
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

ENHANCED SECURITY FOR MOBILE AGENT SYSTEMS

By

JEFFREY T. MCDONALD

A Dissertation submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Degree Awarded:
Fall Semester, 2006

Copyright © 2006
Jeffrey T. McDonald
All Rights Reserved

The members of the Committee approve the Dissertation of Jeffrey T. McDonald
defended on October 20, 2006.

 Alec Yasinsac
 Professor Directing Dissertation

 Sam Huckaba
 Outside Committee Member

 Michael Murmester
 Committee Member

 Lois Hawkes
 Committee Member

 Robert van Engelen
 Committee Member

Approved:

David Whalley, Chair, Department of Computer Science

Joseph Travis, Dean, College of Arts and Sciences

The Office of Graduate Studies has verified and approved the above named committee
members.

 ii

iii

To my loving wife Angela and my two wonderful
children, Allie and Tucker. You all are blessings from God

and a huge part of my success in life. I love you.

iv

ACKNOWLEDGEMENTS

"A man can receive nothing unless it has been given to him from heaven.”

John 3:26-27

Knowledge and scientific discovery in the human sense are only an uncovering of the
principles by which the Creator fashioned our world. The greatest knowledge we can
attain is found only in context to a relationship with God through His Son Jesus, the
Messiah. All scientific discovery and intellectual pursuits pail in comparison to the
surpassing knowledge of knowing Him as Savior, Friend, and Lord. It is therefore
appropriate that I gratefully acknowledge Him first as the source of my intellect, abilities,
and all that I am. I truly thank my heavenly Father for the opportunity to pursue and
express all the intellectual giftings He has given to me.

I wish to thank several people who have assisted me in my academic journey and that
have guided me towards completion of this particular research effort. My advisor, Dr.
Alec Yasinsac, is by far the key element to my success. I wish to thank him for his
mentorship, constant direction, and continued encouragement. This thesis would
certainly have been impossible without his guidance. Thanks are due also to Dr. Mike
Burmester and Dr. Breno de Medeiros for many insightful security-related discussions.

Thanks to Willard Thompson, Todd Andel, and Sarah Diesburg for being great
officemates and providing constant encouragement. Thanks also to other members of
the security research group for their attentiveness and feedback through countless
briefings. I also wish to acknowledge my AFIT sponsors for their support and for
providing this fellowship opportunity.

Last, and most importantly, I wish to thank my family—my wife Angela, our children Allie
and Tucker, for their support during this busy time of my life. They are certainly the
other essential element to my success. Thanks Dad, Chris, and John for all your love
and prayers. Mom could not be here to read the final version—but her encouragement
was indeed crucial to me reaching the finish line. Thanks also to my wife’s family for their
invaluable help to include a brief stay at the Lodge Hotel and many Southern home-
cooked meals.

v

TABLE OF CONTENTS

LIST OF FIGURES... ix
LIST OF TABLES..xiii
ABSTRACT...xiv
CHAPTER 1 INTRODUCTION ...1

1.1 The Problem Area ...1
1.2 Research Objectives ...3

1.2.1 Multi-Agent Architectures for Security ...3
1.2.2 Mobile Agent Trust Frameworks..4
1.2.3 Program Encryption...4

1.3 Conventions ..5
1.3.1 Cryptographic Primitives and Protocols...5
1.3.2 Boolean Functions and Circuits...5
1.3.3 Turing Machines and Programs ..6

1.4 Chapter Summary ...6
CHAPTER 2 MOBILE AGENT SECURITY...7

2.1 Mobile Agent Paradigms ...7
2.1.1 Defining Agents ...7
2.1.2 Defining Mobility ..8
2.1.3 Mobile Agent Interactions ..9
2.1.4 Emerging Standards..15
2.1.5 Research Trends ...16

2.2 Mobile Agent Security ...17
2.2.1 Multi-agent Issues ...17
2.2.2 Threats and Requirements ..18
2.2.3 Malicious Agents ...20
2.2.4 Malicious Hosts ...22

2.3 Chapter Summary ...25
CHAPTER 3 MULTI-AGENT ARCHITECTURES for SECURITY...................................26

3.1 Chapter Overview..26
3.2 Mobile Agent Data Integrity using Multi-agent Architecture (MADIMA)...........26

3.2.1 Requirements for Data State Protection..27
3.2.2 Partial Result Protection Mechanisms...28
3.2.3 Describing the Problem ...29
3.2.4 Architecture Overview ...31
3.2.5 Related Security Issues...34
3.2.6 Fault Tolerance Issues ..35
3.2.7 Performance Issues...35
3.2.8 MADIMA Summary..36

3.3 Hybrid Approaches for Secure Multi-Agent Computations..............................36
3.3.1 SMC Integration with Mobile Agency...37
3.3.2 Invitation and Response Protocol..38
3.3.3 Multi-Agent Trusted Execution ..42
3.3.4 Hybrid SMC Approach Summary ..43

vi

3.4 Chapter Summary ...44
CHAPTER 4 MOBILE AGENT TRUST FRAMEWORK ..45

4.1 Chapter Overview..45
4.2 Security Requirements and Mechanisms for Mobile Agents...........................46
4.3 Trust Framework ...48

4.3.1 Defining Principals...48
4.3.2 Defining Trust Relationships..51

4.4 Trust Algorithm ..52
4.4.1 Trust Decisions..52
4.4.2 Trust Acquisition ..56
4.4.3 The Role of Trusted Hosts...56

4.5 Application Security Models ..57
4.5.1 The Military Model ...58
4.5.2 The Trade Model ...60
4.5.3 The Neutral Services Model ..61

4.6 Chapter Summary ...63
CHAPTER 5 PROGRAM ENCRYPTION..64

5.1 Chapter Overview..64
5.2 Motivating the Question...65

5.2.1 Mobile Agents..66
5.2.2 Sensor Nets...66
5.2.3 Geo-Positional Location Information ...67
5.2.4 Financial Transactions...67
5.2.5 Protecting Embedded Keys in Programs...67
5.2.6 Transforming Private Key Crypto-Systems into Public Key Systems......67

5.3 Defining Program Encryption ..67
5.3.1 Measuring Cryptographic Security ..68
5.3.2 Heuristic Views of Obfuscation..68
5.3.3 Theoretical Views of Obfuscation ..69
5.3.4 Why We Need a Different Security Model ...72
5.3.5 Program Understanding ..73
5.3.6 Program Context ...75
5.3.7 Protecting Program Intent using Program Encryption75

5.4 Creating Perfect Black Box Obfuscation ...77
5.4.1 One-Way Functions and Black Box Obfuscation.....................................77
5.4.2 Implementing Perfect Black Box Obfuscation ...79

5.5 Defining the Random Program Security Model ...81
5.5.1 Random Data and Random Programs/Circuits81
5.5.2 Random Program Oracles and White Box Obfuscation84
5.5.3 Proving Random Programs Exist ..85
5.5.4 Proving Random Circuits Exist ..90

5.6 Creating White Box Protection Based on Randomization99
5.6.1 Comparing Data and Program Encryption...99
5.6.2 Integrating Black and White Box Protection ..101
5.6.3 Intent Protection with White Box Randomizing Transformations...........102
5.6.4 Distinguishing Random Selections of TDOWA from PR............................104
5.6.5 Obfuscators that Randomly Select Circuits from TDOWA........................104

5.7 Creating Perfect White Box Protection..106
5.7.1 Existence of 2-TM Obfuscators for Bounded Input-Size Programs.......107

vii

5.7.2 Provably Secure Obfuscators for Bounded Input-Size Programs108
5.7.3 Perfect Obfuscation in a Private Key Setting...109
5.7.4 Protecting Bounded Input-Size Programs with Easily Learnable Input .113

5.8 Implementation Work ..114
5.9 Chapter Summary ...115

CHAPTER 6 CONCLUSIONS...117
APPENDIX A COMPREHENSIVE SURVEY OF MOBILE AGENT SECURITY119

A.1 Evaluating Agent Security Mechanisms ..119
A.2 General Host Protection ..121

A.2.1 Sandboxing (SBFI) ..121
A.2.2 Safe Code Interpretation ...122
A.2.3 Code Signatures..123
A.2.4 State Appraisal ..124
A.2.5 Proof Carrying Code..125
A.2.6 Path Histories ..126
A.2.7 Policy Management ...127

A.3 General Agent Protection ..129
A.3.1 Contractual Agreements/Reputation ...130
A.3.2 Detection Objects ..130
A.3.3 Oblivious Hashing..130
A.3.4 Protective Assertions...131
A.3.5 Execution Tracing..131
A.3.6 Holographic Proofs ..134
A.3.7 State Transition Verification...135
A.3.8 Reference States...136
A.3.9 Environmental Key Generation..137
A.3.10 Secure Routing..138
A.3.11 Multi-Hop Trust Model ...139
A.3.12 Returning Home ..139
A.3.13 Phoning Home...140
A.3.14 Trusted Nodes/Third Parties..140
A.3.15 Server Replication/Fault Tolerance ...143
A.3.16 Agent Replication/Mutual Itinerary Recording144
A.3.17 Route/Itinerary Protection..145
A.3.18 Sliding Encryption..149
A.3.19 Trusted/Tamper-resistant hardware ..150
A.3.20 Function Hiding with Encrypted Functions ..151
A.3.21 Function Hiding with Coding Theory..153
A.3.22 Undetachable signatures...154
A.3.23 Policy Management Architectures ...156

A.4 Agent Data Protection ...156
A.4.1 Digital Signature Protocol ..158
A.4.2 One-Time Symmetric Keys..158
A.4.3 Bitmapped XOR Protection ...159
A.4.4 Targeted State...160
A.4.5 Append-Only Containers ...161
A.4.6 Multi-Hops Integrity..161
A.4.7 Partial Result Authentication Codes ..162
A.4.8 Hash Chaining ...165

viii

A.4.9 Set Hash Codes ..169
A.4.10 One Time Key Generation (OKGS) ...171
A.4.11 Configurable Protection ...172
A.4.12 Modified Set Authentication Code ...173
A.4.13 Chained IP Protocol...174
A.4.14 ElGamal Encryption...174
A.4.15 Protocol Evaluation..175

A.5 Secure Multi-Party Computations..176
A.5.1 Evaluation Techniques and Primitives...176
A.5.2 Single Round Computations and Agent Integration177
A.5.3 Non-Interactive SMC Approaches ...179
A.5.4 Multi-Round SMC Approaches ..182

A.6 Multi-Agent Architectures ..184
A.7 Trust Infrastructures ..186

A.7.1 Trust Management in Distributed Environments186
A.7.2 Trust and Mobile Agents..187

APPENDIX B TRUST MODEL ELABORATION ...189
B.1 Trust Scenario with Mobility and Agency ..189
B.2 Modelling Agent Applications ..193

APPENDIX C ENUMERATING COMBINATIONAL CIRCUITS197
APPENDIX D PROGRAM ENCRYPTION ARCHITECTURE200
APPENDIX E ISCAS CIRCUIT DEFINITIONS AND BENCH FORMAT210
APPENDIX F BOOLEAN EXPRESSION DIAGRAMS..213
REFERENCES..218
BIOGRAPHICAL SKETCH…………………………………………………………………………………………… 234

ix

LIST OF FIGURES

Figure 1: Malicious Host Threat Classification ..3
Figure 2: Blind Disruption versus Effective Tampering ...4
Figure 3: Considerations in Agent Mobility..7
Figure 4: Software Agent Space ...8
Figure 5: Mobile Agent Lifecycle ...9
Figure 6: Host Agent Middleware..11
Figure 7: Agent Itinerary Description...11
Figure 8: FIPA Agent Communication Methods [Poslad et al. 2002]13
Figure 9: Agent Interaction Model ...14
Figure 10: Agent Kernel and Identity Definition with Security Attributes14
Figure 11: FIPA Agent Management Specification ...16
Figure 12: Taxonomy for Defining Mobile Agent Security...18
Figure 13: Summarizing Mobile Agent System (MAS) Attacks19
Figure 14: Malicious Agent Threats ..20
Figure 15: Architecture for Host Security ..22
Figure 16: Malicious Host Threats ..23
Figure 17: Itinerary Specification In Mobile Agents...24
Figure 18: Agent Protection Overview ..26
Figure 19: Partial Result Data Expression ..27
Figure 20: Stateful/Stateless Agent Interactions and Data Integrity................................30
Figure 21: Data Integrity Attacks...30
Figure 22: Launching Task Agent (t) and Single-Hop Computation Agent (a)32
Figure 23: Using Replicated Computation Agents (a,b)..32
Figure 24: Data Collection Agents (a,b,c,d) ..33
Figure 25: Data Collection Modes...33
Figure 26: MADIMA Security Configurations ..35
Figure 27: Secure Multi-Agent Computations ...36
Figure 28: Agent Task Realized as Secure Multi-Party Computation37
Figure 29: User Task F Implemented as Secure Multi-Agent Computation....................39
Figure 30: Initialization and Invitation Phases...39
Figure 31: Response and Recovery Phases...40
Figure 32: Invitation Agents Sending Host Requests..40
Figure 33: Response Agents and Execution Environments..41
Figure 34: Fully-Trusted Middle Man with Multi-Agent/Multi-Round SMC42
Figure 35: Phase 3 with Semi-Trusted Middlemen Execution Sites43
Figure 36: Phase 4 Migration to Originating Host ...43
Figure 37: Defining the Agent ...49
Figure 38: Defining Executing/Dispatching/Trusted Hosts..50
Figure 39: Three Entities Affecting Trust in Mobile Agent Environments........................50
Figure 40: Principals and Entities Associated with an Agent ..51
Figure 41: Simplifying Trust Assumptions in Mobile Agent Application52
Figure 42: Trust Decisions for Mobile Agent Security ...53
Figure 43: Trust/Security Decisions on Agent Dispatch..54
Figure 44: Trust/Security Decisions on Agent Migration ...54
Figure 45: Trust Framework..55
Figure 46: Acquired Trust over Multiple Applications..56

x

Figure 47: Application Security Models...58
Figure 48: Military Model Initial Trust Relationships..59
Figure 49: Trade Model Initial Trust Relationships..61
Figure 50: Neutral Services Model Initial Trust Relationships...62
Figure 51: Results in Program Encryption ..64
Figure 52: Application Example for Program Encryption ..66
Figure 53: Adversarial Program Intent Detection ..76
Figure 54: Black box Obfuscation with Recovery Model...80
Figure 55: Black box Obfuscated Program ...80
Figure 56: Considering Random Data and Random Circuits/Programs82
Figure 57: Random Program Selection...83
Figure 58: Random Program Oracle ...84
Figure 59: TBIA Machine Depiction ..87
Figure 60: Simple One-Bit Architecture...89
Figure 61: The ISCAS-85 C17 Benchmark Circuit in BENCH Notation92
Figure 62: BED Definition of ISCAS-85 C17 ..93
Figure 63: Examples of Circuit Signatures..93
Figure 64: Exponential Blowup of Functional Representation ..96
Figure 65: Comparing Data Ciphers with Program Obfuscation / Encryption100
Figure 66: Example of Data Permutation and Substitution ...101
Figure 67: White Box Protected Programs..102
Figure 68: Full Intent-Protected Program P’..103
Figure 69: Circuit Substitution and Permutation..105
Figure 70: Circuit Encryption in Context to HLL Code Protection106
Figure 71: Bounded-Size Input DES...112
Figure 72: Fully Generalized Bounded Input-Size Program Obfuscation112
Figure 73: Architecture for General Program Intent Protection (P.exe→ P’.exe).........115
Figure 74: Sandboxing..122
Figure 75: Safe-TcL Padded Cell Concept ...123
Figure 76: Simple Authentication ..123
Figure 77: Integrity and Authentication ...124
Figure 78: State Appraisal Technique...125
Figure 79: PCC Framework ..126
Figure 80: Path Histories...127
Figure 81: Agent Policy Management ...128
Figure 82: Model for Oblivious Hashing ..131
Figure 83: Protective Assertion Framework ..132
Figure 84: White and Black Code ...133
Figure 85: Code Fragment and Trace...133
Figure 86: Execution Tracing Model ...134
Figure 87: Extended Execution Tracing ..134
Figure 88: Holographic Proof Checking ..135
Figure 89: Replay Attacks ...136
Figure 90: Reference State Mechanism..137
Figure 91: Environmental Key using Hash..138
Figure 92: Routing Based on Associations ...139
Figure 93: Multi-Hop Trust Model..139
Figure 94: Agent Returning Home ..140
Figure 95: Agent Phoning Home...141
Figure 96: Agent Protection Using TTP ..142
Figure 97: Trust-Level Exchanging Protocol ...142

xi

Figure 98: Trusted Host Configurations ..143
Figure 99: Simple Agent Pipeline..144
Figure 100: Replicated Agent Pipeline..144
Figure 101: Cooperating Agents ...145
Figure 102: Agents w/ Variable Itineraries ..146
Figure 103: Anonymous Itinerary ..147
Figure 104: Chained IP Protocol ...148
Figure 105: Public Key Data Encryption ...148
Figure 106: Sliding Encryption ..149
Figure 107: Trusted Hardware – Full/Partial ...150
Figure 108: CED and CEF ..152
Figure 109: Achieving Non-Interactive Privacy of Computation with CEF152
Figure 110: A CEF Based On Coding Theory...153
Figure 111: Undetachable Signature Scheme ..154
Figure 112: RSA-Based Undetachable Signature Scheme ..155
Figure 113: Public/Private Data ..157
Figure 114: One-Time Protection..159
Figure 115: Bitmap/XOR Data Protection ...160
Figure 116: Targeted State Protocol ...161
Figure 117: Append-Only Container ...162
Figure 118: Multi-Hops Protocol..163
Figure 119: Simple MAC-based PRAC...163
Figure 120: PRAC with Hash-Based MAC..164
Figure 121: Publicly Verifiable PRACS ...165
Figure 122: Encapsulated Offers ..166
Figure 123: Protocol Interaction of PVCDS...167
Figure 124: Forward Privacy ...168
Figure 125: Chained MAC Interaction...169
Figure 126: Publicly Verifiable Signature ..169
Figure 127: Set Hashing Data Collection ..170
Figure 128: One Time Key Generation Scheme...171
Figure 129: Key Generation Module ..172
Figure 130: E-E-D Property..174
Figure 131: State Update Function ...179
Figure 132: Host Output Function ...179
Figure 133: ACCK Protocol w/ Generic Computation Service180
Figure 134: Verifiable Distributed Oblivious Transfer Protocol181
Figure 135: Oblivious Threshold Decryption Protocol...181
Figure 136: Agent Approaches to SMC ..182
Figure 137: Multi-Agent Secure Computation ...183
Figure 138: Trust Decisions and Principles in a Mobile Agent Setting..........................189
Figure 139: Agent, Application Owner, and Agent Developer Trust Relation189
Figure 140: Host-Agent Trust Relations..190
Figure 141: Host and Entity Interactions in Agent Application193
Figure 142: Agent Code, Unique Agent Instance and State Set...................................194
Figure 143: Same Agent Code used in Different Agent Instance194
Figure 144: Same Agent Code, Different Agent Itinerary..195
Figure 145: Different Code Base, Same Agent Itinerary...195
Figure 146: Different Codebase, Different Agent Itinerary ..195
Figure 147: Agent That Revisits Hosts in Itinerary..196
Figure 148: Multiple Agents with Same Codebase, Unique Itineraries196

xii

Figure 149: Multiple Agents with Same Codebase, Common Itinerary.........................196
Figure 150: MASCOT Generalized Randomization ..200
Figure 151: ISCAS, BENCH, BED Deployment Diagram ...201
Figure 152: Circuit Generation Library and Replacemen..201
Figure 153: MASCOT-EVALUATE Component ..202
Figure 154: MASCOT-GENINPUT Component ..203
Figure 155: MASCOT-PAD Component ...203
Figure 156: MASCOT-DEPAD Component ..204
Figure 157: MASCOT-RANDCIRCUIT Component ..204
Figure 158: MASCOT-NANDCOVERT Component..205
Figure 159: MASCOT-RSABIN Component ...205
Figure 160: MASCOT-3DESBIN Component ...206
Figure 161: MASCOT-CONCAT Component..206
Figure 162: MASCOT-MERGE Component..207
Figure 163: MASCOT-EMBEDMULTI Component ...207
Figure 164: MASCOT-CIRC2PROG Component ...208
Figure 165: MASCOT-CIRCUITGEN Component ..208
Figure 166: Circuit Library Specification (Binary)..208
Figure 167: MASCOT-CANONICAL Component..209
Figure 168: BENCH Circuit Format...210
Figure 169: BENCH Grammar in Extended BNF Notation..212
Figure 170: BED C Program Created from C-17 BENCH Specification214
Figure 171: Example Circuit P – Gate Level and Truth Table View..............................214
Figure 172: Example Circuit P in BED Notational Views ..215
Figure 173: Example Circuit P (Canonical SOP) in BED Notational Views216
Figure 174: ISCAS C432 in BED Notational Views...217

xiii

LIST OF TABLES

Table 1: Distributed Computing Paradigms ..9
Table 2: Agent Middleware Systems...10
Table 3: Host Security Threat/Requirements Matrix ...21
Table 4: Agent Security Threat/ Requirements Matrix ..23
Table 5: Agent Data Privacy ...28
Table 6: Agent Data Integrity Properties ...28
Table 7: Agent/Host Security Requirements w/ Abbreviations..46
Table 8: Agent Security Requirements and Related Mechanisms..................................47
Table 9: Principals in Mobile Agent Systems (expressed in extended BNF notation)48
Table 10: Trust Relationships ...52
Table 11: Heuristic Obfuscation Metrics ...68
Table 12: Heuristic Obfuscation Techniques ..69
Table 13: Examples of Commercial Obfuscators..70
Table 14: Legal Program Considerations..86
Table 15: Ten Bit Instruction Set Architecture (TBIA) ...86
Table 16: Modified TBIA with New Instruction ..88
Table 17: Gate Definitions Under Ω2...94
Table 18: Circuit Encoding for Family CnmsΩ ..94
Table 19: Binary Size Representation for Circuit Encoding ..95
Table 20: Program Encryption Results Overview ...116
Table 21: Security Evaluation Criteria...120
Table 22: Host Protection Mechanisms ..121
Table 23: Agent Protection Mechanisms ..129
Table 24: Data Protection Mechanisms ..156
Table 25: Abstract Data Protection Model ..172
Table 26: Methods of single-round secure function evaluation.....................................178
Table 27: Pertinent Results for Non-Interactive Secure Multi-party Computations.......178
Table 28: Security Requirements with Associated Detection/Prevention Mechanisms 191
Table 29: Trust Decisions in Mobile Agent Applications ...192
Table 30: High Level View of ISCAS-85 Circuit Library ..211

xiv

ABSTRACT

Mobile agents are an application design scheme for distributed systems that combine mobile
code principles with software agents. Mobile computing emerged over the last decade with a
vision for code that changes its execution location—moving from platform to platform in a
heterogeneous network carrying an embodied, updatable state. Agents are software processes
that act on a user’s behalf, perform particular functions autonomously, and interact with their
environment to accomplish their goals. We consider in this thesis historical mobile agent security
research while also gauging current trends.

Program mobility and autonomy are ultimate distributed computing expressions—
programmers can view the network as a seamless canvas for application development.
Disconnected host operations give a key advantage to mobile agents; however, researchers
agree that protecting a stand-alone autonomous mobile agent with software-only approaches
remains difficult. In this thesis, we produce several results that enhance mobile agent security
and provide generalized code protection. We propose and define several novel techniques that
protect mobile agents in ubiquitous environments and that solve practical problems in the
program obfuscation field. We contribute to the field in the following ways:

Generalized Black Box Program Protection. We provide a novel technique for hiding a

candidate program’s input/output relationships by using a data encryption padding technique.
This method provides general program/circuit protection and relies on the semantic security
strength found in common data encryption ciphers. Analyzing the black box relations for such
protected programs cannot reproduce the original program’s input/output mapping.

Generalized White Box Program Protection. We semantically protect the white-box source

code/gate structure information for a relevant program class defined by bounded input size. By
using simple Boolean canonical circuit forms, we create an obfuscation technique that effectively
hides all information regarding the source code or circuit gate structure.

Embedded-Key Program Protection. Leveraging our white-box results, we demonstrate

how to embed an encryption key in programs that have small input size with measurable security.
This technique gives foundations for solving the classic computer security problem regarding how
transform any private-key cryptosystem into a public-key cryptosystem.

Analyzing Mobile Code Protection Schemes for Code Privacy. The Virtual Black Box

(VBB) has been a theoretical foundation for understanding obfuscation strength for some time.
We consider programmatic intent protection for mobile agents and pose a new model for
obfuscated code security based on random programs.

Tamperproofing Mobile Code. We lay foundations for a new code protection methodology

for mobile agents based on techniques used in the data encryption field. Specifically, we employ
circuit encryption techniques that use combined sub-circuit permutation and substitution. As a
result, we appeal to indistinguishability notions for circuits drawn uniformly from large sets and
establish properties for obfuscators that provide intent protection based on randomization.

Trust Framework for Mobile Agents. Security tends to be Boolean and rigid in its

application. Mobile agents in unknown and ubiquitous environments need a flexible security
model that accounts for the unique challenges they face. We develop a novel framework to
capture principles and trust relationships specific to the mobile agent paradigm. Our framework
fills in the shortfall gap in current trust frameworks that attempt to deal with agents and mobility.

xv

Application Security Models. Initial trust levels between mobile agent principals depend on
the application security model. Application designers can provide initial trust conditions to
characterize the mobile execution environment; we seed a mobile interaction trust database with
these conditions. We define three different mobile agent settings that exhibit common security
characteristics: the military model, the neutral services model, and the trade model. We apply
these models in context to our trust framework and show their relevance in designing secure
mobile agent applications.

Multiple-Agent Protection Based on Secure Mobile Agent Computations. Multiple agents

provide greater capability for security in mobile contexts. We develop multiple agent architecture
for mobility utilizing hybrid secure multi-party computation models, trusted high-speed threshold
servers, and multiple agents.

Multiple-Agent Scheme to Provide Data Encapsulation Protection. We develop a novel

approach to deal with colluding malicious hosts in context to data state integrity attacks. Our
architecture utilizes three cooperating agent classes that prevent partial results disclosure by their
interaction and by using public data bins.

Comprehensive Mobile Agent Security History. We provide a comprehensive mobile agent

security history. We create and employ taxonomy for describing and understanding all security
aspects that relate to mobile agents: mobility, threats, requirements, mechanisms, verification,
evaluation metrics, and mechanisms.

1

CHAPTER 1

INTRODUCTION

Software agents are both a design paradigm and implementation level construct for designing
distributed systems [1, 2]. Defined in artificial intelligence (AI) research, agents are software
components that perform autonomous actions in order to accomplish predefined goals [3]. In the
AI-based view, agents are software components that act on a user’s behalf by carrying
knowledge, reasoning over beliefs, representing user intentions, and communicating via some
standard mechanism with other agents [4]. Agents are autonomous, goal-driven, adaptive,
proactive, mobile, and social based upon the rules and actions provided by the designer [5].

Mobile agents [6] integrate software agents and the distributed programming paradigm known
as mobile code [7, 8, 9]. Mobile programs that are autonomous and reactive to environmental
changes (referred to henceforth as mobile agents) have found usefulness in domains such as
information retrieval [10], e-commerce [11], network management [12, 13], digital image
processing [14], tele-care assistance [15], grid computing [16], and peer-to-peer networking [17].
Real-world commercial applications based on mobile agents are not realizable until agent
frameworks adequately address security concerns—no matter how useful or beneficial the mobile
agent paradigm may be. Our research contributes stepping-stones to a secure mobile agent
paradigm.

We begin by showing how to protect mobile agent data integrity when malicious hosts collude,
provide architecture that guarantees host data privacy and execution integrity, and show how to
reason about security choices when agents interact with unknown parties. We organize this
thesis to reflect the corresponding research agenda. In Chapter 3 we present methods that
positively counter integrity and execution integrity attacks by using multiple agent coalitions. In
Chapter 4, we present a novel framework for exercising mobile trust management decisions.

Our major accomplishment addresses how to protect mobile agent code privacy and
execution integrity in remote environments. In other words, we reduce a malicious party’s actions
from intentioned, smart code alterations to blind disruption. In Chapter 5, we give novel
approaches to solving this historically tough problem, in the face of several theoretic impossibility
results for obfuscation and software tamperproofing. We show first how to protect the black box
properties of a general program with provable security and with reasonable efficiency; we define
a new model by which to judge software obfuscation strength—according to known cryptographic
security properties. We demonstrate in this thesis a methodology for producing randomized,
executably encrypted circuits with provable white box security properties that are not subject to
the traditional impossibility results. We design a methodology to provide perfect semantic white
box program protection—with provable security properties—for a relevant class of programs.
Finally, our approach gives one of the first known solutions for how to protect an embedded
cryptographic key securely within a program and the first known public key encryption system that
uses only symmetric key cryptographic computations.

1.1 The Problem Area

Current pioneers describe future generation computing with phrases such as “the network is
the computer1” (network-aware programming) and terms such as “ubiquitous computing2” (the
one-person-to-many-computer relationship common around the world today). In this brave new
computing world, we must protect privacy and execution integrity for code located outside
developer control or outside its native executing environment. Mobile computing emerged in the
last decade and envisioned programs with an embodied, updatable state that move from platform
to platform in a heterogeneous network environment [18].

1 Trademark of Sun Microsystems, Inc
2 Alan Key, Apple Computing (see http://www.ubiq.com/hypertext/weiser/UbiHome.html)

2

Migrating or “itinerant” agents act on a user’s behalf and perform a particular task
autonomously. When they finish processing, agents return home or take further initiative once
accomplishing their user-directed goal. Some researchers have tried to analyze why mobile
agents have not achieved a widespread use outside academic circles [19] to this point. A
consistent fear that agent systems cannot guarentee availability, integrity, and scalability while
keeping the overhead manageable [20] tops the list for their adoption failure.

In order to be successful, practical mobile agent implementations must match system
functionality with available security defenses and manage those protection aspects that are still
unattainable. Managing agent security mechanisms requires an infrastructure to support mobility
beyond those required for typical distributed systems—causing cumbersome implementation
headaches. In some cases, agent applications will require a new security perspective based on
non-Boolean trust. Deploying future automonous/distributed applications running in possibly
hostile computing environments will demand that security problems are addressed.

We gain benefit by defining and solving security problems in the mobile agent realm.
Particulary, if mobile agent security issues can be solved, other security problems associated with
distributed computing paradigms pale in comparison. In addition, agent security requirements
readily overlap with needs in other traditional research areas such as software tamperproofing,
virus protection, security integration with software engineering, policy enforcement, piracy
prevention, digital rights management, and secure remote computing. Such ancillary result areas
provide great impetus for our primary focus on furthering mobile agent security.

Agent security requirements are normally distilled into two categories [21, 22]: host protection
and agent protection. We define our solution space starting with the hardest problem: protecting
an agent from a malicious host. As the agent migrates, an intermediate hosts can alter its current
state (and therfore its functionality) in unintened and malicious ways [23, 24]. Explicity stated,
how can agent integrity, privacy, availability, and authentication be protected when a remote host
has full access to agent code and state being executed? Our results address this target problem.

Regarding agent protection, Bierman and Cloete [21] summarize four malicious host attack
categories, illustrated in Figure 1: integrity attacks, availability refusal, confidentiality attacks, and
authentication risks. Integrity and confidentiality alterations reveal and exploit the private
information contained in the code and dynamic agent state. Together with authentication risks,
these attacks represent attempts by a malicious party to gain unfair advantage without explicitly
refusing agent execution. Hosts that perform strict service denial can starve the agent for
resources, provide the agent wrong information, or destroy the agent without execution or
migration. These host types represent the worst-case mobile agent risk.

Farmer and Guttman in [23] believe the questions regarding whether an interpreter will run an
agent correctly or whether a server will run an agent to completion are impossible to answer.
Even though other impossibility claims in [23] have been challenged, such as whether agent code
and data can be kept private [25, 26, 27] and whether an agent can carry a key [28, 29, 30], we
do not argue whether or not certain server actions can be prevented. Agents that execute on
interpreters located at a remote host execute under the remote host’s power and control—not the
originator’s control.

Single mobile agents are in many cases hard to protect against all possible malicious threats.
In some cases, using multiple agents supports accountability or secure delegation without fixed
hardware use. In other cases, introducing multiple agent classes enhances trusted hardware use.
We investigate as a secondary goal possibilities for multi-agent architectures that increase mobile
agent security and allow greater security requirements coverage.

Assuming that mobile agents and their intended execution environments are in different
security domains or administrative control realms, no mechanisms exist to prevent absolute
service denial attacks such as resource starvation or to guarantee honest host input. No current
protection methods can reliably prevent strict denial of service in the mobile agent paradigm
unless tamperproof hardware or secure co-processors [31, 32] completely control the remote
execution environment. Even with tamperproof hardware, malicious parties can attack the remote
host’s physical environment or indirectly influence an agent’s execution [22].

3

Figure 1: Malicious Host Threat Classification

We can detect service denial by employing certain security mechanisms such as trusted
verification servers [33] and timed execution limits [34]. We refer to this alteration form alteration
as blind disruption because, at most, an adversarial host can only circumvent correct program
execution blindly. On the other hand, adversaries that use effective tampering execute remote
agents with the intent to observe or alter the normal code execution in order to gain some benefit
(integrity, confidentiality, and authentication attacks). Such threats include agent itinerary
alteration, code replay attacks, changing execution pathways, and proprietary algorithm
discovery. Figure 2 illustrates the distinction among tampering attacks.

Considering non-Byzantine faults that do not terminate a program, users prefer that programs
terminate rather than continuing execution with erroneous or possibly corrupted results. Non-
malicious terminating faults are at least detectable—even though we may not discern the failure
cause or its remedy easily. For Byzantine program errors in mobile agents, we can detect strict
service denial easier than partial denials where adversaries effectively alter mobile code for their
own malicious intent without detection. We desire to prevent effective tampering as a research
goal, not only for mobile agents but also for software in general. As a result, we present in this
thesis results that preserve code privacy and execution integrity against attacks by malicious
parties.

1.2 Research Objectives

Based on the malicious threat environment facing mobile applications, we pose and answer in
this thesis three questions related to code security and agent protection:

How can we enhance security with multiple agents? (Chapter 3)
How can we integrate trust into mobile agent security? (Chapter 4)
How can we tamperproof mobile agents and protect software in general? (Chapter 5)

We provide relevant answers to these questions in both incremental results and significant
contributions. We frame each research area according to these questions and lay out results
from our investigation in the following manner.

1.2.1 Multi-Agent Architectures for Security

In order for mobile agents to have widespread acceptance, mobile applications must
adequately address user-specific security concerns. Increased security requirements limit
supportable system mobility, although distributed trust offers greater protection hope against
malicious activity. Stand-alone mobile agents may require similar help in order to enforce security
requirements. Our thesis results give methods to strengthen security in mobile agent paradigms
by using multiple agent interactions. We pose and evaluate architectures that accomplish
specific security requirements for mobile agents. Chapter 3 presents our research results for this
objective.

4

Figure 2: Blind Disruption versus Effective Tampering

1.2.2 Mobile Agent Trust Frameworks

Traditionally, mobile agent security has focused on protection mechanisms that keep
malicious parties from altering the agent and on protection mechanisms that keep malicious
agents from harming other parties. Researchers have done little to bridge the gap between
requirements, trust expression, and protection mechanisms at an application-centric level. When
dealing with application development, trust properties clearly define security requirements. Trust
formulation has been given considerable thought both in distributed networking applications [35,
36, 37, 38] and mobile agents [39, 40, 41, 42, 43]. Mobility as an application feature complicates
security because a host receiving a mobile agent to execute must make distributed trust
decisions with little or no prior knowledge. Likewise, agents acting on a user’s behalf must
evaluate trust relationships with hosts in possibly unknown environments. Applications based
upon mobile agents must blend user security requirements with environmental trust expectations
where agents execute.

Typically, execution platforms perform software authentication and integrity checking to
manage trust in a networked environment. In a mobile computing environment, both remote hosts
and mobile code may act maliciously. We develop a trust model for mobile agents with novel
features: linking application security requirements with mechanisms based on trust, reasoning
about trust properties for generic security mechanisms, and application models for initial trust
among principals in a mobile agent setting. Chapter 4 details our research results for this
objective.

1.2.3 Program Encryption

Providing protection against effective tampering attacks against mobile agents remains an
open problem in computer science. Researchers continue to seek ways to prevent certain
tampering attacks realizing that they can only detect strict service denials (blind disruption) a
posteriori. Finding ways to reduce effective tampering to blind disruption remains an active
interest area. In this thesis, we develop effective means for both black box and white box
protection that guard the agent’s programmatic intent. These techniques are fully general for
programs with small input size, but do not apply to all program classes. We develop also a
theoretical foundation for understanding code protection based on program recognition and
random programs [44]. We present our research results for this objective in Chapter 5.

5

1.3 Conventions

We briefly describe the notational conventions used throughout this thesis.

1.3.1 Cryptographic Primitives and Protocols

Cryptographic techniques provide secure functionality for enforcing various requirements such
as confidentiality, integrity, and authentication.

Symmetric key encryption employs a secret key to encrypt a message into ciphertext and
the same key to decrypt the ciphertext into the original message. For our purposes, E(K,M) and
EK(M) indicates a symmetric encryption algorithm E which encrypts data string M ∈ {0,1}* using
the secret key K to produce ciphertext C ∈ {0,1}*: C = E(K,M). Two notable symmetric encryption
algorithms include Date Encryption Standard (DES) and Advanced Encryption Standard (AES).

For clarification, we describe decryption under a symmetric key scheme by D(K,C) and DK(C)
indicates a symmetric encryption algorithm D which decrypts data string C ∈ {0,1}* using the
secret key K to reproduce the original plaintext M ∈ {0,1}*: M = D(K,C). Under symmetric key
cryptography, the message sender and receiver must agree on the secret key beforehand.

Asymmetric key encryption involves the using two different keys: one public (K) and one
private (K

-1). In order for Alice to send Bob a message, Alice encrypts her message M with Bob’s
public key (KB). On receipt, Bob uses his private key (KB

-1) to decrypt the message. Signatures
are an authentication technique associated with asymmetric encryption where a message
originator encrypts a message with their private key (K

-1). The other principal, upon receiving the
message, can verify the sender’s identity using the sender’s public key (K). In order for Alice to
verify Bob as the sender of a message M, Bob signs (encrypts) his message M with his private
key (KB

-1)). On receipt, Alices uses Bob’s public key (KB) to verify the message.
Symmetric Block Ciphers. A block cipher is a function E: {0,1}k x {0,1}m → {0,1}m that takes a

k-bit key and an m-bit (block length) plaintext input and returns an m-bit ciphertext string. The
inverse function D: {0,1}k x {0,1}m → {0,1}m takes the same k-bit key and an m-bit ciphertext string
and returns an original m-bit plaintext string. We let EK(M) denote the encryption of block
message M ∈ {0,1}m with a specific key K ∈ {0,1}k and let DK(C) denote the decryption (inverse
encryption) of block message C ∈ {0,1}m with the same key K ∈ {0,1}k. We assume that any block
cipher E of interest to us is a strongly pseudorandom function that is a permutation on {0, 1}m, as
defined for example by Goldreich in his textbook [188].

