
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

PRIMITIVES AND SCHEMES FOR NON-ATOMIC INFORMATION

AUTHENTICATION

By

GOCE JAKIMOSKI

A Dissertation submitted to the

Department of Computer Science

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Degree Awarded:

Spring Semester, 2006

The members of the Committee approve the Dissertation of Goce Jakimoski defended on March

30, 2006.

Mike Burmester

Professor Directing Dissertation

Yvo Desmedt

Professor Co-Directing Dissertation

Mark Van Hoeij

Outside Committee Member

Kyle Gallivan

Committee Member

Michael Mascagni

Committee Member

The Office of Graduate Studies has verified and approved the above named committee members.

ii

ACKNOWLEDGEMENTS

The completion of the dissertation would not have been possible without the support of my

family that has blessed my life in ways I cannot repay. I wish to recognize, with profound

appreciation, the invaluable academic mentoring I received from my advisors: Professor Yvo

Desmedt and Professor Mike Burmester. In addition to my advisors, my sincere thanks are due

to the members of my advisory committee, Dr. Mark Van Hoeij, Dr. Kyle Gallivan and Dr.

Michael Mascagni, whose guidance and encouragement contributed to the completion of this work.

I would also like to thank the Department of Computer Science for giving me an opportunity and

providing an environment where I can study and conduct my research. My final thanks goes to the

National Science Foundation (NSF) for the financial help through a number of grants awarded to

my academic advisors. — Goce

iii

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Abstract . ix

1. Introduction . 1
1.1 Background . 1
1.2 Organization of the dissertation and our contributions 19
1.3 Further reading . 20

2. Erasure-tolerant Information Authentication . 23
2.1 The setting . 23
2.2 Lower bounds on the deception probability . 25
2.3 Distance properties . 28
2.4 Concatenation and composition of η-codes . 30
2.5 η-codes with minimal impersonation and substitution probabilities 33
2.6 η-codes from set systems . 34
2.7 η-codes from Reed-Solomon codes . 39

3. Proven Secure Stream Authentication in a Point-to-point Setting 42
3.1 Unforgeable Stream Authentication . 42
3.2 Some Practical Schemes . 45
3.3 A family of schemes . 49
3.4 Security Analysis . 54

4. Proven Secure Multicast Stream Authentication . 69
4.1 Insecure TESLA constructions from secure components 69
4.2 Sufficient assumptions about the components of TESLA 74
4.3 Secure TESLA implementation via a CKDA-secure pseudorandom permutation . 77
4.4 Secure TESLA implementation via erasure-tolerant authentication codes 80

5. Related-Key Differential Cryptanalysis of AES . 83
5.1 Related-key differential attacks . 83
5.2 Related-Key Differential Attacks on AES-192 . 84
5.3 Is the Markov Cipher property sufficient? . 90

REFERENCES . 96

iv

BIOGRAPHICAL SKETCH . 104

v

LIST OF TABLES

1.1 AES S-box: the substitution values of the byte xy 4

1.2 An example of a binary A-code with secrecy . 9

2.1 An example of a binary η-code with secrecy . 25

2.2 Using (v2, v(v − 1), v − 1)-covering vs Authentication of each packet separately . . . 36

2.3 Comparison of an η-code from RS code with the current practices 41

5.1 Propagation of the key difference (0000)(0000)(0∆00)(0∆00)(0000)(0000) 85

5.2 Possible propagation of the plaintext difference . 85

5.3 Propagation of the key difference (0000)(0000)(∆000)(∆000)(0000)(0000) 87

5.4 Impossible related-key differential attacks vs Partial sums attacks on AES-192 90

vi

LIST OF FIGURES

1.1 Pseudocode for AES encryption . 2

1.2 Pseudocode for the key expansion . 3

1.3 OMAC (l = 3) . 14

1.4 The basic stream authentication scheme . 17

1.5 TESLA Scheme II: Tolerating packet loss . 18

2.1 Erasure-tolerant authentication using cover-free families 37

2.2 (1, 1)-cover-free family . 38

2.3 Efficient computation . 40

3.1 SN-MAC . 45

3.2 A tree-based description of the computation of MAC(Di) in SN-MAC 46

3.3 ReMAC; PSi = M1|| . . . ||Mi. 47

3.4 A tree-based description of the computation of authentication tags in ReMAC 47

3.5 MACC . 48

3.6 A tree-based description of the computation of authentication tags in MACC 48

3.7 An example of a 4C stream authentication tree . 50

3.8 Possible structures when the stream consists of one, two or three chunks 60

3.9 Constructing a forgery when 4 and 6 have same color 61

3.10 Practical stream authentication schemes . 67

4.1 Permuted-input OMAC . 70

4.2 Insecure TESLA implementation. MACs are computed using POMAC. 71

vii

4.3 The function F leaks the encryption of zero EK′
i
(0). 73

4.4 TESLA implementation using a block cipher resistant to related-key cryptanalysis . 79

4.5 Multicast stream authentication: a) The basic scheme, b) Using (1, 1)-CFF 81

4.6 A variant of the basic stream authentication scheme. 81

viii

ABSTRACT

The digital revolution, fired by the development of the information and communication

technologies, has fundamentally changed the way we think, behave, communicate, work and earn

livelihood (the World Summit on the Information Society). These technologies have affected all

aspects of our society and economy. However, the Information Society developments present us not

only with new benefits and opportunities, but also with new challenges. Information security is one

of these challenges, and nowadays, information security mechanisms are inevitable components of

virtually every information system.

Information authentication is one of the basic information security goals, and it addresses the

issues of source corroboration and improper or unauthorized modification of data. More specific,

data integrity is the property that the data has not been changed in an unauthorized manner since

its creation, transmission or storage. Data origin authentication, or message authentication, is the

property whereby a party can be corroborated as a source of the data.

Usually, message authentication is achieved by appending an authentication tag or a digital

signature to the message. The authentication tag (resp., digital signature) is computed in such a

way so that only an entity that is in possession of the secret key can produce it, and it is used by

the verifier to determine the authenticity of the message. During this procedure, the message is

considered to be an atomic object in the following sense. The verifier needs the complete message

in order to check its validity. Presented with the authentication tag (resp., digital signature) and

an incomplete message, the verifier cannot determine whether the presented incomplete message is

authentic or not. We consider a more general authentication model, where the verifier is able to

check the validity of incomplete messages. In particular, we analyze the cases of erasure-tolerant

information authentication and stream authentication.

ix

Our model of erasure-tolerant information authentication assumes that a limited number of the

message “letters” can be lost during the transmission. Nevertheless, the verifier should still be

able to check the authenticity of the received incomplete message. We provide answers to several

fundamental questions in this model (e.g., lower bounds on the deception probability, distance

properties, optimal constructions, etc.), and we propose some constructions of erasure-tolerant

authentication codes.

Streams of data are bit sequences of a finite, but a priori unknown length that a sender sends

to one or more recipients, and they occur naturally when on-line processing is required. In this

case, the receiver should be able to verify the authenticity of a prefix of the stream, that is, the

part of the stream that has been received so far. We provide efficient and proven secure schemes

for both unicast and multicast stream authentication. The security proof of one of the proposed

multicast stream authentication schemes assumes that the underlying block cipher is a related-key

secure pseudorandom permutation. So, we also study the resistance of AES (Advanced Encryption

Standard) to related-key differential attacks.

x

CHAPTER 1

Introduction

This chapter reviews some of the elementary information authentication notions and solutions. We

also briefly describe the contributions of the dissertation.

1.1 Background

1.1.1 Block Ciphers

Block encryption algorithms (or block ciphers) are efficient algorithms that take as input a key

and a plaintext block (i.e., a bit string of fixed size) and output a ciphertext block. Usually, the

length of the output block is equal to the length of the input block. With the current state of

art, the design of block ciphers is heuristic, and it is assumed that a block cipher is secure if there

is no known attack that can break it faster than the exhaustive search attack. There are many

constructions (e.g., encryption schemes, message authentication schemes, pseudorandom generators

and hash functions) whose security relies on the security of the underlying block cipher. In this

section, we briefly describe the Advanced Encryption Standard and some general attacks on block

encryption algorithms.

Advanced Encryption Standard

On October 2, 2000, after a long and complex evaluation process, NIST announced that it has

selected Rijndael to propose for the Advanced Encryption Standard. A draft standard was published

for public review and comment, and in 2001, FIPS-197 was approved as a Federal Information

Processing Standard for the AES. The algorithm is being used by the U.S. Government, and on a

voluntary basis, by the private sector. The AES algorithm is a symmetric block cipher that can

process data blocks of 128 bits. It may be used with three different key lengths (128, 192, and 256

bits), and these different “flavors” are referred to as “AES-128”, “AES-192”, and “AES-256”. A

brief description of the encryption and decryption algorithms is given below.

1

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1])

for round = 1 step 1 to Nr1

SubBytes(state)

ShiftRows(state)

MixColumns(state)

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

out = state

end

Figure 1.1: Pseudocode for AES encryption

Usually, block ciphers are iterative ciphers, that is, some transformation, which is called an

encryption round, is iteratively applied to the input to derive the output. The key that is used by

an encryption round is called a round key, and the only difference between two different encryption

rounds is that they used different round keys.

The design of AES is based on the same paradigm with a small exception that the final round

is slightly different than the previous rounds. A pseudocode that describes the AES encryption

process is given in Fig 1.1. The meaning of the parameters is the following. Nb is the number

of 32-bit words in a block, and it is fixed (Nb=4) for all AES variants. Nr is the number of

rounds and it is different for different key lengths (i.e., Nr=10 for AES-128, Nr=12 for AES-192

and Nr=14 for AES-256). The byte array in stores the input block. The key is given in the word

array w, and the output is returned in the byte array out. The AES encryption round consists of

four invertible transformations: AddRoundKey, SubBytes, ShiftRows and MixColumns. In the final

round, the MixColumns transformation is omitted since it does not contribute to the security of the

2

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

begin

word temp

i = 0

while (i < Nk)

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])

i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]

temp = w[i-1]

if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)

end if

w[i] = w[i-Nk] xor temp

i = i + 1

end while

end

Figure 1.2: Pseudocode for the key expansion

cipher.

The AddRoundKey transformation is simply a bitwise XOR of the round key and the array

state. The round keys are derived from a small randomly selected secret key using a key scheduling

algorithm. The AES key scheduling algorithm is depicted in Fig 1.2.

SubBytes is a non-linear byte substitution that transforms each byte independently using a

substitution table (S-box). The function defined by the substitution table is a bijection, and it is

constructed by composing two transformations: first, a multiplicative inverse is taken in a finite

field GF(28) (the additive identity element is mapped to itself), and then, an affine transformation

is applied to get the output byte. The S-box is given in Table 1.1.

ShiftRows permutes the bytes of the state. The state can be represented as a 4×4 array of bytes,

where the first word of the block corresponds to the first column, the second word corresponds to

3

Table 1.1: AES S-box: the substitution values of the byte xy

x/y 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

the second column, etc. ShiftRows cyclically shifts the bytes of the last three columns of the state

by one, two and three bytes correspondingly. The resultant permutation is
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

)

.

MixColumns applies a linear transformation to each column of the state represented as a 4× 4

array of bytes. Each column is treated as a four-term polynomial over GF(28) and multiplied

modulo x4 + 1 with the polynomial

a(x) = {03}x3 + {01}x2 + {01}x + {02}.

This can be written as a matrix multiplication

s′0,c

s′1,c

s′2,c

s′3,c

=

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

s0,c

s1,c

s2,c

s3,c

,

where si,c (resp., s′i,c) is the i-the byte of the column c of the old (resp., new) state.

To decrypt, the recipient first derives all round keys from the secret key. Next, he undoes each

encryption round by using the round keys in reverse order. Each of the transformations SubBytes,

ShiftRows and MixColumns is a bijection and can be easily inverted. To undo the AddRoundKey

transformation, we just need to XOR the state and the round key.

4

Attacks on block ciphers

As mentioned above, a block cipher is considered to be secure if there is no known algorithm that

can break it faster than exhaustive search. Some of the most common types of attacks that are

used to test the security of block ciphers are differential, linear and related-key attacks.

Differential cryptanalysis exploits the predictability of the propagation of the plaintext dif-

ference through the rounds of the block encryption algorithm. An r-round differential is a

pair (α, β), where α is the input difference of the block encryption algorithm, and β is the

difference of the outputs after r rounds. The probability of an r-round differential (α, β) is

the probability that the difference of the outputs of the r-th round will be β, when the input

difference is α and the secret key is selected uniformly at random. A possible differential

attack works as follows:

1. Find highly probable (Nr − 1)-round differential, where Nr is the number of rounds of

the block cipher.

2. Select randomly x1 and submit it for encryption to obtain ciphertext y1. Compute

x2 = x1 + α and submit it for encryption to obtain the ciphertext y2.

3. Find all possible last round keys kNr such that the difference between dkNr
(y1) and

dkNr
(y2) is β, where dkNr

(y) is the output of the first round of the decryption algorithm

for input y and round key kNr . Add one to each counter that corresponds to one of the

previously computed keys.

4. Repeat previous two steps until one or more last round keys are counted significantly

more than the others. Check these keys if they are the right keys.

Linear cryptanalysis exploits the existence of unbalanced linear relations between the input and

output bits of the non-linear transformations, where by unbalanced we mean satisfied with

probability different than 1/2. A linear trail is a chain of linear expressions involving round

input bits, round output bits and round key bits with the property that the output bits

involved in the linear expression for round r − 1 are the input bits involved in the linear

expression for round r. If we combine all linear expressions of the trail, then we will get a

linear expression between the cipher input bits, the cipher output bits and the key bits. If

the attacker can find such linear expression whose probability is different than 1/2, then he

can deduce information about the key and reduce the exhaustive search.

5

Related-key cryptanalysis makes an additional assumption that the attacker knows a relation

between two (or more) different keys that are in use. In chosen plaintext (resp., ciphertext)

attacks, the attacker can select a plaintext (resp., ciphertext) of his choice and submit it for

encryption (resp., decryption). In a related-key attack, the attacker can submit such queries

to encryption/decryption oracles that use different keys. The attacker does not know the

keys, but he knows a relation between the keys (e.g., one is derived by rotating the other one

by three bytes left).

1.1.2 Pseudorandom functions

An ensemble of functions is pseudorandom if there is no efficient distinguisher that can tell apart the

functions of the ensemble from truly random functions even if it can get the values of the functions

at arguments of its choice. The notions of function ensembles and pseudorandom function ensembles

are formalized by the following two definitions.

Definition 1.1 Let l : N→ N. An l-bit function ensemble is a sequence F = {Fn}n∈N of random

variables such that the random variable Fn assumes values in the set of functions mapping l(n)-bit-

long strings to l(n)-bit-long strings. The uniform l-bit function ensemble, denoted H = {Hn}n∈N,

has Hn uniformly distributed over the set of all functions mapping l(n)-bit-long strings to l(n)-bit-

long strings.

Definition 1.2 An l-bit function ensemble F = {Fn}n∈N is called pseudorandom if for every

probabilistic polynomial-time oracle machine M , every polynomial p(·), and all sufficiently large

n’s,

|Pr[MFn(1n) = 1]− Pr[MHn(1n) = 1]| < 1

p(n)

where H = {Hn}n∈N is the uniform l-bit function ensemble.

Usually, we are interested in ensembles that can be efficiently computed. The efficiently

computable function ensembles are defined as follows.

Definition 1.3 An l-bit function ensemble F = {Fn}n∈N is called efficiently computable if the

following two conditions hold:

1. Efficient indexing: There exists a polynomial-time algorithm I and a mapping from strings

to functions φ such that φ(I(1n)) and Fn are identically distributed. We denote by fi the

functions assigned to the string i (i.e., fi = φ(i)).

6

2. Efficient evaluation: There exist a polynomial-time algorithm V such that V (i, x) = fi(x) for

every i in the range of I(1n) and x ∈ {0, 1}l(n).

The existence of pseudorandom functions is closely related to the existence of pseudorandom

generators and one-way functions.

Theorem 1.1 Pseudorandom functions exist if and only if pseudorandom generators exist.

The case when the members of the function ensemble are permutations is of special interest in

cryptography. The permutation ensembles are defined as follows.

Definition 1.4 A permutation ensemble is a sequence P = {Pn}n∈N of random variables such that

the random variable Pn assumes values in the set of permutations mapping n-bit-long strings to n-

bit-long strings. The uniform permutation ensemble, denoted by K = {Kn}n∈N, has Kn uniformly

distributed over the set of all permutations mapping n-bit-long strings to n-bit-long strings.

The definition of pseudorandom permutation ensembles is straightforward.

Definition 1.5 A permutation ensemble P = {Pn}n∈N is called pseudorandom if for every

probabilistic polynomial-time oracle machine M , every polynomial p(·), and all sufficiently large

n’s,

|Pr[MPn(1n) = 1]− Pr[MKn(1n) = 1]| < 1

p(n)

where K = {Kn}n∈N is the uniform permutation ensemble.

For cryptographic purposes, we are interested in pseudorandom permutation that can be

efficiently computed and inverted. The efficiently computable and invertible permutation ensembles

are defined as:

Definition 1.6 An permutation ensemble P = {Pn}n∈N is called efficiently computable and

invertible if the following three conditions hold:

1. Efficient indexing: There exists a probabilistic polynomial-time algorithm I and a mapping

from strings to permutations φ such that φ(I(1n)) and Pn are identically distributed.

2. Efficient evaluation: There exists a probabilistic polynomial-time algorithm V such that

V (i, x) = fi(x), where fi = φ(i).

7

3. Efficient inversion: There exists a probabilistic polynomial-time algorithm N such that

N(i, x) = f−1
i (x).

It is obvious that pseudorandom functions and pseudorandom ensembles are closely related.

Namely, the uniform permutation ensemble constitutes a pseudorandom function ensemble. Also,

given a uniform function ensemble, one can construct a pseudorandom permutation ensemble.

1.1.3 Unconditionally secure message authentication

The authentication model

In the authentication model that is usually analyzed, there are three participants: a transmitter, a

receiver and an adversary. The transmitter wants to communicate the source state (or plaintext)

to the receiver using a public communication channel. First, the plaintext is encrypted using some

encoding rule (or key). The derived message (or ciphertext) is sent through the public channel. The

transmitter has a key source from which he obtains a key. Prior to any message being sent, the key

is communicated to the receiver through a secure channel. The receiver uses the key to verify the

validity of the received message. Although the model is communication-based, it is much broader.

Namely, the information to be authenticated may indeed be a message in a communication channel,

but it can also be stored data.

We use the following notation: S is the set of plaintexts (source states), M is the set of all

possible messages derived by applying each encoding rule to the source states, and E is the set of

encoding rules. We will use X,Y and Z to denote random variables that take values from S,M
and E correspondingly.

An authentication code (or A-code) can be represented by an |E|× |M| encoding matrix A. The

rows of the matrix are indexed by the encoding rules ez ∈ E and the columns of the matrix are

indexed by the messages y ∈ M. The entries of the matrix are either empty or contain a source

state. If the message y ∈M is valid under the encoding rule ez, then there is a plaintext x ∈ S such

that y = ez(x). In that case, the entry A[ez , y] in the encoding matrix should be x. Furthermore,

the transmitter should be able to send any plaintext to the receiver regardless of the encoding rule

in use. Therefore, for each encoding rule ez and each source state x, there is at least one message

y ∈ M such that y = ez(x). If there is exactly one such message regardless of the plaintext and

the encoding rule, then the code is deterministic. Otherwise, the code is randomized. If given a

valid message, the adversary can uniquely determine the corresponding source state, then the code

is without secrecy. Otherwise, the authentication code is with secrecy.

8

Table 1.2: An example of a binary A-code with secrecy

000 011 101

e1 0 1
e2 1 0
e3 0 1

It is assumed that the secret key will be used only once (although this can be relaxed), and

that the adversary has unlimited computational power. Since the key is used only once, there are

only two possible types of threats: impersonation and substitution. In an impersonation attack, the

adversary, based only on his knowledge of the authentication scheme, can send a fraudulent message

to the receiver when in fact no message has yet been sent by the transmitter. In a substitution

attack, the adversary can intercept one valid message and replace it with his fraudulent message.

The probability of successful impersonation, PI , is defined as the probability of success when the

adversary employs optimum impersonation strategy. The probability of successful substitution, PS ,

is defined as the probability of success when the adversary employs optimal substitution strategy.

Finally, the adversary may be able to select whether to employ an impersonation or a substitution

attack (a deception attack). The probability of successful deception, Pd, is the probability of success

when an optimum deception strategy is employed. Assuming that the encoding strategy is fixed

and known to all participants, it holds that Pd = max(PI , PS).

A toy example of an encoding matrix of a binary authentication code is given in Table 1.2.

If the keys are equiprobable, then the probability of successful substitution is PS = 1/2, and the

probability of successful impersonation is PI = 2/3.

Deception lower bounds

What is the maximum security that can be achieved by an authentication code? The following

theorem provides some answers.

Theorem 1.2 The following inequalities hold for the probability of successful deception:

1. Pd ≥ |S|
|M|

2. Pd ≥ 2−I(Y,Z)

3. Pd ≥ 1√
|E|

9

where I(Y,Z) denotes the mutual information between Y and Z.

The first inequality gives a lower bound given the number of source states and possible messages.

The second inequality is known as the authentication channel capacity, and it reveals a little

surprising fact that the more information the message leaks about the key, the more secure the

code can be. The final inequality gives an answer to the question what is the maximum achievable

security for a given key size.

Universal classes of hash functions

The notion of universal classes of hash functions was introduced in order to study collections of

hash functions with the following property: the hash values of two distinct inputs collide with small

probability when the hash function is selected randomly from the collection. Although the original

motivation was to provide an input independent algorithm for storage and retrieval in a hash table,

one of the applications of universal classes of hash functions is to construct unconditionally secure

authentication codes without secrecy.

Let A and B be finite sets with cardinalities |A| = a and |B| = b, where a ≥ b. Given a hash

function h : A→ B and two elements x, y ∈ A, the characteristic function δh(x, y) is defined as

δh(x, y) =

{
1 if h(x) = h(y)
0 otherwise

For a finite collection H of hash functions, the number of hash functions in H under which x

and y collide is δH(x, y) =
∑

h∈H δh(x, y). The probability that x and y will collide for a hash

function that is selected uniformly at random will be δH(x, y)/|H|. For the universal classes of

hash functions, this probability should be small as stated by the following definition.

Definition 1.7 Let H be a class of hash functions from A to B.

1. H is universal2 if δH(x, y) ≤ |H|/|B| for all x, y ∈ A, x 6= y.

2. H is ε-almost universal2 if δH(x, y) ≤ ε|H| for all x, y ∈ A, x 6= y, where ε is a positive real

number.

3. Let ε be a positive real number. H is ε-almost strongly-universal2 if the following two

conditions are satisfied:

• for every x1 ∈ A and for every y1 ∈ B, |{h ∈ H : h(x1) = y1}| = |H|/|B|

10

• for very x1, x2 ∈ A (x1 6= x2) and for every y1, y2 ∈ B,

|{h ∈ H : h(x1) = y1, h(x2) = y2}| ≤ ε|H|/|B|.

The next result immediately follows from the previous definition.

Theorem 1.3 If there exists an ε-almost strongly-universal2 class H of hash functions from A to

B, then there exists an authentication code for |A| source states, having |B| authenticators and |H|
encoding rules, such that PI = 1/|B| and PS ≤ ε.

1.1.4 Signature schemes

Message authentication vs digital signing

Message authentication codes (MACs) and digital signature schemes are two common ways of

achieving computationally secure data origin authentication. The data origin authentication

mechanisms based on shared secret keys (e.g., MACs) do not allow a distinction to be made between

parties sharing the key, and thus (as opposed to digital signatures) do not provide non-repudiation

of data origin, i.e., either party can equally originate a message using a shared key.

Specifically, a scheme for unforgeable signatures should satisfy the following:

• Each user can efficiently produce his own signature on documents of his choice.

• Every user knowing the appropriate public key can efficiently verify that a given string is a

signature of another user on a particular document.

• It is infeasible to produce signatures of other users on documents they haven’t signed.

The schemes for message authentication should satisfy the following:

• Each of the communicating parties can efficiently generate an authentication tag on a message

of his choice.

• Each of the communicating parties can efficiently verify whether a given string is a valid

authentication tag for a given message.

• It is infeasible for an external adversary (i.e., a party different from the communicating

parties) to produce a valid authentication tag for messages different from those sent by the

communicating parties.

11

Definition

From the previous discussion, it follows that the unforgeable digital signature schemes and the

unforgeable message authentication schemes differ only in the third requirement. In both cases,

the authenticity of the data is established by a procedure consisting of two main algorithms:

• a signing algorithm that is used by the sender to produce signatures on messages of his choice,

and

• a verification algorithm that is used to verify the authenticity of the message by checking the

validity of the provided signature.

Since the third requirement is a security requirement, the difference between message authentication

and digital signing will be reflected only in the security definition, and a unique definition for the

basic mechanism of message authentication and signature schemes can be used. We will refer to

this mechanism as signature scheme in both cases.

Definition 1.8 A signature scheme is a triple (G,S, V) of probabilistic polynomial-time algorithms

satisfying the following two conditions:

1. On input 1n, algorithm G (called the key generator) outputs a pair of bit strings.

2. For every pair (s, v) in the range of G(1n), and for very α ∈ {0, 1}∗, algorithms S (signing)

and V (verification) satisfy

Pr[V (v, α, S(s, α)) = 1] = 1

where the probability is taken over the internal coin tosses of S and V .

Each pair (s, v) constitutes a pair of corresponding signing/verification keys. The string S(s, α)

is called a signature to the document α using the signing key s.

The only requirement imposed by the previous definition is that the signatures produced by

the signing algorithm must be accepted as valid by the verification algorithm. The definition says

nothing about security of the scheme and so even insecure algorithms may satisfy it.

Attacks and security

In this subsection, we will consider a very strong definition of security. Namely, the adversary is

allowed a chosen message attack, and the attack is considered to be successful if the adversary

12

manages to produce a valid signature to any document for which it has not asked for signature

during the attack. This leads to the following informal formulation:

• The adversary is allowed chosen message attack, that is the attacker can query for signatures

of messages of his own choice. We distinguish two cases:

1. The private key case: The attacker is given 1n as input, and the signatures are produced

relative to s, where (s, v)← G(1n).

2. The public key case: The attacker is given v as input, and the signatures are produced

relative to s, where (s, v)← G(1n).

• The attack is considered successful if the adversary outputs a valid signature to a string for

which it has not requested a signature during the attack.

• A signature scheme is considered secure (or unforgeable) if every feasible attack succeeds with

at most negligible probability.

Formally, the adversary in a chosen message attack is modeled using a probabilistic oracle

machine that is given access to a keyed signing oracle. Depending on the type of the scheme

(public key or private key), the adversary is given the verification key v as input or not.

