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ABSTRACT 
 
 

Passwords are critical for security in many different domains such as social networks, 

emails, encryption of sensitive data and online banking. Human memorable passwords are thus a 

key element in the security of such systems. It is important for system administrators to have 

access to the most powerful and efficient attacks to assess the security of their systems more 

accurately. The probabilistic context-free grammar technique has been shown to be very 

effective in password cracking. In this approach, the system is trained on a set of revealed 

passwords and a probabilistic context-free grammar is constructed. The grammar is then used to 

generate guesses in highest probability order, which is the optimal off-line attack. The initial 

approach, although performing much better than other rule-based password crackers, only 

considered the simple structures of the passwords. This dissertation explores how classes of new 

patterns (such as keyboard and multi-word) can be learned in the training phase and can be used 

to substantially improve the effectiveness of the probabilistic password cracking system. 

Smoothing functions are used to generate new patterns that were not found in the training set, 

and new measures are developed to compare and improve both training and attack dictionaries. 

The results on cracking multiple datasets show that we can achieve up to 55% improvement over 

the previous system. A new technique is also introduced which creates a grammar that can 

incorporate any available information about a specific target by giving higher probability values 

to components that carry this information. This grammar can then help in guessing the user’s 

new password in a timelier manner. Examples of such information can be any old passwords, 

names of family members or important dates. A new algorithm is described that given two old 

passwords determines the transformations between them and uses the information in predicting 

user’s new password.  

A password checker is also introduced that analyzes the strength of user chosen 

passwords by estimating the probability of the passwords being cracked, and helps users in 

selecting stronger passwords. The system modifies the weak password slightly and suggests a 

new stronger password to the user. By dynamically updating the grammar we make sure that the 

guessing entropy increases and the suggested passwords thus remain resistant to various attacks. 

New results are presented that show how accurate the system is in determining weak and strong 

passwords.  



 xi 

Another application of the probabilistic context-free grammar technique is also 

introduced that identifies stored passwords on disks and media. The disk is examined for 

potential password strings and a set of filtering algorithms are developed that winnow down the 

space of tokens to a more manageable set. The probabilistic context-free grammar is then used to 

assign probabilities to the remaining tokens to distinguish strings that are more likely to be 

passwords. In one of the tests, a set of 2,000 potential passwords winnowed down from 49 

million tokens is returned which identifies 60% of the actual passwords. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Despite much research in newer authentication techniques such as biometric based 

techniques or graphic based authentication, passwords still remain the primary method for 

authentication. Passwords are critical for security in many different domains such as social 

networks, emails, encryption of sensitive data and online banking. Because of the fairly universal 

use of passwords, it is often necessary for law enforcement to be able to crack passwords and 

thus it has been important to make progress in cracking techniques. It is also important for 

system administrators to have access to the most powerful and efficient attacks to assess the 

security of their systems more accurately.  

In an offline password cracking session, the attacker has already obtained the password 

hashes or encrypted files. Since the hash functions used to store passwords are one-way 

functions and cannot be easily inverted, the attacker repeatedly makes a password guess, applies 

the same hash algorithm to the guess and then compares it with the obtained hash to check 

whether they match or not. An important advance in password cracking was the work proposed 

by Weir et al. [1]. In this approach a probabilistic context-free grammar was used to generate 

guesses in highest probability order. This approach, although shown to be very effective 

compared to other password crackers, only considered the simple structures of the passwords and 

represented passwords simply as sequences of symbols, digits and alphabet characters.  

The novel contributions in this dissertation can be categorized into the followings: (1) I 

improve the probabilistic password cracking technique of Weir et al. [1] by learning new classes 

of patterns (such as keyboard and multi-word patterns) in the training. I also develop new metrics 

for comparing and analyzing attack dictionaries and show that these techniques can improve the 

efficiency of password cracking by 55%; (2) I develop a new technique to perform targeted 

password cracking by incorporating the available information about the target into the 

probabilistic context-free grammar; (3) I then describe a system that can leverage from the 

knowledge gained from password cracking techniques and use it to estimate the strength of user 

chosen passwords and help users to create stronger passwords; and (4) I show another 
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application of the probabilistic context-free grammars by developing a system that aims to find 

stored passwords on disk and media in order to help investigators in digital forensics area.  

In this dissertation I explore how a class of new patterns (such as keyboard and multi-

word patterns) can be learned in the training phase and can be used systematically to continue 

cracking in highest probability order and to substantially improve the effectiveness of the 

password cracker. It was assumed that keyboard patterns result in strong passwords because they 

create seemingly random strings but can nevertheless be easily remembered. Multi-words (or 

passphrases) have been also widely proposed as a way to build stronger and more memorable 

passwords. They are also often used when longer passwords are required because they are 

supposedly more resistant to brute force attacks. These two main classes of patterns are used 

commonly in passwords and the typical approach to attack such patterns is to add a list of 

common patterns into an attack dictionary. In this dissertation I first identify the patterns in the 

training password list, and then learn the patterns by incorporating them into the probabilistic 

context-free grammar. I also explore the use of smoothing functions to generate new patterns that 

were not found in the training set.  

In dictionary-based attacks, a list of words called an attack dictionary is used along with 

different mangling rules to create password guesses. Therefore in order to correctly guess a 

password the attacker needs to not only apply the right mangling rule but the right word also 

needs to be included in the dictionary. Typically, the attacker uses a dictionary that has been 

shown to be effective previously. In this dissertation I develop new measures to compare and 

analyze attack dictionaries. The experiments show that choosing the right dictionary can improve 

the password cracking up to 30%.  

I also introduce a new method for targeted attacks. Studies show that when users change 

their passwords, they often slightly modify their old password instead of creating a new one. I 

describe how the information we have about targets can be used to help crack such passwords. 

Information could be names of family members, dates (such as birthday), as well as any previous 

passwords. I also describe an algorithm that given a set of one or more password sequences 

detects the differences between two or more old passwords and predicts the new password.  

This research not only improves password cracking and reduces the amount of time 

required for cracking without any additional hardware, but also is applicable in many other areas. 

There have been many attempts to quantify password strength. National Institute of Standards 
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and Technology (NIST) publication used entropy to represent the strength of a password [2], 

however, researchers [3, 4] showed that the use of Shannon entropy as defined in NIST is not an 

effective metric for gauging password strength. I have also shown that the probabilistic context-

free grammar technique can be used to create a password checker that analyzes the strength of 

user chosen passwords by estimating the probability of the passwords being cracked and helps 

users in selecting stronger passwords [5]. This system modifies the weak password slightly and 

suggests a new stronger password to the user. The system also dynamically updates the grammar 

that generally ensures the guessing entropy increases and the suggested passwords thus remain 

resistant to various attacks. In this dissertation I review this work and discuss new result of using 

this approach in estimating the strength of passwords. Our tests show that weak passwords can 

be distinguished from strong ones with an error rate of 1.43%. The system can also modify weak 

passwords to a set of strong passwords of which only 0.27% could be cracked.  

The importance of this work can be seen in its applications in different areas. With the 

growing number of accounts users need to keep track of and with more complex password 

policies, users increasingly tend to store their passwords in some manner. Many users store their 

passwords on their computers or cellphones in plaintext. In a recent survey, it was found that 

73% of users store their passwords and 34% of those save them on computers or cell phones 

without any encryption. In this dissertation, the problem of “identifying passwords on media” is 

proposed in which strings on the disk that are more likely to be passwords are identified. 

Automated identification could be very useful to investigators who need to recover potential 

passwords for further use. The problem is nontrivial because the media typically contains many 

strings in different locations on disk. I developed a novel approach that can successfully 

determine a good set of candidate strings among which the stored passwords are very likely to be 

found. By training on a set of revealed passwords and creating the probabilistic context-free 

grammar using our new patterns, we have a very good model of the way users create their 

passwords. This allows us to identify regular strings from passwords successfully.  

In chapter 2, I explore related work and review existing techniques for password 

cracking. In chapter 3 I discuss our new approach of learning new patterns including keyboard 

and multiword; I also discuss our new metrics for comparing and improving attack dictionaries. 

In chapter 4, I introduce the work on targeted attack and how to create grammars that capture 

targeted information about the individuals. In chapter 5, I review how to use the probabilistic 
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context-free grammar technique to estimate the strength of passwords and I discuss the results. In 

chapter 6, I discuss our approach in identifying stored passwords on large disk. Finally, in 

chapter 7, I present conclusion and future work. 
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CHAPTER 2 
 

PASSWORD CRACKING 
 
 

Internet based systems such as online banking and online commerce continue to rely on 

passwords for authentication security. Passwords are the most common authentication technique. 

Human memorable passwords are thus a key element in the security of such systems. Passwords 

are easy to use in different domains such as social networks, emails, encryption of files and 

disks, and online banking protecting our sensitive data. Passwords have very convenient features 

such as no additional hardware to carry, ease of change, user acceptance and compatibility with 

encryption systems. Passwords have been important to both attackers that try to gain 

unauthorized access to services, and legitimate users trying to protect their clients’ data or their 

own information. In this chapter I first give an overview of general password cracking 

approaches. I describe what we mean by password cracking; discuss some offline password 

cracking techniques, and review research work in this area. I specifically review the probabilistic 

password cracking technique (PPC) of [1] in some detail that is the basis for understanding the 

new approach proposed in this dissertation in chapter 3. I also describe the characteristics of the 

datasets used for training and testing throughout this dissertation. More detailed background 

work in each specific area is explored and presented at the beginning of each chapter. 

 
2.1 Background and Related Work 

 
In general, there are two types of password cracking: online and offline. In an online 

password cracking the system is still operational. The attacker enters a pair of username and 

password to the system, and the server verifies whether they match or not. A simple example of 

such attack is someone trying to get access to someone else’s facebook account by guessing their 

passwords, or trying to find a pin code to unlock a cell phone. The attacker can use different 

tools to generate password guesses and try them on the website. The speed of online password 

cracking is closely related to the Internet connection speed and the target server since every 

guess needs to be sent over to the server. Various security features have been implemented in 

order to protect accounts against online attacks. Some of the common ways to prevent online 

password cracking include:  
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1. Account locking: The most common approach is to allow only a limited number of failed 

logins for each account. After a limited number of tries the system might lock the account 

and no further tries are allowed, sometimes for a period of time or sometimes other security 

questions are asked to prevent any unauthorized access. However, this method is vulnerable 

to global online dictionary attacks in which the attacker tries a password for all accounts in 

the system or each time for a different account to avoid account locking.  

2. Delayed response: In this approach the server does not respond immediately after getting the 

username and password, but delays the response for a while. In this way, the attacker cannot 

try a large number of passwords in a reasonable time. The attacker can still try different 

accounts in parallel. 

3. CAPTCHAS: Captchas have been used to distinguish human beings from computers. In this 

approach, the client is asked to enter information from a visual image with twisted words in 

addition to entering the username and password. Sometimes the captcha only appears after 

the first failed attempt. Nowadays many techniques have been developed to automatically 

break captchas. However, many new captcha schemes are still being proposed.  

In an offline password cracking attack, on the other hand, the attacker has already 

obtained the password hashes or encrypted files and then tries to decrypt the file, or find the 

password. The attacker has already evaded the security features on the server. At this point the 

attacker can try different guesses at the speed his hardware supports. Since the hash functions 

used to store passwords are one-way functions and cannot be easily inverted, the attacker needs 

to repeatedly make password guesses, apply the same hash algorithm used for the target hash and 

compare the two hash values. If they match the password is broken, if not this process is repeated 

until a match is found or the attacker runs out of time. In this approach there is no limitation on 

the number of guesses the attacker can make to find the password, except the time he is willing 

to spend since the attacker is no longer limited by the system’s policies and can crack the 

passwords at his leisure. The speed of the cracking is dependent on the resources available to the 

attacker. Using multiple machines or a GPU can make the cracking thousands of times faster [6]. 

Offline password cracking is often used as a post exploit method after an attacker has gained 

access to a computer or a website to retrieve more information about other users or other 

resources in the system. The attacker can use the cracked passwords to login to the user’s 
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account on the same system and possibly other systems since many users reuse their passwords 

between different websites.  

Password cracking is typically considered as an attack to gain unauthorized access to a 

system. However, offline password cracking can be quite useful for other purposes such as 

helping users recover their forgotten passwords. It is often necessary for law enforcement to 

crack passwords for an account, a password protected file, or to decrypt an encrypted disk in 

order to solve their cases. System administrators often try cracking users’ passwords in order to 

assess the security of the system. Corporations also try offline password cracking techniques to 

find passwords of machines for which the password has been forgotten or for which the 

password is no longer available because an employee has left. Therefore, it is important to have 

access to the most powerful and efficient password cracking techniques. In this work we mainly 

focus on offline password cracking.  

 
2.1.1 Offline Password Cracking Techniques 
   

In offline password cracking, the attacker repeatedly makes guesses, applies the hash 

algorithm and compares the hash with the target hash value. Thus the most important aspect of 

password cracking is generating the guesses. We can categorize the most common approaches 

for generating guesses in offline password cracking into three main categories as follows: 

(1) Dictionary attacks: In this approach the attacker tries a list of common words called a 

dictionary. The dictionary can also be used along with mangling rules that modify words and 

create different password guesses. A mangling rule, for example, can be appending a specific 

digit to the end of a dictionary word, or lower casing the dictionary word. This technique is 

usually fast and very popular, but attackers are still limited by the number of word-mangling 

rules they can apply. For example, adding a two-digit number to the end of each word in the 

dictionary will make the number of guesses a hundred times larger. This might delay trying other 

guesses that might be more useful. As can be seen, the most important challenge for most of the 

dictionary attacks is choosing the right mangling rules since each rule results in a large number 

of guesses when the input dictionary is large. The dictionary used in these types of attacks is 

usually a list of words that are more likely to be used by users as passwords or even passwords 

that have been cracked previously. Additional words from different languages can also be added 
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to the dictionary, particularly in cases where such linguistic information can be associated with 

the target of attack.  

(2) Brute force attacks: In this approach the idea is to try the entire possible password space until 

the correct one is found. For example for a six-character password using a full key space, we can 

create over 697 billion combinations. While this technique is guaranteed to find the password, it 

is not feasible for very long passwords due to time and resource constraints. A brute force attack 

takes a lot of resources and a lot of time to perform so it is usually better to try this type of attack 

at the end of the cracking session when there is no better option. Because of this, attackers try to 

use more computationally efficient techniques to crack at least some of the passwords in the 

collection of accounts in their possession in a reasonable time.  

(3) Rainbow tables: In offline password cracking the attacker makes a guess and then applies the 

hash function to the password guess. Often, the time consuming part is the hashing part 

depending on the type of hash being used. A rainbow table is a pre-computed lookup table that 

contains plaintext password guesses along with their hashes. In this approach, the attacker does 

not need to generate the guesses, but just looks up the target hash in the rainbow table. This can 

reduce the time of the password cracking tremendously. However, rainbow tables are not 

beneficial when salted hash values are used (a random data called salt is used along with the 

password to the hash function). The rainbow tables usually use a time-memory trade off 

technique known as chains to decrease the space requirements. The chain length value is 

determined when creating the rainbow table. When using a rainbow table with longer chain 

length, more hashes can be stored in the same amount of disk space, but it will make the speed of 

the look up slower and the possibility of the collisions higher [7]. For further information about 

rainbow tables please see [8] 

 
2.1.2 Existing Password Cracking Tools 
 

There are many existing tools available for password cracking. When choosing the right 

tool for password cracking many requirements need to be considered such as the platform you 

want to use the tool on, the capability of running it in parallel or on GPUs, whether or not it can 

be distributed among different systems, and also whether it is an offline or online password 

cracking tool. For example AirCrack [9] is a tool for WEP and WPA key cracking. It is free and 

open source and has been used for penetration testing. It works both on Linux and Windows.  
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The rainbow crack project [8] is a general-purpose implementation of Philippe Oechslin’s 

faster time-memory trade-off technique [10]. It cracks hashes with rainbow tables. It takes a long 

time to pre-compute the tables but it can be hundreds of times faster than a brute force cracker 

once the pre-computation is finished. PasswordLastic [11] is a Windows and Office password 

recovery tool. THC Hydra [12], Ncrack [13] and Medusa [14] are Online Password Crackers 

specifically for network services and online websites.  

In Medusa the brute-force testing can be performed against multiple hosts, users or 

passwords concurrently because of its parallel capabilities. It also has a modular design, which 

makes it easy to modify and add different features to it. Fgdump [15] is a newer version of the 

pswdump tool for extracting NTLM and LanMan password hashes from Windows. It also 

attempts to disable antivirus software before running. Brutus [16] is another Brute force online 

password cracker. It is free and only available for Windows. 

 
 

 
Fig. 2.1 Screenshot of L0phtcrack Password Cracker 

 
 
L0phtCrack [17] cracks Windows passwords from hashes, which it can obtain (given 

proper access) from stand-alone Windows workstations, networked servers, primary domain 
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controllers, or Active Directory. It was marketed for penetration testing of system administrators. 

It has a very nice GUI and uses pre-computed password dictionaries, gives summary reports and 

supports foreign character sets for brute force attacks. A screenshot of this software can be seen 

in Figure 2.1. 

Cain & Abel [18] is a password recovery tool for Microsoft Operating Systems. It can 

recover passwords by sniffing the network, cracking encrypted passwords using dictionary, 

brute-force and cryptanalysis attacks, recording VoIP conversations, decoding scrambled 

passwords, revealing password boxes, uncovering cached passwords and analyzing routing 

protocols. What makes Cain & Abel popular is that it is very effective in collecting passwords 

and password hashes from computers on local network. The downside of this program is that the 

password cracking tool is only effective in cracking weak passwords since its word mangling 

rules are limited. It has a built in support for creating rainbow tables and can use online hash 

databases. 

ElcomSoft [19] is password recovery software, which recovers passwords protecting 

office documents, ZIP and RAR archives. It can perform password cracking on multiple 

computers, CPU cores and networked workstations to speed up the recovery. The same group 

has also recently released a forensic tool providing access to information stored in disks and 

volumes encrypted with BitLocker, PGP and TrueCrypt. The product can attack plain-text 

passwords protecting the encrypted containers with a range of advanced attacks including 

dictionary, mask and permutation attacks in addition to brute force. Although the tool supports 

brute force it mostly takes advantage of a variety of smart attacks that include a combination of 

dictionary attacks, masks and advanced permutations. The downside however is that it does not 

allow the attacker to use their own custom word mangling rules to use in a dictionary based 

attack. 

AccessData [20] also has a decryption and password cracking software. It leverages 

graphic processing units on Microsoft Windows machines with CUDA-enabled GPUs. It can 

analyze multiple files at one time. It also has the ability to recover multilingual passwords. It 

supports a distributed network attack, which uses the power of machines across the network to 

decrypt passwords. DNA (Distributed Network Attack) manager coordinates the attack, 

assigning small portions of the key search to machines distributed in the network. It provides a 
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nice and easy GUI to read statistics and graphs. It also lets users add dictionaries and optimize 

for password attacks for specific languages. It also supports rainbow table attacks. 

John the Ripper [21] is a fast password cracker for UNIX/Linux and Mac OS X. Its 

primary purpose is to detect weak Unix passwords, though it supports hashes for many other 

platforms as well. There is an official free and open source version and a community-enhanced 

version (with many contributed patches). It has many hash functions built into it and it has the 

ability to accept guesses from an external program piped into it. Therefore, it is easy to use the 

hash functions implemented by John the Ripper for different password sets and for testing. It is 

also possible to export guesses generated by it to other programs in order to get statistics for 

testing and comparing purposes. John the Ripper is one of the most recognized password 

crackers, is easy to use and has a community that keeps adding on patches and more capabilities 

to it. Screenshot of John the Ripper options are shown in Figure 2.2. 

 
 

 
Fig. 2.2 Screenshot of John the Ripper v1.7.9-jumbo-7 Options 
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Hashcat [22] is a command line interface application designed to take advantage of 

multiple cores of modern CPUs for faster password cracking. Hashcat works with both CPU and 

GPUs and supports multi-threading. It supports more than 40 different hash types and many 

attack modes such as dictionary attacks, rule-based attacks, table lookups, and brute force.  

