible to

find more than one keyboard pattern in a password. For example, “qwerty521qazxsw” is parsed

as K6D3K6.

When identifying keyboard patterns in passwords, we also capture the shape they create

on the keyboard. In order to keep track of this information, we use the following notation and

symbols: an upper left key relative to the current key is represented by the symbol u, an upper

right key is denoted by v, the same key is denoted by c, the left key is denoted by l, the right key

is represented by r, the lower left key is denoted by d and the lower right key is denote by e. For

example, given the password “qw34%rt952”, the keyboard pattern (qw34%rt) of length 7 starts

with q and has the keyboard shape rvrrdr.

The original probabilistic context-free grammar introduced in [1] is unambiguous. It is

easy to see the unambiguity since the simple base structures introduced in this work (L, D, and

S) are mutually exclusive. In our new approach, when incorporating the keyboard patterns we

face the ambiguity problem since a K-structure could contain multiple character sets. An

ambiguous grammar is a grammar for which there are more than one derivation trees that

correspond to a terminal string. Consider the following simple example shown in Figure 3.2.

Using the natural language grammar we can generate a string with two derivation trees. Note that

 22

both trees generate the same terminal sentence (string). Although the terminal is the same, there

are two different grammar productions (and two different meanings) for this terminal [41].

Fig. 3.2 Derivation Trees with an Ambiguous Natural Language Grammar

When adding keyboard structures to the grammar without any special considerations, we

could also face the ambiguity problem. Consider the following simple grammar as an example.

This grammar is clearly ambiguous since the string “cat1234” can be generated with two

different derivation trees as shown in Figure 3.3.

S à L3D4 | L3K4
L3 à cat | dog
D4 à 1234 | 9637
K4 à qwer | 1234

Fig. 3.3 Derivation Trees for an Ambiguous Grammar using K-Structures

 23

In password cracking, different derivations for the same guess means that the same

password will be guessed multiple times, each with its own probability value. This obviously

reduces the efficiency of the guesser. One might wonder why we do not want to allow

ambiguous grammars as part of the probabilistic password cracker. Aside from generating

duplicate guesses, the probability values of such password guesses are incorrectly calculated.

The correct probability value should be the sum of all possible derivations. Prescher [41] shows

that there are algorithms such as expectations maximization algorithm (EM) that can produce

probabilities for such grammars by training on a set of derivation trees. However, this approach

cannot be used for our purpose since we do not have access to such data (derivation trees of

passwords and their frequencies). In other words, when we come across a password like cat1234,

there is no obvious way for us to determine whether the user meant “1234” as a keyboard pattern

or as a number. Also, generating the guesses in highest probability order from the grammar relies

on the grammar being unambiguous. This ensures that there is well-defined probability for each

guess that only depends on a single unique derivation.

We therefore try to maintain an unambiguous context-free grammar by limiting the

terminals each base structure can derive. In the ambiguity that arises from situations like the

above example where we have keyboard patterns consisting of pure digits or special characters,

we decided to preferentially consider them as digit (or special symbol) components rather than

keyboard components. Prior to this decision, we looked at several data sets and picked out base

structures that have keyboard patterns that contain only digits. (These are the patterns that can be

interpreted as both keyboard and digit components.) We then tried to find such structures in

another data set. The results showed that approximately 70% of the times these patterns appeared

to be digits; thus by treating them as digit components we would have a better chance of

guessing related passwords. We found similar results for S components.

In summary, the following rules are defined to determine whether or not a particular

substring in a password should be classified as a keyboard pattern (K-structure) rather than an

original structure (L, D, S):

1. If a substructure contains only digits or only special symbols, we classify it as a D or S

component.

 24

2. Longest keyboard patterns of at least 3 characters length that does not fall under the first rule

is classified as a K component. For example e4e458 would be K5D1 as the maximal length

keyboard substring must be used.

Although these rules can avoid the ambiguity problem in a vast majority of cases, but in

rare cases we will still be generating duplicate guesses. For example, both base structures L4D2

and K6 would be able to generate password guess “were45”. We will discuss these examples in

more details in section 3.1.2.

Table 3.1 shows examples of the original base structure compared to the keyboard base

structure. Similar to the other components that are found in the training set, keyboard

combinations will be stored in the grammar as a pair of the actual pattern found along with its

probability value. While we determine the patterns and the base structures, we also count their

frequencies. These frequencies are ultimately turned into transition probabilities. We also

determine the counts of components such as those in D1, ... Dj for j the largest D-structure and

similarly for components in S1, ... Sm for m the largest S-structure (special symbol). For example,

encountering the password “asd1234qw” would increase a D4 count for substring 1234 by one.

We also increase the counts of the keyboard components in K3, ... Kp for p the longest keyboard

pattern.

Table 3.1 Keyboard Base Structures during Training

Password Original Base
Structure

Keyboard Base
Structure

qwerty L6 K6
R5T6 L1D1L1D1 K4
!@#$ S4 S4

tyu54uyt L3D2L3 K3D2K3
E3$4 L1D1S1D1 K4
4567 D4 D4

The K-structure can be handled the same way as D and S-structures when generating

guesses. Since we have preserved all aspects of a context-free grammar, we are able to

automatically generate password guesses in highest probability order with keyboard

combinations appearing in their appropriate probabilistic order.

 25

3.1.2 Using a Training Dictionary

With the above rules for identifying keyboard combinations, a password such as “ease12”

would be classified as L1K3D2. Our initial assumption was that most probably the user that

selected this password did not mean to have one alpha character followed by a keyboard

combination, and instead the user meant the word ‘ease’ followed by two digits. We

hypothesized that it might be preferable to view such components as English words followed by

digits (L4D2) rather than a keyboard component. In order to eliminate such spurious keyboard

combinations we analyzed the alpha sequence of the passwords more carefully. We introduce the

idea of using a training dictionary. During the training phase of determining the base structures

we analyze sections of passwords that could be forming a keyboard pattern but are also alphabet

letters that could be a word in the training dictionary. Each alpha sequence is looked up in the

training dictionary to recognize any English word. If it is in the training dictionary it will be

classified as L, if not it will be considered for further evaluation as part of a keyboard pattern.

The training dictionary is used to resolve ambiguity in this case as well as in more

complex situations such as determining multi-words discussed in section 3.2. Note that the

training dictionary is different from the attack dictionary. The attack dictionary contains words

or parts of the common words in passwords, sometimes combinations of letters with no meaning

(that appeared to be useful in password cracking combined with mangling rules), abbreviations

and other common phrases on the Internet or the relevant website. The attack dictionary is used

to replace the alpha string component (L) of the base structure when generating guesses.

On the other side, the training dictionary contains actual English words and common

proper names. The training dictionary can be very large and since the training phase can be done

before the actual cracking session starts, it does not affect the cracking time. However, the size

and the actual words contained in the attack dictionary can affect the efficiency of the password

cracking session. Every word in the attack dictionary will be tried with different mangling rules

and a very large attack dictionary can make the cracking time unnecessarily long and not

efficient. If the words in the dictionary are not useful words for password cracking, the cracking

session can take days without a single password being cracked. Attack dictionaries are discussed

in more details in section 3.3.

 26

3.1.3 Probability Smoothing for Keyboard Patterns

As mentioned in section 2.1.3.2, the original context-free grammar of Weir [1] is capable

of smoothing D and S structures by using Laplace smoothing. Consider for example the

component D2. It is possible that some of the two digit values are not found during the training.

In this case, no probability will be assigned to these values and they will not be used in

generating guesses. Probability smoothing helps in assigning lower probability values to values

that are not found during training. Smoothing keyboard patterns though is not straightforward

since it is not easy to find the complement of the found ones. In this section, I discuss our

approach for smoothing keyboard combinations.

Recall that during the training process we capture data about keyboard shapes (such as

rrrrr for “qwerty”) found in the various keyboard patterns. Table 3.2 shows a small sample of

keyboard patterns of length 6, and keyboard shapes of length 5 that were found during a training

session.

Table 3.2 Keyboard Shapes and Patterns

Shapes Probability Patterns Probability
rrrrr 0.520 qwerty 0.488
eveve 0.102 2w3e4r 0.093
eeruu 0.058 qazxsw 0.056
lllll 0.036 zxcvbn 0.025
rdrdr 0.024 qwaszx 0.018
rlrlr 0.020 poiuyt 0.012
vdvdv 0.007 12345r 0.007
rrrrd 0.007 ytrewq 0.007

Smoothing keyboard patterns allows new keyboard combinations to be generated while

guessing. Smoothing every possible keyboard combination would result in a very large number

of guesses that might not even be useful. We therefore decided to only consider more common

shapes found in the training and smooth keyboard patterns based on found shapes. We view a

smoothed element as a specific keyboard shape applied to an applicable starting character. For

example, the keyboard shape rrrrr allows us to start from every character on the keyboard and

 27

create a keyboard combination using this shape. Thus, for keyboard shapes that we find in the

training set, we smooth over all starting characters excluding those that are not feasible (starting

at m for shape rrrrr). This approach is a reasonable compromise between smoothing everything

and not smoothing anything. Essentially, instead of smoothing across all keyboard strings, we

smooth across each keyboard shape found of a specific length. The smoothing function giving

the probability of a keyboard pattern p of shape s is:

prob(p)= prob(s) Ni +α
Ni +Cα∑

 (3.1)

where:

Prob(s) is the probability of the keyboard shape s given the length of the keyboard pattern

Ni is the number of times the ith keyboard pattern (of this shape) was found

α is the smoothing value between 0 and 1

ΣNi: the sum of counts of the patterns found for shape s

C is the total number of unique patterns for this shape

3.1.4 Testing and Result

In order to see the effectiveness of the new keyboard grammar in comparison to the

initial grammar we ran several different tests. We used different revealed password sets that are

commonly used by researchers. We created test and training sets of different sizes and origins for

our experiments. In these series of tests, we consider keyboard alone, and Keyboard plus

Dictionary in which we use a training dictionary to separate words from keyboard patterns. We

also consider two variations for each of these based on whether we smooth or not.

In our first set of tests, we trained on Combined-training and the target set was

Combined-test. The datasets and dictionaries are described in section 2.2. Figure 3.4 shows the

results of comparing each of the 4 variations across portions of the cracking curve (early, middle

and late). By cracking curve we mean graphing the percentage of passwords cracked on the Y-

axis against the number of guesses generated. In these series of tests we generated about 85

billion guesses. We also use the notion of improvement to compare two different cracking curves

U(x) and V(x). By definition, the improvement of U over V at x is simply (U(x) - V(x)) / V(x).

 28

The goal of using a training dictionary was to maintain a structure that is probably a word

for the user as an L-structure and thus try a variety of words eventually as replacements in that

structure. We wanted to distinguish keyboard patterns that are really, in some sense, user

keyboard patterns and are not “artifact” keyboard patterns simply because they have

serendipitously an embedded keyboard structure (such as the word ease). Although eliminating

such keyboard patterns seemed natural and we expected that this kind of grammar would

perform better, the results show otherwise.

Figure 3.4 shows that Smoothed Keyboard grammar is not as effective as the other

grammars in the very beginning (Early), but it is clearly the best very soon (about 1.5 billion

guesses) and maintains this for the rest of the cracking curve. In general both Smoothed

Keyboard and Keyboard are clearly better than the Dictionary versions with Smoothed Keyboard

being slightly better.

Fig. 3.4 Results for Keyboard Versions using Combined-set for Early (up to 20 million), Middle

(1-2 billion), and Late (40-85 billion)

In Figure 3.5 we compare Smoothed Keyboard grammar with John the Ripper and

original PPC. As can be seen, Smoothed Keyboard is more effective than PPC in most of the

cracking session, and is also much more effective than John the Ripper over a major part of the

 29

password cracking curve. After about 34 billion guesses John the Ripper overtakes the original

grammar while it still cannot outdo Smoothed Keyboard grammar until after about 52 billion

guesses. We also repeated the same test using Yahoo and CSDN sets as described in section 2.2.

In both cases, Smoothed Keyboard grammar is better than original PPC, which in turn is better

than John the Ripper over the whole cracking curve.

Fig. 3.5 Comparing Password Crackers using Combined-set

3.2 Enhancing Identification of Alpha Strings

Many times when creating long passwords people prefer to use longer words, a sentence

or a phrase in the alpha part of the password. The original probabilistic password cracker

considers the sequence of alpha characters as an L structure and in the cracking session it

replaces the L structure with a word of that length from the attack dictionary. For example, the

cracking module looks for a word of length 15 in the dictionary when a base structure containing

L15 is reached. Most probably there does not exist many words of this length in the dictionary

and if any, not all combinations of phrases and multi-words exist.

Our goal is to better understand alpha strings or L-structures. Most common examples are

multiple occurrences of a word within alpha strings such as johnjohnjohn12, or passphrases such

as goodboy or iloveyou. Although some of the popular combinations might be in the attack

dictionary, it is not easy to add all possible combinations to the dictionary. In this section we

 30

discuss how the alpha string patterns are modeled in our system and how we use this information

in guessing.

3.2.1 Detecting Alpha String Patterns

In order to support detection of relevant patterns in alpha strings, a training dictionary is

used as previously defined in section 3.1.2. During training, we learn the following different

categories of L-structures. Table 3.3 shows examples of each category and the frequencies of

each category in one of our sample sets.

• A-word: A single word found in the dictionary

• R-word: A word in the dictionary, repeated once

• R-pattern: A non-dictionary word, repeated once

• M-word: Two or more consecutive dictionary words excluding R-words

• A-pattern: Alpha string not in any previous category

Table 3.3 Classifications of Alpha Strings

Category Frequency in a
sample test set

Example

A-word (a single word) 44% password
R-word (repeated word) 0.98% boatboat
R-pattern (repeated pattern) 0.35% xyzxyz
M-word (multiword) 40.4% iloveyou
A-pattern (other pattern) 14.2% ahskdi

In order to detect A-words in the training set, we simply check if the L-structure is a word

in the training dictionary. For R-patterns we first check for a repetition and then if the pattern is

in the dictionary we categorize is as R-word. If the L-structure is neither of these two categories,

we apply our M-word algorithm to distinguish whether the alpha string is a multiword. If it is not

an M-word it is categorized as an A-pattern. Although we are able to classify substrings of alpha

patterns into various classes as explained in Table 3.3, we focus mainly on three general

categories when training and guessing. Both classes of A-word and A-pattern require words from

the dictionary when generating guesses. The attack dictionary usually contains both English

words and words that may not be part of any language, but they are important in passwords. For

 31

that reason we combine these two categories into one. The situation with R-word and R-pattern

is very similar. When generating guesses for R-word or R-pattern, we take a word from the

dictionary and we repeat it. Therefore, combining these two categories also make sense in our

approach.

In order to understand how the new categories of alpha strings are incorporated into the

context-free grammar, we give a simple example of deriving the grammar from the following

small training set {lovelove123, security123, wordword456, iloveyou456, lovelove!!,

wordword88}. Let R represent an R-word, A represent an A-word, and M represent an M-word.

In order to add these components into the grammar, we first consider the derivation from S to the

base structures as before (L, D, S, K) and then derive the subcategories from the L-structure. The

above example would have grammar constructs as in Table 3.4. This grammar would derive the

string S → L8D2 → R8D2 → loveloveD2 → lovelove88, with probability 1/6 × 4/6 × 1/2 × 1 =

2/36. Note that here the derivation with an L-structure on the left hand side to its possible sub-

patterns is done independent of the context. This approach allows us to consider as much as

possible larger sets of passwords on which to determine the probabilities. By looking at all

passwords that are L-structures, we have a fairly large set of passwords going to the

subcategories.

Table 3.4 Example of Derivation for Alpha Strings

Left Side Right Side Respective Probabilities
S à L8D3 | L8D2 | L8S2 4/6 1/6 1/6
L8 à R8 | A8 | M8 4/6 1/6 1/6
D3 à 123 | 456 1/2 1/2
D2 à 88 1
S2 à !! 1
R8 à lovelove | wordword 1/2 1/2
A8 à security 1
M8 à iloveyou 1

In the guessing phase, when facing the A category, we simply replace it using words

from the attack dictionary as before. In the R category we modify the use of the dictionary to

double each word in the dictionary. For the M category the replacements come directly from the

 32

grammar. Note that the grammar also has information about capitalization of the L-structures and

we continue to use that information to create different masks for all of the subcategories.