Definition 1.9 For a probabilistic oracle machine M , we denote by QO
M(x) the set of queries made

by M on input x and access to oracle O. As usual, M O(x) denotes the output of the corresponding

computation. We stress that QO
M (x) and MO(x) are dependent random variables that describe two

different aspects of the same probabilistic computation.

1. The private key case: A private key signature scheme is secure if for every polynomial-time

probabilistic oracle machine M , every positive polynomial p and all sufficiently large n, it

holds that

Pr[V (v, α, β) = 1 and α /∈ Q
S(s,·)
M (1n)] <

1

p(n)

where (s, v)← G(1n) and (α, β) ← MS(s,·)(1n). The probability is taken over the coin tosses

of G,S and V as well as over the coin tosses of machine M .

2. The public key case: A public key signature scheme is secure if for every polynomial-time

probabilistic oracle machine M , every positive polynomial p and all sufficiently large n, it

holds that

Pr[V (v, α, β) = 1 and α /∈ Q
S(s,·)
M (v)] <

1

p(n)

13

−1uLuL

10...0M[3]
M[2]

EEE

T

M[1]

KKKEEE

T

M[3]M[2]M[1]

KKK

Figure 1.3: OMAC (l = 3)

where (s, v) ← G(1n) and (α, β) ← MS(s,·)(v). The probability is taken over the coin tosses

of G,S and V as well as over the coin tosses of machine M .

Construction of secure signature schemes

There are a number of private key and public key signature schemes that are proven secure assuming

the underlying cryptographic primitives are secure.

Pseudorandom functions can be used to construct a secure private key signature scheme (MAC

scheme). The key is used to select a function from the ensemble. The input of the function is the

message and the output is the authentication tag. The receiver also computes the authentication

tag on receipt of the message and accepts the message as authentic if the provided tag is equal

to the computed one. Block encryption algorithms are often used as underlying cryptographic

primitive to construct a MAC scheme. The security of the MAC scheme is proved by proving that

the family of functions defined by the MAC scheme is pseudorandom if the family of permutations

defined by the underlying block cipher is pseudorandom.

Usually, the hash-and-sign paradigm is used to construct secure public key signature schemes

(digital signatures). Namely, the message to be signed is first hashed using some hash function,

and then the result is signed using a public key scheme based on a trapdoor one-way function.

One-key CBC MAC

OMAC is a message authentication scheme. It operates in a CBC-like fashion as illustrated in

Fig 1.3.

If the message length |M | is a multiple of the block size n, then the message is divided into blocks

M [1],M [2], . . . ,M [l], each one of length n. First, the block M [1] is encrypted using some block

14

cipher with secret key K. The result C[1] is XOR-ed with the second block M [2] and encrypted to

get C[2], and so on. Before being encrypted, the last block M [l] is XOR-ed not only with C[l− 1],

but with L · u also, where u is some constant in GF(2n) and L = EK(0n) is the encryption of zero.

The derived value C[l] is used as an authentication tag. The sender will send both the message M

and the authentication tag T . The receiver will recompute the tag from the message and if it is

equal to the one that was received he will accept the message as valid.

If the message length |M | is not a multiple of the block size, then a 10i padding is appended,

where i = n− 1− |M | mod n. The tag computation proceeds as in the previous case with only one

difference. Instead of XOR-ing with L · u, the last block is XOR-ed with L · u−1.

The scheme is secure if the underlying block cipher is secure as stated informally by the following

theorem.

Theorem 1.4 OMAC is a pseudorandom function if the underlying block cipher is a pseudorandom

permutation.

Digital Signature Algorithm

Digital Signature Algorithm was first proposed in 1991. On May 19, 1994, it was published in the

Federal Register, and on December 1, 1994, it was adopted as a standard. It is a modification of

the well known ElGamal digital signature scheme. The signing and verification algorithms of the

scheme are described below.

Let p be a prime whose length is a multiple of 64 between 512 and 1024. Let q|p−1 be a 160-bit

prime, and let α ∈ Z∗
p be a qth root of 1 modulo p. The set of messages1 is P = Z∗

q, the set of

digital signatures is A = Zq × Zq, and the set of keys is

K = {(p, q, α, a, β) : β = αa mod p},

where p,q,α and β are public, and a is secret.

Given a K ∈ K and a message x ∈ P, the signing algorithm selects randomly a secret random

number k ∈ Zq − {0}, and computes the signature as

sigK(x, k) = (γ, δ)

where

γ = (αk mod p) mod q

1Actually, P is the set of possible hash values of the messages. To simplify, we assume that all messages belong
to P, and there is no need of hash functions.

15

and

δ = (x + aγ)k−1 mod q.

Given a message x and a signature (γ, δ), the verifier computes the following values:

e1 = xδ−1 mod q,

e2 = γδ−1 mod q.

The signature is considered valid if and only if

(αe1βe2 mod p) mod q = γ.

1.1.5 Stream Authentication Schemes

Streams are bit sequences of potentially unknown length that a sender sends to one or more

recipients at some rate negotiated between the sender and the receivers. Examples include audio,

video, data feeds, aplets, etc. Usually, the streams are divided into chunks that are sent in different

packets. The receiver processes the chunks as they arrive. Hence, the most convenient way to

achieve stream authentication is by including some authentication information (tag or signature)

in the packets so that the authenticity of the chunk can be verified immediately.

Gennaro-Rohatgi

Gennaro and Rohatgi have proposed a stream signing scheme based on a chain of one-time

signatures2. Namely, a standard digital signature algorithm is used to sign the first chunk which

contains a public key for a one-time signature scheme. The corresponding secret key is used to sign

the second chunk together with a one-time public key that will be used in the third step, and so

on. The scheme solves the scaling problem because the authentication information is independent

of the number of recipients, and it is also more efficient than using standard digital signature since

one-time signatures are more efficient than standard ones.

Let M1,M2,M3, . . . be the sequence of the stream chunks. Given a regular signature scheme

(G,S, V), a one-time signature scheme (g, s, v) and a one-way function H, the signing algorithm of

the Gennaro-Rohatgi scheme computes a sequence M ′
0,M

′
1,M

′
2, . . ., where

M ′
0 = 〈pk0, S(SK, pk0)〉

M ′
i = 〈Mi, pki, s(ski−1,H(Mi, pki))〉 for i > 0

y

2One-time signature schemes are signature schemes where the secret key is used only once

16

Di−1

Pi−1 Pi

Mi

Di

MAC(Ki,Di)

Pi+1

Mi+1

MAC(Ki+1,Di+1)

Di+1

MAC(Ki−1, Di−1)

Mi−1

H(Ki)
Ki−2

H(Ki+1)
Ki−1

H(Ki+2)
Ki

Figure 1.4: The basic stream authentication scheme

The authenticity of the chunks is verified as follows. On receiving M ′
0 = 〈pk0, A0〉, the receiver

checks that

V (PK, pk0, A0) = 1

and then on receiving M ′
i = 〈Mi, pki, Ai〉 he checks that

V (pki−1,H(Mi, pki), Ai) = 1.

Whenever one of these checks fails, the receiver stops processing the stream.

Timed Efficient Stream Loss-tolerant Authentication

The Timed Efficient Stream Loss-tolerant Authentication scheme is a multicast stream authenti-

cation scheme proposed. Here, we briefly describe the mechanisms employed in TESLA to achieve

loss-tolerance, fast transfer rates and dynamic packet rates.

The security of TESLA is based on the paradigm depicted in Figure 1.4. To authenticate the

packet Pi of the stream, the sender first commits to the key value Ki by sending H(Ki) in the packet

Pi−1. The key Ki is only known to the sender, and it is used to compute a MAC on the packet

Pi. After all recipients have received the packet Pi, the sender discloses the key value Ki in the

packet Pi+1. The recipient verifies whether the received key value corresponds to the commitment

and whether the MAC of the packet Pi computed using the received key value corresponds to the

received MAC value. If both verifications are successful, the packet Pi is accepted as authentic.

Note that Pi contains the commitment to the next key value Ki+1. To bootstrap the scheme, the

first packet is signed using a digital signature scheme (e.g., RSA). If the packet Pi−1 is lost, then the

authenticity of the packet Pi and all subsequent packets cannot be verified since the commitment

to the key Ki is lost. Similarly, if the packet Pi+1 is lost, the authenticity of the packet Pi and all

subsequent packets cannot be verified since the key Ki is lost.

17

Di−1

Pi−1 Pi

Di Di+1
Ki−2

Mi−1

Ki−1

Mi Mi+1

Ki

MAC(K′
i−1, Di−1) MAC(K′

i, Di) MAC(K′
i+1,Di+1)

Pi+1

K′
i K′

i+1

Ki−1

K′
i−1

Ki Ki+1

FF
F ′ F ′ F ′

Figure 1.5: TESLA Scheme II: Tolerating packet loss

Perrig at al. [88] proposed a solution to the above problem by generating the sequence of keys

Ki using iterative application of a pseudo-random function to some initial value as illustrated

in Figure 1.5. Let us denote v consecutive applications of the pseudo-random function F as

F v(x) = F v−1(F (x)), and let F 0(x) = x. The sender has to pick randomly some initial key

value Kn and to pre-compute n key values K0, . . . ,Kn−1, where Ki = Fn−i(Kn), i = 0, . . . , n. The

sequence of key values is called a key chain. The key K ′
i, which is used to authenticate the packet

Pi, is derived from the corresponding key value Ki by applying the function F ′. Since F is easy to

compute and hard to invert, given Ki the attacker cannot compute any Kj for j > i. However, the

recipient can compute any key value Kj from the received key value Ki, where j < i. Therefore,

if the recipient has received a packet Pi, any subsequently received packet Pj (j > i) will allow

computation of K ′
i = F ′(Ki) and verification of the authenticity of the packet Pi.

The authors suggest the function F to be implemented as F (Ki) = fKi
(0), where f is a target

collision resistant pseudorandom function (i.e., given fKi
(0) it is hard to find a key K such that

fK(0) = fKi
(0)). There are no requirements imposed on the function F ′ in the original description

of TESLA [88]. However, RFC4082 requires F ′(Ki) to be computed as F ′(Ki) = f ′
Ki

(1), where f ′

is a pseudorandom function.

The security of the scheme is based on the assumption that the receiver can decide whether

a given packet arrived safely (i.e., before the corresponding key disclosure packet was sent by the

sender). The unsafe packets are dropped. This condition severely limits the transmission rate since

Pi+1 can only be sent after every receiver has received Pi. Perrig et al [88] solve this problem by

disclosing the key Ki of the data packet Pi in a later packet Pi+d, instead of in the next packet.

18

Another assumption made in the scheme depicted in Figure 1.5 is that the packet schedule is fixed

or predictable, with each recipient being able to estimate the sending time of each packet. This

severely restricts the flexibility of the senders. The proposed solution to this problem of dynamic

packet rates is to pick the MAC key and the disclosed key in each packet only on a time interval

basis. Namely, all packets sent in an interval i are authenticated using a key Ki and disclose the

key Ki−d. This final version (TESLA Scheme IV) is the one adopted as an Internet standard.

The following theorem about the security of TESLA was claimed by the authors.

Theorem 1.5 Assume that the PRF, the MAC and the signing schemes in use are secure, and

that the PRF has Target Collision Resistance property. Then, TESLA (Scheme IV) is a secure

stream authentication scheme.

To avoid complexity, the authors provided a proof only for the case when the MAC and the PRF

are realized by the same function family. In their implementation, this family is the family defined

by HMAC when used in conjunction with MD5. In Chapter 4, we will show that the theorem does

not hold in the general case when the PRF and the MAC can be realized by different function

families.

1.2 Organization of the dissertation and our contributions

The dissertation is organized as follows.

In Chapter 2, we address several fundamental issues concerning erasure-tolerant authentication

codes. We analyze a setting where both unconditionally secure information authentication and

loss-tolerance are achieved at the same time via erasure-tolerant authentication codes (or η-

codes). We adapt some lower bounds on the probability of successful deception derived for the

traditional authentication model to the setting that we consider here. We also analyze the distance

properties of the η-codes and the security properties of the η-codes constructed by means of

concatenation and composition. One interesting class of η-codes is the class of η-codes with minimal

probabilities of successful impersonation and substitution. We show that all members of this class

can be represented as a composition of an authentication code with minimal impersonation and

substitution probabilities and an erasure-resilient code. Finally, we present some examples of η-code

constructions.

The case of unicast stream authentication is discussed in Chapter 3. We present several efficient

schemes and also a family of schemes for stream authentication in a unicast setting. Since many

19

authentication schemes have been broken, we prove our solutions.

In Chapter 4, we study the problem of multicast stream authentication. We analyze the security

of the Timed Efficient Stream Loss-tolerant Authentication scheme (RFC4082), and show that the

assumptions about the security of the components of TESLA are not sufficient. In particular, we

present examples of insecure TESLA implementations constructed from secure components. We

also provide sufficient assumptions and propose implementations based on related-key secure block

ciphers and erasure-tolerant authentication codes.

Chapter 5 investigates the resistance of AES-192 to related-key differential cryptanalysis. We

were able to break six rounds using related-key differentials and related-key truncated differentials.

We also present attacks on seven and eight rounds using impossible related-key differentials. In

the case of differential cryptanalysis, if the iterated cipher is Markov cipher and the round keys

are independent, then the sequence of differences at each round output forms a Markov chain and

the cipher becomes resistant to differential cryptanalysis after sufficiently many rounds. However,

this is not sufficient in the case of related-key differentials. We show that if in addition the Markov

cipher has K−f round function and the hypothesis of stochastic equivalence for related keys holds,

then the iterated cipher is resistant to related-key differential attacks after sufficiently many rounds.

1.3 Further reading

The concepts of one-way functions and trapdoor permutations were introduced by Diffie and

Hellman [35]. The definition of weak one-way function is due to Yao [117]. The relations between

weakly one-way functions and strongly one-way functions have been studied by Goldreich [48].

Rivest, Shamir and Adleman [97] introduced the RSA function. Other suggestions for one-way

functions can be found in [7, 46, 55].

The notion of computationally indistinguishable ensembles originates from the paper of Blum

and Micali [20]. The notion of computational indistinguishability in the general setting and

the notion of pseudorandomness are due to Yao [117]. Blum and Micali [20] were the first to

define pseudorandom number generators. However, they defined the pseudorandom generators

as producing sequences that are unpredictable. Yao [117] defined pseudorandom generators as

producing sequences that are indistinguishable from uniform sequence and showed that the two

definitions are equivalent. The relations between one-way functions and pseudorandom generators

has been studied in [117, 73, 46, 54]. Some constructions of pseudorandom generators can be found

in [20, 19, 2, 112].

20

Goldreich, Goldwasser and Micali [45] introduced and studied pseudorandom functions. Appli-

cations of pseudorandom functions are given in [49]. Pseudorandom permutations were introduced

by Luby and Rackoff [74].

AES [41] is derived from Rijndael [30], which was proposed by Daemen and Rijmen. The

techniques employed for the design of Rijndael were presented in [31]. Differential cryptanalysis

[11, 12] and related-key cryptanalysis [13] were introduced by Biham et al. The linear cryptanalysis

[77] is due to Matsui. Some other applications and generalizations of these attacks can be found in

[70, 71, 67, 65].

Authentication codes have been extensively studied in the past. Some of the fundamental results

include the following. Simmons [102, 103] developed the theory of unconditional authentication

and derived some lower bounds on the deception probability. Stinson [106, 107, 108] (see also [62])

studied the properties of authentication codes that have minimum possible deception probabilities

and minimum number of encoding rules. He characterized the existence of authentication codes

that have the aforementioned desirable properties in terms of existence of orthogonal arrays

and balanced incomplete block designs (BIBD). The problem of unconditionally secure multicast

message authentication has been studied by Desmedt et al [33]. Carter and Wegman [25, 115]

introduced the notion of universal classes of hash function and proposed their use in authentication.

The use of universal hashing to construct unconditionally secure authentication codes without

secrecy has also been studied by Stinson [109] and by Bierbrauer et al [10]. Afanassiev et al [1]

proposed an efficient procedure for polynomial evaluation that can be used to authenticate messages

in about 7-13 instructions per word.

The notion of digital signatures was introduced by Diffie and Hellman [35], and a first practical

realization appeared in [97]. The security notions for digital signature schemes are discussed in

[53]. The DSA algorithm is described in [39]. Other digital signature schemes and security analysis

can be found in [18, 32, 52, 72, 79, 80, 94, 101]. CBC-MAC [38] is one of the most popular MAC

algorithms. Bellare at al [5] introduced the notion of exact security and provided a security proof for

CBC-MAC when the length of the input is fixed. There is a simple attack that breaks the scheme

when the length of the input is not fixed. Subsequent analysis and solutions to this problem were

presented in [8, 92, 16, 61], and culminated with the OMAC scheme [57], which was proposed

by Iwata and Kurosawa. Other MAC schemes, some of them having desirable properties such as

parallelizability and incrementality, can be found in [4, 6, 17, 42].

The Gennaro-Rohatgi scheme [43] solves the scaling problem because the authentication

21

information is independent of the number of recipients, and it is also more efficient than using

standard digital signature since one-time signatures are more efficient than standard ones. The

major disadvantages of the scheme are the large length of the authentication information and

its non-resilience to packet loss. The first disadvantage was solved by the Guy Fawkes protocol

[3] (see also Cheung [28]) through the use of hash function to bind a sequence of events to an

initial value and to guarantee the sequence integrity. However, both schemes suffer from the second

disadvantage. Namely, they will collapse in the case of packet loss. Perrig et al. [88] and Bergadano

et al. [9] independently proposed a solution to the problem of multicast stream authentication in

networks with high packet loss rates. A somewhat different approach to stream signing is presented

in [83, 116, 118].

22

CHAPTER 2

Erasure-tolerant Information Authentication

The traditional authentication model assumes that the data loss on the communication channel

between the sender and the receiver is handled by mechanisms that should be studied separately.

Here, we consider a more general setting where both unconditionally secure information authenti-

cation and loss-resilience are achieved at the same time via erasure-tolerant authentication codes

(or η-codes)1.

2.1 The setting

The authentication model that we are going to analyze is based on the model described in

[102, 103, 76]. As it is case in the usual model, there are three participants: a transmitter, a

receiver and an adversary. The transmitter wants to communicate the source state (or plaintext 2)

to the receiver using a public communication channel. We assume that all plaintexts are strings of

length k whose letters are from some q-set Q. First, the plaintext is encrypted using some encoding

rule (or key) into a q-ary string of length n. The derived message (or ciphertext) is sent through

the public channel. The transmitter has a key source from which he obtains a key. Prior to any

message being sent, the key is communicated to the receiver through a secure channel. The receiver

uses the key to verify the validity of the received message. If at most t (t < n) letters are missing

from the original intact valid message and the position of the missing letters within the message

is known, then the received message is still considered valid. In this case, the receiver accepts a

plaintext that is derived from the original plaintext by erasing at most r (r < k) letters. When

r is zero (i.e., we can recover and verify the authenticity of the complete plaintext), we say that

1 Some of the results in this chapter were presented in [59].
2In general, η-codes can provide secrecy (privacy). Hence, we adhere to the terminology used by Simmons and

use the terms plaintext (or source state), ciphertext (or message) and encryption. This can be slightly confusing,
since most of the current works on MAC schemes use the term message for the source state, the term message
authentication code only for codes without secrecy, and the term authenticated encryption for schemes that provide
both authenticity and privacy.

23

the code is full-recovery. If the received message is not derived from some intact valid message by

erasing at most t letters, then the receiver does not accept the plaintext.

We denote by S the set of plaintexts (source states). LetM0 be the set of all possible messages

derived by applying each encoding rule (key) to the source states and let Mi (0 < i ≤ t) be the

set of all possible messages derived by erasing i letters from the messages in M0. The set of all

possible messages is M =
⋃t

i=0Mi. Finally, we will use E to denote the set of encoding rules,

and X,Y0, . . . , Yt, Y and Z to denote random variables that take values from S,M0, . . .Mt,M
and E correspondingly. Note that the probability distribution of Y0 is uniquely determined by the

probability distributions of X, Z and the randomness used by the code. However, there are infinitely

many possible probability distributions for each of the random variables Y1, . . . , Yt depending on

how we erase the letters of the messages.

An η-code can be represented by an |E| × |M| encoding matrix A. The rows of the matrix are

indexed by the encoding rules ez ∈ E and the columns of the matrix are indexed by the messages

y ∈M. The entries of the matrix are either empty or contain a string derived from a source state

by erasing at most r (possibly 0) letters. We use the characteristic functions χ(y, z) to indicate

whether an entry is empty or not. In particular, the function χ(y, z) is one if A[ez , y] is not empty

(i.e., y ∈ M is a valid message when the key in use is z), and χ(y, z) is zero if A[ez, y] is empty

(i.e., y ∈ M is not a valid message when the key in use is z). We will also use the characteristic

function φ(y1, y2, z), which is one if both y1 and y2 are valid when encoding rule ez is used, and

zero otherwise.

The following restrictions are imposed on the encoding matrix in order to capture the important

aspects of the setting that we have discussed above. Let the message y ∈ M0 be valid under the

encoding rule ez. Then, there is a plaintext x ∈ S such that y = ez(x). In that case, the entry

A[ez , y] in the encoding matrix should be x. Furthermore, the transmitter should be able to send

any plaintext to the receiver regardless of the encoding rule in use. Therefore, for each encoding

rule ez and each source state x, there is at least one message y ∈ M0 such that y = ez(x). If

there is exactly one such message regardless of the plaintext and the encoding rule, then the code

is deterministic. Otherwise, the code is randomized. If the message y ∈ M0 is valid under the

encoding rule ez , then any message y′ derived from y by erasing at most t letters is also valid. The

entry A[ez, y
′] should be derivable from the entry A[ez, y] by erasing at most r letters. Note that if

we discard from the encoding matrix each column that does not correspond to an element inM0,

then the resulting encoding matrix defines an authentication code. We will refer to this code as

24

Table 2.1: An example of a binary η-code with secrecy

000 00* 0*0 *00 011 01* 0*1 *11 101 10* 1*1 *01

e1 0 0 0 0 1 1 1 1
e2 1 1 1 1 0 0 0 0
e3 0 0 0 0 1 1 1 1

the underlying authentication code.

We assume that the secret key will be used only once (although this can be relaxed), and the

probabilities of successful impersonation, substitution and deception are defined as in Section 1.1.3.

A simple example of an encoding matrix for a binary η-code is given in Table 2.1. We use

* to denote the missing letters. If we discard the columns that correspond to the incomplete

messages, then we will get an authentication code. This underlying authentication code is same as

the one shown in Table 1.2. Assuming that the keys are equiprobable, the code has the following

parameters: k = 1, n = 3, t = 1, r = 0,S = {0, 1},M0 = {000, 011, 101}, E = {e1, e2, e3}, PS =

1/2, Pd = PI = 2/3. Note that the code is full recovery (r = 0), and that it is with secrecy since

the adversary cannot determine the plaintext given a ciphertext. For example, assume that the

adversary has intercepted the message 000. Since he doesn’t know the key that is in use, he can

not tell whether the plaintext is 0 or 1.

2.2 Lower bounds on the deception probability

In this section, we are going to address the question of how much security we can achieve given

some parameters of the η-code. The following theorem gives some lower bounds on the probability

of successful deception for the model described in Section2.1.

Theorem 2.1 (Lower Bounds) The following inequalities hold for the probability of successful

deception:

1. Pd ≥
min
ez∈E
|M(ez)|
|M|

2. Pd ≥ |S|
|M0|

3. Pd ≥ 2− infYt
I(Yt,Z) ≥ . . . ≥ 2− infY1

I(Y1,Z) ≥ 2−I(Y0,Z)

4. Pd ≥ 2
1
2 (I(Y0,Z)−infYt

I(Yt,Z))√
|E|

≥ 1√
|E|

25

where |M(ez)| is the number of messages in M that are valid when the key z is used, and

infYi
I(Yi, Z) denotes the infimum of the mutual information I(Yi, Z) over all possible probability

distributions of Yi.

Proof. Assume that the sender and the receiver have already agreed that they are going to

use the encoding rule ez. One possible impersonation strategy is to select uniformly at random

a message from M. The attack will succeed if the selected message is one of the messages that

are valid under that key z. Since there are |M(ez)| messages that are valid under the key z and

the fraudulent message was selected uniformly at random, the probability of success given a key

z is |M(ez)|/|M|. Clearly, the probability of successful deception will be greater or equal than

minE |M(ez)|
|M| , which is our first lower bound.

In Section 2.1, we mentioned that if we discard from the encoding matrix all columns that are

not indexed by the messages in M0, then we will get an authentication code. It is obvious that

an attack on the underlying authentication code is also an attack on the η-code. Hence, any lower

bound on the probability of successful deception for authentication codes can be translated into a

lower bound on the probability of success in a deception attack for η-codes. One such bound is

given in Theorem 2.1(2) and it follows from Corollary 1 [102].

The third bound (Theorem 2.1(3)) is an erasure-tolerant analogue to the authentication channel

capacity bound [102]. The probability that a particular message y ∈ M will be a valid message is

given by the following expression:

P (y valid) =
∑

z

χ(y, z)PZ(z).

The probability of successful impersonation is

PI = max
y

P (y valid),

that is the best impersonation attack is when the adversary selects the fraudulent message to be

the message that will be valid with maximum probability. Assume that y is a message from M
that is valid with maximum probability (P (y valid) = PI) and assume that y /∈ Mt. Let ŷ ∈ Mt

be a message derived from y by erasing some of its letters. Note that ŷ is valid whenever y is valid,

or equivalently, χ(y, z) = 1 implies χ(ŷ, z) = 1. In that case, we have

PI ≥ P (ŷ valid) =
∑

z

χ(ŷ, z)PZ(z) ≥
∑

z

χ(y, z)PZ(z) = P (y valid) = PI .

26

Obviously, the probability that message ŷ will be a valid message is PI , and one best impersonation

strategy is to choose always ŷ as a possible fraudulent message.

Let Yt be a random variable that takes values from Mt in a following manner: we randomly

discard t letters from a message that is computed by the receiver from a randomly selected plaintext

(according to the plaintext probability distribution) by applying a randomly selected encoding rule

(according to the key probability distribution). It is clear that

PI = P (ŷ valid) = P (ŷ valid)×
∑

y

PYt(y) =
∑

y

PYt(y)P (ŷ valid)

≥
∑

y

PYt(y)P (y valid).

Note that equality holds only when the probabilities of validity are equal for all messages in Mt.

By substituting P (y valid), we get

PI ≥
∑

y,z

PYt(y)PZ(z)χ(y, z).

The joint probability PYtZ(y, z) is greater than zero if and only if PZ(z) > 0 and χ(y, z) = 1.

Therefore, the relation above can be rewritten as

PI ≥ E

[
PYt(y)PZ(z)

PYtZ(y, z)

]

.

Using Jensen’s inequality3, we get

log PI ≥ log E

[
PYt(y)PZ(z)

PYtZ(y, z)

]

≥ E

[

log
PYt(y)PZ(z)

PYtZ(y, z)

]

= H(YtZ)−H(Yt)−H(Z) = −I(Yt, Z).