Message Protocols. When a principal X sends message mi to principal Y, we indicate this by

n
m FFFFYX i ,...,,,: 321⎯→⎯ , where the message contents are the fields F1, F2, F3, … Fn.

1.3.2 Boolean Functions and Circuits

A Boolean function (also known as a gate) is a map f: {0,1}n→{0,1}. For n = 2, f is a 2-input
Boolean functions. A basis Ω is a set of Boolean functions. We define a circuit over a basis as a
directed acyclic graph (DAG) having either nodes corresponding to functions in Ω being termed
gates or having nodes with in-degree 0 being termed inputs. We distinguish one (or more) nodes
as outputs. We compute the value at a node by applying the corresponding function to the values
of the preceding nodes. We define the circuit size as the number of gates. We define the circuit
depth as the length of the longest directed path from an input to an output. We say the basis Ω is
complete if and only if all f are computable by a circuit over Ω. We define the size of the basis Ω
as the number of functions composing it and represent it using |Ω|. We define Bn as the set of all
Boolean functions with n inputs.

Combinational Circuit: We refer to standard Boolean circuits over Ω = {AND,OR,NOT} and
let C be a circuit with n inputs and m outputs. For x ∈ {0, 1}n, C(x) denotes the result of applying
C on input x and specify that C computes function f : {0, 1}n → {0, 1}m. A combinational circuit
(block, component) consists of logic gates that process n input signals xn-1, . . . , x0 into m output
signals ym-1, . . . , y0 using a function y = f(x), in such a way that output signals depend only on the
current input signals.

6

Truth Tables. Assuming P: {0,1}n → {0,1}m, T(P) indicates the m⋅2n size matrix of input/output
pairs that represent the truth table (logical) relationship of P: ∀x, [x,y] = [x, P(x)].

Canonical Forms. We represent the canonical form of a Boolean function f with n inputs as a
sum of its products (minterms). Each product (∧) has n terms and the summation has at most
2n ∨-terms. We give the upper-bound for the canonical form of any Boolean formula as O(n2n)
gates.

)....(),...,,(2
2

1
1

1),..,2,1(
21

an
n

aa

anaaf
n xxxxxxf ∧∧= ∨

=

1.3.3 Turing Machines and Programs

Unless otherwise noted, Turing machines and circuits are identified by their normal descriptive
representations as strings in {0,1}∗. TM stands for a Turing machine while PPT stands for a
probabilistic polynomial-time Turing machine. Given algorithm ADV, algorithm M, and input string
x, the notation ADVM(x) indicates the output of algorithm ADV when executed on input x using
oracle (black box) access to M. The black box oracle M can be a circuit or TM. When M is a
circuit, algorithm ADV receives query responses M(x) from oracle M on input x; when M is a TM,
algorithm ADV can perform black box queries of the form (x, 1t) and receive M(x) if M halts within
t steps on x or receive the halt symbol (⊥) otherwise.

When algorithm ADV is a PPT, ADV(x; r) indicates the output of ADV when executed on input
x using random tape r. ADV(x) is the distribution induced by choosing r uniformly from the
distribution and executing ADV(x; r). For a distribution D, we indicate with the notation Dx R⎯ ⎯←
a random variable x distributed according to D. For a set S, we indicate with the notation

Sx R⎯ ⎯← a random variable distributed uniformly over the all the elements of the set S. A
function α: N≈R+ is negligible if, for any positive polynomial p, there exists N ∈ N such that . α(n) <
p(n)-1, for any n > N.

We let P | E refer to the concatenation of program P with the program E such that (P|E)(x) = E
(P(x)), for all x. Given a program P:{0,1}* → {0,1}* and ∀x, y = P(x), we let |xP| represent the input
size of P in bits and let |yP| represent the output size of P in bits. Let P be defined as function
P:{0,1}n → {0,1}|yP| and E: {0,1} |xE| → {0,1}m. We define the concatenation of P with E as P | E:
{0,1}n → {0,1}m.

1.4 Chapter Summary

We introduce in this chapter the field of mobile agent security and software protection. We
give a review of several incremental results corresponding to our research and highlight the more
significant results concerning program intent protection. We outline the remainder of the thesis
as follows. Chapter 2 and Appendix A present a comprehensive literature review on mobile agent
security, program protection, and trust frameworks that are applicable to our research. We
present issues and results associated with our research objectives individually. Chapter 3
describes the security utility and design benefits for using multi-agent architectures and provides
results in developing such architectures. Chapter 4 introduces a novel framework for integrating
trust into mobile agent security decisions. Chapter 5 presents our research results for developing
mobile code and software protection schemes that enhance code privacy and execution integrity.
Chapter 6 concludes with a summary and discussion.

7

CHAPTER 2

MOBILE AGENT SECURITY

Our three-pronged approach to strengthening mobile agent security involves diverse computer
science disciplines. In this section, we provide a literature review for appropriate areas related to
our research and results. Appendix A provides a more comprehensive analysis for the interested
reader. In Section 2.1, we first define mobile agents and their characteristics as a distributed
computing paradigm. In Section 2.2, we define the requirements and threats associated with
securing mobile agent systems.

2.1 Mobile Agent Paradigms

Two worlds merge in the mobile agent paradigm: software agents and distributed computing.
These worldviews have very different research goals, associated standards, and underlying
assumptions. Mobile agent frameworks are the meeting point between theory and practice for
mobile agents—providing a means for agent construction, migration, and execution in real-world
applications. Figure 3 depicts this relationship and points us to considerations for mobile agent
security.

Figure 3: Considerations in Agent Mobility

2.1.1 Defining Agents

In applied artificial intelligence (AI), agents perform autonomous actions in order to meet user-
preferred goals [3]. We describe an agent as automated software that assists a user and acts on
their behalf. Agents perform tasks by carrying knowledge, reasoning over beliefs, representing
user intentions, and communicating via some standard mechanism with other agents [4]. We
describe agent behavior as autonomous, goal-driven, adaptive, proactive, mobile, and social
based upon predefined rules and actions provided by their designer [5].

Researches like Odell [45] describe agents not in human terms but as active objects with
private execution threads. Agent actions in the object-centric view arise from thread interactions,
conditional statements, method invocations, object interactions, exception handling, and
serializable persistence [46]. Agents, under any definition, are software processes that execute
within some environment. Like any other software component, they communicate with both users
and other processes via predefined protocols such as message passing.

Single agents (like those that help a user to better customize repetitive tasks) do not require
collaboration with other agents. In multi-agent systems, we place agents into classes based on

8

labor divisions representing their functionality. Single or multiple agent instances from different
agent classes work together and are deployed for some common system goal: networking,
interface assistance, filtering, information fusion, brokering, transaction processing, monitoring,
decision making, knowledge management, and many others [47]. Agent infrastructures or
middleware provide ability for agents to interact, communication via agent communication
language (ACL) protocols, and specify standard ontology in a framework [48].

Figure 4: Software Agent Space

Several researchers have made strides in defining intelligent agents and developing agent-
oriented software engineering techniques; such results are established by Rao/Georgeff [49],
Decker et al. [50], Bradshaw [2], Object Management Group [51], and Tosic/Agha [52].
Researchers consider contributions by Wooldridge and Jennings [3, 5, 53, 54] to be seminal.
Classic multi-agent scenarios involve cooperating processes with incomplete or specialized
capabilities working in a decentralized manner, usually with distributed information across
asynchronous computations [55].

Multi-agent systems embody social, goal directed behavior and establish message-passing
protocols used by agents that define a system. Gilbert et al. [56] describe autonomy and
intelligence as orthogonal design spaces in considering software agents. Mobility, which is the
ability to migrate to another location and perform a task, remains an additional, but non-essential
agent feature. Figure 4, derived from Rothermel and Schwehm [57], depicts our interest in
taxonomical definition from among these three spaces as the security aspects for agents that
exhibit mobility.

2.1.2 Defining Mobility

In the distributed computing realm, mobile or itinerant agents are a natural extension to
remote code execution [18]. Mobility removes the requirement that a process must remain
confined to the host where it began execution. Mobile agents as a distributed computing
paradigm manifest in four different expressions, illustrated in Table 1 [57]. Rothermel and
Schwehm define each paradigm based on the program location (the know-how), the resources
used by a program, and the execution environment (the processor) that a program runs on [7].

In a mobile agent scheme, the program moves to its resource location and executes on the
local environment using the remote processor to update its internal state. Reduction in network
loads and supporting asynchronous and disconnected operations are two benefits, among others,
seen by researchers such as Lange and Oshima [58] and Kotz and Gray [59]. Researchers such
as Chess et al. [18,60], Carzaniga et al [9], Ghezzi and Vigna [7], Fugetta et al. [8], Riordan and
Schneier [61], Bradshaw et al. [1], and Milojicic et al. [62] establish foundational premises for
combining code mobility with agency.

9

Table 1: Distributed Computing Paradigms
Computing Paradigm Mobility Mechanism
Client-server
Message passing

Transporting
data

Remote Evaluation
Code on Demand

Transporting
code + data

Mobile Objects
Weak Migration

Migrating
code + data

Mobile Agent
Strong Migration

Migrating
code + data + state

2.1.3 Mobile Agent Interactions

A static program (code), a dynamically changing state (data), and a program thread (execution
state) together compose a mobile agent. Agent construction, migration, and execution do not
occur in a vacuum: applications must define security requirements for such interactions as well.
Researchers use different models to represent agent and host interactions, with no agreed upon
standard as to which representation generically captures a mobile agent system.

Figure 5 illustrates the mobile agent lifecycle used by Hohl [63] and shows an agent from
creation to termination. An originator creates an agent with an initial state and dispatches it to the
first host. Each subsequent host takes the previous agent state as a starting point and provides
appropriate host input, updating the dynamic agent state appropriately. Input encompasses all
data provided to the agent while on the remote host: communications from other agents on the
same or different hosts, communications with the originating host, results from system calls, and
results from service invocations. An agent ends execution on a particular host when it completes
local processing and requests migration. The agent migrates back to the originating host and
provides the task result to the application owner.

Figure 5: Mobile Agent Lifecycle

Host Environments. The agent platform or (remote) host must provide to agents an
execution environment that we term middleware. The host operating system controls this
environment and the middleware provides all necessary services to an agent. Middleware may
provide primitive operations to agent programmers via services and other facilities that adhere to

10

a predefined standard. The agent middleware ensures correct itinerant or static code execution,
provides runtime service access, and places constraints on native resources such as CPU,
memory, local disk, or bandwidth [22].

Several commercial and academic middleware systems exist and we provide Table 2 for
reference. Bellavista et al. [64], Schoeman and Cloete [65], Altmann et al. [66], Wong et al. [67],
Fuggetta et al. [68], and Rothermal et al. [69] provide descriptive analysis for mobile agent
architectures. Fritz Hohl’s mobile agent list3 provides current commercial and research based
mobile agent middleware while Thorn [70] presents an early literature review on mobile code
languages and platforms.

Table 2: Agent Middleware Systems
System Languages Developer
ADK JAVA Tryllian, Netherlands
Aglets JAVA IBM, Japan
Ajanta JAVA Univ. of Minnesota, USA
Ara C/C++, TCL, JAVA Univ. of Kaiserslautern, Germany
Concordia JAVA Mitsubishi, USA
CyberAgents JAVA FTP Software Inc.
D'Agents AgentTCL Dartmouth, USA
FIPA-OS JAVA Nortel, USA
ffMAIN TCL, Perl, JAVA Univ. of Frankfurt, Germany
JACK JAVA Agent Oriented Software Group, USA
JADE JAVA Telecom Italia Group, Italy
JATlite JAVA Stanford, USA
KAFKA JAVA Fujitsu, Japan
Knowbots Python CNRI, USA
MOA JAVA Open Group, UK
Mole JAVA Univ. of Stuttgart, Germany
MonJa JAVA Mitsubishi, Japan
NOMADS Aroma JVM Inst. for Human/Machine Cogn., USA
OAA C, Java, VB SRI International, USA
Plangent JAVA Toshiba, Japan
TACOMA TCL, C, Python, Perl, Scheme Cornell, USA / Tromso, Norway
sEmoa JAVA Fraunhofer-Institut GD, Germany
SOMA JAVA Univ. of Bologna, Italy
Voyager JAVA Objectspace, USA
ZEUS JAVA BT Labs, UK

Figure 6 depicts the agent middleware providing facilities to receive a marshaled agent,

instantiate an execution environment for the agent based on its current state, and allow the agent
to run until its next migration. Agent middleware captures agent state and marshals it via a
departure point defined as either a raw socket or a dedicated communication channel. Some
mobile code systems force the programmer to transition state from one platform to another
manually, though strongly mobile architectures do this implicitly for each migration. Middleware
offers native services for visiting agents (service points in Figure 6) or allows direct access to
underlying operating system resources based on a predefined security policy.

An agent interacts with a host environment in three ways that cause security concern. First,
mobile agents move and change their execution location. Researchers distinguish the agent
movement expression from distributed systems specification; agent security seeks to protect the
agent itinerary specifically. Second, mobile agents may need to talk with other agents or with the
originating host using some predefined protocol, whether agent specific or not. Agent middleware
must protect communication availability, integrity, and secrecy. Third, agents interact with a host
server in meaningful ways that change their state. The code, state, and thread interactions
between agent and host are described in different ways and examples can be found in Vitek and
Castigna [71], Serugendo et al. [72], Fugetta et al. [68], Hohl [63], Borselius and Mitchell [73], and
Yee [74].

3 Available http://draco.cis.uoguelph.ca/link.html, October 2005

11

Figure 6: Host Agent Middleware

Agent Mobility. Mobile agents visit one or more hosts in a heterogeneous network and may
or may not return to their originator. We term a migration from server to server a hop: multi-hop
agents visiting more than one server and single-hop or one-hop agents visiting only one server.
One-hop agents are similar to Java applets that download into browsers; Ghezzi / Vigna [7] and
Rothermel / Schwehm [57] classify applets as weak mobility forms. Weak mobility also includes
one-hop agents who transfer results back to the originating host via message passing. Ordille
[75] refers to an agent that visits a host and migrates immediately back to its originator as a two-
hop boomerang.

We refer to an agent’s visited host set as an itinerary and depict them in Figure 7 as the
migratory transitions between host platforms. We view route information as specialized agent
data state, with some static code part dedicated toward updating and using it for migration, or as
a special agent addendum used by the underlying middleware. The agent owner predetermines
hosts in a fixed itinerary while an agent dynamically determines hosts as it migrates in free-
roaming itinerary. In the latter case, an agent decides the next hop in the route either with help
from the host environment or on its own using built-in communication mechanisms.

Figure 7: Agent Itinerary Description

12

An application owner may provide the agent a possible host superset to visit while also
allowing the agent freedom to determine dynamically a subset to visit. Researchers like Ordille
[75], Wilhelm and Staamann [76], Borrell et al. [77], Chen and Chang [78], and Knoll et al. [79]
focus on describing and protecting agent itineraries. There are several possibilities for an agent’s
itinerary, described notionally from the agent set and host set seen in Figure 7. An agent with
only the first hop specified represents the most difficult security requirement for integrity—
described as the set {A} based on Figure 7. For an autonomous, free-roaming scenario, the agent
adds new possibly unknown hosts to its migration list every time it migrates. A fixed unordered
superset can also be known a priori as a bound on the agent’s travel, represented by the
unordered set {A,B,C,D,E,F,G} in Figure 7. This itinerary configuration allows dynamic free-
roaming traversal through a host subset. Another mixed itinerary mode allows the originating
host to embed an initial static itinerary within the agent while still allowing dynamic additions to
the list as the agent migrates. The originating host can also specify the exact host subset an
agent can visit and in what order—creating the most restrictive configuration. Figure 7 depicts
this specification type as the ordered set {A, C, D, F}.

Some security mechanisms require a fixed itinerary and a known host superset, while others
are more flexible and support free-roaming traversals. Researchers such as Aridore and Lange
[80] and Tahara et al. [81] pose methods for using meta-level agent design patterns for specifying
agent itinerary during software development phases; agent frameworks vary themselves in how
they handle agent itinerary. Satoh [82] defines formal agent itinerary specifications for free-
roaming scenario support.

Several formal models derived from distributed systems research are used to reason logically
about mobility. We term these formal mobility expressions and their communicative relationships
as process calculi or process algebras. Such calculi provide a strict notational expression for
locations, resources, threads, networks, authorization, and programmatic execution used in
describing mobility. Milner and his colleagues [83,84] created the π-calculus to model
independent parallel processes that perform message-passing handshakes on specified
channels. π-calculus has become a baseline algebra from which many variations have
descended and other calculi are compared against. Serugendo et al. [85] compare the various
formalisms used to describe mobile agents.

 Polyadic π-calculus refers to architecture that models messages between multi-object
processes and researchers typically extend the calculus for specific purposes. Extensions to π-
calculus include support for asynchronous operations [86], support for mobility with distributed(D)-
π [87,88], modeling communication between processes with nomadic-π calculus [89], and
incorporating security primitives like cryptographic operations with Spi calculus [90]. Other
algebras that define mobility (most deriving from π) include the Join calculus [91], the mobile
Ambient calculus [92] which describes cooperating mobile agent processes, the UNITY [93] and
Mobile UNITY calculi [94, 95] which address specific mobile devices and disconnected wireless
operations, and the Seal calculus [96] which models secure transactions over distributed
networks like the Internet.

Formally expressing security and “good/bad” relationships are possible in algebraic models.
The crypto-loc calculus [97], the SLam calculus [98], and the Spi calculus [90], for example,
support using cryptographic or security primitives in process interactions. These expressive
frameworks extend work in other modal logics and assign distributed processes security and
authentication properties.

Agent Communication. Agents not only have the ability to change execution location but
also have the ability to interact with other agents. Middleware may or may not provide specific
facilities to support communication possibilities. Standards for multi-agent systems categorize
agent communications as either intra-platform or inter-platform [99]. Rothermal and Schwem [57]
subdivide them into four categories: agent-to-service interaction, mobile agent-to-mobile agent
interaction, agent group communication [100], and user-to-agent interaction. All four classes carry
with them security requirements to include privacy, integrity, and availability.

Poslad et al. [101] review the agent communication methods found in the Foundation for
Intelligent Physical Agent (FIPA) Message Transport Specification [99]. Figure 8 details the

13

different ways an agent can communicate with another agent according to the specification. The
first method involves agents sending messages to a local agent communication channel (ACC)
via some proprietary interface. The service then sends the message to the remote ACC using a
message transfer protocol. In the second method, an agent interfaces directly with the ACC on a
remote host where another agent resides. Finally, an agent can send a message directly to
another agent using a direct non-FIPA communication method.

Figure 8: FIPA Agent Communication Methods [Poslad et al. 2002]

Chess et al. [18] define agent communication languages such as Knowledge Interchange
Format (KIF), Knowledge Query Manipulation Language (KQML), and Ontolingua4 for specifying
agent-to-server and agent-to-agent communications. Thirunavukkarasu et al. [102] address basic
security protection such as integrity, privacy, and authentication in KQML. Their protocol allows
agents that have some or no cryptographic primitive support to negotiate security using
performatives. Further, the protocol supports privacy, authentication, and non-repudiation, but
does not address message replay.

Other research efforts for securing agent communications deal with adapting security into
newer standards. Tan et al. [103] focus on FIPA inter-platform communication by creating
security specifications for S/MIME content-type messages. Their architecture includes signed
data, enveloped data, clear-signed data, and signed-enveloped data as content types for KQML
messaging, all accomplished by manipulating message data itself. Mobile agent communications
are slightly different, because the host and agent communicate something more than just data.
Labrou et al. [104] summarize issues with integrating agent communication languages in mobile
settings.

Agent Resource Access. Agents may simply borrow the remote host’s processor; however,
mobile architectures normally assume agents migrate to remote hosts to update their state by
meaningful host interactions. Mobile agents accomplish work that usually requires an input from a
particular host, whether the price for a particular good in an e-commerce setting or an information
retrieval result. A mobile agent queries the host for this input, performs processing on the data,
and embodies the result in its dynamic state. Security mechanisms ensure that an application
owner or host can distinguish meaningful changes from malicious changes.

To reason about security requirements for host resource access and its effect on an agent
(namely state transitions), researchers describe the agent-to-host interaction in different ways.
Several authors [74, 105] describe the agent computation as a combined function pair: the state
update function and the host output function. Yee [74] depicts this as a query sequence qi issued
by an agent against a host resource set Ri on host Si. Figure 9 depicts this interaction and
identifies y in relation to the dynamic agent state, R in relation to host services, q in relation to the
agent’s static code, and f() as an intermediate function that marks agent state transitions. Yee
expresses the agent static code (qi) as query exchanges and assumes it does not change during
server execution on the agent’s behalf.

4 Ontolingua Homepages, Available: http://www.ksl.stanford.edu/software/ontolingua

14

Figure 9: Agent Interaction Model

As Figure 9 illustrates, the query result (xi,1) depends on the query itself (qi) which incorporates
the initial agent state on agent arrival (yi,0). This query represents the server executing the
agent’s static code, using the current agent state as a basis for interaction with the code, and
then creating a new state version due to the interaction. After the host executes the first agent
code segment, the host computes a new state (yi,1) and produces a new state used for the next
agent query result (xi,2 = Ri(qi(yi,1))). Each time the agent issues a query (executes another code
segment), it obtains a new result xi,j and creates a new state (yi,j). A given host can have several
query exchanges with an agent in this model, representing the agent’s full static code execution
and the final agent state just prior to its next migration.

As another example, Hohl [106] uses the RASP abstract state machine model to define
possible attacks on the mobile agent. Hohl cites deficiencies in other models (Turing machines,
RAMS, and stack machines) that do not allow manipulating the state transition function—an
essential facet in modeling mobile agent interactions. The RASP model allows agent code
representation and state information manipulation accordingly. Other computational models for
mobility express security properties broadly including data encapsulation, execution integrity, or
execution privacy (see for example [25, 34, 107, 108, 109, 110, 111]).

Agent Identity and Naming. Specifying the agent identity has many important security
ramifications. Leaving an agent unidentified makes the agent vulnerable to many possible
attacks that include interleaving attacks from modified or mutated agents. Roth [108, 112]
devises a simple identification scheme based on the asymmetric key signature function and a
secure one-way hash function to help counter cut-and-paste attacks in various protocols
(depicted here in Figure 10).

Figure 10: Agent Kernel and Identity Definition with Security Attributes

15

Roth defines the agent kernel and illustrates one method to identity an agent using security
primitives. Agent migration represents a protocol exchange similar to those used in network
protocol descriptions. Figure 10 depicts the agent kernel (the agent’s static code or program
embodiment) as a signed random number copy combined with the static code. The hashed
signature provides a unique identity for a particular agent instance, assuming the application
owner uses a sufficiently large random number not vulnerable to reuse.

To summarize, we define agents according to resource access, communication, mobility, and
identity. Applications levy security requirements that relate directly to the mobile agent definition.
Research communities express each interaction class differently. Agent middleware
implementers, likewise, realize agent interactions differently using agent programming languages,
communication languages, host services, and middleware architecture. The community requires
a standardized definition for services and architecture to help simplify security specification—and
we discuss possibility for such standards next.

2.1.4 Emerging Standards

Multi-agent and mobile agent systems use different architectures and implementation
schemes. They lack interoperability and security integration with each other and this situation
stems largely in part from no clear emergent standards. Rothermal et al. [69] point out that the
early attraction to mobile agents in both academia and industry resulted in non-standard mobile
agent system implementations. Though standards for describing mobile agent interactions are
few, even worse there are no agreed upon standards for describing mobile agent security [113].

Two standards have emerged for multi-agent technology: the Object Management Group's
(OMG) Mobile Agent Systems Interoperability Facility (MASIF) and the specifications
promulgated by FIPA, mentioned previously. The CORBA security model for OMG essentially
absorbs the MASIF standards for security, even though CORBA has no strict mobility
perspective. Poslad et al. [114, 115, 116, 117] present many security considerations for FIPA
specification and they indicate FIPA appears to be the stronger candidate for adoption.

In 1998, FIPA published a preliminary specification for security [118]. The architectural
specification for FIPA [119] came short for proposing security services but did provide for
identification, access permissions, content integrity, and content privacy. Additionally, FIPA
standards also address message transport protection, agent management protection, and
security support protection. In March 2005, the IEEE Computer Society5 became the umbrella
organization for FIPA and formed a standards committee to support it.

Figure 11 illustrates that, the FIPA specification subdivides an agent platform into distinct
services and operations [120]. The proposed FIPA agent management model organizes multi-
agent systems, including those with mobility, by defining agents as autonomous processes that
communicate via agent communication languages. Agents can look up other agents via a
standard Directory Facilitator that serves as “middleman broker”. The Agent Management
System controls agent operations on a particular host as a supervisor while the Message
Transport Service [99] provides both intra- and inter-platform communication with other agents.

 Roth et al. [121] posed a definition for mobile agent system interoperability which applies not
only to underlying architectural assumptions but security protocols as well. Specifically, systems
are interoperable if a mobile agent in one framework/system can migrate to a second,
heterogeneously different, framework/system and communicate seamlessly with native agents.
Their approach, instead pushing FIPA or MASIF standards downward, comprises a bottom up
push using voluntary, practical interoperability features. Whether upward or downward in its
implementation approach, standardization efforts in the future must include mobile agent security
as an interoperability facet.

Pogg et al. [122] and Zhang et al. [123] address how to add support to FIPA for agent security.
Even though FIPA envisions primarily static agents in multi-agent contexts that might be mobile,
the specifications are still applicable in many ways to mobile agents and security requirements.
As Poslad et al. [115] further note, no single or de facto standard for mobile agent security has

5 IEEE Standards, Available: http://www.computer.org/standards

16

emerged despite feverish research efforts over the years. Mobile agents are more interesting
from the security perspective than static multi-agent interactions: more opportunities for malicious
activity springs from the way migrating agents interact with executing hosts. If researchers solve
the security issues for mobile agents, they likewise solve most multi-agent issues as well.

Figure 11: FIPA Agent Management Specification

Richards [113] summarizes relationships between MASIF, OMG, FIPA, and other related
standards by noting that realized security will vary greatly based on agent system differences and
their specific implementations (even if standards are followed). Agent systems are not necessarily
compatible with all the possible security mechanisms posed in the literature. Solutions are
normally middleware specific and applying all defensive mechanisms to one system remains an
impractical task. Researchers and implementers face a common dilemma: how do security
mechanisms relate to requirements and standards, especially when applications drive specific
security requirements?

2.1.5 Research Trends

Chess et al. [60] questioned claims touting mobile agent benefits, finding some claims still
unproven at the time. In the same spirit, Rothermal et al. [69] identified at least three key
elements in mobile agent environments early on that were missing: 1) security standards, 2)
control structures, and 3) transactional support. Not surprisingly, Schoder and Eymann [124]
noted some time after that the four top mobile agent technical challenges were security related: 1)
a need for highly secure agent execution environments; 2) performance and functional limitations
resulting from security; 3) virus scanning and epidemic control mechanisms; and 4) transmission
efficiency, for example, a courier agent in contrast to a simple SMTP mail object. Initial mobile
agent research seemed to solve many simple problems, while leaving many harder security
related issues unanswered.

Milojicic’s [62] interview with several researchers demonstrates a parochial mobility position in
the agent community: some view mobility as a non-required but possibly beneficial agent system
feature and others view mobility as a foundationally different paradigm to build applications
around. Despite differences in the community over benefit, many researchers echoed Kotz and
Gray’s sentiment [59] that mobile agents were inevitable and “coming soon”. Tschudin [125]
termed mobility the “Zeitgeist” at the turn of the century. Designers envisioned more useful
application features to end users in environments where limited bandwidth, disconnected
operations, and mobile devices are prevalent.

Researchers have analyzed why mobile agents did not achieve widespread use outside
academia despite efforts from the previous decade. Vigna [126] suggests ten reasons why
agents have failed and his analysis shows nearly half are security related: 1) agents can be
brainwashed; 2) they cannot keep secrets well; 3) they are difficult to authenticate and control;
and 4) they have similar characteristics to worms. Samaras [19], in examining why the industry

17

has not embraced the technology as most in the research community expected, states that
security problems remain the culprit. Johansen [127] rightly points out that mobile paradigm
opponents focus on inherent architecture problems, namely the technical details that guarantee
host and agent integrity. Finally, Roth [20] details obstacles to mobile agent adoption and cites
the security (or lack thereof) as a common basis for fear. He observes that few sure mechanisms
guarantee availability, integrity, and scalability in agent systems while keeping the overhead
manageable.

Like Kotz and Gray [59], we expect that agents are indeed “coming” in the future and that
practical implementations for mobile agent systems are incumbent upon pairing system features
with available security defenses—while managing those protection aspects that are not
attainable. The next section reviews security requirements and threats in the mobile agent
environment and presents a framework for understanding both malicious host and malicious
agent defense strategies.

2.2 Mobile Agent Security

As Matthew Henry6 reminds us: “corruptio optimi est pessima—that which was originally the
best becomes when corrupted the worst.” Mobile agents have potential for elegance and flexibility
in distributed systems design; the risks posed by malicious mobile code or hosts currently
overshadow any perceived benefit. As a result, a possibly good design abstraction such as
mobile agents becomes the worst security nightmare. Both agent servers (referred to as hosts)
and mobile agents can be maliciously altered in ways that go beyond normal software, network,
and systems operations [24]. The literature contains many candidate solutions that mitigate
possible attacks from malicious hosts, malicious agents, network adversaries, and underlying
host platform compromise. Trying to grasp relevant research results and choose candidate
security solutions for implementation in real-world applications remains a difficult task.

We assert that security engineering is vital to successful future mobile agent development
efforts. Security must be incorprorated from the ground up into any mobile agent system.
Bellavista et al. [64] echo this sentiment:

“The ultimate challenge is … unifying security with system engineering… just as
[mobile agent] system engineers analyze and select system features to answer
functional requirements, security engineers must develop applicable security
models and deploy those security measures that can make available different
qualities of security service depending on specific security requirements of
applications and on the most suitable trade-off between security and efficiency.”

In order to address security requirements properly, we need to link mobile agent security
mechanisms to the threats present in the mobile environment. Classifying various security
mechanisms and their relative effectiveness for achieving security goals are closely associated.
We discuss next the security requirements for multi-agent and mobile agents systems and
analyze implementation specific security properties. As Figure 12 highlights, by nature, agent
mobility creates a unique threat environment that includes possibly untrusted agents executing on
possibly untrusted hosts. Multi-agent security and mobile agent security share similar issues and
we discuss these next.

2.2.1 Multi-agent Issues

Researchers have treated security in multi-agent systems essentially as an afterthought since
the field’s inception (unlike the mobile agent field where researchers placed precedence on
security from the beginning). Wong and Sycara [128] consider malicious activity in multi-class
systems and identify the need for several features: uniquely identifiable agents, agent key
certification and revocation, agent services integrity, and secure communication channels.

6 Matthew Henry's Commentary: New Modern Edition, Electronic Database. Hendrickson Publishers, Inc., 1991.

18

Borselius [129,130] notes that agent security issues for communication are equivalent to normal
requirements for confidentiality, integrity, authentication, availability, and non-repudiation in
typical software applications.

Multi-agent security deals primarily with the protecting ACL messages passed between static
agents deployed around the network and the security properties associated with host execution
environments. Agents in multi-agent systems sense the environment and decide whether to raise
the overall application security level. Security reduces to whether applications allow unencrypted
transactions. Wells et al. [131] define such a security approach as an adaptive defense
coordination architecture.

Figure 12: Taxonomy for Defining Mobile Agent Security

Bresciani et al. [132] develop multi-agent descriptions for complexity and security associations
between actors and provide an analysis framework for whether critical security measures are met
by the system design. Multi-agent systems often introduce security features via different agent
classes that provide specific functionality (encryption, integrity checking, status checking, and so
forth). The Tropos environment [133] analyzes whether certain agent classes are too taxed with
security duties and assesses the consequences for their failure. Braynov and Jadliwala [134]
propose a formal analysis technique that uses coordination graphs to detect malicious agent
confederacies. This model assumes that cooperating malicious agents must cooperate to
achieve their goals; coordination graphs reveal when malicious agents work together. The
algorithm defines links, relationships, and cooperation between agent group members in order to
establish (malicious) task correlation. The graphs help root out insiders by highlighting actions
that an agent cannot perform alone given current resources. On the more practical side, Parks et
al. [135] give initial results from a red-team approach that launches practical attacks against
existing multi-agent architectures. Their attack categories consider the agent middleware and
host operating system itself in addition to vulnerabilities at the communication level.

Researchers in multi-agent systems are beginning to address security and introduce
countermeasures to threats in the software analysis and design phase. Multi-agent systems focus
on vulnerabilities related to static messaging protocols; however, the priorities, threats, and
requirements in the mobile environment demand greater attention and we discuss these next.

2.2.2 Threats and Requirements

We consider that developing good requirements for mobile agent security and matching those
with existing security mechanisms will increase long-term mobile architecture success. As
researchers like Rothermel et al. [69] state:

“The vision of mobile agents as the key technology for future electronic
commerce applications can only become reality if all security issues are well
understood and the corresponding mechanisms are in place.”

19

We agree that any future vision for using mobile agents must precisely define and address

security issues—including current technology limitations, the problems that can be solvable, the
problems that are impossible to solve, and the problems that remain left for research. Orso et al.
[136] pose non-mobile specific security solutions that automatically analyze security requirements
to determine the correct countermeasures set for an application. Requirements for agent security
should be expressible in clear and traceable relationships to security mechanisms. We believe
the catch-22 in mobile agent systems design is that “killer” mobile agent applications do not exist
[127,137]. With so few real world mobile agent applications in existence, researchers encounter
greater problems in devising candidate security solutions. The largely different variables and
configuration possibilities that affect mobile agent security make solution / mechanism
implementation even more difficult.

Security issues have been at the research forefront since mobile code emerged as a design
paradigm for distributed systems. Chess [24] and Farmer et al. [23] describe several reasons
why the mobile agent paradigm violates long held assumptions about the computational
environment. In particular, we can normally attribute program actions to a person and believe the
person intended the program’s actions by its execution—an assumption not true when programs
migrate. Mobile agents are similar to malicious viruses because they can migrate from host to
host without an ability to discern their intent before malicious actions have corrupted a system.
Agent middleware has full and complete control over the mobile code content—exposing
programs to unusual vulnerability.

Four threat categorizations in the mobile environment include: 1) attacks by malicious agents
against hosts; 2) attacks by malicious hosts against agents; 3) attacks by agents against other
agents; and 4) attacks by other entities against the host platform. Figure 13 depicts these various
interactions using arrows and letters:

Figure 13-(A), malicious agents can attack host platforms.
Figure 13-(B), malicious hosts can attack agents.
Figure 13-(C), malicious agents can attack other agents on their current platform.
Figure 13-(D), adversaries can attack the underlying network transport mechanism.
Figure 13-(E), agents can attack agents on other platforms.
Figure 13-(F), agent platforms can attack other platforms.
Figure 13-(G), intruders can launch assaults on the underlying host operating system.

Figure 13: Summarizing Mobile Agent System (MAS) Attacks

20

2.2.3 Malicious Agents

An agent with hostile intent acting upon a server can exercise capabilities similar to a worm or
virus. A remote host grants an agent trust in order to execute and use resources. Once given
access, the agent executes like a normal process with rights to some or all host resources (CPU,
disk, memory, bus, ALU, network channel, public host service, etc.). The agent can attempt to
either gain unauthorized access to host resources or wrongly use the authorizations granted by
the host [48]. Figure 14 summarizes the threats posed by hijacked agents.

Figure 14: Malicious Agent Threats

Malicious agents can execute service denial attacks by unrestricted resource consumption on
the host machine. They can also work to disrupt host operations and other agents by
unreasonable requests or blocking certain services. Service denial threats also involve agents
that issue worthless resource requests. Agents can also eavesdrop and monitor remote host
resources, such as the communications channel or host ports, and try to gain unauthorized
access to private host information. The host state, memory, and operating system resources may
be all or partially available to the agent, depending on the middleware environment. While agents
need freedom to communicate with other agents, migrate, and execute their programs, this
freedom also exposes the underlying resources to risk.

An executing host demands agent accountability, especially when an agent maliciously
commits or subverts transactions and denies involvement subsequently. Changes to the agent
state or code can cause an agent to become malicious in nature itself. Agents may also be
programmed to act politely up to a point—and then may abuse the privileges they are given. It
remains a difficult task for the host to examine code intent, whether mobile or not, and to evaluate
whether the agent possesses a legal execution state. As such, a receiving host needs a
mechanism to monitor integrity changes to the agent state and code. Table 3 summarizes the
threat and requirements correlation matrix for host security.

Tschudin [125] recognizes three essential needs concerning the mobile agent host: 1)
authenticating the mobile agent; 2) authorizing the agent to use host resources; and 3) allocating
resources to the agent for execution. These categories make useful analytic tools to formulate
host requirements for possibly malicious agent interaction in future applications. When we
consider authentication, the central question becomes whether we can verifiably identify a
principal. The answer remains critical in mobile agent environments—normal trust relationships
may be broken when an agent migrates along a multi-hop itinerary. Wilhelm et al. [138] express
agent trust with four different levels, ranging from blind trust, trust based on a good reputation,

21

trust based on control and punishment, and trust based on policy enforcement. Policy
enforcement represents the only strong trust establishment mechanism that relies on technology.

Table 3: Host Security Threat/Requirements Matrix
Threat (Mobile agents can…) Requirement (Hosts should…)
consume host resources unfairly
(CPU, disk, memory, DOS)

- monitor agent resource consumption
- prevent illegal agent cloning

delay responses to host to cause
delays of service to other agents

- monitor agent resource consumption
- implement fine grained resource control based on policy

masquerade as another user or agent - authenticate static agent code
- establish agent identity or owner identity

perform illegal operations on other
processes, agents, or files

- provide fault tolerant environments separate from normal
processes
- implement fine grained resource control based on policy

have state corrupted due to traversal
through the network

- appraise dynamic agent data state integrity
- implement trust-based agent authorization policies

carry program code designed or
altered for malicious intent

- authenticate static agent code
- appraise static agent code safety properties

work together with other agents in
joint colluding attacks

- participate in inter-host data sharing

deny execution results or activity - trace agent activity in non-repudiatable ways
eavesdrop on agent or host
communications (ports, channels,
etc.)

- implement fine grained resource control based on policy
- secure intra-host agent communication channels

steal information illegally from host or
other agents

- authorize agent to read or write only certain data
- provide encryption services for visiting agents and local
host resources

be intercepted in route to a receiving
host

- secure inter-host communication

Similarly, Swarup [139] describes three trust appraisal levels required for incoming agents:

authentication, code appraisal, and state appraisal. Based on these requirements, hosts should
provide a safe execution environment (for agents) that limits access to resources and provides
authentication and appraisal mechanisms for arriving agent code and state. Static program
checkers and cryptographic primitives that support authentication and integrity provide methods
for code appraisal. Hosts require a verification mechanism to perform state appraisal; they must
discern runtime program safety and may examine trace logs for such purposes. Hosts decide the
resource allocation level to grant an agent via code and state appraisal characterization and
assign an appropriate authorization level. Reiser and Vogt [140] propose a conceptual
architecture for host security that provides several hosts services and layered security services.
Figure 15 illustrates the security features pipeline embodied in their approach.