3.2.1.1 The Multiword Algorithm. The M-word algorithm is rather more complex as

generally there are many ways for segmenting a multiword into component words. We tried

many different versions of breaking up the words such as finding the first leftmost substring that

is a word in the dictionary and recursively calling this function for the remaining string. If this

does not result in a multiword decomposition, we try the next leftmost substring that is longer

than the first one we tried. We have also tried finding the longest initial substring that is a word

in the training dictionary and identifies this as a possible first component by starting at the

rightmost character of the string. If this does not result in a multiword decomposition, we try

with the next shortest initial substring that is a word. When looking at the result of each of these

approaches, there are multiwords that have not been broken down correctly since most of the

times there are two or more valid ways of segmenting a string. For example, the string

“bookstore” can be broken down into “book, store” or “books, tore”. However, for an English

spoken person, one is more preferable to another. We therefore developed an algorithm for

finding the best breakdown of multiword by first identifying all possible breakdowns of each

string. We then calculate the probability of each segmentation by multiplying the probability of

each word in the segmentation found using a corpus of the most frequently used words in TV

and movies scripts [37]. The scores in the list are representation of how often the word has been

used or seen in TV and movie scripts. We therefore normalize these scores to use as probability

values. If a word is found in the dictionary and there is no associated probability value in the

scoring file, we assign the least probability value found in the corpus to the word. We then

multiply the probabilities of each word in the segmentation. We identify the segmentation that

has the highest score as the best possible segmentation in our algorithm. This is in fact a common

technique in Natural Language processing [42].

In order to compare the algorithms and to understand which one works better we needed

to develop ground truth to test our approach. We manually looked at 1000 alpha string

components of our revealed password sets and identified the correct segmentation of each alpha

string. We found that using the scoring algorithm we reduced the error rate of wrong

segmentation of multiwords by 83% compared to our initial approach algorithm. However, we

 33

had also seen errors related to classifying single words incorrectly as multiword. These problems

are not only related to the segmentation algorithm, but also depend on the training dictionary

used. We found that there are too many short words in our training dictionary that resulted in

many strings misidentified as multiword. In the worst-case scenario, if all letters of alphabet exist

in the training dictionary, every string would be considered as a multiword. We also found that

there were many names that we were classifying as multiword simply because those names did

not exist in our training dictionary. We improved our training dictionary by eliminating short

words that do not make sense as words in English, as well as adding common proper names in

different languages. Our results indicate that we were able to reduce the error rate of incorrectly

classifying single words as multiwords by 71%. See our segmentation algorithm in Appendix A.

Veras et al. [28] presented a very interesting framework for semantically classifying

passwords as described in section 2.1.4. Their work is the only work related to our approach, and

yet there are many differences from ours. In terms of segmentation, while we also use a source

corpus (which we refer to as a training dictionary) we only look for words and multiwords within

parts of the password that consist completely of letters (alpha strings), whereas they look at the

whole passwords including words and gaps. Our approach substantially simplifies both the

resulting grammar and the segmentation algorithm and makes the guess generation algorithm

simpler. Our scoring is based on unigrams and is in practice very fast. Their scoring model is

more complex using back-off algorithm that starts with trigrams, and then bigrams, and

unigrams. Although this might be useful and is a common approach in natural language

processing problems, however it seems that bigrams and trigrams are infrequently used in

passwords. Veras et al. [28] show the result of their tagging of the Rockyou password set that

reveals the presence of trigrams and bigrams is 6.09% compared to 89.82% for unigrams.

Their approach as they discuss it clearly has a performance bottleneck and they speculate

that it may be because they are generating many duplicate guesses since their grammar is

ambiguous. We have focused on maintaining unambiguity of the grammar and we noticed no

performance bottleneck when using our approach. In next section we present the result of our

password cracking using multiwords in the grammar and we show that we have been able to

generate more than 86 billion guesses without loss of efficiency. Another difference between our

approaches is that they generate their guesses and word from the training set whereas we use an

attack dictionary. The dictionary approach permits both quantization (many terminals can have

 34

the same probability) as well as flexibility (the grammar does not have to be generated again

when using a different dictionary). Finally, learning and using capitalization required adding

mangling rules in their approach whereas we simply apply the capitalization to mutliwords as a

mask when generating guesses.

3.2.2 Testing and Result

In this section we describe our experiments to show the effectiveness of learning

keyboard and alpha string patterns. We tested all possible combinations of adding multiwords M,

repeated words R as well as smoothed keyboard K to the grammar and show the cracking result

of each combination in Figure 3.6. It is interesting to see that two of the combinations (adding

repeated words R only, and adding repeated words along with keyboard patterns KR), perform

worse than PPC. When comparing the addition of keyboard K to PPC, the performance is not

very good in the very beginning (up to 35 million guesses), however the average improvement is

significant and is 3.5%. The remaining four combinations (M, KM, MR, KMR) show a

consistent improvement over PPC. Overall when learning multiwords (M, KM, KMR), the

cracking result is always significantly better than PPC.

Fig. 3.6 Comparing Grammars with Keyboard and Multiwords using Combined-set in Log Scale

 35

The results show that adding the Alpha Grammar results in a substantial improvement in

the cracking over PPC. However, learning both classes of Keyboard and Alpha patterns is better

than each alone. These results are consistent over the whole cracking curve. We also repeated

these tests on Yahoo-set and CSDN-set. The results were very similar with Keyboard Alpha

clearly the best over the cracking curve. We thus learn all three patterns (Keyboard, Multiwords

and Repeated words) in our NPC system.

In Figure 3.7 we compare NPC against other password crackers: PPC and John the

Ripper. The result show that NPC is substantially more effective as compared with both PPC and

John the Ripper over the full cracking curve. The improvement of NPC over John the Ripper

ranges from 13% to 305%. The improvement of NPC over PPC ranges from 15% to 22%.

Fig. 3.7 Comparing Password Crackers using Combined-set

This is most clearly seen in Figure 3.8 where we plot the improvement values as shown

in the legend. The dashed line shows the consistency of our improvement over the original PPC.

We also tested NPC against the other two using both Yahoo-set and CSDN-set. The results were

similar to those for Combined-set. For Yahoo-set the improvement of NPC over PPC ranges

from 1% (in the very early stage) to 16%. For CSDN-set the improvement of NPC over PPC

ranged from 14% to 17%. When comparing against John the Ripper, we first consider a late

stage of 20 million to 85 billion because John the Ripper does quite poorly in the early stage. In

 36

the late stage, the improvement of NPC over John the Ripper for Yahoo-set ranges from 35% to

152% and for CSDN-set the improvement is 84% to 264%.

Fig. 3.8 Improvement of Crackers Against Each Other using Combined-set

We also compared against Hashcat using two of its best rule sets: Best64 and Deadone

(d3ad0ne) [22] in Figure 3.9. Since these two rule sets are quite small, the guesses generated

were only 64.5 million and 21 billion respectively.

Fig. 3.9 Comparing Password Crackers using Combined-set: A) Hashcat using Best64 Rule Set.
B) Hashcat using Deadone Rule Set

 37

Figure 3.9A shows the comparison of the Best64 rule set with the other three password

crackers and Figure 3.9B compares the Deadone rule set. Clearly NPC is extremely dominant in

both figures. The improvement of NPC over Hashcat at the end of the Hashcat cracking with

Best64 is 42% and with Deadone is 16%.

3.3 Attack Dictionaries

3.3.1 Background and Motivation

In dictionary-based attacks different mangling rules are applied on a list of words called

an attack dictionary to create password guesses. Therefore in order to correctly guess a password

not only we need to apply the right mangling rule but we also need to include the right word in

the dictionary. The probabilistic password cracker derives the mangling rules from a training set

of real user passwords and has been shown to be very effective. We also showed in previous

section how we were able to improve the grammar by learning more patterns. However, in order

to be successful, we still need to explore how to best choose the attack dictionaries. The size and

content of attack dictionaries can affect the probabilities and the guesses and the order they are

generated, which in turn can affect the efficiency of our cracking.

The dictionaries used in password cracking are usually a list of common passwords that

have been cracked previously or a list of English words that have been experimentally shown to

be effective. Although some common password lists exist (derived from passwords cracked or

disclosed passwords), there are few studies showing the effectiveness of such lists for

probabilistic context-free grammar based crackers. Dictionaries are sometimes viewed as the

guesses themselves. For example, Bonneau [43] creates dictionaries for different groups of

Yahoo users based on linguistic background and defines a dictionary as the top one thousand

actual passwords from that group. The author then determines the effectiveness of such

dictionaries against other linguistic groups.

Using a dictionary of actual guesses is quite different from finding a good dictionary to

be the base for the alpha string substitutions as used in PPC. For example, in PPC doubling the

size of an attack dictionary is not a cost problem in terms of the size of the dictionary with

respect to cracking as such. Guesses will still be generated quickly and in highest probability

order. However, the probability of the guesses will change and thus the guesses will be tried in a

different order. Furthermore, new combinations would likely be tried (good, because there are

 38

more alpha words to replace) but too many words for the same base structure might reduce the

probability of each of the terminal guesses in a base structure so they might not be tried until

much later (possibly bad).

In other studies, dictionaries are used both as a source of passwords as well as a source

for generating variant guesses by applying mangling rules [44]. Dell’Amico et al. [45] evaluate

several dictionaries available from John the Ripper by first comparing the passwords cracked

using the dictionary entries only. Their results show that it is better to use the same type of

dictionary as the target type (for example Finnish when attacking Finnish passwords) and

although larger dictionaries are better, there are diminishing returns when using these larger

dictionaries.

Our goal, in this work is to investigate how different dictionaries can be effective as the

probabilistic password cracking system generates more and more guesses. Note that dictionaries

in PPC are used only to replace alpha strings in the grammar. In this way a dictionary can

typically generate more passwords that could feasibly be tried even in extremely long cracking

sessions. Thus, the full set of guesses that a dictionary can produce is only partly relevant to its

effectiveness. There are also many things that can affect the efficiency of a dictionary in the

probabilistic context-free password cracking approach. For any base structures in NPC

containing A-patterns or R-patterns, all words of the same length from the dictionary are going to

be tried at the same time because of the assumption that all words of the same length from one

dictionary have equal probability. With a larger dictionary, trying more words at that point in

time delays trying other combinations. However, with a larger dictionary, because the probability

value of each word is smaller the base structure itself might be tried much later. On the other

hand, a very small dictionary might not be effective at all because it will obviously reduce the

variety and number of guesses.

NPC also has the capability of using multiple attack dictionaries when cracking

passwords. Probability values can be assigned to each dictionary and therefore different

probability values to sets of words. The end probability values of the actual words do not only

come from the probability value assigned to the dictionary containing the word, but multiplies

with 1/nL, where nL is the number of words in the dictionary of length L. Having this capability

one can have a fairly large dictionary with lower probability words and a list of common

passwords with higher probabilities assigned to them as a secondary dictionary. This way we can

 39

first try the most probable words with different mangling rules and try the other possible words

that are not so common at a later point. In NPC, the number of dictionaries corresponds to

defining the number of equivalence sets of probabilities of words of each specific length. Note

that when multiple dictionaries are used, even though they may have duplicate words, the final

set of words and their probabilities used in cracking have no duplicate words.

There have been no studies as far as we are aware that explore how to use multiple

dictionaries effectively in probabilistic context-free grammar password cracking. The difficulty

in regards to designing such studies is the number of variables that change at the same time in

regard to dictionaries and more specifically with regards to multiple dictionaries in NPC. In fact

when cracking, the number of dictionaries used, the weights assigned to each dictionary, the

usefulness of actual words in the dictionary, as well as the probability values assigned to each

word in each dictionary (which depends on the length of the dictionary and also depends on the

number of duplicate words that exist in multiple dictionaries) can all affect the results. In the

experiments section we discuss how we explored this problem space by trying to keep as many

features as possible constant and varying only a few.

In the next section I explore how to improve attack dictionaries for NPC. First new

metrics for comparing dictionaries are developed and then the results of the effectiveness of

primary dictionaries as well as secondary dictionaries are presented in section 3.3.3. The

improvements are very significant and could likely also be used to make the attack dictionaries

more effective for other password cracking systems.

3.3.2 Measuring the Effectiveness of a Dictionary

The most basic question is how one can measure the effectiveness of one dictionary as

compared to another. We developed an approach to measure the effectiveness of a dictionary by

considering its coverage and precision with respect to a reference set (set of passwords).

Let W be a set of words {w1 … wn} that is going to be used as a dictionary and let R be a

reference set of passwords {p1 ... pm}. A word w is found in R if it is an L-structure in at least one

of the passwords. Let I(w, R) = 1 if w is found in R and I(w, R) = 0 otherwise. Precision of a

dictionary W with respect to a reference set R is then defined as:

𝑃(𝑊,𝑅) = !

|!|
𝐼(𝑤! ,𝑅)!

!!! (3.2)

 40

Assume a password p has k different L-structures in it. Let the count c(w, p) be the

number of L-structures in p that have the value w. Coverage of a word w with respect to a

password p (and naturally extended to R) is defined as:

𝐶(𝑤,𝑝) = !(!,!)
!

 & 𝐶(𝑤,𝑅) = 𝐶 𝑤,𝑝!!
!!! (3.3)

We define RL as the subset of passwords in R that have at least one L-structure. Coverage

of a dictionary W and reference set R is:

𝐶(𝑊,𝑅) = !
|!!|

𝐶(𝑤! ,𝑅)!
!!! (3.4)

We only consider the passwords that include L-structures because the dictionary has no

relevance to cracking the passwords that have no L-structures. Note that C(W, R) and P(W, R)

are values between 0 and 1. Precision is a measure of how compact the dictionary is for the

reference set. For an ideal precision measure of 1, a dictionary should only consist of all the

words that appear in the reference set. Coverage measures how useful the words of a dictionary

might be for potentially cracking passwords in a target set. For an ideal coverage measure of 1,

every L-structure of the reference set should be a word in the dictionary. We define a perfect

dictionary (DR) for a reference R as the set of all words that appear in R. This perfect dictionary

has both coverage and precision equal to 1 and the words in the perfect dictionary can be ordered

by their individual coverage values C(w, R).

3.3.3 Testing and Result

As discussed previously, NPC can use multiple dictionaries. Typically, a primary attack

dictionary and a smaller secondary dictionary are used. In our tests we first explore the

effectiveness of different primary dictionaries based on the metrics defined in the previous

section. We then consider using various secondary dictionaries to give higher probabilities to a

selected set of words and explore the additional utility on the success of the cracking.

3.3.3.1 Primary Dictionaries. In this section we compare different attack dictionaries

and show how to create more effective ones using our metrics. Since we have been using

dic0294 in our testing we use this as a base for our comparisons and improvements. This

dictionary has strings containing digits and special characters, which we had removed. This

results in a dictionary of size 728,216. We created a dictionary from the English language set

(containing only alpha strings) of about the same size from John the Ripper’s wordlist collection

 41

[21] (Jtr_En). We also created a dictionary of a similar size from 2.5 million randomly chosen

Rockyou passwords by stripping out the alpha string components and removing duplicates. The

coverage and precision of each of these dictionaries with respect to Combined-test (reference R)

are shown in Table 3.5.

Table 3.5 Coverage and Precision with Respect to Combined-test

Dictionary Size Coverage Precision
Rockyou dict 728,376 0.74 0.11

dic0294 728,216 0.55 0.06

Jtr_En dict 728,749 0.49 0.05

We ran a password cracking session with each of the dictionaries against Yahoo-test in

Figure 3.10A and Rockyou-test in Figure 3.10B. The results show that the cracking curves are

consistent with the precision and coverage metrics, with better rates of cracking for dictionaries

having higher coverage/precision. Note that the Rockyou dictionary has higher coverage since it

is calculated with respect to Combined-test, which contains mostly Rockyou passwords. Thus,

this dictionary may not be a good candidate to use as a generic dictionary for other target sets.