The lower bound Pd ≥ 2− infYt
I(Yt,Z) trivially follows since the previous inequality holds for any

probability distribution of Yt. Now, we only need to show that infYi
I(Yi, Z) ≤ infYi−1 I(Yi−1, Z).

Given a random variable Yi−1 that takes values fromMi−1, let us construct a random variable Yi

that takes values from Mi as follows. If yi−1 ∈Mi−1 is the message that the receiver is supposed

to get, we erase the first non-erased letter in yi−1 to get yi. It is obvious that I(Yi, Z) ≤ I(Yi−1)

3If f(x) is a convex function on an interval (a, b), x1, x2, . . . , xn are real numbers a < xi < b, and w1, w2, . . . , wn

are positive numbers with
P

wi = 1, then

f

» n
X

i=1

wixi

–

≤

n
X

i=1

wif(xi).

27

since anything that we can learn about the key given yi we can also learn given yi−1 (e.g., we can

erase one letter from yi−1 and guess the value of the key). Hence, for every probability distribution

of Yi−1, there is probability distribution of Yi such that I(Yi, Z) ≤ I(Yi−1, Z), and therefore, the

inequality infYi
I(Yi, Z) ≤ infYi−1 I(Yi−1, Z) will always hold.

The final lower bound (Theorem 2.1(4)) is a bound on the security that we can achieve for a

given key length. For the probability of successful substitution, it holds that log PS ≥ −H(Z|Y0)

(see Theorem 5 [102]). Now, we have

P 2
d ≥ PIPS ≥ 2− infYt

I(Yt,Z)2−H(Z|Y0)

= 2I(Y0,Z)−infYt
I(Yt,Z)−H(Z)

Pd ≥ 2
1
2
(I(Y0,Z)−infYt

I(Yt,Z))

2
1
2
H(Z)

≥ 2
1
2
(I(Y0,Z)−infYt

I(Yt,Z))

√

|E|

≥ 1
√

|E|
(2.1)

�

2.3 Distance properties

The Hamming distance4 between the messages is not important in the traditional authentication

model because it is assumed that the messages arrive intact. However, the distances5 between

the messages of an η-code play a crucial role since they determine the erasure-tolerant aspects

of the code. The following theorem describes several distance properties of the erasure-tolerant

authentication codes.

Theorem 2.2 (Distance properties) 1. If the distance d(x1, x2) between two plaintexts x1

and x2 is greater than r, then the distance d(y1, y2) between the corresponding ciphertexts

y1 = ez(x1) and y2 = ez(x2) is greater than t.

2. If there is a code (set of codewords) ζ ⊆ S whose distance d(ζ) is greater than r, then, for any

encoding rule ez, there is a code ς ⊆ M0(ez) such that |ς| ≥ |ζ| and d(ς) > t, where M0(ez)

is the set of valid messages in M0 when the encoding rule ez is in use.

4The number of letters that need to be changed in one message to obtain the other.
5Hereafter, when we say distance we mean Hamming distance.

28

3. For each encoding rule ez of a full-recovery η-code, there is a code ς ⊆ M0(ez) such that

|ς| ≥ |S| and d(ς) > t.

4. For each encoding rule ez of a deterministic full-recovery η-code, the distance of the code

M0(ez) is greater than t.

5. Let ps = miny1,y2∈M0 P (y2 valid |y1 valid). If ps is greater than zero and the erasure-tolerant

code is deterministic and full-recovery, then the distance between any two elements of M0 is

greater than t.

Proof.

1. Assume that d(y1, y2) ≤ t. Let y be the message derived from y1 (resp., y2) by erasing the

letters where y1 and y2 differ and let x = e−1
z (y) be the damaged plaintext corresponding to

y. The plaintext x should be derivable from both x1 and x2 by erasing at most r letters.

Therefore, the distance d(x1, x2) is not greater than r, which is in contradiction with our

assumption that d(x1, x2) > r.

2. Let us consider the code ς constructed as follows. For each codeword x in ζ, we put a codeword

y = ez(x) in ς. Distance property of Theorem 2.2.1 implies that the distance of the code ς is

greater than t. Clearly, the number of codewords in ς is equal to the number of codewords in

ζ, and the theorem follows.

3. The third property follows from the previous property and the following observation. In the

case of a full-recovery code, we have r = 0 and the set of all possible source states S forms a

code with distance greater than r.

4. If the η-code is deterministic, then there is exactly one valid message given a source state and

an encoding rule. If in addition the code is full-recovery, then the distance between any two

intact valid messages should be greater than t.

5. The fact that ps is greater than zero implies that for any two distinct messages y1 and y2 in

M0, there is an encoding rule ez such that y1 and y2 are both valid when the encoding rule ez

is used. According to the previous property, the distance between y1 and y2 must be greater

than t.

�

29

2.4 Concatenation and composition of η-codes

In this subsection, we are going to consider two common construction techniques: concatenation

and composition.

In the case of concatenation, the set of source states S of the new erasure-tolerant authentication

code consists of all possible concatenations x1||x2, where x1 ∈ S ′0 is a source state of the first code

and x2 ∈ S ′′0 is a source state of the second code. To encode a source state x = x1||x2, we select

two encoding rules ez1 ∈ E ′ and ez2 ∈ E ′′, and compute the message y as y = ez1(x1)||ez2(x2). It

is not hard to verify that if we erase t = t1 + t2 + 1 letters from a message y, then we can “lose”

at most r = max(r1 + k2, r2 + k1) letters of the corresponding source state x. Note that we allow

more than t1 (resp., t2) letters to be erased from ez1(x1) (resp., ez2(x2)). In that case, we check

the validity of the second (resp., first) part of the message and discard the letters of the first (resp.,

second) part of the source state.

For the composition construction, the set of source states S ′′ of the second code is equal to the

setM′
0 of all possible intact messages of the first code. The set of source states of the new code S is

equal to the set of source states S ′ of the first code, and the setM0 of all possible intact messages

is equal to the set M′′
0 of all intact messages of the second code. The message y corresponding

to a given source state x is computed as y = ez2(ez1(x)), where the encoding rules ez1 ∈ E ′ and

ez2 ∈ E ′′ are chosen independently according to the corresponding probability distributions. We

require r2 to be less or equal than t1, and if we erase at most t = t2 letters from a message y,

then we can “lose” at most r = r1 letters of the corresponding source state x. Some relations

between the impersonation and substitution probabilities of the new code and the impersonation

and substitution probabilities of the component codes are provided below.

Theorem 2.3 The following relations hold for the probability of successful deception of a concate-

nation and composition of η-codes:

1. Concatenation: Pd = max(P ′
d, P

′′
d)

2. Composition: PI ≤ P ′
IP

′′
I , PS ≤ P̃ ′

SP ′′
S , where

P̃ ′
S =

maxy′,y′′∈M′ P ((y′, y′′) valid)

miny∈M′ P (y valid)
.

30

Proof.

1. Let us consider the message y = y1||y2, where y1 ∈ M′ and y2 ∈ M′′. Since the encoding

rules are chosen independently, we have

P (y valid) = P (y1 valid)P (y2 valid).

In that case, the probability P (y valid) is less or equal than both P ′
I and P ′′

I . Assume now

that y2 is not in M′′. The verifier will check only the validity of y1. In this case, the

probability that y is valid is P (y valid) = P (y1 valid). Clearly, the probability P (y valid) is

again less or equal than P ′
I , but we can select y1 so that P (y valid) = P ′

I . Similarly, if we

select y1 so that there are more than t1 erasures in it, the verifier will check the validity of

y2 only. The probability P (y valid) will be less or equal than P ′′
I , and we can select y2 so

that P (y valid) = P ′′
I . Therefore, the probability of successful impersonation of the new code

is maximum of the probabilities of successful impersonation of the component codes (i.e.,

PI = max(P ′
I , P

′′
I)).

An analogous argument holds for the probability of successful substitution. Let y = y1||y2

be the message intercepted by the adversary and let ŷ = ŷ1||ŷ2 be its substitution. Let us

consider the case when P ′
S ≥ P ′′

S . It is not hard to show that the best substitution strategy is

to substitute only the first part of the message (i.e., ŷ2 = y2 or ŷ2 is derived by erasing more

than t2 letters). The probability that ŷ is valid is equal to the probability that ŷ1 is valid,

and the probability of successful substitution PS is equal to P ′
S . Similarly, in the case when

P ′
S ≤ P ′′

S , we get that PS = P ′′
S . Therefore, PS = max(P ′

S , P ′′
S) and Pd = max(P ′

d, P
′′
d).

2. First, we will show that PI ≤ P ′
IP

′′
I . Let y ∈M be an arbitrary message. For the probability

that y is valid, we have

P (y valid) =
∑

z1z2

χ′′(y, z2)χ
′(e−1

z2
(y), z1)P (z2)P (z1)

=
∑

z2

χ′′(y, z2)P (z2)
∑

z1

χ′(e−1
z2

(y), z1)P (z1)

≤ P ′
I

∑

z2

χ′′(y, z2)P (z2)

≤ P ′
IP

′′
I .

31

From the last inequality, it follows that PI = maxy∈M P (y valid) ≤ P ′
IP

′′
I .

Now, let us consider the conditional probability P (y ′′ valid | y′ valid), where y′ and y′′ are two

distinct messages fromM. We have

P (y′′ valid | y′ valid) =
P ((y′, y′′) valid)

P (y′ valid)

=

∑

z1z2
φ′′(y′, y′′, z2)φ

′(e−1
z2

(y′), e−1
z2

(y′′), z1)P (z2)P (z1)
∑

z1z2
χ′′(y′, z2)χ′(e−1

z2 (y′), z1)P (z2)P (z1)

≤
maxy′

1,y′′
1∈M

′ P ((y′1, y
′′
1) valid)×∑

z2
φ′′(y′, y′′, z2)P (z2)

∑

z2
χ′′(y′, z2)P (z2)

∑

z1
χ′(e−1

z2 (y′), z1)P (z1)

≤
maxy′

1,y′′
1∈M

′ P ((y′1, y
′′
1) valid)×∑

z2
φ′′(y′, y′′, z2)P (z2)

miny′
1∈M

′ P (y′1 valid)×∑

z2
χ′′(y′, z2)P (z2)

≤ P̃ ′
SP ′′

S .

From the previous inequality, it is obvious that PS ≤ P̃ ′
SP ′′

S .

�

Note that authentication codes and erasure-resilient codes can also be used as component codes.

Namely, authentication codes form a class of η-codes whose members provide authenticity, but no

erasure-resilience (t = 0). The erasure-resilient codes on the other hand form a class of η-codes

whose members provide erasure-resilience, but no authentication (Pd = 1).

Finally, we will consider the case when the probabilities P ((y ′, y′′) valid) and P (y valid) are

uniformly distributed. In this case, the deception probability is characterized by the following

corollary.

Corollary 2.4 If the probabilities P ((y ′, y′′) valid) and P (y valid) (y, y′, y′′ ∈M′), are uniformly

distributed, then the approximation P̃ ′
S is equal to P ′

S, and we have

Pd ≤ P ′
dP

′′
d .

Proof. If the probabilities P ((y′, y′′) valid) and P (y valid) are uniformly distributed, then

P̃ ′
S =

maxy′,y′′∈M′ P ((y′, y′′) valid)

miny∈M′ P (y valid)
=

P ((y1, y2) valid)

P (y1 valid)
= P (y2 valid | y1 valid)

where y1, y2 ∈M′ are two arbitrary messages. On the other hand, for the probability of successful

substitution we have

P ′
S = max

y1,y2∈M′

P ((y1, y2) valid)

P (y1 valid)
= P (y2 valid | y1 valid).

32

Hence, P̃ ′
S is equal to P ′

S , and PS ≤ P ′
SP ′′

S . From the last inequality and Theorem 2.3(2), it follows

that Pd ≤ P ′
dP

′′
d . �

2.5 η-codes with minimal impersonation and substitution
probabilities

Not all η-codes can be represented as a composition of an authentication code and an erasure-

resilient code. However, the members of one interesting class of erasure-tolerant authentication

codes can always be represented as a composition of an authentication code and an erasure-resilient

code since the messages in M0 form a code whose distance is greater than t. This is the class of

η-codes whose probabilities of successful impersonation and substitution are minimal.

Theorem 2.5 An η-code without secrecy (resp., with secrecy) has probability of successful imper-

sonation PI = |S|
|M0|

< 1 and probability of successful substitution PS = |S|
|M0|

(resp., PS = |S|−1
|M0|−1)

if and only if

1. d(M0) > t and

2. the underlying authentication code is an authentication code without secrecy (resp., with

secrecy) such that PuI = |S|
|M0|

and PuS = |S|
|M0|

(resp., PuS = |S|−1
|M0|−1).

Proof. It is not difficult to show that if d(M0) > t, then PI = PuI and PS = PuS . Clearly, if the

underlying authentication code is without secrecy (resp., with secrecy), then the erasure-resilient

code is without secrecy (resp., with secrecy) also.

Now, suppose that we have an erasure-resilient code without secrecy (resp., with secrecy)

such that PI = |S|
|M0|

< 1 and PS = |S|
|M0|

(resp., PS = |S|−1
|M0|−1). Since PI ≥ PuI ≥ |S|

|M0|

and PS ≥ PuS ≥ |S|
|M0|

(resp., PS ≥ PuS ≥ |S|−1
|M0|−1), we have PuI = |S|

|M0|
and PuS = |S|

|M0|

(resp., PuS = |S|−1
|M0|−1). Therefore, the underlying authentication code has same impersonation

and substitution probabilities as the erasure-tolerant authentication code. Obviously, if the

erasure-tolerant authentication code is without secrecy (resp., with secrecy), then the underlying

authentication code is without secrecy (resp., with secrecy) also.

It remains to be shown that d(M0) is greater than t. For the underlying authentication

code it holds that the probability P (y valid) is |S|
|M0|

for all y ∈ M0, and the probability

P (y2 valid | y1 valid) is |S|
|M0|

(resp., |S|−1
|M0|−1) for any two distinct y1 and y2 in M0. Now, assume

33

that there are two messages y1 and y2 in M0 such that d(y1, y2) ≤ t. Let y be the message in

M derived by erasing all the letters in y2 that differ from the corresponding letters in y1. Since

P (y2 valid | y1 valid) is less than 1, there is an encoding rule ez such that y1 is a valid message under

the encoding rule eZ , but y2 is not a valid message under the encoding rule ez. Therefore, we have

P (y valid) > P (y2 valid) = |S|
|M0|

, which is in contradiction with our assumption that PI = |S|
|M0|

. �

Stinson [106, 107, 108] has characterized the existence of authentication codes that have minimal

impersonation and substitution probabilities in terms of existence of orthogonal arrays and balanced

incomplete block designs (BIBD). Using these characterizations and Theorem 2.5, one can easily

derive a relation between the existence of orthogonal arrays and BIBDs and the existence of η-codes

with minimal PI and PS .

2.6 η-codes from set systems

A set system is a pair (X,B) of a set X = {a1, a2, . . . , ak} and a multiset B whose elements are

subsets (or blocks) of X.

One can construct an η-code from a set system as follows. The set X will consist of the letters

of the source state x. Then, we use an authentication code to compute an authentication tag for

each block Bi ∈ B. The message y is constructed by appending the authentication tags of the

blocks to the source state x. Now, if some letter of the message is erased, and the erased letter

does not belong to a block Bi or to the authentication tag of the block Bi, then we can still check

the authenticity of the letters of the plaintext that belong to Bi.

2.6.1 Constructions from covering designs

One possible construction is from a complementary design of a covering. The set system (X,B),

where |X| = k, is a (k,m, t)-covering design if all blocks are m-subsets of X, and any t-subset

of X is contained in at least one block. Some efficient constructions of coverings can be found in

[82, 96]. The complementary set system of a set system (X,B) is the set system (X,Bc), where

Bc = {X\Bi|Bi ∈ B}. It is not hard to prove the following property of the complementary design

of a covering6.

Lemma 2.6 Let (X,B) be a (k,m, t)-covering design. Then, for the complementary design, we

have
6A similar result was used in [34].

34

1. |Bi| = k −m for all Bi ∈ Bc

2. For any subset F ⊂ X such that |F | ≤ t, there is a block Bi ∈ Bc such that F
⋂

Bi = ∅.

The following proposition trivially follows from the previous lemma.

Proposition 2.7 If at most t letters are erased from a message of an η-code derived from a

complementary design of a (k,m, t)-covering, then we can verify the authenticity of at least k −m

letters of the plaintext (r ≤ m).

Now, we are going to consider a specific example. Assume that the source state is a sequence

of v2 packets arranged in a square matrix

P0,0, . . . , P0,v−1, . . . , Pv−1,0, . . . , Pv−1,v−1,

where each packet Pi,j is a sequence of l letters. We divide the set of blocks B into two disjoint

subsets R and D. The blocks in R are constructed from the rows of the matrix

R = {Ri|Ri = {Pi,0, . . . , Pi,v−1}, 0 ≤ i < v}.

The blocks in D are “parallel” to the main diagonal

D = {Di|Di = {P0,i, P1,(i+1) mod v},...,Pv−1,(i+v−1) mod v
, 0 ≤ i < v}.

The set system consisting of the set of all packets Pi,j and the set of all blocks Ri and Di is a

complementary design of a (v2, v(v − 1), v − 1)-covering. That is, if at most v − 1 packets are lost,

then, we can still verify the authenticity of at least one block (i.e., v packets). The set system also

has the following convenient properties:

• If one packet is lost, then we can still verify the authenticity of all v2− 1 packets that are not

lost.

• If two packets are lost, then we can still verify the authenticity of at least v2 − 4 packets.

Table 2.2 compares the example presented here to the case when each packet is authenticated

separately. The complexities are expressed in number of multiplications over the finite field when

the Horner’s procedure is used for polynomial evaluation. We can see that in the example presented

here, the number of keys (the part that changes) is significantly smaller when the number of packets

increases. The price we pay is slightly increased time complexity and smaller erasure-tolerance.

35

Table 2.2: Using (v2, v(v − 1), v − 1)-covering vs Authentication of each packet separately

code multiplicative number of erasures
complexity keys tolerated

from (v2, v(v − 1), v − 1)-covering v2l + 2v + log l − 1 2v up to v − 1

each packet separately v2l v2 up to v2 − 1

2.6.2 Constructions from cover-free families

A cover-free family is defined as follows.

Definition 2.1 [110] Let X be a v-set and let B be a set of subsets (blocks) of X. The set system

(X,B) is called a (w, t)-cover-free family if for any w blocks B1, . . . , Bw ∈ B and any other t blocks

A1, . . . , At ∈ B, we have
w⋂

i=1

Bi *
t⋃

j=1

Aj . (2.2)

Let N(w, t, b) denote the minimum number of points in any (w, t)-cover-free family that has b

blocks. The following bound can be found in [110]:

N(w, t, b) ≤ (w + t) log b

− log p
, p = 1− ttww

(t + w)t+w
. (2.3)

Let us consider the following generic construction of erasure-tolerant unconditionally secure

authentication codes or erasure-tolerant signature schemes. Given a large message M , the sender

divides it into a sequence of b smaller messages M1, . . . ,Mb and computes v authentication tags

(resp., signatures) τ1, . . . , τv. Each tag τj is computed over a subsequence of the sequence of

messages using a message authentication (or signature) scheme. We say that the authentication

tag τj depends on the message Mi if Mi is in the subsequence which is used to compute τj. The

sender then constructs and sends b packets P1, . . . , Pb. Each packet Pi includes the message Mi

and all authentication tags τj with the following property: the message Mi is the last message in

the subsequence that is used to compute τj .

We allow at most t of the b packets to be lost during the transmission. The recipient uses the

received tags to verify the authenticity of the received messages. In particular, if all messages that

are used to compute some authentication tag τj have arrived, the recipient uses the received τj to

verify the authenticity of the subsequence. If the verifier outputs one, then the recipient accepts

all the messages in the subsequence as valid.

36

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

X

Bi2 Bj

τk

Bit

Bi3

Bi1

can be verified using
The authenticity of

τk /∈
St

l=1 Bil

Mj

Figure 2.1: Erasure-tolerant authentication using cover-free families

Obviously, if a tag τj depends on a lost message Mi, then τj cannot be used to verify the

authenticity of the rest of the messages in the subsequence that was used to compute τj. Hence, a

situation might occur where the recipient will not be able to verify the authenticity of a message

that was not lost. If the subsequences are chosen in such manner so that the receiver will be

able to verify the authenticity of each message that is not lost, then we say the erasure-tolerant

authentication code (resp., signature scheme) is non-degrading.

To analyze the problem of constructing non-degrading schemes, it is convenient to define a

dependency set system (X,B), where:

• X = {τ1, . . . , τv}

• B = {Bj |Bj = {τi|τi depends on Mj}, 1 ≤ j ≤ v}

If a message Mi is lost during the transmission, then the authentication tags in Bi become useless.

Assume that Mi1 , . . . ,Mit are the lost messages. Then, the set of all useless tags is
⋃t

l=1 Bil (see

Figure 2.1). The authenticity of the message Mj can be verified if and only if Bj *
⋃t

l=1 Bil .

Hence, we have the following theorem.

Theorem 2.8 An erasure-tolerant authentication code (resp., signature scheme) constructed as

above is non-degrading if and only if the corresponding dependency set system is a (1, t)-cover-free

family.

37

M1 M2 M4 M5M3 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

τ5 τ6
τ7 τ8

τ1 τ2 τ3 τ4

Figure 2.2: (1, 1)-cover-free family

A simple example is given in Figure 2.2. One can easily verify that if one message is lost (t = 1),

then we can still verify the authenticity of the rest of the packets. For example, assume M1 is lost.

Then, the authentication tags τ1 and τ5 are not usable anymore. However, the authenticity of

M2,M3 and M4 still can be verified using τ6, τ7 and τ8 respectively, and the authenticity of M5,M9

and M13 can be verified using τ2, τ3 and τ4 respectively.

Note that the number of tags in the example is eight instead of sixteen, which is the case when

we authenticate each packet separately. In general, we have two extremes. The number of tags can

be as low as a logarithm of the number of packets (see inequality 2.3). The other extreme is to

use one tag per message (i.e., the number of tags is equal to the number of messages). The main

advantages of using a small number of tags / signatures are:

• The communication (or storage) overhead is smaller.

• When unconditionally secure message authentication is employed, we need a fresh key material

for each tag. Hence, the key generation time decreases when the number of tags is smaller.

• In the case of digital signature schemes, the time complexity will be reduced since the number

of signatures is smaller.

Remarks. To simplify the description, we assumed that the messages arrive in order. However, it

might be possible that the messages can be reordered so that the derived sequence is also valid. A

malicious reordering can be prevented if the messages also include a unique number.

Also, note that more than t erasures can be tolerated in a scheme derived from (1, t)-cover-free

family. In particular, if more than t messages are lost, we can still verify the authenticity of some

of the received messages. However, we cannot verify the authenticity of all received messages (i.e.,

non-degrading property does not hold). For example, in the scheme from Figure 2.2, even if three

38

messages are lost, we will still be able to verify the validity of at least four messages.

2.6.3 Efficiency issues

In the generic construction of an η-code from a set system, multiple authentication tags can depend

on a single message. Authenticating each subsequence of messages anew can lead to large time

complexity since each message is processed many times. Here, we present a more efficient solution.

We will use the following unconditionally secure multiple message authentication code [1]. Let

a1,a2, . . . ,av be a sequence of v messages. The authentication tag for a message ai is computed as

hx,y,zi
(ai) = y(ai0 + ai1x + . . . + ail−1

xk) + zi = yfai
(x) + zi,

where x, y, zi, ai0 , . . . , ail−1
∈ Fq (q a prime power). The key parts x and y remain unchanged for

all messages in the sequence. Only the part zi is refreshed for each message.

We process each message only once and produce a sequence of b values α1, . . . , αb (see Figure 2.3.

The temporary values αi are then combined to produce the authentication tags.

The temporary values αi are computed as

αi = fMi
(x) = m0 + m1x + . . . + ml−1x

l−1,

where m0, . . . ,ml−1 ∈ Fq are the letters of the message Mi.

Given a subsequence Mi0 , . . . ,Min of messages, the authentication tag that depends on these

messages can be efficiently computed as:

τ = y(fMi0
(x) + xlfMi1

(x) + . . . + xnlfMin
(x)) + zi.

In other words, we evaluate a polynomial over each message separately, and then combine the results

to evaluate polynomials over subsequences of messages. An efficient procedure for polynomial

evaluation is given in [1]. The time complexity of the procedure is 7-13 machine instructions per

word.

2.7 η-codes from Reed-Solomon codes

Reed-Solomon codes have already been used to construct authentication codes [10]. Here, we

present a construction of η-codes based on Reed-Solomon codes.

Let a1, a2, . . . , ak be the sequence of plaintext letters, where each ai is an element of the Galois

field Fq. The message is constructed by appending n − k authentication tags τ1, τ2, . . . , τn−k

39

M1 M2 M3 M4 . . . Mb

τ1

. . .α1 αbα4α3α2

τvτ2 . . .

Figure 2.3: Efficient computation

(τi ∈ Fq, 1 ≤ i ≤ n− k) to the plaintext. The authentication tags are computed as

τi = yi +

k∑

j=1

ajx
j
i

where xi, yi are randomly selected and secret (i.e., part of the key). In addition, we require that

xi1 6= xi2 for i1 6= i2.

Now, assume that ta letters of the plaintext and tτ authentication tags are lost during the

transmission. Note that ta + tτ cannot be greater than t. The receiver can use ta of the received

authentication tags and the k − ta received letters of the plaintext to construct a system of linear

equations that can be always solved for the unknown letters of the plaintext. Once the missing

letters of the plaintext are recovered, the receiver can check the authenticity using the remaining

n− k − ta − tτ authentication tags. Assuming that each letter of the message can be erased with

same probability p, the probability that in a sequence of v messages, there is no forged message

accepted as valid, is lower bounded by the product

t∏

i=0

(1− kn−k−i

qn−k−i
)v×(n

i)pi(1−p)n−i

.

The authentication tags in the example have dual role. They can be used to verify the

authenticity of the plaintext or to recover some lost letters of the plaintext. Therefore, the η-codes

described above, offer more security than the codes constructed by composing an authentication

code and an erasure-resilient code on one hand, and they are more resilient to erasures than

authentication codes on the other hand. This is illustrated in Table 2.3. The first row corresponds

to a code that is derived by composing an authentication code and an erasure-resilient code that can

recover one erasure. The second row corresponds to a code of length n = k+2 constructed as above.

Since only one erasure is tolerated, the condition xi1 6= xi2 for i1 6= i2 is not necessary, and the

complexity can be reduced from 2k to k multiplications by using a multiple message authentication

40

Table 2.3: Comparison of an η-code from RS code with the current practices

code multiplicative non-deception erasure
complexity probability tolerance

composition k multipl. in Fq (1− k
q
)v 1 erasure

our η-code k multipl. in Fq (1− k
q
)pv(1− k2

q2)(1−p)v 1 erasure

A-code k/2 multipl. in Fq2 (1− k
2q2)v 0 erasures

code as in the previous example. The final code is an ordinary authentication code. The letters of

the message in the last case are considered to be elements of a Galois field Fq2 .