We describe existing mechanisms for host security in Section A.2. Hosts determine agent
integrity and assess safety by code or state appraisal mechanisms. Hosts allocate resources by
combining access control and resource constraints based on the agent’s authorization level.
Ideally, an agent should not be able to bypass the execution environment. Jansen and
Karygiannis [22] describe a reference monitor as a tamperproof service that mediates underlying
resources. Among various reference monitor properties, several apply to host security for mobile
agents. Hosts require some mechanism to isolate agents from operating system processes and
from other agent processes (the sandbox seen in Figure 15).

Access control mechanisms guard computational resources and middleware providers must
provide them to support mobile agent interactions. Reference monitors support agent-to-host or
agent-to-agent information exchange as a basic service and may require cryptographic primitive
services from the host if the agent does not provide native encryption. Hosts typically establish
the agent identity, application owner identity, or itinerary host identity using cryptographic means.
Finally, hosts need auditing capabilities for security-related environmental aspects—resource
usage, file or process access, communication channel usage, and host operating system health.
Malicious hosts can corrupt agents and use them against friendly hosts—therefore many agent

22

protection mechanisms (Section A.3) apply equally to host protection (Section A.2). We consider
threats for malicious hosts and requirements for agent security next.

Figure 15: Architecture for Host Security

2.2.4 Malicious Hosts

Host attacks are similar to agent attacks in many ways, but their problems remain the hardest
to solve (host platforms could be mobile themselves but their resources are considered static for
the agent’s local environment). As background, we discuss Hohl’s model [106] describing
possible attacks in the malicious host environment. Bierman and Cloete [21] also classify host
threats and detail appropriate agent protection mechanisms against the malicious host by security
category. Five major concerns describe malicious host capabilities. Figure 16 organizes these
based on categorization by Cubillos and Guidi-Polanco [48] and Table 4 summarizes the host
attack threats as expressed by Hohl’s model [106] with appropriate requirements for security
implementation.

(1) Inspection: The host agent platform has the ability to inspect or observe an agent’s static
and dynamic part. Agents may also communicate with other parties during their traversal—thus
requiring a means to establish secure channels without malicious observation. In some mobile
agent contexts, the ability to see other host computational results can give a host an unfair
advantage—as in the case e-commerce bidding applications. The host platform can also see
every instruction executed by the agent. If the owner desires to hide a particular algorithm, a
malicious host may reverse engineer the agent code if the code does not securely hide the
computation [32]. In sum, the remote host has complete control over agent execution lacking
other protection means [34]. We desire that hosts have the ability to execute code on a user’s
behalf without gaining any knowledge regarding what that code accomplishes. This ability
remains a formidable challenge for malicious host protection and we provide solutions to
counter such attacks in this thesis.

(2) Modification: Host platforms can modify the static code (possibly introducing a malicious
agent) or modify previous host data results. Malicious parties can change code control flow to
subvert or change the computational result [34]. Malicious attacks can include reading and
writing data elements, program lines, state values, memory contents, and language
expressions. An adversary may also have the ability to override the agent code interpretive

23

environment and alter intended execution results. The remote host may also change
communications to influence an agent unfairly.

Table 4: Agent Security Threat/ Requirements Matrix
Threat (Hosts can …) Requirement (Agents should have…)
read and modify the data state
information

- tracing mechanisms to audit host execution steps
- checking mechanisms for legal/correct execution state
- evaluation mechanisms to verify state/code consistency
- mechanisms to copy state for later verification

read and modify static code - masking services to hide algorithm functionality
- detection mechanism to determine code modification

read and modify the agent state
by manipulating host

- tracing mechanisms to audit host execution steps
- auditing of host user inputs with non repudiation

modify runtime environment - verification services to guarantee interpreter integrity
control results of system calls - deadlock and livelock detection mechanisms
read and modify agent
communication channels

- encryption capabilities for private communications

 (3) Denial of Service: The host environment places the agent at its mercy: it can simply
remove the agent from its planned migration and create a virtual “black hole” (see [141]). The
host can also append any arbitrary computational result to an agent’s state, ignoring the
original agent’s mission. Likewise, since data services represent a key part in the agent’s
execution life cycle, the server can deny mobile agents access to data sources or lie about their
input [137]. Few detection mechanisms exist to address denial of service (DoS), and even
fewer prevent DoS in the host environment. We consider most security mechanisms
successful if they reduce adversary attacks to blind disruption (DoS).

Figure 16: Malicious Host Threats

 (4) Replay: A malicious host can perform black box manipulation by providing an agent with
arbitrary data to observe its outputs and possibly discern its intentions [34]. An adversary can
execute an agent repeatedly using different inputs each time by replaying code. Wilhem et al.
[32] note this experimentation type represents an indirect attack all agents are subject too,
whether or not the application owner enforces privacy via cryptographic operations.

24

(5) Masquerading: When masquerading, adversaries steal an agent’s identity and launch
subsequent impersonation attacks. Because the host can also fool an agent with wrong system
call results, the host can trick the agent into believing it has arrived home so that the agent
executes code that reveals confidential data.

Middleware providers must provide protection for agent code, itinerary, and data state from

these various threats. We consider the itinerary as a data state component, but, for security
purposes, a middleware environment must protect the unique aspects of an itinerary that differ
from the general agent data state. We address requirements for agent data protection further in
Chapter 3 and provide a comprehensive review of existing data protection techniques in
Appendix A.4.

Protecting Agent Code. The agent possesses static code (unless a mobile agent uses self-
modifying code) and each code piece has an associated authentication and integrity property
(signatures). Appraisal mechanisms attempt to prevent maliciously altered code execution on the
remote host based on static agent code evaluation. This evaluation may provably determine an
agent’s safety level and might involve satisfaction by an agent executor that an agent does not
violate certain policies. Agent and host protection are mutually dependent: malicious hosts can
alter an agent and the next host in the multi-hop agent path must be able to discern such
changes. The same mechanisms that authenticate a mobile agent to a remote host are normally
the same mechanisms that guarantee agent code integrity during its lifecycle.

 We express agent code trustworthiness as three requirements:
(1) Authenticating the code’s owner/developer and the code’s identity
(2) Integrity verification that code received matches the code transmitted by the owner
(3) Probabilistic proofs that code meets some predefined security policy

Protecting Agent Itinerary. Agents can travel either on a free-roaming or fixed itinerary.

Some mobile code systems only require single-hop, weakly mobile programs. When the agent
has a static itinerary, malicious activity includes forcing an agent to skip certain host platforms or
redirecting the agent to unspecified hosts [76]. In the dynamic setting, an agent can obtain new
hosts to visit while it migrates, thus exposing the itinerary to random alterations and deletions
without an ability to know alteration has occurred. Figure 17 shows the design space for the
agent, including the case where some agent itinerary portion remains fixed and some remains
dynamically determined.

Figure 17: Itinerary Specification In Mobile Agents

Agents lose trust with each new migration in a multi-hop setting without security mechanisms
in place to protect the itinerary. Multiple colluding hosts can share itinerary information and
therefore complicate protection. Itinerary protection involves using outside parties if necessary to

25

ensure a malicious host does not alter entries, delete entries, or add entries to their benefit.
When agents must provide their own protection, they can use honest parties or the dispatching
host to detect prior modifications.

2.3 Chapter Summary

Mobile agents as a research field have an extensive history that crosses several related
disciplines. We divide our quest to strengthen mobile agent security into three major result areas:
reducing effective tampering to blind disruption via program encryption, integrating trust into the
security decision process for mobile agents, and finding practical multiple agents applications to
enhance security.

To introduce mobile agent security in this chapter, Section 2.1 briefly reviews code mobility
paradigms and Section 2.2 introduces requirements related to mobile agent security. We refer
the reader to a more comprehensive mobile agent security review in Appendix A including
descriptions. We frame our results against multiple different host/agent protection mechanisms
(Appendix A.2 and Appendix A.3). For our Chapter 3 results, Appendix A.4 details the literature
related to data encapsulation techniques, Appendix A.5 reviews literature for secure multi-party
computation, and Appendix A.6 provides background on multi-agent security. We give further
background material in Appendix A.7 for our Chapter 4 results relating to trust frameworks.
Chapter 3, 4, and 5 present results related to the objectives we pose in Section 1.2: how can we
enhance security with multiple agents, how can we integrate trust, and how can tamperproof
mobile agents. We turn our attention first to how multiple agents enhance security in mobile
contexts.

26

CHAPTER 3

MULTI-AGENT ARCHITECTURES FOR SECURITY

This chapter contains material from two published works—one describing a novel technique
for partial result protection based on cooperating multiple agents [142] and the other appearing in
Lecture Notes in Computer Science which describes a hybrid approach for integrating secure
multi-party computation with multiple mobile agents [143].

3.1 Chapter Overview

As Figure 18 expresses, two aspects compose agent protection: protecting the agent’s static
executable code from disclosure or alteration and protecting the agent’s dynamic state as it
incrementally changes during execution. “Strength in numbers” can produce positive results for
security to deter malicious parties from altering the agent’s data result. We present two
architectures in this chapter based on multiple agent interactions, which enforce specific
requirements: enforcing strong data integrity a posteriori (Section 3.2) and guaranteeing host data
privacy/state integrity (Section 3.3). We refer the reader to a more comprehensive background
review on intermediate data state protection (discussed in Appendix A.4), group cryptographic
techniques (discussed in A.5), and multi-agent paradigms (discussed in Appendix A.6).

Static Code Dynamic Data State

DDaattaa CCoonnffiiddeennttiiaalliittyy
DDaattaa IInntteeggrriittyy

MMoobbiillee AAggeenntt

CCooddee CCoonnffiiddeennttiiaalliittyy
CCooddee IInntteeggrriittyy ??

Figure 18: Agent Protection Overview

3.2 Mobile Agent Data Integrity using Multi-agent Architecture (MADIMA)

We focus first on protecting the intermediate data results an agent gathers as it migrates
through a network and introduce mobile agent data integrity using multi-agent architecture
(MADIMA). Agent data protection keeps the agent data state safe from observation
(confidentiality) or keeps it safe from alteration (integrity) by malicious hosts. Integrity violations
are typically only detectable after the agent returns to its origination, when it reaches an honest
host in the itinerary, or when it stores partial results with a trusted third party. MADIMA prevents
integrity violations (without data aggregation) and detects violations (with data aggregation) by
using multiple cooperating agents to accomplish user tasks.

We liken agent state integrity to transmitting a computation results collection back to an
originating host without deletion, truncation, or alteration of individual results. Current solutions
for integrity attacks detect malicious activity a posteriori. Such attacks require re-executing the
agent and assume the application owner can successfully discover modifications even when
multiple malicious hosts are present. Existing mechanisms cannot detect certain attacks
involving colluding malicious hosts. We devise a solution to this problem by transferring partial
results via cooperating mobile agents and thus prevent alteration completely, even when
cooperating malicious hosts are present.

27

3.2.1 Requirements for Data State Protection

Roth [109] summarizes the requirements for agent data state protection. First, agents may
have information that needs to remain private until the agent migrates to a trusted host. Second,
agents carry partial result computations that require protection. The agent owner should be able
to attribute a given partial result to the host that created it. Both Yee [31] and Karjoth et al. [144]
give solutions for protecting free-roaming agents and pose schemes for expressing agent data
protection mechanisms. Maggi and Sisto [107] formalize data privacy characteristics and
attributes in their work. An agent’s execution can be described by the set of hosts I, {i1, i2, …, ik},
and the associated set of data states D, {d1, d2, …, dk}, that represents the incremental change in
agent state as it visits each host and performs its task. Given an originating host i0, we describe
the agent’s path as the ordered set {i0, i1, i2, …, ik, i0}. Figure 19 illustrates this representational
scheme.

Figure 19: Partial Result Data Expression

In certain application settings, an agent may visit the same host more than once before
returning to the originator, and so the set D could represent an ordered or unordered data results
set. When an agent arrives back at its originating host, with task accomplished, the data results
set D’, {d`1, d2, …, d`k`}, represents the incremental changes in agent state as it migrates around
the network. The sets D and D’ should be equivalent if no malicious hosts were present. Using
this descriptive method, we define four attacks against the collected agent data integrity:

(1) Truncation: An adversary initializes an agent’s state back to a state from
some previous host visit, essentially erasing intermediate results between two or
more colluding malicious hosts. We state this as an attacker deleting all offers
after the offer of host j and refer to this as “truncation at j”.
(2) Cancellation: An adversary deletes a data item from the set D.
(3) Insertion: An adversary inserts a data item into the set D.
(4) Substitution: An adversary cancels a data item in D then immediately inserts
another in its place, essentially replacing another host’s data result. We term a
series of phony offers at some host j as “growing a fake stem at j”.

Maggi and Sisto [107] and Karjoth et al. [144] provide several attributes that describe agent

data privacy, summarized in Table 5, and desired data integrity properties, summarized in Table
6. As we discuss our approach to multi-agent data integrity, we reference these properties in
relation to candidate protection mechanisms. Hosts detect data integrity attacks (data insertion or
results deletion) after an agent has visited a malicious host and an application owner must rely on

28

appropriate detection mechanisms to be in place. Data confidentiality, however, must be
proactive in the sense that it prevents revealing sensitive information to a host by using
cryptographic primitives. Ideally, a mobile agent security scheme should provide data and origin
confidentiality, data non-reputability, and strong data integrity.

Table 5: Agent Data Privacy

Term Definition
Data
Confidentiality

Any data element, d`, should only be readable by the originating
host i0.

Origin
Confidentiality

(Forward Privacy) The identity of the host i` that contributed data
result d` should only be determined by the originating host i0.

Data
Authenticity

The originating host i0 can determine the identity of the host i` that
added the data element d`.

Data Non-
Repudiability

(Stronger form of Data Authenticity) The originating host i0 can
prove the identity of the host i` that added the data element d`.

Table 6: Agent Data Integrity Properties

Property Definition
Strong Data
Integrity

After receiving the agent back, the originating host i0 can
detect any insertion or any cancellation: D ≠ D`

Weak Data
Forward Integrity

After receiving the agent back, the originating host i0 can
detect any cancellation: D ⊄ D`

Trusted Data
Integrity

After receiving the agent back, the originating host i0 can
detect any cancellation from a set trusted hosts, It: {di | ii ∈
It} ⊄ D`

Strong Data
Forward Integrity

After receiving the agent back, the originating host i0 can
detect any substitution: di’ ≠ di

Strong Data
Truncation
Resilience

After receiving the agent back, the originating host i0 can
detect any truncation

Data
Truncation
Resilience

After receiving the agent back, the originating host i0 can
detect some truncations

Insertion
Resilience

After receiving the agent back, the originating host i0 can
detect any insertion

Publicly Verifiable
Forward Integrity

Any intermediate server, i`, can verify the computation result
of the computation state

3.2.2 Partial Result Protection Mechanisms

Historically, several protection mechanisms use multiple agents to transfer partial results for
safekeeping during agent migration. Roth [280] proposes that an agent transfers commitments to
another cooperating agent that verifies and stores the information gathered (see Appendix
A.3.16). Dispatching hosts send agents to disjoint executing host sets and in turn send each
other commitments via a host-provided secure communications channel. Roth’s approach
provides non-repudiation and requires a malicious host to corrupt other hosts that are on the co-
operating agent’s future itinerary.

Chained encapsulated results, partial result authentication codes, per-server digital
signatures, append-only containers, and sliding encryption provide various intermediate result
protection levels (see Appendix A.4). These mechanisms use digital signatures, encryption, and
hash functions in different chained relationships to provide detection and verification services.
With these techniques, the originating host or an honest host in the agent path can identify when

29

previous servers have inserted, truncated, or changed information from previous intermediate
results carried by the agent. Loureiro et al. propose a subsequent protocol in [311] that allows a
host to update its previous offer or bid. Roth proves that several protocols suffer from replay and
oracle attacks because they do not dynamically bind the agent data state to its static code [108].

When malicious hosts collude, several protocols remain weak in detecting cooperating hosts
that share secrets or send information to change intermediate host results. Specifically, we
define truncations as integrity attacks where a malicious host resets the agent data state to a
previous state (computed at a previous host). Using dynamically determined itineraries, existing
mechanisms cannot detect truncation attacks.

Vijil and Iyer in [283] augment the append-only container with a means to detect mutual
collusion and actually identify which hosts performed the tampering. Protocols may not be able to
detect truncations at all. Maggi and Sisto in [107] provide a formal definition to describe protocol
interactions in several different data protection mechanisms. In particular, they observe that
protocols need to implement truncation resilience. Our multi-agent architecture separates data
computation and data collection into different agent classes and services—providing a viable
means to protect against truncation attacks.

3.2.3 Describing the Problem

Initial work in mobile agents such as [18] identified two information-gathering modes: stateless
and stateful. In a stateless approach, agents intermittently send information acquired back home
to the originator or migrate home after each hop. In a stateful mode, the agent embodies in its
data state results from prior host execution and carries with it a growing information collection to
each subsequent host in the itinerary. Independent data comprises the offers, bids, or results that
an agent uses to make decisions. Single-hop agents acting in a remote code execution paradigm
[267] migrate to a remote host, operate on independent data, and then send results back to the
home platform or migrate back to the home platform carrying the result. In other words, the agent
“result” is independent from the “result” on any other host where the host carries out the same
computation.

To illustrate independent data, an agent that carries out a “sum” operation can do so by
collecting inputs from a host and storing each value in a data collection. When the agent returns
home, the values stored in the collection are added together to complete the operation. The multi-
hop agent data state in this example depends on previous agent executions only in the sense that
the collected data item set must be carried forward faithfully from the previous host. In this case,
malicious hosts carry out truncations, insertions, and deletions by modifying the “values” carried
by the agent.

When an agent migrates from host to host performing such a query or computation in a multi-
hop mode, the agent appends the current host results to previous results embodied in the agent.
Figure 20, letter <C>, illustrates the agent migration paths for single-hop logic, where agents
return to the originating host after each execution. One single agent performs this computation
type by making k roundtrip migrations in a single-hop manner while k agents can migrate to each
host independently and perform the same computation, where k represents how many executing
hosts the agent visits. The application owner performs data fusion or sorting after the agent
collects all host results.

In some agent applications, the agent computational result at state dx depends on the
computation results from previous agent states {d1, …, dx-1}. Figure 20, letter <D>, indicates the
multi-hop agent path as the agent traverses a network, migrating from host to host carrying out
computations. We represent in this application setting a competitive, electronic transaction where
agents collect bids or offers in various contexts, such as airline reservation [18, 31, 144, 360]. A
multi-hop bidding agent can be designed to embody all bids for each visited hosts in its data state
and apply logic to determine the winner once all possible hosts are visited (thus utilizing
independent data).

30

Figure 20: Stateful/Stateless Agent Interactions and Data Integrity

In the multi-hop approach, the data set grows linearly as each host executes the agent code,
adding a data state to the migrating agent’s protected area (we borrow the term “protected area”
from standard literature on data protection [144] to describe agent data state encapsulations
guarded by cryptographic techniques). On migration from h1 to h2, for example, the data set
grows from {d1} to {d1,d2} after execution by h2. The application owner can design the bidding
agent to carry the lowest bid amount and the winner’s identity in its state and to allow updates
based on each host input (illustrating dependent data). Considering the “sum” example, an agent
with dependent data carries a sum variable that each host in the itinerary updates by executing
the agent code using their local input. The agent returns home with the sum calculated from the
last host that it visited. We refer to independent data also as data aggregation because a
correlation exists between the agent’s previous and current execution state. For the multi-hop
agent, Figure 20- illustrates the set D’ the agent does have on arrival back at the originating
host and set D, Figure 20-<A>, indicates the data results it should have. We define strong data
integrity along with other researchers [107, 144] as the ability to detect whether set D, {d1, d2, …,
dk} ≠ set D’, {d`1, d’2, …, d`k`} on the agent’s return to h0.

Figure 21: Data Integrity Attacks

Figure 21 illustrates two colluding malicious hosts (h1 and h4) and three different integrity
attacks. Strong data integrity mechanisms detect all truncation attacks even when colluding hosts
are involved. On receiving the set D, the malicious host h4 may choose to do the following:

31

(1) delete a data state (d3 as seen in the Figure 21);
(2) insert a new fictitious state (d’4 as seen in figure);
(3) modify an earlier state (d’2 as seen in the Figure 21); or
(4) completely erase all previous states by using the data set {d1} received from its malicious
partner h1.

3.2.4 Architecture Overview

We assert that the simplest method to prevent data integrity attacks comes from avoiding
contact with potential malicious hosts. In MADIMA, we attempt to reduce or eliminate exposing
partial data state results—preventing malicious attacks versus detecting them a posteriori.
MADIMA also leverages both stateless (single-hop) and stateful (multi-hop) agents by using three
different agent class interactions: task agents, data computation agents, and data collection
agents.

A distinction exists between using the same agent logic replicated multiple times [277, 288]
and using different agents to accomplish a single purpose-driven task [18], which our scheme
utilizes. Kotzanikolaou et al. in [258] present architecture where a master agent and multiple
slave agents conduct electronic transactions cooperatively. Slave agents are mobile and travel to
only one particular host to negotiate, but cannot complete a transaction without returning to the
master agent. Our approach resembles master/slave relationships in the sense that we use a
master task agent that spawns and directs information gathering from multiple computation and
collection agents, and then carries out any transaction logic separately.

Similar to the master/slave relationship in [258], the task agent in MADIMA serves to
coordinate task efforts using the other two classes. Data computation agents perform a wide
function range, but are dispatched either single-hop or multi-hop in different configurations
depending on the requirements for security or reliability. Computation agents leave data results
in publicly accessible data services known as data-bins rather than carrying results in their
mutable state. Data collection agents visit hosts independently or the remote host generates
them in response to computation agents visits. In either case, they carry results back to the
application owner for fusion by the task agent. This approach solves the truncation attack
problem from colluding malicious hosts by eliminating partial results exposure to malicious
parties.

When we implement data aggregation in this manner, we have more freedom to use multi-hop
agent logic. This architectural variation resembles execution tracing proposed by Vigna in [267],
but we use communications with the host in our scheme to verify integrity of data (versus code
execution) and we also automate collection activities (versus leaving them ad-hoc). The
underlying data collection architecture supports other security measures that require log archival
such as execution tracing and data encapsulation [31, 144, 286].

Task Agents. The task agent embodies an application owner’s task desire, such as
purchasing an airline ticket with fixed criteria set. This single agent directs the overall job. The
task agent resides on the originating host or a trusted third party host that remains online (a
buying service host for example). Task agents spawn either a single multi-hop agent or multiple
single-hop agents to perform information gathering or bid requests. Spawned computation
agents have fixed or free-roaming itineraries that visit host servers in a specific subject domain
(such as airline reservation systems) and perform queries based on user criteria. The task agent
waits until a minimum number of data results (specified by the user) are gathered or until a
specified time elapses, at which point the task agent notifies the application owner the job failed.
Upon receiving query results gathered by data collection agents, the task agent fuses data
results. Transaction logic may allow the task agent to complete a financial commitment based on
the query responses from the computation/collection agents via a single-hop computation agent.

Computation Agents. Computation agents traverse an ordinary mobile agent route and
need to be uniquely identifiable to prevent the replay attacks expounded by Roth in [108]. As
Figure 22 illustrates, a task agent can remain at the originating host or the application owner can
transfer the agent to a trusted third party so that the originating host may go offline. The task
agent contains the agent code for the various computations it requires and the itinerary. For

32

greater fault tolerance, the application owner can replicate computation agents as described in
[277]. In either configuration, the data bin links each computational data result to the agent’s
identity, the originating host’s identity, and a unique transaction identification known only to the
application owner to support later pickup.

Figure 22: Launching Task Agent (t) and Single-Hop Computation Agent (a)

Figure 23: Using Replicated Computation Agents (a,b)

Figure 22 depicts an application owner spawning the computation agent (a) that visits h1, h2,
h3, and h4 with migrations a1, a2, a3, a4, and a5. Figure 23 depicts an application owner that
launches two replicated multi-hop computation agents: agent a visits h1 and h2 with migrations a1,
a2, and a3 while agent b visits h3 and h4 with migrations b1, b2, and b3. At worst, a malicious host
may only denial or delay service to the computation agent or keep back its own independent data
result from the collection agent. We achieve authenticity and non-repudiability in MADIMA by
binding the originating host’s identification and the unique agent identifier with the agent data
state. If multiple computation agents are launched single-hop, the computation agent leaves no
data state simply returns to the originating host carrying the data result, as in remote evaluation
operations [267].

33

Data Collection Agents. Data collection agents are responsible for the single-hop mission to
carry back encapsulated data states or query results to the originating host. Figure 24 illustrates
the data collection agent’s activity. The task agent (t) spawns the data collection agents after
previously dispatching computation agent (a) seen in Figure 22. Each data collection agent
(a,b,c,d in Figure 24) stores its payload in the originating host’s private data bin and notifies the
task agent on arrival. In this aspect, MADIMA data bins provide private holding areas for data
results to support task agent data fusion on the originating host and public holding areas where
visiting computation agents may store results and collection agents retrieve them. Depending on
whether agent developer uses independent or dependent data modes, the application owner can
encapsulate data results in the computation agent using standard data integrity approaches such
as [31,144, 284, 286].

Figure 24: Data Collection Agents (a,b,c,d)

Figure 25: Data Collection Modes

Data collection agents are single-hop agents that have the highest security possible when
they act in one-to-one relationship with executing hosts. As Figure 24 illustrates, data collection
agents are executed in three possible configurations: Figure 24-(a), server-based response
mode; Figure 24-(b), host-based request mode; and Figure 24-(c), autonomous data collection
mode. In server-based response mode, each server visited by a computation agent spawns a
data collection agent that performs an authenticated and encrypted single-hop result transfer. In
the host-based request mode, the originating host sends data collection agents to each host in
the computation agent’s itinerary. The task agent responds to computation agent completion and

34

sends a collection agent in this mode. The autonomous data collection mode begins with a host
that has just launched task agents or by agent servers who send results to trusted third party
collection points on a recurring time interval; in either case, hosts spawn single-hop data
collection agents that return a data result directly to the task agent/originating host. This
approach resembles the “garbage collection” service that runs in background within the JAVA
interpreter. With this method, we build data collection as a routine service that interfaces data
bins with executing hosts and dispatching hosts.

In MADIMA, data collection protocols ensure that only the originating host / task agent can
retrieve its own data results and that a task agent can request previous data results for fusion
only at locations where a trusted computing environment exist. After all data collection activities
have been accomplished and the task agent collates and filters results, it can spawn further
computation agents that perform single-hop transactions or additional data gathering. In such
cases where single-hop agents accomplish transactions like credit card billing, the architecture
does not require data collection. To summarize, MADIMA utilizes three agent classes that use
various interaction combinations to accomplish a user task.

Data Collection Services (Bins). MADIMA agent middleware uses a data service, referred
to as a data bin, to store encapsulated (cryptographically protected) agent data states. Data
lockers in [145] are described as a service provided for mobile users that keeps their data in
secure and safe locations attached to fixed networks. We construct our data bin similarly: we use
a data service to store intermediate agent computation results securely during an agent’s transit
through a network. We incorporate data bins for security purposes versus the convenience
normally associated with data lockers.

Data bins have a public locker, where computation and collection agents can store and
retrieve results, and a private locker, where host-originating task agents can store partial results
for later fusion. In independent data operations, computation agents do not arrive back at the
originating hosts with a state payload containing a protected result set. Instead, the computation
agent leaves the execution result (embodied in the mutable state or as a query result) on each
host via the public data bin service, protected with an agreed upon encryption scheme. The data
collection protocol ensures via authentication and non-repudiation that only the originating host
can retrieve its own data results from a data bin.

3.2.5 Related Security Issues

MADIMA relies on the general premise that hosts should perform agent computations
separate from data state collection when using multi-hop agents. The computation agent’s static
code must interact with partial results from previous computations in order to produce a new data
state result. To perform a multi-hop task that relies on dependent data, a host modifies a data
computation agent so that it carries only the most recent state as its payload, while copying and
leaving a secure encrypted state version behind at each host server. We use data collection
agents in this configuration as a verification authority because the application owner must
compare the final agent data state against the incremental data states gathered by collection
activities. MADIMA supports detecting truncation violations when computation agents use
dependent data mode, but cannot prevent truncation attacks by multiple colluding hosts when
computation agents use dependent data.

Figure 26 illustrates the design space for the three MADIMA agent classes. The agent class
number (iterations) and types (single-hop/multi-hop) define the design space for a MADIMA
application. Single-hop computation agents used with single-hop collections agents provide the
strongest security associations possible, because interactions are always one-to-one with the
application owner and remote host. Typical mobile agent scenarios for MADIMA envision a single
multi-hop computation agent and multiple single-hop collection agents.

Because intermediate results in a typical MADIMA operating mode are subject only to single
host malicious activity, we prevent manipulation, extraction, and truncation attacks on information
accumulated in a multi-hop free-roaming scenario. We do not address whether a server has
provided false information to the agent. We assume that alterations to the static agent code are
detectable by honest hosts when we employ measures such as code signatures [31, 288] or

35

execution tracing [267]. We also assume that a public key infrastructure exists or that the ability
to distribute shared secrets among participants exists.

Figure 26: MADIMA Security Configurations

MADIMA does not address service denial or random alterations to the code. When multi-hop
agents with dependent (aggregated) data are used, computations agents still need the ability to
mask or guard the function against smart code alterations. We do not address the ability to keep
keys used by both the computation and collection agent private in this architectural description,
though Chapter 5 provides positive techniques for doing so and other related work for white-box
key protection are described in [146, 147].

Concerning multiple agents, Tate and Xu utilize multiple parallel agents that employ threshold
cryptography to eliminate the need for a trusted third party in [288]. Tate and Xu observe their
work was first to consider multi-agent settings solely for their security benefit. Endsuleit follows
suit with several multi-agent architectures for security as well [344, 353]. In MADIMA, we show
continued benefit for using multiple agents in mobile contexts to exploit security advantages.

3.2.6 Fault Tolerance Issues

The MADIMA architecture uses multiple agent classes given information computation or data
gathering duties. The fault tolerance domain finds benefit for using multiple agents to provide
guarantees on agent migration and task completion. Researchers historically focus on integrating
fault tolerance to increase mobile agent system reliability (see Appendix A.3.15). Minsky et al.
[277] propose that replicated agents and voting can decide if malicious hosts have altered agent
execution. Yee proposes a mechanism to detect replay attacks in [74] while Tan and Moreau
extend an execution-tracing framework in [33] to prevent service denial attacks.

Several fault tolerance issues arise in the MADIMA approach, just as in other schemes. For
example, when a data bin service exceeds storage space allocated by the host, data bins
implement a queue process (much like routers discard packets under certain load conditions).
We use one or more trusted third parties for data collection activities or task agent hosting to
support disconnected host operations. We mitigate task agent time-outs while waiting for
computation and data collection results by providing time-based services that indicate when
(computation/collection) agents are unreasonably detained or diverted.

Like other multi-agent or mobile agent systems, we do not address error recovery procedures
when messages are undelivered or when migration is blocked. If data bin services fail, we
envision that secondary storage services in the network are present if the originating host or
buying service TTP becomes unavailable. We mitigate the original task agent’s failure, failure of
one or more computation agents, and failure of data collection agents by considering such
approaches as the shadow model of [279]. Other work on fault-tolerance such as [148, 149, 277]
provide approaches to mitigate host failures caused by malicious activity.

3.2.7 Performance Issues

In most cases, security comes at a cost. Multiple interacting agents bring more complexity
and performance overhead to a system and we consider added security benefits against
increased communications costs. We express performance issues as the difference between a

36

normal multi-hop agent that carries results with it and returns back to an originating host versus a
static task agent that spawns one or more computation agents and receives responses from one
or more collection agents.

A traditional migrating mobile agent visits k servers and performs k+1 migrations (see Figure
20). The agent size grows linearly according to the added data state based on the query result
size. When we use dependent data in the agent logic, the agent data state may not grow
appreciably at all. For MADIMA, overhead increases by using a single static task agent (present
on the originating host or a trusted third party) and by using computation agents with k+1
migrations (assuming a multi-hop traversal). At least k additional data collection agents
communicate with data bin services and transport results back to the host. In sum, MADIMA
doubles the network transmission by (2k + 1) and increases consumption resources due to
interactions from three agent classes.

3.2.8 MADIMA Summary

Various agent security schemes enforce various data-integrity security levels. MADIMA
prevents data integrity attacks against mobile agents, especially truncations when multiple
colluding hosts are present, by separating basic agent duties (computation from collection).
Though other approaches communicate agent state forms to other agents or the originating host,
MADIMA implements this approach in three cooperating multiple agent classes and introduces a
data bin service to facilitate data computation and collection activities. We believe this approach
demonstrates several security benefits:

1) We limit the impact any one malicious host can have on another host.
2) No malicious host can influence previous computations during computation agent

execution.
3) Adversaries that wish to impact future computations in a multi-hop computation must

perform smart code alteration, which we address further in Chapter 5.
4) We reduce integrity attacks on data state to denial of service.

We leverage the fact that an agent must carry computation results back at some point to the
originating host; at a minimum, the agent must act upon inputs and interact with the originating
host based on the result. We separate data computation activities from data collection activities
to eliminate incremental result exposure to possibly malicious hosts. Whether the agent stores
data results as a single modified agent state or as results embedded in different agent state
values, the agent either carries data state with it or (under MADIMA) leaves the state at the host
for delivery by more secure means. The multi-agent approach allows us to develop applications in
a conceptual manner by leveraging agency while preventing attacks on data integrity. We now
discuss our second multi-agent approach based upon secure multi-party computation.

3.3 Hybrid Approaches for Secure Multi-Agent Computations

Figure 27: Secure Multi-Agent Computations

In this section, we deal specifically with how a host can keep its data input private while
guaranteeing agent task execution integrity. In [143], we review and analyze methods proposed
for securing agent operations when passive and active adversaries are present by using secure
multi-party computations (SMC). As Figure 27 depicts, we explore specifically architectures that

37

support secure multi-agent computations. For greater context concerning hybrid SMC
architectures, we refer the unfamiliar reader to Appendix A.5 where we discuss in detail SMC
strengths and weaknesses and review research associated with mobile agent integration. We
begin with a brief review on SMC integration issues with agents and then present two hybrid
schemes that reduce communication overhead and maintain flexibility when applying particular
protocols.

3.3.1 SMC Integration with Mobile Agency

A secure multi-party computation has n players, (P1, P2, …, Pn), who wish to evaluate a
function, y=F(x1,x2,…xn), where xi represents a secret value provided by Pi and y represents the
(public) output. The protocol goal is to preserve player input privacy and guarantee computation
correctness. SMC protocols offer several advantages for securely accomplishing a group
transaction and have been a major thrust for possibly achieving code privacy in mobile contexts.
Figure 28 depicts a mobile agent transaction as an idealized SMC protocol. We achieve
idealized perfect security in SMC when all parties (hosts) securely provide their inputs to a trusted
third party (TTP). The TTP executes function F on all inputs and we can hold the result private
for only one party (P0) or give the result to all parties involved. Figure 28 depicts private host
inputs (x1,x2,x3,…,xn) and a public function output y = F(x1,x2,x3,…,xn). Functions such as mean,
max, min, set intersection, and median are common SMC protocol questions.

Figure 28: Agent Task Realized as Secure Multi-Party Computation

SMC protocols solve problems where inputs have the same length and where we compute
functionality in time polynomial on the input length. We measure security based on the input
length (using inputs 1n) and we cannot attain greater privacy beyond the idealized TTP. When
parties are motivated to submit their true inputs and can tolerate function result disclosure, we
can securely implement the protocol without a TTP. Several approaches exist that define agents
implementing garbled circuits in multi-party computations and that use oblivious transfer to
evaluate the circuit. The application owner can send a single agent with a cascading circuit
whose last migration signals the last circuit computation. Alternatively, the owner can send
multiple agents with the same circuit that executes protocols in stepwise multi-round fashion. We
can use a single trusted execution site or multiple TTPs connected via high-speed communication
links to evaluate the SMC protocol. By combining these SMC protocols, multiple agents, and
semi-trusted hosts, we achieve several security specific goals for mobile agents.

The security/threat models for SMC traditionally protect against passive adversaries that steal
private inputs or protect against active adversaries that corrupt the function output. We assume
TTPs do not to collude and assume individual parties involved in the transaction do not collude.
Any given SMC protocol specifies a maximum tolerable limit for active and passive malicious
parties. The overhead for multi-round protocols comes from large numbers of small message
exchanges and for single round protocols comes from transferring one large message in non-

38

interactive mode. Multi-round interactive protocols typically assume a perfect network/broadcast
channel.

Non-interactive approaches are limited to a few protocols that derive from [25] or [105].
Single-round approaches do not require trusted third parties but come with large message sizes
and their own limitations that include reliance on a trusted entity similar to a PKI. Tate / Xu [288]
and Zhong / Yang [299] extend traditional garbled circuit non-interactive approaches with multiple
agents and both architectures require knowing the visited host set before execution.
Researchers continue to improve SMC protocol efficiency and we develop our agent architecture
in a manner to integrate them seamlessly.

Architectures that implement SMC in mobile agent systems seek to reduce message size,
number of broadcast channels required, and circuit size. To accommodate agent goals such as
disconnected operations, the originator typically remains offline during the protocol evaluation. In
order to support agent autonomy, we require that the agent can decide where and when to
migrate. The requirement for full autonomy in the agent path and itinerary lends itself best to
SMC protocols that balance trust with efficiency. While we desire to eliminate the need or
requirement for any trusted third party or trusted computation service (like PKI), some application
environments for SMC tolerate such assistance with no problem.

Malkhi et al. [335] note that SMC protocols find greater efficiency when implemented for
specific tasks and this motivates researchers to focus on protocols that work in specific
application contexts (like secure voting). We find this true for mobile agents as well and seek to
represent agent specific tasks like auctions, trading, or secure voting with greater efficiency.
Fiegenbaum et al. [150] implement a secure computation mechanism utilizing SMC named
FAIRPLAY for collecting survey results with sensitive information. Their scheme uses data-
splitting techniques and traditional Boolean circuit evaluation Yao-style [315]. Notably,
FAIRPLAY uses a secure computation server, which acts as a trusted entity within the system,
and initiates the 2-party function evaluation. Applications like FAIRPLAY illustrate a practical
SMC implementation where the application achieves data privacy and function integrity, but the
environment supports using a trusted server. Agent applications executed “in-house” benefit
directly from trusted (or partially trusted) entity status.

We now introduce several hybrid approaches to SMC integration with mobile agents that can
accommodate free-roaming itineraries as well as reduce overall communication cost. We deem
the architectures hybrid because they account for both the strengths and weakness found in
traditional multi-round SMC protocols. Communication costs remain high for multi-round
protocols; we mitigate this by using trusted or semi-trusted execution sites connected via high-
speed network connections. Flexibility for SMC is limited in mobile agent environments to fixed
itineraries; we mitigate this by agent classes that support free-roaming itineraries while supporting
traditional SMC. These approaches leverage multiparty protocol security properties while
providing flexibility to integrate higher efficiency protocols in the future.