The main difference between the existing tools is not the technique they are using for 

generating the guesses, but the different types of hashing algorithms that they support or the 

operating systems they work on. Almost all of these password crackers use the brute force 

technique or use dictionary attacks with mangling rules. Some can combine both and make brute 

force faster with some improvements. There wasn’t much work or improvement in the algorithm 

used for password guessing until the probabilistic password cracking work (PPC) [1] in which a 

context-free grammar is constructed by training on real user passwords. The grammar in turn is 

used to generate guesses in highest probability order. We review this work next. We later 

compare the result of our improved password cracker with PPC and two of the most popular 

password crackers (John the Ripper and Hashcat) described above.  

 
2.1.3 Probabilistic Password Cracking (PPC) 
  

The explanations in this section are drawn from Weir et al. [1] where the authors used 

probabilistic context-free grammars to model the derivation of real user passwords and the way 

users create their passwords. The basic idea of this work is that not all the password guesses have 

the same probability of being the target password. For example, appending the number “2015” to 

a password guess might be more probable than appending a random number “6710” at the end of 

a dictionary word since users are more likely to use dates and year in their passwords. The main 

idea is then to generate guesses in a decreasing order of probability.  

A context-free grammar is defined as G = (V, Σ, S, P), where: V is a finite set of 

variables (or non-terminals), Σ is a finite set of terminals, S is the start variable, and P is a finite 

set of productions of the form α → β, where α is a single variable and β is a string consisting of 

variables or terminals. The set of all strings derivable from the start symbol is the language of the 

grammar. Probabilistic context-free grammars [23] have probabilities associated with each 

production such that for a specific left-hand side variable, all the associated production 

probabilities add up to 1. In Weir et al. [1], strings consisting of alphabet symbols are denoted as 

L, digits as D, special characters as S and Capitalization as C. The authors also associate a 
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number to show the length of the substring. For example, the password “football123!$” would be 

L8D3S2. Such strings are called the base structures. There are two steps for this technique: the 

first is constructing the probabilistic context-free grammar from a training set of publicly 

disclosed real user passwords, and the second is generating the actual guesses in decreasing 

probabilistic order using the context-free grammar.  

2.1.3.1 Training. The first step is to automatically derive all the observed base structures 

from the training set of passwords and their frequency of appearance in the training set. Then the 

same information for the probability of the digits, special characters and capitalization will be 

obtained from the training set.  

 The probability of any string derived from the start symbol is then the product of the 

probabilities of the productions used in its derivation. Table 2.1 shows a very simple example of 

a probabilistic context-free grammar.  

 
 

Table 2.1 Example of a Probabilistic Context-Free Grammar 

Left Hand Side Right Hand Side Probability 
Sà D3L3S1 0.8 
Sà S2L2 0.2 
D3à 123 0.76 
D3à 987 0.24 
S1à ! 0.52 
S1à # 0.48 
S2à ** 0.62 
S2à !@ 0.21 
S2à !! 0.17 
L3à dog 0.5 
L3à cat 0.5 

 
 

Using this grammar, for example, we can derive password “987dog!” with probability 

0.04992. Note that in this work the words replacing the L part of base structures come from the 

dictionary with probabilities equal to one over the number of words of length i. 

 
S à  D3L3S1 à  987L3S1à987dogS1à987dog! 

0.8 × 0.24 × 0.5 × 0.52 = 0.04992 
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2.1.3.2 Probability Smoothing. No matter how large the training set, it will not include 

all possible values for digits, special symbols and base structures. There are many numbers and 

combinations of the special characters that may not occur in the training set. If a specific number 

is not included in the grammar, it will not be used when generating guesses. Ideally, a good 

password cracker needs to try all possible values. In order to solve this problem, the authors [7] 

added the values that were not found in the training set to the context-free grammar with lower 

probability values. Let C be number of different categories, and Ni be the number of items found 

in ith category. They used a variant of Laplace smoothing where the probability of each element 

i is as follows: 

𝒑𝒊 =
𝑵𝒊!𝜶
𝑵𝒊!𝑪𝜶

                                                             (2.1) 

where α is between 0 and 1. This has been implemented only for digits and special symbols 

below a certain length.  

 As an example, if we consider smoothing the probabilities of digits of length two, C=100 

since there are 100 different numbers of length 2. Suppose α = 0.1 and we have found “11” 8 

times, “99” 12 times, and “22” 30 times. The probability of all the other digits that are not found 

in the training set can be calculated as follows: 

𝑝! =
0+   0.1

8+ 12+ 30 + 100  ×0.1 =
0.1
60 = 0.0016 

 
2.1.3.3 Guess Generating. After obtaining the probabilistic context-free grammar by 

training on a set of real user passwords, the guess generator generates password guesses in a 

decreasing order of the probability using the context-free grammar obtained from the previous 

step. It uses an attack dictionary to replace the alpha strings in base structures. It can take more 

than one dictionary with different probabilities associated to each. While it is not hard to 

generate the most probable password guess (you just need to replace all the base structures with 

the highest probability pre-terminals and then selects the pre-terminal with the highest 

probability), generating the next password guesses is not trivial. The authors have developed an 

algorithm called “Deadbeat Dad” which uses a priority queue and is also efficient in terms of 

memory usage. As each pre-terminal is popped from the queue and password guesses related to 

that pre-terminal are generated, the function determines which children of that node have to be 

pushed into the priority queue [7].  
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Their experiments show that using a probabilistic context free grammar to create the 

word-mangling rules through training over known password sets can be a good approach. It 

allows us to quickly create a rule set to generate password guesses for use in cracking unknown 

passwords. When compared against the default rule set used in John the Ripper, this method 

outperformed it by cracking 28% - 129% more passwords, given the same number of guesses. 

Since this password cracker is one the most recent techniques and has been shown to be very 

effective in cracking passwords, we built upon this system to capture more patterns in passwords. 

I was fortunate to have access to all the relevant code, and was able to use the system as a basis 

for my work to implement the new password cracker, discussed in chapter 3. 

 
2.1.4 Recent Password Cracking Techniques 
 

The most well-known password cracking algorithms are those that are based on Markov 

models [24] and the probabilistic context-free grammar [1]. In this dissertation we mainly focus 

on the probabilistic context-free grammar approach of Weir et al. [1] and compare our results 

against this work since it is often cited by many authors [25, 26] as the state-of-the-art in 

password cracking. In this section, however, we discuss two of the most recent studies in 

password cracking that claim to perform better than the original PPC [1]. Later in chapter 3, the 

result of our new password cracker is compared against these two approaches. 

Ma et al. [25] explored different probabilistic models for password cracking extensively. 

The authors conducted studies on different Markov models with different normalization 

techniques and compared it against original PPC [1] and found that the whole-string Markov 

model outperforms PPC. Whole string Markov model has been used in John the Ripper password 

cracker [21] and the adaptive password strength meter [27]. In an n-gram Markov model the 

probability of each character is conditioned on the probability of the n characters that come 

before it. The probability of each string is then calculated by multiplying the conditioned 

probabilities. The work by Ma et al. [25] does not generate guesses in highest probability order. 

The authors only estimate the probability of passwords and in order to show the effectiveness of 

the cracker they generate probability-threshold graphs in which they only calculate the 

probability of each password to see where it would have appeared if they were trying to crack it.  

Veras et al. [28] created a system to semantically classify passwords and generate guesses 

by combining the probabilistic context-free grammar approach [1] with the natural language 
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processing technique. In this section we briefly review their work. Later in chapter 3 I show the 

result of comparing our work and discuss how their approach is different than ours. 

Veras et al. [28] focus on classifying words by their semantic content. The authors first 

generate all possible segmentations of a password and then determine the ones with the highest 

coverage using a source corpus. N-gram probabilities from a reference corpus are used to select 

the most probable segmentation with a back-off approach. Once the words are broken down, the 

authors tag each word with its part of speech using NLTK. The authors use WordNet to classify 

the words into semantic categories and use these categories to develop a context-free grammar. 

While this work has some drawbacks as explained later, it can be a useful guide in our future 

work applying smoothing to multiwords.  

 
2.2 Characteristics of Datasets  

 
Throughout this research study we use real user password lists that have been publicly 

disclosed as a result of hacking attacks. Hackers usually post the obtained password sets to 

forums or on compromised web servers. Some of the datasets have been captured as plaintext as 

a result of a phishing attack or because the webserver stored passwords in plaintext. 

Unfortunately, not all passwords in these datasets represent real passwords. For example, in 

some phishing attacks, some users recognized the phishing site and entered irrelevant data. Other 

datasets have been obtained as hash sets and have been broken by hackers and password 

communities.  

We test the effectiveness of our system throughout this work using several different 

datasets of revealed passwords. In our tests, we always randomly select a number of the 

passwords as our training and test sets. We ensure that the test set is always different from our 

training set. In this section, we describe the revealed password sets, and how we create our 

datasets using these password sets. We also explore some characteristics and statistics of the 

datasets referenced throughout this dissertation.  

(1) Yahoo Set: This set is one of the most recent plaintext password sets that has been 

leaked by hackers in 2012. It contains about 453,000 login credentials. The data appears to have 

originated from Yahoo Voices platform and is a result of an SQL injection attack [29]. We have 

randomly chosen 300,000 passwords from this set as our training set and we call this set Yahoo-

training. The remaining 142,762 passwords create our test set (Yahoo-test). 
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(2) Combined Set: Our goal in general in our tests was to have reasonable and similar 

sized test sets wherever possible. We also wanted to use as many revealed password sets as we 

could for training. In this set, we used a mix of passwords from different revealed sets. 

Combined-training contains ½ million from Rockyou [30], combined with 30,998 MySpace [31] 

and 4,874 from Hotmail [32] passwords. Combined-test contains the same number of passwords 

from the original lists as in Combined-training. Note that these two sets do not overlap and 

contain different passwords.  

The Rockyou list [30] contains over 32 million plaintext passwords and is a result of an 

SQL injection attack in 2010 on Rockyou.com, which made applications for social networking 

websites such as Facebook and MySpace. The MySpace list is the result of a phishing attack on 

MySpace.com. The list contains about 62 thousands plaintext passwords and was publish on 

October 2006. The Hotmail list has been obtained in October 2009 and contains about 10 

thousands passwords [32]. Since the Hotmail and MySpace passwords lists are fairly small, we 

have combined them with Rockyou password set.  

(3) CSDN Set: The CSDN set is the result of an attack on csdn.net, a Chinese language 

Software Developer Network forum in 2011 and it contains about 6 million passwords [33]. 

There were a few passwords that contained Chinese characters, which we have removed from 

this set. We then created CSDN-training set with 300,000 passwords randomly chosen from this 

set. The CSDN-test set contains 150,000 passwords. It is shown in Table 2.2 that compared to 

other password sets, CSDN set has fewer passwords with lengths less than 8. As seen in Table 

2.3, CSDN also has more passwords containing digits than other password sets.  

In the password cracking tests throughout this dissertation we use dict-0294 [34] as the 

primary attack dictionary and common_passwords [21] as the secondary dictionary with 0.05 and 

0.5 probability values respectively, unless stated otherwise. We created a training dictionary by 

augmenting the EOWL [35] list by common proper names [36] and top words from television 

and movie scripts [37]. EOWL was originally designed for Scrabble style word games. 

Table 2.2 shows the password length distributions for sets used in this dissertation. In 

Yahoo set, passwords with lengths between 7 and 11 represent about 87% of all passwords. 

Passwords with lengths between 6 and 10 contains about 96.6% of all passwords in Combined 

set, and in CSDN set, passwords with lengths between 8 and 12 cover about 90.5% of all 

passwords. Table 2.3 shows the statistics of containing digits, alpha strings, special symbols, 
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keyboard and multiword (as discussed in chapter 3) for the above password sets. It shows that 

data sets are similar in having higher percentages of passwords containing digits and lower case 

alpha strings, and fewer passwords containing upper case alpha strings and special symbols.  

However, CSDN has more passwords containing digits and fewer passwords containing alpha 

strings and multiword than other password sets. In fact CSDN has an unusually large number of 

passwords consisting of only digits (3 times as often as Combined set). 

 
 

Table 2.2 Password Length Information 

Length Yahoo 
test 
(%) 

Yahoo 
training 
(%) 

Combined 
test 
(%) 

Combined 
training 
(%) 

CSDN 
test 
(%) 

CSDN 
training 

(%) 
2 0.03 0.02 0.0046 0.003 0.007 0.004 
3 0.02 0.01 0.023 0.02 0.013 0.014 
4 0.06 0.07 0.22 0.21 0.09 0.13 
5 0.59 0.63 3.96 3.94 0.54 0.53 
6 1.2 1.2 25.63 25.76 1.28 1.32 
7 18.13 17.91 19.36 19.32 0.28 0.27 
8 14.79 14.83 20.12 20.02 36.45 36.36 
9 26.9 26.91 12.28 12.31 24.09 24.17 
10 14.93 14.88 9.21 9.27 14.43 14.46 
11 12.31 12.4 3.59 3.58 9.83 9.72 
12 4.76 4.81 2.09 2.09 5.74 5.71 
13 4.86 4.92 1.31 1.28 2.59 2.64 
14 0.6 0.6 0.86 0.85 2.42 2.44 
15 0.33 0.34 0.54 0.55 1.16 1.17 
16 0.19 0.19 0.41 0.39 0.77 0.76 
17-30 0.3 0.28 0.39 0.41 0.31 0.3 

 
 

Table 2.3 Password Characters Information 

 Yahoo 
test (%) 

Yahoo 
training(%) 

Combined 
test(%) 

Combined 
training(%) 

CSDN 
test(%) 

CSDN 
training(%) 

Contains digits 64.64 64.78 55.14 55.08 86.95 87.14 
Contains lower 92.85 92.82 80.98 80.98 51.43 51.35 
Contains upper 8.49 8.51 6.03 5.97 4.65 4.61 
Contains symbol 2.86 2.83 4.05 4.02 3.67 3.62 
Contains keyboard 6.67 6.47 5.3 5.29 7.56 7.43 
Contains multiword  26.77 26.86 26.97 26.82 11.43 11.28 
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CHAPTER 3  
 

NEXT GENERATION PROBABILISTIC PASSWORD CRACKER 
 
 

While the probabilistic password cracker of Weir et al. [1] was very successful at the 

time, there was not much improvement in password crackers following this work. The 

probabilistic password cracker although performs much better than other rule-based password 

crackers, but considers fairly simple components, containing only alpha strings, digits and 

special characters to represent user passwords. In practice, users with more knowledge about 

security create more complex passwords and a password cracker needs to be adapted to these 

changes. Passwords containing keyboard patterns, Leetspeaks (replacing characters and digits for 

alphabets in a word such as: P@ssword), multi-words and phrases that do not exist in common 

password cracking dictionaries, are examples of such techniques that is generally not addressed 

directly by password crackers. In most cases, the approaches simply add the common keyboard 

combinations and common words with leetspeaks into the dictionary. In this chapter we discuss 

learning new patterns that are more likely to appear in real user passwords as an extension to the 

probabilistic password cracker of Weir et al. [1]. By assigning probabilities to these new patterns 

through the use of probabilistic context-free grammar, we can capture both appropriate words 

and fine-grained word mangling rules, in a unified framework. Furthermore, this enables us to 

keep generating guesses in highest probability order, which is the optimal attack. In this chapter I 

describe the work that I have done on extending patterns for probabilistic password cracking and 

developing new metrics for improving attack dictionaries. The work in this chapter has been 

accepted for publication [38].  

 
3.1 Keyboard Combinations 

 
The goal of this section is to understand how users use keyboard patterns and how it can 

be incorporated into the probabilistic password cracker. A keyboard pattern is a sequence of 

keystrokes that are made on the keyboard without paying attention to the actual characters and 

their relation to each other except their closeness on the keyboard. This closeness helps users 

remember keyboard combination passwords better. We define a keyboard pattern as a sequence 

of at least three contiguous characters starting from some particular key. Contiguous characters 
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are keys that are physically next to a certain key or it can be the same character repeated. For 

example in the keyboard shown in Figure 3.1 contiguous keys for character j can be: u (upper 

left), i (upper right), h (left), j (same), k (right), n (lower left), m (lower right).  A typical 

example of a keyboard pattern used as a password is “qwerty”. This pattern can be also 

combined with other components to create the password, for example “qwerty952!”. 

 
 

 
Fig. 3.1 Example Keyboard 

 
 

Typical password crackers incorporate such patterns by adding them in the attack 

dictionary. However, dictionaries do not differentiate patterns by their probability of occurrences 

and one can only afford to add a limited number of such patterns. We instead solve the problem 

by modifying the probabilistic context-free grammar. Using this approach the incorporation of 

the keyboard patterns becomes automatic during training and cracking. By smoothing the 

keyboard probabilities (described in section 3.1.3), we can automatically generate new patterns 

that have not been seen in the training set. There are not many studies that explore the keyboard 

patterns, their strength and how often they are used as passwords. De Luca et al. [39] have 

studied PINs used for authentication and have learned that users create an overlaying shape and 

memorize the geometrical figure instead of memorizing the actual numbers. The authors 

introduced PassShape, an authentication method that uses the shapes without the numbers, which 

is easier to remember for users. Schweitzer et al. [40] describe a way to pictorially illustrate a 

shape on the keyboard. They connected sequentially pressed keys with an arc. To visualize a key 

that has been pressed multiple times, they create concentric petals. In a small experiment, they 

gave 161 users a brief tutorial on how to create patterns, and they gathered 250 unique patterns. 

They then generated a number of keyboard patterns from the most common shapes found, and 

added these to a dictionary for use in a standard attack (a common way of using keyboard 

patterns). For their testing, they obtained 11 passwords from their institution and used the 
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dictionary for password cracking. They were able to crack 2 of the passwords while John the 

Ripper was not able to crack any. While their work in regard to visualizing the pattern and 

identifying the most common patterns was interesting, the attack shown by this work is not 

different from previous typical keyboard attacks. In the next section I discuss how we identify 

keyboard patterns in the training data, and how to use this information in the cracking phase. 

 
3.1.1 Finding Keyboard Patterns and Ambiguity Issues 
 

As mentioned previously, a keyboard pattern is modeled as a sequence of at least three 

contiguous characters on the keyboard. We allow both upper case and lower case characters. The 

algorithm looks for the longest keyboard pattern in a password without being concerned about 

what type of characters they are. We use the symbol K to represent a keyboard component in the 

grammar. For example, given the password “qw34%rt952”, the original probabilistic password 

cracker would have parsed this password to L2D2S1L2D3, while our new algorithm considers this 

as K7D3 (qw34%rt: keyboard pattern of length 7 and 952: digit of length 3). It is also possible to 

find more than one keyboard pattern in a password. For example, “qwerty521qazxsw” is parsed 

as K6D3K6.  

When identifying keyboard patterns in passwords, we also capture the shape they create 

on the keyboard. In order to keep track of this information, we use the following notation and 

symbols: an upper left key relative to the current key is represented by the symbol u, an upper 

right key is denoted by v, the same key is denoted by c, the left key is denoted by l, the right key 

is represented by r, the lower left key is denoted by d and the lower right key is denote by e. For 

example, given the password “qw34%rt952”, the keyboard pattern (qw34%rt) of length 7 starts 

with q and has the keyboard shape rvrrdr. 

The original probabilistic context-free grammar introduced in [1] is unambiguous. It is 

easy to see the unambiguity since the simple base structures introduced in this work (L, D, and 

S) are mutually exclusive. In our new approach, when incorporating the keyboard patterns we 

face the ambiguity problem since a K-structure could contain multiple character sets. An 

ambiguous grammar is a grammar for which there are more than one derivation trees that 

correspond to a terminal string. Consider the following simple example shown in Figure 3.2. 

Using the natural language grammar we can generate a string with two derivation trees. Note that 
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both trees generate the same terminal sentence (string). Although the terminal is the same, there 

are two different grammar productions (and two different meanings) for this terminal [41].  

 
 

 
Fig. 3.2 Derivation Trees with an Ambiguous Natural Language Grammar 

 
 

When adding keyboard structures to the grammar without any special considerations, we 

could also face the ambiguity problem. Consider the following simple grammar as an example. 

This grammar is clearly ambiguous since the string “cat1234” can be generated with two 

different derivation trees as shown in Figure 3.3. 