41

CHAPTER 3

Proven Secure Stream Authentication in a Point-to-point Setting

In this chapter, we adapt the notions of existential forgery and unforgeability [53] to the case of

peer-to-peer stream authentication, and introduce the notions of stream authentication tree and

stream authentication forest in order to describe the tag computation process of a general class of

peer-to-peer stream authentication schemes. The analysis of the security of tree and forest stream

authentication schemes shows that one can color (assign tag computation procedures to) different

nodes of the tree so that the resulting scheme is secure regardless of how the trees are constructed.

We use the results of the analysis to provide proofs of security for three new practical stream

authentication schemes: MACC, ReMAC and SN-MAC.

3.1 Unforgeable Stream Authentication

In a stream signature scheme, the data sequence is divided into smaller pieces we refer to as chunks,

and an authenticator is assigned to each chunk. The decision whether a particular chunk is accepted

as authentic is made based on the portion of the stream up to that chunk and the authenticator

associated with that chunk. Thus, the delay between the moment when the chunk is received and

the moment when it is accepted is reduced allowing for the receiver to consume the incoming bits

almost as they arrive.

We must be able to distinguish between the end of the stream and the state that data is

continuing to arrive. This strategy allows the receiver to know whether the adversary has shortened

the message by deleting the last chunks. Note that this security property is not achieved by Gennaro-

Rohatgi [43].

A stream signature scheme consists of a key generation algorithm G, a signing algorithm S and

a verifying algorithm V. The key generation algorithm G outputs a pair of keys (s, p). The signing

algorithm S takes as input a key s and a stream M = (M1, . . . ,Ml). Based on the key s and

42

(M1, . . . ,Mi) it computes a µi. We call the l-tuple µ = (µ1, . . . , µl) the stream signature of M.

µi(i ≤ l) is called a temporary signature.

On input a key p, (M1, . . . ,Mi), and (µ1, . . . , µi), algorithm V outputs i type/authenticity pairs

((b1, v1), . . . , (bi, vi)), where the type bits bj ∈ {0, 1} are used to indicate whether the corresponding

chunk is the last chunk in the stream or not, and the authenticity bits vj ∈ {0, 1} indicate whether

the chunk is valid (accepted) or not. We say that the string M1|| . . . ||Mi is accepted as partial

stream if the stream M1|| . . . ||Mi−1 is accepted as a partial stream, the type bit bi is zero and

the authenticity bit vi is one (authentic). The string M1|| . . . ||Mi is accepted as complete stream

if M1|| . . . ||Mi−1 is accepted as a partial stream (or i equals one), the type bit bi is one and

the authenticity bit vi is one. If the stream M1|| . . . ||Mi is not accepted, then it is rejected. It

is obvious that if the stream M1|| . . . ||Mi is rejected or accepted as complete, then the streams

M1|| . . . ||Mj(i < j ≤ l) are rejected. A formal definition follows.

Definition 3.1 (Stream Signature Scheme) A stream signature scheme is a triple (G,S, V) of

probabilistic polynomial-time algorithms satisfying the following conditions:

1. The algorithm G (called the key generator) outputs a pair of bit strings (s, p).

2. On input a string s and (M1, . . . ,Mi), where Mi ∈ {0, 1}+ the signing algorithm S outputs

µi ∈ {0, 1}+. If the complete stream is M = (M1, . . . ,Ml) we call µ = (µ1, . . . , µl) the stream

signature, where l ∈ {1, 2, 3, . . .}.

3. On input a string p, (M1, . . . ,Mi) and (µ1, . . . , µi) (Mi, µi ∈ {0, 1}+), the verification

algorithm V outputs i type/authenticity pairs (b1, v1), . . . , (bi, vi), bj, vj ∈ {0, 1}. If there

is a k ∈ {1, 2, . . . , i} such that bk = 1 or vk = 0, then the authenticity bits vj(k < j ≤ l) are

zero, where l is the number of chunks Mi in the complete stream M = (M1, . . . ,Ml).

4. For every pair (s, p) in the range of G, and for every M = (M1, . . . ,Ml),Mi ∈ {0, 1}+, l ∈
{1, 2, 3, . . .}, algorithms S and V satisfy

∀i : 1 ≤ i < l Pr[V (p,Pref i(M),Pref i(S(s,M))) = ((0, 1), (0, 1), . . . , (0, 1), (0, 1)
︸ ︷︷ ︸

i−pairs

)] = 1

Pr[V (p,M, S(s,M)) = ((0, 1), (0, 1), . . . , (0, 1), (1, 1)
︸ ︷︷ ︸

l−pairs

)] = 1

where Pref i((x1, x2, . . . , xl)) = (x1, x2, . . . , xi). The probability is taken over the internal coin

tosses of S and V .

43

The previous definition says nothing about the security of the scheme. In order to prove that

a particular stream signature scheme is secure, we need first to define what it means for a stream

signature scheme to be secure. We will follow the existential forgery and exact security approaches

[5, 53] and we will consider the private key (stream authentication) case only. The security of a

public key stream signature scheme can be defined in a similar manner. The only difference is that

the adversary in a public key scheme has access to the verification key p.

An adversary for a stream authentication scheme is a probabilistic algorithm E with oracle

access to a signing and a verifying algorithm for a random but secret key pair (s, p). The adversary

can request a stream signature of an arbitrary stream M by writing M = (M1, . . . ,Ml) on a special

query tape. The signing oracle computes the signature µ and returns it to E. E can also ask

the verifier whether µ is a valid signature for M by writing (M,µ) on a special query tape. The

verifying oracle returns an l-tuple ((b1, v1), . . . , (bl, vl)). We will assume that there is some limit L

on the size of the streams that can be submitted to the signing and verification oracles.

The goal of the adversary is to trick the receiver into accepting some string M1|| . . . ||Mk as a

partial or complete stream when either the string was never signed before or it was signed before as

a different type (e.g, it was signed as a complete stream, but now it is accepted as partial). In the

first case, the adversary can change the contents of the stream. In the second case, by changing the

type, the adversary can either cut the stream or trick the receiver into believing that the stream

is longer than its actual size. We keep track of the strings that are already signed using a set of

queries Q
S(s,·)
E . For each signing query (M1,M2, . . . ,Ml), we add the stream/type pairs (M1, 0),

. . ., (M1|| . . . ||Ml−1, 0), (M1|| . . . ||Ml, 1) to the set of queries Q
S(s,·)
E . The adversary E is successful

if it makes a verify query ((M1, . . . ,Ml), (µ1, . . . , µl)) such that M1||M2|| . . . ||Mk is accepted (as

partial or complete) for some k ∈ {1, 2, . . . , l}, and (M1|| . . . ||Mk, bk) not in the set of queries.

In other words, the output of the verifier is ((0, 1), (0, 1), . . . (bk, 1), (bk+1, vk+1), . . . , (bl, vl)), but

(M1|| . . . ||Mk, bk) /∈ Q
S(s,·)
E . The pair ((M1, . . . ,Ml), (µ1, . . . , µl)) is called a forgery and the k-tuple

((M1, µ1), . . . , (Mk, µk)) is called a partial forgery1.

The attack on the stream authentication scheme is (qs, qv)-attack if the adversary makes no

more than qs signing queries and no more than qv verify queries. If, in addition, E runs for no more

than t steps, then the (qs, qv)-attack is a (t, qs, qv)-attack. We say that the adversary [qs, qv, ε]-

breaks the scheme if the attack is a (qs, qv)-attack and it is successful with at least ε probability.

The adversary [t, qs, qv, ε]-breaks the scheme if the attack is (t, qs, qv)-attack and the probability

1The term partial forgery is somewhat misleading since we use it even when the stream M1|| . . . ||Mk is complete.

44

of success is at least ε. The scheme is [t, qs, qv, ε]-unforgeable if there is no adversary that can

[t, qs, qv, ε]-break it. The formal definition is given below.

Definition 3.2 (Unforgeability) The stream authentication scheme (G,S, V) is [t, qs, qv, ε]- un-

forgeable if for every probabilistic algorithm E that runs in at most t steps, and makes at most qs

queries to a signing oracle S(s, ·) and at most qv queries to a verification oracle V (p, ·), it holds

that

Pr[∃i ∈ {1, . . . , l} s.t. V (p, (M1, . . . ,Ml), (µ1, . . . , µl)) = ((0, 1), . . . , (bi, 1), (bi+1, vi+1), . . . , (bl, vl))

∧ (M1|| . . . ||Mi, bi) /∈ Q
S(s,·)
E] < ε

where bj , vj ∈ {0, 1}, 1 ≤ j ≤ l, (s, p) is a key pair generated by G, ((M1, . . . ,Ml), (µ1, . . . , µl)) is

E’s output and Q
S(s,·)
E is the set of queries. The probability is taken over the coin tosses of G, S

and V as well as over the coin tosses of E.

3.2 Some Practical Schemes

In this section we present three practical schemes. We prove their security in Section 3.4.5.

3.2.1 SN-MAC

SN-MAC (sequence numbers and MACs) is a straightforward stream authentication scheme. There

is a unique number Ns assigned to each stream (e.g., using counter). A sequence number i, which

determines the position of the chunk within the stream, and a type bit bi, which indicates whether

the chunk is the last chunk of the stream or not, are assigned to each chunk of the stream. The

chunks are then signed (authenticated) independently using some message authentication scheme

(see Fig 3.1).

〈Ns〉

bi+1

Mi+1

〈i + 1〉
Di+1

bi−1

Mi−1

〈i − 1〉
〈Ns〉

Di−1
Mi

〈Ns〉
〈i〉

bi

Di

MAC(Di−1) MAC(Di) MAC(Di+1)

Figure 3.1: SN-MAC

45

Suppose that the data Di in each packet i consists of three blocks Di = di,1||di,2||di,3, and that

a CBC-like MAC scheme (e.g., OMAC) is used for the computation of the authentication tags.

In this case, the generation of the authentication tag MAC(Di) can be described using a labeled

tree as in Fig 3.2. The blocks of Di are assigned as labels to the external nodes (leaves) of the

tree. A message label msg[x] and a tag tag[x] are assigned to each internal node x. The message

label msg[x] is a concatenation of the messages corresponding to the children of x, and it “keeps

track” about what part of the stream is processed to get the tag tag[x]. The tag tag[x] is either a

function of the message label msg[x] (e.g.,tag[1], tag[2] and tag[4]) or a function of the tags of the

children of x (e.g., tag[3] and tag[5]). Note that only tag[5] will be used for the verification of the

authenticity of Di. The rest of the tags are some intermediate results.

tag[1] = EK(di,1)
msg[1] = di,1

msg[4] = di,3

tag[4] = di,3

msg[2] = di,2

tag[2] = di,2

msg[5] = di,1||di,2||di,3 = Di

tag[5] = EK(tag[3]⊕ tag[4])

msg[3] = di,1||di,2

tag[3] = EK(tag[1]⊕ tag[2])

di,1

di,3

di,2

1

5

4
3

2

Figure 3.2: A tree-based description of the computation of MAC(Di) in SN-MAC

3.2.2 ReMAC

In a ReMAC (recompute the MAC) scheme, the temporary signature associated with some chunk

Mi is computed by signing the partial stream M1|| . . . ||Mi, not just the chunk Mi (see Fig 3.3).

The tree-based description of ReMAC is given in Fig 3.4.

3.2.3 MACC

MACC (MAC chaining) scheme is depicted in Fig 3.5. An authentication tag is computed for each

chunk Mi of the stream M and then the chunk Mi is chained to the previous chunk by computing

MAC of the concatenation of the tags. It is assumed that σ0 is an empty string.

46

Mi−1

bi−1

Di−1

MAC(PSi−2||Di−1)

Mi

bi

Di

MAC(PSi−1||Di)

bi+1

Mi+1

Di+1

MAC(PSi||Di+1)

PSi = M1|| . . . ||Mi

Figure 3.3: ReMAC; PSi = M1|| . . . ||Mi.

tag[1] = MAC(msg[1]||b1)

msg[1] = M1

msg[2] = M1||M2

tag[2] = MAC(msg[2]||b2)

M2

M1

1

2

Figure 3.4: A tree-based description of the computation of authentication tags in ReMAC

A tree-based description of the tag generation in MACC is given in Fig 3.6.

3.2.4 Comparison of ReMAC, MACC and SN-MAC

Each of the previously described schemes has advantages and disadvantages depending on the

application and the properties of the underlying MAC scheme. The main advantage of the SN-

MAC scheme is that the temporary signatures depend only on the particular chunk, and we can

check the authenticity of the chunk even if some of the packets are lost. This is convenient in

applications where packet loss is tolerable (e.g., audio, video, etc.). The disadvantages of the

scheme are that we need to provide mechanisms that will guarantee (with high probability) the

uniqueness of the stream number Ns, and there is a computational overhead due to the processing

of the stream and sequence numbers when computing the authentication tags.

47

τi−1 = MAC(0||Di−1)

σi−1 = MAC(1||τi−1||σi−2)

Mi−1

bi−1

Di−1

Mi+1

bi+1

Di+1

τi+1 = MAC(0||Di+1)

σi+1 = MAC(1||τi+1||σi)

τi = MAC(0||Di)

σi = MAC(1||τi||σi−1)

Mi

bi

Di

Figure 3.5: MACC

msg[4] = M1||M2

tag[4] = MAC(1||tag[3]||tag[2])

1

2

M1

msg[2] = M1

tag[2] = MAC(1||tag[1])

msg[1] = M1

tag[1] = MAC(0||M1||b1)

3

4

M2

msg[3] = M2

tag[3] = MAC(0||M2||b2)

Figure 3.6: A tree-based description of the computation of authentication tags in MACC

At first glance, it seems that the time complexity of the ReMAC scheme is quadratic in the

length of the stream. However, by storing some values when computing the temporary signature

µi−1, we can efficiently compute the temporary signature µi, that is, the performance of ReMAC is

not worse than the performance of SN-MAC and MACC even when the underlying MAC scheme is

not incremental. When an incremental MAC scheme (e.g., XMACR [6]) is used, the performance of

ReMAC is slightly better than the performance of SN-MAC and MACC. Clearly, if a chunk is lost

in a ReMAC scheme, we cannot verify the authenticity of the subsequent chunks, and the scheme

can be used only for applications that are not erasure-tolerant.

The MACC scheme is another stateless scheme, and it can be advantageous over the ReMAC

scheme in some scenarios. For example, consider a sequence of messages M1,M2, . . . ,Ml that

are exchanged between two or more parties. We can view these messages as chunks of a stream

48

and use a stream authentication scheme to ensure their authenticity. Furthermore, assume that

the underlying MAC scheme is not incremental (e.g., OMAC [57]). A ReMAC scheme cannot be

efficiently implemented in this scenario. As previously mentioned, the efficient computation of a

temporary signature µi in a ReMAC scheme relies on the knowledge of some value that has been

derived during the computation of µi−1. However, in our scenario, the parties that compute µi−1

and µi can be different.

The rate at which we can authenticate the stream data is an upper bound on the achievable

stream bit rate. We can increase this rate by computing the temporary signatures in a distributed

manner. One possible generalization of the MACC scheme is to divide the chunk into several smaller

pieces. An authentication tag is computed for each piece by a different node in the distributed

network, and the computed tags are than combined to derive the final tag that is sent along with

the chunk. Assume now that the underlying MAC scheme is not parallelizable, and that we want

to implement the SN-MAC scheme in a distributed manner. In this case, we need to reduce the

size of the chunks leading to increased communication overhead. A MACC-like scheme would be

slightly more efficient in this setting. Using a ReMAC scheme in this setting is also less efficient

since we need to protect the messages exchanged between the nodes against disclosure.

The disadvantage of MACC is that it is not erasure-resilient.

3.3 A family of schemes

In this section, we generalize the design principles of the schemes introduced in Section 3.2 by

introducing the notions of stream authentication tree and stream authentication forest. This

generalized approach is motivated by the following arguments:

• We can avoid the problem of providing a separate security proof for each scheme presented

in Section 3.2 by proving the security in the general case. Furthermore, we can select other

practical schemes from the general class discussed here for our specific application. The

security of these schemes trivially follows from the security of the general class.

• There are other applications besides the typical stream applications like audio or video, where

a sequence of chunks (or messages) needs to be authenticated (e.g., exchange of related

messages). We can use the stream authentication schemes as another level of abstraction

that can be used to design and prove security of more complex constructions using reduction

techniques instead of other methods, like formal methods for security protocol verification

49

2
= M || M

1 2

m(7)=m
4

m(5)=m
2

m(6)=m
3

m(4)=m
1
=M

1

4 5 6 7

3

3

1
FTT

FTT

TPS deg

ITT

deg deg

2

m1 m2 m3 m4

|| m

(m
1
)

τ(5)=AD(m
2
)

τ(2)=AFTT ((4) || (5))τ

TPS

τ(7)=AD(m
4
)

τ(6)=AD(m
3
)

τ(4)=A

τ

|| m
4

|| m
= M || M || M

1 2 3

m(1)=m(2)||m(3)=m
m(3)=m(6)||m(7)=m

3
|| m

4

m(2)=m(4)||m(5)=m
1

|| m

τ(3)=AITT ((6) || (7))τ τ
τ(1)=AFTT ((2) || (3))τ τ

1 2

Figure 3.7: An example of a 4C stream authentication tree

[22, 100].

• Message authentication is just a special case of stream authentication where the stream

consists of only one chunk. There are number of MAC schemes (e.g., [6, 16, 17, 57]) that can

be described using the notion of stream authentication tree introduced in this paper.

• The MAC schemes can be used to build secure stream authentication schemes. Therefore the

analysis of the stream authentication schemes can help us better understand the desirable

properties of MAC schemes. For example, the analysis in Section 3.4.3 shows that it is

important if a MAC schemes is forgeable on collision or not. Whether the ReMAC scheme

can be efficiently implemented or not depends on the underlying MAC scheme, etc.

An example of a stream authentication tree is shown in Fig 3.7. The pieces of the stream are

assigned as message labels to the external nodes (leaves) of the tree. A message label m(x), a tag

τ(x), a tag type and an algorithm label Ax are assigned to each internal node x. We now explain

this in more details.

50

The message m(x) is a concatenation of the messages corresponding to the children of x starting

from the first (left) child and ending with the last child. So, m(x) is the concatenation of the pieces

of the stream assigned to the leaves of the subtree rooted at x when traversed in postorder (postfix).

We say that the external node (leaf) x in a tree T is a leftmost leaf iff every ancestor of x (including

x itself) is the first (left) node among its siblings. The leftmost path is the path between the root and

the leftmost leaf. The internal nodes in the leftmost path have a special role. Namely, the messages

associated with some of these nodes are the partial (or complete) streams to be authenticated, and

the corresponding tags are final results of some temporary signature computation.

We split the tag types based on two properties, being:

Whether the tag type is final tag or not. A final tag is defined as one that can be used to

verify the authenticity of a (partial) stream. Otherwise it is called intermediate.

Whether the tag is a tag-of-tags, or a tag-of-chunks. We allow two ways to compute the

tag τ(x) associated with an internal node x, either

• as a function of the message corresponding to x or,

• as a function of the tags of the children of x.

So, in total we can distinguish between 4 tag types, or internal nodes in the tree. We can now

categorize the nodes of the tree as following:

Definition 3.3 Message nodes are the external nodes of the tree. A piece of the stream is

assigned as a message label to each message node and the concatenation of the message labels

of the external nodes when visited in postorder gives the stream.

Internal nodes can be categorized as:

Degenerated Such a node is intermediate and is a tag-of-chunks.

TPS (tag-of-partial-stream) Such a node is a final node and is a tag-of-chunks.

ITT (intermediate-tag-of-tags) Such a node is intermediate and is a tag-of-tags.

FTT (final-tag-of-tags) Such a node is final tag and is a tag-of-tags.

Definition 3.4 (Stream Authentication Tree) Stream authentication trees are rooted ordered

trees. A message label is assigned to each external node (leaf) of the tree. A 4-tuple

51

(m(x), τ(x), t(x), Ax) is assigned to each internal node x, where the string m(x) is a message

label, the string τ(x) is a tag, t(x) ∈ {degenerated,TPS, ITT,FTT} is a tag type, as defined in

Definition 3.3, and Ax is an algorithm label that specifies the tag computation algorithm used at

the node x. Let v1, v2, . . . , vk be the children of an internal node x. The following properties must

hold for the message and tag labels:

m(x) = m(v1)||m(v2)|| . . . ||m(vk)

τ(x) =

{
Ax(m(x)) if t(x) ∈ {degenerated,TPS}
Ax(τ(v1)||τ(v2)|| . . . ||τ(vk)) if t(x) ∈ {ITT,FTT}

Note that the input to the tag computation algorithm is the concatenation of tags τ(v1)|| . . . ||τ(vk)

instead of a tuple (τ(v1), τ(v2), . . . , τ(vk)). Such definition is more convenient for the analysis

presented below since all tag computation algorithms have exactly one input. We don’t think that

our choice is too restrictive since the individual tags can be extracted from the concatenated string

(e.g., using known or fixed tag length).

Lemma 3.1 The internal nodes have the following properties:

1. If x is a parent of an external node (leaf), then the tag type t(x) cannot be ITT or FTT.

2. If x is not in the leftmost path, then the tag type t(x) cannot be TPS or FTT.

Proof. The first property follows straightforward from the definition since ITT and FTT are

both tag-of-tags. The second follows from the fact that a partial stream must have the chunk M1

in it. �

In a stream authentication scheme based on the notion of a stream authentication tree, the

signing algorithm first constructs a tree and assigns types and algorithms to the nodes of the tree,

and then, it computes the authentication tags. A more formal description is given below. In

most of the practical schemes, the structure of the authentication tree and the algorithms that

will be used for the computation of the tags are known in advance, and they are not changed over

time. Therefore, one can compute the authentication tags without having to construct a stream

authentication tree.

We will refer to the labeled tree derived from a stream authentication tree by discarding the

message, tag and algorithm labels of the internal nodes as the structure of the stream authentication

52

tree. For each chunk Mi of the stream (M1, . . . ,Ml), the signing algorithm of a tree stream

authentication scheme first runs a (probabilistic) structure construction procedure. The structure

construction procedure takes as input the structure constructed to compute the temporary signature

for the partial stream M1|| . . . ||Mi−1, the length of the chunk and information indicating whether

the chunk is last or not, and outputs the “new” part of the structure that will be used to compute

the temporary signature of the partial stream M1|| . . . ||Mi. Clearly, the tag type of the new root

must be either TPS or FTT, and the tag type of any other new node must be either degenerated or

ITT. After the structure construction phase, the signing algorithm runs a (probabilistic) coloring

procedure. The coloring procedure assigns algorithm labels to the new nodes. As mentioned before,

the algorithm labels specify which algorithm will be used to compute the tag. The algorithm labels

are selected from some set of algorithm labels (or colors) that is previously agreed upon between

the sender and the receiver. The labels in the set can refer to both algorithms that use key and

algorithms that do not use a key. If an algorithm label refers to an algorithm that uses a key, then

it must specify the actual key that is used. For example, CBC−MACK0 is a possible algorithm

label and it specifies that the tag will be computed using CBC-MAC when the key is K0. After the

structure construction and the coloring, the signing algorithm computes the message and tag labels

of the new nodes. Obviously, the newly constructed tree should be such that the message label

of its root is M1|| . . . ||Mi. The temporary signature of the partial stream M1|| . . . ||Mi consists of

the tags of the new nodes2 and the randomness used by the structure construction procedure, the

coloring procedure and the tag computation algorithms.

Given the stream and the temporary signatures, the verification algorithm reconstructs the

tree. The message label of a TPS or FTT node is accepted as valid only if the computed tags equal

the tags that were sent and the previous partial streams are also valid. The set of all strings is

partitioned into a set of complete and a set of partial streams (e.g., using end-of-text character).

If the message label belongs to some predefined set of complete streams, then it is accepted as a

complete stream. Otherwise, it is accepted as a partial stream.

The concept of stream authentication tree can be extended to stream authentication forest.

Definition 3.5 (Stream Authentication Forest) A stream authentication forest is an ordered

2In order to speed-up the stream authentication, one can compute the tags in a distributed manner where each
node computes a tag and sends the result to some other node. Since we have defined the temporary signature to
include all “new”tags (not just the final tag), a distributed implementation of a secure scheme will remain secure
even if the adversary can eavesdrop the communication between the nodes. However, in practice, we can send only
the final tags and the randomness needed by the verifier to recompute them.

53

forest of stream authentication trees.

In a forest scheme, a unique number Ns is assigned to each stream that is submitted for signing.

A prefix to the message label of the leftmost leaf of each tree is also added. The prefix is a

concatenation of the binary representations of the stream number Ns and the position j of the tree

within the forest (analogously to SN-MAC scheme). We will refer to the scheme used to construct

the trees of the forest as an underlying tree scheme.

3.4 Security Analysis

In this section, we examine the security properties of the tree and forest stream authentication

schemes. We show that we need at least four colors (different algorithms) in order to achieve

security regardless of the structure of the stream authentication trees.

3.4.1 A particular approach

In Section 3.3 we did not specify restrictions on Ax. To facilitate proving general results we will

now consider a simpler case. We will restrict Ax such that Ax = At(x). Since we have four tag

types, we could consider that we color the algorithms Ax based on these tag types.

We are primarily interested in deriving algorithms for At(x) such that we can prove the resulting

scheme to be secure regardless of the structure construction procedure that was used in the scheme.

In order to provide an answer, we consider the class of 4C (four color) schemes. An example

of a 4C stream authentication tree is given in Fig 3.7. 4C schemes color the different node types

(degenerated, TPS, ITT and FTT) using different colors. We denote by AD, ATPS , AITT and AFTT

the tag computation algorithms used at the degenerated, TPS, ITT and FTT nodes respectively.

We will show that 4C forest schemes have forgery or collision property (defined further on), that

is, if there is an adversary that can construct a forgery for the 4C forest scheme, then there is an

adversary that can forge a tag or find a collision for some of the tag computation procedures AD,

ATPS, AITT or AFTT.