3.3.2 Invitation and Response Protocol

We define the Invitation and Response Protocol as a multi-agent architecture that uses semi-
trusted execution sites. We define two agent classes: the invitation agent and the response
agent, illustrated in Figure 29. We define a user task F, executing hosts H1, H2, … Hn, with
private inputs (x1, x2, …, xn) to F, and one or more fully-trusted or semi-trusted execution servers
ES1, … ESz. We design our protocol to use any SMC protocol that is provably secure against
passive and active adversaries; we stipulate minimum protocol security that meets Canetti’s
composable security properties [352]. We delineate four phases in the protocol and elaborate
them in Figure 30 and Figure 31: Initialization, Invitation, Response, and Recovery. We refer to
the task owner F as the originator O and textually describe the protocol next.

After initialization, the originator O begins the task by sending an invitation agent that has an
initial host set or that at least knows the first host. Invitation agents are free roaming and can
make changes in their itinerary based on environmental conditions or information obtained from
hosts or other information services. To guard the invitation agent against data integrity or service
denial attacks, two different schemes are possible. First, a single multi-hop agent (depicted in
Figure 32-(a)) can use data encapsulation techniques (see Appendix A.4) to protect its itinerary

39

and perform a free-roaming traversal. We assume the application owner binds the agent code to
each agent’s dynamic state instance. A second approach (Figure 32-(b)) is to use multiple
invitation agents with possibly overlapping and redundant itineraries to reduce blind malicious
intervention (service denial).

Figure 29: User Task F Implemented as Secure Multi-Agent Computation

Figure 30: Initialization and Invitation Phases

Each invitation agent has a uniquely identifiable code/state (to avoid replay attacks), but the
agent collection represents a single uniquely identifiable task (such as a specific auction or airline
ticket purchase). If an executing host receives an agent requesting participation in the same
unique event (bid, auction, etc.), it ignores subsequent requests much like network devices that
only forward packets once. Invitation agents carry with them the specifications for input

Initialization Phase:
1. Originator O creates Response Agent R with code πR
πR: code of R

- Implements any multi-round SMC protocol realizing
task function F
- Migration from host Hi with local input xi commits host
to the input

ξR: initial data state of R
- Initialized at destination host Hi w/ private input xi

ξR’: final data state of R
- Evaluated through SMC exchanges on ESz

IR: itinerary of R Itinerary (single-hop)
- {ESz, O}
- Protected by data encapsulation technique

2. Originator O creates Invitation agent I using πR
πI: code of I

- Embedded with πR, returned by host output function
ξI: initial data state of I

- Uniquely identifiable
- Based on nonce, cryptographic hash of agent ID

ξI’: final data state of I
- Received back by originator O

II: itinerary of I (multi-hop)
- {O, H1, H2, …, Hn, O} fixed
- {O, H1 } free-roaming
- Protected by authentication, integrity mechanism

Invitation Phase:
1. O → H1: I

- Originator O dispatches I
- Single, dynamic, multi-hop
- Migrates to one execution site
- Contact time for protocol execution required
- Code/itinerary integrity assumed

2. H1: πI(x1) = πR1

- Invitation agent πI accepts input and dynamically
generates circuit agent πR based on host input
- Host input is encrypted protected with public or
threshold key of ES: {x1}K-ES

3. Hi → Hi+1: I
 Hi+1: πI(xi+1) = πRi+1

- Each host Hi+1 evaluates input xi+1on agent and receives
response agent πRi+1
- Each host must choose to execute response agent (agent
itinerary is pre-established) by sending to execution site

4. Hn → O: I

- Migration back to owner of invitation agent(s)
- Originator O verifies integrity of ξI’
- Timeouts are based on both return of invitation agent
and response of SMC protocol evaluation on ES

40

corresponding to the originator’s task. The specification represents the normal host query in a
multiparty computation. Hosts respond to the invitation by dispatching the response agent
obtained by executing the invitation agent on the host with their private input.

Figure 31: Response and Recovery Phases

We base the response agent’s code on the underlying secure multi-party computation protocol
(based traditionally on garbled circuits) and we spawn them within our protocol using three
different methods. First, the invitation agent can carry the code for the response agent that each
host uses for response. The host will execute the response agent first on its local input and then
send the response agent to a semi-trusted execution location to actually evaluate the circuit (the
protocol runs described in Figure 30 and Figure 31 assume this approach). The second
approach involves the invitation agent dynamically generating the code and circuit when a host
responds positively with their input. A third method would involve each host responding to the
invitation by sending its input encrypted directly to the semi-trusted execution site. This method
implements the ideal SMC environment where parties send their input to a TTP for protocol
execution.

(a) single multi-hop (b) multiple multi-hop

Figure 32: Invitation Agents Sending Host Requests

Response Phase:
1. ∀i, Hi: I

- Host Hi verifies integrity/authentication of invitation agent I
2. πI(x1) = πR1

- Host executes πI on their private input xi, Hi: πI(xi) = πRi
- Output of invitation agent is an input, execution server encrypted circuit agent Ri with code πRi
- Itinerary of πRi is predetermined for execution server ES (or ESz)

3. ∀i, Hi→ESz: Ri = πRi | ξR
- Ri carries host input embedded in initial state ξR
- Ri migrates to one of the trusted execution sites for SMC protocol exchanges

4. ES: y = SMC(πR1, πR2, …, πRn,)
- After threshold of parties πRi, agents embodying code for SMC perform multi-round steps
- Computations are performed on either single ES or set of execution servers connected via high speed network/high bandwidth

Recovery Phase:
1. Method 1, ES→O: y = F(x1,…,xn)

- The execution server sends the encrypted result of F(x1,…,xn) directly to originator O

2. Method 2, Hn→ES: I, ES→O: I, ξI’= F(x1,…,xn)

- On last host in itinerary (Hn), I migrates to the execution server ES
- After timeout (completion of protocol), I migrates to originator O
- ES gives final state of I as result of SMC: ξI’= F(x1,…,xn)

3. O: F(x1,…,xn)

- O decrypts or receives final output of SMC according to rules of protocol

41

No matter which method we use, response agents in the protocol migrate to semi-trusted host
environments in order to evaluate the protocol (depicted in Figure 33). The semi-trusted hosts
are specifically designed to serve multi-party computations (predefined based on an underlying
protocol) or provide basic agent execution environments with communication facilities. An
adequate high bandwidth network to keep communication costs negligible must connect these
hosts. Neven et al. [355] suggest using agents in such manner and they bring agents closer
together by using high-speed communication links among servers in their architecture (see Figure
136 / Appendix A.4 for a more detailed explanation). Environments are semi-trusted because
group and threshold operations eliminate the full trust in any one server. We describe one server
in presenting example protocol runs below.

In security terms, “Invitation and Response” demonstrates the following properties. Hosts can
only send one agent to the computation response—removing the possibility that a host evaluates
a task circuit on multiple host inputs to game the task outcome. As long as we detect multiple
host submissions (and therefore cheating), we preserve the originator’s privacy. We keep the
local host input private under three scenarios:

1) When the execution sites are fully trusted, as depicted in Figure 33-a, we require no extra
security and expect the single execution site to maintain host input privacy.
2) When execution sites are semi-trusted, as depicted in Figure 33-b, we use multiple trusted
sites so that no one TTP receives all host inputs.
3) When execution sites are semi-trusted, as depicted in Figure 33-b, we may also use
threshold mechanisms and data shares to distribute trust among all execution sites.
The hybrid approach advantage includes the ability to accommodate true free-roaming agent

scenarios and to use any secure multi-party protocol secure function evaluation. We therefore
favor protocols with high communication and low computational complexity because we send
agents to a semi-trusted environment that has an assumed high-speed link among execution
sites. For fully trusted execution environments, we depend on execution servers to follow all the
rules and to prevent malicious tampering in order to achieve privacy and integrity. Semi-trusted
environments (which map more accurately to real world scenarios) only operate on data shares
where the SMC protocol uses threshold secret sharing schemes.

(a) Fully-Trusted (b) Semi-Trusted

Figure 33: Response Agents and Execution Environments

Selecting execution environments become an issue with the invitation and response protocol.
The two primary requirements include high-speed communications link between all servers and a
common trust level among all protocol parties and the trusted servers. Response agents only
make two subsequent migrations: to the trusted server environment and then back to the
originator, who can decrypt the final agent state and obtain the result.

42

Algesheimer et al. in [27] discuss a common SMC/agent integration issue concerning how the
host gets its local output as the mobile agent migrates. In invitation and response, we handle
local host output in two different ways. First, since we do not need to keep the function output
private for the involved protocol hosts, we let the originator O provide the output to each host after
the execution servers complete the secure function evaluation and response agents migrate back
to the originator. Second, execution sites may send the host output share or host function output
back to each host through message passing or a second agent.

3.3.3 Multi-Agent Trusted Execution

When we know the agent itinerary beforehand, we can use simpler agent architecture to
facilitate trusted execution. Several configurations are possible for host environments that
evaluate a secure computation. First, we can allow the host to act as computation environment
for a cascaded circuit that requires only one execution round. Next, we can allow the host to
communicate with a semi-trusted party to evaluate an encrypted circuit or to communicate with
semi-trusted parties that provide threshold signal decryption services in an oblivious manner. We
allow the host to be the computation environment for a multi-round circuit that receives visits from
by more than one agent.

Figure 34 illustrates the four phases used in simple multi-agent trusted execution with a fully
trusted intermediary execution site. Multiple agents are used to initiate a multi-party protocol
among predefined hosts (beginning with Figure 34-Phase 1). Similar to the approaches used by
Endsuleit et al. [344, 353], multi-agent trusted execution begins when agents migrate to
prospective hosts, gather input (Figure 34-Phase 2), and then evaluate the protocol. When all
parties fully trust one trusted execution environment, agents can then migrate there to accomplish
a multi-round protocol, as suggested by Neven et al. [355] and as depicted in Figure 34-Phase 3.
Upon completing the multi-round protocol, each computation agent Ai migrates back to the
originating host (Figure 34-Phase 4), which can obtain the task outcome y = F(x1, x2, …, xn).

Figure 34: Fully-Trusted Middle Man with Multi-Agent/Multi-Round SMC

In a less trusted environment (where a server might be corrupted or stolen), we require
multiple trusted execution sites linked by a high-speed and high-bandwidth communications
network. Agents migrate to each host and migrate to the trusted execution site as before (Phase
1, Phase 2). Once agents obtain host input they migrate to a centralized trusted execution site
and evaluate a multi-round SMC protocol. Two possibilities exist for Phase 3, as illustrated by
Figure 35, Option 1 and Option 2.

43

Figure 35: Phase 3 with Semi-Trusted Middlemen Execution Sites

Figure 35-Option 1 depicts an SMC protocol where the agent carries its (unified) input and
begins protocol execution after receiving a minimum number of participants. We assign agents to
execution sites such that no one execute site receives all host inputs/agents. Figure 35-Option 2
depicts a secret-sharing scheme where execution sites have only a share of each host’s data
input. In this option, the SMC protocol chosen must protect input values using threshold
encryption and decryption. This option supports shared secret schemes such as Zhong and
Yang’s protocol [299] for code that requires integrity and confidentiality when TTPs may collude
(or face physical threats and corruption).

The trusted execution sites under Option 2 use cryptographic primitives such as verifiable
distributed oblivious transfer (VDOT) perform operations based on Shamir’s secret sharing
scheme [278, 299]. Verifiable secret sharing schemes allows operations on data shares
distributed among different parties. By using sharing techniques, parties give inputs shares so
that honest protocol parties can detect any attempt to alter a commitment. Security primitives
such as VDOT appeal to the security of Yao’s secure circuit evaluation, the security of the 1-out-
of-2 oblivious transfer, and the strength of threshold cryptography. Appendix A.5 provides a more
in-depth discussion concerning these topics. After completing the protocol execution, all agents
migrate to the originating host where share reconstruction takes place and the task owner
receives the function output y = F(…) from the shares.

Figure 36: Phase 4 Migration to Originating Host

These hybrid architectures use underlying SMC protocol strength, mitigate performance
overhead via a fully-trusted or semi-trusted execution network, and use agents that have a three-
step itinerary among known possible input hosts. The agent code in this scheme uses a three
step process involving migration/host data input gathering, migration/SMC protocol evaluation,
and migration/data recovery with the originator.

3.3.4 Hybrid SMC Approach Summary

We illustrate with our hybrid architectures the distinct trade-off with integrating secure
multiparty computations and mobile agent applications. We overcome the computation and
communication barriers and use generic SMC protocols in a more practical manner. We have

44

defined two hybrid approach variations that utilize fully-trusted or semi-trusted execution
environments for secure multi-agent computations. These schemes offer an alternative to other
architectures suggested to date; these protocols combine advantages related to non-interactive
approaches and multi-round SMC approaches. Invitation and response supports free-roaming
agent scenarios where we do not know all hosts beforehand while multi-agent trusted execution
enforces integrity and privacy despite colluding intermediate servers by using semi-trusted
threshold data sharing. Our future work in this area involves analyzing overhead that comes from
specific SMC protocol implementations.

3.4 Chapter Summary

Multi-agent architectures yield benefit in solving specific mobile agent security headaches.
Though they cannot address all mobile agent security requirements, we demonstrate in this
chapter how specific multi-agent architectures enforce particular security requirements: partial
result state protection despite multiple colluding hosts, guaranteeing host data input privacy, and
supporting code execution integrity. We focus now on the role trust plays in mobile agent security
decisions and specifically show how trust-related security decisions are useful in ubiquitous
environments for mobile agents.

45

CHAPTER 4

MOBILE AGENT TRUST FRAMEWORK

This chapter contains material from our published work on application security models
appearing in Electronic Notes on Theoretical Computer Science [151]. A separate technical
report [152] provides further background material related to our results in this area as well. We
provide in Appendix A.7 background literature relating to trust and give particular attention to how
it applies to mobile agent contexts. Appendix B provides illustrative demonstration for various
trust model properties that we define in this chapter.

4.1 Chapter Overview

Traditionally, mobile agent security focuses on two protection issues: keeping malicious
parties from altering the agent and keeping malicious agents from harming other parties including
potential hosts. Several surveys [21, 22, 222] categorize and describe attacks against agent
systems along with mechanisms for their defense. Researchers have given trust formulation
considerable thought in both distributed networking applications [35, 36, 37, 38] and mobile
agents [39, 40, 41, 42, 152]. Mobility as an application feature complicates trust because the
receiving execution host must make distributed trust decisions with little or no prior knowledge.
Likewise, user agents must evaluate trust with hosts in different security contexts. To date, other
trust models for mobile agents have not addressed how to link requirements with appropriate
agent protection mechanisms. Other trust models lack ability to integrate generic security
mechanisms or reasoning about initial trust relationships. We bridge this gap by developing a
trust-based security framework for mobile agents with three novel features:

 Ability to link application security requirements with mechanisms based on trust
 Reasoning about trust properties for generic security mechanisms
 Application models for initial trust among principals in a mobile agent setting

Our trust framework addresses several shortcomings in current models: handling generic

trusted servers, describing generic security mechanisms, incorporating distributed trust
paradigms, incorporating non-Boolean trust levels, relating applications to a security model with
initial trust, modeling agent replay and cut/paste attacks, dealing with multiple agent interactions,
and describing static interactions. We present results in this chapter in the following manner: first,
we define security requirements as they relate to mobile agents and review how mechanisms
relate to requirements (Section 4.2); we then define a trust framework that precisely defines all
parties in the mobile agent application (Section 4.3). The trust framework delineates principals,
trust relationships, trust decisions, and the role played by trusted hosts; it further provides a
mechanism to express trust algorithms for mobile agent applications (Section 4.4). Based on this
framework, we introduce application security models as a novel concept and show their relevance
to mobile agent application design (Section 4.5).

In the security sense, models are useful for several things such as: helping test a particular
security policy for completeness or consistency, helping document security policies, helping
conceptualize or design an implementation, or verifying an implementation satisfies a
requirements set. Our model for trust expression in mobile agent environments incorporates
three separate notions: security requirements, security mechanisms, and trust in a mobile
application setting. We examine requirements and mechanisms first.

46

4.2 Security Requirements and Mechanisms for Mobile Agents

We use trust to describe relationships among parties that have some behavioral expectation
with each other. Models define participants in a system and the rules participants follow in
interaction. In order to accommodate future mobile applications, we need a new model for
describing mobile agent interactions based on trust and security. Agent systems and mobile
applications need to balance security requirements with available security mechanisms in order to
meet application-level security goals. Linking trust with security requirements, linking participants
with trust levels, and creating models for expressing mobile agent interactions are key steps
toward ubiquitous computing goals involving agents.

Practitioners routinely define security requirements as the desire to guarantee one or more
specific properties: privacy, integrity, availability, authentication, and non-repudiation. Table 7
summarizes agent/host security requirements derived from the traditional CIA model and
provides an abbreviation code for reference. We target security mechanisms at enforcing one or
more of these requirements. We design our framework with the ability to express security
requirements and link those requirements with security mechanisms—using trust relationships as
a basis for evaluating their required use. Security requirements dictate both what are necessary
for agent task accomplishment and the trust expectation that hosts have when interacting with an
agent. To achieve these requirements, either a principal must highly trust another principal in the
system in regards to a given security requirement or else a security mechanism must be in place
to enforce that particular security requirement.

Table 7: Agent/Host Security Requirements w/ Abbreviations

As most current literature bears out in Chapter 2 and Appendix A.3, meeting security

requirements for mobile agents is not as simple as just applying cryptographic primitives or
introducing mechanisms. Agents complicate and extend normal security requirements for a
typical network-based distributed application. Requirements for security in mobile agent
applications (reviewed in Section 2.2.2) derive from the unique interactions in a mobile
environment. Specifically, agents are programs with three elements: static program code, a
dynamic data state, and a current execution thread. Agents execute only in context to a
migration path (itinerary) among a set of hosts (servers).

We construct mobile agent applications using an underlying architecture or middleware that
integrates agent mobility. Since real-world practical applications drive security requirements, we
assert that not all mobile agent applications require the same security level. In many cases, a

47

given application’s security depends on its expected operating environment—including
environments filled with adversarial relations, compromising insiders, or friendly alliances with
common goals.

We provide a literature review for the proposed mobile agent security mechanisms mentioned
here in Appendix A, and list several for context. Host based mechanisms protect a host from
malicious agents and include sandboxing, safe interpreters, code signatures, state appraisal,
proof carrying code, path histories, and policy management. Agent-based mechanisms protect
the agent from outside malicious activity and several commonly referenced mechanisms include
encrypted functions, detection objects, replication with voting, reference states, time-limited
execution, digital signatures, phoning home, anonymous routing, trusted third parties (TTP),
secure multi-party computation (SMC), multi-agent systems (MAS), intermediate data result
protection, undetachable signatures, environmental key generation, execution tracing, and
tamperproof hardware (TPH).

Protection mechanisms can allow agent transactions despite unknown or poor trust
environments. Wilhelm et al. [138], for example, make a strong argument that installed trusted
hardware and appropriate execution protocols can effectively shield private application data from
observation on untrusted remote servers—thereby mitigating trust issues. A principal can have
different trust levels for different requirements, e.g., Alice may trust Bob to execute her agent
without reverse engineering it (an expression of code privacy), but may not trust Bob to execute
the agent without looking at previous results from other hosts (an expression of state privacy).
When the desired trust level is not adequate between parties in the agent application, parties
require that security mechanisms enforce specific security requirements before allowing
agent/host execution.

Table 8: Agent Security Requirements and Related Mechanisms

Both application owners and potential agent execution environments have stake in the

mechanisms we use to enforce security–whether they prevent or detect malicious behavior and
what requirements aspect they enforce. Certain mechanisms are preventative in nature, not
allowing malicious behavior a priori. Other mechanisms rely on a posteriori information to detect
whether unauthorized actions occurred to either the agent or the host. Some mechanisms readily
fit into both categories and the clear delineation remains unimportant. In general, we desire
preventative mechanisms over detection mechanisms when available because they are stronger,
but they usually come with more overhead, limited use, or complicated implementation. We
consider detection as a less stringent security method because an adversary has already violated
system security in some way when the mechanism identifies the malicious activity.

 No single security mechanism can address every security requirement for a mobile agent
system. Application level security brings together a process for selecting security mechanisms
that achieve a desired trust level within a mobile agent system. Claessens et al. [360] delineate

48

several application level combinations for requirements/mechanisms that enforce desired security
properties. Even when using mechanisms that establish trust in untrusted environments (such as
tamperproof hardware), agent applications must taken into account other assumptions in order
guarantee all desired security requirements are met. Trusted hardware or multi-agent secure
cryptographic protocols may be warranted or even feasible given certain application environment
factors. When such mechanisms are not available or are not practical to implement, higher trust
levels are necessary; we require a more policy-driven approach to make dynamic decisions about
agent execution. We describe the ability to express such interactions formally next.

4.3 Trust Framework

Mobile agent systems deal with environments where partial knowledge and blind trust are
common; therefore, subjective determinations are appropriate for incorporation into security
mechanisms and agent execution decisions. We consider trust as complex because mobile
agent principals possess one-way trust for different security requirements. To formalize a mobile
agent application, we define first the principals that can be assigned trust properties, define next
the trust relationship nature between principals, and finally formulate what trust relationships can
accomplish in mobile applications settings (the trust algorithm).

4.3.1 Defining Principals

Table 9 fully defines principals within our model, using extended BNF form7, and we discuss
each composition individually. We find three distinct principal groups in mobile agent systems:
agents, hosts, and entities. We define an agent as a composition that includes static software
(code) and a set of dynamic states (state) representing the agent’s migratory results.

Table 9: Principals in Mobile Agent Systems (expressed in extended BNF notation)

We describe agents by their migration path (itinerary), any unique identifiers (id), a record

describing agent or host activity (log), and a security specification (policy) that includes any
historical trust information for other principals in the agent application. We can create agents
using reusable components where each component has its own associated dynamic state and
trust level. For simplification, we define an agent to have only a single static code. The agent “id”
encompasses more than one identity as well. For agent naming, we use Roth’s agent kernel (see
Figure 10, p. 14) that uniquely binds a specific mobile agent’s dynamic state to its static code.
This identification eliminates the possibility for cut/paste and oracle-style attacks that plague
certain posed security mechanisms. The static code, the application owner, and the code
developer all possess unique identities as well—which we capture in the id component. Figure
37 depicts the agent composition in a traditional Unified Modeling Language (UML) class
notation, where we abuse the notation slightly for representational viewing.

Hosts provide an execution environment for the agent. They encompass the underlying
physical hardware, runtime services, and middleware necessary for agent migration and
execution. Agents see a host as a collection of computational, communicational, informational,
and management resources. Hosts offer services provided by local (non-itinerant) agents,
advertise host based software processes, offer host-based physical resources such as memory

7 ISO/IEC 14977:1996(E), see http://www.nist.fss.ru/hr/doc/mstd/iso/14977-96.htm

<agent> = <code>, <state>+, <itinerary>, <id>, <log>, <policy>
<host> = <resource>+, <id>, <log, <policy>, <host-type>

<host-type> = <dispatching> | <executing> | <trusted>
<entity-type> = <code developer> | <application owner> | <host manager>

<entity> = <organization>, <entity-type>
<principal> = <agent> | <host> | <entity>

<trust> = <level>,<foreknowledge>,<timeliness>
<application> = <principal>+ , (<principal>,<principal>,<security requirements>+, <trust>)*

49

and processor, and provide any information necessary for the agent to accomplish its task. Hosts
also have security policies that support the trust formation and decision process.

Code

State

ID

Itinerary

Log

Security Policy

Thread

Agent

Figure 37: Defining the Agent

Three host types are relevant to mobile computations: the dispatching host (DH) associated
with the application owner that launches mobile agents, the executing host (EH) where mobile
computations occur, and trusted hosts (TH) which have ability to change trust relationships
among other principals based on services they offer. The DH owns one or more agents that are
acting on its behalf and remains partially responsible for agents under its control. For simplicity,
we assume that a mobile agent application has only one dispatching host. One or more
executing hosts comprise an agent itinerary: each host acts upon the agent code/state to produce
a local host output and updated agent state. Trusted hosts conceptualize servers that provide
security benefit for agents during their lifetime. They assume trusted third party status in many
different security mechanisms—such as extended execution tracing [39] or multi-agent secure
computation schemes (Chapter 3).

Figure 38 depicts in UML form the relationships between these three host types: each host
type can have a one-way trust/belief relationship with another host. Dispatching hosts have
trust/beliefs regarding executing hosts and every executing host has some trust/belief about
agents received from a dispatching host. Likewise, dispatching hosts have trust/belief
relationships with trusted hosts and each trusted host has a distinct relationship with every
dispatching host. In every case, trust relationships do not have to be the same. Executing hosts
and trusted hosts may also have trust/belief regarding other executing and trusted hosts as well.

As Figure 39 depicts, three entities have bearing on security relationships in mobile settings.
We define the static agent code creator as the code developer (CD) and define the code user as
the application owner (AO). The CD and AO may be the same.
The computer owner, the systems manager, and computer user
can be the same person, or can be separate individuals with
different trust levels. For simplicity, we view the host owner,
manager, and user as synonymous and apply the term host
manager (-M) to refer to all three responsible parties. In human terms, we trust machines (hosts)
and software (agents) in some cases because we trust the manager associated with the
environment or the developer for the software. We equate the trust that we have in the host
manager (DH-M, EH-M, TH-M) as the trust we have in any other host (DH, EH, TH), realizing that
the host manager for the dispatching host (DH), the code developer (CD), and the application
owner (AO) can all be different entities or the same entity. In Appendix B, we provide Figure 140
to conceptualize in UML form the trust relatins between host and agent and Figure 139 to depict
the associations between the application owner, agent developer, and dispatching host with the
agent.

trust(DH) ≈ trust(DH-M)
trust(EH) ≈ trust(EH-M)
trust(TH) ≈ trust(TH-M)

50

Hosts

Execution

Dispatching

Trusted

trust/belief

trust/belief

trust/belief
trust/belief

trust/belief

trust/belief
Figure 38: Defining Executing/Dispatching/Trusted Hosts

Figure 39: Three Entities Affecting Trust in Mobile Agent Environments

We define an application as the collection of all possible hosts involved in the agent task and
the set of uniquely identifiable agents that implement a user function. This intuition captures
single agents and multiple collaborating agents including those with the same static code and
different itineraries and those with different static code. Applications, not agents, therefore
become the focal point for trust determination, security requirements, and security mechanisms.
We now define trust relationships shared among principals in our model.

51

4.3.2 Defining Trust Relationships

One security task is to attribute rightfully the observed actions within the system to a given
party. The code developer, the dispatching host, and all visited hosts
influence the agent’s data state and code–making attribution for
malicious behavior difficult. For simplicity, we equate the trust in the
agent code with trust in the code developer and we will equate trust
we have in the dispatching host as the trust we have in the application owner. We define a trust
relationship δ: P → P → S → (L ,F, M) as a mapping δ between two principals (Px, Py) and some
number of security requirements (S) with three associated parameters: trust level (L),
foreknowledge (F), and timeliness (M), defined in Table 10.

Thread

CodeAgent Developer

Itinerary

State

Log

Dispatching Host

ID

Agent

Security Policy
Application Owner

Figure 40: Principals and Entities Associated with an Agent

We categorize trust levels (L) in a range from highly untrusted (HU/U) to highly trusted (HT/T),
where in some instances we assume trust is not determined (ND). Trust levels are non-Boolean
and reflect a one-way subjective belief that one party will behave towards another party at some
perceived malicious intent level (HU, U, ND, T, HT). Trust can be discretely categorized
negatively and positively as ranges between [-1, 1]: (HT, T) > 0, ND = 0, (U, HU) < 0. Our model
considers levels in the range [0, 1].

Foreknowledge (F) defines prior interaction between principals. Agents traveling in a dynamic
free-roaming itinerary can encounter unknown hosts. Likewise, hosts are likely to encounter
agents with no prior experience. We describe the foreknowledge held by a principal as either
well-known (WK), known (K), or unknown (UK). Well-known principals have established histories
while we identify known principals for possible agent execution/migration.

Timeliness (M) characterizes information currency and we express it with values expired,
stale, or fresh. We establish timeliness by mechanisms such as timestamps [366] and we use
age comparisons to determine whether we can rely on recommended or delegated trust
decisions. Given the same interaction volume, trust is higher when the interaction period is
longer. When the elapsed time since the last interaction is short, we can place higher confidence
in interactions that are more recent.

For a specific mobile agent application, we derive principals using all sets for possible
concerned parties. Based on simplifying assumptions, which we depict in Figure 41, we define
four possible principal sets: dispatching host/application owner (DH/AO), all executing hosts
(EH), all trusted hosts (TH), and all agents/code developers (A/CD). If a more precise trust

trust(A) ≈ trust(CD)
trust(DH) ≈ trust(AO)

52

relationship needs expression for these specific entities, we can treat code developers and
application owners separately.

Trust level, foreknowledge, and timeliness bind trust from two principals (an application owner,

an executing host, a dispatching host, an agent, etc.) with one or more security requirements
(elaborated in Table 7). Though we represent foreknowledge, trust level, and timeliness
discretely, they can be converted to continuous ranges ([−1, 1] or [0, 1] for example) to
accommodate different trust algorithms.

Table 10: Trust Relationships

Figure 41: Simplifying Trust Assumptions in Mobile Agent Application

4.4 Trust Algorithm

We now discuss how our model supports trust-based decision making in mobile agent
contexts. Given an application G with associated hosts set Hx, a set containing uniquely
identifiable agents Ay, and a set with trust relationships Ti,j, we can formulate the trust actions and
decisions that are possible in the application space based on trust relationships among all
principals. Appendix B provides elaboration of various agent scenarios using the trust model.

4.4.1 Trust Decisions

Trust decisions in pervasive scenarios come from two primary information sources: personal
observations (previous interactions) and recommendations from other parties (transitive or

<application> = <principal>+ , (<principal>,<principal>,<security requirements>+, <trust>)*

<δ> = <Px>, <Py>, <S>+ , <L>, <F>, <M>
<L> = <highly untrusted> | <untrusted> | <non-determined> |

 <trusted> | <highly trusted>
<F> = <well known> | <known> | <unknown>
<M> = <expired> | <stale> | <fresh>
<S> = <agent code privacy> | <agent code integrity> |

 <agent code safety> | <agent code authenticity> |
 <agent itinerary privacy> | <agent itinerary integrity> |
 <agent state integrity> | <agent state privacy> |
 <agent authenticity> | <agent authorization> |
 <agent non-repudiation> | <agent availability> |
 <agent anonymity> | <host authenticity> |
 <host non-repudiation> | <host data privacy> |
 <host anonymity> | <host availability> | <host integrity>

53

delegated trust). We can use Spy agents [153] to build and maintain a trust profile by validating
behavior in small interactions. Trust-earning actions build relationships and principals use these
to determine which security mechanisms will meet the application owner’s desired security level.

Trust in the mobile agent environment affects security mechanism selection, agent itinerary,
policy decisions, and code distribution. For example, if the application owner (AO) has non-
determined (ND) or low (U) trust toward any prospective host, the owner may require detection
mechanisms to guarantee agent state integrity or agent state privacy. If no trust (HU/U) exists at
all, the AO may require stringent mechanisms that prevent agent state integrity/privacy. If the AO
has full trust (T/HT) in prospective hosts, no security mechanism may be required to allow agent
migration and execution.

To link agent security mechanisms with application requirements, our framework processes
initial, recommended, and first-hand trust to render a mechanism-based decision that meets the
security objectives for involved principals. Highly trusted and trusted principals will tend to yield
no requirement for security mechanisms. Non-determined trust will tend to require
detection−oriented mechanisms while untrusted relationships will tend to demand
prevention−oriented mechanisms. Migration decisions are also determined based on trust level.

Figure 42: Trust Decisions for Mobile Agent Security

Figure 42 depicts the inputs and outputs to our trust determination process for mobile
applications with the outcome selecting one or more mechanisms that will meet bidirectional
requirements between principals defined by the trust relationships. The trust algorithm produces
an appropriate host-based mechanism set and an appropriate agent-based mechanism set. We
generalize the initial trust set based on the agent’s application environment. We define the initial
trust component for the trust-based decision seen in Figure 42 by a relationships set (the
application model) which is context-dependent on the application. We define three different
application model scenarios in Section 4.5.

Several decisions are possible based on principal interactions within the mobile agent
application. We summarize the interactions that are possible in the agent lifecycle in Appendix B,
Table 29, but discuss two in detail here: agent dispatch and agent migration. Figure 43 highlights
the trust relationships required for agent dispatch while Figure 44 highlights trust and security for

54

agent migration. For simplicity, we consider the application owner (AO) / dispatching host (DH)
synonymous and consider the code developer (CD) / agent (A) synonymous in trust expectation.

Figure 43: Trust/Security Decisions on Agent Dispatch

The first executing host (EH) in the agent itinerary has trust expectations (possibly different)
from those expressed by the application owner. Recalling the definition for a trust tuple, δ: P →
P → S → (L, F, M), there exists tuple forms such as (AO,EH,SEH, (L,F,M)), (EH,AO,SAO, (L,F,M))),
and (EH,DH,SA, (L,F,M))) in a fully populated trust database. The set of security requirements
SEH that an application owner (AO) wishes to enforce for any prospective executing host (EH)
may include code privacy, code integrity, state integrity, state privacy, agent availability, agent
anonymity, host authenticity, and host non-repudiation. The set of security requirements SAO an
executing host (EH) may specify towards an application owner (AO) include host data privacy,
host anonymity, agent state authenticity, and agent non-repudiation. The set of security
requirements SA an executing host (EH) may specify towards an agent/code developer (A/CD)
may include agent code safety (to ensure host availability and host integrity), agent code
authenticity, and agent code integrity.

Figure 44: Trust/Security Decisions on Agent Migration

A single tuple exists in a policy database for every security requirement desired, each
mapping to an allowable foreknowledge level (F), trust level (L), and timeliness level (T). Figure
43 for example indicates that an application owner can specify security requirements for
executing hosts who are known (K) to have non-determined trust (ND) with stale (S) timeliness on
their information. Executing hosts, likewise, specify security requirements for application owners
who are unknown (UK) with non-determined trust (ND) and with expired (E) timeliness on their
information. Figure 44 depicts the trust relationships that our trust framework evaluates during
agent migration. Here, principals include two executing hosts (EH), the agent (A), and the

55

application owner (AO). Because a previous host may corrupt the agent, state integrity and
privacy become paramount.

Required security mechanisms (none, detection, prevention) for a particular principal are
determined based on trust level. For example, if an unknown agent requests migration to a host
that requires agent code integrity and no mechanism enforces that requirement, the executing
host refuses agent migration according to the policy database. If a well-known agent requests
migration and no tuples specify policy otherwise, the executing host allows the migration and
execution. Trust exists as a unidirectional property: what one principle (an executing host)
considers allowable for security mechanisms may not be adequate for the other principal
(application owner).

Given a trust relationship set that exists between principals, a policy engine using this
framework can make several trust-based decisions:

- which agent/host security mechanism to use;
- which hosts an agent can include in the itinerary;
- which agent code parts are executed by the host;
- which agents are allowed host resources;
- which principals can share policy information;
- whether trust levels can increase (whether you are allowed to recover from negative trust);
- whether or not trust recommendations from other parties should be given merit to include
how much weight they are given.
Figure 45 pictorially summarizes our trust framework components for mobile agent

applications using standard UML generalization and compositional notation.

MilitaryTrade

Neutral Services

Trusted

Executing

Dispatching

Entity

Application Owner

Code Developer

Manager-Owner

Level

Foreknowledge Security

Timeliness

IDPolicy

Code

StateItinerary

Agent

Log

ResourceLog

Host

Principal

Application Model
Applicationcharacterizes

initial trust

First-Hand

Initial

Recommended

Mechanisms

Trust

enforced by
established by

Figure 45: Trust Framework

56

4.4.2 Trust Acquisition

We link trust relationships to one or more security mechanisms in our model. Given principal,
trust, and application definitions, we can exercise security decisions based on requirements. We
enforce trust using security mechanisms; applications link the principal’s trust expectations
through security requirements to a trust level, foreknowledge, and timeliness.

To formulate trust, our model supports three different acquisition modes: initial trust, first-hand
trust, and recommended trust. Initial trust is the relationship set belonging to an agent or host
before interaction history takes place over time. We argue that such an initial trust relationship
set can be generalized based on the agent’s application environment and pose at least three
such models. Next, principals gather first-hand trust over time through specific interactions with
other principals. We gain recommended trust when we accept or rely on trust levels offered by
other principals. When the initial binding of trust at various stages of the mobile agent, we define
the following lifecycle points for trust expression:

(1) creation and development of code bind trust to a code developer
(2) ownership of an agent binds trust to an application owner
(3) dispatching an agent binds trust to a dispatching host
(4) execution of an agent binds trust to all prior hosts an agent has visited plus its dispatcher
(5) migration binds trust to the next host in the agent itinerary
(6) termination binds trust of the entire application to the entire set of execution hosts and the

network environment
Our model allows a principal to earn trust or degrade trust based on actions observed over

time. Figure 46 illustrates the trust cycle where an agent execution using one or more executing
hosts affects trust among all principals in a policy database. Observable trust-related actions
during execution can change trust levels among mobile agents and hosts. Trust relationships
evolve from initial trust according to predefined rules–which represent a security policy. In
previous work on trust in ad-hoc networks [38], four different trust acquisition categories are
formulated which we apply in the mobile application context: trust-earning actions over time, trust-
earning actions by count, trust-earning actions by magnitude, and trust-defeating actions.

Figure 46: Acquired Trust over Multiple Applications

Because many methods already exist for evaluating delegated and acquired trust in mobile
agent systems [39, 40, 41, 42, 152], we leave identification of specific delegated algorithms open
for implementation. We focus instead on the novel aspects found in our approach—which include
representation of mechanisms/requirements and how to express the role of trusted hosts.

4.4.3 The Role of Trusted Hosts

Trusted hosts (TH) are distinguished from dispatching (DH) or executing hosts (EH) in an
agent application and we pose a novel expression for their role. Trusted hosts conceptualize

57

properties normally associated with trusted third parties (TTP) in various agent security
mechanisms and have specialized, static, and pre-determined trust relationships with principals.
TTP trust levels do not change with agents or hosts that interact with them, though we describe
the concept of partially trusted third party in Chapter 3. If TTPs do not have full trust in an
application environment, we represent them as an executing host (EH) with normal trust
relationships.

Execution hosts in the agent itinerary that have a trust level equal to “highly trusted” or
“trusted” can be used to detect malicious behavior such as verifying intermediate data integrity.
A trusted host, on the other hand provides, a third-party service such as information lookup,
mediation, brokering, communication service, or middle-agent hosting. We are not concerned
with whether an agent communicates statically or migrates dynamically to the trusted host. We
capture the primary intuition that trusted hosts provide a means for either increasing or
decreasing trust levels for other principals—with all parties in the application giving confidence
and agreement for them to do so.

For example, in extended execution tracing (EET), the trusted server verifies agent execution
integrity for both executing hosts and the dispatching host [33, 39]. Trusted servers in EET
facilitate the migration process and become the only means by which agents can move from one
executing host to another. When a host violates agent integrity, the trust policy framework lowers
the trust level for that executing host and communicates the violation to other principals in the
system. A host can delegate trust to another via the trusted server chain and a trust acquisition
methodology.