Fig. 3.10 Primary Attack Dictionaries with Different Coverage and Precision in Log Scale
A) Using Yahoo-test as Target B) Using Rockyou-test as Target

 42

We next created different dictionaries from dic0294 by systematically altering coverage

and precision to see how the cracking result changes. In our first series of experiments we used

the baseline dic0294 and calculated its metrics with respect to the reference Combined-test.

C(dic0294, RCombined) = 0.55, P(dic0294, RCombined) = 0.06

We then created two dictionaries as variants of dic0294, increasing the coverage to 0.7

and 0.9 respectively without changing the precision. We call these variants dic0294_c70 and

dic0294_c90. The sizes of these variants increased to about 1.56 million and 2.58 million

respectively. To increase the coverage of a dictionary D with respect to a reference R, we added

words from the perfect dictionary DR. Note that optimally achieving a specific coverage value is

actually a Knapsack problem [46] but the heuristic of adding words in highest coverage order

works fairly well in this case. Let nr be the number of words added from DR. To maintain the

precision P we also need to add nn words that are not in DR, where:

𝑛! = 𝑛!(
!
!
− 1) (3.5)

Since in cracking we would not know the actual target set, we explored the use of the

metrics derived from reference Combined-test by testing how well the derived dictionaries would

do on the targets Yahoo-test shown in Fig. 3.11A and Rockyou-test shown in Fig. 3.11B. In this

experiment we trained on Combined-training using our new system NPC.

Fig. 3.11 Dic0294 Variants with Precision Fixed at 0.06: A) Using Yahoo-test as Target
B) Using Rockyou-test as Target

 43

The results were remarkably good and support the premise of our metrics. In Figure

3.11A, the average improvement when using dic0294_c90 over dic0294 over the entire cracking

curve is 33%. Similarly, in Figure 3.11B the average improvement over the cracking curve is

30%. Not only that, we subsequently checked the coverage metrics relative to the new targets

and found that coverage on one test set seems to map appropriately to coverage on the different

target sets. For example, although the initial coverage for dic0294_c90 was derived from

Combined-set (90%), its coverage when measured on both targets is very similar. See Table 3.6.

Table 3.6 Coverage and Precision for Target Sets

 Yahoo-test Rockyou-test
Coverage Precision Coverage Precision

dic0294 0.57 0.037 0.54 0.03
dic0294_c70 0.71 0.028 0.69 0.02
dic0294_c90 0.9 0.025 0.89 0.02
dic0294_p10 0.53 0.051 0.52 0.04
dic0294_p20 0.50 0.087 0.5 0.075

We also did an analogous series of tests on the same targets where we kept the coverage

of dic0294 at the baseline and created two other variant dictionaries dic0294_p10 and

dic0294_p20, increasing the precision to 0.1 and 0.2 respectively. The results are shown in

Figure 3.12. In order to do this, we removed words not in DR from the dictionaries and their sizes

decreased to about 450K and 225K respectively. We expected that the higher precision

dictionaries might do better in cracking but they actually did worse, because their coverage with

respect to the targets decreased. See Table 3.6. This indicates to us that coverage is extremely

important and is more important than precision.

The results of these tests with attack dictionaries show that our metrics for measuring

dictionaries can be extremely useful in creating and comparing dictionaries. The algorithms to

improve the coverage and precision of the dictionaries have also been implemented as part of our

NPC system. Note that these results also shed light on the questions regarding the size of the

dictionaries. It is often stated that there are diminishing returns from larger dictionaries. The

results of our tests seem to indicate that if a larger dictionary is created in the manner we

recommend the cracking improvement is certainly substantial.

 44

Fig. 3.12 Dic0294 Variants with Coverage Fixed at 0.55: A) Using Yahoo-test as Target

B) Using Rockyou-test as Target

3.3.3.2 Secondary Dictionaries. In this series of tests we explore secondary dictionaries

by using NPC trained on Yahoo-training and cracking Yahoo-test. We use dic0294 as our

primary dictionary. We use three secondary dictionaries: (1) common-passwords (which is

presumably an “optimized” dictionary) that contains 815 words; (2) TopWords from Yahoo-

training or same set (a list of the highest frequency A-patterns found in our training set) also of

size 815; and (3) TopWords from Combined-set. We assign probability 0.9 to the primary

dictionary and 0.1 to the secondary dictionary. Note that the probability values assigned to the

dictionaries actually give higher weight to the words in the secondary dictionary. Since the

primary dictionary has far more passwords than the secondary dictionary, 1/nL × 0.9 in the

primary is still a fairly small number compared to the probabilities of the words in the secondary

dictionary.

Figure 3.13 shows the results of our tests where we tested dic0294 with and without

secondary dictionaries. The results show that using a secondary dictionary of top words from the

same set is more effective than all the others, and that even if such a word list is not available,

creating a secondary dictionary from another revealed password set can improve the cracking

almost as well. The question then was that whether this was due to differential weights for

 45

certain words or whether the secondary dictionary was adding new words that are not in the

primary dictionary. Further analysis on the secondary dictionaries showed that all words in the

common-passwords list and also all words in the TopWords list happen to be already included in

dic0294. We concluded that the improvement when using a secondary dictionary is not because

new words have been added, but because sets of words are given higher probabilities.

Fig. 3.13 Cracking Yahoo-set with Several Secondary Dictionaries

Fig. 3.14 Varying the Sizes of the Secondary Dictionaries Cracking Yahoo-test in Log Scale

 46

We next tested different sizes of the secondary dictionary. We created different sizes of

TopWords by selecting 400, 800, 1600, 3200 and 6400 of the highest frequency words from our

training set. For our primary dictionary we added the largest TopWords to dic0294 so that all

words from the secondary dictionaries are included in the primary dictionary as well. This way

we ensure that the reason for cracking improvement is the way the probability values are

assigned to each word. One might think that the larger the secondary dictionary, the better the

results might be, particularly since the secondary dictionaries are all fairly small. This was true

for sizes up to 3200. However as seen in Figure 3.14, at size 6400, the advantage of giving

higher probabilities to some sets of words no longer exists and at this level it becomes virtually

equivalent to not using a secondary dictionary at all.

3.4 Final Testing of NPC Compared to Other Password Crackers

In this section we compare the proposed NPC system against PPC and two other recent

password crackers. Our NPC system combines all of the advancements we have proposed: new

patterns, and improved primary and secondary attack dictionaries. Figure 3.15 shows the result

of comparing NPC using the dictionaries dic0294_c90 and TopWords3200 versus PPC using

dic0294 and common-passwords in log scale. We use Combined-training and test against Yahoo-

test in order to also show the effectiveness of both crackers when not having the advantage of

training on a set that is similar to the target set.

Fig. 3.15 Results of NPC with Combined-training and Yahoo-test in Log Scale

 47

At the end of the cracking run, NPC has cracked 76% of the passwords and shows an

average improvement over PPC of 55%. With respect to the effectiveness of NPC in the early

part of the cracking curve, we cracked 70% of the passwords within 5 billion guesses, which

translates to under three hours on a regular laptop. Table 3.7 shows the number of base structures

and other components for Combined-training set in both NPC and PPC. As can be seen NPC

creates many more base structures and yet there is no performance bottleneck.

Table 3.7 Numbers of Components in Grammars Created by NPC and PPC

Approach # Base
Structures

Digits # Special
Symbols

Keyboards # Multiwords

PPC 7,650 82,237 608 0 0
NPC 201,019 82,237 608 47,455 133,364

We also compare NPC with the semantic approach of Veras et al. [28] and the Markov

approach of Ma et al. [25]. Unfortunately, standard benchmark suites are not available for

comparing algorithms against well-defined training and test sets when researchers use different

algorithms. We do not believe it is fair to compare results of our work to algorithms of other

researchers by creating versions (probably inferior) of their algorithms ourselves. For the

comparative tests against these approaches we chose to approximate their training and test sets as

closely as possible and report our results against their reported results.

Veras et al. [28] used a semantic approach and a context-free grammar that lets them

explore passwords containing multiple words or phrases. Since we did not believe that we could

faithfully recreate their algorithm, we chose to run our NPC on a similar training and test set as

they did and superimpose our cracking curve on their reported graph (their figure 3 in [28]). We

trained on 2 million Rockyou passwords and tested on Myspace [31]. We improved our JtR_En

dictionary with respect to a set of one million passwords from Rockyou to reach the 90%

coverage and used this dictionary as our primary attack dictionary. Figure 3.16 shows the

comparison on a cracking run of only 3 billion guesses (the maximum number they report on).

As can be seen our cracking results are much more comparable to their best efforts than was

PPC.

 48

Fig. 3.16 Comparing NPC with the Reported Results of Figure 3 of Veras et al.

The paper by Ma et al. [25] indicates the importance of using guess numbers for

comparing different models. So in order to do a comparison with the Markov approach we again

decided to run NPC on a similar training and test set as they used and superimpose our cracking

curve on their reported work (their figure 2b in [25]). We used Rockyou training and the same

test set that Ma et al. reported using (Yahoo + PhpBB). Figure 3.17 shows that our approach is

comparable to the best Markov approach that they considered. Note that their guess generation is

limited to about 15 billion guesses.

Fig. 3.17 Comparing NPC with the Best Markov Model Reported in Figure 2b of Ma et al.

 49

CHAPTER 4

TARGETED PASSWORD CRACKING

4.1 Background

With respect to password security, it is not only essential to have a secure system to store

user’s passwords, but it is also important how users create and use their passwords. The number

of accounts for a single user is growing. The result of a survey of 2000 users has shown that a

typical user has about 25 online accounts and one in four user uses a single password for most of

their accounts [47]. Florencio et al. [48] showed that on average a user has 6.5 passwords and

each password is typically being reused across 3.9 different websites. Enforcing complex

password policies makes it harder for users to create memorable passwords. Because of this,

many users reuse the same password for multiple accounts against experts’ advice. This reduces

the security tremendously since when an attacker obtains a password, it is often tried on many

different websites. Thus no matter how secure a service is; the security of it can be reduced

because of its users’ actions. As more and more websites replace usernames with email

addresses, it becomes much easier for attackers to attack and access our accounts. Users are often

forced to change their password on a given account because of a threat or simply due to

expiration policies. In these situations users are more likely to apply only slight changes to their

previous password instead of creating a new one. Furthermore, users also tend to use a password

with slight modification across different websites. Having different password creation policies

for different websites might prevent users from some reuse of the same password (an unintended

consequence), but it does not prevent users from using passwords that are very similar. A study

by Shay et al [49] conducted on 470 University student, staff and faculty has shown that 60%

used one password with slight changes for different accounts. In [50] the authors examined

leaked password sets and found that users often do simple tricks to slightly change their

passwords and to work around different password policies.

In this chapter, I explore how to use the information about targets to help crack their

passwords. Information could be names of family members, important dates or numbers, as well

as any of their previous passwords. By modeling the differences between two or more old

passwords, I show how to find their new password under the assumption that users often modify

 50

their passwords by slight changes. A necessary assumption is that a set of one or more password

sequences with slight changes is available. Clearly having more data on changed password

sequences helps in better modeling the differences between passwords and predicting the new

one. However, the first problem we encountered was the lack of data in this domain. There is not

enough data available that contains changed passwords of users. Das et al. [50] used publicly

available leaked password sets with user identifiers and analyzed the data to find passwords for

the same user. They were able to find 6077 unique users with at most two passwords for each,

from those about 43% were identical passwords and the rest were non-identical. Although this

data could be representative of similar passwords for a specific user, it is not useful when

analyzing the specific changes users make to their passwords for one account. Perhaps the

closest study to the work in this chapter is Zhang et al. [51], which is a large-scale study based

on password changes necessitated by password expiration. The authors were able to obtain a

dataset of over 7700 accounts for which they had a known password and a subsequently changed

password. They modeled a password change as a sequence of transforms (based on several

different criteria) and organized these transforms as a tree from the old password as root. A path

in the tree is a sequence of transforms that yields the new password with common subsequences

being the same from the root. A search starts from the root with an input password and upon

visiting each node in the tree the corresponding transform is applied to the output of the parent

node. Then each output is tested as a password guess against the target password hash. One of

the main difficulties of this algorithm was the high time complexity of the search algorithm to

effectively walk the tree from its root. In their work the depth of the tree was limited to at most 3.

4.2 Collecting Data and Survey Result

In order to collect data for testing I developed a survey that required users to create and

change passwords. The website was created using python and html5 to host the surveys. The

actual programming for the website was mainly done by Ryan Kuhl and later edited by Frank

Valcarcel. First time users click on a link, are presented with a consent form, and upon consent

are asked to create an account using their FSU email address. They need to create a password for

the account and are informed that their passwords will be saved and analyzed. The only policy

on the password is to have at least 8 characters. After they create their accounts they are asked a

few survey questions. The second time the participant visits our website, the user must login to

 51

the previously created account with the password previously created and answer another series of

questions. For the third site visit, the participant is asked to change his/her password and then

answer another series of questions. Finally, the fourth visit completes the survey through the user

logging in with the changed password and completing a set of questions. We enforce that users

must not login again each time until the next calendar day and the total time to complete the

survey was limited to about a week to ten days. The reason behind multiple logins is for the users

to get more familiar and comfortable with the password they first created before asking them to

change it. If the users forget their selected passwords, they can use the forgot password link on

the page and their password will be sent to them via email. See the survey questionnaire in

Appendix B. See also the Human Subject Approval letters in Appendix C and a sample of

consent form in Appendix D.

4.2.1 Survey Result

We used Florida State University (FSU) students in our survey study since we could

easily control who is participating and whether each individual is participating only once by

enforcing the use of their FSU email addresses when creating their accounts. We sent an email to

all students in the department of Computer Science and to a list of about 2000 randomly selected

students at Florida State University asking them to participate in our survey study. For this study

144 students created accounts, 56 of whom changed their passwords but did not necessarily

complete the last survey. 50 students completed all four steps required. Recall that each time

users log in they are asked a few questions. In this section we next discuss and analyze their

responses. We mainly present the result of the 56 participants who changed their passwords,

except for the last survey question in which only 50 answered the questions.

In this study, 53% of our participants were female and 47% male. 68% of our participants

were between the ages of 18 and 24. 17% were in the range of 25-34 and 13% were 35-44 years

old. 50.88% of participants were majoring in computer science or related field. 67% of our

participants have been using computers for more than 10 years and 31% of them were using it

for about 6-10 years. Figure 4.1 (a) shows the highest education level of the participants, in

which about 25% of participants were graduate students and the rest were undergraduate

students. Figure 4.1 (b) shows the number of accounts they have. About 35% of participants

 52

indicated that they have 5 to 10 accounts. More than 35% also indicated that they have more than

20 different accounts.

(a) (b)

Fig. 4.1 Result of Survey Questions: (a) Highest Education Level (b) Number of Accounts

We asked the participants whether they create unique passwords for each account and the

results are shown in Figure 4.2. About 40% responded that they do not create new passwords and

that they use their old passwords. Only 14% claimed that they create new passwords for each

account and the rest most of the times create new passwords but sometimes use their old ones.

Fig. 4.2 Result of Survey Question: Do you Create Unique Passwords for Each Account

In Figure 4.3 (a) we asked our participants how they usually create their passwords. The

result show that 30% modify their existing passwords to create a password, about 24% reuse

 53

their old passwords and only 14% create new passwords. This is consistent with other reported

studies and shows that our approach can be very useful in attacking a lot of passwords since

many users do reuse and modify their old passwords. In Figure 4.3 (b), we see the result of how

users usually store their passwords. About 13% store their passwords on regular files on their

computers without any encryption, and 12% store it on their cellphones. 73% of our participants

store their passwords in some way. This statistic is also helpful for us in another way as in

chapter 6 we develop a tool that can identify passwords stored on hard disks and cell phones.

That shows how vulnerable users can be by following current habits.

(a) (b)

Fig. 4.3 Result of Survey Questions: (a) How Do you Create Passwords (b) How Do you Store
Passwords

4.3 Modeling the Differences

In this section we discuss our approach for integrating the information about the target

into the probabilistic context-free grammar. We later show that using this context-free grammar

we are able to predict and crack new passwords of the same user. Our approach consists of two

different methods. The first approach is used when only one old password of the user is

accessible. We discuss this approach in section 4.3.1. In the second approach, our system has

access to at least two different passwords as a sequence and learns the changes made between

these two passwords and uses the information to predict the new password. We discuss the latter

approach in section 4.3.2.