As usual, we assume that all algorithms are known to the adversary. Only the secret keys used

by the sender and the receiver are unknown. From the discussion above, it follows that given the

stream, the tags and the randomness, the adversary can reconstruct the stream authentication tree

except for the secret keys that are used by the tag computation algorithms. Hence, hereafter, we

slightly abuse the security model of the previous section and assume that the verify queries and

the responses to signing queries are shadowed stream authentication trees that are constructed as

54

follows. Each algorithm label that refers to an algorithm that uses a key is replaced by a label

that specifies only the family, not the key. For example, the label CBC−MACK0 in the stream

authentication tree will become CBC−MAC in the shadowed tree. We say that the shadowed tree

rooted at a node x is valid if m(x) is accepted when the tree is submitted to the verifier. The valid

shadowed tree T is a partial forgery tree if the partial (resp., complete) stream corresponding to

the root of the tree was not signed as partial (resp., complete) stream during some previous signing

query. Let’s consider a valid shadowed tree T . There is some input associated with each tag in

the tree. For example, if the tag is a tag of a degenerated node, then the corresponding input is

the message label of the node. If the tag is a tag of an ITT node, then the corresponding input

consists of the tags of the children of the node, etc. The set of all such input/tag pairs is called a

set of authentic pairs corresponding to T . The union of all sets of authentic pairs corresponding to

trees constructed during some previous signing queries is called a pool of known authentic pairs. If

an authentic input/tag pair is not in the pool of known authentic pairs, then we say that it is a

forgery pair. Two input/tag pairs collide if the tags are equal but the inputs or the algorithms used

to compute the tags are different. Given a node x in some stream authentication forest, a stream

authentication subforest at x is the forest consisting of all the trees preceding the tree containing x

and the subtree rooted at x. Let ((M1, µ1), . . . , (Mi, µi)) be some partial forgery and let x be the

node where M1|| . . . ||Mi is accepted. The subforest at x is called a partial forgery forest with final

node x. Now, we can formally express the forgery or collision property.

Lemma 3.2 (Forgery or Collision Property) Let Pf be the set of authentic pairs correspond-

ing to some 4C partial forgery forest consisting of the trees T1, . . . , Tk. At least one of the following

statements is true:

1. There is a tree Ti ∈ {T1, . . . , Tk} such that the tag associated with its root is forged.

2. There is a pair in Pf that collides with some known authentic pair.

Proof. We will first establish some relations between the ability of constructing partial forgery

trees in 4C tree schemes and the ability of constructing forgeries and collisions for the underlying

tag computation procedures. The attribute 4C will be omitted in this section. For example, when

we say partial forgery tree, we mean partial forgery tree in a 4C scheme. Let’s start with the case

when the partial forgery tree is rooted at a TPS node. The result is trivial but we need to state it

formally for later reference.

55

Lemma 3.3 If T is a partial forgery tree rooted at a TPS node x, then the pair (m(x), τ(x)) is a

forgery pair.

Proof. Assume that the pair (m(x), τ(x)) is not a forgery pair. Then, the tag τ(x) was already

computed by applying the procedure ATPS on input m(x) during some previous signing query.

From the definition of partial forgery tree and the fact that m(x) was already signed during some

previous query it follows that T is not a partial forgery tree. �

When the partial forgery tree is rooted at an FTT node x, the tag associated with x does not

have to be forged. It is possible to construct partial forgery by finding collisions. The following

lemma provides result about the collision properties of the sets of authentic pairs corresponding to

two distinct valid trees whose roots have equal tags.

Lemma 3.4 Let T1 and T2 be two distinct valid trees with FTT roots u0 and v0 correspondingly

such that τ(u0) = τ(v0) and m(u0) 6= m(v0). Then, there are a pair p1 in the set of authentic pairs

corresponding to T1 and a pair p2 in the set of authentic pairs corresponding to T2 such that p1

and p2 collide.

Proof. Let us consider the recursive procedure collision(T1,T2):

1. If the roots u0 and v0 have different number of children, then return 1.

2. If the tag of some child of u0 is different from the tag of the corresponding child of v0, then

return 1.

3. If the color of some child of u0 is different from the color of the corresponding child of v0,

then return 1.

4. If there is a child x of u0 and a child y of v0 such that x and y are both TPS or both

degenerated and m(x) 6= m(y), return 1.

5. If there are two distinct subtrees T ′
1 (rooted at u1, a child of u0) and T ′

2 (rooted at v1, the

corresponding child of v0) such that τ(u1) = τ(v1), m(u1) 6= m(v1), and u1 and v1 are either

both ITT or both FTT, then return collision(T ′
1,T

′
2). Otherwise, return 0.

56

First, we will prove that the procedure always returns 1 when the trees T1 and T2 satisfy the

conditions of the lemma. This is done in two steps: by proving that the procedure can not return

0, and by proving that the procedure can not run forever. Next, we show that a return value of 1

implies an existence of collision pairs.

Let u0, u1, . . . and v0, v1, . . . be the sequences of roots of the trees in the recursive procedure

calls. The procedure will return zero only if there is some t so that none of the collision conditions

(Steps 1-4) is satisfied and there is no node ut (a child of ut−1) and a corresponding node vt (a

child of vt−1) with the properties required in the last step of the procedure.

We will now show that, when T1 and T2 satisfy the assumptions of the lemma and none of the

collision conditions is satisfied, the subtrees T ′
1 and T ′

2 in step 5 can always be constructed. If none

of the collision conditions is satisfied, then u0 and v0 must have same number of nodes, and the

tag and the color of any child of u0 are equal to the tag and the color of the corresponding child of

v0. Since the message labels of u0 and v0 are different, there is a node u1, a child of u0, such that

m(u1) 6= m(v1), where v1 is the child of v0 that corresponds to u1. Note that the colors and the

tags of u1 and v1 must be same. The nodes u1 and v1 can not be degenerated or TPS because we

assumed that the collision condition 4 is not satisfied. Hence, the nodes u1 and v1 are either both

colored ITT or both colored FTT.

The analysis above can be extend to arbitrary ut and vt in a straightforward manner. Let ut−1

and vt−1 satisfy the requirements of step 5 (τ(u1) = τ(v1), m(u1) 6= m(v1), u1 and v1 are either

both ITT or both FTT). Again, if the collision conditions are not satisfied for the trees rooted at

ut−1 and vt−1, then ut−1 and vt−1 must have same number of nodes, and the tag and the color of

any child of ut−1 are equal to the tag and the color of the corresponding child of vt−1. Since the

message labels of ut−1 and vt−1 are different, there is a node ut (a child of ut−1) and a node vt (the

corresponding child of vt−1) such that m(ut) 6= m(vt). Note that the colors and the tags of ut and

vt must be same. The nodes ut and vt can not be degenerated or TPS because we assumed that

the collision condition 4 is not satisfied. Hence, the nodes ut and vt are either both colored ITT

or both colored FTT. Hence, if the collision conditions are not satisfied, we can always find two

subtrees that satisfy the requirements for recursive call in the fifth step. Furthermore, the depth

of the node ut is t and it can not be larger than the height of the tree. Hence, the procedure will

finish in finite number of steps and it will return a value. According to the previous discussion,

that value cannot be 0.

It is not difficult to see that if one of the collision condition is satisfied, then we can construct

57

collision pairs. Since the procedure returns 1 if and only if one of the collision conditions is satisfied,

it follows that for any valid trees that satisfy the assumptions of the lemma one can find collision

pairs in the sets of authentic pairs corresponding to these trees. �

The following lemma gives a relation between the set of authentic pairs corresponding to some

4C partial forgery tree and the set of known authentic pairs. More precisely, the set of authentic

pairs corresponding to a partial forgery tree contains a forgery pair or a pair that collides with

some of the known authentic pairs.

Lemma 3.5 Let T be a partial forgery tree with a root x. At least one of the following statements

is true:

1. τ(x) is forged.

2. There is a pair in the sets of authentic pairs corresponding to T that collides with some known

authentic pair.

Proof. If the root x of the partial forgery tree T is colored TPS, then by Lemma 3.3, the tag

τ(x) is forged.

Let us consider the case when the root is FTT. Let v1, . . . , vk be the children of x. Assume

that T is a partial forgery tree and the pair ((τ(v1)|| . . . ||τ(vk)), τ(x)) is not a forgery pair, but a

known authentic pair. Then, there is a valid tree T ′ generated as a result of some previous signing

query such that τ(x) = τ(x′), where the FTT node x′ is the root of T ′. The message labels of the

nodes x and x′ must be distinct. Otherwise, the tree T is not a partial forgery tree. According

to Lemma 3.4, there is a pair in the set of authentic pairs corresponding to T that collides with

some pair in the set of authentic pairs corresponding to T ′ which is a subset of the set of all known

authentic pairs. Hence, at least one of the statements must be true. �

The following relation between partial forgery forests and the partial forgery trees will help us

to extend the previous result to the case of 4C forest schemes.

Lemma 3.6 Let x be a final node of some partial forgery forest consisting of the trees T1, . . . , Tk.

At least one of trees T1, . . . , Tk is a partial forgery tree for the underlying 4C tree scheme.

58

Proof. First, we will consider the case when there is no known stream signature with the same

stream number as the partial forgery forest. Then, the message label of the final node x is unique.

Namely, the message m(x) begins with the stream number and no message that begins with that

number has been signed by the underlying 4C tree scheme. Therefore, the tree Tk is a partial

forgery tree for the underlying tree scheme.

Now, assume that there is some previous signing query (there can be only one such query)

whose stream number is same as the stream number of the partial forgery forest T1, . . . , Tk. Let

T ′
1, . . . , T

′
n be the trees of the forest corresponding to that signing query. If the number of trees n

is smaller than k, then again the message label m(x) is unique (has unique tree number) and the

tree Tk is a partial forgery tree for the underlying tree scheme. Finally, assume that n ≥ k and the

tree rooted at x is not a partial forgery tree for the underlying tree scheme. This means that there

is some node y in T ′
k with the same message label as x. In that case, the forest T1, . . . , Tk can be

a partial forgery forest only if k > 1 and M1|| . . . ||Mk−1 6= M ′
1|| . . . ||M ′

k−1, where Mi denotes the

part of the stream associated with the tree Ti (derived from the message label of the root of Ti by

discarding the prefix consisting of the stream number and the tree number) and M ′
i denotes the

part of the stream associated with the tree T ′
i . Hence, there is an index i < k such that Mi and

M ′
i are different. Since Mi and M ′

i are different, the message labels m(xi) and m(x′
i), where xi is

the root of Ti and x′
i is the root of T ′

i , must be different also. Therefore, the stream m(xi) has

never been signed by the underlying tree scheme and the tree Ti is a partial forgery tree for the

underlying tree scheme. �

The forgery or collision property (Lemma 3.2) follows from Lemma 3.5 and Lemma 3.6. �

3.4.2 Three colors for the internal nodes are not sufficient

From the discussion in Section 3.4.1, it is obvious that if we select the tag computation procedures

so that it is hard to forge tags or find collision pairs, then the 4C forest scheme will be secure

regardless of how we construct the trees. Moreover, the coloring scheme presented in Section 3.4.1

not only provides security but also uses minimal number of colors. We will demonstrate this by

presenting an example of structure construction procedure with the following property: any scheme

that uses the procedure and only three colors for the intermediate nodes can be broken.

Fig 3.8 depicts the possible structures of the stream authentication trees when the stream

59

D

13

(c−1)

M1 M

D

7

8

10 11
TPS

FTT

D

FTT

9

12

ITT

2

10 11

(c−2)

9’

TPS

DFTT

FTT

D

8

M3

7

2

(a)

D
D

3

FTT

M1 M2

1

M11 M12

2M1 M2 3

4

6

(b)

FTT

DTPS

5

M31 M

Figure 3.8: Possible structures when the stream consists of one, two or three chunks

consists of one (Fig 3.8.a), two (Fig 3.8.b) or three (Fig 3.8.c) chunks. When the stream consists

only of one chunk M1, the chunk is divided into two parts M11 and M12 that are assigned as labels

to the message nodes. A tag for each part of the chunk is computed at the degenerated nodes 2

and 3. The tags τ(2) and τ(3) are then used to compute the final tag τ(1) at the FTT node. If

the stream consists of two chunks, then the first chunk is used to compute the tag τ(5) at the TPS

node. The tag τ(5) is a temporary signature for the partial stream M1. The second chunk M2 is

used to compute the tag τ(6). The final tag τ(4) is computed from the tags τ(5) and τ(6). When

the stream consists of three chunks, the structure construction procedure flips a coin. Depending

on the outcome, the procedure either divides the last chunks into two chunks M31 and M32, and

constructs the structure depicted in Fig 3.8.c.1, or constructs the structure depicted in Fig 3.8.c.2.

We will show that any coloring of these structures that uses at most three colors for the

internal nodes is not secure. Assume that there is a secure stream authentication scheme that

uses the previously described structure construction procedure and only three colors. If that is the

case, then the most probable colors of the nodes 4, 5 and 6 must be different. Assume that the

most probable colors of the nodes 5 and 6 are equal. Then, the adversary can submit a stream

(M1,M2), (M1 6= M2) for signing and construct a partial forgery tree as follows. Take the subtree

rooted at the node 6 and change the type of the node 6 from degenerated to TPS. The probability

of the attack is ≥ 1
3 (since the most probable color appears with probability ≥ 1

3). This is in

60

TPS D

ττ (5’)|| (6")

FTT

DTPS

FTT

M’’M’ 21

M"M"

6"5"

4"

DTPS

FTT

21

6’5’

4’

D

FTT

TPS

M’M’1 2

Figure 3.9: Constructing a forgery when 4 and 6 have same color

contradiction with our assumption that the scheme is secure. Assume now that the most probable

colors of the nodes 4 and 5 are equal. The adversary can construct a partial forgery tree by

discarding the message nodes, merging the nodes 5 and 6 into one message node whose label is

τ(5)||τ(6), and changing the type of 4 from FTT to TPS. The probability of success is large since

the probability that τ(5)||τ(6) will be equal to M1 or M1||M2 for randomly selected M1 and M2 is

very small. Otherwise, we will be able to break the scheme by guessing a node 5 tag. Again, this is

in contradiction with our assumption that the scheme is secure, and thus, the most probable color

of node 4 is different than the most probable color of 5. Finally, assume that the most probable

color of 4 is equal to the most probable color of 6. Then we can use the degenerated node 6 to forge

a node 4 tag. One possible construction of a partial forgery tree is depicted in Fig 3.9. Clearly,

the success probability of the attack is high (≥ 1
3), and, under our assumption that the scheme is

secure, the most probable colors of 4 and 6 must be different.

An analogous analysis shows that all degenerated nodes must have same most probable color,

and their most probable color must be different from the most probable colors of the TPS and FTT

nodes. Similarly, all TPS nodes have same most probable color and it is different than the most

probable color of the FTT and degenerated nodes. Now, we will show that if the most probable

61

color of the ITT node 9 is equal to the FTT (resp., degenerated or TPS) most probable color,

then we can break the scheme. Hence, there is no secure 3-coloring for the structure construction

procedure described above. If the most probable color of 9 is equal to the FTT most probable color,

then we can construct a partial forgery tree by taking the subtree rooted at 9 and changing the type

of 9 from ITT to FTT. The derived stream authentication tree will will be of the type depicted in

Fig 3.8.a. If the most probable color of the node 9 is equal to the TPS most probable color, then

the adversary can construct a partial forgery in the following manner. Take the subtree rooted at

9. Discard the message nodes. Merge the degenerated nodes 12 and 13 into a message node whose

label is τ(12)||τ(13). Change the tag type of 9 from ITT to TPS. Finally, if the most probable

color of the node 9 equals the degenerated most probable color, then the adversary can construct

a partial forgery tree by converting the structure c-1 into the structure c-2 as follows. Discard the

message nodes whose labels are M31 and M32. Merge the degenerated nodes 12 and 13 into one

message node whose label is τ(12)||τ(13). Change the type of 9 from ITT to degenerated. If M3

is different than τ(12)||τ(13), then the constructed tree is partial forgery tree. The probability of

the attack is small only if the chunk M3 is equal to τ(12)||τ(13) with large probability. However,

in this case, we can break the scheme using different attack. It is not hard to see that if M3 equals

τ(12)||τ(13) with high probability, then most of the time, the tags computed at the degenerated

nodes are equal to the input used to compute them. In this case, we can mount an attack similar

to the one depicted in Fig 3.9. Namely, we can assign tags computed at nodes 5 and 6 as message

labels to the children of 2 and 3, and forge a node 4 FTT tag.

3.4.3 Security based on unforgeable MACs

We will introduce some new property for MAC schemes (see Definition 3.6) that will allow to prove

our results. Note that we demonstrate that certain MAC schemes satisfy this new property.

We are going to show that a secure (unforgeable) 4C forest scheme can be obtained if a secure

MAC scheme is used for tag computation. In particular, the tag computation procedures that we

are going to consider are implemented as:

AD(m(x)) = MAC(00||m(x))

ATPS(m(x)) = MAC(01||m(x))

AITT(τ(v1)|| . . . ||τ(vk)) = MAC(10||τ(v1)|| . . . ||τ(vk))

AFTT(τ(v1)|| . . . ||τ(vk)) = MAC(11||τ(v1)|| . . . ||τ(vk))

62

Definition 3.6 A MAC scheme is [t, qs, qv]-forgeable on collision if there is an algorithm A that

takes as input an initial finite set P of known authentic message/authenticator pairs and two

pairs from P that collide, and outputs a forgery for the MAC scheme. The algorithm A runs

in at most t time and it makes at most qs signing and at most qv verifying queries. If the two

message/authenticator pairs are the only two pairs from P that collide, then the scheme is [t, qs, qv]-

forgeable on first collision.

Lemma 3.2 and the forgeability on collision property imply the following theorem.

Theorem 3.7 Let E be an adversary that [t′, q′s, q
′
v, ε]-breaks a 4C forest scheme that uses a

[t′′, q′′s , q′′v]-forgeable on (first) collision MAC scheme for tag computation, and let q = L(q ′
s + q′′v +

1) + q′′s + q′′v , where L is the maximum number of internal nodes that can appear in a forest. Then,

there is an adversary that [t′ + t′′ + cq, q, ε]-breaks (i.e., outputs a forgery) the underlying MAC

scheme, where c > 0 is a small implementation dependent constant.

Proof. Suppose there is an adversary E that [t′, q′s, q
′
v, ε]-breaks a 4C forest scheme, and suppose

that the underlying MAC is [t′′, q′′s , q′′v]-forgeable on collision. We will construct an algorithm U

that [t′ + t′′ + cq, q, ε]-breaks the MAC scheme.

U ’s procedure is to run E and answer its oracle queries. In order to construct the answer to

E’s signing or verification query, U makes at most L queries to its oracle O. U stores the result of

each query in the memory3 and checks for collision in a following manner. Let m be the message

corresponding to the query, let τ be the tag corresponding to the query and let (m, τ) be valid. If

there is no message stored at address τ0 + τ , where τ0 is some constant integer, U stores m at that

location. If there is a message stored at address τ0 + τ and the message is equal to m, U doesn’t

store anything and continues. If there is a message stored at address τ0 + τ and the message is not

equal to m, U invokes the algorithm A that constructs a forgery on collision. The A’s input is the

set of all pairs (m, τ) that are known authentic so far and the two pairs that collide. If no collision

occurs when constructing the answers to E’s queries, then E will finish and output its result. For

each message/authenticator pair corresponding to the E’s answer, U checks whether it is a forgery

pair or it collides with some known authentic pair stored in the memory. If it is a forgery pair, U

outputs it and halts. If it collides with some known authentic pair, then U invokes the algorithm

A that produces a forgery on collision. Otherwise, U just halts.

3We use RAM computational model.

63

The number of queries that U submits to its oracle O is not greater than q = L(q ′
s + q′v + 1) +

q′′s + q′′v . The time complexity of U is at most t′ + t′′ + cq, where t′ is the time required to break

the stream authentication scheme, t′′ is the time required to find a forgery pair for the MAC when

MAC collision occurred, and cq is the time required to construct the answers to the queries. The

stream authentication scheme is breakable with at least ε probability and the probability of forging

a MAC when the stream scheme is broken is 1. Hence, the probability of breaking the MAC is at

least ε. �

The following proposition gives an answer to the question whether secure MAC schemes that

are forgeable on first collision exist.

Proposition 3.8 PMAC and OMAC are [c(|P | + lM), 1, 0]-forgeable on first collision, where lM

is the maximum message length, |P | is the size of the set of known authentic pairs and c > 0 is a

small implementation dependent constant.

Proof. Let m1 = m1[1]|| . . . ||m1[n1 − 1]||m1[n1] and m2 = m2[1]|| . . . ||m2[n2 − 1]||m2[n2] be two

messages whose authenticators are identical when computed by the signing algorithm of the PMAC

[17] (resp., OMAC [57]) scheme. The blocks m1[1], . . . ,m1[n1−1] of the message m1 and the blocks

m2[1], . . . ,m2[n2− 1] of the message m2 are of length lB (the block length). The last blocks m1[n1]

and m2[n2] can have length less than lB and the length of m1[n1] can be different from the length

of m2[n2].

By considering various cases for the possible lengths of m1[n1] and m2[n2], one can show that we

can always compute m′
1 = m1[1]|| . . . ||m1[n1 − 1]||m′

1[n1] and m′
2 = m2[1]|| . . . ||m2[n2 − 1]||m′

2[n2]

so that:

1. m′
1 6= m′

2

2. {m′
1,m

′
2} 6= {m1,m2}.

3. pad(m′
1[n1])⊕ pad(m′

2[n2]) = pad(m1[n1])⊕ pad(m2[n2])

4. The length of m′
1[n1] (resp., m′

2[n2]) is less than lB if and only if the length of m1[n1] (resp.,

m2[n2]) is less than lB .

where pad is the function that is used to pad the last block to length lB . It is not hard to verify

that two messages that satisfy the conditions above have identical authenticators when PMAC

(resp., OMAC) is used for signing.

64

An algorithm that will forge on first collision works as follows. Given two message/authenticator

pairs (m1, τ) and (m2, τ), we compute the messages m′
1 and m′

2. Then, we seek in the set of known

authentic pairs whether there is already a computed authenticator for m′
1 or m′

2. If there is an

already computed authenticator τ ′ for the message m′
1 (resp., m′

2), then the algorithm outputs

(m′
2, τ

′) (resp., (m′
1, τ

′)). The pair (m′
2, τ

′) (resp., (m′
1, τ

′)) is a forgery since (m1, τ) and (m2, τ)

are the only pairs in P that collide. If there is no already computed authenticator for one of the

messages m′
1 and m′

2, then the algorithm submits m′
1 for signing and outputs (m′

2, τ
′), where τ ′ is

the answer to the signing query. �

3.4.4 Security based on PRFs

The result from the previous section can be generalized for any MAC scheme if we assume that

the function family defined by the signing algorithm of the MAC scheme is pseudorandom. From

the forgery or collision property, it follows that forging a signature in a 4C forest scheme implies

constructing a forgery or collision for the underlying MAC scheme. Therefore, if one can forge

signatures in a 4C forest scheme with significant probability, then one can distinguish the function

family defined by the signing algorithm of the MAC scheme from a random function family as

explained below in more details.

In our analysis, we assume that there is some limit lM on the length of the message that can be

submitted for signing to the underlying scheme. Furthermore, the tags computed by the scheme

are of fixed length lT . The randomness part of the tag has length lR (lR is zero if the scheme is not

probabilistic) and the rest of the tag is nT = lT − lR bits long. Let ΣlM be the set of all non-empty

strings over the alphabet {0, 1} whose length is at most lM , let R be the family of all functions

from the set {0, 1}lR × ΣlM (ΣlM in the non-probabilistic case) to the set {0, 1}nT , and let F be

the family of functions defined by the signing algorithm of the MAC scheme. A statistical test is

a Turing machine A with access to an oracle O. The oracle is selected to be a random function

from F or a random function from R according to a random bit b. The algorithm A outputs 0 or

1. The advantage of distinguishing the finite family F from the finite family R is defined as

AdvA(F ,R) =
1

2
(E[AF]−E[AR])

where E[AF] (resp., E[AR]) is the probability that A will output 1 when the oracles are selected

to be random functions from F (resp., R). We say that A [t, q, ε]-breaks F if it runs in at most t

65

time, it makes no more than q queries, and it ε-distinguishes F from R; that is AdvA(F ,R) ≥ ε.

The following theorem holds for a 4C forest scheme that uses a MAC scheme to compute the tags

as described above.

Theorem 3.9 Let E be an adversary that [t, qs, qv, ε]-breaks a MAC based 4C forest scheme, let

q = L(qs + qv + 1), where L is the maximum number of internal nodes that can appear in a forest,

let pR = L · 2−nT + 1 −∏q
i=1(1 − i

2nT
), and let ε > pR. Then, there is a statistical test U that

[t + cq, q, 1
2(ε − pR)]-breaks the finite function family F defined by the signing algorithm of the

underlying MAC scheme, where c > 0 is a small implementation dependent constant.

Proof. Given an adversary E that [t, qs, qv, ε]-breaks a MAC based 4C forest scheme, we will

construct the statistical test U in a following manner.

U ’s procedure is to run E and answer its oracle queries. In order to construct the answer to

E’s signing or verification query, U makes at most L queries to its oracle O. U stores the result of

each query in the memory and checks for collision in a following manner. Let m be the message

corresponding to the query, let τ be the tag corresponding to the query and let (m, τ) be valid. If

there is no message stored at address τ0 + τ , where τ0 is some constant integer, U stores m at that

location. If there is a message stored at address τ0 + τ and the message is equal to m, U doesn’t

store anything and continues. If there is a message stored at address τ0 + τ and the message is

not equal to m, U outputs 1 indicating that collision occurred and halts. If there are no two pairs

that collide in the pool of known authentic pairs, E will finish and output its result. For each

message/authenticator pair corresponding to the E’s answer, U checks whether it is a forgery pair

or it collides with some known authentic pair stored in the memory. If so, it outputs 1 and halts.

Otherwise, it outputs 0 and halts. The number of queries that U submits to its oracle O is at

most L(qs + qv) + L = q, and the time complexity of U is at most t + cq, where c > 0 is a small

implementation dependent constant.

Now, consider the following problem. Given a randomly selected function F from R and a pool

P of q authentic pairs, output a pair that is a forgery or collides with some pair in q, when the

function F is used for authentication. Let (m, τ) be the output of an algorithm A that solves the

problem. If (m, τ) is not in P and it is a valid pair, then the algorithm is successful. Since F

is randomly selected from R the probability of success in this case is at most pf = 2−nT for any

algorithm. Consider now the case when the algorithm outputs a pair (m, τ) that is in P . The

probability of success is at most pc = 1 −∏q
i=1(1 − i

2nT
), where

∏q
i=1(1 − i

2nT
) is the probability

66

ATPSA

1M

DA

3M

2M

TPS

(c) SN−MAC

(b) MACC
(a) ReMAC

3M2M1M

TPSA

M

A

A

A

3M

2M

1 DA

FTTA

FTTA

FTTA

DA

TPS

TPS

TPS

Figure 3.10: Practical stream authentication schemes

that there are no two pairs in P that collide. Hence, the probability that U will output 1, when

the oracle is selected to be a random function from R is at most pR = L ·2−nT +1−∏q
i=1(1− i

2nT
).

Therefore, the statistical test U that [t+cq, q, 1
2 (ε−pR)]-breaks the finite function family F defined

by the signing algorithm of the underlying MAC scheme. �

3.4.5 Security of ReMAC, MACC and SN-MAC

The security of SN-MAC, ReMAC and MACC follows trivially from the previous results.