 
S à L3D4 | L3K4 
L3 à cat | dog 
D4 à 1234 | 9637 
K4 à qwer | 1234 

 
 

 
Fig. 3.3 Derivation Trees for an Ambiguous Grammar using K-Structures 



 23 

In password cracking, different derivations for the same guess means that the same 

password will be guessed multiple times, each with its own probability value. This obviously 

reduces the efficiency of the guesser. One might wonder why we do not want to allow 

ambiguous grammars as part of the probabilistic password cracker. Aside from generating 

duplicate guesses, the probability values of such password guesses are incorrectly calculated. 

The correct probability value should be the sum of all possible derivations. Prescher [41] shows 

that there are algorithms such as expectations maximization algorithm (EM) that can produce 

probabilities for such grammars by training on a set of derivation trees. However, this approach 

cannot be used for our purpose since we do not have access to such data (derivation trees of 

passwords and their frequencies). In other words, when we come across a password like cat1234, 

there is no obvious way for us to determine whether the user meant “1234” as a keyboard pattern 

or as a number. Also, generating the guesses in highest probability order from the grammar relies 

on the grammar being unambiguous. This ensures that there is well-defined probability for each 

guess that only depends on a single unique derivation. 

We therefore try to maintain an unambiguous context-free grammar by limiting the 

terminals each base structure can derive. In the ambiguity that arises from situations like the 

above example where we have keyboard patterns consisting of pure digits or special characters, 

we decided to preferentially consider them as digit (or special symbol) components rather than 

keyboard components. Prior to this decision, we looked at several data sets and picked out base 

structures that have keyboard patterns that contain only digits. (These are the patterns that can be 

interpreted as both keyboard and digit components.) We then tried to find such structures in 

another data set. The results showed that approximately 70% of the times these patterns appeared 

to be digits; thus by treating them as digit components we would have a better chance of 

guessing related passwords. We found similar results for S components. 

In summary, the following rules are defined to determine whether or not a particular 

substring in a password should be classified as a keyboard pattern (K-structure) rather than an 

original structure (L, D, S): 

1. If a substructure contains only digits or only special symbols, we classify it as a D or S 

component. 
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2. Longest keyboard patterns of at least 3 characters length that does not fall under the first rule 

is classified as a K component. For example e4e458 would be K5D1 as the maximal length 

keyboard substring must be used. 

Although these rules can avoid the ambiguity problem in a vast majority of cases, but in 

rare cases we will still be generating duplicate guesses. For example, both base structures L4D2 

and K6 would be able to generate password guess “were45”. We will discuss these examples in 

more details in section 3.1.2.  

Table 3.1 shows examples of the original base structure compared to the keyboard base 

structure. Similar to the other components that are found in the training set, keyboard 

combinations will be stored in the grammar as a pair of the actual pattern found along with its 

probability value. While we determine the patterns and the base structures, we also count their 

frequencies. These frequencies are ultimately turned into transition probabilities. We also 

determine the counts of components such as those in D1, ... Dj for j the largest D-structure and 

similarly for components in S1, ... Sm for m the largest S-structure (special symbol). For example, 

encountering the password “asd1234qw” would increase a D4 count for substring 1234 by one. 

We also increase the counts of the keyboard components in K3, ... Kp for p the longest keyboard 

pattern. 

 
 

Table 3.1 Keyboard Base Structures during Training 

Password Original Base 
Structure 

Keyboard Base 
Structure 

qwerty L6 K6 
R5T6 L1D1L1D1 K4 
!@#$ S4 S4 

tyu54uyt L3D2L3 K3D2K3 
E3$4 L1D1S1D1 K4 
4567 D4 D4 

 
 

The K-structure can be handled the same way as D and S-structures when generating 

guesses. Since we have preserved all aspects of a context-free grammar, we are able to 

automatically generate password guesses in highest probability order with keyboard 

combinations appearing in their appropriate probabilistic order. 
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3.1.2 Using a Training Dictionary 

 
With the above rules for identifying keyboard combinations, a password such as “ease12” 

would be classified as L1K3D2. Our initial assumption was that most probably the user that 

selected this password did not mean to have one alpha character followed by a keyboard 

combination, and instead the user meant the word ‘ease’ followed by two digits. We 

hypothesized that it might be preferable to view such components as English words followed by 

digits (L4D2) rather than a keyboard component. In order to eliminate such spurious keyboard 

combinations we analyzed the alpha sequence of the passwords more carefully. We introduce the 

idea of using a training dictionary. During the training phase of determining the base structures 

we analyze sections of passwords that could be forming a keyboard pattern but are also alphabet 

letters that could be a word in the training dictionary. Each alpha sequence is looked up in the 

training dictionary to recognize any English word. If it is in the training dictionary it will be 

classified as L, if not it will be considered for further evaluation as part of a keyboard pattern.  

The training dictionary is used to resolve ambiguity in this case as well as in more 

complex situations such as determining multi-words discussed in section 3.2. Note that the 

training dictionary is different from the attack dictionary. The attack dictionary contains words 

or parts of the common words in passwords, sometimes combinations of letters with no meaning 

(that appeared to be useful in password cracking combined with mangling rules), abbreviations 

and other common phrases on the Internet or the relevant website. The attack dictionary is used 

to replace the alpha string component (L) of the base structure when generating guesses.  

On the other side, the training dictionary contains actual English words and common 

proper names. The training dictionary can be very large and since the training phase can be done 

before the actual cracking session starts, it does not affect the cracking time. However, the size 

and the actual words contained in the attack dictionary can affect the efficiency of the password 

cracking session. Every word in the attack dictionary will be tried with different mangling rules 

and a very large attack dictionary can make the cracking time unnecessarily long and not 

efficient. If the words in the dictionary are not useful words for password cracking, the cracking 

session can take days without a single password being cracked. Attack dictionaries are discussed 

in more details in section 3.3. 
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3.1.3 Probability Smoothing for Keyboard Patterns 
 

As mentioned in section 2.1.3.2, the original context-free grammar of Weir [1] is capable 

of smoothing D and S structures by using Laplace smoothing. Consider for example the 

component D2. It is possible that some of the two digit values are not found during the training. 

In this case, no probability will be assigned to these values and they will not be used in 

generating guesses. Probability smoothing helps in assigning lower probability values to values 

that are not found during training. Smoothing keyboard patterns though is not straightforward 

since it is not easy to find the complement of the found ones. In this section, I discuss our 

approach for smoothing keyboard combinations.  

Recall that during the training process we capture data about keyboard shapes (such as 

rrrrr for “qwerty”) found in the various keyboard patterns. Table 3.2 shows a small sample of 

keyboard patterns of length 6, and keyboard shapes of length 5 that were found during a training 

session.  

 
 

Table 3.2 Keyboard Shapes and Patterns 

Shapes Probability  Patterns Probability 
rrrrr 0.520  qwerty 0.488 
eveve 0.102  2w3e4r 0.093 
eeruu 0.058  qazxsw 0.056 
lllll 0.036  zxcvbn 0.025 
rdrdr 0.024  qwaszx 0.018 
rlrlr 0.020  poiuyt 0.012 
vdvdv 0.007  12345r 0.007 
rrrrd 0.007  ytrewq 0.007 

 
 

Smoothing keyboard patterns allows new keyboard combinations to be generated while 

guessing. Smoothing every possible keyboard combination would result in a very large number 

of guesses that might not even be useful. We therefore decided to only consider more common 

shapes found in the training and smooth keyboard patterns based on found shapes. We view a 

smoothed element as a specific keyboard shape applied to an applicable starting character. For 

example, the keyboard shape rrrrr allows us to start from every character on the keyboard and 
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create a keyboard combination using this shape. Thus, for keyboard shapes that we find in the 

training set, we smooth over all starting characters excluding those that are not feasible (starting 

at m for shape rrrrr). This approach is a reasonable compromise between smoothing everything 

and not smoothing anything. Essentially, instead of smoothing across all keyboard strings, we 

smooth across each keyboard shape found of a specific length. The smoothing function giving 

the probability of a keyboard pattern p of shape s is: 

 

prob(p)= prob(s) Ni +α
Ni +Cα∑

                                                    (3.1) 

where: 

Prob(s) is the probability of the keyboard shape s given the length of the keyboard pattern 

Ni is the number of times the ith keyboard pattern (of this shape) was found 

α is the smoothing value between 0 and 1 

ΣNi: the sum of counts of the patterns found for shape s 

C is the total number of unique patterns for this shape 

 
3.1.4 Testing and Result 
 

In order to see the effectiveness of the new keyboard grammar in comparison to the 

initial grammar we ran several different tests. We used different revealed password sets that are 

commonly used by researchers. We created test and training sets of different sizes and origins for 

our experiments. In these series of tests, we consider keyboard alone, and Keyboard plus 

Dictionary in which we use a training dictionary to separate words from keyboard patterns. We 

also consider two variations for each of these based on whether we smooth or not. 

In our first set of tests, we trained on Combined-training and the target set was 

Combined-test. The datasets and dictionaries are described in section 2.2. Figure 3.4 shows the 

results of comparing each of the 4 variations across portions of the cracking curve (early, middle 

and late). By cracking curve we mean graphing the percentage of passwords cracked on the Y-

axis against the number of guesses generated. In these series of tests we generated about 85 

billion guesses. We also use the notion of improvement to compare two different cracking curves 

U(x) and V(x). By definition, the improvement of U over V at x is simply (U(x) - V(x)) / V(x). 



 28 

The goal of using a training dictionary was to maintain a structure that is probably a word 

for the user as an L-structure and thus try a variety of words eventually as replacements in that 

structure. We wanted to distinguish keyboard patterns that are really, in some sense, user 

keyboard patterns and are not “artifact” keyboard patterns simply because they have 

serendipitously an embedded keyboard structure (such as the word ease). Although eliminating 

such keyboard patterns seemed natural and we expected that this kind of grammar would 

perform better, the results show otherwise. 

Figure 3.4 shows that Smoothed Keyboard grammar is not as effective as the other 

grammars in the very beginning (Early), but it is clearly the best very soon (about 1.5 billion 

guesses) and maintains this for the rest of the cracking curve. In general both Smoothed 

Keyboard and Keyboard are clearly better than the Dictionary versions with Smoothed Keyboard 

being slightly better. 

 
 

 
Fig. 3.4 Results for Keyboard Versions using Combined-set for Early (up to 20 million), Middle 

(1-2 billion), and Late (40-85 billion) 
 
 

In Figure 3.5 we compare Smoothed Keyboard grammar with John the Ripper and 

original PPC. As can be seen, Smoothed Keyboard is more effective than PPC in most of the 

cracking session, and is also much more effective than John the Ripper over a major part of the 
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password cracking curve. After about 34 billion guesses John the Ripper overtakes the original 

grammar while it still cannot outdo Smoothed Keyboard grammar until after about 52 billion 

guesses. We also repeated the same test using Yahoo and CSDN sets as described in section 2.2. 

In both cases, Smoothed Keyboard grammar is better than original PPC, which in turn is better 

than John the Ripper over the whole cracking curve. 

 
 

 
Fig. 3.5 Comparing Password Crackers using Combined-set 

 
 

3.2 Enhancing Identification of Alpha Strings 
 

Many times when creating long passwords people prefer to use longer words, a sentence 

or a phrase in the alpha part of the password. The original probabilistic password cracker 

considers the sequence of alpha characters as an L structure and in the cracking session it 

replaces the L structure with a word of that length from the attack dictionary. For example, the 

cracking module looks for a word of length 15 in the dictionary when a base structure containing 

L15 is reached.  Most probably there does not exist many words of this length in the dictionary 

and if any, not all combinations of phrases and multi-words exist.   

Our goal is to better understand alpha strings or L-structures. Most common examples are 

multiple occurrences of a word within alpha strings such as johnjohnjohn12, or passphrases such 

as goodboy or iloveyou. Although some of the popular combinations might be in the attack 

dictionary, it is not easy to add all possible combinations to the dictionary. In this section we 
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discuss how the alpha string patterns are modeled in our system and how we use this information 

in guessing.  

 
3.2.1 Detecting Alpha String Patterns 

 
In order to support detection of relevant patterns in alpha strings, a training dictionary is 

used as previously defined in section 3.1.2. During training, we learn the following different 

categories of L-structures. Table 3.3 shows examples of each category and the frequencies of 

each category in one of our sample sets. 

• A-word: A single word found in the dictionary  

• R-word: A word in the dictionary, repeated once  

• R-pattern: A non-dictionary word, repeated once 

• M-word: Two or more consecutive dictionary words excluding R-words 

• A-pattern: Alpha string not in any previous category 

 
 

Table 3.3 Classifications of Alpha Strings 

Category Frequency in a 
sample test set 

Example 

A-word (a single word) 44% password 
R-word (repeated word) 0.98% boatboat 
R-pattern (repeated pattern) 0.35% xyzxyz 
M-word (multiword) 40.4% iloveyou 
A-pattern (other pattern) 14.2% ahskdi 

 
 

In order to detect A-words in the training set, we simply check if the L-structure is a word 

in the training dictionary. For R-patterns we first check for a repetition and then if the pattern is 

in the dictionary we categorize is as R-word. If the L-structure is neither of these two categories, 

we apply our M-word algorithm to distinguish whether the alpha string is a multiword. If it is not 

an M-word it is categorized as an A-pattern. Although we are able to classify substrings of alpha 

patterns into various classes as explained in Table 3.3, we focus mainly on three general 

categories when training and guessing. Both classes of A-word and A-pattern require words from 

the dictionary when generating guesses. The attack dictionary usually contains both English 

words and words that may not be part of any language, but they are important in passwords. For 
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that reason we combine these two categories into one. The situation with R-word and R-pattern 

is very similar. When generating guesses for R-word or R-pattern, we take a word from the 

dictionary and we repeat it. Therefore, combining these two categories also make sense in our 

approach. 

In order to understand how the new categories of alpha strings are incorporated into the 

context-free grammar, we give a simple example of deriving the grammar from the following 

small training set {lovelove123, security123, wordword456, iloveyou456, lovelove!!, 

wordword88}. Let R represent an R-word, A represent an A-word, and M represent an M-word. 

In order to add these components into the grammar, we first consider the derivation from S to the 

base structures as before (L, D, S, K) and then derive the subcategories from the L-structure. The 

above example would have grammar constructs as in Table 3.4. This grammar would derive the 

string S → L8D2 → R8D2 → loveloveD2 → lovelove88, with probability 1/6 × 4/6 × 1/2 × 1 = 

2/36. Note that here the derivation with an L-structure on the left hand side to its possible sub-

patterns is done independent of the context. This approach allows us to consider as much as 

possible larger sets of passwords on which to determine the probabilities. By looking at all 

passwords that are L-structures, we have a fairly large set of passwords going to the 

subcategories.  

 
 

Table 3.4 Example of Derivation for Alpha Strings 

Left Side Right Side Respective Probabilities 
S  à L8D3 | L8D2 | L8S2  4/6  1/6  1/6  
L8 à R8 | A8 | M8  4/6  1/6  1/6 
D3 à 123 | 456  1/2  1/2  
D2 à 88 1 
S2 à !! 1 
R8 à lovelove | wordword 1/2  1/2  
A8 à security 1 
M8 à iloveyou 1 

 
 

In the guessing phase, when facing the A category, we simply replace it using words 

from the attack dictionary as before. In the R category we modify the use of the dictionary to 

double each word in the dictionary. For the M category the replacements come directly from the 
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grammar. Note that the grammar also has information about capitalization of the L-structures and 

we continue to use that information to create different masks for all of the subcategories. 

 
3.2.1.1 The Multiword Algorithm. The M-word algorithm is rather more complex as 

generally there are many ways for segmenting a multiword into component words. We tried 

many different versions of breaking up the words such as finding the first leftmost substring that 

is a word in the dictionary and recursively calling this function for the remaining string. If this 

does not result in a multiword decomposition, we try the next leftmost substring that is longer 

than the first one we tried. We have also tried finding the longest initial substring that is a word 

in the training dictionary and identifies this as a possible first component by starting at the 

rightmost character of the string. If this does not result in a multiword decomposition, we try 

with the next shortest initial substring that is a word. When looking at the result of each of these 

approaches, there are multiwords that have not been broken down correctly since most of the 

times there are two or more valid ways of segmenting a string. For example, the string 

“bookstore” can be broken down into “book, store” or “books, tore”. However, for an English 

spoken person, one is more preferable to another. We therefore developed an algorithm for 

finding the best breakdown of multiword by first identifying all possible breakdowns of each 

string. We then calculate the probability of each segmentation by multiplying the probability of 

each word in the segmentation found using a corpus of the most frequently used words in TV 

and movies scripts [37]. The scores in the list are representation of how often the word has been 

used or seen in TV and movie scripts. We therefore normalize these scores to use as probability 

values. If a word is found in the dictionary and there is no associated probability value in the 

scoring file, we assign the least probability value found in the corpus to the word. We then 

multiply the probabilities of each word in the segmentation. We identify the segmentation that 

has the highest score as the best possible segmentation in our algorithm. This is in fact a common 

technique in Natural Language processing [42]. 

In order to compare the algorithms and to understand which one works better we needed 

to develop ground truth to test our approach. We manually looked at 1000 alpha string 

components of our revealed password sets and identified the correct segmentation of each alpha 

string. We found that using the scoring algorithm we reduced the error rate of wrong 

segmentation of multiwords by 83% compared to our initial approach algorithm. However, we 
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had also seen errors related to classifying single words incorrectly as multiword. These problems 

are not only related to the segmentation algorithm, but also depend on the training dictionary 

used. We found that there are too many short words in our training dictionary that resulted in 

many strings misidentified as multiword. In the worst-case scenario, if all letters of alphabet exist 

in the training dictionary, every string would be considered as a multiword. We also found that 

there were many names that we were classifying as multiword simply because those names did 

not exist in our training dictionary. We improved our training dictionary by eliminating short 

words that do not make sense as words in English, as well as adding common proper names in 

different languages. Our results indicate that we were able to reduce the error rate of incorrectly 

classifying single words as multiwords by 71%. See our segmentation algorithm in Appendix A. 

Veras et al. [28] presented a very interesting framework for semantically classifying 

passwords as described in section 2.1.4. Their work is the only work related to our approach, and 

yet there are many differences from ours. In terms of segmentation, while we also use a source 

corpus (which we refer to as a training dictionary) we only look for words and multiwords within 

parts of the password that consist completely of letters (alpha strings), whereas they look at the 

whole passwords including words and gaps. Our approach substantially simplifies both the 

resulting grammar and the segmentation algorithm and makes the guess generation algorithm 

simpler. Our scoring is based on unigrams and is in practice very fast. Their scoring model is 

more complex using back-off algorithm that starts with trigrams, and then bigrams, and 

unigrams. Although this might be useful and is a common approach in natural language 

processing problems, however it seems that bigrams and trigrams are infrequently used in 

passwords. Veras et al. [28] show the result of their tagging of the Rockyou password set that 

reveals the presence of trigrams and bigrams is 6.09% compared to 89.82% for unigrams.  

Their approach as they discuss it clearly has a performance bottleneck and they speculate 

that it may be because they are generating many duplicate guesses since their grammar is 

ambiguous. We have focused on maintaining unambiguity of the grammar and we noticed no 

performance bottleneck when using our approach. In next section we present the result of our 

password cracking using multiwords in the grammar and we show that we have been able to 

generate more than 86 billion guesses without loss of efficiency. Another difference between our 

approaches is that they generate their guesses and word from the training set whereas we use an 

attack dictionary. The dictionary approach permits both quantization (many terminals can have 
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the same probability) as well as flexibility (the grammar does not have to be generated again 

when using a different dictionary). Finally, learning and using capitalization required adding 

mangling rules in their approach whereas we simply apply the capitalization to mutliwords as a 

mask when generating guesses.  

 
3.2.2 Testing and Result 
 

In this section we describe our experiments to show the effectiveness of learning 

keyboard and alpha string patterns. We tested all possible combinations of adding multiwords M, 

repeated words R as well as smoothed keyboard K to the grammar and show the cracking result 

of each combination in Figure 3.6. It is interesting to see that two of the combinations (adding 

repeated words R only, and adding repeated words along with keyboard patterns KR), perform 

worse than PPC. When comparing the addition of keyboard K to PPC, the performance is not 

very good in the very beginning (up to 35 million guesses), however the average improvement is 

significant and is 3.5%. The remaining four combinations (M, KM, MR, KMR) show a 

consistent improvement over PPC. Overall when learning multiwords (M, KM, KMR), the 

cracking result is always significantly better than PPC.  