 54

4.3.1 Using AMP Distance Function to Create a Grammar

In this approach, the only available information is the user’s previous password. Based on

that, we would like to predict the new password or generate guesses similar to that. Following

the assumption that users will most likely change their passwords with slight modifications, we

use the AMP distance function [5] to generate guesses similar to the initial password.

In this approach we are not only interested in generating guesses similar to the initial

password, but we would like to create a probabilistic context-free grammar for predicting the

new password. AMP uses a distance function to create strengthened passwords within edit

distance one of the user-chosen password and it was designed based on Damerau-Levenshtein

edit distance. The AMP distance function includes insertion, deletion and transposition of

components in the base structure of a password as well as insertion, deletion and substitution

inside a component. The improved distance function with the addition of keyboard patterns and

multiword is described in section 4.3.1.1. It starts with the old password as the root of a tree, and

generates all possible passwords within edit distance one of the root. We then create a

probabilistic context-free grammar for the set of similar passwords (within edit distance one of

the initial password). This context-free grammar represents all the possible new passwords that

can be created subsequent to the use of the old password and is called EGrammar for Edit

Distance Grammar. In this work, we consider every possible change to be equally likely, but in

the future, by training on large numbers of old and new password pairs, we may be able to give

different probability values to different changes. We can view the probability values in the

EGrammar as conditional probabilities p(y|x) when y is the new password and x is the old

password. Thus, the probability values in the EGrammar could be the probability values

conditioned on the input password.

Suppose the given password is “alice123!” with base structure L5D3S1. Using operations

defined in the AMP distance function, we create passwords within one edit distance of

“alice123!”. For example, we can insert an S1 component between “alice” and “123” or we can

delete “123”. Similarly, we can insert digits in between 123 and create 1293 for example. Table

4.1 shows the full EGrammar for the given password “alice123!”. As discussed before D stands

for digits, S for special symbols, and C for capitalization (L: lowercase, U: uppercase). As shown

in this example the grammar is very small compared to typical context-free grammars for

password cracking; however it captures all edit distance variations of the given password.

 55

Table 4.1 Example of EGrammar for the Given Password “alice123!”

Base
structure D1 D2 D3 D4 S1 S2 C1 C5

L5D3S1 0 12 120 153 0123 1233 @ |)! !_ !| L LLLLL
L5D3 1 13 121 163 1123 1243 ! \ ^! !] <! U LLLLU
L5S1D3 2 23 122 173 2123 1253 ? . !- != @! LLLUL
S1L5D3S1 3 123 183 3123 1263 / _ !: !^ !# LLULL
L5D3S2 4 124 193 4123 1273 } # =! !! !" LULLL
L5D4S1 5 125 023 5123 1283 : $!{ !(!, ULLLL
L5S1D3S1 6 126 223 6123 1293 +] _! :! #!
L5D3S1L1 7 127 323 7123 1230 { ~ .! !$!%
L5D3L1S1 8 128 423 8123 1231 * > {! [! !/
L5D3S1D1 9 129 523 9123 1232 < , !' !} !)
L5S1 103 623 1023 1234 (= '! ![$!
D3L5S1 113 723 1223 1235 % ^ (! !+ `!
D1L5D3S1 133 823 1323 1236 " ' !` +! !.
L5D2S1 143 923 1423 1237) ; ?! !~ &!
 1523 1238 ` [%! !< |!
 1623 1239 - & *! ~! !\
 1723 !? !*]!
 1823 !; -! }!
 1923 !& \! /!
 1203 ,! "! ;!
 1213 !> !@ >!

4.3.1.1 Edit Distance Function. In this section we overview the distance function

defined in [5] and we introduce the additional operations that we have developed in order to

adapt the distance function to the new context-free grammar introduced in chapter 3 with the

addition of keyboard and multiword patterns.

Operations on the Base Structure:

• Insertion: Inserting a component of length one is allowed only when it is not of a same

type as its adjacent components. For example, if the base structure is L5D3S1 we can

insert D1 in the beginning to make D1L5D3S1. There is no insertion of K1 or M1 since a

keyboard or multiword component of length one is not defined. It is also possible to

insert a D1 or S1 in between two words in a multiword. For example, for a password

containing starwars (M8), we can create star5wars (inserting a digit) or “star!wars”

(inserting a special character).

 56

• Deletion: deleting a component can be done if the number of components is not 1 and if

it does not make two components of the same type adjacent.

• Transposition: Exchanging two adjacent components can be done only if it does not

make two components of the same type adjacent to each other. For multiword

components, we can also transpose two adjacent words, as well as the first and last word.

For example, “mysweetbaby” can be changed to “sweetmybaby”, “mybabysweet” and

“babysweetmy”.

Operations on the Component:

• Insertion: inserting one character of the same type inside a component is allowed.

Example: if component D3 = 123, we can transform it to 4123 by inserting 4 at the

beginning.

• Deletion: deleting one character inside a component is allowed only if the length of the

component is not equal to 1. For multiword components, we also allow deleting a word

from a multiword which results in a new base structure as well as a new multiword in the

grammar. For example, given password mysweetbaby12 with base structure M11D2, we

can create other base structures such as M9D2, M6D2, M7D2 as well as “mysweet”,

“mybaby”, and “sweetbaby” as multiwords in the grammar.

• Substitution: we can substitute a character with another character of the same type in

digit and special character components. Example: S2 = !! can be transformed into !#.

4.3.2 Determining Password Changes

In this second approach, we have more information about the user’s password habits: two

old passwords. We can still take advantage of our first approach and use the most recent

password to generate the EGrammar. However, we can also gather information about the

changes made to the previous passwords and use this information in predicting the new

password. We next discuss our algorithm to first determine the operations made to change the

password, and then how to predict the new password based on the information.

In order to determine the changes between two passwords we implement a function that

finds the minimum edit distance by creating a distance matrix. The function also involves a

backtracking algorithm that determines the operations made between two strings. We have

 57

developed our function based on the Damerau-Levenshtein [52] algorithm. The Damerau-

Levenshtein edit distance is a string metric between two strings s and t which counts the

minimum number of operations needed to transform one string into the other. In this algorithm

an operation is defined as an insertion, deletion, or substitution, or a transposition of two adjacent

characters. The algorithm starts by filling a (distance) matrix A of size n1 × n2, where n1 is the

length of the first string s and n2 is the length of the second string t. The record value in A[i, j] is

the measure for the distance between the initial substring si of s of length i and the initial

substring tj of t of length j. At the time of creating this matrix, we also capture the operations

associated to each step and store it in another matrix. Later by backtracking this matrix, we find

the operations needed to transform one string to the other. See Appendices E.1 and E.2 for the

implementation of the edit distance and the backtracking algorithms.

Note that our edit distance function is different than a regular Damerau-Levenshtein edit

distance as mentioned before. Therefore, our algorithm needs to cater to this. Our algorithm is a

hierarchical algorithm which first finds the edit distance between the simple base structures. A

simple base structure is the base structure of the password without considering the length of each

component. For example the simple base structure of alice123! is LSD. The first level of the

algorithm applies the distance function as well as the backtracking function on the simple base

structures of the given passwords to determine any changes between these strings. It then reverts

some of changes and applies the distance function and the backtracking function on the new

strings. This algorithm then creates a context-free grammar called TGrammar (Target grammar)

that represents the transformational changes between the two passwords. In the next section we

give a more detailed description of both algorithms. See Appendix E for a pseudo-code

implementation of the full algorithm.

4.3.2.1 Hierarchical Transformation Algorithm. Given two old subsequent passwords,

in the first level we parse both passwords into their simple base structures. As an example,

suppose we have a sequence of two old passwords such as: alice123!$ and 12alice$!. The simple

base structures are LDS and DLS respectively. Then, by calling our edit distance algorithm for

these two simple base structures, we can determine the differences in the base structures. The

edit distance matrix is shown in Figure 4.4. The bottom right element of the matrix is the edit

distance between these two strings.

 58

Fig. 4.4: The Edit Distance Matrix for Simple Base Structures (LDS and DLS)

Using the backtracking algorithm, we determine the operations that caused the change in

the simple base structure. The backtracking algorithm starts from the bottom right corner of the

matrix and travels back to the upper left corner of the matrix, and in each step determines what

operation was done to calculate the edit distance. In this example, the function returns “tn” (t:

transposition, n: no change) meaning that there has been a transposition in the first position, and

no change in the next position. If a transposition is found in this step, we will transpose the

components so that we neutralize the initial transposition effect and recreate one of the

passwords similar to the other by applying the transposition. In the above example, the first

password is changed into a new password by transposing the first two components creating

123alice!$. This will count as one edit distance between these two passwords.

The second level of the hierarchical algorithm finds the edit distance between each

component. We now use the changed password along with the second password to find the edit

distance and the operations between these two strings.

As shown in Figure 4.5 the edit distance between 123alice!$ and 12alice$! is 2 and the

result of the backtracking function is “nndnnnnnt” (n: no change, d: deletion, t: transposition).

We then count the edit distance of these two passwords as the sum of the edit distances of the

first level and the second level hierarchy, which in this example is 3. Based on our defined

operations, two adjacent components are transposed, ‘3’ has been deleted and two adjacent

symbols ‘!’ and ‘$’ are transposed. However, if we were to use the original Damerau-

Levenshtein edit distance algorithm for these two strings without considering the hierarchy, the

edit distance would be 6 (since a flat algorithm would find that there are 2 insertions in the

beginning and 3 deletions and 1 transposition at the end of the string). Thus by developing the

hierarchy algorithm and initially looking for any transposition in the simple base structures we

can handle these situations better and create a more realistic edit distance function for passwords.

 59

Fig. 4.5 The Edit Distance Matrix for Passwords (123alice!$ and 12alice$!)

In this system, users can also enter any names, numbers, important dates, and addresses

as part of the information about the target into the appropriate boxes. For example, names of

family members if known can be useful in password cracking since they can be used in

substituting the alpha string components. Also, numbers such as date of birth, age, license

number, social security number, etc. can be entered into the system. The numbers-related

information will be added into the target grammar along with the information we capture from

evaluating the transformations between the pair of old passwords.

4.3.2.2 Using Transformations to Create the Target Grammar. Once we learn what

changes users have made to their old passwords, we can use the information to predict and guess

their new password, with the hope and assumption that they apply similar modifications to their

new password. In order to do so, we have developed an algorithm to generate new password

guesses based on some of the most important changes we have found in our data and in the result

of other studies [50, 51]:

1. Increment/decrement of the digit component by one: we recognize an increment or

decrement by 1 in the digit component of the old passwords, and upon finding such

alteration we add our prediction to our targeted grammar. For example if the old

passwords are bluemoon2 and bluemoon3, we would like to guess bluemoon4 with higher

 60

probability value. Therefore, we add the same base structure L8D1, as well as 4 and

bluemoon to our target grammar.

2. Insertion of the same digit: We have also developed algorithms to recognize if a digit has

been inserted into a password and if it has been repeatedly added. Examples of such cases

are: password à password5 à password55 à password555. In this case, for example, if

the old passwords are bluemoon5 and bluemoon55, we add 555 to the target grammar as

well as L8D3.

3. Capitalization of alpha strings: If the old passwords both have the same alpha sequence

with different capitalizations, we add both of the capitalizations to our target grammar

since the chances of using those masks are higher.

We convert the password predictions to a context-free grammar called TGrammar (target

grammar). This grammar can be used to generate guesses that are variations of the prediction

based on information obtained from user’s old passwords. Both EGrammar and TGrammar are

usually very small with only a few base structures that are only used to generate guesses very

similar to the given passwords. In the next section we introduce a technique to merge two or

more context-free grammars with different weights assigned to each grammar. Using this

approach we can merge EGrammar and TGrammar with a more comprehensive grammar (or a

general password cracking grammar) with higher weights assigned to EGrammar and

TGrammar. This will allow us to generate a large number of guesses while giving higher

priorities to guesses that are similar to the given input passwords.

4.3.3 Merging Two or More Context-free Grammars

Consider the scenario in which we have access to a single old password for a specific

user. If our goal is to crack a new password created subsequent to the use of the old password,

we would like to change the probabilities of the base structures and other components of the

grammar in such a way that the guessing automatically generates passwords that are similar to

the old password with much higher probability. However, we would also like to continue

generating guesses like we would do normally in any password cracking since it is possible that

the user has created a completely new and different password. This way, we maintain our

guessing capability in highest probability order and we also guess the similar passwords (to the

old password) earlier.

 61

We define merging two grammars as follows:

Let G1 and G2 be two probabilistic context-free grammars. We define a new grammar G3

called the merge of G1 and G2 and we represent it as:

G3 = α G1 + (1- α) G where 0 ≤ α ≤ 1

Given a grammar rule R in G1 or G2, let the probability of R in G1 be p1 and the

probability of R in G2 be p2. Then the probability p3 of R in G3 is:

p3 = α p1 + (1 - α) p2

Note that if R does not exist in one of the grammars, its probability is viewed as 0. The

parameter α is used as a weighting factor between the grammars. Also note that after merging the

probability values in each category also add up to 1, maintaining the properties of a probabilistic

context-free grammar.

Table 4.2 Guesses Generated by MGrammar

pluto1995 pluto1993 pluto1915 pluto1495 1995Pluto 6pluto1995 pluto1995_
Pluto1995 pluto1992 pluto5995 pluto1895 1995plutO pluto1234 _pluto1995
plutO1995 pluto1999 pluto1395 pluto7995 1995plUto 1q2w3e4r pluto19951
plUto1995 pluto1996 pluto1195 pluto3995 1995pluTo pluto!1995 pluto19955
pluTo1995 pluto1998 pluto1095 pluto6995 1995pLuto 123456 pluto17995
pLuto1995 pluto1965 pluto4995 pluto1995e 2pluto1995 pluto1995! pluto01995
1995pluto pluto1997 pluto1795 pluto1995r 3pluto1995 !pluto1995 pluto21995
1995 pluto1955 pluto9995 pluto1995s 4pluto1995 pluto@1995 pluto19953
pluto1985 pluto1945 pluto8995 qwerty 7pluto1995 pluto1995@ pluto16995
pluto1990 pluto1935 pluto0995 pluto1995E 0pluto1995 @pluto1995 pluto18995
pluto1975 pluto1925 pluto2995 pluto1995R 5pluto1995 pluto2008 pluto19925
pluto1991 pluto1295 pluto1695 pluto1995S 8pluto1995 pluto2009 pluto71995
pluto1994 pluto1905 pluto1595 1pluto1995 9pluto1995 pluto_1995 pluto19945

In this approach, every probability in the first Grammar G1 will be multiplied with its

weight α and every probability value in the second grammar G2 will be multiplied with its weight

(1- α). Then if two similar rule values are exactly the same in both grammars, the probabilities

are added together. The result is a special context-free grammar that can be used as before in

offline attacks. Table 4.2 shows an example of password guesses generated with a merged

grammar. The given password “pluto1995” was entered into the system and the resulted

EGrammar was merged with a more general grammar. Different variations of pluto1995 can be

seen among the first few guesses. Soon after, other password guesses such as “qwerty” or

 62

“123456” are seen among the guesses since they are very common and have high probability

values.

4.3.4 Testing and Result

As previously discussed, we did not initially have access to a dataset of sequences of

changed passwords. However, we were able to obtain two such sets: (1) we were able to obtain a

small list of 30 old and new passwords through a private party; and (2) we gathered 56 pair of

old and new passwords through our survey study explained in section 4.2. We used the first set

to learn how users change their passwords and to develop our system as explained in section

4.3.2.2. In this section, we present the result of our targeted password cracking system on the

second set. In our survey, after the users changed their passwords, we asked the question: Did

you create your new password by slightly changing your old password for this website? This

question is important since we know which passwords were changed intentionally by slightly

modifying the old password. Out of 56 pair of passwords obtained in this survey, 23 were

claimed to be changed in this way. Therefore, in this section we only focus on those. We analyze

whether we can crack/guess these passwords effectively. We input the old password to the

system, and our goal is to crack/guess the new password early on during the guessing process.