A 4C forest representation of the schemes presented in Section 3.2 is given in Fig 3.10. ReMAC

can be viewed as a 4C forest scheme where the forest consists only of one tree and all internal nodes

are TPS nodes (see Fig 3.10.a). The following corollary establishes a relation between the security

of a ReMAC scheme and the security of the underlying MAC scheme.

Corollary 3.10 If there is an adversary that [t, qs, qv, ε]-breaks ReMAC, then there is an adversary

that [t+ cL(qs +qv +1), L(qs +qv +1), ε]-breaks the underlying MAC scheme, where c > 0 is a small

implementation dependent constant and L is the maximum number of chunks that can appear in a

stream.

The corollary follows from the Theorem 3.9 and Lemma 3.3. Since all internal nodes in the

forest are TPS nodes, the adversary will always be able to find a forgery for the underlying scheme.

67

MACC scheme is a 4C tree scheme (or equivalently a forest scheme where the forest always

has only one tree) such that there are no ITT or TPS nodes (see Fig 3.10.b). The security of the

scheme follows from Theorem 3.9.

Corollary 3.11 If there is an adversary that [t, qs, qv, ε]-breaks the MACC scheme, then there

is a statistical test that [t + cq, q, 1
2(ε − pR)]-breaks the finite function family F defined by the

signing algorithm of the underlying MAC scheme, where c > 0 is a small implementation dependent

constant, L is twice the maximum number of chunks that can appear in a stream, q = L(qs +qv +1)

and pR = L · 2−nT + 1−∏q
i=1(1− i

2nT
).

SN-MAC corresponds to a 4C forest scheme where the trees consist of only two nodes: a TPS

root and a leaf (see Fig 3.10.c). Theorem 3.9 and Lemma 3.3 imply the following corollary about

the security of SN-MAC.

Corollary 3.12 If there is an adversary that [t, qs, qv, ε]-breaks SN-MAC, then there is an adversary

that [t+ cL(qs +qv +1), L(qs +qv +1), ε]-breaks the underlying MAC scheme, where c > 0 is a small

implementation dependent constant and L is the maximum number of chunks that can appear in a

stream.

68

CHAPTER 4

Proven Secure Multicast Stream Authentication

The problems of multicast stream authentication and stream signing have been extensively studied

in the past years. Gennaro and Rohatgi [43] have proposed a stream signing scheme based on a

chain of one-time signatures. A similar scheme has been presented by Zhang [118] for authentication

in routing protocols. Various schemes were proposed subsequently [28, 3, 116, 9, 99, 23, 111]

culminating with the recent adoption of TESLA as an Internet standard (RFC4082). TESLA is

also a basis for other internet drafts (e.g., [24]), and its in-depth security and efficiency analysis

can be found in [88, 89, 90, 91].

In this chapter, we show that the suggested assumptions about the security of the building

blocks of TESLA are not sufficient, and can lead to implementations that are not secure. We

also provide sufficient security assumptions about the components of TESLA, and present secure

implementations.

4.1 Insecure TESLA constructions from secure components

In this section, we show that the suggested assumptions about the building blocks of TESLA are

not sufficient by providing examples of insecure TESLA constructions from components that satisfy

those assumptions.

4.1.1 Permuted-input OMAC

In our analysis, we will use Permuted-input OMAC scheme to authenticate the packets of the

stream. The scheme is depicted in Fig. 4.1. If the length of the message m is not greater than the

block size n, then the authentication tag is computed as OMACK(m). Otherwise, the message m

is rotated right by n bits to derive a new message m′, and the authentication tag is computed as

OMACK(m′).

The unforgeability of POMAC trivially follows from the unforgeability of OMAC.

69

OMAC K

n bits

n bits

Figure 4.1: Permuted-input OMAC

Lemma 4.1 Suppose that:

• h is a strongly collision resistant function (i.e., it is hard to find m1 and m2 6= m1 s.t.

h(m1) = h(m2)), and

• {fK}K∈{0,1}l is a function family corresponding to an unforgeable MAC scheme.

Then, the MAC scheme defined by the function family {fK ◦ h}K∈{0,1}l is unforgeable too.

Corollary 4.2 If the function family {EK}K∈{0,1}l defined by the underlying block cipher is a

pseudorandom permutation family, then POMAC is unforgeable.

Proof. Follows from Lemma 4.1 and the facts that the initial permutation in POMAC is a bijection

(i.e., strongly collision resistant) and OMAC is unforgeable when the underlying block cipher is a

pseudorandom permutation. �

4.1.2 The case when F ′ is an identity mapping

In this section, we provide an example of an insecure TESLA construction from secure components

in the case when the function F ′ is an identity mapping.

Suppose that the function family {EK}K∈{0,1}n is a target collision resistant pseudorandom

permutation family whose members are defined on the set {0, 1}n. Note that the length of the

key is equal to the block size n. AES-128 [41] is a possible candidate. Since {EK}K∈{0,1}n is a

pseudorandom permutation family, it is also a pseudorandom function family (see Proposition 3.7.3

in [47]). We will use the pseudorandom permutation EK to generate the authentication keys as

illustrated in Figure 4.2. The key Ki−1 = EK(0n) is generated by encrypting 0 using the key Ki

70

Di

Ki−1

Mi[1]
Mi[2]
Mi[3]

E E
0 0

Ki−1 Ki Ki+1

Pi−1 Pi+1

Di+1
Mi−1 Mi+1

KiKi−2
Di−1

Ki−1

Mi[1]
Mi[2]
M ′

i [3]

D′
i

MAC(Ki−1,Di−1)

Pi

MAC(Ki,Di) MAC(Ki+1,Di+1)

P ′
i

M ′
i [3] = (Mi[3]||10

i) ⊕ (Ki−1u−1)
⊕(Ki−1u)

MAC(Ki,Di)

Figure 4.2: Insecure TESLA implementation. MACs are computed using POMAC.

as suggested in [88]. The MAC scheme that we use in our construction is POMAC. To encrypt the

message blocks in POMAC, we use the pseudorandom permutation EK .

The PRF and the MAC as defined above satisfy the security requirements of Theorem 1.5.

However, the resulting stream authentication scheme is not secure. Figure 4.2 depicts an attack

on our TESLA Scheme II example by replacing the packet Pi with a packet P ′
i . Without loss of

generality, we assume that the message Mi consists of three chunks Mi[1],Mi[2] and Mi[3]. The

length of Mi[1] and Mi[2] is equal to the block length n, and the length of Mi[3] is less than the

block length n. This implies that Mi[3] is 10i padded and XORed with L · u−1 when computing

the MAC for Pi. The forged packet P ′
i is constructed by replacing Mi[3] with

M ′
i [3] = (Mi[3]||10i)⊕ (Ki−1 · u−1)⊕ (Ki−1 · u),

where L is the encryption of zero and u is a public constant as in OMAC. Using the equations

(Mi[3]||10i)⊕ (Ki−1 · u−1) = M ′
i [3]⊕ (Ki−1 · u)

and

L = EKi
(0n) = Ki−1,

71

one can easily verify that

POMAC(Ki, Di) = POMAC(Ki, D
′
i).

Note that all we need to compute P ′
i is the key Ki−1 and the message Mi. Since both the key

Ki−1 and the message Mi are disclosed in the packet Pi, we can compute P ′
i before the key Ki is

disclosed. Hence, we have succeeded in constructing a forgery for TESLA Scheme II.

The introduction of the POMAC scheme was motivated by the order of the message Mi and the

key Ki−1 within the packet Pi (Fig. 1.5). The initial permutation of POMAC swaps the message

and the key so that the last block of Di is a message block. In an implementation where the key

Ki−1 is the first block of Di, the attack would work without modifying OMAC. Moreover, in the

final version (TESLA Scheme IV), the format of the packets is Pj = 〈Mj , i,Ki−d,MAC(K ′
i,Mj)〉,

where i is the interval during which the packet Pj was sent. Note that the MACs are computed

over the messages Mj only, and the attack would work when OMAC instead of POMAC is used to

compute the MACs. Hence, our analysis shows not only that the assumptions about the security

properties of the building blocks of TESLA are not sufficient, but also that it is not unrealistic to

expect that TESLA might be implemented insecurely.

4.1.3 The case when F ′ is implemented using a PRF

RFC4082 requires the function F ′ to be implemented using a pseudorandom function. The

authentication key K ′
i is computed as K ′

i = F ′(Ki) = f ′
Ki

(1), where f ′ is a pseudorandom function.

However, the new TESLA Scheme II still suffers from the flaw discussed in Section 4.1.2. Namely,

we can view f ′ as a part of the key scheduling algorithm of the underlying block cipher. The

function F of the insecure TESLA construction is now implemented as F (Ki) = Ef ′

Ki
(1)(0) (see

Figure 4.3). It is clear that Ki−1 = F (Ki) leaks the encryption of zero since Ki−1 = EK′
i
(0), and

we can mount the same attack.

In addition to the old flaw, the modification of the scheme introduces a new one. Now,

the commitment F (Ki) might leak information about the authentication key K ′
i. Consider the

following “naive” implementation. The function F is implemented as F (Ki) = fKi
(0), where f

is a target collision resistant pseudorandom function family. The function F ′ is implemented as

F ′(Ki) = f ′
Ki

(1), where f ′
Ki

(x) = fKi
(x − 1). One can easily show that f ′ is a pseudorandom

function. It is not hard to verify that the commitment F (Ki) discloses the authentication key K ′
i:

F (Ki) = fKi
(0) = fKi

(1− 1) = f ′
Ki

(1) = K ′
i.

72

f ′

K ′

i

F (Ki) = EK′

i
(0)

F

0
1

Ki

E

Figure 4.3: The function F leaks the encryption of zero EK′
i
(0).

4.1.4 Cryptanalysis of the RFC4082 TESLA version

The analysis presented in Section 4.1.3 can be extended to the TESLA version described in

RFC4082. The safe packet test only checks whether a packet authenticated using a key Ki was

received before the disclosure of the key Ki. Hence, the adversary can delay the packet until the

key Ki−1 is disclosed, and then replace it with a forged one. The aforementioned security flaws

cannot be patched by simply modifying the safe packet test so that the receiver checks whether the

packet was received before the disclosure of the key value Ki−1. In this case, the adversary might

be able to use Ki−2 = F (F (Ki)) or some previous key value to mount an attack.

Furthermore, the format of the packets in the RFC4082 version is Pj = 〈Mj , i,Ki−d,MAC(K ′
i,Mj)〉,

where i is the time interval during which the packet Pj was sent. Observe that there are no sequence

numbers that will specify the order of the packets that are sent within a given time interval. Hence,

the adversary can rearrange the packets in this interval, and the receiver will accept them in a

maliciously modified order. This is a violation of the unforgeability property.

Finally, we note that the original implementation of TESLA uses the MD5 hash function [98]

in conjunction with HMAC construction [42] for the pseudo-random function and the MAC. The

recent results on cryptanalysis of hash functions raised concern about the security of hash functions.

In particular, an attack on MD5 and other hash functions was presented by Wang et al [113, 114]

at Eurocrypt 2005. This implies that both the pseudo-random function and the MAC used in the

TESLA implementation are not proven secure.

73

4.2 Sufficient assumptions about the components of TESLA

The attacks on the insecure implementations that were presented in Section 4.1 are based on the

following observation. The security of the MAC scheme that is used to authenticate the packets is

proven in a setting where the adversary has access to a signing oracle and a verifying oracle. In the

case of TESLA, we have a different setting. Now, the adversary has access to an additional oracle

that computes the commitment F (K) to the secret key K which is used by the MAC scheme. The

adversary can exploit the knowledge of F (K) to construct a forgery.

It is clear from the discussion above that we need to make an additional assumption about the

function F and the MAC scheme. Namely, the MAC scheme must remain secure even when the

commitment of the secret key used by the MAC scheme is revealed.

Definition 4.1 A MAC scheme is known F -commitment unforgeable if there is no efficient

adversary that given a commitment F (K) of the secret key that is in use can break the MAC

scheme with non-negligible probability.

We also make the following minor modification of TESLA Scheme II. Each time a stream is

authenticated, the sender selects a unique number Ns (e.g., using a counter) which is securely

communicated to the recipients. The number Ns is included as part of the authenticated data in

each packet of the stream including the bootstrap packet. So, we assume that the format of the

messages is Mi = 〈Ns, i, Ci〉, where Ci is the actual chunk of the stream1.

The following theorem holds for the security of the slightly modified TESLA Scheme II.

Theorem 4.3 Suppose that:

1. the digital signature scheme, which is used to bootstrap TESLA, is unforgeable,

2. the function F (K) = fK(0), where f is a pseudorandom function, is strongly collision

resistant,

3. the MAC scheme, which is used to authenticate the chunks of the stream, is known F -

commitment unforgeable, and

4. F ′ is an identity mapping.

1To reduce the communication overhead one can communicate Ns only once, and then just use it to compute the
signature and the MACs.

74

Then, TESLA Scheme II is a secure multicast stream authentication scheme.

Proof. Assume that the adversary can break the stream authentication scheme. In other words,

the adversary in cooperation with some of the recipients can trick another recipient u to accept a

forged packet of the stream as valid.

Let i be the smallest integer such that the contents D ′
i is accepted as valid by the recipient u

when the original contents Di is different from D′
i. We consider the following events:

Event 1 If i is zero, then the adversary has managed to forge the bootstrap packet which was

signed using a digital signature scheme.

Event 2 If i greater than zero and the key that u used to verify the validity of D ′
i is equal to

the original key Ki, then the adversary has managed to produce a forgery for the message

authentication scheme due to the uniqueness of 〈Ns, i〉.

Event 3 If i is greater than zero and the key K f
i that u used to verify the validity of D ′

i is different

than the original key Ki, then the adversary has managed to find a collision for the function

F . Let Kf
i ,Kf

i−1 = F (Kf
i), . . . be a key chain derived from Kf

i , and let Ki,Ki−1 = F (Ki), . . .

be a key chain derived from Ki. The user u verified the validity of the key value K f
i by

checking whether F l(Kf
i) is equal to some previously authenticated key value K f

i−l. Since i

is the smallest index of a packet whose contents D ′
i is different from the original contents Di,

the received key value Kf
i−l must be equal to the original key value Ki−l = F l(Ki). Hence,

there is an index i− l ≤ j < i s.t. Kj+1 6= K ′
j+1 and F (Kj+1) = Kj = K ′

j = F (K ′
j+1).

Given an efficient adversary ASA that breaks the stream authentication scheme with significant

probability, we will construct an adversary AS for the signature scheme, an adversary AMAC for

the MAC scheme and an adversary AF for the function F , and show that at least one of these

adversaries has significant success probability. All three adversaries simulate the network using

sets of read and write tapes for the users and for the adversary. They differ in the following

aspects:

1. The adversary for the signature scheme answers the stream signing queries by randomly

selecting initial key values, computing the key chains and using the signing oracle for the

bootstrap packets. Whenever ASA manages to forge a bootstrap packet, AS outputs the

forged message/signature pair. Otherwise, it outputs a randomly selected message/signature

pair.

75

2. The adversary for the MAC scheme guesses which stream will be forged and what will be the

smallest index i of a forged packet within the stream. If the guess is that the stream will not

be forged, then AMAC answers the stream signing query by randomly selecting the initial key

value. Otherwise, the adversary uses the given value Ki−1 = F (Ki) to derive the keys that

will be used to authenticate the packets P1, . . . Pi−1, and computes the MAC for the packet

Pi by submitting a query to the (MAC) signing oracle. If the adversary for the stream scheme

manages to forge the i-th packet, then the adversary for the MAC scheme outputs the forged

message/MAC pair. Otherwise, it outputs a randomly selected message/MAC pair.

3. The adversary for the function F answers the stream signing queries by randomly selecting

initial key values, computing the key chains and using a private key when signing the bootstrap

packets. In the case when Event 3 occurs, AF finds and outputs a pair of key values that

collide. Otherwise, it outputs two randomly selected key values.

It is easy to show that if the probabilities of Event 1 and Event 3 are significant, then the

success probabilities of the corresponding adversaries AS and AF are significant too. To derive a

relation between the probability of Event 2 and AMAC, we need the following Lemma.

Lemma 4.4 If f is a pseudorandom function, then there is no efficient algorithm that can

distinguish between a random key value and the key value F l(K) derived from a secret random

key K by l ≥ 1 iterations of the function F .

Proof. We can prove the Lemma by induction. If there is an algorithm that can tell apart

F (K) = fK(0) from a random key value, then we can construct an algorithm that can distinguish

between the function family {fK} defined by f and the random function family. Now, assume

that there is no algorithm that can tell apart between the key Kl−1 = F l−1(K) and a random key

value. Since the function f and the key Kl−1 are pseudorandom, the key Kl = fKl−1
(0) will be

indistinguishable from a random key too. �

Assume that ns and L are the maximum number of streams and the maximum number of packets

within a single stream respectively. The probability that AMAC will guess the forged stream and

the index i of the first forged packet within the stream is 1
nsL

. According to Lemma 4.4, there is

no efficient algorithm that can distinguish with significant probability between the secret key K i

used by the MAC scheme and a key that is derived from some initial key value by l − i iterations

76

of the function F . Hence, if the probability ε of Event 2 is significant, then the success probability

of AMAC will be approximately ε
nsL

. �

The requirement for strong collision resistance of the function F can be slightly weakened.

Assuming that there is a bound on the number of packets within a stream, it is not hard to

show that TESLA Scheme II is secure when the function F is collision resistant in the following

sense: Given a randomly selected value K and a bound L ≥ 1, it is hard to find K ′ and a

positive integer l ≤ L such that F l(K) = F (K ′) and F l−1(K) 6= K ′. A function that satisfies the

aforementioned property is said to be bounded iteration collision resistant. One can easily prove

that strong collision resistance implies bounded iteration collision resistance, and that bounded

iteration collision resistance implies weak (second pre-image) collision resistance.

4.3 Secure TESLA implementation via a CKDA-secure
pseudorandom permutation

In this section, we propose an implementation that uses block ciphers to realize the different

components of TESLA.

4.3.1 A related-key model of a block cipher

When used as components of more complex constructions, block ciphers are usually modeled as

pseudorandom permutations. However, when cryptanalyzed, block ciphers are not considered secure

unless they are resistant to related-key attacks [13]. Here, we are going to use a model of the second

setting where the adversary can query oracles that use keys whose difference was chosen by the

adversary.

We are going to define a CKDA-secure (i.e., secure against Chosen Key Difference Attacks)

pseudorandom permutation family as a pseudorandom permutation family such that one cannot

tell apart a pair of permutations randomly selected from the family and a pair of permutations

from the family whose index (key) difference is selected by the adversary. A chosen key difference

test is a Turing machine A with access to four oracles E1, D1, E2 and D2. A selects a non-zero l-bit

string c. The oracle E1 is selected to be a random permutation EK from the permutation family

{EK}K∈{0,1}l , and the oracle D1 is selected to be its inverse. According to a secret random bit b,

the oracle E2 is selected to be either the permutation EK⊕c or a random permutation EK⊕r, where

c is the public non-zero constant and r is a random bit string of length l. The oracle D2 computes

77

the inverse of E2. The algorithm A outputs 0 or 1. The advantage of the CKD test is defined as

AdvA((EK , EK⊕c), (EK , EK⊕r)) =
1

2
(E[AC]−E[AR])

where E[AC] (resp., E[AR]) is the probability that A will output 1 when the difference between

the secret keys is a chosen non-zero constant (resp., random l-bit string).

Definition 4.2 The pseudorandom permutation family {EK}K∈{0,1}l is a [t, q, ε]-CKDA-secure

pseudorandom permutation family if there is no CKD test that runs in at most t time, sends

at most q queries to the oracles and has at least ε advantage.

In the model described here, the known relation between the keys is their difference. This

corresponds to a block cipher resistant to related-key differential cryptanalysis [66, 60]. Other

variants and generalizations are also possible. Another possible definition of CKDA-secure PRP

family is as a permutation family s.t. a pair of related members of the family is indistinguishable

from a pair of random permutations. It is not hard to verify that this definition is equivalent to

the one that we use here.

Finally, we must note that although we will use CKDA-secure pseudorandom permutations

to provide known commitment unforgeability, there are other possible applications of this model.

Consider a proven secure encryption scheme and a proven secure message authentication scheme.

Instead of using two different randomly selected secret keys for these schemes, we can use one

randomly selected key to derive two related keys that will be used by the schemes. In most of the

cases, using the related-key model, it would be trivial to prove that the schemes will remain secure.

So, we have secure schemes that require 50% less randomness and key storage size.

4.3.2 A candidate implementation of TESLA

The following theorem provides a function F and a MAC scheme such that the MAC scheme is

known F -commitment unforgeable.

Theorem 4.5 Let the function family {EK}K∈{0,1}n corresponding to the block cipher used by

OMAC be CKDA-secure PRP family. Let F : {0, 1}n → {0, 1}n be defined as F (K) = EK⊕c(0),

where c = 0n−11. Then, OMAC is a known F -commitment unforgeable MAC scheme.

Proof. Let A1 be an adversary who given a commitment F (K ′) to some randomly selected

key K ′ can break OMAC with probability ε. Such an adversary A1 can be easily converted into

78

E E
0 0

Pi−1 Pi+1

Di+1

Ki−1 Ki Ki+1

Mi−1 Mi+1

KiKi−2
Di−1

MAC(Ki−1,Di−1)

Pi

MAC(Ki,Di) MAC(Ki+1,Di+1)

Di

Mi

Ki−1

0...01 0...01

Figure 4.4: TESLA implementation using a block cipher resistant to related-key cryptanalysis

an adversary A2 that can break OMAC with the same probability. In particular, A2 can randomly

select the key value K ′ and submit the commitment F (K ′) to A1. A1’s output will be A2’s output.

Since OMAC is unforgeable, there is no adversary that can break OMAC with significant probability

given a commitment to a randomly select key.

Now, assume that there is an adversary A3 that can break OMAC given the commitment

F (K) to the secret key K that is in use. We can construct a CKD test as follows. We run the

adversary A3 and answer its queries by querying the encryption oracles E1 and E2. If A3 manages to

produce a forgery we output 1, otherwise we output 0. Obviously, the advantage of the CKD test

will be significant since the probability E[AC] is significant (OMAC is not known F -commitment

unforgeable) and the probability E[AR] is small (OMAC is unforgeable). �

The implementation that we propose here is depicted in Figure 4.4. It is similar to the insecure

implementation from Figure 4.2. However, the key value Ki−1 is derived by encrypting zero using

the key Ki ⊕ 0n−11 instead of the key Ki. A similar secure variant of the insecure implementation

can be obtained by using a function F ′ that derives the key K ′
i by flipping the last bit of Ki instead

of using an identity map.

79

4.4 Secure TESLA implementation via erasure-tolerant
authentication codes

In this section, we present a new erasure-tolerant stream authentication scheme constructed using

unconditionally secure erasure-tolerant authentication codes (η-codes).

Most of the multicast stream authentication schemes are based on the concept depicted in

Figure 4.5.a (see [88]). To authenticate the packet (chunk) Pi of the stream, the sender first commits

to the key value Ki by sending H(Ki) in the packet Pi−1. The key Ki is only known to the sender,

and it is used to compute a MAC on the packet Pi. After all recipients have received the packet Pi,

the sender discloses the key value Ki in the packet Pi+1. The recipients verify whether the received

key value corresponds to the commitment and whether the MAC of the packet Pi computed using

the received key value corresponds to the received MAC value. If both verifications are successful,

the packet Pi is accepted as authentic. Note that Pi contains the commitment to the next key

value Ki+1. To bootstrap the scheme, the first packet, which contains the commitment H(K1) to

the first symmetric key K1, is signed using a digital signature scheme (e.g., RSA).

Our scheme is derived by modifying the basic scheme depicted in Figure 4.5.a. We divide the

stream into groups, each group i being a sequence of b messages Mi,1, . . . ,Mi,b. A unique sequence

number 〈Ns.i.j〉 is assigned to each message Mi,j, where 〈Ns.i.j〉 is a concatenation of the binary

representations of a unique stream number Ns, the group number i and the position of the message

in the group j. A commitment H(Si+1) to a key string Si+1 and a key string Si−1 are included in

t + 1 packets of the group2. Since at most t erasures are allowed, at least one commitment copy

H(Si+1) and at least one key string copy Si−1 will get to the receiver. Finally, we compute and

include v authentication tags in the sequence of b packets. The authentication tags are computed

using an unconditionally secure authentication codes as in the construction from cover-free families

described in Section 2.6.2. The keys that are used to compute the tags are extracted from Si,

which is revealed in the next group of packets. If the number of tags v is large, then Si will be a

significant communication overhead. One possible solution to this problem is to use Si as a short

seed of a pseudo-random generator that will generate the secret keys of the unconditionally secure

authentication codes.

In our simple example (Figure 4.5.b), the stream is divided into groups of 16 messages. Since

only one erasure is allowed, the commitment H(Si+1) and the seed Si−1 are included in only two

2In general, we can use an erasure code to encode the commitment and the key string instead of sending multiple
copies. This further optimizes the bandwidth.

80

Di−1

Ki−2

H(Ki)

Pi−1 Pi

Mi

H(Ki+1)
Ki−1

Di

MAC(Ki,Di)

Pi+1

Mi+1

H(Ki+2)
Ki

MAC(Ki+1,Di+1)

Di+1

MAC(Ki−1,Di−1)

Mi−1

H(Si+1)

〈Ns.i.2〉 〈Ns.i.3〉 〈Ns.i.16〉〈Ns.i.1〉

H(Si+1)

Mi,1

Si−1

Mi,2

Si−1

Mi,3

〈Ns.i.4〉

Mi,4
Mi,16

τi,1

τi,4

τi,8

. . .

a)

b)

Figure 4.5: Multicast stream authentication: a) The basic scheme, b) Using (1, 1)-CFF

Di−1

Pi−1 Pi

Mi

Di

MAC(Ki,Di)

Pi+1

Mi+1

MAC(Ki+1,Di+1)

Di+1

MAC(Ki−1, Di−1)

Mi−1

H(Si)
Si−2

H(Si+1)
Si−1

H(Si+2)
Si

Figure 4.6: A variant of the basic stream authentication scheme.

packets. The authentication tags are computed using a (1, 1)-cover-free family as in Figure 2.1.

The only difference is that the tags depend on the whole content of the packets, not just on the

messages Mi,j.

In order to analyze the security of the scheme, we are going to consider a variant of the basic

scheme depicted in Figure 4.6. Instead of committing to the key Ki, the sender commits to a string

Si = Ki||ri, which is a concatenation of the key Ki and a random string ri. A security proof of

the erasure-tolerant stream authentication scheme depicted in Figure 4.4 can be easily obtained by

extending the following result about the security of the modified basic scheme.

Theorem 4.6 Suppose that:

• H(Si) provides a perfect concealing (i.e., even a computationally unbounded adversary cannot

81

do better than randomly guess the value of Ki) and computationally secure binding (i.e.,

there is no efficient adversary that can find a key K ′
i 6= Ki and a random value r′i s.t.