 
 

 

Fig. 3.6 Comparing Grammars with Keyboard and Multiwords using Combined-set in Log Scale 
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The results show that adding the Alpha Grammar results in a substantial improvement in 

the cracking over PPC. However, learning both classes of Keyboard and Alpha patterns is better 

than each alone. These results are consistent over the whole cracking curve. We also repeated 

these tests on Yahoo-set and CSDN-set. The results were very similar with Keyboard Alpha 

clearly the best over the cracking curve. We thus learn all three patterns (Keyboard, Multiwords 

and Repeated words) in our NPC system. 

In Figure 3.7 we compare NPC against other password crackers: PPC and John the 

Ripper. The result show that NPC is substantially more effective as compared with both PPC and 

John the Ripper over the full cracking curve. The improvement of NPC over John the Ripper 

ranges from 13% to 305%.  The improvement of NPC over PPC ranges from 15% to 22%.  

 
 

 

Fig. 3.7 Comparing Password Crackers using Combined-set 
 
 

This is most clearly seen in Figure 3.8 where we plot the improvement values as shown 

in the legend. The dashed line shows the consistency of our improvement over the original PPC. 

We also tested NPC against the other two using both Yahoo-set and CSDN-set. The results were 

similar to those for Combined-set. For Yahoo-set the improvement of NPC over PPC ranges 

from 1% (in the very early stage) to 16%. For CSDN-set the improvement of NPC over PPC 

ranged from 14% to 17%. When comparing against John the Ripper, we first consider a late 

stage of 20 million to 85 billion because John the Ripper does quite poorly in the early stage. In 
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the late stage, the improvement of NPC over John the Ripper for Yahoo-set ranges from 35% to 

152% and for CSDN-set the improvement is 84% to 264%. 

 
 

 
Fig. 3.8 Improvement of Crackers Against Each Other using Combined-set 

 
 

We also compared against Hashcat using two of its best rule sets: Best64 and Deadone 

(d3ad0ne) [22] in Figure 3.9. Since these two rule sets are quite small, the guesses generated 

were only 64.5 million and 21 billion respectively.  

 
 

 

Fig. 3.9 Comparing Password Crackers using Combined-set: A) Hashcat using Best64 Rule Set. 
B) Hashcat using Deadone Rule Set 
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Figure 3.9A shows the comparison of the Best64 rule set with the other three password 

crackers and Figure 3.9B compares the Deadone rule set. Clearly NPC is extremely dominant in 

both figures. The improvement of NPC over Hashcat at the end of the Hashcat cracking with 

Best64 is 42% and with Deadone is 16%. 

 
3.3 Attack Dictionaries  

 
3.3.1 Background and Motivation 
 

In dictionary-based attacks different mangling rules are applied on a list of words called 

an attack dictionary to create password guesses. Therefore in order to correctly guess a password 

not only we need to apply the right mangling rule but we also need to include the right word in 

the dictionary. The probabilistic password cracker derives the mangling rules from a training set 

of real user passwords and has been shown to be very effective. We also showed in previous 

section how we were able to improve the grammar by learning more patterns. However, in order 

to be successful, we still need to explore how to best choose the attack dictionaries. The size and 

content of attack dictionaries can affect the probabilities and the guesses and the order they are 

generated, which in turn can affect the efficiency of our cracking. 

The dictionaries used in password cracking are usually a list of common passwords that 

have been cracked previously or a list of English words that have been experimentally shown to 

be effective. Although some common password lists exist (derived from passwords cracked or 

disclosed passwords), there are few studies showing the effectiveness of such lists for 

probabilistic context-free grammar based crackers. Dictionaries are sometimes viewed as the 

guesses themselves. For example, Bonneau [43] creates dictionaries for different groups of 

Yahoo users based on linguistic background and defines a dictionary as the top one thousand 

actual passwords from that group. The author then determines the effectiveness of such 

dictionaries against other linguistic groups.  

Using a dictionary of actual guesses is quite different from finding a good dictionary to 

be the base for the alpha string substitutions as used in PPC. For example, in PPC doubling the 

size of an attack dictionary is not a cost problem in terms of the size of the dictionary with 

respect to cracking as such. Guesses will still be generated quickly and in highest probability 

order. However, the probability of the guesses will change and thus the guesses will be tried in a 

different order. Furthermore, new combinations would likely be tried (good, because there are 
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more alpha words to replace) but too many words for the same base structure might reduce the 

probability of each of the terminal guesses in a base structure so they might not be tried until 

much later (possibly bad). 

In other studies, dictionaries are used both as a source of passwords as well as a source 

for generating variant guesses by applying mangling rules [44]. Dell’Amico et al. [45] evaluate 

several dictionaries available from John the Ripper by first comparing the passwords cracked 

using the dictionary entries only. Their results show that it is better to use the same type of 

dictionary as the target type (for example Finnish when attacking Finnish passwords) and 

although larger dictionaries are better, there are diminishing returns when using these larger 

dictionaries.  

Our goal, in this work is to investigate how different dictionaries can be effective as the 

probabilistic password cracking system generates more and more guesses. Note that dictionaries 

in PPC are used only to replace alpha strings in the grammar. In this way a dictionary can 

typically generate more passwords that could feasibly be tried even in extremely long cracking 

sessions. Thus, the full set of guesses that a dictionary can produce is only partly relevant to its 

effectiveness. There are also many things that can affect the efficiency of a dictionary in the 

probabilistic context-free password cracking approach. For any base structures in NPC 

containing A-patterns or R-patterns, all words of the same length from the dictionary are going to 

be tried at the same time because of the assumption that all words of the same length from one 

dictionary have equal probability. With a larger dictionary, trying more words at that point in 

time delays trying other combinations. However, with a larger dictionary, because the probability 

value of each word is smaller the base structure itself might be tried much later. On the other 

hand, a very small dictionary might not be effective at all because it will obviously reduce the 

variety and number of guesses. 

NPC also has the capability of using multiple attack dictionaries when cracking 

passwords. Probability values can be assigned to each dictionary and therefore different 

probability values to sets of words. The end probability values of the actual words do not only 

come from the probability value assigned to the dictionary containing the word, but multiplies 

with 1/nL, where nL is the number of words in the dictionary of length L. Having this capability 

one can have a fairly large dictionary with lower probability words and a list of common 

passwords with higher probabilities assigned to them as a secondary dictionary. This way we can 
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first try the most probable words with different mangling rules and try the other possible words 

that are not so common at a later point. In NPC, the number of dictionaries corresponds to 

defining the number of equivalence sets of probabilities of words of each specific length. Note 

that when multiple dictionaries are used, even though they may have duplicate words, the final 

set of words and their probabilities used in cracking have no duplicate words.  

There have been no studies as far as we are aware that explore how to use multiple 

dictionaries effectively in probabilistic context-free grammar password cracking. The difficulty 

in regards to designing such studies is the number of variables that change at the same time in 

regard to dictionaries and more specifically with regards to multiple dictionaries in NPC. In fact 

when cracking, the number of dictionaries used, the weights assigned to each dictionary, the 

usefulness of actual words in the dictionary, as well as the probability values assigned to each 

word in each dictionary (which depends on the length of the dictionary and also depends on the 

number of duplicate words that exist in multiple dictionaries) can all affect the results. In the 

experiments section we discuss how we explored this problem space by trying to keep as many 

features as possible constant and varying only a few.  

In the next section I explore how to improve attack dictionaries for NPC. First new 

metrics for comparing dictionaries are developed and then the results of the effectiveness of 

primary dictionaries as well as secondary dictionaries are presented in section 3.3.3. The 

improvements are very significant and could likely also be used to make the attack dictionaries 

more effective for other password cracking systems. 

 
3.3.2 Measuring the Effectiveness of a Dictionary  

 
The most basic question is how one can measure the effectiveness of one dictionary as 

compared to another. We developed an approach to measure the effectiveness of a dictionary by 

considering its coverage and precision with respect to a reference set (set of passwords).  

Let W be a set of words {w1 … wn} that is going to be used as a dictionary and let R be a 

reference set of passwords {p1 ... pm}. A word w is found in R if it is an L-structure in at least one 

of the passwords. Let I(w, R) = 1 if w is found in R and I(w, R) = 0 otherwise. Precision of a 

dictionary W with respect to a reference set R is then defined as: 

 
𝑃(𝑊,𝑅) = !

|!|
𝐼(𝑤! ,𝑅)!

!!!                                                  (3.2) 
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Assume a password p has k different L-structures in it. Let the count c(w, p) be the 

number of L-structures in p that have the value w. Coverage of a word w with respect to a 

password p (and naturally extended to R) is defined as: 

𝐶(𝑤,𝑝) = !(!,!)
!

         &        𝐶(𝑤,𝑅) = 𝐶 𝑤,𝑝!!
!!!                         (3.3) 

We define RL as the subset of passwords in R that have at least one L-structure. Coverage 

of a dictionary W and reference set R is: 

𝐶(𝑊,𝑅) = !
|!!|

𝐶(𝑤! ,𝑅)!
!!!                                                 (3.4) 

We only consider the passwords that include L-structures because the dictionary has no 

relevance to cracking the passwords that have no L-structures. Note that C(W, R) and P(W, R) 

are values between 0 and 1. Precision is a measure of how compact the dictionary is for the 

reference set. For an ideal precision measure of 1, a dictionary should only consist of all the 

words that appear in the reference set. Coverage measures how useful the words of a dictionary 

might be for potentially cracking passwords in a target set. For an ideal coverage measure of 1, 

every L-structure of the reference set should be a word in the dictionary. We define a perfect 

dictionary (DR) for a reference R as the set of all words that appear in R. This perfect dictionary 

has both coverage and precision equal to 1 and the words in the perfect dictionary can be ordered 

by their individual coverage values C(w, R). 

 
3.3.3 Testing and Result  

 
As discussed previously, NPC can use multiple dictionaries. Typically, a primary attack 

dictionary and a smaller secondary dictionary are used. In our tests we first explore the 

effectiveness of different primary dictionaries based on the metrics defined in the previous 

section. We then consider using various secondary dictionaries to give higher probabilities to a 

selected set of words and explore the additional utility on the success of the cracking. 

 
3.3.3.1 Primary Dictionaries. In this section we compare different attack dictionaries 

and show how to create more effective ones using our metrics. Since we have been using 

dic0294 in our testing we use this as a base for our comparisons and improvements. This 

dictionary has strings containing digits and special characters, which we had removed.  This 

results in a dictionary of size 728,216. We created a dictionary from the English language set 

(containing only alpha strings) of about the same size from John the Ripper’s wordlist collection 
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[21] (Jtr_En). We also created a dictionary of a similar size from 2.5 million randomly chosen 

Rockyou passwords by stripping out the alpha string components and removing duplicates. The 

coverage and precision of each of these dictionaries with respect to Combined-test (reference R) 

are shown in Table 3.5. 

 
 

Table 3.5 Coverage and Precision with Respect to Combined-test 

Dictionary Size Coverage Precision 
Rockyou dict 728,376 0.74 0.11 

dic0294 728,216 0.55 0.06 

Jtr_En dict 728,749 0.49 0.05 

 
 
We ran a password cracking session with each of the dictionaries against Yahoo-test in 

Figure 3.10A and Rockyou-test in Figure 3.10B. The results show that the cracking curves are 

consistent with the precision and coverage metrics, with better rates of cracking for dictionaries 

having higher coverage/precision. Note that the Rockyou dictionary has higher coverage since it 

is calculated with respect to Combined-test, which contains mostly Rockyou passwords. Thus, 

this dictionary may not be a good candidate to use as a generic dictionary for other target sets.  

 
 

 

Fig. 3.10 Primary Attack Dictionaries with Different Coverage and Precision in Log Scale        
A) Using Yahoo-test as Target B) Using Rockyou-test as Target 
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We next created different dictionaries from dic0294 by systematically altering coverage 

and precision to see how the cracking result changes. In our first series of experiments we used 

the baseline dic0294 and calculated its metrics with respect to the reference Combined-test.  

C(dic0294, RCombined) = 0.55,             P(dic0294, RCombined) = 0.06 

We then created two dictionaries as variants of dic0294, increasing the coverage to 0.7 

and 0.9 respectively without changing the precision. We call these variants dic0294_c70 and 

dic0294_c90. The sizes of these variants increased to about 1.56 million and 2.58 million 

respectively. To increase the coverage of a dictionary D with respect to a reference R, we added 

words from the perfect dictionary DR. Note that optimally achieving a specific coverage value is 

actually a Knapsack problem [46] but the heuristic of adding words in highest coverage order 

works fairly well in this case. Let nr be the number of words added from DR. To maintain the 

precision P we also need to add nn words that are not in DR, where: 

𝑛! = 𝑛!(
!
!
− 1)                                                                  (3.5) 

Since in cracking we would not know the actual target set, we explored the use of the 

metrics derived from reference Combined-test by testing how well the derived dictionaries would 

do on the targets Yahoo-test shown in Fig. 3.11A and Rockyou-test shown in Fig. 3.11B. In this 

experiment we trained on Combined-training using our new system NPC.  

 
 

 

Fig. 3.11 Dic0294 Variants with Precision Fixed at 0.06: A) Using Yahoo-test as Target        
B) Using Rockyou-test as Target 
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The results were remarkably good and support the premise of our metrics. In Figure 

3.11A, the average improvement when using dic0294_c90 over dic0294 over the entire cracking 

curve is 33%. Similarly, in Figure 3.11B the average improvement over the cracking curve is 

30%. Not only that, we subsequently checked the coverage metrics relative to the new targets 

and found that coverage on one test set seems to map appropriately to coverage on the different 

target sets. For example, although the initial coverage for dic0294_c90 was derived from 

Combined-set (90%), its coverage when measured on both targets is very similar. See Table 3.6. 

 
 

Table 3.6 Coverage and Precision for Target Sets 

 Yahoo-test Rockyou-test 
Coverage Precision Coverage Precision 

dic0294 0.57 0.037 0.54 0.03 
dic0294_c70 0.71 0.028 0.69 0.02 
dic0294_c90 0.9 0.025 0.89 0.02 
dic0294_p10 0.53 0.051 0.52 0.04 
dic0294_p20 0.50 0.087 0.5 0.075 

 
 

We also did an analogous series of tests on the same targets where we kept the coverage 

of dic0294 at the baseline and created two other variant dictionaries dic0294_p10 and 

dic0294_p20, increasing the precision to 0.1 and 0.2 respectively. The results are shown in 

Figure 3.12. In order to do this, we removed words not in DR from the dictionaries and their sizes 

decreased to about 450K and 225K respectively. We expected that the higher precision 

dictionaries might do better in cracking but they actually did worse, because their coverage with 

respect to the targets decreased. See Table 3.6. This indicates to us that coverage is extremely 

important and is more important than precision. 

The results of these tests with attack dictionaries show that our metrics for measuring 

dictionaries can be extremely useful in creating and comparing dictionaries. The algorithms to 

improve the coverage and precision of the dictionaries have also been implemented as part of our 

NPC system. Note that these results also shed light on the questions regarding the size of the 

dictionaries. It is often stated that there are diminishing returns from larger dictionaries. The 

results of our tests seem to indicate that if a larger dictionary is created in the manner we 

recommend the cracking improvement is certainly substantial. 
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Fig. 3.12 Dic0294 Variants with Coverage Fixed at 0.55: A) Using Yahoo-test as Target      

B) Using Rockyou-test as Target 
 
 

3.3.3.2 Secondary Dictionaries. In this series of tests we explore secondary dictionaries 

by using NPC trained on Yahoo-training and cracking Yahoo-test. We use dic0294 as our 

primary dictionary. We use three secondary dictionaries: (1) common-passwords (which is 

presumably an “optimized” dictionary) that contains 815 words; (2) TopWords from Yahoo-

training or same set (a list of the highest frequency A-patterns found in our training set) also of 

size 815; and (3) TopWords from Combined-set. We assign probability 0.9 to the primary 

dictionary and 0.1 to the secondary dictionary. Note that the probability values assigned to the 

dictionaries actually give higher weight to the words in the secondary dictionary. Since the 

primary dictionary has far more passwords than the secondary dictionary, 1/nL × 0.9 in the 

primary is still a fairly small number compared to the probabilities of the words in the secondary 

dictionary.  

Figure 3.13 shows the results of our tests where we tested dic0294 with and without 

secondary dictionaries. The results show that using a secondary dictionary of top words from the 

same set is more effective than all the others, and that even if such a word list is not available, 

creating a secondary dictionary from another revealed password set can improve the cracking 

almost as well. The question then was that whether this was due to differential weights for 
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certain words or whether the secondary dictionary was adding new words that are not in the 

primary dictionary. Further analysis on the secondary dictionaries showed that all words in the 

common-passwords list and also all words in the TopWords list happen to be already included in 

dic0294.  We concluded that the improvement when using a secondary dictionary is not because 

new words have been added, but because sets of words are given higher probabilities.  

 
 

 
Fig. 3.13 Cracking Yahoo-set with Several Secondary Dictionaries 

 
 

 
Fig. 3.14 Varying the Sizes of the Secondary Dictionaries Cracking Yahoo-test in Log Scale 
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We next tested different sizes of the secondary dictionary. We created different sizes of 

TopWords by selecting 400, 800, 1600, 3200 and 6400 of the highest frequency words from our 

training set. For our primary dictionary we added the largest TopWords to dic0294 so that all 

words from the secondary dictionaries are included in the primary dictionary as well. This way 

we ensure that the reason for cracking improvement is the way the probability values are 

assigned to each word. One might think that the larger the secondary dictionary, the better the 

results might be, particularly since the secondary dictionaries are all fairly small. This was true 

for sizes up to 3200. However as seen in Figure 3.14, at size 6400, the advantage of giving 

higher probabilities to some sets of words no longer exists and at this level it becomes virtually 

equivalent to not using a secondary dictionary at all. 

 
3.4 Final Testing of NPC Compared to Other Password Crackers 

 
In this section we compare the proposed NPC system against PPC and two other recent 

password crackers. Our NPC system combines all of the advancements we have proposed: new 

patterns, and improved primary and secondary attack dictionaries. Figure 3.15 shows the result 

of comparing NPC using the dictionaries dic0294_c90 and TopWords3200 versus PPC using 

dic0294 and common-passwords in log scale. We use Combined-training and test against Yahoo-

test in order to also show the effectiveness of both crackers when not having the advantage of 

training on a set that is similar to the target set. 

 
 

 
Fig. 3.15 Results of NPC with Combined-training and Yahoo-test in Log Scale 
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At the end of the cracking run, NPC has cracked 76% of the passwords and shows an 

average improvement over PPC of 55%. With respect to the effectiveness of NPC in the early 

part of the cracking curve, we cracked 70% of the passwords within 5 billion guesses, which 

translates to under three hours on a regular laptop. Table 3.7 shows the number of base structures 

and other components for Combined-training set in both NPC and PPC. As can be seen NPC 

creates many more base structures and yet there is no performance bottleneck.  

 
 

Table 3.7 Numbers of Components in Grammars Created by NPC and PPC 

Approach # Base 
Structures 

# Digits # Special 
Symbols 

# Keyboards # Multiwords 

PPC 7,650 82,237 608 0 0 
NPC 201,019 82,237 608 47,455 133,364 

 
 

We also compare NPC with the semantic approach of Veras et al. [28] and the Markov 

approach of Ma et al. [25]. Unfortunately, standard benchmark suites are not available for 

comparing algorithms against well-defined training and test sets when researchers use different 

algorithms. We do not believe it is fair to compare results of our work to algorithms of other 

researchers by creating versions (probably inferior) of their algorithms ourselves. For the 

comparative tests against these approaches we chose to approximate their training and test sets as 

closely as possible and report our results against their reported results.  