The system generates the EGrammar as discussed above. The EGrammar, in which we generate

guesses within one edit distance of the given password, is useful most of the times. However, if

the new password is changed considerably, it is more useful to merge the EGrammar with a more

comprehensive grammar as discussed in section 4.3.3.

Table 4.3 shows the old password given to the system, the new password we try to guess,

the number of guesses we made to find the new password using the targeted grammar, and the

number of guesses we made to find the new password using our regular grammar. We also show

whether we used the Edit distance grammar (Egrammar) or the merged grammar (Mgrammar) in

our targeted attack. We used Yahoo-train and our NPC system to construct the grammar. We

also used dic0294 as our attack dictionary. We limited the number of guesses to 10 billion

guesses in our password cracking sessions. The results show that we were able to guess most of

the passwords that were changed slightly. The reason we were not able to crack some of the

passwords was mostly due to not having the alpha string part in our attack dictionary. The result

also shows that only a few of the passwords were broken during a normal password cracking

 63

attack within 10 billion guesses made. The targeted attack was more efficient when information

about old passwords of users were available.

Table 4.3 Test Result of Targeted Attack

Old password New Password Number of
Guesses in

Targeted Attack

Number of
Guesses in

Regular Attack

Grammar

tharaborithor thorborithara -- -- --
Simba144! @Simba2523 734,505,973 -- MGrammar
$unGl@$$220 $unGl@$$110 4,070 -- MGrammar
research! Research! 554 5,059,949,503 EGrammar
starWars@123 star#Ecit@123 2,227,558 -- EGrammar
thebigblackdogju

mps

blackdogmoretim

e

-- -- --
Ahk@1453 Ahk#1453 12,026 -- EGrammar
qpalzm73 qpalzm73* 1,810 -- EGrammar
pluto1995 boonepluto -- -- --
caramba10 caramba12 14 11,424,542 MGrammar
Elvis1993! Professional1993

!2

-- -- --
pepper88 peppergator88 128,197,109 2,563,504,751 MGrammar
ganxiedajiA1!! 1ganxiedajiA 7,794 -- MGrammar
88dolphins! 55dolphins! 38,503 -- MGrammar
kannj2013! kannj2013 97 -- EGrammar
!FSU$qr335 !FSU$qr335mcdd

t

-- -- --
vballgrl77 schatzimae -- -- --
nickc1007 corkn1007 -- -- --
sunflower12 sunflower13 202 119,336,969 EGrammar
meg51899 Meg51899* 5,381 -- EGrammar
Research1 research11 206 23,728,452 EGrammar
Gleek1993 Gleek1985 9,661 1,994,709,669 MGrammar
Oaklea0441 Oaklea0112 91,014 -- MGrammar

 64

CHAPTER 5

PASSWORD CHECKING/STRENGHTENING

In this chapter I turn to the importance of passwords for security and protecting

information for users. I investigate the question of how to measure password strength and how to

help users create stronger passwords. I first discuss previous work on password meters and

password strengthening. I then discuss other techniques used to make passwords stronger such as

rule-based approaches. I then review the AMP password analyzer and modifier [5] which was

first introduced in my Master’s thesis. I later explore this approach further and analyze its

effectiveness in detecting weak and strong passwords and suggesting stronger passwords with

slight modifications. Part of the work in this chapter appeared in [53].

5.1 Background and Motivation

When it comes to password security, the main concern is that people do not have enough

knowledge about what a strong password is and how to create one. Most organizations and

websites follow a rule-based approach in recommending or enforcing password policies. Their

aim is to help users create a stronger password. Password policies have certain rules such as

“your password must contain at least two digits”, or “your password must be at least 8 characters

long”. Some other websites have recommendations and use password meters to show the

strength of the user selected password. A study by Shay et al [49] was conducted to seek an

understanding of the factors that make creating and following password policies difficult. They

gathered the results of a survey of 470 Carnegie Mellon University students, faculty and staff.

Their results imply that users were not happy about changing the password creation policy to a

stricter one and they also found that about 80% of users reused their passwords across different

accounts and 60% used one password with slight changes for different accounts. Riley [54] also

found that the average length of time users maintained their primary personal use password was

reported as 31 months and 52% of users never change their password. These studies show that

having an effective password creation policy does not always mean having strong passwords and

a secure system, since users are forced to create passwords that may not be easy to memorize

 65

(which is not good), and most users tend not to change their passwords often nor do they have

different passwords for different websites.

Rule-based advice is confusing as there is no consistency across websites in the

requirements, with differing advice about length, number of symbols and digits, and even in the

symbols that are allowed. In [55] it is shown that inconsistent and even contradictory

recommendations make such advice unreliable for users. A recent study [56] analyzed password

meters in popular websites and shed light on inconsistencies in determining the strength of

passwords across different platforms. The authors created a system that allows a use to enter a

password and checks the strength of the password based on different websites. Figure 5.1 shows

an example of the result of password strength meters against password “alice123!”. [57] reports

that although nowadays users understand the importance of secure behavior, they still find it too

difficult to cope with password creation policies, and they rarely change their passwords due to

the frustration of creating a new password along with the difficulty of memorizing it. In studies

by Charoen et al. [58] and Adams and Sasse [59], it was found that users are not even unanimous

about the necessity of having a strong password and the reason users choose insecure passwords

is because they usually do not know how to create secure ones.

Fig. 5.1 Example of Inconsistencies across Different Password Meters

 66

The U.S. NIST guideline [2], the basis for most rule-based policies, proposed a rule-

based approach that used the notion of Shannon entropy for estimating password strength based

on suggested values of the components of the password. However, researchers [3, 4, 27] showed

that the use of Shannon entropy as defined in NIST is not an effective metric for gauging

password strength. Weir et al. [3] performed password cracking attacks against multiple sets of

real life passwords and showed that the use of Shannon entropy as defined in NIST does not give

a sufficient model to decide on the strength of a given password. Castelluccia et al. [27] also

perform studies and showed that insecure passwords are accepted and secure passwords are

rejected as a result of this approach.

In the next section we discuss our approach which is based on an analyze-modify

approach in which we first estimate the strength of a password based on real cracking attacks and

then modify a weak password to create a strong one for the user within an edit distance of one.

At the time of this research there were only a few relevant studies that are similar to our

approach in some ways. Schechter et al. [60] proposed to build an oracle for existing passwords

that are available to the Internet-scale authentication systems. The authors recommend that

popular passwords be disallowed and the main thrust of their work is to devise a way to

efficiently store the large number of popular passwords that would be prohibited. They use the

notion of a count-min sketch (similar to a Bloom Filter) for such storage. Their proposed oracle

would disallow very popular passwords while otherwise allowing users to choose any password

they wish. An open question posed in their study is how to use the oracle without revealing the

actual password to attackers while querying online. Our technique gets around this problem as

well as their storage problem. Castelluccia et al. [27] explored measuring the strength of

passwords using a Markov approach. They spent a fair amount of their study proving the security

of their system; however, they did not show the effectiveness of the Markov approach in

estimating the strength of passwords against real attacks.

5.2 Analyzing and Modifying Passwords

In this section we review our work on estimating password strength and creating stronger

passwords [53] and the system we developed called AMP. The key to a good password checker

is the ability to help a user create a secure password while ensuring the password is easy for the

particular user to memorize. Both of these aspects are important since it is very easy to develop a

 67

policy that results in strong passwords (using random password generators) that are particularly

unusable. In our approach we use an implicit password creation policy in which there is a reject

function that rejects a weak password and then a modify function that changes the weak

password slightly to one which is appropriately strong.

For a password to be strong we need to make sure that it cannot be easily broken. The

first step in AMP [53] is to evaluate the user chosen password for strength. We define the

password strength as the probability of the password being cracked by an attacker. We take

advantage of the probabilistic context-free grammar (discussed in chapter 3) trained on a set of

real user passwords to estimate the probability of a password being cracked. We assume that this

set is a comprehensive set of passwords (and a sufficiently large sample set) that can be used as a

model of realistic passwords. In fact, we are able to determine a threshold value below which a

password would be considered as strong. This allows us to build a reject function that accepts a

strong password and rejects a weak one. AMP then modifies weak passwords to ones that are

strong but within edit distance of one.

5.2.1 Setting the Threshold

A strong password is one for which it takes an attacker an appropriately long cracking

time (ct) to crack that password (in hours). In an optimal attack, the attacker would try different

guesses in decreasing order of probability. We define the threshold (thp) as a probability value

such that passwords with probability less than thp are strong and those that are greater than or

equal to thp are weak. By using the probabilistic context-free grammar (plus appropriate

dictionaries) as our model of the realistic password distribution, we can determine the number of

guesses g(thp) the attacker would make before trying a password with a value equal to the

threshold value thp. Let r be the rate-per-hour of the guesses (based on the hash type, cracking

system speed, etc.). We thus have g(thp) = ct * r. In the preprocessing phase, we create a table

that contains the number of guesses and the probability values of the guesses at various time

intervals by running the probabilistic password cracker. This is then used as a mapping of thp to

g(thp) and is used to select what level of security we want the system to have. The threshold is

then used to decide whether a given password is strong or weak.

The AMP system first asks users to enter their chosen password; the probability of the

chosen password is then calculated using a probabilistic context-free grammar. The password is

 68

parsed to its base structure and components. For example “Alice123!” will be represented as

L5D3S1. Then the probability of the base structure L5D3S1 along with the probabilities of alice,

123, ! are found from the grammar. The product of these probabilities is the probability of the

user’s password. This probability pu is compared with the threshold value to accept or reject the

password. If pu is smaller than the threshold value, the password is strong, meaning that it will

take longer to guess the password using an optimal attack.

5.2.2 Modifying a Weak Password

When a password is weak and is rejected by the system, the system then tries to modify it

slightly to create a stronger password for the user. The modification needs to be minor since we

would like to keep the password usable and memorable. A usable password is a password that is

easy for the user to remember and type. Things people can remember are different for each group

of people based on their age, situation, location, etc. If a password is weak we try to create

passwords with slight changes to the user-chosen password using the AMP distance function.

This is based on Levenshtein edit distance to fulfill the need of usability for users. We believe

users choose password components for memorability and only minimal changes should be made.

Hence, we start generating passwords with distance one from the user-chosen password and

check if the modified password is within the acceptable threshold value. If we find one, we are

done and the new password is recommended to the user, otherwise we continue and check all

possible changes. Obviously, it is possible that we might not be able to create a password within

distance one with the desired probability value.

5.2.3 Updating the Grammar

In order to maintain the AMP system as still effective after users use the system for some

time, an update strategy is developed that modifies the grammar periodically. After using the

system for a period of time the probability distribution of passwords changes. Since the

supposedly strong passwords suggested by AMP have become in use more often and would now

have higher probability in the guessing generator, the attacker has a better model of the AMP

generator and therefore continued use of the original grammar could be problematic. Therefore,

every modified password that has been suggested to a user is considered as a publicly disclosed

password. Using an appropriate weight, the password can be added to the training set effectively.

 69

This ensures having a realistic and up to date probability distribution for the probabilistic

context-free grammar at all times. In order to update the training set, there is no need for

processing the training set again; we only need to adjust the probability values in the context-free

grammar and it can be done almost instantaneously. We have shown that the Shannon entropy of

the grammar seems to be approaching the theoretical maximum Shannon entropy as we update

the grammar. We also found a similar result for the guessing entropy. Theoretically, having a

uniform distribution for passwords is ideal since all passwords will have equal probabilities.

Practically, this would mean that each password is equivalent to being randomly chosen. Note

that using our update algorithm we are moving closer to a uniform distribution but are likely very

far away from it.

5.3 Testing and Result

In this section, I discuss the result of our analysis of the effectiveness of the AMP system

on several revealed password sets. We randomly created three different sets for (1) training the

AMP password checker (RockYou: 1 Million, MySpace: 30,997, Hotmail: 4874); (2) testing the

AMP system (RockYou: ½ Million, MySpace: 15,499, Hotmail: 2,437); and (3) training a

probabilistic password cracker (RockYou: ½ Million, MySpace: 15,499, Hotmail: 2,437).

We used the first set as the training set to construct a context-free grammar for the AMP

password checker. We then set the threshold value to one day, equivalent of 43.2 billion guesses

for our experiments. Therefore, a password is called weak if it can be cracked/guessed within

one day, and it is strong otherwise. We then give the second set (test set) as the input to the AMP

system. The system calculates the probability of each password in the set and compares it against

the threshold. If the password is weak, the system tries to generate a strengthened password

within edit distance of one.

We can categorize the result of the AMP system into four different groups: (1) Passwords

determined as strong, (2) Passwords determined as weak and the system was not able to

strengthen them, (3) Passwords determined as weak and the system was able to strengthen them,

and (4) The strengthened (modified) passwords from the third category. We ran a series of

password cracking sessions using two different password crackers (the probabilistic password

cracker and John the Ripper). The results of the password cracking are shown in Table 5.1 and

5.2.

 70

Table 5.1 Password Cracking Results using John the Ripper

 (1)
Originally

Strong
Passwords

(2)
Originally

Weak
Passwords
(not able to
strengthen)

(3)
Originally

Weak
Passwords

(able to
strengthen)

(4)
Strengthened

Passwords

Hotmail

2
325

49
53

988
2,059

2
2,059

Percentage (0.61%) (92.45%) (47.98%) (0.0975%)
MySpace

23
1484

104
149

5,343
13,866

71
13,866

Percentage (1.55%) (69.80%) (38.53%) (0.51%)
RockYou

281
32,794

22,248
24,745

235,302
442,461

1,186
442,461

Percentage (0.86%) (89.90%) (53.18%) (0.27%)

Table 5.2 Password Cracking Results using Probabilistic Password Cracker (PPC)

 (1)
Originally

Strong
Passwords

(2)
Originally

Weak
Passwords
(not able to
strengthen)

(3)
Originally

Weak
Passwords

(able to
strengthen)

(4)
Strengthened

Passwords

Hotmail
 1

325
53
53

1,069
2,059

113
2,059

Percentage (0.3%) (100%) (51.91%) (5.48%)
MySpace

 27
1,484

135
149

8,341
13,866

698
13,866

Percentage (1.81%) (90.60%) (60.15%) (5.03%)
RockYou

 467
32,794

24,378
24,745

259,027
442,461

18,134
442,461

Percentage (1.42%) (98.51%) (58.54%) (4.1%)

The results show that both originally strong and strengthened passwords (modified from

weak passwords) have very low rate of cracking compared to weak passwords. John the Ripper

cracked
total

cracked
total

cracked
total

cracked
total

cracked
total

cracked
total

 71

generally cracked less than 1.5% of the strong passwords and the Probabilistic Password Cracker

cracked about 5%. Overall, without using the AMP system the total rate of cracking the test set

(columns 1,2,3) was 56.6% with the probabilistic password cracker. Using AMP and not

allowing weak passwords to be selected by users, the cracking rate is 3.9%. The AMP system

successfully distinguishes weak passwords from strong ones with an error rate of 1.43% (column

1). This rate is the percentage of passwords originally identified as strong, but that can be

cracked.

Besides using the 1-day threshold, we also ran similar tests as the above using threshold

values for 12 hours, 48 hours and 96 hours. Figure 5.2 shows the total rate of cracking the test set

before using AMP and after using AMP for both John the Ripper (JTR) and the probabilistic

cracker (PPC). The time allocated for cracking was of course the same time as used for

determining the threshold. Note that the results are similar to the 1-day results and even at 4 days

we are significantly improving the weak passwords.

Fig. 5.2 Using AMP for Different Time Thresholds

 72

CHAPTER 6

IDENTIFING PASSWORDS ON DISK

As discussed previously, with the increase in the number of accounts and passwords that

each user has, and the recommendations on not reusing passwords, users are faced with the

problem of how to create secure and memorable passwords. Thus, they are increasingly turning

to saving their passwords in some manner, either on paper or on their computers. A survey in

2012 by Kaspersky Lab [61] revealed that 29% of users store their passwords on media. 13%

create a text document on the hard drive, 9% write them on a cell phone, and only 7% use

specialized software. In our own recent informal survey of 100 students, we found that 42% store

their passwords and 55% of these do so on disk or cell phone in clear text without encryption or

using specialized software. As password policies are becoming more complex, we believe that

users turn more to storing them on media. In this chapter I describe work done that gives a

solution to the problem of identifying passwords on media [62].