H(K ′
i||r′i) = H(Ki||ri)).

• the digital signature scheme that is used to bootstrap the scheme (i.e., sign the first packet

with a commitment H(S1) to the first key K1) is unforgeable, and

• the message authentication scheme is unconditionally secure.

Then, the variant of the basic scheme depicted in Figure 1.4 is computationally secure.

Proof. Assume that the adversary can break the stream authentication scheme. In other words,

the adversary in cooperation with some of the recipients can trick another recipient u to accept

a forged packet of the stream as valid. Let i be the smallest integer such that the content D ′
i is

accepted as valid by the recipient u when the original content Di is different from D′
i. If i is zero,

then the adversary has managed to forge the bootstrap packet which was signed using a digital

signature scheme. This is in contradiction with our assumption that the digital signature scheme

is unforgeable. Let i be greater than zero. There are two possible cases: (i) the key that u used

to verify the validity of D′
i is equal to the original key Ki or (ii) the key that u used to verify the

validity of D′
i is different from the original key Ki. In the first case, the adversary has managed to

produce a forgery for the message authentication scheme. Since the message authentication scheme

is unconditionally secure and the commitment H(Si) does not leak any information about the key

Ki, the probability of success in this case is very small even for a computationally unbounded

adversary. In the second case, when the key K ′
i used by u is different from the original key Ki,

the string S ′
i received by u is different from the original string Si sent by the sender. However, the

corresponding commitments H(Si) and H(S′
i) must be equal since i is the smallest number such

that the content D′
i is accepted as valid by the recipient u when the original content Di sent by the

sender is different from D′
i. This is in contradiction with our binding assumption. �

82

CHAPTER 5

Related-Key Differential Cryptanalysis of AES

In the previous chapter, we proposed a secure TESLA implementation that used block cipher

to realize the different components of TESLA. The security of the implementation relies on the

assumption that the block cipher is a CKDA-secure pseudorandom permutation. If this assumption

is not true, then the security proof collapses. Hence, in this chapter, we investigate the resistance

of AES to related-key differential attacks1.

5.1 Related-key differential attacks

Differential cryptanalysis exploits the propagation of the differences when a pair of distinct

plaintexts is submitted for encryption under the same key. Related-key differential cryptanalysis

exploits the properties of the difference propagation when the plaintexts x1 and x2, which can be

equal, are submitted for encryption under distinct keys k1 and k2 correspondingly.

An r-round related-key differential is a triple (α, β, δ), where α is the difference of the inputs at

the input of the block encryption algorithm, β is the difference of the outputs of the r-th round and

δ is the difference of the keys. The probability of r-round related-key differential is the probability

that the difference of the outputs of the r-th round will be β, when the input difference is α, the

key difference is δ, and the plaintext x1 and the key k1 are selected uniformly at random.

The general description of the related-key differential attacks is similar the one described in

Section 1.1.1 for ordinary differential attacks:

• Find highly probable R − 1-round related-key differential, where R is the number of rounds

of the block cipher.

• Select randomly x1 and submit it for encryption under key k1 to obtain ciphertext y1.

Compute x2 = x1 + α and submit it for encryption under key k2 = k1 + δ to obtain the

1 This chapter is based on [60].

83

ciphertext y2.

• Find all possible last round key pairs (kR
1 , kR

2) such that the difference between dkR
1
(y1) and

dkR
2
(y2) is β, where dk(y) is the output of the first round of the decryption algorithm for

input y and round key k. Add one to each counter that corresponds to one of the previously

computed key pairs.

• Repeat previous two steps until one or more last round key pairs are counted significantly

more than the others. Check these keys if they are the right keys.

Let K be the number of possible last round key pairs (kR
1 , kR

2) and let l be the average number of

suggested key pairs in the third step. Furthermore, let pmax >> 2−m, where m is the block length

and pmax is the probability of the related-key differential found in step 1 and let N = c/pmax be the

number of repetitions of steps two and three. Then the wrong key pairs will be counted lN/K times

on average and the right key pair will be counted about c times on average. If l × c < K × pmax,

then the wrong key pairs will be counted less then once on average. The order of the number of

required plaintext/ciphertext pairs is 1/pmax.

The related-key differential attack does not have to follow the pattern described above. In

general, we will refer to any attack that exploits a related-key differentials as related-key differential

attack.

5.2 Related-Key Differential Attacks on AES-192

In this section, we describe some attacks on reduced 192-bit key variants of AES. Description of the

algorithm can be found in [41]. We will use the following notation: xI
i , x

S
i , xP

i , xM
i and xO

i denote

the input of the round i, the output after SubBytes, the output after ShiftRows, the output after

MixColumns and the output after AddRoundKey transformation, correspondingly; ki denotes the

round i key and we will use ai,j, i, j ∈ {0, 1, 2, 3} to denote the byte j of the 32-bit word (column) i of

a. For example, xP
3,0,2 denotes the third byte of the first column of the output after the ShiftRows

transformation in the round 3 (the initial key addition of the algorithm is considered as round

0). The encryption round can be transformed into equivalent one that uses key addition before

the MixColumns. The round keys used in the equivalent encryption round will be denoted by zi.

Finally, we assume that the last round of the analyzed variants is a FinalRound.

84

Table 5.1: Propagation of the key difference (0000)(0000)(0∆00)(0∆00)(0000)(0000)

j ∆kj

0 (0000)(0000)(0∆00)(0∆00)
1 (0000)(0000)(0000)(0000)
2 (0∆00)(0000)(0000)(0000)
3 (0000)(0000)(0∆00)(0∆00)
4 (0∆00)(0∆00)(∆1000)(∆1000)
5 (∆1∆00)(∆1000)(∆1∆00)(∆1000)
6 (∆100∆2)(000∆2)(∆1∆0∆2)(0∆0∆2)

Table 5.2: Possible propagation of the plaintext difference

j ∆xI
j

0 (0000)(0000)(0∆00)(0∆00)
1 (0000)(0000)(0000)(0000)
2 (0000)(0000)(0000)(0000)
3 (0∆00)(0000)(0000)(0000)
4 (0000)(0000)(0∆00)(‘03′ ·∆′||0∆′∆′)

∆xS
4 = (0000)(0000)(0∆00)(∆′′0∆∆)

5 (∆0||‘03′ ·∆||‘02′ ·∆)(‘02′ ·∆||0||‘03′ ·∆||0)
(∆1000)(‘02

′ ·∆′′ ⊕∆1||∆′′∆′′||‘03′ ·∆′′)

5.2.1 The Basic Attack

Differential cryptanalysis attacks are based on difference propagations over all but few rounds that

have large enough prop ratio. For Rijndael, it is proven that any 4-round differential trail has at

least 25 active bytes, that is there are no 4-round differential trails with predicted prop ratio above

2−150 [30, 31]. The idea of the attack described here is to use the round key differences in order to

cancel the differences that exist before the key addition and reduce the number of active bytes.

The propagation of the key difference (0000)(0000)(0∆00)(0∆00)(0000)(0000) is depicted in

Table 5.1. If we submit two plaintexts x and x′ for encryption under the keys k and k ′ = k ⊕∆k

correspondingly, such that ∆x = (0000)(0000)(0∆00)(0∆00), then a possible propagation of the

difference is the one shown in Table 5.2.

The difference ∆′ is selected to satisfy the relation ‘02′ · ∆′ = ∆. In addition, the differences

∆,∆′ and ∆′′ should be selected so that the probabilities PS(∆ → ∆), PS(∆ → ∆′), PS(∆′ → ∆)

and PS(‘03′ ·∆′ → ∆′′) are greater than zero, where PS(a → b) is the probability that the output

difference of the S-box will be b when the input difference is a. When the previous conditions

85

are satisfied, the 5-round related-key differential trail from Table 5.2 has 15 active bytes and its

probability is 2−7×15 = 2−105 in the worst case. If we use 2106 plaintext/ciphertext pairs in a

related-key differential attack on the six round variant, then the right key will be counted at least

twice on average. The time complexity of the attack is about 2112 encryptions.

5.2.2 Improving the Basic Attack: Truncated Differentials

Let us consider the same plaintext and key differences as in the previous subsection. The probability

that ∆xI
5,2 = ∆1000 is the same as the probability PS(∆→ ∆′) and it is 2−7 instead of 2−32, which is

the probability when the difference ∆xI
5,2 is uniformly distributed. This highly probable truncated

differential [67] is exploited in the attack on six round version of AES. The attack is described

below.

We assign counter to every 10-tuple

(∆1,∆2, k6,0,0, k6,0,1, k6,0,2, k6,0,3, k6,1,1, k6,2,0, k6,3,6, z5,2,0)

that is possible for a given ∆. The attack is as follows:

• Select randomly a plaintext pair (x, x′) such that the plaintext difference is

(0000)(0000)(0∆00)(0∆00)

and the ciphertext difference is ∆y = (∗ ∗ ∗∗)(0 ∗ 0∆2)(∗∆0∆2)(0∆0∗), where ‘*’ means any

value, y = Ek(x), y′ = Ek⊕δ(x
′) and δ = (0000)(0000)(0∆00)(0∆00)(0000)(0000).

• For every possible 10-tuple, check whether ∆xI
5,2 = ∆1000. The value of ∆xI

5,2,0 can be

determined from the ciphertext pair using the key differences and the five bytes of the key

k6,0,2, k6,1,1, k6,2,0, k6,3,3 and z5,2,0. Further, the difference ∆xP
6,i,j is zero for all i and j such

that k6,i,j is unknown. Hence, one can compute the differences ∆xO
5 , and therefore,the value

∆xS
5 can also be computed due to the linearity of the MixColumns transformation. Now,

it is easy to check whether the particular difference before the SubBytes transformation of

the round 5 is zero. If ∆xI
5,2 = ∆1000, then add one to the counter that corresponds to the

particular 10-tuple.

• Repeat the previous two steps until one or more of the 10-tuples are counted significantly

more than the others. Take this values as possible values of the specified bytes of the key.

86

Table 5.3: Propagation of the key difference (0000)(0000)(∆000)(∆000)(0000)(0000)

j ∆kj

0 (0000)(0000)(∆000)(∆000)
1 (0000)(0000)(0000)(0000)
2 (∆000)(0000)(0000)(0000)
3 (0000)(0000)(∆000)(∆000)
4 (∆000)(∆000)(000∆1)(000∆1)
5 (∆00∆1)(000∆1)(∆00∆1)(000∆1)
6 (00∆2∆1)(00∆20)(∆0∆2∆1)(∆0∆20)
7 (00∆2∆1)(00∆20)(0∆3∆2∆1)(0∆30∆1)

If we repeat the first two steps 28 times, then the right 10-tuple will be counted twice on

average, while the wrong 10-tuples will be counted 2−24 times assuming that when we use wrong

key values the probability distribution of ∆xI
5,2 is uniform. Further, the probability that the

output difference ∆y will be (∗ ∗ ∗∗)(0 ∗ 0∆2)(∗∆0∆2)(0∆0∗), when the plaintext difference is

∆x = (0000)(0000)(0∆00) (0∆00), is 2−9×8 = 2−72. Therefore, the number of plaintext pairs

required for the attack is about 272 × 28 = 280. There are at most 214 possible values of (∆1,∆2)

for a given ∆. Hence, the complexity of the attack is about 28× 214× 28×8 = 286 encryptions. The

previously described attack is used to determine eight bytes of the key. It is not difficult to find

the rest of the key using similar methods.

5.2.3 Impossible Related-Key Differentials Attacks

An impossible differential attack against Rijndael reduced to five rounds was proposed by Biham

and Keller [15]. Later, this attack was extended to six rounds [27]. In this section, we describe

related-key impossible differentials attacks on 192-bit key variant reduced to seven and eight rounds.

The attack exploits a similar weakness in the key schedule as the previous attacks. Namely,

if the key difference is (0000)(0000)(∆000)(∆000)(0000)(0000), then this difference is propagated

during the key generation as depicted in Table 5.3. We can see that the Round 1 key difference

is zero and the Round 2 keys differ in only one byte. If we submit two plaintexts x and x ′ for

encryption, such that ∆x = (0000)(0000)(∆000)(∆000), then ∆xI
1 is zero, and so is ∆xO

1 = ∆xI
2.

Because of the Round 2 key difference, the inputs of the third round will differ in only one byte

xI
3,0,0. Due to the MixColumn transformation and the Round 3 key difference, the inputs of the

Round 4 will differ in six bytes xI
4,0,1, x

I
4,0,2, x

I
4,0,3, x

I
4,1,1, x

I
4,1,2, and xI

4,1,3. Hence, ∆xM
5,3 6= 0000 and

87

∆xO
5,3 6= 000∆1.

The aforementioned fact can be used to find values of seven bytes of the last round key. Given

∆, for every possible 10-tuple

(∆1,∆2, k7,0,0, k7,1,0, k7,1,1, k7,1,2, k7,1,3, k7,2,2, k7,3,1, z6,0,3)

do the following:

• Compute ∆3 using k7,1,2 and ∆2.

• For a plaintext pair (x, x′) such that ∆x = (0000)(0000)(∆000)(∆000) and the ciphertext

difference is ∆y = (∗0∆2∆1)(∗ ∗ ∗∗)(0∆3 ∗ ∆1)(0 ∗ 0∆1), where y = Ek(x), y′ = Ek⊕δ(x
′)

and δ = (0000)(0000)(∆000)(∆000)(0000) (0000), check whether ∆xO
5,3 = 000∆1. The value

of ∆xO
5,3,3 can be determined from the ciphertext pair using the key differences and the five

bytes of the key k7,0,0, k7,1,3, k7,2,2, k7,3,1 and z6,0,3. Further, the difference ∆xP
7,i,j is zero for

all i and j such that k7,i,j is unknown. Hence, one can compute the differences ∆xO
6 and

therefore ∆xS
6 due to the linearity of the MixColumns transformation. Once the value of

∆xS
6 is determined, it is not difficult to check whether ∆xO

5,3 = 000∆1. If ∆xO
5,3 = 000∆1,

then mark the current 10-tuple as wrong.

• Repeat the previous step until the 10-tuple is marked as wrong or the maximum of 238 tried

plaintext pairs is reached.

The probability that the ciphertext difference will be ∆y = (∗0∆2∆1)(∗∗∗∗)(0∆3 ∗∆1)(0∗0∆1),

when the plaintext x is randomly selected, is 2−9×8 = 2−72. Hence, the number of plaintext pairs

required to obtain 238 plaintext pairs with the desired property is about 2110. Given ∆, the number

of possible values of (∆1,∆2) is less than 214. Thus, the complexity of finding the possible 10-

tuples is of order 238 × 214 × 28×8 = 2116 encryptions. The probability that particular wrong

10-tuple will be marked as wrong using only one pair of plaintexts is 2−32. The number of wrong

10-tuples that are not marked as wrong after applying the procedure 238 times is on average

214× 264× (1− 2−32)2
38 ≈ 278× e−26 ≈ 2−14 i.e. most of the time there will be no wrong keys that

are not marked as wrong. The previous procedure is used to find eight bytes of the key. The rest of

the key can be determined using similar techniques with complexity which is negligible compared

to the complexity of the overall attack.

88

The attack can be extended to eight rounds. We will use the same plaintext and key differences,

but we will use the fact that ∆xM
5,1 6= 0000 and ∆xO

5,1 6= 000∆1, which can be proved to be true by

similar arguments as in the previous case.

Given ∆, for every possible 3-tuple

(k8, z7,2,0, z7,3,3)

do the following:

• Compute: k7,0, k7,1, k6,3, k5,2, k5,3, k4,1 and z8,0,3 using k8; ∆1 using k4,1 and ∆; ∆2 using k5,3

and ∆1; ∆3 using k7,1 and ∆2; and finally, z5,2,3 using z7,3,3 and z8,0,3 .

• For a plaintext pair (x, x′) such that ∆x = (0000)(0000)(∆000)(∆000) and the difference

∆a,P
7 is (∗∗∗∗)(∗∗∗∗)(∗000)(000∗), check whether ∆xO

5,1 = 000∆1. The difference ∆a,P
7 is the

difference after the ShiftRows transformation of the Round 7 computed using the assumed

value k8 from the ciphertext pair obtained when x is submitted for encryption under k and

x′ is submitted for encryption under k ⊕ δ. The value of ∆xO
5,1,3 can be determined from

the ciphertext pair using the key differences, k8, k7,0, k7,1, z7,2,0, z7,3,3 and z5,2,3.Further, the

difference ∆xP
7,i,j is zero for all i and j such that z7,i,j can not be computed. Hence, one can

compute the differences ∆xO
6 , and therefore ∆xS

6 also due to the linearity of the MixColumns

transformation. Now, it is easy to check whether the particular difference before the SubBytes

transformation of the Round 6 is zero. If ∆xO
5,1 = 000∆1, then mark the current 3-tuple as

wrong.

• Repeat the previous step until the 3-tuple is marked as wrong or the maximum of 239 tried

plaintext pairs is reached.

The probability that the difference ∆a,P
7 will be(∗ ∗ ∗∗)(∗ ∗ ∗∗)(∗000)(000∗), when the plaintext

x is randomly selected, is 2−6×8 = 2−48. The number of plaintext pairs required to obtain 239

plaintext pairs with the desired property is about 287. There are 2128 × 22×8 = 2144 values of

(k8, z7,2,0, z7,3,3). Thus, the complexity of finding the “right” 3-tuples is of order 239 × 2144 = 2183

encryptions. The probability that particular wrong 3-tuple will be marked as wrong using only

one pair of plaintexts is 2−32. The number of wrong 3-tuples that are not marked as wrong after

applying the procedure 239 times is on average 2144 × (1− 2−32)2
39 ≈ 2−40 i.e. the probability that

only the right key will not be marked as wrong is very large. Once the right 3-tuple is determined,

89

Table 5.4: Impossible related-key differential attacks vs Partial sums attacks on AES-192

of rounds p/c pairs Time Attack

7 2111 RK-CP 2116 impossible related-key differential
8 288 RK-CP 2183 impossible related-key differential
7 19× 232 CP 2155 partial sums
7 2128 − 2119 CP 2120 partial sums
8 2128 − 2119 CP 2188 partial sums

it is easy to determine the rest of the key using exhaustive search. One naive way to select the

set of 239 plaintext pairs with desired property from the set of 287 available plaintext pairs is to

check whether each pair leads to the required difference ∆xa,P
7 for the particular key k8. In that

case, the complexity will be 287+144 = 2231. The differences ∆xa,P
7,2 and ∆xa,P

7,3 depend only on eight

bytes of the key k8 and the key differences ∆1,∆2 and ∆3. Hence, a better way to select the set

is to assume first the values of these eight bytes and then compute the set for every possible value

of ∆1,∆2 and ∆3. Then, we can assume the rest of the key, compute the real values of ∆1,∆2

and ∆3, and select the set that corresponds to the real values of the key differences. Selection

can be made by selecting those pairs such that ∆xa,P
7,3 = (000∗), and then selecting the pairs that

satisfy ∆xa,P
7,2 = (∗000) from the previously selected pairs. The complexity in this case is about

24×8×23×7×287 = 2140. Table 5.42 compares the complexities of impossible related-key differential

attacks to the complexities of the partial sums attacks proposed in [37], which is the best attack

on the 192-bit key variant known to the authors.

5.3 Is the Markov Cipher property sufficient?

The concept of Markov ciphers was introduced in order to analyze the security of iterated block

ciphers against differential cryptanalysis. We give the following definition taken from [71]:

Definition 5.1 An iterated cipher with round function y = f(x, k) is a Markov cipher if there is

a group operation for defining differences such that, for all choices of α, α 6= e and β, β 6= e

Po(∆y = β|∆x = α, x = γ)

is independent of γ when the subkey k is uniformly random, where Po(∆y = β|∆x = α, x = γ)

is the probability when the same round key is used to encrypt γ and γ + α, and e is the identity

element.
2RK-CP stands for related-key chosen plaintext, and CP stands for chosen plaintext.

90

One can easily notice that if an iterated cipher is a Markov cipher, then the previous property

holds even when α = e or β = e. The differences in the previous definition are computed when

the ciphertexts are obtained using the same key. It was shown [71] that, if an iterated cipher

is Markov and its round keys are independent, then the sequence of differences at each round

output forms a Markov chain. Furthermore, if the Markov chain of differences has a steady state

probability distribution, then this steady state distribution must be the uniform distribution. If

we additionally assume that the hypothesis of stochastic equivalence holds for the Markov cipher,

then, for almost all subkeys, this cipher is secure against a differential cryptanalysis attack after

sufficiently many rounds (see [71] for more details).

The differences in the previous discussion are computed when the ciphertexts are obtained using

the same key. In general, we can consider differences in the case when the ciphertexts are obtained

using different keys. When the round keys are independent, it is obvious that we can construct

highly probable related-key differentials by encrypting the same plaintext using keys that differ in

one round key (the key of one of the last rounds). This is demonstrated by the following example.

Magenta [58] is 128-bit block encryption algorithm submitted for AES by Deutsche Telekom

AG. It supports 128-bit, 192-bit and 256-bit key sizes. We will consider the 128-bit key variant,

which consist of of six Feistel rounds. The key is divided into two 64-bit halves K1 and K2. The

first part K1 is used in rounds 1,2,5 and 6, and the second part K2 is used in the remaining rounds

3 and 4. The algorithm is given by

EK(M) = FK1(FK1(FK2(FK2(FK1(FK1(M)))))),

where

Fy(x) = ((x8, . . . , x15), (x0, . . . , x7)⊕E(3)(x8, . . . , x15, y0, . . . , y7)).

Let ∆y and ∆E be two differences such that P (∆E (3) = ∆E|∆y,∆x = 0) is significantly

greater3 than 2−64. If we submit the same plaintext for encryption under the keys (K1,K2) and

(K1,K2 ⊕ ∆y), then the difference between the left halves at the input of the fourth round will

be ∆E with probability significantly higher than 2−64. We must note that, although the attack

that exploits such related-key differential is more efficient than exhaustive search, the complexity

of the attack is large compared to the attack proposed in [14]. It is obvious that we must take the

subkey differences into account if we want to analyze the resistance of iterated ciphers to related-key

differential cryptanalysis.

3Authors mention 2−40 as an upper bound for transition probabilities of E(3).

91

Definition 5.2 We say that the round function y = f(x, k) is K − f if for every α , β and δ one

can find α1 such that

P (∆y = β|∆x = α,∆k = δ, x = γ) = Po(∆y = β|∆x = α1, x = γ)

for any γ and uniform distribution of the subkey k.

Often, the round function is composed of key addition using bitwise XOR and bijective

transformation (e.g. AES). In this case, the difference α1 can be simply computed4 as α1 = α⊕ δ.

The definition of K − f round functions enforces relation between the probability distributions of

the round output differences in the cases of zero and nonzero key differences. This is formally

stated by the following theorem.

Theorem 5.1 If the round function is K−f and the input x is independent of the input difference

∆x and round key difference ∆k, then for every α , β and δ one can find α1 such that

P (∆y = β|∆x = α,∆k = δ) = Po(∆y = β|∆x = α1).

Proof.

P (∆y = β|∆x = α,∆k = δ) =

=
∑

γ

P (∆y = β|∆k = δ,∆x = α, x = γ)× P (x = γ) =

=
∑

γ

Po(∆y = β|∆x = α1, x = γ)× P (x = γ) =

= Po(∆y = β|∆x = α1).

�

4This is the reason why we use a somewhat strange notation K − f .

92

The Markov cipher property (round output difference to depend only on the the round input

difference and not on the particular round inputs) is crucial in proving that the sequence of the

round output differences forms a homogenous Markov chain. Therefore, it is convenient to define

a similar property in the case of related-key differentials.

Definition 5.3 An iterated cipher with round function y = f(x, k) possesses a Markov cipher

property for related keys if there is a group operation for defining differences such that, for all

choices of α and β

P (∆y = β|∆x = α, x = γ) = P (∆y = β|∆x = α)

for any probability distribution of the round key differences and uniformly distributed round key k.

The K− f property of the round function enables us to analyze the propagation of the related-

key differences by observing the propagation of the differences when we use the same key for

encryption of the pair of plaintexts. Therefore, it is not surprising that Markov ciphers with K− f

round function possess a Markov cipher property for related keys.

Theorem 5.2 If an iterated cipher is a Markov cipher with K − f round function, the round key

is uniformly distributed, and the round key difference is independent of the input and the input

difference, then the cipher possesses a Markov cipher property for related keys.

Proof.

P (∆y = β|∆x = α, x = γ) =

=
∑

δ

P (∆y = β,∆k = δ|∆x = α, x = γ) =

=
∑

δ

P (∆y = β|∆x = α,∆k = δ, x = γ)× P (∆k = δ|∆x = α, x = γ) =

=
∑

δ

P (∆k = δ)× Po(∆y = β|∆x = α1, x = γ)

=
∑

δ

P (∆k = δ)× Po(∆y = β|∆x = α1)

=
∑

δ

P (∆k = δ)× P (∆y = β|∆x = α,∆k = δ)

=
∑

δ

P (∆k = δ,∆y = β|∆x = α)

= P (∆y = β|∆x = α).

�

93

The previous results provide intuition for proving the following theorem.

Theorem 5.3 If (i) an r-round iterated cipher is a Markov cipher with K − f round function,

(ii) the round keys ki are independent and uniformly random and (iii) the round key differences

are independent random variables, then the sequence of differences ∆x = ∆y(0),∆y(1), . . . ∆y(r)

is a Markov chain. If additionally (iv) the probability distributions p(∆ki) are identical, then the

Markov chain is homogeneous.

Proof.

P (∆y(i) = βi|∆y(i− 1) = βi−1, . . . ,∆x = α) =

=
∑

γ

P (∆y(i) = βi, y(i− 1) = γ|∆y(i− 1) = βi−1, . . . ,∆x = α) =

=
∑

γ

P (∆y(i) = βi|y(i− 1) = γ,∆y(i− 1) = βi−1, . . . ,∆x = α)×

P (y(i− 1) = γ|∆y(i− 1) = βi−1, . . . ,∆x = α) =

=
∑

γ

P (∆y(i) = βi|y(i− 1) = γ,∆y(i− 1) = βi−1)×

P (y(i− 1) = γ|∆y(i− 1) = βi−1, . . . ,∆x = α) =

=
∑

γ

P (∆y(i) = βi|∆y(i− 1) = βi−1)×

P (y(i− 1) = γ|∆y(i− 1) = βi−1, . . . ,∆x = α) =

= P (∆y(i) = βi|∆y(i− 1) = βi−1)

If the probability distributions P (∆ki) are identical, then

P (∆y(i) = β|∆y(i− 1) = α) =

=
∑

δ

P (∆y(i) = β,∆ki = δ|∆y(i − 1) = α) =

=
∑

δ

P (∆y(i) = β|∆ki = δ,∆y(i − 1) = α)× P (∆ki = δ) =

=
∑

δ

Po(∆y = β|∆x = α1)× P (∆ki = δ) =

=
∑

δ

Po(∆y = β|∆x = α1)× P (∆ki−1 = δ) =

= P (∆y(i− 1) = β|∆y(i− 2) = α).