Veras et al. [28] used a semantic approach and a context-free grammar that lets them 

explore passwords containing multiple words or phrases. Since we did not believe that we could 

faithfully recreate their algorithm, we chose to run our NPC on a similar training and test set as 

they did and superimpose our cracking curve on their reported graph (their figure 3 in [28]). We 

trained on 2 million Rockyou passwords and tested on Myspace [31]. We improved our JtR_En 

dictionary with respect to a set of one million passwords from Rockyou to reach the 90% 

coverage and used this dictionary as our primary attack dictionary. Figure 3.16 shows the 

comparison on a cracking run of only 3 billion guesses (the maximum number they report on). 

As can be seen our cracking results are much more comparable to their best efforts than was 

PPC. 
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Fig. 3.16 Comparing NPC with the Reported Results of Figure 3 of Veras et al. 
 
 
The paper by Ma et al. [25] indicates the importance of using guess numbers for 

comparing different models. So in order to do a comparison with the Markov approach we again 

decided to run NPC on a similar training and test set as they used and superimpose our cracking 

curve on their reported work (their figure 2b in [25]). We used Rockyou training and the same 

test set that Ma et al. reported using (Yahoo + PhpBB). Figure 3.17 shows that our approach is 

comparable to the best Markov approach that they considered. Note that their guess generation is 

limited to about 15 billion guesses. 

 
 

 

Fig. 3.17 Comparing NPC with the Best Markov Model Reported in Figure 2b of Ma et al. 
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CHAPTER 4 
 

TARGETED PASSWORD CRACKING 
 
 

4.1 Background  
 

With respect to password security, it is not only essential to have a secure system to store 

user’s passwords, but it is also important how users create and use their passwords. The number 

of accounts for a single user is growing. The result of a survey of 2000 users has shown that a 

typical user has about 25 online accounts and one in four user uses a single password for most of 

their accounts [47]. Florencio et al. [48] showed that on average a user has 6.5 passwords and 

each password is typically being reused across 3.9 different websites. Enforcing complex 

password policies makes it harder for users to create memorable passwords. Because of this, 

many users reuse the same password for multiple accounts against experts’ advice. This reduces 

the security tremendously since when an attacker obtains a password, it is often tried on many 

different websites. Thus no matter how secure a service is; the security of it can be reduced 

because of its users’ actions. As more and more websites replace usernames with email 

addresses, it becomes much easier for attackers to attack and access our accounts. Users are often 

forced to change their password on a given account because of a threat or simply due to 

expiration policies. In these situations users are more likely to apply only slight changes to their 

previous password instead of creating a new one. Furthermore, users also tend to use a password 

with slight modification across different websites. Having different password creation policies 

for different websites might prevent users from some reuse of the same password (an unintended 

consequence), but it does not prevent users from using passwords that are very similar. A study 

by Shay et al [49] conducted on 470 University student, staff and faculty has shown that 60% 

used one password with slight changes for different accounts. In [50] the authors examined 

leaked password sets and found that users often do simple tricks to slightly change their 

passwords and to work around different password policies. 

In this chapter, I explore how to use the information about targets to help crack their 

passwords. Information could be names of family members, important dates or numbers, as well 

as any of their previous passwords. By modeling the differences between two or more old 

passwords, I show how to find their new password under the assumption that users often modify 
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their passwords by slight changes. A necessary assumption is that a set of one or more password 

sequences with slight changes is available. Clearly having more data on changed password 

sequences helps in better modeling the differences between passwords and predicting the new 

one. However, the first problem we encountered was the lack of data in this domain. There is not 

enough data available that contains changed passwords of users. Das et al. [50] used publicly 

available leaked password sets with user identifiers and analyzed the data to find passwords for 

the same user. They were able to find 6077 unique users with at most two passwords for each, 

from those about 43% were identical passwords and the rest were non-identical. Although this 

data could be representative of similar passwords for a specific user, it is not useful when 

analyzing the specific changes users make to their passwords for one account. Perhaps the 

closest study to the work in this chapter is Zhang et al. [51], which is a large-scale study based 

on password changes necessitated by password expiration. The authors were able to obtain a 

dataset of over 7700 accounts for which they had a known password and a subsequently changed 

password. They modeled a password change as a sequence of transforms (based on several 

different criteria) and organized these transforms as a tree from the old password as root. A path 

in the tree is a sequence of transforms that yields the new password with common subsequences 

being the same from the root. A search starts from the root with an input password and upon 

visiting each node in the tree the corresponding transform is applied to the output of the parent 

node. Then each output is tested as a password guess against the target password hash. One of 

the main difficulties of this algorithm was the high time complexity of the search algorithm to 

effectively walk the tree from its root. In their work the depth of the tree was limited to at most 3. 

 
4.2 Collecting Data and Survey Result  

 
In order to collect data for testing I developed a survey that required users to create and 

change passwords. The website was created using python and html5 to host the surveys. The 

actual programming for the website was mainly done by Ryan Kuhl and later edited by Frank 

Valcarcel. First time users click on a link, are presented with a consent form, and upon consent 

are asked to create an account using their FSU email address. They need to create a password for 

the account and are informed that their passwords will be saved and analyzed. The only policy 

on the password is to have at least 8 characters. After they create their accounts they are asked a 

few survey questions. The second time the participant visits our website, the user must login to 
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the previously created account with the password previously created and answer another series of 

questions. For the third site visit, the participant is asked to change his/her password and then 

answer another series of questions. Finally, the fourth visit completes the survey through the user 

logging in with the changed password and completing a set of questions. We enforce that users 

must not login again each time until the next calendar day and the total time to complete the 

survey was limited to about a week to ten days. The reason behind multiple logins is for the users 

to get more familiar and comfortable with the password they first created before asking them to 

change it. If the users forget their selected passwords, they can use the forgot password link on 

the page and their password will be sent to them via email. See the survey questionnaire in 

Appendix B. See also the Human Subject Approval letters in Appendix C and a sample of 

consent form in Appendix D. 

 
4.2.1 Survey Result 
 

We used Florida State University (FSU) students in our survey study since we could 

easily control who is participating and whether each individual is participating only once by 

enforcing the use of their FSU email addresses when creating their accounts. We sent an email to 

all students in the department of Computer Science and to a list of about 2000 randomly selected 

students at Florida State University asking them to participate in our survey study. For this study 

144 students created accounts, 56 of whom changed their passwords but did not necessarily 

complete the last survey. 50 students completed all four steps required. Recall that each time 

users log in they are asked a few questions. In this section we next discuss and analyze their 

responses. We mainly present the result of the 56 participants who changed their passwords, 

except for the last survey question in which only 50 answered the questions.  

In this study, 53% of our participants were female and 47% male. 68% of our participants 

were between the ages of 18 and 24. 17% were in the range of 25-34 and 13% were 35-44 years 

old. 50.88% of participants were majoring in computer science or related field. 67% of our 

participants have been using computers for more than 10 years and 31% of them were using it 

for about 6-10 years. Figure 4.1 (a) shows the highest education level of the participants, in 

which about 25% of participants were graduate students and the rest were undergraduate 

students. Figure 4.1 (b) shows the number of accounts they have. About 35% of participants 
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indicated that they have 5 to 10 accounts. More than 35% also indicated that they have more than 

20 different accounts.  

 
 

  
(a)                                                                                 (b) 

Fig. 4.1 Result of Survey Questions: (a) Highest Education Level (b) Number of Accounts  
 
 

We asked the participants whether they create unique passwords for each account and the 

results are shown in Figure 4.2. About 40% responded that they do not create new passwords and 

that they use their old passwords. Only 14% claimed that they create new passwords for each 

account and the rest most of the times create new passwords but sometimes use their old ones. 

 
 

 
Fig. 4.2 Result of Survey Question: Do you Create Unique Passwords for Each Account 

 
 

In Figure 4.3 (a) we asked our participants how they usually create their passwords. The 

result show that 30% modify their existing passwords to create a password, about 24% reuse 
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their old passwords and only 14% create new passwords. This is consistent with other reported 

studies and shows that our approach can be very useful in attacking a lot of passwords since 

many users do reuse and modify their old passwords. In Figure 4.3 (b), we see the result of how 

users usually store their passwords. About 13% store their passwords on regular files on their 

computers without any encryption, and 12% store it on their cellphones. 73% of our participants 

store their passwords in some way. This statistic is also helpful for us in another way as in 

chapter 6 we develop a tool that can identify passwords stored on hard disks and cell phones. 

That shows how vulnerable users can be by following current habits. 

 
 

  
(a)                                                                                 (b) 

Fig. 4.3 Result of Survey Questions: (a) How Do you Create Passwords (b) How Do you Store 
Passwords 

 
 

4.3 Modeling the Differences 
 

In this section we discuss our approach for integrating the information about the target 

into the probabilistic context-free grammar. We later show that using this context-free grammar 

we are able to predict and crack new passwords of the same user. Our approach consists of two 

different methods. The first approach is used when only one old password of the user is 

accessible. We discuss this approach in section 4.3.1. In the second approach, our system has 

access to at least two different passwords as a sequence and learns the changes made between 

these two passwords and uses the information to predict the new password. We discuss the latter 

approach in section 4.3.2. 
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4.3.1 Using AMP Distance Function to Create a Grammar 
 

In this approach, the only available information is the user’s previous password. Based on 

that, we would like to predict the new password or generate guesses similar to that. Following 

the assumption that users will most likely change their passwords with slight modifications, we 

use the AMP distance function [5] to generate guesses similar to the initial password.  

In this approach we are not only interested in generating guesses similar to the initial 

password, but we would like to create a probabilistic context-free grammar for predicting the 

new password. AMP uses a distance function to create strengthened passwords within edit 

distance one of the user-chosen password and it was designed based on Damerau-Levenshtein 

edit distance. The AMP distance function includes insertion, deletion and transposition of 

components in the base structure of a password as well as insertion, deletion and substitution 

inside a component. The improved distance function with the addition of keyboard patterns and 

multiword is described in section 4.3.1.1. It starts with the old password as the root of a tree, and 

generates all possible passwords within edit distance one of the root. We then create a 

probabilistic context-free grammar for the set of similar passwords (within edit distance one of 

the initial password). This context-free grammar represents all the possible new passwords that 

can be created subsequent to the use of the old password and is called EGrammar for Edit 

Distance Grammar. In this work, we consider every possible change to be equally likely, but in 

the future, by training on large numbers of old and new password pairs, we may be able to give 

different probability values to different changes. We can view the probability values in the 

EGrammar as conditional probabilities p(y|x) when y is the new password and x is the old 

password. Thus, the probability values in the EGrammar could be the probability values 

conditioned on the input password. 

Suppose the given password is “alice123!” with base structure L5D3S1. Using operations 

defined in the AMP distance function, we create passwords within one edit distance of 

“alice123!”. For example, we can insert an S1 component between “alice” and “123” or we can 

delete “123”. Similarly, we can insert digits in between 123 and create 1293 for example. Table 

4.1 shows the full EGrammar for the given password “alice123!”. As discussed before D stands 

for digits, S for special symbols, and C for capitalization (L: lowercase, U: uppercase). As shown 

in this example the grammar is very small compared to typical context-free grammars for 

password cracking; however it captures all edit distance variations of the given password. 
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Table 4.1 Example of EGrammar for the Given Password “alice123!” 

Base 
structure D1 D2 D3 D4 S1 S2 C1 C5 

L5D3S1 0 12 120 153 0123 1233 @ | )! !_ !| L LLLLL 
L5D3 1 13 121 163 1123 1243 ! \ ^! !] <! U LLLLU 
L5S1D3 2 23 122 173 2123 1253 ? . !- != @!  LLLUL 
S1L5D3S1 3  123 183 3123 1263 / _ !: !^ !#  LLULL 
L5D3S2 4  124 193 4123 1273 } # =! !! !"  LULLL 
L5D4S1 5  125 023 5123 1283 : $ !{ !( !,  ULLLL 
L5S1D3S1 6  126 223 6123 1293 + ] _! :! #!   
L5D3S1L1 7  127 323 7123 1230 { ~ .! !$ !%   
L5D3L1S1 8  128 423 8123 1231 * > {! [! !/   
L5D3S1D1 9  129 523 9123 1232 < , !' !} !)   
L5S1   103 623 1023 1234 ( = '! ![ $!   
D3L5S1   113 723 1223 1235 % ^ (! !+ `!   
D1L5D3S1   133 823 1323 1236 " ' !` +! !.   
L5D2S1   143 923 1423 1237 ) ; ?! !~ &!   
     1523 1238 ` [ %! !< |!   
     1623 1239 - & *! ~! !\   
     1723    !? !* ]!   
     1823    !; -! }!   
     1923    !& \! /!   
     1203    ,! "! ;!   
     1213    !> !@ >!   

 
 

4.3.1.1 Edit Distance Function. In this section we overview the distance function 

defined in [5] and we introduce the additional operations that we have developed in order to 

adapt the distance function to the new context-free grammar introduced in chapter 3 with the 

addition of keyboard and multiword patterns. 

Operations on the Base Structure: 

• Insertion: Inserting a component of length one is allowed only when it is not of a same 

type as its adjacent components. For example, if the base structure is L5D3S1 we can 

insert D1 in the beginning to make D1L5D3S1. There is no insertion of K1 or M1 since a 

keyboard or multiword component of length one is not defined. It is also possible to 

insert a D1 or S1 in between two words in a multiword. For example, for a password 

containing starwars (M8), we can create star5wars (inserting a digit) or “star!wars” 

(inserting a special character).  
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• Deletion: deleting a component can be done if the number of components is not 1 and if 

it does not make two components of the same type adjacent.  

• Transposition: Exchanging two adjacent components can be done only if it does not 

make two components of the same type adjacent to each other. For multiword 

components, we can also transpose two adjacent words, as well as the first and last word. 

For example, “mysweetbaby” can be changed to “sweetmybaby”, “mybabysweet” and 

“babysweetmy”. 

 
Operations on the Component: 

• Insertion: inserting one character of the same type inside a component is allowed. 

Example: if component D3 = 123, we can transform it to 4123 by inserting 4 at the 

beginning. 

• Deletion: deleting one character inside a component is allowed only if the length of the 

component is not equal to 1. For multiword components, we also allow deleting a word 

from a multiword which results in a new base structure as well as a new multiword in the 

grammar. For example, given password mysweetbaby12 with base structure M11D2, we 

can create other base structures such as M9D2, M6D2, M7D2 as well as “mysweet”, 

“mybaby”, and “sweetbaby” as multiwords in the grammar.   

• Substitution: we can substitute a character with another character of the same type in 

digit and special character components. Example: S2 = !! can be transformed into !#. 

 
4.3.2 Determining Password Changes  
 

In this second approach, we have more information about the user’s password habits: two 

old passwords. We can still take advantage of our first approach and use the most recent 

password to generate the EGrammar. However, we can also gather information about the 

changes made to the previous passwords and use this information in predicting the new 

password. We next discuss our algorithm to first determine the operations made to change the 

password, and then how to predict the new password based on the information. 

In order to determine the changes between two passwords we implement a function that 

finds the minimum edit distance by creating a distance matrix. The function also involves a 

backtracking algorithm that determines the operations made between two strings. We have 
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developed our function based on the Damerau-Levenshtein [52] algorithm. The Damerau-

Levenshtein edit distance is a string metric between two strings s and t which counts the 

minimum number of operations needed to transform one string into the other. In this algorithm 

an operation is defined as an insertion, deletion, or substitution, or a transposition of two adjacent 

characters. The algorithm starts by filling a (distance) matrix A of size n1 × n2, where n1 is the 

length of the first string s and n2 is the length of the second string t. The record value in A[i, j] is 

the measure for the distance between the initial substring si of s of length i and the initial 

substring tj of t of length j. At the time of creating this matrix, we also capture the operations 

associated to each step and store it in another matrix. Later by backtracking this matrix, we find 

the operations needed to transform one string to the other. See Appendices E.1 and E.2 for the 

implementation of the edit distance and the backtracking algorithms.  

Note that our edit distance function is different than a regular Damerau-Levenshtein edit 

distance as mentioned before. Therefore, our algorithm needs to cater to this. Our algorithm is a 

hierarchical algorithm which first finds the edit distance between the simple base structures. A 

simple base structure is the base structure of the password without considering the length of each 

component. For example the simple base structure of alice123! is LSD. The first level of the 

algorithm applies the distance function as well as the backtracking function on the simple base 

structures of the given passwords to determine any changes between these strings. It then reverts 

some of changes and applies the distance function and the backtracking function on the new 

strings. This algorithm then creates a context-free grammar called TGrammar (Target grammar) 

that represents the transformational changes between the two passwords. In the next section we 

give a more detailed description of both algorithms. See Appendix E for a pseudo-code 

implementation of the full algorithm. 

 
4.3.2.1 Hierarchical Transformation Algorithm. Given two old subsequent passwords, 

in the first level we parse both passwords into their simple base structures. As an example, 

suppose we have a sequence of two old passwords such as: alice123!$ and 12alice$!. The simple 

base structures are LDS and DLS respectively. Then, by calling our edit distance algorithm for 

these two simple base structures, we can determine the differences in the base structures. The 

edit distance matrix is shown in Figure 4.4. The bottom right element of the matrix is the edit 

distance between these two strings. 



 58 

 
Fig. 4.4: The Edit Distance Matrix for Simple Base Structures (LDS and DLS) 

 
 

Using the backtracking algorithm, we determine the operations that caused the change in 

the simple base structure. The backtracking algorithm starts from the bottom right corner of the 

matrix and travels back to the upper left corner of the matrix, and in each step determines what 

operation was done to calculate the edit distance. In this example, the function returns “tn” (t: 

transposition, n: no change) meaning that there has been a transposition in the first position, and 

no change in the next position. If a transposition is found in this step, we will transpose the 

components so that we neutralize the initial transposition effect and recreate one of the 

passwords similar to the other by applying the transposition. In the above example, the first 

password is changed into a new password by transposing the first two components creating 

123alice!$. This will count as one edit distance between these two passwords. 

The second level of the hierarchical algorithm finds the edit distance between each 

component. We now use the changed password along with the second password to find the edit 

distance and the operations between these two strings.  

As shown in Figure 4.5 the edit distance between 123alice!$ and 12alice$! is 2 and the 

result of the backtracking function is “nndnnnnnt” (n: no change, d: deletion, t: transposition).  

We then count the edit distance of these two passwords as the sum of the edit distances of the 

first level and the second level hierarchy, which in this example is 3. Based on our defined 

operations, two adjacent components are transposed, ‘3’ has been deleted and two adjacent 

symbols ‘!’ and ‘$’ are transposed. However, if we were to use the original Damerau-

Levenshtein edit distance algorithm for these two strings without considering the hierarchy, the 

edit distance would be 6 (since a flat algorithm would find that there are 2 insertions in the 

beginning and 3 deletions and 1 transposition at the end of the string). Thus by developing the 

hierarchy algorithm and initially looking for any transposition in the simple base structures we 

can handle these situations better and create a more realistic edit distance function for passwords. 
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Fig. 4.5 The Edit Distance Matrix for Passwords (123alice!$ and 12alice$!) 

 
 

In this system, users can also enter any names, numbers, important dates, and addresses 

as part of the information about the target into the appropriate boxes. For example, names of 

family members if known can be useful in password cracking since they can be used in 

substituting the alpha string components. Also, numbers such as date of birth, age, license 

number, social security number, etc. can be entered into the system. The numbers-related 

information will be added into the target grammar along with the information we capture from 

evaluating the transformations between the pair of old passwords.  

 
4.3.2.2 Using Transformations to Create the Target Grammar. Once we learn what 

changes users have made to their old passwords, we can use the information to predict and guess 

their new password, with the hope and assumption that they apply similar modifications to their 

new password. In order to do so, we have developed an algorithm to generate new password 

guesses based on some of the most important changes we have found in our data and in the result 

of other studies [50, 51]:  

1. Increment/decrement of the digit component by one: we recognize an increment or 

decrement by 1 in the digit component of the old passwords, and upon finding such 

alteration we add our prediction to our targeted grammar. For example if the old 

passwords are bluemoon2 and bluemoon3, we would like to guess bluemoon4 with higher 
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probability value. Therefore, we add the same base structure L8D1, as well as 4 and 

bluemoon to our target grammar.  

2. Insertion of the same digit: We have also developed algorithms to recognize if a digit has 

been inserted into a password and if it has been repeatedly added. Examples of such cases 

are: password à password5 à password55 à password555. In this case, for example, if 

the old passwords are bluemoon5 and bluemoon55, we add 555 to the target grammar as 

well as L8D3.  