Suppose that law enforcement captures a hard disk and needs to find if there are any

stored passwords on the disk. An example scenario [63] is when there are encrypted files on disk

(say illegal photos). It is possible that the user has stored the password somewhere on the disk to

easily access these encrypted files. An investigator could look at each file and try to determine

by context and structure which strings might be passwords. This would of course be quite

tedious, especially with very large disks. Investigators sometimes use existing tools to tokenize

all the strings on the disk and use these as a dictionary for offline cracking of the encrypted files.

The list, however, often becomes too large to build a dictionary that can be subsequently used for

cracking. The identification problem is to distinguish the tokens that are more likely to be

passwords and winnow down the list to a more manageable one. This problem is non-trivial

because distinguishing which of the strings are passwords from a large set of strings has no

obvious solution.

There have been a few studies on how to find passwords used for encryption or

passwords stored through browsers [64, 65, 66]. However, we are unaware of any work that tries

to distinguish passwords from other strings that are stored directly by the user on disk. Garfinkel

et al. [67] discuss a more general problem of trying to capture a storage profile for each computer

 73

to detect anomalous behavior. They propose to monitor the forensic content of the disk (or other

media) such as email addresses, credit card numbers, etc. There exist recovery tools such as

EnCase [68] and FTK [20] that have the capability of finding strings on disks. However, the real

problems is filtering these strings and determining the likeliest strings, which might be

passwords. Identity Finder [69] is also a commercial sensitive data manager toolkit. It looks for

passwords, credit card numbers, social security numbers, etc. in a variety of places including

files, emails, browsers, registry files, databases, and websites. Furthermore, Identity Finder

provides password search customization by enabling certain keyword and regular expression

search thus requiring the investigator to propose a string search. Again, this tool does not tackle

the password identification problem.

In this work, we first analyze a disk image and retrieve all strings on the disk that could

possibly be passwords, which we call tokens. During this process we prune a potentially very

large set of tokens to a more manageable set that we expect contains most of the passwords. We

then use the probabilistic context-free grammar discussed in chapter 3 to calculate the probability

of each token and decide which ones are likely to be passwords. In the final phase we use these

probabilities and develop a set of ranking algorithms to suggest an ordered list of tokens. This

list can be then used as a dictionary by the investigator to do password cracking using any

appropriate approach.

6.1 Retrieving Tokens from the Disk

In this work the assumption is that a user is simply storing the passwords in a file on disk

in order to remember their password if needed. The file can be in allocated space or unallocated

space (file might be deleted) or hidden through the operating system. The first step is to retrieve

all the files from the disk image. We use tsk_recover tool to recover files from both allocated and

unallocated spaces. Tsk_recover is part of an open source digital forensics tool for analyzing disk

images called Sleuth Kit [70]. We then consider file types that are more probable to contain text

and to be modified by users such as .doc, .docx, .xls, .xlsx, .rtf, .odt, .pdf, and .txt. We use open

source tools such as catdoc, docx2txt, xls2txt, unoconv and xls2txt, unrtf, odt2txt, and pdftotext to

convert these files to text file format to be able to read the contents of the files. We then tokenize

the strings for each file using space, tab and newline as delimiters. We store tokens of each file in

a new file associated to the original where each token is written on a single line. We later search

 74

for possible passwords through these associated files. Even an average sized disk typically

contains many different file types and files with text content resulting in a huge number of

tokens. In order to be able to reduce the set of tokens that we retrieve, we define a set of rules

that filters out some classes of tokens that we believe are very unlikely to be passwords. We

developed two different sets of filters. Initial filters are developed to eliminate tokens with

characters, or lengths that are not part of passwords. Specialized alpha string filters are

developed to reduce the number of alpha strings in the text files.

6.1.1 Initial Filters

We examined some revealed password sets to get insight into what kinds of structures are

rarely seen in passwords. The set of initial filters that we define and apply is as follows:

• Non printing: These are ASCII characters that are almost always not valid password

characters.

• Length: Passwords usually have certain lengths based on the policies enforced on each

website. Here we apply a conservative bound and only consider the tokens with length l,

6 < l < 21.

• Floating point: The files on disk (especially the .xls files) can often include many

floating point numbers. We filter out all floating point numbers since our studies on

revealed password sets show that there is very little chance of such tokens being real

passwords. We therefore filtered out, using a regular expression, any string of the form [-

+]? [0-9]* .? [0-9]+ ([eE][-+]?[0-9]+)?

• Repeated tokens: In each file, we only keep one copy of tokens that are repeated

multiple times. One might think that repeated tokens are not likely to be passwords, but it

is possible that users store password information for many different accounts and thus

would have multiple copies in a file.

• Word punctuations: We remove tokens that seem to include punctuation patterns of a

sentence by filtering out tokens that contain only alpha strings ending with any of the

following characters: ;:,.?!-)}. We also filter out such tokens starting with (or {. Our

examination showed that only 0.516% of such tokens are found in a sample of 1 million

passwords in the Rockyou set.	

 75

6.1.2 Specialized Alpha String Filters

An extremely prevalent class of tokens found on a hard disk is the set of alpha strings

(those containing only alphabetic characters). In this section we describe various approaches to

handling such strings. We define the specialized alpha string filters as follows:

• All-alphas: This filter eliminates tokens that are all alpha strings. In this case we assume

that most of the time passwords do not contain only alphabet characters but also contain

digits or special symbols as well. This is further enforced by current password creation

policies.

• Sentences: This filter tries to eliminate all alpha strings that are part of sentences. To

detect sentences we use OpenNLP [71]. This tool can detect whether a punctuation

character marks the end of a sentence or not. It cannot however identify sentence

boundaries based on the contents of the sentence. An additional problem we faced was

that during the conversion process to a .txt file, word wrapping is not preserved as line

breaks are added, so sentences, which continue into another line are considered separate

indices by OpenNLP. We thus verify if an index starts with a capital letter and ends with

a period and filter out such sentences.

• Capitalization: This filter eliminates all lower case alpha strings. This is because some

of the password policies allow you to have passwords, which contain one or more of the

classes (symbols, digits, and capital letters).

• Dictionary words: This filter eliminates alpha strings that appear in a dictionary. The

purpose of using an English dictionary is to try to eliminate words that are most likely

part of sentences in the documents, and keep the rest of the strings in our token set.

• Multiwords: This filter eliminates all alpha strings that are not multiwords. Examples of

such strings are passphrases (without whitespace) that appear to be increasingly used as

passwords.	

6.2 Identifying Passwords

After examining the disk and retrieving all tokens separated by whitespace, our main task

is to distinguish and find passwords from other sequences of characters that appear in a text file.

For this purpose we use the probabilistic context-free grammar trained on a large set of real user

passwords. As discussed before, this grammar models a password distribution and the way users

 76

create the passwords. This helps in differentiating passwords from regular text. As explained

previously in section 5.2, given a probabilistic context-free grammar we can calculate the

probability of a given string in the password distribution. We parse the given string into its

components and find the probabilities associated with each component from the grammar. We

then calculate the probabilities of all of the retrieved tokens remained after applying the filters.

6.2.1 Ranking Algorithms

After retrieving all tokens and calculating the probability value of each token, we rank

the tokens in order to output a limited set of tokens (say the top N tokens) for the investigator to

examine as the most likely possible passwords from the hard disk. Obviously, the ideal is having

both high precision and high recall in this potential password set. Recall can be more important

in an offline attack while precision might be more important in an online attack. We believe that

it is very important to reduce the size of the potential password set even in the case of offline

password cracking; although computers have become much more powerful through the use of

GPUs etc., many hashing algorithms (for example the one used in TrueCrypt) can still purposely

take a very long time for the resources available to typical law enforcement.

In this section we discuss our three different algorithms for ranking the possible

passwords. Recall that we maintain the associated files the tokens belong to and we use this

relationship in our algorithms. We use a parameter N that is the number of potential passwords

that we return to the investigator. The three different approaches that we evaluated are:

Top Overall: In this natural approach we select the N highest probability tokens from all of the

retrieved tokens.

Top Percent (per File): In this approach, we select an equal percentage of the highest

probability tokens from each file such that the total number of tokens returned is N. The resulting

tokens are then ordered by their probabilities.

Top 1-by-1 (per File): In the first round, we choose the highest probability token from each file

and then rank them by highest probability. In the second round we select the second highest

probability token from each file (if available) and again rank them by highest probability. We

repeat this until we reach the desired N tokens. Note that tokens from round j are ranked above

round j + 1.

 77

6.3 Testing and Result

In this section we discuss our test results both on the utility of our filtering techniques as

well as the effectiveness of our algorithms to identify passwords. We used the Digital Corpora

Govdocs1 [72] as the source of our files to create test disks. This corpus contains about one

million freely redistributable files in many different file formats. We then added real user

passwords taken from revealed sets of passwords to the files since we did not have access to test

disks that contain known real passwords. For our testing purpose we created five data disk

images of different sizes. See Table 6.1. For our disks we only used files likely to be created by

the user (.doc, .xls, .pdf, etc.). The sizes of the data disk images in Table 1 are therefore only the

total data sizes of these files.

Table 6.1 Test Disk Images

Data Disk Image Size #Files Analyzed
1 GB 1194
500 MB 571
250 MB 426
100 MB 143
50 MB 108

Table 6.2 Reduction of Tokens due to All Filters

 50 MB 100 MB 250 MB 500 MB 1 GB
 # Before filtering (millions) 2.45 2.16 6.76 28.84 49.41
After filtering (millions) 0.07 0.050 0.25 1.38 3.21
Total reduction (percent) 97.15 97.68 96.35 95.21 93.50

We randomly selected passwords from revealed password sets and then randomly

selected a file to which to add each password. The result of our filtering shows that all of the

filters except Non-printing have a major impact on the end result, reducing the large number of

tokens we obtain from the hard disk to a much smaller set. The Non-printing filter is important in

our next step of calculating the probabilities but was rarely actually useful for reduction. In the 1

GB disk, the length filter reduced 53% of tokens, the floating point filter reduced about 28%, the

 78

repeated token reduced 70%, the word punctuation reduced 20% and the all-alphas reduced 33%

of tokens. Table 6.2 shows the number of tokens (in millions) before and after filtering and the

percentage of reduction when applying all of the filters.

6.3.1 Testing Ranking Algorithms

In this section we explore result of our test on the ranking algorithms. We used two

revealed sets, Rockyou and CSDN, from which we chose passwords to store on the disks. We

applied the initial filters and the all-alphas filter. We stored 5 passwords on each disk in one

series of test and 15 passwords in a second series of tests. We believe this represents a range of

passwords that a normal user might have stored. We used Yahoo-train for training the

probabilistic context-free grammar that is used to calculate the probabilities of the potential

passwords. We then determined how many passwords we are able to find by each of the

algorithms. We determined the results when returning N potential passwords to the investigator,

where N is 1000, 2000, 4000, 8000, and 16000. In the following tables we show the number of

passwords found in the disk by the algorithms (true positives). In Table 6.3 we show the results

for storing 5 passwords from CSDN.

Table 6.3 Number of Found Passwords (Out of 5 from CSDN)

 50 MB 100
MB

250
MB

500
MB

1 GB

N
=1

00
0 Top overall 1 2 0 0 2

Top percent 2 3 1 1 2
Top 1-by- 5 3 2 3 3

N
=2

00
0 Top overall 1 2 0 0 2

Top percent 5 3 1 1 2
Top 1-by-1 5 4 2 3 4

N
=4

00
0 Top overall 5 2 0 0 2

Top percent 5 3 2 1 2
Top 1-by-1 5 5 3 4 4

N
=8

00
0 Top overall 5 3 0 0 2

Top percent 5 3 2 1 3
Top 1-by-1 5 5 4 4 5

N
=1

60
00

 Top overall 5 4 0 0 2
Top percent 5 4 2 3 3
Top 1-by-1 5 5 4 5 5

 79

As an example in Table 6.3, using the 1-by-1 algorithm we can find all 5 passwords on

the 50 MB data disk, 3 passwords on the 100 MB data disk, 2 passwords on the 250 MB data

disk, etc., within the top N = 1000 returned by the algorithm. When comparing algorithms given

an N and the number of stored passwords, a higher recall implies a higher precision and they can

be both calculated from the number of passwords found. For example, the average recall value of

the 1-by-1 algorithm across different disk sizes for N = 8000 is 92%, for the top percent

algorithm is 56% and for the top overall algorithm is 40%. This shows that the 1-by-1 algorithm

has both higher precision and higher recall compared to the other algorithms.

In Table 6.4, we show the results for storing 15 passwords from CSDN. For N = 8000 the

average recall value of the 1-by-1 algorithm is 89.3% across the different disk sizes. The results

show that the 1-by-1 algorithm is quite good and better than the others. Results of storing

passwords from the Rockyou password set showed similar results.

Overall, it appears that the 1-by-1 algorithm is consistently the best. Recall that in our

experiments so far, the filters eliminated all alpha strings. We believe that this is reasonable, as

today’s password policies would almost invariably disallow such passwords. However, we next

explore whether less restrictive filtering of alpha strings can be useful.

Table 6.4 Number of Found Passwords (Out of 15 from CSDN)

 50 MB 100
MB

250
MB

500
MB

1 GB

N
=1

00
0 Top overall 1 7 0 2 2

Top percent 4 10 2 3 3
Top 1-by-1 11 12 7 8 9

N
=2

00
0 Top overall 1 9 0 2 2

Top percent 9 10 2 4 5
Top 1-by-1 12 14 9 9 11

N
=4

00
0 Top overall 11 10 0 2 2

Top percent 10 11 3 5 6
Top 1-by-1 15 15 12 10 12

N
=8

00
0 Top overall 13 11 0 2 2

Top percent 11 11 8 5 8
Top 1-by-1 15 15 13 10 14

N
=1

60
00

 Top overall 15 14 0 2 2
Top percent 12 14 9 8 8
Top 1-by-1 15 15 13 11 14

 80

6.3.2 Testing Specialized Filtering

In this section we compare the specialized filters as defined in section 6.1.2. The

specialized filters are applied in addition to the initial filters. We used the 1 GB disk and stored

15 passwords from the Rockyou set. The results are shown in Table 6.5. The numbers in

parenthesis show how many of the 15 passwords stored on the disk remained after the filtering

process. For example All-alphas (11) shows that four of the passwords stored on the disk were

filtered out due to the filtering process. The results show that using less aggressive filters such as

multiwords or dictionary words does reduce the password loss due to filtering. However, these

approaches are not as successful as the more aggressive approach (all-alphas filter) in

subsequently identifying the passwords because they still retain too many alpha strings.

Table 6.5 Number of Found Passwords (Out of 15 from Rockyou)

No

Filter
(15)

Caps
(11)

Multi
words
(14)

Dictionary
(14)

Sentences
(15)

All-alphas
(11)

N
=1

00
0 Top overall 0 2 0 0 0 5

Top percent 1 1 3 3 2 1
Top 1-by-1 2 2 4 4 0 8

N
=2

00
0 Top overall 0 2 0 0 0 5

Top percent 1 2 3 3 2 2
Top 1-by-1 2 2 4 5 0 10

N
=4

00
0 Top overall 0 2 0 0 0 5

Top percent 2 3 3 3 3 4
Top 1-by-1 2 2 5 5 1 10

N
=8

00
0 Top overall 0 2 0 0 0 5

Top percent 4 4 5 5 3 7
Top 1-by-1 2 2 7 7 1 10

N
=1

60
00

 Top overall 0 2 0 0 0 5
Top percent 4 4 5 5 3 7
Top 1-by-1 4 5 8 8 7 10

When applying the multiwords filter, we keep a more limited set of alpha strings

compared with the dictionary filter. The multiwords filter eliminates all single words (whether it

is a dictionary word or not), whereas the dictionary filter eliminates only the single words that

 81

are included in the dictionary and still keeps the multiwords. For the dictionary filter we used the

training dictionary that we created in section 3.1.2.

We observed in the tests that we usually end up having a large number of alpha strings

with fairly high probabilities because of the way the probability of each token is calculated

(having equal probability values for all the words of the same length). Therefore, when the top N

potential passwords are selected, we do not find as many of the passwords as quickly as we could

if we eliminated all of the alpha strings.