High trust levels in mobile applications derive from several possibilities: having tamperproof
hardware (TPH) installed, having a good reputation, being under the same management domain,
and having an established trusted/non-malicious interaction history. An application owner, for
example, may trust highly an executing host in its own management domain that has TPH such
as a smart card reader. Yee [74] points out that we routinely use TPH to offset trust levels when
remote hosts have non-determined trust or are assumed untrusted. Host-installed TPH that
supports agent execution can allow the application owner to assign a trusted or highly trusted
status not possible otherwise.

Trusted hosts normally implement a particular security mechanism, such as in EET or multi-
agent secure computation. The trusted host can therefore notionally increase or decrease trust
among principals in an application based on their services. TTPs may affect trust level
relationships between host and agent, agent and host, host and host, or agent and agent. When
trusted hosts service an agent via migration, they can inspect the agent or otherwise interact with
the agent like any other host. When agents interact with the TTP by static communication, they
can pass information to the trusted host for data logging, result protection, integrity checks, or
phoning information back to their dispatching host.

Trusted hosts introduced in a mobile application can thus change trust relations among
principals and enforce particular security requirements for executing hosts and application
owners. When agents and hosts interact with the trusted host, TTPs adjust trust mappings based
on particular security requirements and their interaction. Services provided by trusted hosts can
alter an agent’s state, itinerary, or security policy. An agent, for example, may use a trusted host
to determine the next host to visit and alter its itinerary based on the interaction. No matter which
principals are involved in the transaction, we assume trusted hosts to act in the best interest for
both agents and hosts and therefore achieve guaranteed application level security goals for all
parties involved.

An application environment model generalizes the adversarial nature that exists among
principals. The next section gives our novel concept for such models in defining initial mobile
agent security relationships.

4.5 Application Security Models

Models come in many shapes and sizes. In all cases, we use them to focus and detail a
particular problem aspect. Security models help test whether security policies are complete or

58

can verify whether an implementation fulfills a requirements set. Application models for multiple
agent systems describe how agents accomplish tasks based on an underlying pattern such as
publish/subscribe, courier/broker, and supervisor/worker. The application context determines
security responsibilities for principals and limits trust award to occurring only through specific
interactions. As we illustrate in Figure 47, applications (APPA, APPB, APPC) typically have one
application model that describes the behaviorial aspects of parties within their particular
environment. In some cases, we can use applications (APPD) in more than one application model
setting by adjusting security requirements, mechanisms, or trust assumptions about parties within
the environment.

Figure 47: Application Security Models

In our security framework, we establish trust three ways: initial trust, acquired trust, and

recommended trust (see Figure 42 and Figure 45). Over time, trust will change based on
observed actions and delegated decisions. Every application has unique security requirements,
but many applications share a common trust environment that can be the starting point for trust-
enhanced security decisions. Application scenarios dictate how we derive principals and how
they act towards each other. We define scenarios to set boundaries on whether we can acquire
trust over time–whether we can promote principals from untrusted (U) to non-determined (ND) or
from non-determined (ND) to trusted (T).

We leverage the notion that initial trust relationships exist in a mobile agent application
(between agents and hosts) based on a common trust environment. This initial trust is the
starting point for trust-enhanced security decisions and we define the set of initial trust relations
as an application security model. We provide three real world environments that reflect mobile
agent applications and that share common trust assumptions: the military model, the trade model,
and the neutral services model. These initial trust relationships couple the security requirements
and trust levels from various participants. As a result, agents in an application can initially
determine which security mechanisms they are willing to support and hosts can initially specify
their required security mechanisms.

4.5.1 The Military Model

We base the military model on the notion that a wall or ”Maginot Line” exists between friendly
and adversarial entities. Within friendly borders, entities typically know each other as
authenticated, highly-trusted principals. At some point, however, an adversary may take a given
principal captive. This captured entity (whether a host or agent) may continue to function
passively in order to discover information or leak secrets on the capturer’s behalf. Captured
entities may become overtly malicious by delaying and denying service, corrupting friendly
communications, and attacking privacy and group integrity operations.

The military model formulates common application characteristics between principals and
helps focus security requirements. For instance, although hosts might be ad-hoc or mobile, a
managerial entity verifies their identity within the environment. Figure 48 illustrates how initial trust
relationships capture this notion: every dispatching host/agent originator (DH/AO) has a ”known”
and ”trusted” relationship with every executing host (EH) to begin with. We indicate this by ”K/T”
in the row for DH/AO that intersects the EH column in Figure 48. In the military model, trust

59

relationships are implicit as long as the management domain can verify the principal’s identity.
We commonly know all principals beforehand in the military model, so we grant more trust to
authenticated agents and hosts as a result.

Given military model application G with principal set P,
dispatching host set DH, execution host set EH, trusted
host set TH, application owner set AO, code developer set
CD, and trust relation set ν:

1. DH ⊆ EH
2. TH ≠ ∅
3. ∀ pi,pj ∈ P: i ≠ j and ∀ δ (pi,pj,s) ∈ ν:
 F = <known>, or
 F = <well known>

Figure 48: Military Model Initial Trust Relationships

The military model fits requirements and trust relationships where using trusted third parties,

trusted hardware, group security operations, multiple security levels, multiple trust levels, and
distinct organizational structures exist. We find this environment in many corporate infrastructures
(as well as the military itself) where a trusted computing base is financially possible or mandated.
Implicit trust among principals allows hosts to work efficiently in cooperation with agents to
provide mutual prevention and detection services.

The military model also suggests common agent characteristics exist within an environment
where a centralized authority designs, develops, and deploys agents. In industry, corporations
may delegate development to outsourced teams or an information technology department with in-
house programmers. The military model reflects programming environments where only
authorized mobile agent applications are used and agents act as peers. Other initial trust models
can reflect agents that take on adversarial roles with one another. Even corporate divisions have
proprietary and sensitive information that may require protection.

In the military model, agents may still have requirements for integrity and privacy, but we can
verify their identity, safety, authorization, and authentication within a circle of trust. The military
model also places less emphasis on distinction between executing and dispatching hosts. Agent
servers play the role interchangeably in some cases as the dispatcher and in other cases as the

60

execution host. Initial trust in this model reflects many real-world computing paradigms where
agent-based applications accomplish group collaboration, systems management, and information
gathering. Centralized management domains exist and form a key feature in the military trust
model.

Figure 48 summarizes the military model initial trust relationships and describes how we
initialize a set of trust relations ν. We illustrate two simplifying assumptions: the application owner
(AO) and the dispatching host (DH) are equivalent for trust purposes and the code developer
(CD) has equivalent trust to the agent (A). The matrix also depicts, for example, the dispatching
host (DH) / application owner (AO) initially knows and trusts (K/T) all executing hosts (EH). It also
illustrates how the AO knows and trusts all agents (A/CD) it will use.

Based on this initial trust relationship set, the trust algorithm dynamically determines acquired
or recommended trust. Acquired trust mechanisms (where we define negative trust) facilitate
discovery of infiltrators. These relationships also determine the security mechanisms required by
each host or agent. In the military model, we assume that some agents or hosts will eventually fall
under “enemy” control. Two primary security-related tasks consume the majority of time in the
military model: 1) protecting insiders from outsiders and 2) detecting whether or not an adversary
has compromised or captured an agent or host.

The latter security task becomes detecting anomalous or malicious behavior and removing
malicious parties from the circle of trust. This scenario best represents application environments
with a peer (non-adversarial) relationship among agents and hosts. As Figure 48 illustrates, the
initial trust relationships among all principals in the system begin at a known and trusted level and
when trusted servers are used (TH), they are ”highly trusted” (HT).

Trusted third-party and trusted hardware roles, as well as coalition security mechanisms,
focus their attention on identifying principals that have violated the circle of trust or are attempting
to gain access to the circle of trust. A strong military model may require that all executing hosts
be equipped with tamperproof hardware. Other application scenarios are better suited for
expressing e-commerce interactions, discussed next.

4.5.2 The Trade Model

A second model we define is the trade model: it captures the intuition for a competitive
interaction among actors that are all bargaining for resources. Such an environment could also be
termed an economic model, a buy/sell model, or a supply/demand model where we consider
economic benefit as the chief motivator. This application scenario represents the Internet
computing model where prospective buyers deploy E-commerce mobile agents. It describes
applications where disjoint communities of mobile agent dispatchers want to use services or
obtain goods from a set of host commodity or service providers. Agent literature routinely
represents such a model as an agent dispatched to find an airline ticket among a group of airline
reservation servers. The agent accomplishes the transaction autonomously while finding the best
price within user constraints.

Figure 49 illustrates the initial trust relationships for security requirements in the trade model
and depicts the adversarial relationship among principals. In this scenario, we express several
trust facets: 1) buyers (application owners) do not trust sellers (hosts) to deal honestly with them;
2) sellers do not trust other sellers to work for their best interest; 3) buyers do not trust sellers to
act non-maliciously; and 4) buyers are in competitive relationships with other buyers for the same
goods and services. Initial relationships between dispatching hosts/application owners (DH/AO)
and executing hosts (EH) thus have an implicit untrusted (U) relationship for parties that are
known (K) and an implicit highly untrusted (HU) relationship for parties that are unknown (UK)-
seen in the Figure 49 matrix. Executing hosts in the matrix (EH) have untrusted relationships
(U/HU) with other executing hosts, whether known (K) or unknown (UK). We express the buyer’s
adversarial relationship by defining the initial trust between agents/code developers (A/CD) as
non-determined (ND) or highly untrusted (UH) in the case of known/unknown parties.

The largest possibilities for perceived mobile agent applications typically fall into the trade
model when describing security requirements. In this context, we do not necessarily know
principals before interaction takes place. In most cases, no trust or foreknowledge exists between

61

users that want to execute agents and hosts that would like to execute agents. This model relies
more on acquired or delegated trust decisions and reflects that executing hosts are as equally
distrusting with agents as they are with other executing hosts. Application owners see hosts as
implicitly untrusted in the sense that they can gain economic benefit if hosts alter agent execution
integrity or maliciously collude together.

Given trade model application G with principal set P,
dispatching host set DH, execution host set EH, trusted
host set TH, application owner set AO, code developer set
CD, and trust relation set ν:

1. DH ∩ EH = ∅
2. TH ≠ ∅
3. ∀ pi,pj ∈ P: i ≠ j and ∀ δ (pi,pj,s) ∈ ν:
 F = <unknown>, or
 F = <known>, or
 F = <well known>

Figure 49: Trade Model Initial Trust Relationships

4.5.3 The Neutral Services Model

As a third notion to capture application-level security requirements, we define the neutral
services model with the intuition that one or more agents acquire a service (or set of information)
from providing hosts. Service providers do not themselves have an adversarial relationship with
each other, but we view them as having disjoint trust communities. The primary difference in the
neutral services model and the trade model is that host communities exist with no adversarial
relationship among themselves. These communities are essentially neutral regarding their
commitments to each other–neither friendly nor hostile. Figure 50 gives the initial trust relations
for this model.

This model fits application environments designed around information or database services.
Information providers typically have no economic gain from altering the results or influencing the
itinerary for agents that they service. Hosts provide services honestly in the sense that they would
not alter the path or intermediate data results for an agent or induce service denial. Service
providers can and in most cases do charge a small fee for using their service, however. A

62

dispatching application owner in this model may be concerned with whether a host bills it
correctly after agent interaction. In this respect, if information providers charge for their service, it
is to their benefit to alter an agent’s execution integrity and illegally charge an agent for more than
was legitimately received.

Adversarial relationships exist between agents from the “client” community and hosts in the
“server” community, but trusts within the same community do not necessarily trust or distrust
towards each other (they tend to be neutral to one another). Neutral hosts see no benefit from
altering an agent that might be carrying results from other hosts or from preventing them from
visiting other hosts. Hosts in this realm are in essence a “one-of-many” information provider. This
paradigm may not fit a search engine model where a mobile agent visits and collates search
results from engines such as Google, Yahoo, and Alta Vista. In this case, one of these engines
(who get benefit from every agent hit since advertisers might pay more for a more frequently
visited search engine) may have desire to alter the itinerary or search results from agents that
visit other hosts. It might also benefit a search engine in this example to maliciously alter search
results from other engines carried by the agent and make them ”less useful”; as a result, the
malicious engine looks “better” to the application owner by making their competitor look “worse”.
For cases like this, the trade model would fit better to describe initial security requirements among
principals.

Given neutral services model application G with principal
set P, dispatching host set DH, execution host set EH,
trusted host set TH, application owner set AO, code
developer set CD, and trust relation set ν:

1. DH ∩ EH = ∅
2. TH ≠ ∅ or TH = ∅
3. ∀ pi,pj ∈ P: i ≠ j and ∀ δ (pi,pj,s) ∈ ν:
 F = <unknown>, or
 F = <known>, or
 F = <well known>

Figure 50: Neutral Services Model Initial Trust Relationships

63

The protection required for applications falling under the neutral services model revolves
primarily around the agent’s execution integrity. To that effect, hosts that bill customers for usage
might be tempted to cheat and wrongly charge agents for resources they did not use. Likewise,
agents may want to convince a host falsely that it did not provide a service or information, when
in fact it did. Trusted relationships between neutral third parties are also more conducive in this
environment and trusted third parties may interact with various communities to provide services
themselves.

4.6 Chapter Summary

When we consider application development, we desire methods that help transform
requirements into implementation. We present in this chapter a trust model for mobile agent
application development that supports trust-enhanced security decisions. We implement at least
three novel concepts in our framework: we unify security requirements with security mechanisms,
we address initial trust requirements at an application-specific level, and we define the
relationships for trusted third parties.

Our formalized model remains more robust and comprehensive than current trust models for
mobility in defining principals and their possible trust relationships. We also give the first
definition for an application security model that seeds a trust framework. We give three model
examples and characterize how to generate initial trust relationships based on the trust
assumptions between parties involved in mobile agent interactions. Both developers and
researchers benefit from this model because they can reason about security requirements and
mechanisms from an application level perspective; the model allows them to integrate trust-based
decisions into the mobile agent security architecture and define allowable security mechanisms.
In the next chapter, we deal specifically with mechanisms that address the hardest problems in
agent protection: how to protect the agent from meaningful alteration at the remote execution site.

64

CHAPTER 5

PROGRAM ENCRYPTION

This chapter contains material from a collection of published papers [44, 154, 155, 156] and
manuscripts under review [157, 158]. We first give a chapter overview and motivate the question
for why we want to “executably encrypt” a program afterward.

5.1 Chapter Overview

In their seminal work on homomorphic encryption in mobile agent settings [25], Sander and
Tschudin challenge the idea that a program running on a remote host requires trusted hardware
in order to guarantee integrity or privacy. They ask three specific questions that provide context
for our thesis:

(1) Can a mobile agent protect itself against tampering by a malicious host? (code and

execution integrity)
(2) Can a mobile agent conceal the program it wants to have executed? (code privacy)
(3) Can a mobile agent remotely sign a document without disclosing the user’s private key?

(computing with secrets in public)

We present results in this chapter that make positive contributions towards answering these

questions affirmatively. In Figure 51, we summarize these significant results related to protecting
software (generally) and protecting mobile agents (specifically) and show their relationship to both
efficiency and perfect semantic security.

Efficiency

Semantic Security

Fully
General

Bounded
Input-Size

Semantic
Encryption

Randomization Canonical
Reduction

Section 5.4 Section 5.7 Section 5.5 - 5.6

Perfect
Black-Box

White
Box

Perfect
White-Box

Figure 51: Results in Program Encryption

Section 5.2 gives the motivational basis for several program classes that benefit from

executable encryption. Section 5.3 defines specifically what we mean by program encryption, its
relationship to obfuscation, and gives definition for several program protection related metrics.
Section 5.4 presents our results for achieving perfectly secure black box program protection.
Section 5.5 defines a novel method for measuring obfuscation security strength based on random
programs. Section 5.6 presents our results for defining randomizing obfuscators. Section 5.7

65

presents our methodology for achieving perfectly secure white-box protection for bounded-input
size programs.

As a foundational result, we demonstrate that you can only securely obfuscate a program by
first translating the program’s semantic meaning (input/output relationships) into a one-way
function (assuming the program is not a one-way function itself). We discuss this approach for
black box protection in Section 5.4 and give a provable methodology for semantic encryption
transformation. Given this translation basis (which securely hides the original program’s
input/output mappings) and given an associated recovery process (which reproduces the original
program’s intended output), we then consider how to hide the white-box information associated
with a circuit’s gate structure or a program’s source code. In Section 5.5, we give an alternative
obfuscation security model that finds applicability with (practical) obfuscation techniques currently
in use today. In Section 5.6, we present our results for semantic security based on randomization
techniques similar to those found in traditional data ciphers, representing a (more) efficient
general approach to white-box protection. White-box protection can also be perfectly secure and
generalized for programs with bounded input-size, and we give our methodology for this using
canonical circuit reduction in Section 5.7.

5.2 Motivating the Question

We believe that the future distributed computing success depends upon securing intellectual
rights found in software (in general) and protecting mobile program integrity and privacy (in
particular). The malicious host problem (Section A.2) in mobile agent settings provides an
interesting case for analyzing what is possible with program protection. In particular, a remote
host has complete control over any code that it executes—creating a scenario where malicious
parties may alter a program’s execution without detection.

Methods for preserving code privacy in such environments have included multi-party secure
computation (Chapter 3 and Section A.5), computing with encrypted functions (Section A.3.20
and Section A.3.21), homomorphic encryption [25, 159, 291], tamperproof hardware (Section
A.3.19), server-side execution, time-limited black boxes [34], tamper resistance/tamperproofing
[160, 161, 162, 163, 164, 165], software watermarking [166, 167], and obfuscation [168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186]. Many
researchers seek to define obfuscation in cryptographically strong ways that show provable
security according to some adversarial model or based on specific heuristic techniques. We seek
methods for how to “executably encrypt” a program and show positive results in this thesis toward
that goal. We borrow the term program encryption from traditional cryptography and define its
properties in the next section. We distinguish obfuscation from program encryption based on
provable cryptographic properties associated with the latter.

The goal of program obfuscation is to disguise programs so that a user can execute them but
cannot determine their intent. It essentially entails constructing programs so that they are
unrecognizable in a definable way. When an adversary cannot discern what a program is trying
to accomplish, the adversary gains no benefit by copying the program or attempting to change
the program in any meaningful way. Two questions naturally arise:

(1) How can running an unrecognizable program provide anything valuable?
(2) Why would anyone risk running a program they do not understand?

Consider a military application where the enemy captures a hand held device. If an adversary

captures a device with an open session, they can observe input and output relationships. If we
protect the program against black box analysis, the enemy cannot determine the device’s function
from an arbitrary number of input-output pairs. However, if we assume a sophisticated adversary,
they may be able to analyze the device from a white box perspective; that is, they can execute
arbitrary input and analyze the control flow and data manipulations in the program code as they
occur. If we protect a program from white box analysis, we prevent the enemy from learning the
program's intent by watching its execution or analyzing its code. Finally, in the military

66

environment, trusted parties would typically configure and load software to the handheld devices,
using trusted hardware, so we have little concern regarding executing programs that we do not
understand.

Although the mobile agent security field directly benefits from developing provable
tamperproofing techniques, our results for program encryption apply to the computer science field
in general and include protection for other significant program classes. Program classes exist
containing applications with relatively small (bounded) input size and, in Section 5.7, we define an
end-to-end methodology to protect these programs specifically. Using our methodology, we
demonstrate how to protect several relevant program classes with perfect semantic secrecy. We
give six specific applications next that benefit directly from the results described in this chapter—
though there are certainly other candidate applications.

5.2.1 Mobile Agents

Mobile agents visit untrusted host environments and they do not always know or trust the
security of their executing environment. Instead, agents must provide their own application layer
security or the host middleware must enforce security on the agent’s behalf. The best we can
achieve for security in such environments is to reduce adversary’s power from effective tampering
to blind disruption. When we apply our black box protection mechanism in Section 5.4 to general
programs, we can protect agents running in trusted hardware environments—as long as the TPH
enforces virtual black box security (see Appendix A.3.19). Executably encrypted agents can hide
their purpose/results in such a way that an adversary gains no benefit from trying to game their
input/output or from altering the agent‘s code to their advantage.

5.2.2 Sensor Nets

Sensors are canonically resource-constrained devices that typically process small sized input
data, e.g. 16 bits. A manufacturer could executably encrypt the embedded sensor code to protect
their intellectual property. Take for example a sensor that we deploy in a remote operating
location as illustrated in Figure 52. The sensor output is a broadcast stream of binary digits (64
bits at a time) that we carry by some means (satellite uplink possibly) to a remote processing
facility. If an adversary captures the sensor and utilizes the capability to disassemble the sensor
and look at its internal structure, the adversary may become aware (after some reverse hardware
engineering process) that the sensor uses temperature readings and motion sensor related data.
For temperature, the sensor uses an 8-bit input size (capturing a range from -100O C to 100O C)
and, for motion sensor data, the sensor requires 24 bits. The software inside the sensor thus
takes 32 bits of input and outputs 64 bits of data every time it takes a reading (all of which are
observable by the adversary).

Figure 52: Application Example for Program Encryption

67

We want to protect the application intent for the software embedded in the sensor so that the
adversary cannot foil the detection properties of the sensor. We want to prevent the adversary
from understanding (based on the input) what processed information the sensor relays back to its
processing facility. In other words, we want to protect provably the input/output (black box)
relationships of the sensor and the algorithmic (white-box) information contained in the sensor’s
embedded circuitry.

5.2.3 Geo-Positional Location Information

Positioning devices utilize numerically intensive functions. We can often represent
mathematical input very efficiently. Thus, location finding or tracking devices are potential
program encryption applications.

5.2.4 Financial Transactions

There is a clear need to protect programs that compute financial data. Many important
financial programs take small mathematical input and, thus can be target applications for perfectly
secure obfuscation. The ability to hide small pieces of security information (bank PIN, account
number) embedded in a user-specific financial application also becomes a reality under this
construction.

5.2.5 Protecting Embedded Keys in Programs

A major contribution of our research includes a methodology to protect embedded key
encryption algorithms contained in executing program code. For an application with suitable input
size, we give a methodology to mask its input/output relationships and effectively protect its
source code representation from leaking information. We can provably hide the key (and the
seam between the application and the encryption algorithm) within the obfuscated program.

5.2.6 Transforming Private Key Crypto-Systems into Public Key Systems

Our approach to program encryption lays the foundation for solving the more (long-standing)
problem in computer science of how to transform any private-key cryptosystem into a public-key
system. Specifically, Alice can take a private-key data cipher with encryption algorithm E(K,M)
and decryption algorithm D(K,C), embed a specific private key KA in the encryption algorithm,
obfuscate E(KA,M) to produce E’KA(M), and then publish the obfuscated cipher E’KA as a virtual
public key. Alice distributes E’KA while keeping the private key KA secret. Bob can use E’KA to
send Alice encrypted messages that only she can decrypt (using D(K,C) and her secret key KA).
Diffie and Hellman [187] considered this idea in their original seminal work on passing secrets in
public. As they point out, any encryption algorithm candidate E(K,M) must be complex enough so
that input/output pair analysis does not easily reveal the decryption algorithm D(K,C).

5.3 Defining Program Encryption

These motivating examples provide building blocks for the possibility of protecting mobile code
from malicious execution environments and effectively protecting programs from malicious intent.
Ultimately, we desire to prevent the adversary from knowing the purpose of a program in order to
reduce attacks from effective tampering to blind disruption. Sander and Tschudin make this
similar observation:

“… if we can execute encrypted programs without decrypting them, we
automatically have a) code privacy and b) code integrity in the sense that specific
tampering is not possible. Attacks by a malicious host would then be reduced to
actions “at the surface of the mobile agent”: denial of service, random
modifications of the program or of its output as well as replay attacks.” [25]

68

We posit that the research community already recognizes important opportunities for
obfuscation applications, but they have yet to find a precise security definition with positive results
that apply to current commercial obfuscation implementations. Our work leverages existing
obfuscation techniques, but we move past traditional obfuscation to establish a baseline definition
for the field of program encryption. In doing so, we hope to provide the community a practical yet
theoretical basis for protecting programs while giving greater clarity to researchers for analyzing
existing obfuscation techniques.

5.3.1 Measuring Cryptographic Security

Two approaches exist for measuring cryptographic security strength [188]: information-
theoretic and computational-complexity. We base information-theoretic security on whether
breaks are possible (unconditionally) and base computational measures on whether breaks are
feasible. Concerning data ciphers, cryptographers deem an encryption scheme insecure in the
information-theoretic sense if the ciphertext contains any information about the plaintext. In the
computational-complexity model, cryptographers only care whether an adversary can efficiently
extract information about the plaintext contained in the ciphertext. With information-theoretic
secrecy, we use an ideal security model to show that any candidate security solution is nearly as
good as the ideal one. This implicit approach is quite different from the explicit complexity method
that must define an adversary task and then show that the task is computationally difficult.

5.3.2 Heuristic Views of Obfuscation

Heuristic techniques and some computational approaches represent a form of “fuzzy” security
(neither well defined nor precise) because they rely on capturing all possible adversarial actions.
These techniques also rely on less formal security properties that gauge an adversary’s mental or
cognitive state concerning software (i.e., whether software is “hard to understand”). Table 11
summarizes several metrics that Collberg and his colleagues [167, 169, 170, 183, 185] use to
define and analyze complexity. Defining adversarial actions requires ad-hoc definition and
computational/heuristic approaches suffer typically from a use/break/tweak/use cycle as a result.
These foundational differences in defining security apply directly to program obfuscation security.

Table 11: Heuristic Obfuscation Metrics

Heuristic approaches for obfuscation include techniques based on the hardness of

interprocedural analysis [183], key-based generation of pseudorandom encrypted cope
(decrypted just prior to execution) [164], and applying cryptographic primitives for constant hiding
[175]. Drape [184] characterizes obfuscation as a refinement/proof process on data structures
(versus algorithms). In almost all heuristic cases, the adversary has an ability to recover the
original source code only related to the relative complexity of the obfuscated code version. As
Table 11 illustrates, we can derive software complexity measures based on numbers of
predicates [189], conditional structure nesting [190], and data structure complexity [191] and
utilize them for obfuscation measurements. Many obfuscation techniques leverage known hard
problems such as inter-procedural and control flow analysis [162, 163, 179] to provide complexity

Metric Name Definition
Cyclomatic
Complexity

Function complexity increases as number of predicates increase

Nesting
Complexity

Function complexity increases as conditional structure nesting levels
increase

Data Structure
Complexity

Function complexity increases as static data structure complexity increases

Potency Measures the complexity of the obfuscated program versus that of the
original program

Resilience Measures the ability of an obfuscation to withstand a deobfuscation attack
Overhead Measures the time or space increase of an obfuscation
Stealth Measures the recognizable difference between obfuscated code and normal

code within a program
Quality Measures the combined qualities of potency, overhead, and resilience

69

increase. Other researchers use hardware supported program security [161, 192] and protecting
embedded keys [146, 147].

Most obfuscators prevent an adversary from effective decompilation and re-assembly;
practical obfuscation implementations invariably appeal to confusion or complexity as a measure
of security. Specific obfuscation techniques vary greatly and we summarize the common ones in
Table 12. Commercial obfuscators [193] use only a few of these techniques and we list several
current products with their respective protection techniques in Table 13. Despite the lack of
provable security properties, commercial vendors relate the security of their products to the
inability of an adversary to reverse engineer, decompile, or effectively recover the original source
code of an original program.

Table 12: Heuristic Obfuscation Techniques

5.3.3 Theoretical Views of Obfuscation

For some time, obfuscation researchers have found results based on both computational and
information-theoretic models. The security characterization of obfuscation has been described as
NP-easy [174], derivable in limited contexts [163 , 175, 176], and proven to be NP-hard [182, 183,
186] / PSPACE-hard [179] based on specific protection mechanism. Yu and his colleagues have
recently found several positive results for completely hiding circuit topology in the information
theoretic sense [180, 181]. In Section 5.4, we introduce a secure black box program protection
mechanism similar to Ostrovsky and Skeith’s recent work [171] based on public-key obfuscation
that produces encrypted, recoverable program output.

One definition of obfuscation is the ability to rewrite a program efficiently so that an adversary
who possesses the obfuscation gains no advantage beyond having observable program

Technique Methodology
Opaque Predicates Using predicates with known values at obfuscation time: always true,

sometimes true, always false
Variable Renaming Renaming variables and data structures to cognitively meaningless names
Control Flow Mangling Reordering normal program control and execution flow to prevent

decompilation and disassembly
Memory Mangling Adding or reversing the order of addressing/dereferencing operations
String Encryption Encrypting sensitive data strings using a data cipher and decrypting them

prior to use
Multiple Functions Introducing additional functions into code to obscure the original (intended)

function
Code Encryption Encrypting parts of the code using a data cipher and decrypting them prior

to execution
Loop Unrolling Confusing the normal logic of a loop by altering indexes or executing some

number of loop runs
Array Merging /
Splitting

Splitting an array into two arrays or merging two arrays into one large one
in order to confuse the index logic

Method Cloning Creating different versions of the same method
Code Interleaving Merging two pieces of code in parallel and using specific means to

distinguish the original methods. Interleaving unrelated code segments
increases deobfuscation complexity

Code Concatenation Merging two pieces of code serially by taking the output of one and using it
as the input of the other: f(x), g(y) → g(f(x))

Code Outlining Taking a statement sequence and creating a separate function
Code Inlining Replacing a function call with its actual code
Random Statements Inserting execution neutral statements with proper characteristics in

random and pre-selected places
Randomized Ciphers Altering well-known data ciphers in random ways to produce embedded

key-based encryptions unique to a particular application
Code Morphing Creating self-modifying code that changes the runtime and static code

structure of the obfuscated program on execution

70

input/output behavior. This intuition has received substantial research and applied attention, yet a
gap currently exists between practical and theoretical obfuscation security. The current de facto
standard theoretical obfuscation model is the Virtual Black Box (VBB) paradigm [172]. Barak et
al. prove that there is an unobfuscatable family of functions under VBB, and thus that efficient,
general obfuscators do not exist. Wee [178] proves that we can obfuscate particular classes of
point functions, whose result is true on one and only one input and false otherwise, under VBB
given certain complexity assumptions. Lynn et al. [176] provide variations for protecting point
functions based on random oracles while Canetti [177] demonstrates cases where hash functions
replace oracles. Goldwasser and Kalai [173] show that you cannot efficiently obfuscate functions
families with respect to a priori information given to adversaries—giving unconditional
impossibility results under VBB unrelated to one-way functions.

Table 13: Examples of Commercial Obfuscators

We review briefly the first proof given by Barak et al. in [172] that no 2-Turing Machine (2-TM)

or 2-Circuit obfuscator exists, as we reference the proof in our later constructions. Informally, we
define an obfuscator O as an efficient, probabilistic algorithm that takes a program (or circuit) P
and produces a new program or circuit P’ = O(P). Candidate obfuscators must exhibit the
following properties in relation to P and P’:

(1) functionality, ∀x, P(x) = P’(x), where P ’= O(P),
(2) polynomial slowdown, which says O(P) is at most polynomially slower than P (for circuits
the requirement is that the size of O(P) is at most polynomially greater than P), and
(3) virtual black box (VBB) property.

We define the virtual black box property uniquely for the class of programs (TM) or circuits we

wish to analyze. Definition 1 and Definition 2 describe the requirements for 2-TM and 2-circuit
constructions. The generalized VBB property mathematically states that you should not be able to
learn more from the obfuscated version of a program (O(M)) than from a simulator (S<M>) for the
original program with oracle access. Equation 1 gives the formulation as follows:

Equation 1. |)(||]1)1(Pr[]1))((Pr[| || MnegSMA MM ≤=−=Ο ><

Product Company Obfuscation Techniques
Dotfuscator (.NET)
DashO (JAVA)

PreEmptive
Solutions

Uses class/field/method renaming, string encryption, and
control-flow confusion
Available: http://www.preemptive.com

SourceGuard (JAVA) 4thPass Uses class/field/method renaming, removes debug meta-
data, and introduces control-flow confusion
Available: http://www.4thpass.com

RetroGuard (JAVA) RetroLogic
Systems

Uses class file symbol renaming
Available: http://www.retrologic.com

yGuard (JAVA) yWorks Uses class/field/method renaming
Available: http://www.yworks.com

Salamander (.NET) RemoteSoft Uses variable renaming and method overloading, removes
debug meta-data
Available: http://www.remotesoft.com

JCloak (JAVA)

Force5
Software

Uses class file symbol renaming
Available: http://www.force5.com

Smokescreen (JAVA) Lee
Software

Uses variable renaming, control-flow obfuscations (shuffles
stack operations), and fake exceptions
Available: http://www.leesw.com/smokescreen

Klassmaster (JAVA) Zelix Uses variable renaming, string encryption, and control flow
obfuscation (breaks up loops using gotos)
Available: http://www.zelix.com/klassmaster

71

Definition 1. (2-TM Obfuscator) A probabilistic algorithm O is a 2-TM obfuscator if the
following three conditions hold:

1. (functionality) For every TM M, the string O(M) describes a TM that computes the same
function as M.
2. (polynomial slowdown) The description length and running time of O(M) are at most
polynomially larger than that of M. That is, there is a polynomial p such that for every TM
M, |O(M)| ≤ p(|M|), if M halts in t steps on some input x, then O(M) halts within p(t) steps
on x.
3. (VBB property) For any PPT A, there is a PPT S and a negligible function α such that
for all TMs M,N:

|})||,(min{||]1)1(Pr[]1))(),((Pr[| ||||, NMSNOMA NMNM α≤=−=Ο +><><

We say that O is efficient if it runs in polynomial time.

Definition 2. (2-Circuit Obfuscator) A probabilistic algorithm O is a 2-circuit
obfuscator if the following three conditions hold:

1. (functionality) For every circuit C, the string O(C) describes a circuit that computes the
same function as C.
2. (polynomial slowdown) There is a polynomial p such that for every circuit C, |O(C)| ≤
p(|C|).
3. (VBB property) For any PPT A, there is a PPT S and a negligible function α such that for
all TMs M,N:

|})||,(min{||]1)1(Pr[]1))(),((Pr[| ||||, DCSDOCA DCDC α≤=−=Ο +

We say that O is efficient if it runs in polynomial time.

Proposition 1. Neither 2-TM nor 2-Circuit Obfuscators exist.

In [172], the proof for Proposition 1 that 2-TM/2-Circuit obfuscators do not exist illustrates the
nature of the contrived functions used in all their proofs. Specifically, they contrive two functions:
C is a point-function that takes in a string of size k and returns a string of size k and D is a
TM/circuit decider that takes in the description of a TM/circuit and outputs a Boolean answer
(0,1). Both C and D depend on parameters α, β ∈ {0,1}k where k ∈ N in the following manner:

⎩
⎨
⎧ =

= otherwise
x

xC k

def

0
)(,

αβ
βα

⎩
⎨
⎧ =

= otherwise
C

CD
def

0
)(1

)(,

βα
βα

In essence, Dα,β is a decider for some circuit Cα’,β’. If (α = α’) and (β = β’) for Cα’,β’, then Dα,β
returns 1. Otherwise, Dα,β always returns 0. Zk is a TM machine that always returns a string of k
zeros, 0k. In order to prove the claim that 2-TM/2-Circuit obfuscators do not exist, we can show
the VBB property violation in the following manner. First, we define an adversary PPT A that
receives the description or source code of two circuits as input. The adversary simply runs the
second circuit on the first circuit: A(C,D) = D(C). If the adversary were given A(Cα,β,Dα,β), Dα,β
always returns a 1 when given Cα,β as input. Thus, the probability that an adversary, when given
any equivalent version of Cα,β and Dα,β (which of course includes obfuscated versions of Cα,β and

72

Dα,β), D(C) always returns 1. Equation 2 states this relationship. Equation 3 shows that when we
give the adversary a description for an all zero function Zk, then Dα,β(Zk) always returns 0. Thus
the probability that Dα,β(Zk) returns a 1 is always 0.

Equation 2. 1]1))(),((Pr[,, ==βαβα DOCOA

Equation 3. 0]1))(),((Pr[, ==βαDOZOA k

The contradiction for Definition 1 and Definition 2 arises when we consider computing the
(0,1)-predicate concerning programs C ,D, and Z. If we execute any version of the source code
for C, D, and Z, we can compute predicates (in Equation 2 and Equation 3) absolutely. However,
when given PPT simulators of C, D, and Z, we cannot compute the same predicates with better
odds than guessing. A poly(k)-time algorithm S which has oracle access to Cα,β and Dα,β
(represented by SCα,β,Dα,β) cannot be distinguished from another algorithm S which has oracle
access to Zk and Dα,β (represented by SZk,Dα,β). We express this in Equation 4 and show that
having oracle access is less powerful than having (obfuscated) source code access. Therefore,
under VBB, no amount of obfuscation / confusion ever overcomes this inherent limitation for
defining semantic security.

Equation 4.
)(,, 2|]1)1(Pr[]1)1(Pr[| ,,, kkDZkDC kSS Ω−≤=−= βαβαβα

The strength of the impossibility proofs depend on large k and the contrived examples assume
we must provide the decider D a TM (or circuit) description. As we point out by the constructions
in Section 5.7, given a small k with associated polynomial bound, a simulator with oracle access
can construct a circuit based on the enumeration of all truth table inputs in polynomial time, even
though the algorithm it uses is exponential. Using our methodology, we demonstrate the
possibility of perfect semantic encryption for a relevant class of programs.

5.3.4 Why We Need a Different Security Model

The VBB model of measuring obfuscation security essentially levies an information theoretic
requirement: an adversary should learn no more when given the obfuscated version (i.e.,
executable ciphertext) of a program than it should when given black box access to the original
(executable plaintext) version of the program. Because of the impossibility results under VBB, it
has been very hard (impossible) for any practical implementations of obfuscation to demonstrate
measurable security properties.

Barak et al. claim that the virtual black box paradigm is “inherently flawed”. Since the VBB
model is unsuitable for reasoning about program obfuscation, we require a new model if we hope
to effectively hide program properties for security. Researchers suggest that these foundations
leave us two directions to pursue:

(1) Are there weaker or alternative models for obfuscation that provide meaningful results?
(2) Can we construct obfuscators for restricted but non-trivial/interesting classes of programs?

In other words, can we prove practical obfuscation methods secure against some threats and

attacks, but not necessarily all? We believe an alternative model for describing obfuscation
security strength based on the complementary notions of random programs and black box
semantic transformation give an affirmative answer to these questions. We provide a basis for
understanding intent-protected programs using this paradigm in Section 5.5 and consider
obfuscators that make random selections from a set of black box protected programs in Section
5.6. As a result, we relax both the hiding property and the program classes considered for

73

obfuscation. We purposefully produce obfuscated programs that are not semantically equivalent
to the original version so that M(x) ≠ O(M(x)) and we show that a general obfuscator exists in our
model that is not subject to Barak’s impossibility proof.