3. Capitalization of alpha strings: If the old passwords both have the same alpha sequence 

with different capitalizations, we add both of the capitalizations to our target grammar 

since the chances of using those masks are higher.  

We convert the password predictions to a context-free grammar called TGrammar (target 

grammar). This grammar can be used to generate guesses that are variations of the prediction 

based on information obtained from user’s old passwords. Both EGrammar and TGrammar are 

usually very small with only a few base structures that are only used to generate guesses very 

similar to the given passwords. In the next section we introduce a technique to merge two or 

more context-free grammars with different weights assigned to each grammar. Using this 

approach we can merge EGrammar and TGrammar with a more comprehensive grammar (or a 

general password cracking grammar) with higher weights assigned to EGrammar and 

TGrammar. This will allow us to generate a large number of guesses while giving higher 

priorities to guesses that are similar to the given input passwords.  

 
4.3.3 Merging Two or More Context-free Grammars  
 

Consider the scenario in which we have access to a single old password for a specific 

user. If our goal is to crack a new password created subsequent to the use of the old password, 

we would like to change the probabilities of the base structures and other components of the 

grammar in such a way that the guessing automatically generates passwords that are similar to 

the old password with much higher probability. However, we would also like to continue 

generating guesses like we would do normally in any password cracking since it is possible that 

the user has created a completely new and different password. This way, we maintain our 

guessing capability in highest probability order and we also guess the similar passwords (to the 

old password) earlier.  
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We define merging two grammars as follows:  

Let G1 and G2 be two probabilistic context-free grammars. We define a new grammar G3 

called the merge of G1 and G2 and we represent it as: 

G3 = α G1 + (1- α) G     where 0 ≤ α ≤ 1 

Given a grammar rule R in G1 or G2, let the probability of R in G1 be p1 and the 

probability of R in G2 be p2. Then the probability p3 of R in G3 is: 

p3 = α p1 + (1 - α) p2 

Note that if R does not exist in one of the grammars, its probability is viewed as 0. The 

parameter α is used as a weighting factor between the grammars. Also note that after merging the 

probability values in each category also add up to 1, maintaining the properties of a probabilistic 

context-free grammar. 

 
 

Table 4.2 Guesses Generated by MGrammar 

pluto1995 pluto1993 pluto1915 pluto1495 1995Pluto 6pluto1995 pluto1995_ 
Pluto1995 pluto1992 pluto5995 pluto1895 1995plutO pluto1234 _pluto1995 
plutO1995 pluto1999 pluto1395 pluto7995 1995plUto 1q2w3e4r pluto19951 
plUto1995 pluto1996 pluto1195 pluto3995 1995pluTo pluto!1995 pluto19955 
pluTo1995 pluto1998 pluto1095 pluto6995 1995pLuto 123456 pluto17995 
pLuto1995 pluto1965 pluto4995 pluto1995e 2pluto1995 pluto1995! pluto01995 
1995pluto pluto1997 pluto1795 pluto1995r 3pluto1995 !pluto1995 pluto21995 
1995 pluto1955 pluto9995 pluto1995s 4pluto1995 pluto@1995 pluto19953 
pluto1985 pluto1945 pluto8995 qwerty 7pluto1995 pluto1995@ pluto16995 
pluto1990 pluto1935 pluto0995 pluto1995E 0pluto1995 @pluto1995 pluto18995 
pluto1975 pluto1925 pluto2995 pluto1995R 5pluto1995 pluto2008 pluto19925 
pluto1991 pluto1295 pluto1695 pluto1995S 8pluto1995 pluto2009 pluto71995 
pluto1994 pluto1905 pluto1595 1pluto1995 9pluto1995 pluto_1995 pluto19945 

 
 
In this approach, every probability in the first Grammar G1 will be multiplied with its 

weight α and every probability value in the second grammar G2 will be multiplied with its weight 

(1- α). Then if two similar rule values are exactly the same in both grammars, the probabilities 

are added together. The result is a special context-free grammar that can be used as before in 

offline attacks. Table 4.2 shows an example of password guesses generated with a merged 

grammar. The given password “pluto1995” was entered into the system and the resulted 

EGrammar was merged with a more general grammar. Different variations of pluto1995 can be 

seen among the first few guesses. Soon after, other password guesses such as “qwerty” or 
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“123456” are seen among the guesses since they are very common and have high probability 

values.  

 
4.3.4 Testing and Result 
 

As previously discussed, we did not initially have access to a dataset of sequences of 

changed passwords. However, we were able to obtain two such sets: (1) we were able to obtain a 

small list of 30 old and new passwords through a private party; and (2) we gathered 56 pair of 

old and new passwords through our survey study explained in section 4.2. We used the first set 

to learn how users change their passwords and to develop our system as explained in section 

4.3.2.2. In this section, we present the result of our targeted password cracking system on the 

second set. In our survey, after the users changed their passwords, we asked the question: Did 

you create your new password by slightly changing your old password for this website? This 

question is important since we know which passwords were changed intentionally by slightly 

modifying the old password. Out of 56 pair of passwords obtained in this survey, 23 were 

claimed to be changed in this way. Therefore, in this section we only focus on those. We analyze 

whether we can crack/guess these passwords effectively. We input the old password to the 

system, and our goal is to crack/guess the new password early on during the guessing process. 

The system generates the EGrammar as discussed above. The EGrammar, in which we generate 

guesses within one edit distance of the given password, is useful most of the times. However, if 

the new password is changed considerably, it is more useful to merge the EGrammar with a more 

comprehensive grammar as discussed in section 4.3.3. 

Table 4.3 shows the old password given to the system, the new password we try to guess, 

the number of guesses we made to find the new password using the targeted grammar, and the 

number of guesses we made to find the new password using our regular grammar. We also show 

whether we used the Edit distance grammar (Egrammar) or the merged grammar (Mgrammar) in 

our targeted attack. We used Yahoo-train and our NPC system to construct the grammar. We 

also used dic0294 as our attack dictionary. We limited the number of guesses to 10 billion 

guesses in our password cracking sessions. The results show that we were able to guess most of 

the passwords that were changed slightly. The reason we were not able to crack some of the 

passwords was mostly due to not having the alpha string part in our attack dictionary. The result 

also shows that only a few of the passwords were broken during a normal password cracking 
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attack within 10 billion guesses made. The targeted attack was more efficient when information 

about old passwords of users were available. 

 
 

Table 4.3 Test Result of Targeted Attack 

Old password New Password Number of 
Guesses in 

Targeted Attack 

Number of 
Guesses in 

Regular Attack 

Grammar 

tharaborithor thorborithara -- -- -- 
Simba144! @Simba2523 734,505,973 -- MGrammar 
$unGl@$$220 $unGl@$$110 4,070 -- MGrammar 
research! Research! 554 5,059,949,503 EGrammar 
starWars@123 star#Ecit@123 2,227,558 -- EGrammar 
thebigblackdogju

mps 

blackdogmoretim

e 

-- -- -- 
Ahk@1453 Ahk#1453 12,026 -- EGrammar 
qpalzm73 qpalzm73*  1,810 -- EGrammar 
pluto1995 boonepluto -- -- -- 
caramba10 caramba12 14 11,424,542 MGrammar 
Elvis1993! Professional1993

!2 

-- -- -- 
pepper88 peppergator88 128,197,109 2,563,504,751 MGrammar 
ganxiedajiA1!! 1ganxiedajiA  7,794 -- MGrammar 
88dolphins! 55dolphins! 38,503 -- MGrammar 
kannj2013! kannj2013 97 -- EGrammar 
!FSU$qr335 !FSU$qr335mcdd

t 

-- -- -- 
vballgrl77 schatzimae -- -- -- 
nickc1007 corkn1007 -- -- -- 
sunflower12 sunflower13 202 119,336,969 EGrammar 
meg51899 Meg51899* 5,381 -- EGrammar 
Research1 research11 206 23,728,452 EGrammar 
Gleek1993 Gleek1985 9,661 1,994,709,669 MGrammar 
Oaklea0441 Oaklea0112 91,014 -- MGrammar 
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CHAPTER 5 
 

PASSWORD CHECKING/STRENGHTENING 
 
 

In this chapter I turn to the importance of passwords for security and protecting 

information for users. I investigate the question of how to measure password strength and how to 

help users create stronger passwords. I first discuss previous work on password meters and 

password strengthening. I then discuss other techniques used to make passwords stronger such as 

rule-based approaches. I then review the AMP password analyzer and modifier [5] which was 

first introduced in my Master’s thesis. I later explore this approach further and analyze its 

effectiveness in detecting weak and strong passwords and suggesting stronger passwords with 

slight modifications. Part of the work in this chapter appeared in [53]. 

 
5.1 Background and Motivation 

 
When it comes to password security, the main concern is that people do not have enough 

knowledge about what a strong password is and how to create one. Most organizations and 

websites follow a rule-based approach in recommending or enforcing password policies. Their 

aim is to help users create a stronger password. Password policies have certain rules such as 

“your password must contain at least two digits”, or “your password must be at least 8 characters 

long”. Some other websites have recommendations and use password meters to show the 

strength of the user selected password. A study by Shay et al [49] was conducted to seek an 

understanding of the factors that make creating and following password policies difficult. They 

gathered the results of a survey of 470 Carnegie Mellon University students, faculty and staff. 

Their results imply that users were not happy about changing the password creation policy to a 

stricter one and they also found that about 80% of users reused their passwords across different 

accounts and 60% used one password with slight changes for different accounts. Riley [54] also 

found that the average length of time users maintained their primary personal use password was 

reported as 31 months and 52% of users never change their password. These studies show that 

having an effective password creation policy does not always mean having strong passwords and 

a secure system, since users are forced to create passwords that may not be easy to memorize 
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(which is not good), and most users tend not to change their passwords often nor do they have 

different passwords for different websites. 

Rule-based advice is confusing as there is no consistency across websites in the 

requirements, with differing advice about length, number of symbols and digits, and even in the 

symbols that are allowed. In [55] it is shown that inconsistent and even contradictory 

recommendations make such advice unreliable for users. A recent study [56] analyzed password 

meters in popular websites and shed light on inconsistencies in determining the strength of 

passwords across different platforms. The authors created a system that allows a use to enter a 

password and checks the strength of the password based on different websites. Figure 5.1 shows 

an example of the result of password strength meters against password “alice123!”. [57] reports 

that although nowadays users understand the importance of secure behavior, they still find it too 

difficult to cope with password creation policies, and they rarely change their passwords due to 

the frustration of creating a new password along with the difficulty of memorizing it. In studies 

by Charoen et al. [58] and Adams and Sasse [59], it was found that users are not even unanimous 

about the necessity of having a strong password and the reason users choose insecure passwords 

is because they usually do not know how to create secure ones. 

 
 

 
Fig. 5.1 Example of Inconsistencies across Different Password Meters 
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The U.S. NIST guideline [2], the basis for most rule-based policies, proposed a rule-

based approach that used the notion of Shannon entropy for estimating password strength based 

on suggested values of the components of the password. However, researchers [3, 4, 27] showed 

that the use of Shannon entropy as defined in NIST is not an effective metric for gauging 

password strength. Weir et al. [3] performed password cracking attacks against multiple sets of 

real life passwords and showed that the use of Shannon entropy as defined in NIST does not give 

a sufficient model to decide on the strength of a given password. Castelluccia et al. [27] also 

perform studies and showed that insecure passwords are accepted and secure passwords are 

rejected as a result of this approach. 

In the next section we discuss our approach which is based on an analyze-modify 

approach in which we first estimate the strength of a password based on real cracking attacks and 

then modify a weak password to create a strong one for the user within an edit distance of one. 

At the time of this research there were only a few relevant studies that are similar to our 

approach in some ways. Schechter et al. [60] proposed to build an oracle for existing passwords 

that are available to the Internet-scale authentication systems. The authors recommend that 

popular passwords be disallowed and the main thrust of their work is to devise a way to 

efficiently store the large number of popular passwords that would be prohibited. They use the 

notion of a count-min sketch (similar to a Bloom Filter) for such storage. Their proposed oracle 

would disallow very popular passwords while otherwise allowing users to choose any password 

they wish. An open question posed in their study is how to use the oracle without revealing the 

actual password to attackers while querying online. Our technique gets around this problem as 

well as their storage problem. Castelluccia et al. [27] explored measuring the strength of 

passwords using a Markov approach. They spent a fair amount of their study proving the security 

of their system; however, they did not show the effectiveness of the Markov approach in 

estimating the strength of passwords against real attacks.  

 
5.2 Analyzing and Modifying Passwords 

 
In this section we review our work on estimating password strength and creating stronger 

passwords [53] and the system we developed called AMP. The key to a good password checker 

is the ability to help a user create a secure password while ensuring the password is easy for the 

particular user to memorize. Both of these aspects are important since it is very easy to develop a 
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policy that results in strong passwords (using random password generators) that are particularly 

unusable. In our approach we use an implicit password creation policy in which there is a reject 

function that rejects a weak password and then a modify function that changes the weak 

password slightly to one which is appropriately strong. 

For a password to be strong we need to make sure that it cannot be easily broken. The 

first step in AMP [53] is to evaluate the user chosen password for strength. We define the 

password strength as the probability of the password being cracked by an attacker. We take 

advantage of the probabilistic context-free grammar (discussed in chapter 3) trained on a set of 

real user passwords to estimate the probability of a password being cracked. We assume that this 

set is a comprehensive set of passwords (and a sufficiently large sample set) that can be used as a 

model of realistic passwords. In fact, we are able to determine a threshold value below which a 

password would be considered as strong. This allows us to build a reject function that accepts a 

strong password and rejects a weak one. AMP then modifies weak passwords to ones that are 

strong but within edit distance of one. 

 
5.2.1 Setting the Threshold 
 

A strong password is one for which it takes an attacker an appropriately long cracking 

time (ct) to crack that password (in hours). In an optimal attack, the attacker would try different 

guesses in decreasing order of probability. We define the threshold (thp) as a probability value 

such that passwords with probability less than thp are strong and those that are greater than or 

equal to thp are weak. By using the probabilistic context-free grammar (plus appropriate 

dictionaries) as our model of the realistic password distribution, we can determine the number of 

guesses g(thp) the attacker would make before trying a password with a value equal to the 

threshold value thp. Let r be the rate-per-hour of the guesses (based on the hash type, cracking 

system speed, etc.). We thus have g(thp) = ct * r. In the preprocessing phase, we create a table 

that contains the number of guesses and the probability values of the guesses at various time 

intervals by running the probabilistic password cracker. This is then used as a mapping of thp to 

g(thp) and is used to select what level of security we want the system to have. The threshold is 

then used to decide whether a given password is strong or weak.  

The AMP system first asks users to enter their chosen password; the probability of the 

chosen password is then calculated using a probabilistic context-free grammar. The password is 
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parsed to its base structure and components. For example “Alice123!” will be represented as 

L5D3S1. Then the probability of the base structure L5D3S1 along with the probabilities of alice, 

123, ! are found from the grammar. The product of these probabilities is the probability of the 

user’s password. This probability pu is compared with the threshold value to accept or reject the 

password. If pu is smaller than the threshold value, the password is strong, meaning that it will 

take longer to guess the password using an optimal attack. 

 
5.2.2 Modifying a Weak Password  
 

When a password is weak and is rejected by the system, the system then tries to modify it 

slightly to create a stronger password for the user. The modification needs to be minor since we 

would like to keep the password usable and memorable. A usable password is a password that is 

easy for the user to remember and type. Things people can remember are different for each group 

of people based on their age, situation, location, etc. If a password is weak we try to create 

passwords with slight changes to the user-chosen password using the AMP distance function. 

This is based on Levenshtein edit distance to fulfill the need of usability for users. We believe 

users choose password components for memorability and only minimal changes should be made. 

Hence, we start generating passwords with distance one from the user-chosen password and 

check if the modified password is within the acceptable threshold value. If we find one, we are 

done and the new password is recommended to the user, otherwise we continue and check all 

possible changes. Obviously, it is possible that we might not be able to create a password within 

distance one with the desired probability value. 

 
5.2.3 Updating the Grammar 
 

In order to maintain the AMP system as still effective after users use the system for some 

time, an update strategy is developed that modifies the grammar periodically. After using the 

system for a period of time the probability distribution of passwords changes. Since the 

supposedly strong passwords suggested by AMP have become in use more often and would now 

have higher probability in the guessing generator, the attacker has a better model of the AMP 

generator and therefore continued use of the original grammar could be problematic. Therefore, 

every modified password that has been suggested to a user is considered as a publicly disclosed 

password. Using an appropriate weight, the password can be added to the training set effectively. 
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This ensures having a realistic and up to date probability distribution for the probabilistic 

context-free grammar at all times. In order to update the training set, there is no need for 

processing the training set again; we only need to adjust the probability values in the context-free 

grammar and it can be done almost instantaneously. We have shown that the Shannon entropy of 

the grammar seems to be approaching the theoretical maximum Shannon entropy as we update 

the grammar. We also found a similar result for the guessing entropy. Theoretically, having a 

uniform distribution for passwords is ideal since all passwords will have equal probabilities. 

Practically, this would mean that each password is equivalent to being randomly chosen. Note 

that using our update algorithm we are moving closer to a uniform distribution but are likely very 

far away from it. 

 
5.3 Testing and Result 

 
In this section, I discuss the result of our analysis of the effectiveness of the AMP system 

on several revealed password sets. We randomly created three different sets for (1) training the 

AMP password checker (RockYou: 1 Million, MySpace: 30,997, Hotmail: 4874); (2) testing the 

AMP system (RockYou: ½ Million, MySpace: 15,499, Hotmail: 2,437); and (3) training a 

probabilistic password cracker (RockYou: ½ Million, MySpace: 15,499, Hotmail: 2,437).  

We used the first set as the training set to construct a context-free grammar for the AMP 

password checker. We then set the threshold value to one day, equivalent of 43.2 billion guesses 

for our experiments.  Therefore, a password is called weak if it can be cracked/guessed within 

one day, and it is strong otherwise. We then give the second set (test set) as the input to the AMP 

system. The system calculates the probability of each password in the set and compares it against 

the threshold. If the password is weak, the system tries to generate a strengthened password 

within edit distance of one.  

We can categorize the result of the AMP system into four different groups: (1) Passwords 

determined as strong, (2) Passwords determined as weak and the system was not able to 

strengthen them, (3) Passwords determined as weak and the system was able to strengthen them, 

and (4) The strengthened (modified) passwords from the third category. We ran a series of 

password cracking sessions using two different password crackers (the probabilistic password 

cracker and John the Ripper). The results of the password cracking are shown in Table 5.1 and 

5.2.  
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Table 5.1 Password Cracking Results using John the Ripper 

 (1) 
Originally 

Strong 
Passwords 

(2) 
Originally 

Weak 
Passwords 
(not able to 
strengthen)  

(3) 
Originally 

Weak 
Passwords 

(able to 
strengthen) 

(4) 
Strengthened 

Passwords  

Hotmail     

 
2
325 

49
53 

988
2,059 

2
2,059 

Percentage (0.61%) (92.45%) (47.98%) (0.0975%) 
MySpace     

 
23
1484 

104
149 

5,343
13,866 

71
13,866 

Percentage (1.55%) (69.80%) (38.53%) (0.51%) 
RockYou     

 
281
32,794 

22,248
24,745 

235,302
442,461 

1,186
442,461 

Percentage (0.86%) (89.90%) (53.18%) (0.27%) 
 
 

Table 5.2 Password Cracking Results using Probabilistic Password Cracker (PPC) 

 (1) 
Originally 

Strong 
Passwords 

(2) 
Originally 

Weak 
Passwords 
(not able to 
strengthen)  

(3) 
Originally 

Weak 
Passwords 

(able to 
strengthen) 

(4) 
Strengthened 

Passwords  

Hotmail     
 1

325 
53
53 

1,069
2,059 

113
2,059 

Percentage (0.3%) (100%) (51.91%) (5.48%) 
MySpace     

 27
1,484 

135
149 

8,341
13,866 

698
13,866 

Percentage (1.81%) (90.60%) (60.15%) (5.03%) 
RockYou     

 467
32,794 

24,378
24,745 

259,027
442,461 

18,134
442,461 

Percentage (1.42%) (98.51%) (58.54%) (4.1%) 
 
 
The results show that both originally strong and strengthened passwords (modified from 

weak passwords) have very low rate of cracking compared to weak passwords. John the Ripper 

cracked
total

cracked
total

cracked
total

cracked
total

cracked
total

cracked
total
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generally cracked less than 1.5% of the strong passwords and the Probabilistic Password Cracker 

cracked about 5%. Overall, without using the AMP system the total rate of cracking the test set 

(columns 1,2,3) was 56.6% with the probabilistic password cracker. Using AMP and not 

allowing weak passwords to be selected by users, the cracking rate is 3.9%. The AMP system 

successfully distinguishes weak passwords from strong ones with an error rate of 1.43% (column 

1). This rate is the percentage of passwords originally identified as strong, but that can be 

cracked.  