Fig. 6.1 Comparison of Specialized Filters as N Varies

We explored the 1-by-1 algorithm in more details using the various specialized alpha

string filters. In Figure 6.1 we plot N versus the recall value for all integer values of N until we

find all of the passwords that can be found by that filter (the results are averages of several runs).

The aggressive all-alphas filter may not be able to find all of the passwords, but on average finds

9 of the passwords (recall of 0.6 and precision of 0.005) at N = 1,659. In comparison, when

applying no specialized filter we find 9 of the passwords only at N = 229,671.

The results show that applying our filtering and identification approach allows an

investigator to find most of the passwords within a very reasonably small value of N and avoid

having to check a huge number of strings. Note that if the aggressive filter is not successful for

the investigator’s needs, a less aggressive filter can then be tried. For example, the dictionary

 82

filter which loses fewer passwords finds on average 9 of the passwords at N = 36,240 which is

still much better than no specialized filtering. By choosing the appropriate value of N, the

investigator can move between online and offline attack situations. The all-alphas filter identifies

about half of the stored passwords even within the first 500 proposed tokens. Sometimes even

finding one password on the disk could be very helpful for an investigator since users typically

use the same password for many sites / accounts. For the all-alphas filter the first password was

found on average at N = 11.

 83

CHAPTER 7

CONCLUSION

The main focus in this disseration is creating more efficient password crackers using

probabilistic context-free grammars. I have shown how to learn new patterns (such as keyboard

and multiwords) when creating grammars for password cracking. I have shown how to handle

several issues that arise from adding more complicated patterns to the grammar. I also developed

metrics to be used for comparing, analyzing and improving attack dictionaries. The results have

shown that the addition of such patterns can significantly improve the password cracking (55%

improvement over previous work). As an example, this can be interpreted as taking 2 seconds to

have a 50% chance of cracking a single password versus taking 26 minutes using the previous

system. The techniques described in this dissertation can be used in developing other patterns

and can be applied to other password crackers. I have also introduced targeted attack, in which

several grammars are created based on available information about a target such as names,

numbers, or previous passwords. The grammars are then combined together to create a grammar

with higher probability values assigned to more relevant components and values.

An immediate use of this work is in creating an efficient password cracker that can help

law enforcement in cracking passwords for accounts or password protected files for their cases.

However, learning password distribution and how users create passwords can help in other areas

as well. In this dissertation I have shown several applications of using the probabilistic context-

free grammars for passwords. The AMP system is described that estimates password strength

against real attacks and helps users create stronger passwords. I have presented results of real

password cracking sessions to confirm the accuracy of this metric.

Another application of the probabilistic context-free grammar technique is also

introduced in which passwords stored on media are discovered. I have shown how to retrieve a

small set of possible passwords from a large disk by applying filtering techniques and ranking

algorithms. The results show that by returning a set of 2000 tokens, 60% of passwords can be

successfully identified. In future work, the system can be adapted to identify passwords on

cellphones and USB drives. Also, more filtering techniques can be developed to find passwords

for targeted individuals.

 84

APPENDIX A

PSEUDO-CODE FOR MULTIWORD SEGMENTATION

procedure FINDALLMULTIWORDS(word, n)
ret = [] //list of potential breakdowns
if n==1 then

return
end if
for (i=0; i< word.length ; i++) do

left = word.substring(0,i)
if ISDICTIONARYWORD(left) then

right = s.substring(i, word.length)
if ISDICTIONARYWORD (right) then

add right and left to the list of potential breakdowns ret
end if
rightwords = FindAllMultiwords(word.substring(I, word.length, n-1)
if rightwords.length > 0 then

combine left with each of the solutions in rightwords list and add to the list ret
end if

end if
end for

end procedure

 85

APPENDIX B

SURVEY QUESTIONNAIRE

Attempt #1: User’s first login/ registration

[User will be presented with the consent form. Upon agreement, the user will be presented with
an expanded “Create Account” field]

Create User Account:
Please create an account for use in this study. Use your FSU email address for your username.
Assume you are creating an email account and you want your password to be strong enough. Try
to create your password in a manner that you would normally do. You should take whatever
steps you normally take to remember and protect your password. DO NOT provide passwords
that you currently use for another service. All passwords will be saved and analyzed. DO NOT
use this password elsewhere.

Email (Use your FSU email ending in “@my.fsu.edu”)

Password (minimum of 8 characters)

Confirm Password:

[User will be presented with: “You have successfully created your account. Please answer the
following questions”

Survey form:

1- What is your gender?

☐ Female
☐ Male
☐ I prefer not to answer

 86

2- What is your age?
☐ younger than 18 years old
☐ 18-24 years old
☐ 25-34 years old
☐ 35-44 years old
☐ 45-54 years old
☐ 55 years or older

3- Which of the following best describes your highest education level?
☐ High School graduate
☐ Some college, no degree
☐ Associates degree
☐ Bachelors degree
☐ Graduate degree (Masters, Doctorate, etc.)
☐ Other

4- What is your native language?

 [User will be presented with: “You have successfully completed this part of the study. Please
remember to come back soon for your second login!”]

Attempt #2: User’s second login

 [Upon successful login, user will be brought to this survey page]
Survey Form:

1- Are you majoring in or do you have a degree or job in computer science, computer
engineering, information technology, or a related field?

☐ Yes
☐ No
☐ I prefer not to answer

2- In what department are you majoring?

 87

3- How many website username and passwords do you have, approximately?
☐ Less than 5 accounts
☐ 5-10 accounts
☐ 11-20 accounts
☐ More than 20 accounts

4- Do you try to create unique passwords for each different account?

☐ Yes, I create a new password every time I create a new account or every time I have to
change my password.
☐ No, I use my old passwords that I have already created for my other accounts.
☐ I mostly create a new password but sometimes use my old passwords also.

 [User will be presented with: “You have successfully completed this part of the study. Please
remember to come back soon for your third login!”]

Attempt #3: User third login, change password

[User will be prompted to login. This process is the same as in Attempt #2]
[Upon successful login, user will be prompted to change password as follows:]

Your password has expired and must be changed. Please choose a new password. Try to change
your password in a manner that you would normally do. You should take whatever steps you
normally take to remember and protect your password. DO NOT provide passwords that you
currently use for another service. All passwords will be saved and analyzed. DO NOT use this
password elsewhere.

Old Password:

New Password (minimum of 8 characters.)

Confirm New Password:

 88

Survey Form:

1- How did you choose your new password? Were you influenced by any of the following?
(Please check all that apply.)

☐ Names of family members, relatives, close friends
☐ Familiar numbers (birth date, telephone number, street address, employee number, etc.)
☐ Songs, movies, television shows, books, poetry or games.
☐ Scientific or other educational mnemonics
☐ Sports teams and players
☐ Names of famous people or characters
☐ Words in a language other than English
☐ Other (please specify):_________________

2- When creating your new password, did you consider any of the following policies to make
your password more secure? (Please check all that apply.)

☐ Include numbers
☐ Include upper case letters
☐ Include symbols (such as “!” or “#”)
☐ Have 8 or more characters
☐ Not contain dictionary words
☐ Not containing a sequence of adjacent or repeated characters on your keyboard (e.g.
“qwerty”)
☐ I did not consider any policy
☐ Other (please specify)_______________

3- Did you create your new password by slightly changing your old password for this website?
☐ Yes
☐ No

4- Is the password that you have just created one that you have used in the past?
☐ Yes
☐ No
☐ Password has similarities to another password that I have used before.

5- If you created your new password based on one of your old passwords, which of the following
changes did you consider? (Please check all that apply.)

Word part: ☐ Not applicable ☐ Changed completely ☐ Changed slightly ☐ Capitalized letters
Numbers: ☐ Not applicable ☐ Added digits ☐ Deleted digits ☐ Substituted digits
Special characters: ☐ Not applicable ☐ Added symbols ☐ Deleted symbols ☐Substituted
symbols

 89

Attempt #4: User’s fourth login
[User will be prompted to login. This process is the same as in Attempt #2]
[Upon successful login, user will be brought to survey page]

Survey form:

1- How long have you been using a computer?

☐ 0–2 years
☐ 3–5 years
☐ 6–10 years
☐ More than 10 years

2- How do you usually create passwords for your accounts? (Please check all that apply.)

☐ Randomly generate a password using special software or apps
☐ Reuse a password that is used for another account
☐ Modify a password that is used for another account
☐ Create a new password using a familiar number or a name of a family member
☐ Choose a word and substitute some letters with numbers of symbols (for example ‘@’
for ‘a’)
☐ Use a passphrase consisting of several words
☐ Choose a phrase and use the first letters of each word
☐ Other (please specify) ______________

3- How do you store your passwords? Check all that apply.

☐ I store my passwords in a regular file / document on my computer.
☐ I store my passwords in an encrypted computer file.
☐ I use password management software to securely store my passwords.
☐ I store my passwords on my cellphone / smartphone.
☐ I save my passwords in the browser.
☐ I write down my password on a piece of paper.
☐ No, I do not save my passwords. I remember them.

4- If you have any additional feedback about passwords or this survey, please enter your
comments here.

 [User will be presented with: “Thank you for your participation in our research study. You have
now completed all the steps. You are entered into our drawing. You will need your password to
check if you have won the prize. Further instructions will be provided via email. Best of luck!”]

 90

APPENDIX C

HUMAN SUBJECT APPROVAL LETTERS

C.1 Approval Letter

Mon 3/10/2014 10:34 AM

To: Houshmand Yazdi, Shiva;
The Florida State University
Office of the Vice President For Research
Human Subjects Committee
Tallahassee, Florida 32306-2742

APPROVAL MEMORANDUM

Date: 3/10/2014

To: Shiva Houshmand Yazdi

Address: 4083
Dept.: COMPUTER SCIENCE
From: Thomas L. Jacobson, Chair
Re: Use of Human Subjects in Research
Novel extensions to probabilistic password cracking

The application that you submitted to this office in regard to the use of human subjects in the
proposal referenced above have been reviewed by the Secretary, the Chair, and one member of
the Human Subjects Committee. Your project is determined to be Expedited per per 45 CFR §
46.110(7) and has been approved by an expedited review process.

The Human Subjects Committee has not evaluated your proposal for scientific merit, except to
weigh the risk to the human participants and the aspects of the proposal related to potential risk
and benefit. This approval does not replace any departmental or other approvals, which may be
required.

If you submitted a proposed consent form with your application, the approved stamped consent
form is attached to this approval notice. Only the stamped version of the consent form may be
used in recruiting research subjects.

If the project has not been completed by 3/9/2015 you must request a renewal of approval for
continuation of the project. As a courtesy, a renewal notice will be sent to you prior to your
expiration date; however, it is your responsibility as the Principal Investigator to timely request
renewal of your approval from the Committee.

 91

You are advised that any change in protocol for this project must be reviewed and approved by
the Committee prior to implementation of the proposed change in the protocol. A protocol
change/amendment form is required to be submitted for approval by the Committee. In addition,
federal regulations require that the Principal Investigator promptly report, in writing any
unanticipated problems or adverse events involving risks to research subjects or others.

By copy of this memorandum, the Chair of your department and/or your major professor is
reminded that he/she is responsible for being informed concerning research projects involving
human subjects in the department, and should review protocols as often as needed to insure that
the project is being conducted in compliance with our institution and with DHHS regulations.

This institution has an Assurance on file with the Office for Human Research Protection. The
Assurance Number is FWA00000168/IRB number IRB00000446.

Cc: Sudhir Aggarwal, Advisor
HSC No. 2014.12320

The formal PDF approval
letter: http://humansubjects.magnet.fsu.edu/pdf/printapprovalletter.aspx?app_id=12320

C.2 Re-Approval Letter

Mon 3/16/2015 4:16 PM

To: Houshmand Yazdi, Shiva;
The Florida State University
Office of the Vice President For Research
Human Subjects Committee
Tallahassee, Florida 32306-2742

RE-APPROVAL MEMORANDUM

Date: 3/16/2015

To: Shiva Houshmand Yazdi

Address: 4083
Dept.: COMPUTER SCIENCE
From: Thomas L. Jacobson, Chair
Re: Re-approval of Use of Human subjects in Research
Novel extensions to probabilistic password cracking

Your request to continue the research project listed above involving human subjects has been
approved by the Human Subjects Committee. If your project has not been completed by
3/14/2016, you must request a renewal of approval for continuation of the project. As a courtesy,
a renewal notice will be sent to you prior to your expiration date; however, it is your

 92

responsibility as the Principal Investigator to timely request renewal of your approval from the
committee.

If you submitted a proposed consent form with your renewal request, the approved stamped
consent form is attached to this re-approval notice. Only the stamped version of the consent
form may be used in recruiting of research subjects. You are reminded that any change in
protocol for this project must be reviewed and approved by the Committee prior to
implementation of the proposed change in the protocol. A protocol change/amendment form is
required to be submitted for approval by the Committee. In addition, federal regulations require
that the Principal Investigator promptly report in writing, any unanticipated problems or adverse
events involving risks to research subjects or others.

By copy of this memorandum, the Chair of your department and/or your major professor are
reminded of their responsibility for being informed concerning research projects involving
human subjects in their department. They are advised to review the protocols as often as
necessary to insure that the project is being conducted in compliance with our institution and
with DHHS regulations.

Cc: Sudhir Aggarwal, Advisor
HSC No. 2015.15030

The formal PDF approval
letter: http://humansubjects.magnet.fsu.edu/pdf/printapprovalletter.aspx?app_id=15030

 93

APPENDIX D

SAMPLE CONSENT FORM

My name is Shiva Houshmand, and I am a graduate student in the Department of Computer
Sciences at the Florida State University. I am conducting a research study to understand how
users create and manage their passwords. You have been invited to participate because you have
confirmed that you are at least 18 years old.

If you agree to be in this study, you will be then asked to create a username and password to start
with. You will be advised to NOT provide a password that you currently use or have previously
used for another account. You will be asked a series of demographic questions such as age,
education, and gender. You are required to log in once a day for a total of four times during the
period of the study. Each time you log in, some multiple-choice questions will be asked related
to how you create and manage your passwords. You may be asked to change your password
during the logins. Each login should not take more than 5 minutes. If you finish all four days of
this survey, you will be entered into a drawing in which you can win a $25 worth Amazon gift
card. The drawing will be held at the end of the study and the winners will be notified via email.

All questionnaire responses and passwords will only be retained for the duration of the study.
Only researchers in this study will have access to the data. To maintain the confidentiality of
your records, the password or your answers will not be associated with your email address or any
other identifiable information. Your email address is only used to send follow up emails for the
result of the drawing and will be discarded after the duration of the study. The results of this
research study may be published, but only aggregate data will be reported. The records of this
study will be kept private and confidential to the extent permitted by law.

There are no known risks if you decide to participate in this research study. Your participation in
this study is completely voluntary. Your decision whether or not to participate will not affect
your current or future relations with the University. If you choose to participate, you are free to
withdraw at any time without penalty or risk. Participating in this research study may not benefit
you directly, but what we learn from this study would provide general benefits to the password
security area.

The researchers conducting this study are Shiva Houshmand and her advisor Dr. Sudhir
Aggarwal. If you have any questions or concerns about the questionnaire or about being in this
study, you may contact them at (---) ------- or at -----@my.fsu.edu, and ------@cs.fsu.edu. If you
have any questions or concerns regarding this study and would like to talk to someone other than
the researchers, you are encouraged to contact the FSU IRB at ---- ---- -----, -------- --------, ----- -
--, Tallahassee, FL, or (---) -------, or by email at -------------@magnet.fsu.edu.

By clicking I Accept, you confirm that you have read the above information, you have asked any
questions you may have had and have received answers, and you consent to participate in the
study.