5.3.5 Program Understanding

We propose to protect programs from tampering by hiding their intent—essentially preventing
intruders from understanding a program. The direct implication is that if malicious parties do not
know what the program is trying to do, they cannot perpetrate attacks that achieve a predictable
manifestation. Thus, their interference is limited to blind disruption, or at least to a subset of well-
known, non-application specific attacks (e.g. buffer overflow attacks that have no semantic
application relationship).

We consider four distinct, but related program-understanding paradigms. In the first, we
consider the generic, intuitive notion of “understanding” that an adversary’s ability to anticipate a
program’s operational manifestation(s) reflects their program understanding. Secondly, an
adversary may gain intent indications by comparing the obfuscated code, or segments, to known
code libraries. Third, we recognize VBB’s theoretical and practical importance. Finally,
information content in program code is our primary focus.

While we motivate our work by using program prediction for malicious purposes and
obfuscation for security, the notion of program clarity for maintenance applies in a direct way. A
maintenance programmer must be able to understand program intent in order to make purposeful
changes, e.g. to fix bugs, improve performance, and port code to a different environment. In the
same sense, a malicious host must understand what a program is doing (in some sense) to
effectively copy, modify, run, or forward the program to accomplish a semantic-oriented purpose.

Side effects are an example of an unintended outcome of a program, segment, or construct,
or at least an outcome that is not clearly intended. Some programmers consider their code
elegant because of their stylistic use of obscure approaches to accomplish intended function in
ways that are not obvious. When programs with obscure mechanisms are changed, the
maintenance programmer is unlikely to recognize all the impacts of the change. Our review of
heuristic obfuscation techniques and commercial obfuscators bears witness that understanding
programs precisely is a naturally hard problem.

For example, attackers may not require precision; i.e. they may only need a high-level
understanding of program function or be able to recognize a subset of the functionality in order to
accomplish their intended malice. Once again, there is little in the literature that quantifies or
qualifies the level of understanding necessary to maintain, or attack, a program. We offer our
formalization in this regard and begin first with the intuition behind it.

The foundation for our approach is that an adversary only understands a program if they are
able to predict its operation in one of two ways. First, an adversary that understands a program
can predict a program's output with any given input. For example, for the program that computes
the simple function given in Equation 5, an adversary need not run the program to know that its
output is 7 on input 2. As a more complex example, consider a program P that implements a
small degree polynomial. Even if an adversary is unable to expose P itself, but can plot a graph
based on gathered input-output pairs, they may be able to guess output for a given, arbitrary
input without running P.

Equation 5. y = x + 5

The second notion regarding program understanding is that an adversary that understands a

program is able to reason about the input required to produce a desired semantic result. For the
program P that implements Equation 5, an adversary that understands P and desires that P
produce an output of, say 19, knows to feed 14 into the program. This "one-way" property
captures the important intent quality we focus on. A common threat to mobile code is that the
adversary desires the query to produce a favorable result from their perspective. Accordingly,
their goal is to modify the input or code to produce a result with these properties. If we protect the

74

mobile code's intent, the adversary can only guess with low probability at the input necessary to
produce the desired result.

We mention intuition and graphing as ways that an adversary may come to understand a
program's intent, but there are many others. For example, an adversary may be able to guess the
output of P by determining that P is equivalent to another program8, Pi, that the adversary
recognizes (i.e. understands its intent). Essentially, the adversary could run Pi as their "prediction
process" as long as they are confident that for any arbitrary input x, P(x) = Pi(x).

We formalize program understanding in Definition 3 as an entity's ability to derive the input
corresponding to an arbitrary output based on their program understanding. While we speak in
terms of functional response, we recognize the broader notion of any persistent state change or
information transfer to another process or device as output9.

Definition 3. (Program Understanding) Alice understands terminating program P:
X→Y, iff given arbitrary output y ∈ Y, Alice can guess x ∈ X such that y = P(x) in
polynomial time on the length of P, with probability greater than ε, where ε is a small
constant.

We consider Program Understandability (PU) to be Boolean. That is, given an arbitrary
program P, there may exist an algorithm APU(P) that returns either true or false if it understands P.
It is possible that PU is Boolean, yet that no efficient algorithm exists that distinguishes between
programs that are understandable and those that are not. It is also possible that the Boolean
viewpoint is too narrow. For example, there may be programs that have no notion of
understandability, i.e. programs that have no overriding intention10 or pattern (possibly created
with that in mind to confound potential intruders11).

If PU is Boolean, we can use this to reason about what it means to understand a program.
Consider the set of all programs, P. We can partition P into two subsets, the set of all
understandable programs (R) and the set of all non-understandable programs (U), where P = R ∪
U. We observe that many functions are fundamentally understandable, and therefore we cannot
securely obfuscate them. For example, for any program P that implements the function y = x2,
the input/output patterns of P reveal its function clearly. No matter how random the code
implementing this function may be, an adversary need not look at the code to know what the
program is doing. It need only conduct black box (input/output) analysis.

Since P is infinite, one or both of the sets R and U are infinite. It is also reasonable to ask if
either R or U is empty. In the former, we may argue that ALL programs have unintended impacts
at some level of abstraction, or even that our ability to articulate intentions precludes any program
from comprehensively meeting them. In the latter, we may point to the Barak result as sufficient to
ensure that U is empty. We know that simple polynomials are not good candidates for intent
protection, but we posit that strong encryption functions are excellent candidates. Specifically, we
know that cryptographically strong data ciphers are not susceptible to black box analysis.
However, all well-known encryption algorithms have program structures that betray their intent to
a sophisticated adversary with white box analysis capabilities.

We have a strong intuition regarding what it means to understand a program from Definition 3.
However, we have not formalized what it means for a program to be understandable. Following
the security paradigm of data encryption, we define secure obfuscation only if an obfuscated
program leaks no intention-relative information, i.e. it is indistinguishable from a random program.
We argue that this notion is sufficiently strong to preclude intentioned attacks, though we
recognize that weaker formalizations may prevent some (or even most) intentioned attacks. Thus,
a conservative protection goal is to generate “executably-encrypted” code that is indistinguishable
from random programs, which we define in Section 5.6. The manifestation of this outlook is that if

8 We consider program equivalence issues seperately
9 Obviously, programs that do not have output in this sense are not necessarily suitable to our obfuscation approach.
10 Random programs or programs that have no impact on the environment.
11 We presently ignore the self contradiction of having programs whose purpose is to have no purpose.

75

we effectively obfuscate (intent protect) a program, an adversary cannot predict or guess the
program's behavior (as in Definition 3).

5.3.6 Program Context

A major challenge to protecting a program's intent is the role that contextual information plays.
In most mobile applications, it is impossible to protect all contextual information from the
executing host. Items such as program size, execution time, controlled input performance and
resource use variations, response to injected errors, and many other operational program aspects
are under the executor's control. It is a prerequisite for protecting a program's intent that the
adversary has limited contextual information available. Thus, inherently, we cannot obfuscate
many programs using our approach.

Consider an agent program that comes from a vendor known to provide travel plans, and the
computer we access contains only flight information and pricing for a known airline with very
limited availability dates (e.g. last minute flights). In this case, even a casual observer may infer
that the program is gathering flight information to prepare imminent travel plans for the
dispatcher's client. If an adversary knows too much context, intent protection is unlikely.
Therefore, we assume context-independent protection suffices for our methodology.

5.3.7 Protecting Program Intent using Program Encryption

The VBB flaws result from the breadth the approach seeks, essentially to be a comprehensive
model for all program obfuscation. Our goal is comparatively modest. We reduce the goal from
general obfuscation to protecting program intent, under our narrower definition, against specific
attacks. As we have illustrated, we limit our model by recognizing that there are programs that
we cannot obfuscate (securely). There are also programs that we can obfuscate but the approach
we describe in this chapter may not be appropriate for them.

For our purposes, we consider intent protection a game between an originator and an
adversary or intruder (we use these terms interchangeably). We consider that intruders desire to
understand or recognize programs (discern their intent) for three purposes:

(1) To manipulate the code in order to attain a known output effect
(2) To manipulate input to attain a known output effect
(3) To understand the input/output correlation for use with contextual information

We illustrate the first two of these by considering an Internet purchase application where a

mobile agent gathers bids for a product or service. If the adversary residing on a visited host
recognizes the program, they may manipulate the data they provide to the agent or they may
locally modify the agent code in order to elevate their opportunity to win the bid falsely. Intent
protection (hiding) does not prevent an intruder from changing input or code, but reduces this
type of tampering to blind disruption by preventing the intruder from being able to predict the
effect of an input or code change.

In the third objective, we envision adversarial environments where parties gather information
or intelligence about one another. In an Internet purchase scenario, adversaries may operate
with modified purposes. Here we anticipate that the adversary may gain important information,
not so much about the specific transaction that is underway, but about the underlying business
practice or strategy that the agent executes. If the adversary is able to understand what the
program is doing, it may be possible to infer fundamental business information from the
transaction. Conversely, if the program does not divulge its intent, an intruder is unable to gather
any information about the dispatcher's activity.

Program intent may become evident through repeated execution and observation of the input-
output pairs, so programs that hide their intent must protect against black box analysis. Malicious
parties that acquire code or can corrupt hardware may be able to examine executing code with
automated tools such as debuggers. As Figure 53 depicts, there are three primary approaches to
context-independent program intent detection:

76

(1) Input-output (black box) analysis
(2) Static analysis
(3) Run-time analysis

We recognize that malicious parties are likely to attack intention protection using hybrid

methods that combine static analysis, black box testing, and dynamic analysis. We collectively
term latter activities as white box analysis. Program Recognizability (PR) is a classic concept in
computer science and relates to Program Understandability (PU). Classic PR refers to the
context-free notion of being able to determine whether a string is a member of a particular
language. This represents a form of static analysis. Compiler optimization techniques refine the
class of languages that automata can recognize, allowing program segment identification through
signature analysis. Combined with reverse engineering techniques, compiler optimization
techniques complicate hiding program intentions.

Figure 53: Adversarial Program Intent Detection

Static analysis involves actions that an adversary takes without executing that code. Static
approaches include inspection, parsing, optimization, pattern matching, etc. These actions can
give the adversary hints about the nature of the data, control structures, resources used by the
program, etc. Dynamic analysis occurs as the program is executing. Run-time tools such as
debuggers reveal control flow, data manipulations and evolution, and resource access and
consumption. If either static or dynamic analysis or the two applied collaboratively can reveal a
program's intent, the program is white box understandable.

Traditional obfuscation applies data and control flow confusion techniques to complicate these
attacks, with little or no measurable protection. Only imagination and resources limit the number
of methods that a motivated and sophisticated adversary can employ to reveal a program's
protected intent. Nonetheless, the literature point to black box and white box analysis as the
classical approaches for defeating program obfuscation. Without loss of generality, we address
these attacks by assuming an adversary maliciously examines programs off line, where they
exploit software on computers with large, but polynomially bounded resources. In practice, the
adversary may only be able to employ on line attacks (especially for time-dependent mobile
agents). In either case, while the adversary can glean much of the information gathered in off line
attacks just as easily from on line attacks, off line attacks reflect the stronger adversarial model.

Consider an industrial application on a stolen laptop. An adversary may desire to know how
the laptop owner generates business or financial estimates, how their decision process works, or

77

other business or organizational information. For a black box protected program, the enemy
cannot determine the device’s function from an arbitrary number of input-output pairs. However, if
the enemy is sophisticated, they examine the executable code structure or analyze the
application’s control flow and data manipulations as they occur. Programs that are white box
protected prevent the enemy from learning the program's intent by watching its execution.

We formalize the intuition and ideas for understandability, obfuscation, and intent protection in
the following definitions. Because we do not attempt to formalize the definition for white box
analysis approaches (static and dynamic adversary analysis), we give only an introductory,
informal white box definition. In Section 5.5.2, we give a more formal definition for white box
protection based on the existence of a random program oracle.

Definition 4. (Black Box Understandable/Obfuscated) Program P → {X,Y} is black
box understandable if and only if, given an arbitrarily large set of pairs IO = (xi, yi) such that
yi = P(xi) and yj an arbitrary element of Y (not an element of IO), an adversary can guess
[compute] xj such that yj = P(xj) in polynomial time on the length of P with probability > ε.
Otherwise, we say P is black box obfuscated.

Definition 5. (White Box Understandable/Obfuscated, Informal) Program P is white
box understandable if it is understandable (under Definition 3) through static or dynamic
analysis of P or a collaboration of the two. Otherwise, we say P is white box obfuscated.

Definition 6. (Intent Protected) Program P is intent protected if and only if it is black
box protected, white box protected, and protected from any composition of the two. If P is
both black box obfuscated and white box obfuscated, then P is also intent protected. We
refer to an intent-protected program P as an executably encrypted program or as a
program that implements program encryption.

5.4 Creating Perfect Black Box Obfuscation

We naturally encapsulate program functionality by pairs that map pre-image to image. Thus, a
natural way to try to identify a program's intent is to analyze known input/output parings.
Traditionally, obfuscation has considered producing different versions of the same program,
where one version is (or likely is) understandable, but the obfuscated version of the same
program is not understandable (more complex to understand). Barak et al. show this form of
obfuscation is impossible in the general, efficient case. We now build an alternative model for
defining obfuscation under the narrow definition of intent protection using the existence of one-
way functions and strong cryptographic data ciphers.

5.4.1 One-Way Functions and Black Box Obfuscation

Since protection of programs that retain their semantic equivalence is impossible, we appeal
to a class of functions that have known (strong) cryptographic properties and apply their use to
the obfuscation problem. We begin first by stating function definitions used in traditional
cryptographic arguments [188, 194].

Definition 7. (One-Way Functions and Permutations) A function f with domain X and
range Y, f: X→Y, x ∈X, y ∈Y, is called a one-way function if, ∀x ∈ X, f(x) is easy to
compute and if, ∀y ∈ Y, it is computationally infeasible given any y to find x such that y =
f(x). A one-way permutation is a bijection from the set of all binary strings with length n to
itself, whose image is easy to compute, but whose inverse pre-image is difficult to
compute: f: {0,1}n → {0,1}n.

There are some cases where for some values y ∈Y, it is easy to find an x ∈X such that y =
F(x). One may compute several values for y = F(x) for a small number of x and find an
appropriate inverse based on table look up. We specify, normally, that the inversion process is

78

hard for any x chosen randomly from X. Cryptographers have given the subject of one-way
functions rigorous treatment. Goldreich [188] lists several candidate one-way functions including
integer factorization, Rabin quadratic residue functions, discrete logarithms in a finite field (RSA),
and the DES function families. “Hard to invert” normally means that an upper bound of success
exists for some efficient inverting algorithm. Therefore, proving one-way functions exist implies
that complexity classes P ≠ NP. We assume one-way functions exist (as most cryptographers
do) and appeal to their strength in describing cryptographically strong obfuscation (program
encryption).

For strong cryptographic data ciphers, encryption is an algorithm that computes (efficiently)
the functional output (ciphertext) of any given input (plaintext), but the inverse of any functional
output (the ciphertext) is hard (infeasible) to compute. Of course, the purpose of data ciphers is
that recovery of the plaintext from the ciphertext is feasible given some piece of special
knowledge (normally termed the key). We capture this notion by defining a trapdoor one-way
function in Definition 8. In Definition 9, we express the definition for cryptographically strong data
ciphers that are not breakable (systematically), apart from brute-force key discovery.

Definition 8. (Trapdoor One-Way Functions) A function f: X→Y is trapdoor one-way if
f is a one-way function and, given some additional information termed the “trapdoor” and
given any y ∈Y, it is feasible to compute x such that y = f(x).

Definition 9. (Strong Data Encryption) An encryption scheme is breakable, if an
adversary (without prior knowledge of the encryption or decryption keys) can systematically
recover plaintext from a ciphertext efficiently (within a specified time). Encryption schemes
that are not breakable (apart from brute-force key search) exhibit strong data encryption
security and are representations of trapdoor one-way permutations.

Based on these definitions, we now pose the possibility of black box obfuscators that support
intent protection. Barak et al. show that general, efficient obfuscators do not exist if one-way
functions exist. Unlike their impossibility result based on a contrived function family, we
demonstrate here that unless one-way functions exist, secure obfuscation that guarantees intent
protection is impossible. We focus first on black box obfuscation.

Proposition 2. If (efficient) trapdoor one-way functions exist, then general (efficient) black
box obfuscators exist (under Definition 4).

Cryptographically strong program obfuscation results from the nature of strong data encryption
algorithms. We prove Proposition 2 with two lemmas and one theorem. Lemma 1 states that
given an arbitrary ciphertext output y, an adversary cannot efficiently compute the corresponding
input to a semantically strong encryption program E. This represents the property of a strong data
encryption algorithm under Definition 8 and Definition 9. We define such properties to be the
fundamental characteristics of any strong program encryption algorithm. In Lemma 2, we use
black box obfuscated programs as the starting point to consider situations where adversaries are
able to extract executing code for out-of-band, white-box analysis.

Lemma 1. Any program that implements a cryptographically strong data encryption
algorithm is black box obfuscated (under Definition 4, Definition 9).

Proof: Arbitrarily select the cryptographically strong data encryption algorithm E, a
plaintext message M, and choose encryption key K randomly from the uniform distribution
of possible keys in the keyspace. Assume E is black box understandable. Then there
exists y = E(M, K) where an adversary can guess M given Y with negligible probability.
This violates the definition of cryptographically strong data encryption. Similar to Lemma 1,
If an adversary can efficiently guess the cipher text for one plaintext message it can easily
distinguish that cipher text from the cipher text of another message. This contradicts the
encryption algorithm's strong semantic security.

79

Lemma 2. Programs that are not one-way functions cannot be intent-protected
obfuscated (under Definition 6) by any obfuscator O where O(P) = P’ and,∀x , P’(x) = P(x).

Proof: Follows directly from Definition 4 and Definition 7. Given the family of programs P,
and for all programs P∈ P, assume P: X→Y is not one-way. Assume obfuscator O is a
black box obfuscator for the class of programs P such that O(P) = P’ and, ∀x, P’(x) = P(x).
Therefore, ∀x ∈ X, P(x) is easy to compute and ∀y ∈ Y, it is computationally feasible
given any y to find x such that y = f(x). Given any program P∈ P, an adversary can guess
[compute] xj such that yj = P(xj) in polynomial time on the length of P with probability > ε.
Therefore, P’ = O(P) is black box understandable for all P in P. This contradicts the
statement that O is a black box obfuscator for the class of programs P.

We stipulate by these two lemmas that all obfuscators O, where P’ = O(P), must semantically

change the I/O mappings of any candidate program P into strong, one-way functional
relationships in order to achieve black box obfuscation. Therefore, we alleviate all black box
analysis threats as a foundational (first) program encryption step.

An interesting and important side effect is that this property simply and absolutely insulates
our model against the impossibility result in [172]. Their elegant impossibility proofs rely on the
existence of a Turing machine decider (D) that, given a program or circuit description, can
appropriately detect a particular function type. In our model, this proof technique cannot apply,
since all obfuscations we create are one-way functions. There are no point functions (the type of
function that Barak et al. used in their proof), nor are there any other functional program
categories. Thus, the only relevant decider is one that detects one-way functions; such a decider
will return “true” on all obfuscations under our model.

5.4.2 Implementing Perfect Black Box Obfuscation

We now consider obfuscators that deviate from the semantic equivalence rule under VBB and
implement Lemma 2. Sander and Tschudin [159], Ostravsky and Skeith [171], and Adida and
Wikström [195] all adopt similar non-semantic equivalence approaches in their respective
program protection models. The fundamental property of our model, shown in Figure 54, is that
the output of the obfuscated program (p') is not equivalent to the output of the original program
(p). In other words, if t(p,k) produces p’, then ∀x, p’(x) ≠ p(x).

We define the semantic encryption transformation (SETS) process t that generates a program
version (p’) that is not black box understandable (under Definition 4). The program p' must have
recoverable (invertible) functionality with respect to the output of p, y = p(x). We accomplish this
by creating p' as the concatenation of the original program p with a strong encryption algorithm e
so that for all x ∈ X, p'(x) = e(p(x)). Equation 6 describes the output of obfuscation process t(p,k):
given a program p, we generate a new program (p’) and a recovery program (r) with the
properties that p(x) = r(p'(x)) and where r is simple to compute and output of p’(x)=y’ is simple to
invert given knowledge of special information (k-1).

Equation 6.
⎩
⎨
⎧

=
=

= −),'(:
),('
1kydr

kpep
t

The obfuscation process uses a key that provides security control and allows correlation with

data encryption paradigms. To be cryptographically strong, the obfuscation method must be
public and its strength dependent only on knowledge of the key. We express the protection
properties of such a transformation process formally in Theorem 1 and illustrate the black box
obfuscated program in Figure 55.

80

 Input x

Program p Program p′

Output y Output y′

Transformation
t(p, k) = r, p′

Recovery
r(y′, k-1) = y

Figure 54: Black box Obfuscation with Recovery Model

Theorem 1. Let t(p, e, k) = (p', r) be a process that creates program p' by composing the
output of program p to the input of a black box obfuscated data encryption program e
(defined under Lemma 1). Then p' is black box obfuscated.

Proof: Follows directly from Definition 4 and Lemma 1. If e is black box obfuscated, then p'
is also black box obfuscated since the output of p' is [also] the output of e: y’ = p’(x) =
e(p(x),k).

Figure 55: Black box Obfuscated Program

We emphasize that Theorem 1 is the foundation for any further (white-box) obfuscation
approaches. If an adversary can interpret or understand a program through black box analysis,
the program is not obfuscatable. This approach overcomes the primary weakness of the Virtual
Black Box (VBB) paradigm and ensures us that black box protection is not only possible for
general programs, but it is easy to accomplish. Furthermore, it gives us insight into why
obfuscation is meaningful. The notion of intentioned manipulation precisely captures an
important intrusion category and limits blind disruption to sophisticated intruders. Moreover, it
provides a foundation to expand our research into situations where adversaries are able to
extract executing code for out of band, white box, analysis. To define such white box attacks
more formally, we discuss in the next section a program-intent protection model that uses random
bit string properties as a measurement basis. We term this the random program security model
and illustrate its usefulness for analyzing white box protection next.

81

5.5 Defining the Random Program Security Model

To summarize the main result of Section 5.4, black box obfuscated programs must be the
foundation to protect against out-of-band, white-box analysis. Most commercial and heuristic-
based obfuscators focus attention on white-box unrecognizability and complexity. Most have no
theoretical basis apart from appeals to provably hard (NP-complete) problems that increase
complexity of adversary analysis. We too seek to make programs unrecognizable in some sense,
but introduce in this section a formal, theoretical framework to measure such confusion. As we
appealed to the cryptographic properties of strong data ciphers for black box obfuscation, we
appeal now to the cryptographic properties associated with randomness and pseudo-random
number generators. Instead of using random data strings, however, we use random programs as
a security baseline. To outline our model, Section 5.5.1 briefly introduces random programs and
shows their similarity with random data, Section 5.5.2 gives a formal definition for white box
protection using random programs, Section 5.5.3 gives proof for the existence of random
programs, and Section 5.5.4 describes the existence and construction of random circuits.

5.5.1 Random Data and Random Programs/Circuits

We believe provable program protection can only find its security characterization by
comparison with provable data protection. When evaluating cryptographic data ciphers, we
assume that mechanisms exist to simulate truly random bit strings. We can compare encrypted
data to the output of a pseudo-random number generator—that we assume to mimic a truly
random number generator given an appropriate seed. Program ciphers, likewise, need to have a
baseline for comparison; we refer to this baseline as the “random program”.

Several cryptographic constructions rely on the existence of (pseudo) random data strings that
are indistinguishable from truly random data strings. In measuring data randomness, we concern
ourselves with sets of binary strings with the same length n; the set of all strings of the same
length we term an ensemble. A pseudo-random string is close enough to random if a polynomial
distinguisher cannot tell it apart from a truly random string efficiently. We give an intuitive
definition for a pseudo-random generator in Definition 10 and relate the traditional formal
definition for indistinguishability in Definition 11 [194].

Definition 10. (Pseudorandom Generator) A deterministic program that, when given a
short random sequence of bits (termed the seed), generates a long sequence of bits which
look like random bit sequences.

Definition 11. (Polynomial Time Indistinguishability) Two bit string ensembles X =
{Xn}n∈N and Y={Yn}n∈N are indistinguishable in polynomial time if for every probabilistic
polynomial-time algorithm D, every positive polynomial p(⋅), and all sufficiently large n:

)(
1]1)1,Pr[D(-]1)1,Pr[D(
np

YX n
n

n
n <==

where the probabilities are taken over the relevant distribution (X or Y) and over the
internal coin tosses of algorithm D.

According to this definition, the probability that D accepts (outputs 1 on input) a string taken

from the first distribution (Xn) compared to the probability that D accepts a string taken from the
second distribution (Yn) is negligibly different. In other words, if the two probabilities are close, we
say that D does not distinguish the two distributions. For cryptographic algorithms, this reflects
the foundational concept for “efficient” procedures that have the ability to distinguish the output of
two different algorithms. The VBB proofs appeal to similar indistinguishability arguments
concerning source code access and simulator/oracle access. In information theoretic arguments,
strong data ciphers produce strings that are indistinguishable from random data.

82

We consider the question of what properties accompany an encrypted program. Unlike
encrypted data, an executable encrypted program must be intelligible to some underlying
interpreter or execution engine. We assume that random programs follow the rules of an
underlying interpretive architecture and that random (combinational) circuits follow legal
construction rules (current inputs only derive from previous inputs).

In Figure 56, we compare the notion of random data generated by a pseudorandom generator
and a random circuit (program) produced by a pseudorandom obfuscator. A strongly pseudo-
random number generator, based on some seed, will produce data sequences that are
indistinguishable from truly random data sequences. We envision obfuscators that, based on
some key/seed information, produce data sequences (specifically, data sequences that are circuit
or program descriptions) that are computationally indistinguishable from random circuit (random
program) descriptions. We prove shortly that pseudorandom descriptions for both programs and
circuits exist.

Figure 56: Considering Random Data and Random Circuits/Programs

Like computational indistinguishability, unbiased selection is another way to think of
randomness. Generally, if we select an element from a population without bias (i.e. each
population member is equally likely for selection), that element is a randomly selected element of
the population. The element itself is no more “random” than any other element; only the unbiased
selection gives the element the random property. More specifically, we can only select a random
bit if we can construct an unbiased selection process, where we select 1 and 0 with equal
likelihood. Unfortunately, this problem is impossible in practice since we cannot create a “perfect
coin”. The theoretic idea that strongly pseudorandom generators exist represents our best
(scientific) attempt to produce simulators that provide nearly random bit selection.

We can produce random selections only when we choose without bias absolutely; if those
selections are bits, we refer to their conglomeration as a random bit stream. Perfect data
encryption rests on generating cipher text that is indistinguishable from a random bit stream of the
same length. The [accurate] intuition here is that cipher text that closely simulates randomness is
unlikely to give away any hints about the corresponding plaintext. We extend that notion to
expect that streams with strong randomness properties also have high entropy and low
information content. Such random bit streams reveal only confusion under inspection and
cryptanalysis. We leverage this paradigm and transfer its notions from data encryption (where we
protect information secrecy) to program encryption (where we protect program intent).

Random programs are similar to randomized data produced by strong data encryption
algorithms. Digitized random data, for example, has no discernible patterns and has typical bit
representations where each bit is equally likely to be zero or one. Considering all random data bit
strings of size n, a non-linear, random selection should produce, on average, a string with roughly
equal 1s and 0s and no repeating patterns. Similarly, given the infinite set PA that contains all
programs that implement some functionality A and the large, but finite set PX that contains all
programs of length X, the intersection set PAX contains all programs that are of size X and that
implement A. If we randomly choose q from PX, we consider q to be a random program. Figure 57
illustrates the relationship between PX, PA, PAX, and the selection of a random program q.

Random selection is only valuable if it provides or ensures entropy in some form. Just as
randomness properties for strings (no patterns or lengthy uniform sections, similar number of
zero/one, etc.) only emerge as string length increases, so program entropy only emerges as
program size increases. Intuitively, there are many more ways to write an unrecognizable

83

program, e.g. to write in unintelligible spaghetti code, than there are to write versions that reveal
their intent through static analysis.

CAX

ALL
TERMINATING
PROGRAMS

PX

PA

PAX

Random
Program: q

p’ = O(p)

Obfuscated
Program: p’

Figure 57: Random Program Selection

Intuitively, if a maintenance programmer statically inspects two programs that compute the
same function (one with more source lines of code than the other), we expect the programmer will
need to process more ”information” cognitively for the larger program version than they will need
to for the smaller version. Of course this makes no assumptions regarding the information
content of any one line of source code when compared to another (obfuscated code competitions
illustrate the cognitive complexity of compressed code). We state this intuition as Proposition 3
and relate program size with entropy; we provide an initial proof sketch for programs here and in
a later section give empirical reasoning to support the exponential growth claim based on circuit
constructions. No universal argument for complexity and entropy exist, but Proposition 3 is
similar to the notion of Kolmogorov-Chaitin complexity [196, 197], which provides a definition for
algorithmic information theory. The theory states loosely that objects are “simple” if they require
small quantities of information to describe them and “complex” if they require much. Specifically,
the information content of a string increases as the randomness in the string increases and
therefore entropy increases as a measure of the randomness of a string. The Kolmogorov
metrics, however, remain uncomputable.

Proposition 3. Entropy of randomly selected programs increases (exponentially) on the
program size.

Proof Sketch: Randomness properties emerge as string length increases and therefore as
program description length increases. Given two program ensemble families Pn={Pn}n∈N
and Pm={Pm}m∈N, where n < m, select programs randomly p1 and p2 where p1 ∈ Pn and p2 ∈
Pm. Based on Kolmogorov-Chaitin complexity, since the [random] string p1 is smaller than
p2, p2 has greater emergent randomness and therefore more entropy than p1.

We also point to researchers like Harrison [198] that define entropy-based metrics for software

complexity (based on empirical probability distribution of operators within a program). We do not
contend that delivering a random program (chosen in the method we describe) guarantees
program intent protection; only that an adversary is highly unlikely to discover the intent of a
random program through static analysis. Our intuition, however, is that random selection also
provides strong dynamic analysis protection, and we give deeper insight into this with the circuit
construction methodology in Section 5.6.

Given Proposition 3, we may characterize program encryption strength as its ability to select a
program randomly from a set of equivalent, bounded implementations. Classically, such
mechanisms are measured based on an adversary’s ability to distinguish an executably
encrypted (i.e. randomly selected) program p’ of size x that implements A from a random program

84

q of size x, that does not implement A. If the adversary can distinguish p’ from q, then the
obfuscation (program encryption) technique may leak the intent of p. This leads us to a better
(formal) definition for white box obfuscation.

5.5.2 Random Program Oracles and White Box Obfuscation

To fully protect intent under white box protection, an obfuscator must systematically confuse p'
so that an adversary cannot learn anything about program intent by analyzing the static code
structure or by observing program execution. The confusion must make the code and all possible
execution paths that it produces display random program properties. For example, if a
sophisticated adversary can distinguish between the functional program and the composite
encryption program, they may be able to extract valuable intent information. Definition 6 extends
and incorporates white box protection to define full intent protection as preventing all combined
means of analysis that discover programmatic intent.

Recall that input/output behavior is the primary means to discover programmatic intent based
on black box understandability (already established under Definition 4 and Theorem 1). A secure
(white box) obfuscation produces a program p’ that is indistinguishable from a random program
selected from the set of all programs the same size as p’. White box security encompasses both
cases. White-box security is the ability to shield program intent from code analysis. Thus, white
box protected obfuscations protect against analysis intended to reveal embedded data, seams
between functions, the number of functions, or other such program properties. We specify a more
formal definition of white box protection in Definition 12 and illustrate the random program oracle
interaction in Figure 58.

Figure 58: Random Program Oracle

Definition 12. (White Box Understandable, Formal) Let PPT algorithm E be a white
box program obfuscator let random program oracle RPO take any program p and
computes p’= E(p) as an executably encrypted version of p. Let PPT algorithm adversary
A be able to query RPO and receive any encrypted program p’x in the following manner:
after knowing any n pairs of original / executably encrypted program pairs {(p1, p’1), (p2,
p’2), …, (pn-1, p’n-1), (pn, p’n)}, adversary A supplies a subsequent program pn+1 and
receives p’n+1 from RPO which is either: a random program (PR) or the encrypted version of
the program p’n+1 = E(pn+1)

⎪⎩

⎪
⎨
⎧

+≤=

+≤=
=

+++

+
+ ε

ε

2
1)]('Pr[)(

2
1]'Pr[

'
111

1
1

nnn

RnR
n pEppE

PpP
p

85

The program p’n+1 is white box understandable if the probability is greater than or equal to
½ + ε (where ε is the negligible error probability), that the adversary A is able to distinguish
whether p’n+1 is either E(pn+1) or is a random program PR. Therefore, the program
encryption algorithm E(p) provides white box obfuscation if and only an adversary is able to
distinguish the encrypted program (p’n+1) from a random program (PR) with probability less
than or equal to ½ + ε, where ε is the negligible error probability.

We define formally white box strength for executably encrypted programs based on the

existence of a random program oracle. We demonstrate the existence of random programs with
a contrived architecture in Section 5.5.3 and give two algorithms for constructing random circuits
in Section 5.5.4. We assume the existence of a random program oracle because of the general
existence of a random oracle that simulates creation of random data strings. If we can simulate
the creation of random data strings (with a pseudorandom generator), then we can simulate the
creation of random programs.

Figure 58 illustrates our model where the oracle performs two functions: when given a
program, it can generate an encrypted version of that program based on a predefined algorithm
E(p) or it can generate a random program PR from the set of all random programs with polynomial
description size to p. The adversary sends an original program p to the oracle and the oracle
executably encrypts using the underlying algorithm, E. The algorithm can be any tamperproofing,
obfuscation, or piracy prevention mechanism. The oracle returns the corresponding encrypted
program p′ = E(p). As we depict in via the top two arrows labeled Figure 58-1 and Figure 58-2,
the adversary may build some polynomial history of n pairs. After building the history, Figure 58-
3 shows that the adversary then sends program pn+1 to the oracle and the oracle then returns
p’n+1 (Figure 58-4).

The adversary must decide whether the program p’n+1 given by the oracle is the encrypted
version of program p’n+1 = E(pn+1) or if it is a random program PR. The adversary attempts to make
a prediction by returning bit b ∈ {0, 1} corresponding to the guess of either PR or p’n+1 as shown
by Figure 58-5. Under this definition, we measure the security strength of any obfuscation
approach as a computational indistinguishability question based on random programs and a
random program oracle model. We now define the nature of the random program, PR, generated
by the random program oracle and demonstrate their existence.

5.5.3 Proving Random Programs Exist

To review, the canonical notion of a random x is that of a randomly selected member of a
target space of items, say group X. The problem of whether or not a random x exists reduces to
1) the ability to define the group X and 2) creating a method to select one item randomly from it
without bias. The mechanism must select items with an equal probability.

Proposition 4. Random programs exist.

We state in Proposition 4 our belief that random programs exist and give proof in the following
text. We establish first a well-defined set P that is the set of all legal programs and then propose
mechanisms for randomly selecting a legal program from P.

Legal Programs. Selecting a random program is impossible without knowing the maximum
program length, since it is impossible to select randomly an item from an infinite set. We first
bound the program length to n statements, words, bits, or any other meaningful metric that
bounds program size at n units. Choosing bits as our metric, there are 2n possible programs and
we let Pn represent the function ensemble of programs of length n bits or less.

To select without bias, we must ensure that we can identify legal programs, with many related
considerations towards legality. For example, a legal program is syntactically and grammatically
correct. The selection mechanism must guarantee that we do not select programs with illegal

86

symbols or illegally constructed words or phrases, if our programming language allows such
constructs. Parsers and compilers routinely facilitate this filtering process.

A second illegality category includes programs with runtime failures, e.g. dividing by zero.
Identifying runtime flaws is a difficult problem; if we could completely solve it, the software
engineering field would be essentially obsolete. We can solve this problem for very simple
architectures and go on to propose heuristics for dealing with the dilemma in real world
applications. Similarly, legal programs must terminate on all input. Termination may be
dependent on the underlying interpreter or environment and can range from reaching the last
program statement, executing a HALT instruction, reaching a final state, or reaching a maximum
number of instructions. While the general halting problem is well beyond our scope, we again
propose a solution in a simple environment. We address all of these problems more simply
under the circuit model, discussed in the following subsection, because legal circuit descriptions
are much easier to produce.

Table 15 summarizes legal program characteristics (for our purposes) from which we can
make some simple observations. For example, there are 2n possible programs that are n bits
long. For a given architecture, we count the number of programs that are illegal in each category
(h, i, j, k) respectively and assign m = h+i+j+k as the possible number of illegal programs. We
therefore know 2n - m legal programs exist whose length is less than or equal to n. We assume
that categories are mutually exclusive such that all grammatically incorrect programs are
syntactically correct, all programs with runtime failures are syntactically and grammatically
correct, and so forth.

Table 14: Legal Program Considerations
Legality Category Metric
h: Syntactically correct Lexical Analysis
i: Grammatically correct Parsing
j: No runtime failure Testing/verification
k: Halts Proof

We have not shown how to identify all of these categories for any architecture yet, but we can

show them for specific architectures under specific rules. Moreover, for the method to work, we
must guarantee that selection considers every possible legal program with equal likelihood. In this
case, any PPT algorithm D that decides legality of a program x, where x ∈ Pn, has probability of
success Pr[D(x,1n)=1] = (2n - m)-1. In the next section, we demonstrate random program selection
that meets these criteria and give a concrete example using a contrived program space termed
the Ten-Bit Instruction Architecture.

Random Bit Stream Programs. We address first the belief stated in Proposition 4: do
random programs exit? As we establish in the preceding sections, we consider digitized programs
as data with special syntactic rules governing their construction. Random programs are
indistinguishable from a random bit stream, i.e. that they have no discernable bit patterns, each
bit is equally likely to be zero or one, and any sub-string of any reasonable length has
approximately the same number of zero's as it has ones.

We illustrate this notion with an abstract machine (depicted in Figure 59) that uses a saturated
instruction space. Our machine consists of four operations (instructions), sixteen four-bit
registers, operations defined with two-four bit operands, and ten-bit instructions (Table 15). The
contents of the registers upon program termination reflect the program output. In this architecture,
any bit stream whose length is divisible by ten represents a legal program.

Table 15: Ten Bit Instruction Set Architecture (TBIA)
Op Opnd 1 Opnd 2 Description
LD Rega Regb Copy values fm regb to rega
LDV Regb Opnd Copy values fm opnd to regb
ADD Rega Regb Add regs a&b, trunc result in rega
MUL Rega Regb Mult regs a&b, trunc result in rega

87

Theorem 2. Random programs exist in the Ten Bit Instruction Architecture (TBIA).
Therefore, random programs exist.

Proof. Using a strongly pseudorandom generator with appropriate seed, generate p' as a
random bit stream of length 10·c, where c is a large constant. Then with instructions
interpreted serially from beginning to end, p' is a random program in TBIA.