Besides using the 1-day threshold, we also ran similar tests as the above using threshold 

values for 12 hours, 48 hours and 96 hours. Figure 5.2 shows the total rate of cracking the test set 

before using AMP and after using AMP for both John the Ripper (JTR) and the probabilistic 

cracker (PPC). The time allocated for cracking was of course the same time as used for 

determining the threshold. Note that the results are similar to the 1-day results and even at 4 days 

we are significantly improving the weak passwords. 

 
 

 
Fig. 5.2 Using AMP for Different Time Thresholds 
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CHAPTER 6 
 

IDENTIFING PASSWORDS ON DISK 
 
 

As discussed previously, with the increase in the number of accounts and passwords that 

each user has, and the recommendations on not reusing passwords, users are faced with the 

problem of how to create secure and memorable passwords. Thus, they are increasingly turning 

to saving their passwords in some manner, either on paper or on their computers. A survey in 

2012 by Kaspersky Lab [61] revealed that 29% of users store their passwords on media. 13% 

create a text document on the hard drive, 9% write them on a cell phone, and only 7% use 

specialized software. In our own recent informal survey of 100 students, we found that 42% store 

their passwords and 55% of these do so on disk or cell phone in clear text without encryption or 

using specialized software. As password policies are becoming more complex, we believe that 

users turn more to storing them on media. In this chapter I describe work done that gives a 

solution to the problem of identifying passwords on media [62].  

Suppose that law enforcement captures a hard disk and needs to find if there are any 

stored passwords on the disk. An example scenario [63] is when there are encrypted files on disk 

(say illegal photos). It is possible that the user has stored the password somewhere on the disk to 

easily access these encrypted files. An investigator could look at each file and try to determine 

by context and structure which strings might be passwords. This would of course be quite 

tedious, especially with very large disks. Investigators sometimes use existing tools to tokenize 

all the strings on the disk and use these as a dictionary for offline cracking of the encrypted files. 

The list, however, often becomes too large to build a dictionary that can be subsequently used for 

cracking. The identification problem is to distinguish the tokens that are more likely to be 

passwords and winnow down the list to a more manageable one. This problem is non-trivial 

because distinguishing which of the strings are passwords from a large set of strings has no 

obvious solution.  

There have been a few studies on how to find passwords used for encryption or 

passwords stored through browsers [64, 65, 66]. However, we are unaware of any work that tries 

to distinguish passwords from other strings that are stored directly by the user on disk. Garfinkel 

et al. [67] discuss a more general problem of trying to capture a storage profile for each computer 
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to detect anomalous behavior. They propose to monitor the forensic content of the disk (or other 

media) such as email addresses, credit card numbers, etc. There exist recovery tools such as 

EnCase [68] and FTK [20] that have the capability of finding strings on disks. However, the real 

problems is filtering these strings and determining the likeliest strings, which might be 

passwords. Identity Finder [69] is also a commercial sensitive data manager toolkit. It looks for 

passwords, credit card numbers, social security numbers, etc. in a variety of places including 

files, emails, browsers, registry files, databases, and websites. Furthermore, Identity Finder 

provides password search customization by enabling certain keyword and regular expression 

search thus requiring the investigator to propose a string search. Again, this tool does not tackle 

the password identification problem. 

In this work, we first analyze a disk image and retrieve all strings on the disk that could 

possibly be passwords, which we call tokens. During this process we prune a potentially very 

large set of tokens to a more manageable set that we expect contains most of the passwords. We 

then use the probabilistic context-free grammar discussed in chapter 3 to calculate the probability 

of each token and decide which ones are likely to be passwords. In the final phase we use these 

probabilities and develop a set of ranking algorithms to suggest an ordered list of tokens. This 

list can be then used as a dictionary by the investigator to do password cracking using any 

appropriate approach. 

 
6.1 Retrieving Tokens from the Disk 

 
In this work the assumption is that a user is simply storing the passwords in a file on disk 

in order to remember their password if needed. The file can be in allocated space or unallocated 

space (file might be deleted) or hidden through the operating system. The first step is to retrieve 

all the files from the disk image. We use tsk_recover tool to recover files from both allocated and 

unallocated spaces. Tsk_recover is part of an open source digital forensics tool for analyzing disk 

images called Sleuth Kit [70].  We then consider file types that are more probable to contain text 

and to be modified by users such as .doc, .docx, .xls, .xlsx, .rtf, .odt, .pdf, and .txt. We use open 

source tools such as catdoc, docx2txt, xls2txt, unoconv and xls2txt, unrtf, odt2txt, and pdftotext to 

convert these files to text file format to be able to read the contents of the files. We then tokenize 

the strings for each file using space, tab and newline as delimiters. We store tokens of each file in 

a new file associated to the original where each token is written on a single line. We later search 



 74 

for possible passwords through these associated files. Even an average sized disk typically 

contains many different file types and files with text content resulting in a huge number of 

tokens. In order to be able to reduce the set of tokens that we retrieve, we define a set of rules 

that filters out some classes of tokens that we believe are very unlikely to be passwords. We 

developed two different sets of filters. Initial filters are developed to eliminate tokens with 

characters, or lengths that are not part of passwords. Specialized alpha string filters are 

developed to reduce the number of alpha strings in the text files.  

 
6.1.1 Initial Filters 
 

We examined some revealed password sets to get insight into what kinds of structures are 

rarely seen in passwords. The set of initial filters that we define and apply is as follows:  

• Non printing: These are ASCII characters that are almost always not valid password 

characters. 

• Length: Passwords usually have certain lengths based on the policies enforced on each 

website. Here we apply a conservative bound and only consider the tokens with length l, 

6 < l < 21. 

• Floating point: The files on disk (especially the .xls files) can often include many 

floating point numbers. We filter out all floating point numbers since our studies on 

revealed password sets show that there is very little chance of such tokens being real 

passwords. We therefore filtered out, using a regular expression, any string of the form [-

+]? [0-9]* .? [0-9]+ ([eE][-+]?[0-9]+)? 

• Repeated tokens: In each file, we only keep one copy of tokens that are repeated 

multiple times. One might think that repeated tokens are not likely to be passwords, but it 

is possible that users store password information for many different accounts and thus 

would have multiple copies in a file.  

• Word punctuations: We remove tokens that seem to include punctuation patterns of a 

sentence by filtering out tokens that contain only alpha strings ending with any of the 

following characters: ;:,.?!-)}. We also filter out such tokens starting with ( or {. Our 

examination showed that only 0.516% of such tokens are found in a sample of 1 million 

passwords in the Rockyou set.	
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6.1.2 Specialized Alpha String Filters 
 

An extremely prevalent class of tokens found on a hard disk is the set of alpha strings 

(those containing only alphabetic characters). In this section we describe various approaches to 

handling such strings. We define the specialized alpha string filters as follows: 

• All-alphas: This filter eliminates tokens that are all alpha strings. In this case we assume 

that most of the time passwords do not contain only alphabet characters but also contain 

digits or special symbols as well. This is further enforced by current password creation 

policies. 

• Sentences: This filter tries to eliminate all alpha strings that are part of sentences. To 

detect sentences we use OpenNLP [71]. This tool can detect whether a punctuation 

character marks the end of a sentence or not. It cannot however identify sentence 

boundaries based on the contents of the sentence. An additional problem we faced was 

that during the conversion process to a .txt file, word wrapping is not preserved as line 

breaks are added, so sentences, which continue into another line are considered separate 

indices by OpenNLP. We thus verify if an index starts with a capital letter and ends with 

a period and filter out such sentences. 

• Capitalization: This filter eliminates all lower case alpha strings. This is because some 

of the password policies allow you to have passwords, which contain one or more of the 

classes (symbols, digits, and capital letters). 

• Dictionary words: This filter eliminates alpha strings that appear in a dictionary. The 

purpose of using an English dictionary is to try to eliminate words that are most likely 

part of sentences in the documents, and keep the rest of the strings in our token set.  

• Multiwords: This filter eliminates all alpha strings that are not multiwords. Examples of 

such strings are passphrases (without whitespace) that appear to be increasingly used as 

passwords.	
  

 
6.2 Identifying Passwords 

 
After examining the disk and retrieving all tokens separated by whitespace, our main task 

is to distinguish and find passwords from other sequences of characters that appear in a text file. 

For this purpose we use the probabilistic context-free grammar trained on a large set of real user 

passwords. As discussed before, this grammar models a password distribution and the way users 



 76 

create the passwords. This helps in differentiating passwords from regular text. As explained 

previously in section 5.2, given a probabilistic context-free grammar we can calculate the 

probability of a given string in the password distribution. We parse the given string into its 

components and find the probabilities associated with each component from the grammar. We 

then calculate the probabilities of all of the retrieved tokens remained after applying the filters.  

 
6.2.1 Ranking Algorithms 
 

After retrieving all tokens and calculating the probability value of each token, we rank 

the tokens in order to output a limited set of tokens (say the top N tokens) for the investigator to 

examine as the most likely possible passwords from the hard disk. Obviously, the ideal is having 

both high precision and high recall in this potential password set. Recall can be more important 

in an offline attack while precision might be more important in an online attack. We believe that 

it is very important to reduce the size of the potential password set even in the case of offline 

password cracking; although computers have become much more powerful through the use of 

GPUs etc., many hashing algorithms (for example the one used in TrueCrypt) can still purposely 

take a very long time for the resources available to typical law enforcement.  

In this section we discuss our three different algorithms for ranking the possible 

passwords. Recall that we maintain the associated files the tokens belong to and we use this 

relationship in our algorithms. We use a parameter N that is the number of potential passwords 

that we return to the investigator. The three different approaches that we evaluated are: 

Top Overall: In this natural approach we select the N highest probability tokens from all of the 

retrieved tokens.  

Top Percent (per File): In this approach, we select an equal percentage of the highest 

probability tokens from each file such that the total number of tokens returned is N. The resulting 

tokens are then ordered by their probabilities. 

Top 1-by-1 (per File): In the first round, we choose the highest probability token from each file 

and then rank them by highest probability. In the second round we select the second highest 

probability token from each file (if available) and again rank them by highest probability.  We 

repeat this until we reach the desired N tokens. Note that tokens from round j are ranked above 

round j + 1.  
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6.3 Testing and Result 
 

In this section we discuss our test results both on the utility of our filtering techniques as 

well as the effectiveness of our algorithms to identify passwords. We used the Digital Corpora 

Govdocs1 [72] as the source of our files to create test disks. This corpus contains about one 

million freely redistributable files in many different file formats. We then added real user 

passwords taken from revealed sets of passwords to the files since we did not have access to test 

disks that contain known real passwords. For our testing purpose we created five data disk 

images of different sizes. See Table 6.1. For our disks we only used files likely to be created by 

the user (.doc, .xls, .pdf, etc.). The sizes of the data disk images in Table 1 are therefore only the 

total data sizes of these files.  

 
 

Table 6.1 Test Disk Images 

Data Disk Image Size #Files Analyzed 
1 GB 1194 
500 MB 571 
250 MB 426 
100 MB 143 
50 MB 108 

 
 

Table 6.2 Reduction of Tokens due to All Filters 

  50 MB 100 MB 250 MB 500 MB 1 GB 
 # Before filtering (millions) 2.45 2.16 6.76  28.84  49.41  
# After filtering (millions) 0.07  0.050  0.25 1.38  3.21 
Total reduction (percent) 97.15 97.68 96.35  95.21 93.50 

 
 

We randomly selected passwords from revealed password sets and then randomly 

selected a file to which to add each password. The result of our filtering shows that all of the 

filters except Non-printing have a major impact on the end result, reducing the large number of 

tokens we obtain from the hard disk to a much smaller set. The Non-printing filter is important in 

our next step of calculating the probabilities but was rarely actually useful for reduction. In the 1 

GB disk, the length filter reduced 53% of tokens, the floating point filter reduced about 28%, the 
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repeated token reduced 70%, the word punctuation reduced 20% and the all-alphas reduced 33% 

of tokens. Table 6.2 shows the number of tokens (in millions) before and after filtering and the 

percentage of reduction when applying all of the filters. 

 
6.3.1 Testing Ranking Algorithms 
 

In this section we explore result of our test on the ranking algorithms. We used two 

revealed sets, Rockyou and CSDN, from which we chose passwords to store on the disks. We 

applied the initial filters and the all-alphas filter. We stored 5 passwords on each disk in one 

series of test and 15 passwords in a second series of tests. We believe this represents a range of 

passwords that a normal user might have stored. We used Yahoo-train for training the 

probabilistic context-free grammar that is used to calculate the probabilities of the potential 

passwords. We then determined how many passwords we are able to find by each of the 

algorithms. We determined the results when returning N potential passwords to the investigator, 

where N is 1000, 2000, 4000, 8000, and 16000. In the following tables we show the number of 

passwords found in the disk by the algorithms (true positives). In Table 6.3 we show the results 

for storing 5 passwords from CSDN. 

 
 

Table 6.3 Number of Found Passwords (Out of 5 from CSDN) 

 50 MB 100 
MB 

250 
MB 

500 
MB 

1 GB 

N
=1

00
0 Top overall 1 2 0  0 2 

Top percent 2 3 1 1 2 
Top 1-by- 5 3 2 3 3 

N
=2

00
0 Top overall 1 2 0  0 2 

Top percent 5 3 1 1 2 
Top 1-by-1 5 4 2 3 4 

N
=4

00
0 Top overall 5 2 0  0 2 

Top percent 5 3 2 1 2 
Top 1-by-1 5 5 3 4 4 

N
=8

00
0 Top overall 5 3 0  0 2 

Top percent 5 3 2 1 3 
Top 1-by-1 5 5 4 4 5 

N
=1

60
00

 Top overall 5 4 0  0 2 
Top percent 5 4 2 3 3 
Top 1-by-1 5 5 4 5 5 
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As an example in Table 6.3, using the 1-by-1 algorithm we can find all 5 passwords on 

the 50 MB data disk, 3 passwords on the 100 MB data disk, 2 passwords on the 250 MB data 

disk, etc., within the top N = 1000 returned by the algorithm. When comparing algorithms given 

an N and the number of stored passwords, a higher recall implies a higher precision and they can 

be both calculated from the number of passwords found. For example, the average recall value of 

the 1-by-1 algorithm across different disk sizes for N = 8000 is 92%, for the top percent 

algorithm is 56% and for the top overall algorithm is 40%. This shows that the 1-by-1 algorithm 

has both higher precision and higher recall compared to the other algorithms. 

In Table 6.4, we show the results for storing 15 passwords from CSDN. For N = 8000 the 

average recall value of the 1-by-1 algorithm is 89.3% across the different disk sizes. The results 

show that the 1-by-1 algorithm is quite good and better than the others. Results of storing 

passwords from the Rockyou password set showed similar results.  

Overall, it appears that the 1-by-1 algorithm is consistently the best. Recall that in our 

experiments so far, the filters eliminated all alpha strings. We believe that this is reasonable, as 

today’s password policies would almost invariably disallow such passwords. However, we next 

explore whether less restrictive filtering of alpha strings can be useful. 

 
 

Table 6.4 Number of Found Passwords (Out of 15 from CSDN) 

 50 MB 100 
MB 

250 
MB 

500 
MB 

1 GB 

N
=1

00
0 Top overall 1 7 0 2 2 

Top percent 4 10 2 3 3 
Top 1-by-1 11 12 7 8 9 

N
=2

00
0 Top overall 1 9 0 2 2 

Top percent 9 10 2 4 5 
Top 1-by-1 12 14 9 9 11 

N
=4

00
0 Top overall 11 10  0 2 2 

Top percent 10 11 3 5 6 
Top 1-by-1 15 15 12 10 12 

N
=8

00
0 Top overall 13 11  0 2 2 

Top percent 11 11 8 5 8 
Top 1-by-1 15 15 13 10 14 

N
=1

60
00

 Top overall 15 14  0 2 2 
Top percent 12 14 9 8 8 
Top 1-by-1 15 15 13 11 14 
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6.3.2 Testing Specialized Filtering 
 

In this section we compare the specialized filters as defined in section 6.1.2. The 

specialized filters are applied in addition to the initial filters. We used the 1 GB disk and stored 

15 passwords from the Rockyou set. The results are shown in Table 6.5. The numbers in 

parenthesis show how many of the 15 passwords stored on the disk remained after the filtering 

process. For example All-alphas (11) shows that four of the passwords stored on the disk were 

filtered out due to the filtering process. The results show that using less aggressive filters such as 

multiwords or dictionary words does reduce the password loss due to filtering. However, these 

approaches are not as successful as the more aggressive approach (all-alphas filter) in 

subsequently identifying the passwords because they still retain too many alpha strings. 

 
 

Table 6.5 Number of Found Passwords (Out of 15 from Rockyou) 

 
No 

Filter 
(15) 

Caps 
(11) 

Multi
words 
(14) 

Dictionary 
(14) 

Sentences 
(15) 

All-alphas 
(11) 

N
=1

00
0 Top overall 0 2 0 0 0 5 

Top percent 1 1 3 3 2 1 
Top 1-by-1 2 2 4 4 0 8 

N
=2

00
0 Top overall 0 2 0 0 0 5 

Top percent 1 2 3 3 2 2 
Top 1-by-1 2 2 4 5 0 10 

N
=4

00
0 Top overall 0 2 0 0 0 5 

Top percent 2 3 3 3 3 4 
Top 1-by-1 2 2 5 5 1 10 

N
=8

00
0 Top overall 0 2 0 0 0 5 

Top percent 4 4 5 5 3 7 
Top 1-by-1 2 2 7 7 1 10 

N
=1

60
00

 Top overall 0 2 0 0 0 5 
Top percent 4 4 5 5 3 7 
Top 1-by-1 4 5 8 8 7 10 

 
 
When applying the multiwords filter, we keep a more limited set of alpha strings 

compared with the dictionary filter. The multiwords filter eliminates all single words (whether it 

is a dictionary word or not), whereas the dictionary filter eliminates only the single words that 
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are included in the dictionary and still keeps the multiwords. For the dictionary filter we used the 

training dictionary that we created in section 3.1.2. 

We observed in the tests that we usually end up having a large number of alpha strings 

with fairly high probabilities because of the way the probability of each token is calculated 

(having equal probability values for all the words of the same length). Therefore, when the top N 

potential passwords are selected, we do not find as many of the passwords as quickly as we could 

if we eliminated all of the alpha strings.  

 
 

 
Fig. 6.1 Comparison of Specialized Filters as N Varies 

 
 
We explored the 1-by-1 algorithm in more details using the various specialized alpha 

string filters. In Figure 6.1 we plot N versus the recall value for all integer values of N until we 

find all of the passwords that can be found by that filter (the results are averages of several runs).  

The aggressive all-alphas filter may not be able to find all of the passwords, but on average finds 

9 of the passwords (recall of 0.6 and precision of 0.005) at N = 1,659. In comparison, when 

applying no specialized filter we find 9 of the passwords only at N = 229,671. 