 94

APPENDIX E

PSEUDO-CODE FOR TARGETED ATTACK

E.1 Algorithm for Modeling Differences

// find edit distance of two password strings using hierarchical algorithm, then determine if any
//of the most common changes have been applied and create a targeted grammar. Finally merge
//the targeted grammar with a comprehensive grammar.

procedure MODELDIFFERENCES

simple_base1= PARSESIMPLEBASESTRUCTURE (pass1)
simple_base2= PARSESIMPLEBASESTRUCTURE (pass2)
simple_transform = DL_EDITDISTANCE (simple_base1, simple_base2)
level1_distance = simple_transform.distance
if simple_transform.contains("t") then

changed_pass1 = REVERTTRANSPOSITION()
else

changed_pass1 = pass1
end if
transform = DL_EDITDISTANCE (changed_pass1, pass2)
level2_distance = transform.distance

// Create Target Grammar based on changes found
if base structures are the same then

add base structure to TGrammar
end if
if L components are the same then

add both capitalizations to TGrammar
end if
if transform.contains(“s”) and component is digit then

if number is incremented then
add (number + 1) to TGrammar

else if number is decremented then
add (number – 1) to TGrammar

end if
end if
if transform.contains(“i”) and component is digit and number is being repeated then

add the repeated number and the new base structure to TGrammar
end if
MERGEGRAMMAR (TGrammar, InitialGrammar)

end procedure

 95

E.2 Computation of Damerau-Levenshtein Edit Distance

procedure DL_EDITDISTANCE (pass1, pass2)

for (i = 0 ; i <= pass2.length + 1 ; i++) do //fill the first column
dist[i][0] = i
operation[i][0] = ‘i’

end for
for (j = 0 ; j <= pass1.length + 1 ; j++) do //fill the first row

dist[0][j] = j
operation[0][j] = ‘d’

end for
for (i = 0 ; i < pass2.length ; i++) do

for (j = 0 ; j < pass1.length ; j++) do
cost = (pass2[i] == pass1[j]) ? 0 : 1
if dist[i + 1][j] + 1 ≤ dist[i][j + 1] + 1 then

if dist[i + 1][j] + 1 ≤ dist[i][j] + cost then
dist[i + 1][j + 1] = dist[i + 1][j] + 1
operation[i + 1][j + 1] = ‘d’ //deletion

else
dist[i + 1][j + 1] = dist[i][j] + cost
operation[i + 1][j + 1] = ‘s’ //substitution

end if
else

if dist[i][j + 1] + 1 ≤ dist[i][j] + cost then
dist[i + 1][j + 1] = dist[i][j + 1] + 1
operation[i + 1][j + 1] = ‘i’ //insertion

else
dist[i + 1][j + 1] = dist[i][j] + cost
operation[i + 1][j + 1] = ‘s’ //substitution

end if
end if
if pass2[i] == pass1[j – 1] and pass2[i – 1] == pass1[j] then

operation[i + 1][j + 1] = ‘t’ //transposition
if dist[i + 1][j + 1] ≤ dist[i - 1][j - 1] + cost then

dist[i + 1][j + 1] = dist[i + 1][j + 1]
else

dist[i + 1][j + 1] = dist[i - 1][j - 1] + cost
end if

end for
end for
result = FINDOPERATIONS()
return result

end procedure

 96

E.3 Computation of Damerau-Levenshtein Backtracking

procedure FINDOPERATIONS ()
n = pass2.length;
m = pass1.length;

while (n > 0 || m > 0) do

if (operation[n][m] == ‘i’) then
op = "i" + op
n = n -1 //UP

else if (operation[n][m] == ‘d’) then
op = "d" + op
m = m -1 //LEFT

else if (operation[n][m] == ‘s’) then
if (dist[n - 1][m - 1] == dist[n][m]) then

op = "n" + op;
else

op = "s" + op;
end if
n = n -1 //DIAG
m = m -1

else if (operation[n][m] == ‘t’) then
op = "t" + op;
n = n - 2 //DIAG TWO CELLS
m = m - 2

end if
end while
return op

end procedure

 97

REFERENCES

[1] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek, “Password Cracking Using
Probabilistic Context Free Grammars,” Proceedings of the 30th IEEE Symposium on Security
and Privacy, May 2009.

[2] W. Burr, D. Dodson, R. Perlner, W. Polk, S. Gupta, E. Nabbus, “NIST special publication
800-63-1 electronic authentication guideline,” National Institute of Standards and Technology,
Gaithersburg, MD, April, 2006.

[3] Weir, Matt, Sudhir Aggarwal, Michael Collins, and Henry Stern. "Testing metrics for
password creation policies by attacking large sets of revealed passwords." In Proceedings of the
17th ACM conference on Computer and communications security, pp. 162-175. ACM, 2010.

[4] E. R. Verheul, “Selecting secure passwords,” CT-RSA 2007, LNCS 4377, pp 49-66, 2007.

[5] Shiva Houshmand, “Analyzing Password Strength and Efficient Password Cracking”,
Electronic Thesis, Treatises and Dissertations. Paper 3737, June 2011.

[6] D. Goodin. Why Passwords have never been weaker and crackers have never been stronger,
2012. [Online]. Ars Technica. Available: http://arstechnica.com/security/2012/08/passwords-
under-assault/, accessed June 8, 2015.

[7] M. Weir, Using Probabilistic Techniques to aid in Password Cracking Attacks, Dissertation,
Florida State University, 2010.

[8] RainbowCrack [Online]. available: http://project-rainbowcrack.com/table.htm, accessed June
8, 2015.

[9] AirCrack [Online]. Available: http://www.aircrack-ng.org/, accessed June 8, 2015.

[10] Oechslin ,P. 2003. Making a faster cryptanalytic time-memory trade-off. Advances in
Cryptology—CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729. Springer, 617–630

[11] PasswordLastic [Online]. Available: http://www.passwordlastic.com, accessed June 8, 2015.

[12] THC Hydra [Online]. Available: http://www.thc.org/thc-hydra/, accessed June 8, 2015.

[13] Ncrack [Online]. Available: http://nmap.org/ncrack/, accessed June 8, 2015.

[14] Medusa [Online]. Available: http://www.foofus.net/~jmk/medusa/medusa.html, accessed
June 8, 2015.

[15] Fgdump [Online]. Available: http://www.foofus.net/~fizzgig/fgdump/, accessed June 8,
2015.

 98

[16] Brutus [Online]. Available: http://www.hoobie.net/brutus/, accessed June 8, 2015.

[17] L0phtcrack [Online]. Available: http://www.l0phtcrack.com/, accessed June 8, 2015.

[18] Cain and Able [Online]. Available: http://www.oxid.it/cain.html, accessed June 8, 2015.

[19] ElcomSoft [Online]. Available: http://www.elcomsoft.com/, accessed June 8, 2015.

[20] AccessData [Online]. Available: http://www.accessdata.com/, accessed June 8, 2015.

[21] John the Ripper [Online]. Available: http://www.openwall.com/john/, accessed June 8,
2015.

[22] Hashcat [Online]. Available: http://hashcat.net/oclhashcat/, accessed June 8, 2015.

[23] T. Booth and R. Thompson, “Applying Probability Measures to Abstract Languages,” IEEE
Transactions on Computers, Vol. C-22, No. 5, May 1973.

[24] A. Narayanan and V. Shmatikov, “Fast Dictionary Attacks on Passwords Using Time-Space
Tradeoff,” in Proceedings of the 12th ACM conference on Computer and communications
security, ser. CCS ’05, 2005, pp. 364–372.

[25] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password models,” in Proc.
35th IEEE Symp. Secur. Privacy, May 2014, pp. 689–704.

[26] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin, L. F.
Cranor, and J. Lopez, “Guess Again (and Again and Again): Measuring Password Strength by
Simulating PasswordCracking Algorithms,” in Proceedings of the 33rd IEEE Symposium on
Security and Privacy, ser. SP ’12, 2012, pp. 523–537.

[27] C. Castelluccia, M. Durmuth, D. Perito, “Adaptive password-strength meters from Markov
models,” NDSS ’12, 2012.

[28] R. Veras, C. Collins, and J. Thorpe, “On the semantic patterns of passwords and their
security impact,” in Proc. Netw. Distrib. Syst. Secur. Symp., Feb. 2014.

[29] Yahoo Credentials. [Online]. Available: http://news.cnet. com/8301-1009_3-57470786-
83/hackers-post-450k-credentials-pilfered- from-yahoo, accessed June 8, 2015.

[30] A. Vance, “If your password is 123456, just make it hackme,” [Online]. New York Times,
January 2010, Available: http://www.nytimes.com/2010/01/21/technology/21password .html,
accessed June 8, 2015.

[31] Robert McMillan, “Phishing attack targets MySpace users,” [Online]. Available:
http://www.infoworld.com/d/security-central/phishing-attack-targets-myspace-users-614,
October 27, 2006, accessed June 8, 2015.

 99

[32] T. Warren, “Thousands of Hotmail Passwords Leaked,”
http://www.neowin.net/news/main/09/10/05/thousands-of-hotmail-passwords-leaked-online.

[33] Six Million Users’ Privacy Leaked. [Online]. Available: http://www.china- online-
marketing.com/news/anti-virus-news/csdn-tianya-renren-kaixin- hacked-6-million-users-privacy-
leaked/, accessed June 8, 2015.

[34] A list of popular password cracking wordlists, [Online]. Available:
http://www.outpost9.com/files/WordLists.html, accessed June 8, 2015.

[35] EOWL [Online]. Available: http://dreamsteep.com/projects/the-english-open-word-list.html,
accessed June 8, 2015.

[36] Most common male and female first names in the US [Online]. Available:
http://names.mongabay.com/, accessed June 8, 2015.

[37] Top 40,000 words from TV and movie scripts [Online]. Available:
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#TV_and_movie_scripts, accessed June
8, 2015.

[38] Shiva Houshmand, Sudhir Aggarwal, and Randy Flood. “Next Gen PCFG Password
Cracking.” IEEE Transactions on Information Forensics and Security, April 2015.

[39] De Luca, Alexander, Roman Weiss, and Heinrich Hussmann. "PassShape: stroke based
shape passwords." In Proceedings of the 19th Australasian Conference on Computer-Human
interaction: Entertaining User interfaces, pp. 239-240. ACM, 2007.

[40] Schweitzer, Dino, Jeff Boleng, Colin Hughes, and Louis Murphy. "Visualizing keyboard
pattern passwords." In Visualization for Cyber Security, 2009. VizSec 2009. 6th International
Workshop on, pp. 69-73. IEEE, 2009.

[41] Detlef Prescher, “A Tutorial on the Expectation-Maximization Algorithm Including
Maximum-Likelihood Estimation and EM Training of Probabilistic Context-Free Grammars,”
CERN Document Server, preprint, 2004.

[42] C. Manning and H. Schuetze, Foundations of Statistical Natural Language Processing. MIT
Press, 1999.

[43] Bonneau, Joseph. "The science of guessing: analyzing an anonymized corpus of 70 million
passwords." In Security and Privacy (SP), 2012 IEEE Symposium on, pp. 538-552. IEEE, 2012.

[44] Klein, Daniel V. "Foiling the cracker: A survey of, and improvements to, password
security." In Proceedings of the 2nd USENIX Security Workshop, pp. 5-14. 1990.

 100

[45] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password Strength: An Empirical
Analysis,” in Proceedings of the 29th conference on 13 Information Communications, ser.
INFOCOM’10, 2010, pp. 983–991.

[46] Michael Garey and David S. Johnson, “Computers and Intractability: A Guide to the Theory
of NP-Completeness,” W.H Freeman and Co. 1979.

[47] R. Waugh, No wonder hackers have it easy: Most of us now have 26 different online
accounts - but only five passwords. [Online]. Available:
http://www.dailymail.co.uk/sciencetech/article-2174274/No-wonderhackers-easy-Most-26-
different-online-accounts-passwords.html, accessed June 8, 2015.

[48] D. Florencio and C. Herley, “A Large-Scale Study of Web Password Habits,” in
Proceedings of the 16th International Conference on the World Wide Web, 2007, pp. 657–666.

[49] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer, N. Christin, and
L. F. Cranor. Encountering stronger password requirements: User attitudes and behaviors. In 6th
Symposium on Usable Privacy and Security, July 2010.

[50] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The Tangled Web of Password
Reuse,” NDSS’14, February 23-26.

[51] Y. Zhang, F. Monrose, M. Reiter, “The security of modern password expiration: an
algorithmic framework and empirical analysis,” Proceeding of CCS’10, October 4-8, 2010, pp.
176-186.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68–73.

[52] F. J. Damerau, “A Technique for Computer Detection and Correction of Spelling Errors,”
Commun. ACM, vol. 7, no. 3, pp. 171–176, Mar. 1964.

[53] Shiva Houshmand, and Sudhir Aggarwal. “Building Better Passwords using Probabilistic
Techniques.” ACSAC’12: Proceedings of the 28th Annual Computer Security Applications
Conference, December 2012, pages 109-118.

[54] Shannon Riley. Password Security: What Users Know and What They Actually Do.
Usability News, 8(1), 2006.

[55] Furnell, S., “An assessment of website password practices,” Computers & Security 2007
445-451.

[56] X. de Carné de Carnavalet and M. Mannan, “From very weak to very strong: Analyzing
password-strength meters.” NDSS ’14, 23-26 February 2014,

[57] Philip G. Inglesant, M. Angela Sasse, “The true cost of unusable password policies:
password use in the wild,” Proc. of the 28th international conference on Human factors in
computing systems, April 10-15, 2010, Atlanta, Georgia.

 101

[58] Charoen, D., Raman, M., and Olfman, L., “Improving end user behavior in password
utilization,” Systemic Practice and Action Research, 21(1), 55. 2008.

[59] A. Adams and M. A. Sasse, “Users are not the enemy,” Communications of the. ACM,
42(12):40–46, 1999.

[60] S. Schechter, C. Herley, M. Mitzenmacher, “Popularity is everything: a new approach to
protecting passwords from statistical-guessing attacks”, HotSec'10: Proceedings of the 5th
USENIX conference on Hot Topics in Security, Aug 2010.

[61] Kaspersky Labs, Perception and Knowledge of IT threats: the consumer’s point of view.
[Online]. Available: http://www.kaspersky.com/downloads/pdf/kaspersky-lab_ok-consumer-
survey-report_eng_final.pdf, accessed June 8, 2015.

[62] Shiva Houshmand, Sudhir Aggarwal, and Umit Karabiyik. “Identifying Passwords Stored
on Disk.” Eleventh IFIP WG 11.9 International Conference on Digital Forensics, January 2015.

[63] Detective Steve Grimm, Webster Grove Police Department, personal communication 2014.

[64] C. Hargreaves, H. Chivers, Recovery of encryption keys from memory using a linear scan,
Third International Conference on Availability, Reliability and Security, pp. 1369-1376, 2008.

[65] S. Lee, A. Savoldi, S. Lee and J. Lim, Password recovery using an evidence collection tool
and countermeasures, In proceedings of Intelligent Information Hiding and Multimedia Signal
Processing, pp. 97-102, 2007.

[66] D. Riis, Google Chrome Password Recovery. [Online]. Available:
http://bitbucket.org/Driis/chromepasswordrecovery, accessed June 8, 2015.

[67] S. Garfinkel, N. Beebe, L. Liu, and M. Maasberg, Detecting thretenting insiders with
lightweight media forensics, Technologies for Homeland Security (HST), pp. 86-92, 2013.

[68] Guidance Software, Encase. [Online]. Available: http://www.guidancesoftware.com/,
accessed June 8, 2015.

[69] Identity Finder, Sensitive Data Manager. [Online]. Available:
http://www.identityfinder.com/us/Business/IdentityFinder/SensitiveDataManager, accessed June
8, 2015.

[70] The Sleuth Kit. [Online]. Available: http://www.sleuthkit.org, accessed June 8, 2015.

[71] Apache OpenNLP Sentence detection tool. [Online]. Available: https://opennlp.apache.org,
accessed June 8, 2015.

[72] Digital Corpora Govdocs1 [Online]. Available:http://digitalcorpora.org, accessed June 8,
2015.

 102

BIOGRAPHICAL SKETCH

Shiva Houshmand is a Ph.D. candidate in Computer Science at Florida State University.

She received her B.Sc. in 2008 from the University of Tehran and her M.S. in 2011 from Florida

State University both in Computer Science. Her research interests include computer and network

security, authentication, usable security, digital forensics and machine learning. She has been

working on developing metrics for analyzing password strength and probabilistic techniques for

more effective password cracking. She is also interested in security and privacy issues in the

Internet and has been working on search, entity resolution and identification problems in the

Internet.