�

94

Now, suppose that the round keys and round key differences are independent and uniformly

distributed. If the round input difference is uniformly distributed, then the round output difference

is also uniformly distributed. Hence, if the Markov chain formed by the round output differences

has steady-state probability distribution, then this steady-state distribution must be the uniform

distribution. Usually, the round keys are derived using some key generation algorithm, and,

given the key and the key difference, the round keys and the round key differences are uniquely

determined. If we assume that the probability of the related-key differentials when the round keys

and round key differences are fixed, and the probability of the related-key differentials when the

round keys and round key differences are independent and uniformly distributed are approximately

equal, then the previously discussed Markov ciphers are secure against related-key differential

attack after sufficiently many rounds. We will refer to this assumption as hypothesis of stochastic

equivalence for related keys.

The previous discussion suggests that one way of dealing with related-key differential crypt-

analysis is to use key scheduling algorithms whose output is “close” to random. We already

mentioned that the success of a related-key attack depends on the attacker’s ability to find highly

probable (or impossible) related-key differential trails. Unpredictable key differences make the task

of constructing such related-key differential trails very difficult.

95

REFERENCES

[1] V. Afanassiev, C. Gehrmann and B. Smeets, “Fast Message Authentication Using Efficient

Polynomial Evaluation,” Proceedings of Fast Software Encryption Workshop 1997, pp. 190-

204. 1.3, 2.6.3

[2] W. Alexi, B. Chor, O. Goldreich, C.P. Schnor, “RSA/Rabin Functions: Certain Parts Are as

Hard as the Whole,” SIAM Journal on Computing, Vol. 17, pp. 194-209, 1988. 1.3

[3] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and R. Needham,“A New Family

of Authentication Protocols,” ACM Operating Systems Review 32(4), pp. 9-20, 1998. 1.3, 4

[4] M. Bellare, O. Goldreich, S. Goldwasser, “Incremental Cryptography: The case of Hashing

and Signing,” Crypto’94, LNCS 839, Springer-Verlag, pp. 216-233. 1.3

[5] M. Bellare, J. Killian, P. Rogaway,“The Security of Cipher Block Chaining Message Authenti-

cation Code,” Advances in Cryptology - Proceedings of Crypto’94, Lecture Notes in Computer

Science, Vol. 839, pp. 341-358, Springer-Verlag, 1994. 1.3, 3.1

[6] M. Bellare, R. Guerin and P. Rogaway, “XOR MACs: New Methods for Message Authen-

tication Using Finite Pseudorandom Functions,” Advances in Cryptology - Proceedings of

Crypto’95, Lecture Notes in Computer Science, Vol. 963, pp. 15-29, Springer-Verlag, 1995.

1.3, 3.2.4, 3.3

[7] E.R. Berlekamp, R.J. McEliece, H.C.A. van Tilborg, “On the Inherent Intractability of Certain

Coding Problems,” IEEE Transactions on Information Theory, 1978. 1.3

[8] A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum, I. Damgard, M.

Dichtl, W. Fumy, M. van der Ham, C. J. A. Jansen, P. Landrock, B. Preneel, G. Roelofsen,

P. de Rooij, and J. Vandewalle, “Final Report of RACE Integrity Primitives,” LNCS 1007,

Springer-Verlag, 1995. 1.3

[9] F. Bergadano, D. Cavagnino, B. Crispo, “Chained Stream Authentication,” Proceeding of

Selected Areas in Cryptography 2000, pp. 142-155, 2000. 1.3, 4

[10] J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets, “On Families of Hash Functions

Via Geometric Codes and Concatenation,” Proceedings of CRYPTO ’93, Springer-Verlag, pp.

331-342, 1994. 1.3, 2.7

[11] E.Biham and A.Shamir, “Differential cryptanalysis of DES-like cryptosystems,” Journal of

Cryptology, 4(1):3-72, 1991. 1.3

96

[12] E. Biham and A. Shamir, ‘Differential Cryptanalysis of Snefru, Khafre, REDOC II, LOKI,

and Lucifer,” Advances in Cryptology, CRYPTO ’91 Proceedings, Springer- Verlag, 1992, pp.

156-171. 1.3

[13] E. Biham, “New Types of Cryptanalytic Attacks Using Related Keys,” Journal of Cryptology,

v. 7, n. 4, 1994, pp. 229-246. 1.3, 4.3.1

[14] E. Biham, A. Biryukov, N. Ferguson, L. Knudsen, B. Schneier, A. Shamir, “Cryptanalysis of

MAGENTA”, http://csrc.nist.gov/encryption/aes/round1/conf2/aes2conf.htm 5.3

[15] E.Biham and N.Keller, “Cryptanalysis of Reduced Variants of Rijndael,”

http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html 5.2.3

[16] J. Black and P. Rogaway, “CBC MACs for Arbitrary-Length Messages: The Three-Key

Construction,” Advances in Cryptology - Proceedings of Crypto 2000, Lecture Notes in

Computer Science, vol. 1880, pp. 197-215, Springer-Verlag, 2000. 1.3, 3.3

[17] J. Black and P. Rogaway, “A Block Cipher Mode of Operation for Parallelizable Message

Authentication,” Advances in Cryptology - Proceedings of Eurocrypt 2002, Lecture Notes in

Computer Science, vol. 2332, pp. 384-397, Springer-Verlag, 2002. 1.3, 3.3, 3.4.3

[18] D. Bleichenbacher and U. Maurer,“On the Efficiency of One-Time Digital Signatures,” Ad-

vances in Cryptology - Proceedings of AsiaCrypt ’96, LNCS 1163, Springer-Verlag, 1996. 1.3

[19] L. Blum, M. Blum, M. Shub, “A Simple Secure Unpredictable Pseudo-Random Number

Generator,” SIAM Journal on Computing, Vol. 15, pp. 364-383, 1986. 1.3

[20] M. Blum, S. Micali, “How to Generate Cryptographically Strong Sequences of Pseudorandom

Bits,” SIAM Journal on Computing, Vol. 13, pp. 850-864, 1984. 1.3

[21] M. Blum, S. Goldwasser, “An Efficient Probabilistic Public-Key Encryption Scheme which

hides all partial information,” Crypto’84, LNCS 196, Springer-Verlag, pp. 289-302.

[22] M. Burrows, M. Abadi and R. Needham,“A Logic of Authentication,” DEC SRC Research

Report 39. 3.3

[23] R. Canneti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, “Multicast security: A

taxonomy and some efficient constructions,” In Infocom ’99, 1999. 4

[24] E. Carrara and M. Baugher, “The Use of TESLA in SRTP,” Internet draft,

http://ietfreport.isoc.org/ids-wg-msec.html. 4

[25] J.L. Carter and M.N. Wegman, “Universal Classes of Hash Functions,” Journal of Computer

and System Sciences, Vol. 18, pp. 143-154, 1979. 1.3

[26] A. Chan, “A graph-theoretical analysis of multicast authentication,” Proc. of the 23rd Int.

Conf. on Distributed Computing Systems, 2003.

[27] J. Cheon, M. Kim, K. Kim, J. Lee, and S. Kang, “Improved Impossible Differential Crypt-

analysis of Rijndael and Crypton,” Information Security and Cryptology - ICISC 2001 4th

International Conference Seoul, Korea, December 6-7, 2001, Proceedings, LNCS 2288,p. 39 ff.

5.2.3

97

[28] S. Cheung,“An Efficient Message Authentication Scheme for Link State Routing,” Proceedings

of the 13th Annual Computer Security Application Conference, 1997. 1.3, 4

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction to Algorithms,”

Second edition, McGraw-Hill, 2001.

[30] J.Daemen and V.Rijmen, “AES Proposal: Rijndael,” http://csrc.nist.gov/encryption/aes. 1.3,

5.2.1

[31] J.Daemen, “Cipher and Hash Function Design Strategies Based on Linear and Differential

Cryptanalysis,” Doctoral Dissertation, March 1995, K.U.Leuven. 1.3, 5.2.1

[32] I. Damgard, “Collision Free Hash Functions and Public Key Signature Schemes,” Eurocrypt’87,

LNCS 304, Springer-Verlag, pp. 203-216. 1.3

[33] Y. Desmedt, Y. Frankel and M. Yung, “Multi-Receiver/Multi-Sender Network Security:

Efficient Authenticated Multicast/Feedback,” INFOCOM, 1992, pp.2045-2054. 1.3

[34] Y. Desmedt and K. Kurosawa,“How to Break a Practical MIX and Design a New One,”

Eurocrypt 2000, LNCS 1807, Springer-Verlag, pp. 557-572. 6

[35] W. Diffie, M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Informa-

tion Theory, IT-22 (Nov.), pp.644-654, 1976. 1.3

[36] N. Ferguson and B. Schneier, “A Cryptographic Evaluation of IPsec,” technical report, 2000.

[37] N. Ferguson, J. Kelsey, B. Schneier, M. Stay, D. Wagner, D. Whiting, “Improved Cryptanalysis

of Rijndael,” 7th International Workshop, FSE 2000, New York, NY, USA, April 2000,

Proceedings, LNCS 1978, p. 213 ff. 5.2.3

[38] FIPS PUB 113, Computer Data Authentication. 1.3

[39] FIPS PUB 186, Digital Signature Standard. 1.3

[40] FIPS PUB 180-2, Secure Hash Standard.

[41] FIPS PUB 197, Advanced Encryption Standard (AES). 1.3, 4.1.2, 5.2

[42] FIPS PUB 198, The Keyed-Hash Message Authentication Code (HMAC). 1.3, 4.1.4

[43] R. Gennaro and P. Rohatgi,“How to Sign Digital Streams,” Advances in Cryptology -

Proceedings of Crypto ’97, LNCS 1294, Springer-Verlag, 1997, pp. 180-197. 1.3, 3.1, 4

[44] E.N. Gilbert, F.J. MacWilliams, N.J.A. Sloane, “Codes which detect deception,” Bell Sys.

Tech. J., Vol. 53, pp. 405-424, 1974.

[45] O. Goldreich, S. Goldwasser and S. Micali,“How to Construct Random Functions,” Journal of

the ACM, Vol.33, No.4, 210-217, 1986. 1.3

[46] O. Goldreich, H. Krawcyzk, M. Luby, “On the existence of Pseudorandom Generators,” SIAM

Journal on Computing, Vol.22, No.6, pp. 1163-1175, 1993. 1.3

98

[47] O. Goldreich,“Foundations of Cryptography: Basic Tools,” Cambridge University press, 2001.

4.1.2

[48] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman,“Security

Preserving Amplification of Hardness,” 31st IEEE Symposium on Foundations of Computer

Science, pp. 318-326, 1990. 1.3

[49] O. Goldreich, S. Goldwasser, S. Micali, “On the Cryptographic Applications of Random

Functions,” Crypto’84, LNCS 263, Springer-Verlag, pp. 276-288, 1985. 1.3

[50] S. Goldwasser, S. Micali, “Probabilistic Encryption,” Journal of Computer and System Science,

Vol. 28, No. 2, pp. 270-299, 1984.

[51] S. Goldwasser, S. Micali, P. Tong, “Why and How to Establish a Private Code in a Public

Network,” 23rd Symposium on Foundations of Computer Science, pp. 134-144, 1982.

[52] S. Goldwasser, S. Micali, A.C. Yao, “Strong Signature Schemes,” 15th ACM Symposium on

the Theory of Computing, pp.431-439, 1983. 1.3

[53] S. Goldwasser, S. Micali, and R. Rivest, “A Digital Signature Scheme Secure Against Adaptive

Chosen-Message Attacks,” SIAM Journal on Computing, 17(2):281-308, April 1988. 1.3, 3,

3.1

[54] J. Hastad, R. Impagliazzo, L.A. Levin, M. Luby, “Construction of a Pseudorandom Generator

from Any One-Way Function,” SIAM Journal on Computing, Vol. 28, No. 4, pp. 1364-1396,

1999. (Preliminary version by Impagliazzo et al. in 21st ACM Symposium on the Theory of

Computing (1989) and Hastad in 22nd ACM Symposium on the Theory of Computing (1990).)

1.3

[55] R. Impagliazzo, M. Naor, “Efficient Cryptographic Schemes Provable as Secure as Subset

Sum,” Journal of Cryptology, Vol. 9, pp. 199-216, 1996. 1.3

[56] R. Impagliazzo, L. Levin and M. Luby,“Pseudo-Random Generation from One-Way Func-

tions,” Proceedings of the Twenty First Annual Symposium on the Theory of Computing,

ACM, 1989.

[57] T. Iwata and K. Kurosawa,“OMAC: One-Key CBC MAC,” Fast Software Encryption, FSE

2003, LNCS 2887,pp.129-153, Springer,2003. 1.3, 3.2.4, 3.3, 3.4.3

[58] M.J. Jacobson,Jr and K. Huber, “The MAGENTA Block Cipher Algorithm,” AES candidate,

http://csrc.nist.gov/encryption/aes. 5.3

[59] G. Jakimoski, “Unconditionally Secure Information Authentication in Presence of Erasures,”

Proceedings of the 10th IMA International Conference on Cryptography and Coding, LNCS

3796, pp. 304-321, 2005. 1

[60] G. Jakimoski and Y. Desmedt, “Related-key Differential Cryptanalysis of 192-bit Key AES

Variants,” Proceedings of the 10th Workshop on Selected Areas of Cryptography, LNCS 3006,

pp. 208-221, Springer, 2004. 4.3.1, 1

99

[61] E. Jaulmes, A. Joux and F. Valette,“On the Security of Randomized CBC-MAC Beyond the

Birthday Paradox Limit: A New Construction,” Fast Software Encryption, FSE 2002, LNCS

2365, pp. 237-251, Springer-Verlag. 1.3

[62] T. Johansson, G. Kabatianskii and B. Smeets, “On the Relation Between A-codes and Codes

Correcting Independent Errors,” Proceedings of EUROCRYPT 1993, Springer-Verlag, pp. 1-

11, 1994. 1.3

[63] A. Joux, G. Martinet, and F. Valette, “Blockwise-Adaptive Attackers Revisiting the

(In)Security of Some Provably Secure Encryption Modes: CBC, GEM, IACBC,” Advances

in Cryptology - Proceedings of Crypto 2002, Lecture Notes in Computer Science, vol. 2442,

pp. 17-30, Springer-Verlag, 2002.

[64] C. Kaufman, R. Perlman and M. Speciner,“Network Security: Private Communication in a

Public World,” Prentice Hall, 2002.

[65] J. Kelsey, B. Schneier and D. Wagner, “Key-schedule cryptanalysis of IDEA, GDES, GOST,

SAFER, and Triple-DES,” Advances in Cryptology, Proceedings Crypto’96, LNCS 1109,

pp.237-252. 1.3

[66] J. Kelsey, B. Schneier and D. Wagner, “Related-key Cryptanalysis of 3-WAY, Biham-DES,

CAST, DES-X, NewDES, RC2 and TEA,” Proceedings of ICICS’97, pp. 233-246, Springer-

Verlag, 1997. 4.3.1

[67] L.R. Knudsen, “Truncated and Higher Order Differentials,” Fast Software Encryption, 2nd

International Workshop Proceedings, Springer-Verlag, 1995, pp. 196-211. 1.3, 5.2.2

[68] H. Krawczyk, “LFSR-based Hashing and Authentication,” Crypto’94, LNCS 839, Springer-

Verlag, pp. 129-139.

[69] H. Krawczyk, “New Hash Functions For Message Authentication,” Eurocrypt’95, LNCS 921,

Springer-Verlag, pp. 301-310.

[70] X. Lai, “Higher Order Derivations and Differential Cryptanalysis,” Communications and

Cryptography: Two Sides of One Tapestry, Kluwer Academic Publishers, 1994, pp. 227-233.

1.3

[71] X. Lai, J. Massey, and S. Murphy, “Markov Ciphers and Differential Cryptanalysis,” Advances

in Cryptology, CRYPTO ’91 Proceedings, Springer-Verlag, 1991, pp. 17-38. 1.3, 5.3, 5.3

[72] L. Lamport,“Constructing Digital Signatures From a One-Way Function,” no. CSL 98, 1979.

1.3

[73] L.A. Levin, “One-Way Functions and Pseudorandom Generators,” Combinatorica, Vol. 7, pp.

357-363, 1987. 1.3

[74] M. Luby, C. Rackoff, “How to Construct Pseudorandom Permutations from Pseudorandom

Functions,” SIAM Journal on Computing, Vol. 17, pp. 373-386, 1988. 1.3

[75] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, ”Practical

Loss-Resilient Codes”, Proc. 29 th Symp. on Theory of Computing, 1997, pp. 150-159.

100

[76] J.L. Massey, “Contemporary Cryptology: An Introduction,”in Contemporary Cryptology, The

Science of Information Integrity, ed. G.J. Simmons, IEEE Press, New York, 1992. 2.1

[77] M. Matsui, “Linear cryptanalysis method for DES cipher,” In Advances in Cryptology -

EUROCRYPT’93, LNCS 765, pp. 386-397, Springer-Verlag, 1993. 1.3

[78] A.J. Menezes, P.C. van Oorschot,S. A. Vanstone, “Handbook of Applied Cryptography,” CRC

Press, 1996.

[79] R.C. Merkle, M.E. Hellman, “Hiding Information and Signatures in Trapdoor Knapsacks,”

IEEE Transactions on Information Theory, Vol. 24, pp. 525-530, 1978. 1.3

[80] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,” Advances

in Cryptology - Proceedings of Crypto ’87, LNCS 293, Springer-Verlag, 1987, pp. 369-378. 1.3

[81] S. Micali, C. Rackoff, B. Sloan, “The Notion of Security for Probabilistic Cryptosystems,”

SIAM Journal on Computing, Vol. 17, pp. 412-426, 1988.

[82] W.H.Mills,“Covering design I: coverings by a small number of subsets,” Ars Combin. 8, pp.

199-315, 1979. 2.6.1

[83] S. Miner and J. Staddon, “Graph-Based Authentication of Digital Streams,” The 2001 IEEE

Symposium on Security and Privacy. 1.3

[84] C.Mitchell and M.Walker,“Solutions to the Multidestination Secure Electronic Mail Problem,”

Computers and Security, Vol.7(1988), pp.483-488.

[85] M. Naor, M. Yung, “Public-Key Cryptosystems Provably Secure Against Chosen Ciphertext

Attacks,” 22nd ACM Symposium on the Theory of Computing, pp. 427-437, 1990.

[86] M. Naor, M. Yung, “Universal One-Way Hash Functions and their Cryptographic Applica-

tions,” 31st ACM Symposium on the Theory of Computing, pp.33-43, 1989.

[87] J.M. Park, E.K.P. Chong and H.J. Siegel, “Efficient Multicast Stream Authentication Using

Erasure Codes,” ACM Transactions on Information and System Security, Vol. 6, No. 2, May

2003, pp. 258-285.

[88] A. Perrig, R. Canneti, J. D. Tygar, D. Song, “Efficient Authentication and Signing of Multicast

Streams Over Lossy Channels,” Proceedings of the IEEE Security and Privacy Symposium,

2000. 1.1.5, 1.1.5, 1.3, 4, 4.1.2, 4.4

[89] A. Perrig, R. Canneti, D. Song and J. D. Tygar , “Efficient and Secure Source Authentication

for Multicast,” Proceedings of the Network and Distributed System Security Symposium, 2001.

4

[90] A. Perrig, R. Canneti, J. D. Tygar and D. Song, “The TESLA Broadcast Authentication

Protocol,” RSA CryptoBytes, Volume 5, No.2, 2002. 4

[91] A. Perrig and J. D. Tygar, “Secure Broadcast Communication in Wired and Wireless

Networks,” Kluwer Academic Publishers, 2002. 4

101

[92] E. Petrank and C. Rackoff,“CBC MAC for Real-Time Data Sources,” J. Cryptology, vol.13,

no.3, pp.315-338, Springer-Verlag, 2000. 1.3

[93] J.J. Quisquater and D. Samyde, “Eddy current for Magnetic Analysis with Active Sensor”,

Proceedings of Esmart 2002 3rd edition, Nice, France, September 2002.

[94] M.O. Rabin, “Digitalized Signatures and Public Key Functions as Intractable as Factoring,”

TR-212, LCS, MIT, Cambridge, MA, 1979. 1.3

[95] M. Rabin,“Efficient Dispersal of Information for Security, Load Balancing, and Fault Toler-

ance,” J. ACM 36, 2, pp.335-348.

[96] R.Rees, D.R.Stinson, R.Wei and G.H.J. van Rees, “An application of covering designs:

Determining the maximum consistent set of shares in a threshold scheme,” Ars Combin. 531,

pp. 225-237, 1999. 2.6.1

[97] R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and Public

Key Cryptosystems,” CACM, Vol. 21, pp. 120-126, 1978. 1.3

[98] R.L. Rivest, “The MD5 message digest algorithm,” Internet Request for Comments, April

1992, RFC 1321. 4.1.4

[99] P. Rohatgi, “A compact and fast hybrid signature scheme for multicast packet authentication,”

In 6th ACM Conference on Computer and Communications Security, November 1999. 4

[100] A. D. Rubin and P. Honeyman,“Formal Methods for the Analysis of Authentication Proto-

cols,” CITI Technical Report 93-7, 1993. 3.3

[101] C. Schnor,“Efficient Identification and Signatures for Smart Cards,” Advances in Cryptology

- Crypto ’89 Proceedings, LNCS 435, Springer-Verlag, 1989. 1.3

[102] G.J. Simmons,“Authentication Theory / Coding Theory,” Proceedings of CRYPTO ’84,

LNCS 196 (1985), pp. 411-432. 1.3, 2.1, 2.2, 2.2

[103] G.J. Simmons, “ A Survey of Information Authentication,” in Contemporary Cryptology,

The Science of Information Integrity, ed. G.J. Simmons, IEEE Press, New York, 1992. 1.3,

2.1

[104] C.E. Shannon, “Communication Theory of Secrecy Systems,” Bell Sys. Tech. J., Vol. 28, pp.

656-715, 1949.

[105] D.R. Stinson,“Cryptography: Theory and Practice,” CRC Press, 1995.

[106] D.R. Stinson, “Some Constructions and Bounds for Authentication Codes,” Journal of

Cryptology 1 (1988), pp. 37-51. 1.3, 2.5

[107] D.R. Stinson, “The Combinatorics of Authentication and Secrecy Codes,” Journal of Cryp-

tology 2 (1990), pp. 23-49. 1.3, 2.5

[108] D.R. Stinson, “Combinatorial Characterizations of Authentication Codes,” Proceedings of

CRYPTO ’91, LNCS 576 (1992), pp.62-73. 1.3, 2.5

102

[109] D.R. Stinson, “Universal Hashing and Authentication Codes,” Proceedings of CRYPTO ’91,

LNCS 576 (1992), pp. 74-85. 1.3

[110] D.R. Stinson, R. Wei and L. Zhu, “Some new bounds for cover-free families,” J. Combin.

Theory A. 90 (2000), pp. 224-234. 2.1, 2.6.2

[111] P.F. Syverson, S.G. Stubblebine and D.M.Goldschlag, “Unlinkable serial transactions,” In

Financial Cryptography ’97, Springer Verlag, LNCS 1318, 1997. 4

[112] U.V. Vazirani and V.V. Vazirani, “Efficient and Secure Pseudo-Random Number Generation,”

25th Symposium on Foundations of Computer Science, pp. 458-463. 1.3

[113] X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis for Hash Functions MD4 and

RIPEMD,” Proceedings of Eurocrypt ’05, LNCS 3494, pp. 1-18, Springer, 2005. 4.1.4

[114] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” Proceeding of

Eurocrypt ’05, LNCS 3494, pp. 19-35, Springer, 2005. 4.1.4

[115] M.N. Wegman and J.L. Carter, “New Hash Functions and Their Use in Authentication and

Set Equality,” Journal of Computer and System Sciences, Vol. 22, pp. 265-279, 1981. 1.3

[116] C. K. Wong, S. S. Lam, “Digital Signatures for Flaws and Multicasts,” Proceedings of IEEE

ICNP ’98, 1998. 1.3, 4

[117] A.C. Yao,“Theory and Application of Trapdoor Functions,” 23rd IEEE Symposium on

Foundations of Computer Science, pp. 80-91, 1982. 1.3

[118] K. Zhang,“Efficient Protocols for Signing Routing Messages,” Proceedings of the Symposium

on Network and Distributed System Security, 1998. 1.3, 4

103

BIOGRAPHICAL SKETCH

Goce C. Jakimoski

Goce C. Jakimoski has completed his Bachelors degree in Electrical Engineering, Electronics and

Telecommunications, at Ss. Cyril and Methodius University, Skopje, Macedonia, in July 1995. He

has received a Masters degree in Electrical Engineering from the same university in July 1998 under

the advisement of Prof. Ljupco Kocarev. From January 1996 to July 2001, Goce has worked as an

electrical engineer. He enrolled in the doctoral program at the Department of Computer Science,

Florida State University, in the fall of 2001.

Goce’s research interests include cryptography, computer and network security, and he is author

or co-author of a number of papers in these areas.

104

	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Block Ciphers
	Pseudorandom functions
	Unconditionally secure message authentication
	Signature schemes
	Stream Authentication Schemes

	Organization of the dissertation and our contributions
	Further reading

	Erasure-tolerant Information Authentication
	The setting
	Lower bounds on the deception probability
	Distance properties
	Concatenation and composition of -codes
	-codes with minimal impersonation and substitution probabilities
	-codes from set systems
	Constructions from covering designs
	Constructions from cover-free families
	Efficiency issues

	-codes from Reed-Solomon codes

	Proven Secure Stream Authentication in a Point-to-point Setting
	Unforgeable Stream Authentication
	Some Practical Schemes
	SN-MAC
	ReMAC
	MACC
	Comparison of ReMAC, MACC and SN-MAC

	A family of schemes
	Security Analysis
	A particular approach
	Three colors for the internal nodes are not sufficient
	Security based on unforgeable MACs
	Security based on PRFs
	Security of ReMAC, MACC and SN-MAC

	Proven Secure Multicast Stream Authentication
	Insecure TESLA constructions from secure components
	Permuted-input OMAC
	The case when F' is an identity mapping
	The case when F' is implemented using a PRF
	Cryptanalysis of the RFC4082 TESLA version

	Sufficient assumptions about the components of TESLA
	Secure TESLA implementation via a CKDA-secure pseudorandom permutation
	A related-key model of a block cipher
	A candidate implementation of TESLA

	Secure TESLA implementation via erasure-tolerant authentication codes

	Related-Key Differential Cryptanalysis of AES
	Related-key differential attacks
	Related-Key Differential Attacks on AES-192
	The Basic Attack
	Improving the Basic Attack: Truncated Differentials
	Impossible Related-Key Differentials Attacks

	Is the Markov Cipher property sufficient?

	REFERENCES
	BIOGRAPHICAL SKETCH