The results show that applying our filtering and identification approach allows an 

investigator to find most of the passwords within a very reasonably small value of N and avoid 

having to check a huge number of strings. Note that if the aggressive filter is not successful for 

the investigator’s needs, a less aggressive filter can then be tried. For example, the dictionary 
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filter which loses fewer passwords finds on average 9 of the passwords at N = 36,240 which is 

still much better than no specialized filtering. By choosing the appropriate value of N, the 

investigator can move between online and offline attack situations. The all-alphas filter identifies 

about half of the stored passwords even within the first 500 proposed tokens. Sometimes even 

finding one password on the disk could be very helpful for an investigator since users typically 

use the same password for many sites / accounts. For the all-alphas filter the first password was 

found on average at N = 11. 
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CHAPTER 7 
 

CONCLUSION 
 
 

The main focus in this disseration is creating more efficient password crackers using 

probabilistic context-free grammars. I have shown how to learn new patterns (such as keyboard 

and multiwords) when creating grammars for password cracking. I have shown how to handle 

several issues that arise from adding more complicated patterns to the grammar. I also developed 

metrics to be used for comparing, analyzing and improving attack dictionaries. The results have 

shown that the addition of such patterns can significantly improve the password cracking (55% 

improvement over previous work). As an example, this can be interpreted as taking 2 seconds to 

have a 50% chance of cracking a single password versus taking 26 minutes using the previous 

system. The techniques described in this dissertation can be used in developing other patterns 

and can be applied to other password crackers. I have also introduced targeted attack, in which 

several grammars are created based on available information about a target such as names, 

numbers, or previous passwords. The grammars are then combined together to create a grammar 

with higher probability values assigned to more relevant components and values. 

An immediate use of this work is in creating an efficient password cracker that can help 

law enforcement in cracking passwords for accounts or password protected files for their cases. 

However, learning password distribution and how users create passwords can help in other areas 

as well. In this dissertation I have shown several applications of using the probabilistic context-

free grammars for passwords. The AMP system is described that estimates password strength 

against real attacks and helps users create stronger passwords. I have presented results of real 

password cracking sessions to confirm the accuracy of this metric.  

Another application of the probabilistic context-free grammar technique is also 

introduced in which passwords stored on media are discovered. I have shown how to retrieve a 

small set of possible passwords from a large disk by applying filtering techniques and ranking 

algorithms. The results show that by returning a set of 2000 tokens, 60% of passwords can be 

successfully identified. In future work, the system can be adapted to identify passwords on 

cellphones and USB drives. Also, more filtering techniques can be developed to find passwords 

for targeted individuals.  
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APPENDIX A 
 

PSEUDO-CODE FOR MULTIWORD SEGMENTATION 
 
 

procedure FINDALLMULTIWORDS(word, n) 
ret = [] //list of potential breakdowns 
if  n==1  then 

return 
end if 
for (i=0; i< word.length ; i++) do 

left = word.substring(0,i) 
if ISDICTIONARYWORD(left) then 

right = s.substring(i, word.length) 
if   ISDICTIONARYWORD (right) then 

add right and left to the list of potential breakdowns  ret 
end if 
rightwords = FindAllMultiwords(word.substring(I, word.length, n-1) 
if  rightwords.length  > 0 then 

combine left with each of the solutions in rightwords list and add to the list ret 
end if 

end if 
end for 

end procedure 
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APPENDIX B 
 

SURVEY QUESTIONNAIRE 
 
 
Attempt #1: User’s first login/ registration 
 
[User will be presented with the consent form. Upon agreement, the user will be presented with 
an expanded “Create Account” field] 

 
Create User Account: 
Please create an account for use in this study. Use your FSU email address for your username. 
Assume you are creating an email account and you want your password to be strong enough. Try 
to create your password in a manner that you would normally do. You should take whatever 
steps you normally take to remember and protect your password. DO NOT provide passwords 
that you currently use for another service. All passwords will be saved and analyzed. DO NOT 
use this password elsewhere.  
 
Email (Use your FSU email ending in “@my.fsu.edu”) 

 
 
Password (minimum of 8 characters) 

 
 
Confirm Password: 

 

 
[User will be presented with: “You have successfully created your account. Please answer the 
following questions” 
 
Survey form: 
 
 
1- What is your gender? 

☐ Female 
☐ Male 
☐ I prefer not to answer 
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2- What is your age? 
☐ younger than 18 years old 
☐ 18-24 years old 
☐ 25-34 years old 
☐ 35-44 years old 
☐ 45-54 years old 
☐ 55 years or older 
 

3- Which of the following best describes your highest education level? 
☐ High School graduate 
☐ Some college, no degree 
☐ Associates degree  
☐ Bachelors degree 
☐ Graduate degree (Masters, Doctorate, etc.) 
☐ Other 

 
4- What is your native language?  

 
 
 [User will be presented with: “You have successfully completed this part of the study. Please 
remember to come back soon for your second login!”] 
 
 
 
 
Attempt #2: User’s second login  
 
 [Upon successful login, user will be brought to this survey page] 
Survey Form: 
 
 
1- Are you majoring in or do you have a degree or job in computer science, computer 
engineering, information technology, or a related field? 

☐ Yes 
☐ No 
☐ I prefer not to answer 
 

2- In what department are you majoring? 
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3- How many website username and passwords do you have, approximately? 
☐ Less than 5 accounts 
☐ 5-10 accounts 
☐ 11-20 accounts 
☐ More than 20 accounts 
 

4- Do you try to create unique passwords for each different account? 
  

☐ Yes, I create a new password every time I create a new account or every time I have to 
change my password. 
☐ No, I use my old passwords that I have already created for my other accounts. 
☐ I mostly create a new password but sometimes use my old passwords also. 

 
 [User will be presented with: “You have successfully completed this part of the study. Please 
remember to come back soon for your third login!”] 
 
 
 
 
Attempt #3: User third login, change password 
 
[User will be prompted to login. This process is the same as in Attempt #2]  
[Upon successful login, user will be prompted to change password as follows:] 
 
Your password has expired and must be changed. Please choose a new password. Try to change 
your password in a manner that you would normally do. You should take whatever steps you 
normally take to remember and protect your password. DO NOT provide passwords that you 
currently use for another service. All passwords will be saved and analyzed. DO NOT use this 
password elsewhere.  
 
Old Password:  

 

 
New Password (minimum of 8 characters.) 

 

 
Confirm New Password: 
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Survey Form: 
 
1- How did you choose your new password? Were you influenced by any of the following? 
(Please check all that apply.) 

☐ Names of family members, relatives, close friends 
☐ Familiar numbers (birth date, telephone number, street address, employee number, etc.) 
☐ Songs, movies, television shows, books, poetry or games. 
☐ Scientific or other educational mnemonics 
☐ Sports teams and players 
☐ Names of famous people or characters 
☐ Words in a language other than English  
☐ Other (please specify):_________________ 
 

2- When creating your new password, did you consider any of the following policies to make 
your password more secure? (Please check all that apply.) 

☐ Include numbers 
☐ Include upper case letters 
☐ Include symbols (such as “!” or “#”) 
☐ Have 8 or more characters 
☐ Not contain dictionary words 
☐ Not containing a sequence of adjacent or repeated characters on your keyboard (e.g. 
“qwerty”) 
☐ I did not consider any policy 
☐ Other (please specify)_______________ 
 

3- Did you create your new password by slightly changing your old password for this website? 
☐ Yes  
☐ No  
 

4- Is the password that you have just created one that you have used in the past? 
☐ Yes  
☐ No  
☐ Password has similarities to another password that I have used before. 
 

5- If you created your new password based on one of your old passwords, which of the following 
changes did you consider? (Please check all that apply.) 
 
Word part:  ☐ Not applicable  ☐ Changed completely  ☐ Changed slightly  ☐ Capitalized letters 
Numbers:  ☐ Not applicable  ☐ Added digits  ☐ Deleted digits  ☐ Substituted digits 
Special characters:  ☐ Not applicable  ☐ Added symbols  ☐ Deleted symbols  ☐Substituted 
symbols 
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Attempt #4: User’s fourth login 
[User will be prompted to login. This process is the same as in Attempt #2]  
[Upon successful login, user will be brought to survey page] 
 
Survey form: 
 
1- How long have you been using a computer? 

☐ 0–2 years 
☐ 3–5 years 
☐ 6–10 years 
☐ More than 10 years  

 
2- How do you usually create passwords for your accounts? (Please check all that apply.) 

☐ Randomly generate a password using special software or apps 
☐ Reuse a password that is used for another account 
☐ Modify a password that is used for another account 
☐ Create a new password using a familiar number or a name of a family member 
☐ Choose a word and substitute some letters with numbers of symbols (for example ‘@’ 
for ‘a’) 
☐ Use a passphrase consisting of several words 
☐ Choose a phrase and use the first letters of each word 
☐ Other (please specify) ______________       

 
3- How do you store your passwords? Check all that apply.  

☐ I store my passwords in a regular file / document on my computer.   
☐ I store my passwords in an encrypted computer file.  
☐ I use password management software to securely store my passwords.     
☐ I store my passwords on my cellphone / smartphone.  
☐ I save my passwords in the browser.  
☐ I write down my password on a piece of paper.  
☐ No, I do not save my passwords. I remember them.  

 
4-  If you have any additional feedback about passwords or this survey, please enter your 
comments here. 
 
 [User will be presented with: “Thank you for your participation in our research study. You have 
now completed all the steps. You are entered into our drawing. You will need your password to 
check if you have won the prize. Further instructions will be provided via email. Best of luck!”] 
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APPENDIX C 
 

HUMAN SUBJECT APPROVAL LETTERS 
 
 

C.1 Approval Letter 
 

Mon 3/10/2014 10:34 AM 

To: Houshmand Yazdi, Shiva; 
The Florida State University 
Office of the Vice President For Research 
Human Subjects Committee 
Tallahassee, Florida 32306-2742 
 
APPROVAL MEMORANDUM 
 
Date: 3/10/2014 
 
To: Shiva Houshmand Yazdi 
 
Address: 4083 
Dept.: COMPUTER SCIENCE 
From:   Thomas L. Jacobson, Chair 
Re:     Use of Human Subjects in Research 
Novel extensions to probabilistic password cracking 
 
The application that you submitted to this office in regard to the use of human subjects in the 
proposal referenced above have been reviewed by the Secretary, the Chair, and one member of 
the Human Subjects Committee. Your project is determined to be Expedited per per 45 CFR § 
46.110(7) and has been approved by an expedited review process. 
 
The Human Subjects Committee has not evaluated your proposal for scientific merit, except to 
weigh the risk to the human participants and the aspects of the proposal related to potential risk 
and benefit. This approval does not replace any departmental or other approvals, which may be 
required. 
 
If you submitted a proposed consent form with your application, the approved stamped consent 
form is attached to this approval notice.  Only the stamped version of the consent form may be 
used in recruiting research subjects. 
 
If the project has not been completed by 3/9/2015 you must request a renewal of approval for 
continuation of the project. As a courtesy, a renewal notice will be sent to you prior to your 
expiration date; however, it is your responsibility as the Principal Investigator to timely request 
renewal of your approval from the Committee. 
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You are advised that any change in protocol for this project must be reviewed and approved by 
the Committee prior to implementation of the proposed change in the protocol.  A protocol 
change/amendment form is required to be submitted for approval by the Committee.  In addition, 
federal regulations require that the Principal Investigator promptly report, in writing any 
unanticipated problems or adverse events involving risks to research subjects or others. 
 
By copy of this memorandum, the Chair of your department and/or your major professor is 
reminded that he/she is responsible for being informed concerning research projects involving 
human subjects in the department, and should review protocols as often as needed to insure that 
the project is being conducted in compliance with our institution and with DHHS regulations. 
 
This institution has an Assurance on file with the Office for Human Research Protection. The 
Assurance Number is FWA00000168/IRB number IRB00000446. 
 
Cc: Sudhir Aggarwal, Advisor 
HSC No. 2014.12320 
 
The formal PDF approval 
letter: http://humansubjects.magnet.fsu.edu/pdf/printapprovalletter.aspx?app_id=12320 
 

C.2 Re-Approval Letter 
 

Mon 3/16/2015 4:16 PM 

To: Houshmand Yazdi, Shiva; 
The Florida State University 
Office of the Vice President For Research 
Human Subjects Committee 
Tallahassee, Florida 32306-2742 
 
RE-APPROVAL MEMORANDUM 
 
Date: 3/16/2015 
 
To: Shiva Houshmand Yazdi 
 
Address: 4083 
Dept.: COMPUTER SCIENCE 
From:   Thomas L. Jacobson, Chair 
Re:     Re-approval of Use of Human subjects in Research 
Novel extensions to probabilistic password cracking 
 
Your request to continue the research project listed above involving human subjects has been 
approved by the Human Subjects Committee. If your project has not been completed by 
3/14/2016, you must request a renewal of approval for continuation of the project. As a courtesy, 
a renewal notice will be sent to you prior to your expiration date; however, it is your 
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responsibility as the Principal Investigator to timely request renewal of your approval from the 
committee. 
 
If you submitted a proposed consent form with your renewal request, the approved stamped 
consent form is attached to this re-approval notice.  Only the stamped version of the consent 
form may be used in recruiting of research subjects. You are reminded that any change in 
protocol for this project must be reviewed and approved by the Committee prior to 
implementation of the proposed change in the protocol.  A protocol change/amendment form is 
required to be submitted for approval by the Committee. In addition, federal regulations require 
that the Principal Investigator promptly report in writing, any unanticipated problems or adverse 
events involving risks to research subjects or others. 
 
By copy of this memorandum, the Chair of your department and/or your major professor are 
reminded of their responsibility for being informed concerning research projects involving 
human subjects in their department.  They are advised to review the protocols as often as 
necessary to insure that the project is being conducted in compliance with our institution and 
with DHHS regulations. 
 
Cc: Sudhir Aggarwal, Advisor 
HSC No. 2015.15030 
 
The formal PDF approval 
letter: http://humansubjects.magnet.fsu.edu/pdf/printapprovalletter.aspx?app_id=15030 
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APPENDIX D 
 

SAMPLE CONSENT FORM 
 
 
My name is Shiva Houshmand, and I am a graduate student in the Department of Computer 
Sciences at the Florida State University. I am conducting a research study to understand how 
users create and manage their passwords. You have been invited to participate because you have 
confirmed that you are at least 18 years old.  
 
If you agree to be in this study, you will be then asked to create a username and password to start 
with. You will be advised to NOT provide a password that you currently use or have previously 
used for another account. You will be asked a series of demographic questions such as age, 
education, and gender. You are required to log in once a day for a total of four times during the 
period of the study. Each time you log in, some multiple-choice questions will be asked related 
to how you create and manage your passwords. You may be asked to change your password 
during the logins. Each login should not take more than 5 minutes. If you finish all four days of 
this survey, you will be entered into a drawing in which you can win a $25 worth Amazon gift 
card. The drawing will be held at the end of the study and the winners will be notified via email. 
 
All questionnaire responses and passwords will only be retained for the duration of the study. 
Only researchers in this study will have access to the data. To maintain the confidentiality of 
your records, the password or your answers will not be associated with your email address or any 
other identifiable information. Your email address is only used to send follow up emails for the 
result of the drawing and will be discarded after the duration of the study. The results of this 
research study may be published, but only aggregate data will be reported. The records of this 
study will be kept private and confidential to the extent permitted by law.   
 
There are no known risks if you decide to participate in this research study. Your participation in 
this study is completely voluntary. Your decision whether or not to participate will not affect 
your current or future relations with the University.  If you choose to participate, you are free to 
withdraw at any time without penalty or risk. Participating in this research study may not benefit 
you directly, but what we learn from this study would provide general benefits to the password 
security area. 
 
The researchers conducting this study are Shiva Houshmand and her advisor Dr. Sudhir 
Aggarwal. If you have any questions or concerns about the questionnaire or about being in this 
study, you may contact them at (---) ------- or at -----@my.fsu.edu, and ------@cs.fsu.edu. If you 
have any questions or concerns regarding this study and would like to talk to someone other than 
the researchers, you are encouraged to contact the FSU IRB at ---- ---- -----, -------- --------, ----- -
--, Tallahassee, FL, or (---) -------, or by email at -------------@magnet.fsu.edu. 
 
By clicking I Accept, you confirm that you have read the above information, you have asked any 
questions you may have had and have received answers, and you consent to participate in the 
study.  
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APPENDIX E 
 

PSEUDO-CODE FOR TARGETED ATTACK 
 
 

E.1 Algorithm for Modeling Differences 
 

// find edit distance of two password strings using hierarchical algorithm, then determine if any 
//of the most common changes have been applied and create a targeted grammar. Finally merge 
//the targeted grammar with a comprehensive grammar. 
 
procedure MODELDIFFERENCES 

simple_base1= PARSESIMPLEBASESTRUCTURE (pass1) 
simple_base2= PARSESIMPLEBASESTRUCTURE (pass2) 
simple_transform = DL_EDITDISTANCE ( simple_base1, simple_base2 ) 
level1_distance = simple_transform.distance 
if   simple_transform.contains("t")  then 

changed_pass1 = REVERTTRANSPOSITION() 
else  

changed_pass1 = pass1 
end if 
transform = DL_EDITDISTANCE ( changed_pass1, pass2 ) 
level2_distance = transform.distance 

 
// Create Target Grammar based on changes found 
if  base structures are the same  then 

add base structure to TGrammar 
end if 
if  L components are the same  then 

add both capitalizations to TGrammar 
end if 
if  transform.contains(“s”)  and component is digit then 

if  number is incremented   then 
add (number + 1) to TGrammar 

else if  number is decremented  then 
add (number – 1) to TGrammar 

end if 
end if 
if   transform.contains(“i”)  and  component is digit  and  number is being repeated  then 

add the repeated number and the new base structure to TGrammar 
end if 
MERGEGRAMMAR (TGrammar, InitialGrammar) 

end procedure 
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E.2 Computation of Damerau-Levenshtein Edit Distance 
 
procedure DL_EDITDISTANCE (pass1, pass2) 

for (i = 0 ; i <= pass2.length + 1 ; i++) do  //fill the first column 
dist[i][0] = i      
operation[i][0] = ‘i’ 

end for 
for (j = 0 ; j <= pass1.length + 1 ; j++) do  //fill the first row 

dist[0][j] = j   
operation[0][j] = ‘d’ 

end for 
for ( i = 0 ; i < pass2.length ; i++ ) do 

for ( j = 0 ; j < pass1.length ; j++ ) do 
cost = (pass2[i] == pass1[j]) ? 0 : 1 
if    dist[i + 1][j] + 1   ≤    dist[i][j + 1] + 1  then 

if   dist[i + 1][j] + 1   ≤   dist[i][j] + cost   then 
dist[i + 1][j + 1] =  dist[i + 1][j] + 1 
operation[i + 1][j + 1]  =  ‘d’  //deletion  

else 
dist[i + 1][j + 1] = dist[i][j] + cost 
operation[i + 1][j + 1] = ‘s’   //substitution 

end if 
else 

if   dist[i][j + 1] + 1   ≤  dist[i][j] + cost  then 
dist[i + 1][j + 1]  =  dist[i][j + 1] + 1 
operation[i + 1][j + 1] = ‘i’   //insertion 

else 
dist[i + 1][j + 1] = dist[i][j] + cost 
operation[i + 1][j + 1] = ‘s’   //substitution 

end if 
end if 
if    pass2[i] == pass1[ j – 1]   and   pass2[i – 1] == pass1[j]   then 

operation[i + 1][j + 1] = ‘t’   //transposition 
if   dist[i + 1][j + 1]   ≤   dist[i - 1][j - 1] + cost  then 

dist[i + 1][j + 1] = dist[i + 1][j + 1]  
else  

dist[i + 1][j + 1] = dist[i - 1][j - 1] + cost 
end if 

end for 
end for 
result = FINDOPERATIONS() 
return  result 

end procedure 
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E.3 Computation of Damerau-Levenshtein Backtracking 
 

procedure FINDOPERATIONS () 
n = pass2.length; 
m = pass1.length; 
 
while   ( n > 0  ||   m > 0 )  do 

if  ( operation[n][m] ==  ‘i’  ) then 
op = "i" + op 
n = n -1       //UP 

else if  ( operation[n][m] ==  ‘d’ ) then 
op = "d" + op 
m = m -1       //LEFT 

else if  ( operation[n][m] == ‘s’ ) then 
if   ( dist[n - 1][m - 1] == dist[n][m] ) then 

op = "n" + op; 
else 

op = "s" + op; 
end if 
n = n -1      //DIAG 
m = m -1 

else if  ( operation[n][m] == ‘t’ ) then 
op = "t" + op; 
n = n - 2      //DIAG TWO CELLS 
m = m - 2 

end if 
end while 
return op 

end procedure 
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