1. p' is a legal program. It is syntactically and grammatically correct, since
(a) There are no illegal instructions, therefore no syntactic or grammatical errors
exist
(b) There are no vulnerable instruction sequences, therefore no execution
failures exist
(c) There are no loops and programs are finite, therefore all programs halt
(d) The architecture can compute meaningful programs

2. p' is a random selection from P10c. A strongly pseudorandom generator that

produces a string {0,1}10·c, where c is a large constant, selects a string with equal
probably from the ensemble consisting of all bit strings of size 10·c. Since we
represent the ensemble by the TBIA program set P10c, p’ is an unbiased random
choice with equal selection probability from all other programs in the ensemble.

3. p' is a random string. In every reasonable sense of the term, assuming the strong

pseudorandomness of the generator, p' has no discernible pattern in:
(a) Static representation (otherwise, it would not be a random bit stream)
(b) Data representation
(c) Control flow

QED, p’ is a random program.

Figure 59: TBIA Machine Depiction

88

Corallary 1. Assuming one-way permutations exist, pseudorandom data generators exist.
Then, if one-way permutations exist and if random programs exist, pseudorandom program
generators exist also.

We extend Theorem 2 by stating what many cryptographers such as Goldreich [188] assume

to be true: if one-way permutations exist, we know that strongly pseudorandom data generators
exist. By proving the existence of random programs, we also prove that if one-way permutations
exist, pseudorandom program generators exist under the same assumptions. This again
provides a much stronger cryptographic basis for which to define white box obfuscation under. It
relies on well-known cryptographic primitives and proofs—and assumes nothing about cognitive
or mental ability of the adversary.

Composing Random Programs. We plan to extend these results to more functional
architectures in the future. In order to do so, it may be possible to use random program
composition. Here we pose a second question: can we create random programs from other
random programs? We conjecture that composition (concatenation) of two random programs
always produces a random program, but we note that recursive composition produces patterns
(possibly repeated segments). However, the program resulting from concatenation of atomic
(independent) random segments is random.

Random Instruction Selection Programs. TBIA concretely illustrates that random programs
exist. We now extend this notion to a more complex machine where the instruction space is not
saturated. For example, we extend TBIA to include a fifth operator with a shift operator (SFT) that
shifts the value in Rega left one bit and stores the result in Regb, as shown in Table 16.

Table 16: Modified TBIA with New Instruction
Op Opnd 1 Opnd 2 Description
LD Rega Regb Copy values fm regb to rega
LDV Regb Opnd Copy values fm opnd to regb
ADD Rega Regb Add regs a&b, trunc result in rega
MUL Rega Regb Mult regs a&b, trunc result in rega
SFT Rega Regb Shft Rega left 1 bit-> Store Regb

To accommodate the additional instruction, we increase the operator length to three bits.

Thus, a random bit stream interpreted as a program in TBIA may contain illegal instructions. To
address architectures where the operator space is not saturated, we may think of a random
program as having the operators equally distributed across the program. In this scenario, we
generate a random program by randomly selecting each operator from all possible operators and
similarly selecting the operands. Programs generated in this way have random properties similar
to those in TBIA, such as having a similar count of each instruction type, no patterns among
operands, and no observable patterns between instructions. During execution, the data and
control flow reflect the random properties of the instructions.

The examples in TBIA and its extension clearly illustrate that our model need not be complex
or sophisticated to allow random programs. We consider next more sophisticated random
program versions. We use random selection with TBIA to produce random programs. Such
random selection allows a systematic way to generate random programs that avoid illegal
instructions. We discuss the ramifications for more sophisticated architectures by considering
different program representation schemes .

Random Function Selection Programs (RFSP). To extend the notion of random programs
beyond the simple architecture of TBIA, we consider a random program as simply a collection of
higher-level structures, composed with no discernable pattern or plan. A large library of random
program segments (random programs which themselves may be incorporated unmodified into
other random programs) can provide the possibility for composition. We can compose12 selected

12 In TBIA, composition consists of concatenation. We recognize the administrative actions necessary in higher level languages and posit
that these are well understood and that segment compatibility issues are overcome easily.

89

segments to create another, larger random program, but it remains unclear which randomness
properties we preserve in the composition.

Consider, for example, the one-bit architecture depicted by the four operations in Figure 60.
In a simple architecture like TBIA, we can recognize usable patterns in segments even when they
derive from random creation themselves. In a one-bit architecture, we define the functionality of
every segment as one of the four operations in Figure 60. Thus, by purposefully selecting
segments, the composition may not be random or may even have a usable function with obvious
pattern. This concern diminishes rapidly as the architectural complexity increases, since randomly
generated segments are less likely to have a usable, recognizable function. Still, we may also
increase the confusion of generated RFSPs by governing segment selection.

Figure 60: Simple One-Bit Architecture

We retain reference to TBIA because it is sufficiently simple to illustrate our concepts, yet
complex enough to give a flavor of its strength. Given a large constant cl (e.g., cl > 100) a small
constant cs (e.g., 10 < cs < 30), and an integer l, the following algorithm will generate RFSPs of
length l * cs statements.

1. Generate (cl * cs) random statements.
2. Partition the statements into cl random segments of length cs. Number the

segments from one to cl.
3. Create a program p by randomly selecting l segments (without replacement) and

concatenate them.

Then, p is an RFSP.

By virtue of the properties proved in Theorem 2, we can claim p is a random program. Were

replacement allowed, it would be possible to include the same segment more than once, resulting
in a discernable pattern and diluting p's randomness. However, we observe that, because of the
random construction, these patterns reveal very little about the program. This is easily seen if
consider each segment as a named subroutine and replace each segment with its name and
arguments to create p'. Then p' is a random program, since the repeated subroutines are
randomly placed. A final extension of this notion is to consider randomly composing non-random
segments. Clearly, this injects patterns into the code. Again, if we name and replace each of the
segments in p with their name, p is a random program.

Random Turing Machines. Random programs may also be Turing machines. Consider a
Turing machine T = {Q, Γ, S, b, F, δ} where:

Q is a finite set of states
Γ is a finite set of the tape alphabet
S ∈ Q is the initial state
b ∈ Γ is the blank symbol
F ⊆ Q is the set of final or accepting states
δ is the transition function: Q x Γk -> Q x (Γ x {L, R, S})k

1. 0→0, 1→0
2. 0→1, 1→0
3. 0→0, 1→1
4. 0→1, 1→1

90

Following our model, we construct a random Turing machine t using the following algorithm:

1. Randomly select a small number of states and number them 1-i.
2. Similarly, select a small alphabet numbered 1-j.
3. Randomly select the start state from the state space.
4. Define the transition function as follows: for each state and each alphabet

member, randomly select:
a) A head movement from {R, L}
b) An operation from {write, none}
c) An alphabet element to write
d) A state to transition to

Then t is a random Turing machine.

By these constructions, we illustrate a consistent theme concerning random programs: each

type of randomness has discernable properties, just like random (data) bit streams. The more we
know about random program properties, the more likely we will be able to generate intentioned
programs that reflect random program properties. We believe the random program security
model represents a (better) theoretical basis for analyzing obfuscators that rely on complexity and
confusion. The underlying tenet for white box security found in Definition 12 is the first model
(that we know of) to consider protection based on cryptographic properties (as opposed to known
hard NP-complete problems that assume complex adversarial workload).

5.5.4 Proving Random Circuits Exist

The term “program” is less precise than traditional TM definitions. Therefore, we
predominantly use combinational circuits to describe obfuscators that provide white box
protection using randomization in Section 5.6. We introduce here the notion that random circuits,
like random programs, exist. We discuss first our circuit description nomenclature, define a bit
string language to construct circuits, and then give support for Proposition 5 that random circuits
exist by elaborating three separate algorithms for their construction.

Proposition 5. Random circuits exist.

Circuits provide an alternative to Turing machines for considering computational complexity
and defining functional operations. Literature abounds with references to circuit and complexity
relationships, and we mention several known results that are detailed further in textbooks such as
Wegener’s [199]. We can simulate the computation of a Turing machine M on inputs having
length n with a single n-input circuit with size O((|<M>| + n + t(n))2). t(n) defines the bound on the
running time of M in inputs of length n. Thus, a non-uniform family of polynomial-size circuits can
simulate a non-uniform sequence of polynomial-time machines. Likewise, a non-uniform
sequence of polynomial-time machines can simulate a non-uniform family of polynomial-size
circuits. Machines with polynomial description lengths may integrate polynomial-size circuits and
simulate their computations in polynomial (bounded) time.

There are several advantages for using circuit representations. Circuits only have one
polynomial representation space (which is their size), while Turing machines have two (for their
size and for their running time). Turing machines are uniform concerning input whereas circuits
are non-uniform because each different input length may have a different associated circuit
(gate). It is possible to show that we can construct all (physical) machines with bounded memory
via (sequential) circuits and binary memory units. We can completely simulate machines whose
computations terminate with circuits.

Combinational Circuit Families. In digital circuit theory, combinatorial or combinational logic
represents circuits whose output is a function of only the present input. Sequential logic has

91

output that depends not only on the present input but also on historical input. Sequential logic
supports memory while combinatorial circuits do not. Combinational circuits (whose gate values
depend only on its current signals from any previous gate) can represent any straight-line
programs, meaning those with no loops or branches. However, we can compute many important
functions in a straight-line manner while conveniently describing their functionality as a circuit or
directed acyclic graph.

Physical computer circuits normally contain a mixture of the two logic modes. For example,
ALU components that perfom mathematical calculations are typically combinatorial while the
control signals for the ALU require sequential logic. At its lowest level, a computer is represented
as (lots) of Boolean circuit combinations. However, hardware relies on synchronous time signals
and clock signals to direct their activity.

We discuss families of Boolean circuits according to a set of common features that they share.
We let CnmsΩ indicate the set of all circuits with the same input size (n), output size (m), circuit size
(s), and basis (Ω). A circuit over Ω is a directed acyclic graph (DAG) having either nodes
mapping to functions in Ω (gates) or having nodes with in-degree 0 being termed inputs. We also
distinguish one (or more) as outputs. The basis Ω is complete if and only if all functions f are
computable by a circuit over Ω. The basis sets {AND, OR, NOT}, {AND, NOT}, {OR, NOT},
{NAND}, and {NOR} are all known to be complete. By definition, the 6-gate basis Ω = {AND, OR,
NOR, NAND, XOR, NXOR} is complete and has basis size |Ω| = 6.

Circuits that implement the same Boolean function, f: {0,1}n → {0,1}m, must have the same
input size (n) and output size (m), although a larger (padded) input size n’ is possible as long as
n’ > n. Functionally equivalent circuits may differ according to size (s) and basis (Ω). However,
they share common characteristics (depending on the terminology you wish to use) such as
having the same signature (truth table output columns), the same truth table representation,
equivalent fully minimized Boolean formulae, and equivalent input/output mappings.

Circuit Description Languages. There are three ways of referring to circuit description
languages: textual description languages, graphical representations, and binary representations.
Because our interest is ultimately pseudorandom bit generation, the binary representation is more
suitable for demonstrating provable white box security properties. We discuss the first two forms
because they also apply to our research implementation efforts.

Textual description languages are similar to programming languages (whether machine level,
assembly level, or high level). Textual circuit representation languages are regular grammars
with syntactic rules for construction. Their syntax supports expression of gates, electrical signals,
components, and gate interconnections. Over time, organizations like IEEE have developed
libraries of standardized circuit definitions that support application testing, algorithm analysis, and
integrated circuit optimization [200]. Researchers used a conference-style approach to develop
and review the ISCAS (International Symposium of Circuits and Systems) and ITC [201]
(International Technical Conference on Circuits) benchmark sets. Benchmark circuits come in
many different textual formats as well13. BENCH, CKT, VERILOG, and VHDL are several just to
name a few. Most formats typically reflect complex hardware components and languages such
as VERILOG / VHDL facilitate direct hardware synthesis. The BENCH format is very close to a
true Boolean circuit definition and we adopt this as textual description language in our (MASCOT)
implementation architecture described further in Section 5.8 and Appendix D/E.

Finding direct translators of high-level language (HLL) to circuit representation is hard outside
of government14 or commercial applications [202] designed for digital circuit design. In order to
facilitate our research and implementation activities, we identified existing definitions for
combinatorial Boolean circuits with well-known functionality instead of attempting to convert from
HLL to circuit representation directly. We use the ISCAS benchmarks in our implementation
activities because they give us known functionality to start with and provide readily available
Boolean logic. For future work, we plan to devote attention to the HLL-to-Boolean-logic
conversion problem.

13 ISCAS-85, ISCAS-89, ISCAS-99 circuits available at http://www.fm.vslib.cz~kes/asic/iscas/ in 6 textual forms
14 Wright Laboratories contracted a C-to-VHDL translator under BAA, http://www.stormingmedia.us/51/5170/A517013.html

92

We prefer to illustrate the notion of randomization for white box protection using pre-existing
circuit definitions where possible and we conclude from our current work that it is much easier to
work with known functionality than to convert high-level programs into Boolean logic. The ISCAS-
85 set of benchmark circuits provide a rich source of both known functionality and research
interest [203, 204]. Figure 61 illustrates a BENCH (textual) specification and schematic
(graphical) diagram of the ISCAS-85 C17 circuit. The ISCAS-85 benchmarks include definitions for
functions such as a 27-channel interrupt controller, a 32-bit SEC circuit, an 8-bit ALU, a 16-bit
SEC/DED circuit, a 12-bit ALU/controller, an 8-bit ALU, a 16x16 multiplier, and a 32-bit
adder/comparator just to name a few. Appendix E describes both the ISCAS benchmark circuits
and the BENCH circuit representation language in detail.

Figure 61: The ISCAS-85 C17 Benchmark Circuit in BENCH Notation

Combinational circuits in BENCH notation represent textual circuit descriptions. Figure 61
represents the other (traditional) graphical representation form as a collection of binary Boolean
gates connected with wires. We can also use directed acyclic graphs to represent equivalent
circuit information as long as we associate gate types with each node. Formally analyzing circuit
designs is a known hard problem that has led researchers to produce efficient, graphical
representations for Boolean circuits that facilitate verification. Solving constraint satisfaction
problems and formal verification have been catalyst to a myriad of graphical structures that
support graph-based Boolean function manipulation: Binary Decision Diagrams (BDD), Reduce
Ordered Binary Decision Diagrams (ROBDD), FDD, OBDD, ADD, MTBDD, BMD, KMDD, and
BGD to name a few [205, 206, 207].

Boolean Expression Diagrams (BEDs), another extension to BDDs, represent any Boolean
function in linear space and provide standard graph-based tools for dealing with combinational-
level logic problems [204]. BEDs have been useful for efficiently determining whether two
combinational circuits implement the same Boolean function [208] and come with several
desirable features practical to our current work. Figure 62 shows the graphical BED-based
definition for the C17 benchmark circuit described earlier in Figure 61. The creators of the BED
library provide an ability to generate DOT-based15 graphical notations for circuits, which we utilize
for viewing circuit definitions extensively. Appendix F describes in detail how we integrate BEDs
into our current implementation activities and gives several illustrative examples of BED diagrams
for the ISCAS-85 circuit benchmarks.

15 IBM AT&T Research Labs, http://citeseer.ist.psu.edu/331854.html

93

Figure 62: BED Definition of ISCAS-85 C17

The canonical theoretic representation for a binary circuit is a binary string. We envision
circuit randomization techniques in Section 5.6 that manipulate binary circuit representations
using traditional cryptographic cipher primitives such confusion and diffusion. We describe our
method for annotating Boolean logic circuits as binary strings here. In canonical representation,
we can view a circuit C: {0,1}n → {0,1}m with n inputs and m outputs as collection of its (m) output
subcircuits C1, C2, …, Cm. For all subcircuits Ci, 1 ≤ i ≤ m, and each subcircuit Ci corresponds to
exactly the ith output of circuit C. The canonical sum-of-products form expresses each output
subcircuits Ci as a collection of minterm products related to each possible input of the circuit.

We refer to a circuit signature as the collection of truth table values associated with an output
gate (i.e., subcircuit Ci) corresponding to the canonical ordering of input values. For two input and
one output gate, the signature for the gate corresponds to the inputs pairs (0,0),(0,1),(1,0),(1,1)
and we represent the corresponding signature as [{0,1}1,{0,1}2,{0,1}3,{0,1}4] where G: (0,0) →
{0,1}1, G: (0,1) → {0,1}2, G: (1,0) → {0,1}3, and G: (1,1) → {0,1}4. Figure 63 gives two examples
of such signatures: one for a 4-input/1-output circuit and the other for a 3-input/2-output circuit.

Figure 63: Examples of Circuit Signatures

94

For Boolean circuits over Ω2 (which define 16 possible 2-input Boolean gates), every gate in a
circuit C has function G: {0,1} x {0,1} → {0,1}. Table 17 lists the full set of gates under Ω2 and the
corresponding symbol which we use to identify traditional Boolean circuit gates types (AND, OR,
XOR, NOR, NAND, NXOR). For the function values, we let x’ indicate the negation of Boolean
variable x, ^ indicate the logical AND, ∨ indicate the logical OR, and ⊕ indicate the logical XOR.
As long as we have a complete basis Ω, we can generate all functions over that basis and we do
not require all 16 (gate) types to enumerate circuits within a functional family.

Table 17: Gate Definitions Under Ω2
G(x1,x2) Symbol Signature G(x1,x2) Symbol Signature
0 const 0 [0,0,0,0] x1’ ^ x2’ NOR [1,0,0,0]
x1 ^ x2 AND [0,0,0,1] (x1 ⊕ x2)’ NXOR [1,0,0,1]
x1 ^ x2’ [0,0,1,0] x2’ [1,0,1,0]
x1 [0,0,1,1] x1 ∨ x2’ [1,0,1,1]
x1’ ^ x2 [0,1,0,0] x1’ [1,1,0,0]
x2 [0,1,0,1] x1’ ∨ x2 [1,1,0,1]
x1 ⊕ x2 XOR [0,1,1,0] x1’ ∨ x2’ NAND [1,1,1,0]
x1 ∨ x2 OR [0,1,1,1] 1 const 1 [1,1,1,1]

Recalling our circuit family definition, CnmsΩ, we can give the encoding of any circuit C ∈ CnmsΩ

by a set of gates W = {w1, w2, … , wn+s} set depicted in Table 18. This set includes n inputs, s
total gates, s - m intermediate gates, and m output gates.

Table 18: Circuit Encoding for Family CnmsΩ

Structure Size Encoding
Inputs n w1, w2, …, wn

Gates (intermediate)

s - m

wn+1 = Gn+1 (wx1
1, wx2

1)
wn+2 = Gn+2 (wx1

2, wx2
2)

…
…
wn+s-m = Gn+s-m (wx1

s-m, wx2
s-m)

Gates (output)

s

m wn+s-m+1 = Gn+s-m+1 (wx1
s-m+1, wx2

s-m+1)
 …
wn+s = Gn+s (wx1

s, wx2
s)

For all gates Gi, we assume x1i ≤ x2i < n + i for the corresponding inputs wx1

i and wx2
i, for all 1

≤ i ≤ s. This states that gate inputs can be the same and insures us that gate inputs can only
come from previously computed gates (thus guaranteeing the acyclic nature of the circuit). To
characterize the binary string representation of a circuit, we need only replace the textual
encoding for the circuit with a binary equivalent form (much as we would translate assembly
language into binary). For example, given Ω = {NAND, NOR}, we can represent the gate type
with one bit. For n = 8 inputs, we can represent each input with three bits. For s = 25 gates, we
can represent each gate with the upper bound logarithm on s, which is five bits. Table 19
summarizes the computations for determining the total binary string size of any circuit with n
inputs, s gates, and basis Ω. Definition 13 incorporates these computations as a point of
reference.

Definition 13. (Binary Size for Circuit Descriptions) Given a circuit C of size s with
input size n and basis Ω , the upper bound size for a binary string representing the circuit is
given by:

 n ⎡lg(n)⎤ + 3s⎡lg(s)⎤ + s⎡lg(|Ω|)⎤

95

Table 19: Binary Size Representation for Circuit Encoding
Representation Number Bit Size
Enumerate Each Input (wi) n ⎡lg(n)⎤
Enumerate Each Gate (wi) s ⎡lg(s)⎤
Enumerate Inputs for Each Gate (x1i, x2i) 2 2⎡lg(s)⎤
Enumerate Function Type for each Gate (Gi) |Ω| ⎡lg(|Ω|)⎤
Representation Bit Size
All Inputs n ⎡lg(n)⎤
Each Gate Gate ID: ⎡lg(s)⎤

Input ID: 2⎡lg(s)⎤
Function: ⎡lg(|Ω|)⎤

Total: 3⎡lg(s)⎤ + ⎡lg(|Ω|)⎤
All Gates s(3⎡lg(s)⎤ + ⎡lg(|Ω|)⎤)
Entire Circuit = All Inputs + All Gates n ⎡lg(n)⎤ + 3s⎡lg(s)⎤ + s⎡lg(|Ω|)⎤

The only other consider for circuit representation is its signature. We find it useful to classify

circuits according to their function family (versus their representation size) and we use the
smallest succinct (truth table) embodiment to do so. As we have described previously (see
Figure 63), a circuit with m outputs will have a signature size 2n bits corresponding to the 2n
possible input combinations that produce each 1-bit output of the signature. We assume a
canonical ordering of inputs that reflects directly in the signature. Representing a (full) signature
thus requires 2n·m bits.

Enumerating Circuit Descriptions. We specify how to represent a single circuit as a binary
string and how to characterize its size. We now consider how to characterize the number of
possible circuit descriptions that are contained in a set of circuits with a specific size and basis.
In Appendix C, we give full exposition for circuit enumeration possibilities and give only the
summarized representation for number in Definition 14.

Definition 14. (Total Number of Circuit Enumeration Possibilities) Given a circuit C
of size s with input size n, the number of possible s-gate circuits GC possible under basis Ω
(assuming gates can have identical inputs) is given by the following product:

 ∏
=

Ω+=
s

i
C inCG

1

||)*2,(

See Appendix C for the entire circuit enumeration possibilities.

Entropy and Circuit Size. Given that we can specify a textual circuit description as a binary

string and given that we know how many circuits we can generate based upon a given circuit size
and basis, we can now characterize entropy as it relates to circuit size (from Proposition 3).
Consider the set CnmsΩ such that n = 2, m = 1, m ≤ s, and Ω = {AND, OR, XOR, XNOR, NOR,
NAND}. Assuming we know the basis, we refer to this circuit family ensemble as C2,1,s. Given
this circuit family set, we consider the subset of circuits within C2,1,s that implement the AND
function or, in other words, have a signature of [0,0,0,1]. At a minimum, C2,1,s contains circuits of
(total) size K = 3 or above, where total size K is the number of edges in a circuit DAG (K = inputs
+ gates = n + s). We can enumerate all node arrangement possibilities and with K or fewer
edges and determine which circuits have the characteristic AND signature.

96

We let C’n+s represent the subset of all circuits in C2,1,s that implement function and let |C’n+s|
indicate the cardinality of the set (the number circuits with AND functionality). Through
experimentation, we generate a circuit family for various gate sizes (C2,1,1, C2,1,2, C2,1,3, C2,1,4, …)
and count the number of circuit representations that produce the characteristic [0,0,0,1] signature.
In doing such experimentation, we demonstrate exponential blowup in the possible number of
AND function representations as K increases. For example, when K = 4, there are 66 total
possible circuit combinations (circuits of total size 4 composed of any legal combination basis
gates) and three of these circuits have signature [0,0,0,1]:

|C’4| = 3

C’4= {

(x0, x1, x2=x1 AND x0), s = 1, K = 3
(x0, x1, x2=x1 XNOR x0, x3=x2 AND x1), s = 2, K = 4
(x0, x1, x2=x1 XNOR x0, x3=x2 AND x0) s = 2, K = 4

}

Figure 64 shows our observed increase as follows:
|C’5| = 81 (K=5);
|C’6| = 81971 (K=6);
|C’7| = 8122,881 (K=7);
|C’8| = 581,203 (K=8);
|C’9| = 14,793,117 (K=9).

Circuits Implementing AND

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000

4 5 6 7 8 9

Circuit Size K

of

 C
irc

ui
ts

 <
 S

iz
e

K

Figure 64: Exponential Blowup of Functional Representation

The set C’9 of circuits total size 9 or less which implement AND functionality contains nearly 15

million circuits. Any random selection from this set gives a circuit with equivalent logical AND
functionality. Because we represent larger circuits with larger binary strings (by Definition 13), we
show empirical evidence here that entropy of circuits increases exponentially with size, given the

97

same functionality. This tends to support also our conjecture under Proposition 3 regarding
program size and entropy. This illustrates that for complex functionality, the number of circuits
implementing that functionality is large, but we can provide a bound on circuit size to keep
numbers within (efficient) manageable reach. Assuming a linear increase to the circuit size, we
can also increase the complexity or understandability of a Boolean circuit by converting all gates
to an atomic gate type such as NAND or NOR.

Generating Random Circuits. We have established several foundational premises (as we
did with programs) to now consider the existence of random circuits. We have given a concrete
methodology for describing circuits as binary strings, characterized the size for such a
description, characterized the size for a set of circuits with a specific gate size and basis, and
characterized the entropy for functionality as circuit size increases. We have also given rules for
constructing legal circuits and we now describe a (random) selection from a known population of
circuits.

Considering our entropy example, we show how to concretely describe the family of 2-input /
1-output circuits with gate-size = 7 and total-size = 9. We also, by experimentation, generate a
subset of this population with a specific functionality (AND) and refer to this circuit ensemble as
C’9. If we have a mechanism to select a circuit randomly from the subset C’9, this selection
constitutes an unbiased, equally likely representative from the population. That selection, by
definition, is a random circuit. As with programs, however, we prefer to have a method for
generating random circuits as validation basis for their existence. We provide three such
algorithms, with varying efficiency.

Algorithm 1: Random Circuit Generation by Enumeration

Initialization:
1. Choose a complete basis Ω
2. Choose input size n
3. Choose output size m
4. Choose circuit size s
5. Elaborate all possible combinations of circuits with size s or less.
 Create circuit ensemble C from this elaboration process.
6. Assign each circuit in C a unique number, 1 < x < |C|

Selection:
7. Using a pseudorandom number generator, generate x such that 1 < x < |C|. Pick

circuit Cx where Cx ∈ C.

Then, Cx is a random circuit. Therefore, random circuits exist under Proposition 5.

Algorithm 1 exhibits super exponential run time because we must enumerate all possible
circuit combinations, which involve multiple selection loops that cover all possible functions in the
basis and all possible combinations of prior inputs for each gate in the circuit (Definition 14
defines a combinatorial bound). A second (more efficient) approach is to generate one circuit
based on pseudorandom choices for each gate’s function type and signals. This process involves
direct enumeration of all s gates within the circuit in a straightforward manner.

We reflect in the third algorithm yet another approach using a set of all binary strings with
length b. Given the string ensemble, we make an unbiased selection from the entire population.
However, just as with programs, we must make sure that selection is a legal circuit description.
Although conceptually easier with circuits (because we need not worry about termination), illegal
circuits would only be encountered when any of the given circuit parameters do not fully saturate
the binary space allocated for them. In other words, a basis with size 6 does not fully saturate the

98

3-bit representation space needed for representing gate types under that basis. A basis size of 4,
however, would fully saturate its bit-representation space of 2 bits.

The other form of illegal circuit definition occurs when gate inputs derive from future inputs
instead of only previous inputs. For this reason, legal (combinational) circuit constructions create
directed acyclic graph representations. Such gate/input wire combinations are legal for
sequential circuits, however, and in future models we may actually desire such configurations.

Algorithm 2: Random Circuit Generation by Construction
Initialization and Selection:
1. Choose a complete basis Ω
2. Choose input size n
3. Choose output size m
4. Choose circuit size s
5. Generate circuit C in the following manner using gate set W:
 Set i := n+1

 For ∀ wi ∈ {wn+1, w2, … , wn+s}:
 (a) Using a (pseudorandom) choice, pick gate type Gi from Ω where there

are 1 .. |Ω| possible functions to choose from
 (b) Using a (pseudorandom) choice, pick input x1i for Gi where there are 1 ..

i-1 possible previous gates to choose from
(c) Using a (pseudorandom) choice, pick input x2i for Gi where there are 1 ..
i-1 possible previous gates to choose from
(d) Assign wi = Gi (wx1

i, wx2
i)

C is a legal circuit definition and exhibits properties of a random circuit in terms of
each gate’s inputs and Boolean function. Then, C is a random circuit and we affirm
random circuits exist under Proposition 5.

Algorithm 3: Random Circuit Generation by Test

Initialization:
1. Choose a string size (b)

Selection:
2. Repeat the following process until a legal circuit description is chosen
 (a) Make a (pseudo)random string selection C from the population {0,1}b
 (b) Test to see if C is a legal circuit definition, returning yes or no

For specific n,m,s,Ω: the test is efficient to compute
For unknown n,m,s,Ω: the test is hard to compute

C is a legal circuit definition (by decision). By its selection, it represents an unbiased
choice from a population of all (possible circuit representation) strings for a specific
class of circuits with size s, input size n, output size m, and basis Ω. Then, C is a
random circuit.

99

 We complete this section by noting that random programs and random circuits are a
foundational premise for proving white box protection attributes under the random program
security model. We introduce next obfuscators that leverage this concept of randomization and
polynomial time indistinguishability under our formal definition for white box obfuscation found in
Definition 12.

5.6 Creating White Box Protection Based on Randomization

Classic security research reveals many reasons to seek strong program obfuscation theory
and technology. Protecting the seam between two composed programs (black box protection
under Theorem 1) is a canonical white box obfuscation goal central to our model. Recall that we
compose a protected function (P) with an encryption function (E) to provide black box protection.
If the adversary can identify the seam between P and E through white box analysis, the black box
protection provided by E disappears. White box security encompasses both cases and gives
ability to shield program intent from code analysis. Thus, white box protected obfuscations protect
against analysis intended to reveal embedded data, seams between functions, the number of
functions, or other such program properties. Our goal is to define a systematic, measurable
defense against white box threats using the random program security model defined in Section
5.5.

The extensive history surrounding data encryption provides important insights into
understanding information and its representation. We contend that programs (and circuits) are no
more than a special information class with well-defined syntax and semantics. Moreover,
scrambling techniques (for code) are limited because the final form must adhere to this rigid
syntax and semantics. However, as we demonstrate in the previous section, program code and
circuit descriptions possess information content equivalent to information content in any other
type of bit stream. We present in this section a methodology for building white box obfuscators
that attempts to meet both informal and formal protection specifications given under Definition 5
and Definition 12. We begin by comparing data and program encryption in Section 5.6.1 and
point out the parallel lines of development we believe the (newer) field of program encryption will
follow.

5.6.1 Comparing Data and Program Encryption

We introduce randomization to the obfuscation problem and make an appeal using traditional
methods found in data encryption schemes. As we discuss in Section 5.3.1, we analyze data
cipher security properties in one of two ways: 1) an information theoretic viewpoint, where data is
secure regardless of computational resources; or 2) a complexity viewpoint, where data is secure
based on limited resources. Data encryption strength reflects whether we can reduce possible
breaks to known hard problems (e.g., factoring). Asymmetric ciphers use trapdoor one-way
functions based on algebraic groups or rings. Symmetric cipher security proofs, on the other
hand, do not rely on number theory. Confusion, diffusion, and composition operations form the
foundation for the Data Encryption Standard (DES), AES, RC4, etc. Security proofs leverage
Shannon’s perfect secrecy [209], though security confidence relies on the fundamental theory of
cryptography, i.e. that no easy attacks on symmetric schemes like DES have been found despite
voluminous research efforts over the years16. Symmetric cryptosystems rely on brute force
exhaustive search as their strength metric. Yet, symmetric ciphers are widely accepted as strong,
despite absence of mathematical proof formulations.

There are two analogous threads in program obfuscation research. The Virtual Black Box is
the de facto standard “provable security” approach, pitting the ability of a Turing machine given
obfuscated code against one with only oracle access to the original function. Conversely, we use
random programs as a baseline for measuring program intent protection through entropy. Figure
65 summarizes these notions.

Practical (heuristic) program obfuscation techniques are, in large part, observation generated.
Software engineers have known for decades that certain program structures reveal more about

16 Observation from RSA Security, http://www.rsasecurity.com

100

program intent than others. These intuitions led to obfuscation techniques such as adding ruse
code, eliminating structured constructs, generating “elegant” algorithms, type casting, code
reordering, code interleaving, and many others. The foundation was that if structured, concise
code is easy to understand, then non-structured, elaborate code must be difficult to understand.
Unfortunately, the software engineering model that seeks to understand code and the security
model whose goal is to protect intent do not correspond well at their extremes. Specifically, to
protecting intent against sophisticated intruders is fundamentally different from revealing intent to
maintenance programmers. Thus, program obfuscation techniques focus on confusing code, with
little theory or evidence that independent mechanisms are complementary, or even that they are
not counter-productive.

Asymmetric Data Encryption Symmetric Data Encryption
Based on mathematical algebraic primitives Based on repetitive permutation/substitution
Provably secure relative to mathematical theory Time-tested, secure based on limited resources
Key-based, systematic, recoverable
Seeks to create ciphered data with discernible randomness properties

Program Obfuscation Program Encryption
Spurious, heuristic, limited Based on repetitive, heuristic use of

permutation/substitution primitives with
composition

Not provably secure in the general case (VBB);
secure in limited contexts

Time-tested / complexity
(secure based on limited resources)

Mechanism-specific, non-generalized Key-based, systematic, recoverable
Seeks to protect programs against
 specific attacks using specific techniques

Seeks to create ciphered programs with
discernible properties of randomness

Figure 65: Comparing Data Ciphers with Program Obfuscation / Encryption

We contend that we can measure confusion by comparing our systematically obfuscated code
(hereafter referred to as “encrypted code”) or circuits against random code or circuits. We adhere
to Kerckhoffs’ security principle [210] and leverage substitution and permutation engines similar
to symmetric key encryption techniques. We thus consider our methodology a form of program
“encryption” rather than program “obfuscation”.

We specify obfuscators that generate key-based, white box secure software modules that
remain executable. We reiterate the difference in our approach from using a data cipher to
encrypt code, making the code a random data stream unintelligible to the code’s (originally)
intended interpretive environment. In Aucsmith’s approach [164], he utilizes a key to generate
pseudorandom blocks of encrypted code that are decrypted just prior to execution. Our approach
is similar to homomorphic forms of encryption, but instead of mathematical group operations, we
utilize executably semantic preserving primitives found in traditional symmetric data ciphers. We
refer to these primitives as confusion and diffusion. We define and show the utility of random
programs in Section 5.5 for measuring the (relative) randomization that any given obfuscator
produces.

Program (or circuit) encryption mechanisms are key-based functions, with corresponding
recovery mechanisms. These algorithms produce programs with well-understood randomness
properties. Program protection algorithms that utilize confusion, diffusion, and composition
strategies (like DES) are not necessarily weaker than mathematically based functional-
transformations such as homomorphic encryption schemes or RSA. To illustrate, consider
permutation and substitution data ciphers.

Data permutation, or transposition, shuffles the order of data, where the key dictates the
shuffle order. When used alone as a data cipher mechanism, permutation diffuses data across
ciphertext (as Figure 66 illustrates), but is not cryptographically strong alone. When applied in
isolation (by itself), we may rightfully consider data permutation a data obfuscation method. Data
substitution, or replacement, when used alone as a cipher technique, confuses bits within a

101

ciphertext but is not individually cryptographically strong either. We can rightly consider it a form
of data obfuscation by itself.

However, cryptographers strategically compose permutation and substitution in round-based
production block ciphers. In doing so, they can create strong encryption, evidenced in well-
known symmetric ciphers like DES. Even though DES strength is difficult to mathematically
express in other than brute force terms, most cryptographers recognize it as a strong cipher that
has no known attacks significantly more efficient than brute force key discovery.

Figure 66: Example of Data Permutation and Substitution

We leverage the program encryption analogy that uses confusion and diffusion that are not
strong themselves, but when composed in systematic, round-based algorithms produce
executably encrypted code. Analyzing program encryption security under our randomization
model breaks any relationship with VBB security; instead, we appeal to the random program
security model (Section 5.5). We next illustrate circuit indistinguishability as a program encryption
security metric.

5.6.2 Integrating Black and White Box Protection

Under Definition 4, the goal of black box intent discovery by an adversary is to establish the
I/O relationship that exists for an obfuscated program p’. If the adversary cannot find the
functionality class A given runtime analysis of the obfuscated version p’, black box protection is
achieved. By definition, the family of all programs that implement one-way functions consists of
programs whose input/output behavior is hard to learn. The security game played with an
adversary involves not knowing or being able to determine a program’s I/O class or functional
category.

In Definition 12, we express how to measure whether an adversary has an advantage when
given the obfuscated program (code) or circuit over oracle-only access to the original program.
We analyze whether the adversary distinguishes the obfuscated program from a randomly
selected program of the same size. This includes an adversary who not only performs black box
analysis but also performs static or dynamic analysis of the code itself, specifically to determine
program intent. To reiterate, we do not attempt to prove general security against all-powerful
adversaries—rather we seek a more narrowly defined goal of intent protection and a framework
to evaluate security of practical obfuscation techniques.

To afford full intention protection (under Definition 6), we must protect against both black box
and white box analysis. Figure 67 depicts the program families of interest that afford intent
protection, beginning with the foundational program class of strongly one-way functions.
Trapdoor functions, from Definition 8, are one-way functions where the inverse is easy to
compute given the key, but hard otherwise. We assume that black box protection uses
cryptographically strong, one-way trapdoor functions under Definition 9. We let E represent a
trapdoor one-way encryption function that takes a plaintext message M and key K and returns a
recoverable ciphertext C = E(M,K). We assume an inverse function D related to E provides
recovery of the plaintext given a ciphertext and symmetric key K: M = D(C,K).

Our black box protection mechanism forms a special subclass of trapdoor one-way programs
that has a special input/output relationship defined by the functionality class A and any program P
∈ A. Specifically, when we concatenate a program P that has a specific functionality A (P ∈ A)

102

with an encryption algorithm E from the trapdoor one-way function family E, we have programs
consistent with those described in Theorem 1. We show this family of programs in Figure 67 as
the subset TDOWA. Given the transformation process t of Theorem 1 that creates a specific
subclass of programs in TDOW, a recovery algorithm r recovers the intended output y of any
program P, given the output of y’ = P’(x), where P’ ∈ TDOWA in Figure 67. The set of programs
TDOWA is black box intent protected under Definition 4 with respect to the functionality class A.

Figure 67: White Box Protected Programs

From a compositional approach, any black box obfuscator O (under Definition 4) that
implements Theorem 1 is a compiler that produce P’ = O(P) from an original program P ∈ A and a
strong, trapdoor one-way program E ∈ E such that P’(x) = E(P(x),K). Here P’ ∈ TDOWA and
indicates that the set TDOWA contains all programs whose input/output relationship accommodates
the domain of A and produces the range of E such that P’: {0,1}|xP| → {0,1}|yE|. A black box
obfuscator that meets Theorem 1 thus produces obfuscated programs whose input/output
characteristics are consistent with E and are thus one-way functions. We clarify that the selection
of the particular class of functions E is a key-based decision part of an overall obfuscation
process. Thus, E is randomized along with other parameters and the functionality class A may
itself include strongly one-way programs, trapdoor one-way programs, or data encryption
algorithms.

5.6.3 Intent Protection with White Box Randomizing Transformations

At this point we refer specifically to Boolean circuits (using TDOWA to refer to a set of circuits)
and of obfuscators that algorithmically manipulate circuits. As we elaborate in Section 5.5.4,
circuits provide a better meeting point between theoretic limits and practical implementation and
eliminate the need to worry about program termination. Considering both forms of intent
protection (from Definition 4 and Definition 12), we now define obfuscators that perform
systematic circuit transformations based on indistinguishability from a random circuit. Such white
box obfuscators assume any candidate circuit P’ ∈ TDOWA as a starting point. Since TDOWA is
infinitely large, we bound the possibilities by specifying only circuits with a maximum size N or
less. For example, if E were the N-bounded family of Boolean circuits that implement the DES
algorithm, all elements in E are circuits of size N or less that produce the mapping EDES56: {0,1}64 x
{0,1}54→ {0,1}64 based on 64-bit message size and a 56-bit key K. If we choose a specific 56-bit
key K, then we have and embedded-key DES function defined as EDES56,K: {0,1}64→ {0,1}64.

103

The specified maximum circuit size N represents the desired obfuscated circuit efficiency; we
consider obfuscators that randomize a circuit in a way that produces exponential circuit blow up
unless bounded otherwise. The lower bound size of circuits in TDOWA is based on the size of the
most efficiently reduced circuits that implement P’(x) = E(P(x),K). A maximum circuit size N
bounds the number of circuits that implement E. Likewise, N provides a bound on the number of
circuits in the set of all trapdoor one-way functions.

We base white box protection on an indistinguishability argument. As Definition 12 states, we
achieve white box intent protection if a circuit obfuscator (encryptor) produces an obfuscation of P
that is indistinguishable from a random circuit PR. We use the random program (circuit) model as
the security basis and ask whether obfuscators exist that achieve this intent protection form. By
Corollary 1, which affirms that pseudorandom program generators exist, we conjecture that
pseudorandom program generators can exist also that reliably transform one program (circuit)
form into a semantically equivalent / executably encrypted program (circuit) form.

We again leverage the well-understood notion of traditional data ciphers to illuminate our
paradigm. Strong data encryption produces ciphertext that is indistinguishable from a string
chosen randomly from the set of all strings of the same size. Cryptographically strong data
ciphers that use permutation, substitution combinations accomplish this successfully. Our desire
is to design or find obfuscators that utilize circuit permutation and substitution to produce
randomized circuits; these randomized circuits are indistinguishable with respect to P from any
other circuit of comparable size chosen randomly. If random circuit selection provides white box
protection, as we contend, then our effort is reduced to finding mechanisms that produce suitably
randomized “cipher code” (to coin a phrase).

An obfuscator O that provides full intent protection for a program (circuit) P (under Definition
6), such that P’ = O(P), can thus be seen as a two-step compiler. O first provides black box
obfuscation by a semantic transformation on P to P” under Theorem 1 (depicted in Figure 68-A).
O then provides static white box obfuscation by randomization of P” to P’ (depicted in Figure 68-
B).

 (A) Semantic Transformation (B) Randomizing Indistinguishability

Figure 68: Full Intent-Protected Program P’

We have already demonstrated in Section 5.4 that we can produce obfuscators that satisfy
black box protection. In order to create a full intent-protection obfuscator, we must ensure that
any candidate O selects programs P’ from the set TDOWA in a uniform, random, key-based, and
repeatable fashion. We conjecture that if we randomly select a circuit from TDOWA, this selection is
indistinguishable from a random selection from the parent set E (recall that by virtue of
construction, P’(x) = E(P(x),K), where E ∈ E). We further investigate whether the selection of P’
can be made indistinguishable from a random circuit selection taken from the parent sets of E,
which include TDOW and from SOW (seen in Figure 67).

We have two goals based on these foundations. First, if an obfuscator randomly selects a
bounded size circuit from TDOWA, this selection is indistinguishable from a bounded size circuit
randomly selected from E. Secondly, we investigate whether efficient obfuscators exist that
randomly selects a circuit from TDOWA. The secondary goal has to do with practical

104

implementation of the first and we discuss our initial results toward that aim next. In a sense, the
second step corresponds with classic efforts to confuse code. While other approaches lack
structure, in our approach, there is a well-understood goal (randomization) and a metric (non-
linearity).

5.6.4 Distinguishing Random Selections of TDOWA from PR

A circuit has input/output mappings that reflect its functional behavior. We summarize such
mappings by either truth table or the characteristic Boolean function of the circuit in some
reduced, canonical form. By definition, circuits in the set TDOWA are one-way functions and are
therefore not analyzable by their input/output mappings—they are indeed hard to learn based on
their membership in the set of all one-way functions. Given a circuit P” ∈ TDOWA, P”: {0,1}64→
{0,1}64, with an appreciably large input size (64 bits) and appreciably large output size (64 bits),
the truth table for such a circuit P” has 264 rows. Without being able to analyze the input/output
pairs of circuits in P”, no link to an original P is possible on the basis of input/output analysis
alone, given that P” = E(P(x),K). An adversary must then analyze circuits that come from the
family TDOWA using combined static and dynamic techniques.

 There are uncountably many circuits in the unbounded sets E and TDOWA. Given only circuits
of size N, E and TDOWA are finite and allow possible uniform selection. Given a basis Ω, there is a
large but countable set of circuits of size N or less that implement encryption functionality E and
that ultimately compose TDOWA. The set TDOWA has large, but finite, cardinality and E is by
implication much larger. We stipulate that at least one element of the set TDOWA is selected as
the first step of a full intent-protection obfuscator: the circuit created by black box protection using
the Theorem 1 (semantic transformation of P to P” seen in Figure 68-A). However, by applying
both sub-circuit confusion and diffusion to P” in a round-based, repetitive manner, we select an
equivalent, random circuit from TDOWA which we refer to as P’ (seen in Figure 68-B). Note also
that P” and P’ are semantically equivalent to each other (they come from the same set TDOWA)
whereas P” and P’ are neither semantically equivalent to the circuit we are interested in protecting
(P): P” = P’ = E(P(x),K).

 Given a mechanism (obfuscator) that randomly selects a circuit from the set TDOWA, we assert
that such a circuit is indistinguishable from a randomly chosen circuit from the set E. The group of
all permutations of {0,1}64 is considered large enough to satisfy a brute-force discovery of the key
(having 264! elements), even though some attacks on DES slightly reduce the number of
plaintext/ciphertext pairs required to be successful. We draw a parallel and say that the number
of representations for circuits that implement P” = E(P(x),K) with characteristically large
input/output {0,1}64 → {0,1}64 form a pool for random selection. Recall that selection from TDOWA
does not preserve the original functionality of P, but preserves black box protected functionality.
In Section 5.5.4, we make an argument for exponential entropy increase in circuits that have
increasing size and increasingly complex functionality. We show by our empirical experimentation
that for simple functionality (a single AND), the number of circuits implementing that functionality
is (exponentially) large. As the complexity of a circuit’s function increases (i.e., implementing a
data encryption cipher versus simple AND), we also would expect a corresponding increase in
the (exponentially) large number of circuit combinations that can implement that functionality. By
observation, E and TDOW are much larger than TDOWA. Our premise is that an adversary, when
given a random circuit (PR) that implements the one-way function class of E, cannot distinguish
that circuit from one that comes from the subset TDOWA. If we can create an obfuscator with such
properties, we accomplish white box protection.

5.6.5 Obfuscators that Randomly Select Circuits from TDOWA

Given a binary string representing a circuit, we define a process that selects legal sub-circuit
substitutions-permutations that preserve circuit functionality. The resultant binary representation
reflects these transformations and mimics data plaintext replacement with an equivalent cipher-
text substring. In symmetric, Feistel-based [211] data ciphers, security strength comes from the
ability to perform key-based operations that are random and uniform across the plaintext. Ciphers
normally accomplish this one plaintext block at a time and return recoverable ciphertext blocks. In

105

confusion-diffusion approaches, ciphers transform each block by a series of key-based
operations that include some type of non-linear substitution on small portions of the string (4 bits
for example) and then permutation across the entire string.

We leverage non-linear substitution for sub-circuit replacement within a parent circuit. Even
thought circuits in TDOWA are large, we build the obfuscator to work with fixed (small) size sub-
circuits and create sets (substitution boxes) of circuits that preserve functionality (i.e., produce the
same truth table or signature). The intuition is that given a bounded size circuit, if sub-circuits are
randomly chosen and replaced repetitively (up to some number of rounds), the resultant circuit
has properties consistent with a randomly selected circuit from the pool of circuits TDOWA.

As the basis for non-linear security properties in DES [212, 213, 214, 215, 216, 217, 218], S-
boxes transform bit strings from larger to smaller sizes. In the case of circuits, we replace a
circuit of some (small) size with an equivalent circuit of closely smaller, equal, or greater size that
has equal number of inputs and outputs. We assume initially that circuit substitution boxes
produce equivalent sized circuits. Cryptographic algorithms based on the strength of non-linear
substitution also rely on a given number of confusion/diffusion rounds. We define a circuit
substitution operation as a non-linear equivalent replacement of a sub-circuit and a circuit
diffusion operation as a substitution that comes because of two different replacement operations.

Figure 69 shows a notional circuit transformation where two other sub-circuit replacements
diffuse the original functionality. Beginning with the circuit P” = E(P(x),K), we apply round-based
sub-circuit selection-replacement so that all gates are considered for replacement at least once.
Each selection-replacement round within P” is key-based. Unlike block-ciphers, not all sub-circuit
definition blocks are contiguous. This dictates multiple selection/replacement rounds using
various (small) input size and output size sub-circuits. A one-time, up-front cost is required to
create equivalence classes for circuits—much like the requirement to design S-boxes part of
symmetric data ciphers.

Figure 69: Circuit Substitution and Permutation

An obfuscator that takes a circuit P” and produces an equivalent circuit P’ based on this
process produces a string representation of P” with properties consistent to a random circuit.
Such an obfuscator fulfills the requirements we lay out for full intent-protection (black box and
white box) in Definition 4 and Definition 12. In particular, the binary string representations of P”
compared to P’ would map closely to the plaintext/ciphertext pair produced by a symmetric data
cipher like DES. If the obfuscator functions in this manner, the resultant circuit is indeed
indistinguishable from a random circuit. We envision incorporating such a white box protection
approach into a higher-level algorithm that provides fully general program intent protection,
illustrated in Figure 70. We discuss our implementation activities further in Section 5.8 and
Appendix D.

The creation process for a randomizing white box obfuscator resembles the DES creation
process in many ways: we must be able to analyze an implementation in order to measure its true
resilience. On a theoretic level, we have provided arguments that fully intent-protected

106

obfuscators based on semantic transformation and circuit randomization would defeat combined
black box and white box analysis attacks. Given that we pre-construct circuit substation boxes
(an efficient operation for small circuit sizes), the algorithm for subcircuit selection and
replacement on P” to create P’ would have similar DES efficiencies for general circuits of
reasonable size as well.

Figure 70: Circuit Encryption in Context to HLL Code Protection

By Kerckhoff’s principle (i.e., the adversary has knowledge of the encryption process), we
prefer a tighter proof that an adversary cannot perform certain (specific) actions. Particularly,
when an adversary is given a circuit that by its creation represents a random selection from a
large population (making it indistinguishable from a random circuit), can we provably assert that
this random circuit completely prevents the adversary from finding the “seam” that separates
circuit (program) P from circuit (program) E? Though fully implementing our randomizing circuit
obfuscator requires additional future work (and thus future analysis in this regard), we are able to
provide an alternative theoretical view of white box protection that does prove perfect semantic
security (even when an embedded-key encryption algorithm is used). For bounded input-size
programs and circuits, this methodology not only exhibits provably perfect semantic white box
security, but also affords practical, real-world implementation (which we accomplish under our
current work). We discuss this approach next.

5.7 Creating Perfect White Box Protection

In this section, we show how to produce a semantically secure obfuscation for {Pn}n∈N, which is
the class of programs with input size n. Unlike other (obfuscation) results, the only definition we
give for Pn is a polynomially related bound b on the input size such that n, b ∈ N and 2n ≤ nb.
Given such a bound, we show how to produce obfuscated circuits that are efficient, semantically
equivalent, and virtual black box protected to the original program. The algorithmic complexity of
the obfuscation is exponential, but, when bounded polynomially, is practical for a relevant class of
programs (which we motivate in Section 5.2). In our formulation, we actually appeal to the VBB
notion that (any) source code version should not leak more information than a simulator with
oracle access to the source code.

To bridge the gap between theory and practice, we address the “best-case” of what can be
achieved. Turing machines are not physically constructible, even though they represent the
theoretical underpinning of computer science; any best-case implementation of a Turing machine
would require a (bounded) limit on infinitely defined tapes. What does the best case, practical
virtual black box circuit look like from a security perspective? We answer that question by
considering obfuscators that are based only on oracle-access to a function P, and not the original
function P itself. By definition, an obfuscated circuit P’ should not leak any more information
about P than the oracle of P reveals. This is our baseline for perfect white box protection as we

107

state in Definition 16 the notion of a bounded input-size program obfuscator. In Definition 15, we
give a reminder definition for the negligible function.

Definition 15. (Negligible Function) Function α: N≈R+ is negligible if, for any positive
polynomial p, there exists N∈N s.t α(n) < p(n)-1 for any n > N

Definition 16. (Bounded Input-size Program Obfuscator) An algorithm O is an
obfuscator for the class of b-bounded input size programs {Pn }n,b∈N, 2

n
≤ n

b, where P ∈ Pn if:

1. Semantic Equivalence: ∀x, P(x) = P’(x), where P’=O(P)
2. Efficiency: There is a polynomial l(⋅) such that for every n,b∈N where 2n ≤ nb, and for

every P in P, |O(P)| ≤ l(|P|)
3. Perfectly Secure Obfuscation: For any PPT A, there is a PPT simulator S and a

negligible function α such that for every n,b∈N where 2n ≤ nb, and for every P ∈ Pn

In their argument formulation, Barak et al. acknowledge a valid obfuscation exists for circuits

in the following manner:

“Note that if we had not restricted the size of the obfuscated circuit O(C), then the
(exponential size) list of all the values of the circuit would be a valid obfuscation (provided
we allow S running time poly(|O(C)|) rather than poly(|C|)).” [172]

We explore this statement and define explicitly the constructions related to this possibility.

The VBB impossibility proofs in general deal with (contrived) functions where the input size is too
large for practical truth table enumeration—therefore a simulator with oracle access to an original
program P (defined as SP) can do no better than guessing based on oracle-queries. We consider
instead the family of functions whose input size is small and therefore whose input/output
behavior is not prohibitive for a simulator to enumerate.

Barak et al. also state that the foundation of (all) of their proofs derive from the “fundamental
difference between getting black box access to a function and getting a program that computes it,
no matter how obfuscated” [172]. They go on to state that this difference disappears if the
function is learnable completely from oracle (black box) queries. Our interest in bounded input-
size programs/circuits is that we (or a simulator) can obtain their truth tables efficiently when they
have a sufficiently limited input size.

5.7.1 Existence of 2-TM Obfuscators for Bounded Input-Size Programs

Since we have already introduced the Barak impossibility proofs earlier in Section 5.3.3, we
proceed immediately to our interest regarding them: defining a version of the VBB property
related to a bounded input-size parameter. Regarding Equation 4 (p. 72), when we bound the
input size k polynomially, the probability that we can compute the predicates in Equation 4 is
much different—and this corresponds exactly with what Barak et al. state. Under a bounded k
assumptionm, we can distinguish a poly(k)-time algorithm S that has oracle access to Cα,β and
Dα,β from another algorithm S that has oracle access to Zk and Dα,β. This is because both
simulators (SCα,β,Dα,β

 and SZk,Dα,β) can enumerate the truth table for Cα,β or Zk, create a circuit from
that truth table, and get a decision from Dα,β accordingly (we describe how obfuscators do exactly
this in the theorems that follow). Thus:

Equation 7. 1|]1)1(Pr[]1)1(Pr[| ,,, ,, ==−= kDZkDC kSS βαβαβα
, for bounded k

108

Equation 7 shows precisely, given bounded input size k, that the difference between oracle
black box access and source code access does indeed vanish. We leverage this fact and
introduce constructions next that meet the VBB security definition for a useful class of programs
that we can obfuscate: those with small input size. This also does not contradict the VBB results
in [172] at all because functions with enumerable input/output (exactly learnable via oracle
queries) are candidates for meeting the VBB property.

5.7.2 Provably Secure Obfuscators for Bounded Input-Size Programs

In the information theoretic sense, we define perfectly secure obfuscation by information
gained by a PPT simulator SP that has oracle-only access to some original program P. If a PPT
algorithm uses only the information gained from an oracle of P to construct a semantically
equivalent circuit P’ for P, then it is impossible for any circuit P’ created in a such a manner to
leak more information than what the oracle for P could give. In particular, an oracle for P
simulates an algorithm that utilizes the truth table of P. The existence of such an oracle simulator
for P assumes that the possible input range of P and its corresponding output can be fully
enumerated, stored, and accessed.

We pause to clarify and amplify an oracle’s capability. Classically, an oracle answers
questions with no notion, reference, or intuition on our part as to how it knows the answer; we
universally accept that the oracle’s answers are correct. We utilize truth tables in our arguments
because truth tables capture the oracle’s capability for answering function queries, since each
answer, essentially, fills in a space in the function’s truth table.

Some functions are easily learnable (as Barak et al. point out) in that we can learn them from
partial truth tables. Our results address functions whose truth tables we can completely construct
in polynomially bounded time from oracle access, and point out that, even for functions whose
complexity grows exponentially, truth table construction complexity simulates polynomial growth
for small input sizes. This function class provides the opportunity to observe provably VBB
protected circuit implementations. These circuit implementations possess [VBB] perfect security
because, given the circuit Cα,β’s truth table (using an example from the impossibility proofs), we
can canonically construct a circuit exclusively from that truth table. Since the truth table is
generated by oracle access and the obfuscated Cα,β’ is generated canonically from that truth table
also, the circuit can reveal nothing more about the original circuit C than does the oracle. This
concept is illustrated and leveraged in Theorem 3.

A natural question to ask is: “How does protecting a circuit whose truth table can be computed
provide security?” As we mention in our review of obfuscation security models, a well-
demonstrated value exists for obfuscation models that operate on semantically non-equivalent
versions of programs and circuits. In our ideal black box construction (under Theorem 1), we
protect the truth table for the obfuscated circuit via black box semantic transformation, and thus
do not reveal anything about the original circuit’s I/O. Moreover, the canonical circuit construction
described in Theorem 3, when used as an obfuscation technique, reveals nothing about the
original circuit structure, thus providing perfect white box protection.

Theorem 3. Perfectly secure white-box obfuscators exist for b-bounded input-size
programs (under Definition 16).

Proof: Our proof is by construction. We give a three-step obfuscator O(P) that takes any
executable program P, generates the truth table from oracle access to P, and applies a
Boolean canonical reduction on the truth table to produce a circuit that is semantically
equivalent to P. Assume n is the input size of P and let 2n ≤ nb, for some user specified b.
Then: O is a b-bounded input-size program obfuscator for the class of programs {Pn}n,b∈N,

2
n

≤ n
b, for any P ∈ Pn, under the following construction:

Step 1. Using P, acquire or create SP as an efficient oracle emulation of P.

109

Step 2. Generate the truth table for P, T(P), by running SP on all 2n inputs of P. Given P:
{0,1}n → {0,1}m, T(P) is the m⋅2n size matrix of input/output pairs obtained in the following
manner: ∀x, [x,y] = [x, SP(x)], where SP is a PPT simulator with oracle access to P.
Step 3. Create circuit P’ by applying the algorithm for canonical complete-sum of products
[219, 220] to T(P). P’=∑i=1,…,n πi, is in disjunctive normal form (DNF) where each product πi
is a conjunct of literals and each literal is either an input variable xj or its negation x’j (1 ≤ j ≤
n). Minimize P’ via minimal-sum of products algorithm such as Blake’s reduction based on
Shannon’s recursive expansion.

1. P’ is perfectly secure with respect to P. Since P’ = O(P), T(P) is fully derivable given P

assuming some polynomially bound b on input size n. Given bounded size, the
following relationship holds between any PPT simulator SP and obfuscator O. Both can
derive T(P) and thus a canonical circuit for P in polynomially bounded time.

)(]1))1(Pr[]1))((Pr[nSPOA nP α≤=−= , for bounded n

 Because the adversary may query the obfuscated program in polynomially bounded
time and derived the full truth table, T(P), then Pr[A(O(P)) = 1] = 1. Because the
simulator, given black box access to P, may use polynomially bounded time black box
queries and derive the full truth table, Pr[SP(1n)) = 1] = 1. Thus, the two can distinguish
properties of P with equally likely probability and thus with negligible difference.

2. For ∀x, P(x) = P’(x). By construction, P' precisely implements T(P).
3. There is a polynomial l(⋅) such that for every n,b ∈ N where 2n ≤ nb, and for every P in

P, |O(P)| ≤ l(|P|). In the worst case, a complete sum-of-products expansion is
composed of m outputs consisting of up to 2n minterms composed of up to n-1 products
(AND) and up to 2n-1 summations (OR). The maximum size, m2n(n-1)(2n-1), is O(2n)
while the minimal possible size is Ω(m)—representing where each output is constant 0.
By bounding the input size of program P with b, the size for the complete sum of
products expansion circuit becomes O(nb). We would not (in practice), use the
complete sum of products expansion because much more efficient representations are
possible. From the security aspect alone, however, any more-efficient derivation of the
complete sum of products circuit retains the perfectly secure obfuscation (hiding)
property.

4. The minimal SOP expression of P’ is polynomially equivalent in input-size to the original
P related to some polynomial bound b, because n = |xP| and |P’| ≤ nb.

We point out that obfuscators constructed under Theorem 3 produce perfectly white-box

protected circuits (in the information theoretic sense) from bounded input-size programs, but
assume nothing about the hardness or difficulty of learning the original program P. If the
input/output of P (and thus any semantically equivalent version of P such as P’), reveals the intent
or function of P, then no degree of white-box hiding can prevent the adversary from learning the
function of P from the input/output relationships of P’ (we state this precisely in Lemma 2). The
truth-table derived construction of Theorem 3 perfectly hides only the algorithmic construction of
P—and nothing more.

5.7.3 Perfect Obfuscation in a Private Key Setting

In the VBB constructions, P is assumed to be a function whose input/output behavior is hard
to learn to begin with. However, constructions under Theorem 3 point out two useful practical
realizations when used in context to hard-to-learn, one-way, pseudorandom functions: truth-table-
based circuit derivations provide a method to hide embedded encryption keys programmatically
and perfectly secure obfuscated private-key encryption schemes are possible where the
(unpadded) input size (of the plaintext) is bounded.

110

Several block-cipher-based, private-key encryption schemes exist with pseudorandom
properties. The hardness of key recovery and the one-way properties of ciphers such as DES
are well established and pseudorandom properties of the DES family is discussed by Bellare et
al. in [221] and Goldreich in [188]. Our interest in the DES family of functions, including variants
such as 3-DES, is the comparatively small block size of the plaintext (64 bits). Though the virtual
key size of 3-DES is larger than 56 bits, we focus on DES nonetheless with its standard 56-bit
key space.

Definition 17. (Private-key Block Encryption Program Obfuscator) The tuple of PPT
algorithms (KG,E,D,O) enforces perfectly secure obfuscation in the private-key setting with
security parameter k and block-size m for the class of programs {Ek,m} where E ∈ Ek.m if:

1. Private Key Encryption: (KG,E,D) defines a pseudorandom private-key block
encryption scheme with block-size m and security parameter k:

KG: a probabilistic algorithm which picks K (on input 1k, produces key K); assume
KG never produces “weak” keys
E: {0,1}k x {0,1}m → {0,1}m, on input K ∈ {0,1}k and plaintext message M ∈ {0,1}m,
produces ciphertext C ∈ {0,1}m
D: {0,1}k x {0,1}m → {0,1}m, for all)1(kR KGK ⎯⎯← and M ∈ {0,1}m, DK(EK(M)) =M

2. Semantic Equivalence: Given)1(kR KGK ⎯⎯← and program E∈ Ek.m,∀x, E(K,x) =
E’(x), where E’=O(K,E)=EK(·)

3. Efficiency: There is a polynomial l(⋅) for every E in Ek.m |O(K,E)| ≤ l(|E|)
4. Perfectly Secure Obfuscation: For any PPT A, there is a PPT simulator S and a

negligible function α such that for every for every E ∈ Ek.m and for every
)1(kR KGK ⎯⎯←

)(]1))1(,Pr[]1)),((,Pr[nSEEKOAE mEK α≤=−=

We assume any distinguisher does not have access to the private key K but has
knowledge of the encryption program E.

In Definition 17, we specify the requirements for an obfuscator of block-based private-key

encryption schemes (such as DES), that provides a semantically secure hiding of an encryption
key. In essence, the obfuscator O(K,E), under this definition, takes a private-key K and block
encryption algorithm E(K,·) and returns EK(·) such that no key-recovery attack can reveal the key
K based on analysis of the source code/gate structure of EK. Theorem 4 now gives the
formulation for obfuscating a key-embedded block cipher under the construction of Theorem 3.

Theorem 4. Perfectly secure obfuscators exist for b-bounded input-size private-key block
encryption programs.

Proof: Our proof is by construction. We give a three step obfuscator O that takes
)1(kR KGK ⎯⎯← and block-cipher program E with block-size m and key-size k, generates the

truth table from oracle access to E(K, ·), and applies a Boolean canonical reduction on the
truth table to produce a circuit E’ that is semantically equivalent to E(K, ·).

At this point, we distinguish between the block-size of cipher E which is m and our desired
(bounded) input-size n. We establish that n ≤ m and 2n ≤ nb for some user specified b.
Where n = m, no padding of the input is necessary for E(K,M). Where n = m is too large
for a user chosen bound b (meaning there are not enough computational resources
available to achieve truth table elaboration or the reduced sum-of-products circuit

111

derivation), an input size reduction is necessarily in order to meet the efficiency
requirements for a polynomial bounded circuit size on E’ or polynomial time speed for O.
Where n < m, we must choose whether to pad with m - n zeros or to pad with a (randomly)
chosen m - n bit string. We assume padding with 0 for simplicity at this point but point out
that our plaintext message space is now {0,1}n as opposed to {0,1}m. The security
ramifications where the adversary knows that a (possibly) reduced (virtual) block size is
being used is a separate but related discussion to whether the adversary can recover the
key K when given the source code (gate structure) of E’.

Let circuit E’ = O(TEK)= O(K,E) be an obfuscation of the encryption program E with
embedded key K (i.e. E' retains the functionality of E(K,·)) where TEK is the truth table of
E(K, ·). Assume m is the input size of E and n is the virtual (unpadded) input size of the
plaintext where n ≤ m and let 2n ≤ nb, for some user specified b. Let TEK be generated
through the PPT simulator SE.

Then: O is a b-bounded input-size private-key block encryption program obfuscator for the
class of programs {En}n,k,b∈N, n≤m, 2

n
≤ n

b, for any E ∈ Ek.m

Given E ∈ Ek,m and)1(kR KGK ⎯⎯←

Step 1. Acquire an efficient implementation of E, SE, to use as oracle emulation.
Step 2. Generate the truth table for E(K,·), TEK by running SE on all 2n inputs of E, where n
is related to the polynomial efficiency bound b. Where n < m, pad each input with m-n
zeros.
Step 3. Create circuit E’ by applying the algorithm for canonical complete-sum of products
to TEK. E’=∑i=1,…,n πi, is in disjunctive normal form (DNF) where each product πi is a conjunct
of literals and each literal is either an input variables xj or its negation x’j (1 ≤ j ≤ n).
Minimize E’ via minimal-sum of products algorithm such as Blake’s reduction based on
Shannon’s recursive expansion.

From Theorem 4, E’ has the same characteristics based on its construction and meets
requirements for semantic equivalence, efficiency, and perfectly secure obfuscation.

Consider, for example, that we could easily encrypt the output of our sensor from Figure 52, p.

66, using an embedded-key DES program because the sensor outputs 64 bits of data at a time
(which matches the block input size of DES). We could then send the encrypted computational
result DESK(sensor(x)) back to the processing facility, decrypt the output using the private key K,
and then analyze the true sensor data. The only stipulation given under Theorem 4 is that we
have computational resources related to the bound b such that 232 < 32b. The primary limiting
factor is the input size of the sensor since the size of circuit is related only polynomially to the
number of outputs (which would be a factor of the encryption algorithm E). If there are adequate
computational resources to accomplish the truth table enumeration for the 32-bit input / 64-bit
output matrix, then circuit E’ can be constructed and a perfectly secure key-embedded circuit can
be used in the sensor.

112

Figure 71: Bounded-Size Input DES

Assume that the output of the sensor described in Figure 52 were 32 bits instead of 64. We
now must consider that only 32 bits (not the total 64 bit block size) of DES are under
consideration. Figure 71 illustrates the issue of key recovery attacks and puts this in perspective
of a DES program that takes messages that are 32 bits long. Here, the job of the adversary is to
find the one truth table out of the approximately 256 possible truth tables (excluding those based
on weak keys) that is based upon the specific K that is embedded in E’. For our specific sensor
example, each truth table is a possibly 232 enumeration (versus a 264 enumeration) of entries
corresponding to each message/ciphertext pair.

The obfuscators defined under Theorem 4 need only produce one of these truth tables in
order to embed the key with perfect semantic protection in the circuit E’. The adversary (on the
other hand), must enumerate up to 256 such truth tables in order to use the circuit E’ to pinpoint
the particular key K embedded within. Because of the construction process for circuit E’, which is
based only on the input/output relationships of an embedded-key encryption operation, the
adversary cannot discover the key K by examination of the actual gates of circuit E’. In fact, the
gates of E’ yield only semantic information concerning the input/output behavior of EK, and
nothing more. The adversary can do no more than observe input/output pairs which are obtained
from execution of E’ itself: this describes both the intuitive and theoretical notion of a virtual black
box.

Given a possibly reduced message space, we relate the security of the circuit E’ more to the
key-space of DES than to the reduced message space 2n versus 2m. We can leverage this
observation and replace the DES56 program with 3DES56, AES128, AES512, RSA512, RSA1024, or
even an RSA2048 variant. In each replacement just mentioned, the efficiency of the obfuscator
under Theorem 4 given a bounded input size (32-bits in our example) increases only in
relationship to the additional running time incurred by the oracle for each prospective encryption
algorithm to generate one truth table. The circuit size of E’ does not vary based on the encryption
algorithm chosen other than a linear variation based on additional output bits (64-bits versus 128,
512, 1024, etc.). We can use public key encryption algorithms under this same construction with
both public and private keys held private—especially in the computational model of a sensor net
because the execution environment of the program (the sensor) does not require decryption of
the data it is processing.

Circuit P’

P” =P | E

Figure 72: Fully Generalized Bounded Input-Size Program Obfuscation

113

5.7.4 Protecting Bounded Input-Size Programs with Easily Learnable Input

Consider now a sensor that takes in 32 bits of data and produces 32 bits of input: an
adversary may observe much less than 232 input/output pairs of the sensor in order to adequately
determine the programmatic intent of the sensor and therefore find an (effective) way to subvert
it. Theorem 5 provides a basis to consider any bounded input-size program P that has (easily)
learnable input/output patterns versus one-way relationships (like DES56) that we assume to have
provably hard-to-learn I/O. Figure 72 gives a notional / specific view of this construction using a
program P and a 3DES encryption algorithm. In this construction, we create circuit P’ as a
concatenation of the output of program P with a data encryption cipher E (which is a 3DES cipher
that uses 2 keys in E-D-E relationship). As illustrated, P is a function P: {0,1}|xP| → {0,1}|yP| and E
is a function 3DESK1,K2: {0,1}64 → {0,1}64 with two embedded keys. We assume the output size of
P, |yP|, is less than or equal to the input size of E (which for 3DES is 64 bits). The circuit P’ is a
concatenation of P and E that then becomes a virtual black box, such that for all input x, P’(x) =
3DESK1,K2(P(x)).

In Theorem 5, we extend the results of Theorem 1 (which is a provable black box
construction) and incorporate a provable white box construction based on VBB. The
constructions of Theorem 5 provably meet the definition of full intent protection under our
Definition 6. To distinguish our approaches, the circuit randomization methodology we define in
Section 5.6 is not VBB-based, but rather random program model based. We note that Ostravsky
and Skeith define similar public key encryption-program-padding obfuscators in [171] with follow
on work by that implements such constructions in obfuscated mixnet programs. We provide now
the definition and theoretical construction that would take any bounded-input size program P with
easily learnable I/O and concatenate the output of that program with an embedded-key strongly
pseudorandom encryption algorithm (producing P”). Then we white box protect that program with
canonical circuit reduction to produce P’. We only specify the symmetric/private-key block cipher
variant and follow the construction for obfuscated mixnets given in [195].

We let P | EK refer to the concatenation of program P with the program E such that (P |
EK)(x) = EK(P(x)), for all x. Let P be defined as function P:{0,1}n → {0,1}|yP| and E: {0,1}k

x{0,1}m → {0,1}m. Let P | EK for encryption algorithm E with embedded key K be defined as
P | EK: {0,1}n → {0,1}m.

Definition 18. (General White/Black box Obfuscator for Bounded Input-size
Programs) For PPT algorithms KG,E,D,O, obfuscator O provides perfectly secure
obfuscation for the class of b-bounded programs{Pn}n,k,b∈N,n<m, 2

n
≤ n

b where P ∈ Pn if:

1. Private Key Encryption: (KG,E,D) defines a pseudorandom private-key block
encryption scheme with block-size m and security parameter k under Definition 2.

2. Semantic Equivalence: Given)1(kR KGK ⎯⎯← and program P∈ Pn,∀x, P(x) =
DK(P’(x)) where P’= O(K,P,E). Furthermore,∀x, P’(x) = EK(P(x)).

3. Generality: (|xP| = n) ≤ m, for all E ∈ Ek,m under Definition 17
4. Efficiency: There is a polynomial l(⋅) for every P in Pn, |O(K,P,E)| ≤ l(|P|)
5. Perfectly Secure Obfuscation: For any PPT A, there is a PPT simulator S and a

negligible function α such that for every n, b ∈ N where 2n ≤ nb, and for every P ∈ Pn

and for every)1(kR KGK ⎯⎯←

)(]1))1(,Pr[]1)),,((,Pr[nSEEPKOAE nEK α≤=−=

Theorem 5. Perfectly secure obfuscators exist for b-bounded input-size programs with
easily learned I/O relationships.

114

Proof: Our proof is by construction. We give a three-step obfuscator O() that takes as
input)1(kR KGK ⎯⎯← , a block-cipher encryption program E with block-size m and key-
size/security parameter k, and a b-bounded program P with input size n and output size
|yP| ≤ m, and where 2n ≤ nb, for some user defined b. Let circuit P’ = O(K,P,E) be an
obfuscation of any general program P with these constraints such that ∀x, P(x) = DK(P’(x))
and, ∀x, P’(x) = EK(P(x)).

Construct P’ = O(K,P,E) in the following manner:

Step 1. Given)1(kR KGK ⎯⎯← , let P” = P | EK. Acquire an efficient implementation of
ORACLEP” to use as oracle emulation.
Step 2. Generate the truth table T(P”) by executing ORACLEP”(x) = E(K,P(x)) for all 2n
possible inputs x of P. Where |yP| < m, pad the output of P(x) with m - |yP| zeros.
Step 3. Create circuit P’ by applying the algorithm for canonical complete-sum of products
to TP”, as defined in Theorem 3. Minimize P’ via a standard 2-level Boolean circuit
reduction technique.

Then:

1. E is hard to learn and therefore P” and P’ are hard to learn from black box
observation alone. However, recovery of any intended output of P (which is easy to
learn) is possible because ∀x, P(x) = DK(P’(x)) = DK(EK(P(x)). Thus, the semantic
equivalence between P’ and P is established.

2. P’ is a perfectly secure obfuscation with respect to P and the embedded-key
encryption algorithm EK because P’ is produced only from oracle access to P” = P |
EK.

3. |P’| is poly-(n) given bound b.
4. O is a general, efficient obfuscator for any program P that runs in poly-(n) time,

given a bound b related to the input size of P. P’ is roughly equivalent in efficiency
to P. The minimal SOP expression of P’ is polynomially equivalent in size to P
related to some bound b, because |P’| ≤ nb. Note that the size characteristics of P’
are related to the input size of P and not the possible input size of E.

5.8 Implementation Work

We describe briefly the circuit construction and manipulation architecture that supports our
research results. Figure 73 provides a high-level overview of the software pieces in our
architecture that implement perfect white box protection methodology outlined in Theorem 5. We
have built several software pieces (GENINPUT, PAD, CANONICAL, CIRC2PROG, BENCH, etc.)
that work together as an end-to-end program encryption architecture. We describe their
interactions next.

We first provide a capability to generate binary input, either padded or unpadded, for some
inputs size n (GENINPUT). Given a generic program P (p.exe) with bounded input size, we
enumerate all inputs for P using GENINPUT and then execute P (p.exe) on all inputs. We take
the (binary) output of P and provide a padding mechanism (PAD) to configure the output of P to
match the candidate encryption algorithm E (3DESBIN in Figure 73). Using an encryption
algorithm, we generate a pseudorandom key choice and keep the key private. In our illustration,
the 3DES algorithm uses three keys, so we provide three embedded private-keys to the
application 3DESBIN. Using the (padded) output of P (p.exe) generated by elaborating all
possible inputs to P, we now execute all outputs of P on the encryption algorithm (3DESBIN).
Using the input of P (p.exe) and the output of E (3DESBIN), we now have a full truth table
relationship for P” = E(P(x), K) for all x.

115

Using the truth table relationships for P” (P”.TT.TXT), we use a program CANONICAL to
generate a BENCH circuit specification based on the complete sum-of-products form. Future
work will address reductions on this specification. This specification now represents a fully black
box and white box protected version of P, with respect to recoverability of encrypted output
related to E. We then use the circuit specification (P’.BENCH) as input to our program
CIRC2PROG. This program takes a generic BENCH specification and produces a C++
specification that implements the same I/O functionality. This C++ specification (P’.CPP) can
then be compiled using the native O/S compiler to produce an executable program (p’.exe).
p’.exe represents a provably secure, efficient given bounded input-size, white box and black box
protected version of program p.exe.

Figure 73: Architecture for General Program Intent Protection (P.exe→ P’.exe)

We discuss our implementation work further in Appendix D and note that this architecture
provides an end-to-end native binary transformation for any generic executable program p.exe to
a perfectly intent protected executable version p’.exe.

5.9 Chapter Summary

We present in this chapter a number of novel techniques for end-to-end program encryption to
support provably secure program intent protection. We give some of the first results in the field
that tie cryptographic primitives such as data encryption and randomization directly into
obfuscation. We also provide one of the first proposed obfuscation security models with a
measurable cryptographic basis (random programs).

Our program encryption results provide several positive indications that we can intent protect
program securely. We pose three different program intent-protection methodologies in this
chapter and summarize their results in Table 20. Section 5.4 introduces a perfectly secure black
box obfuscation approach that is general and efficient for all programs (depicted as Semantic A |
B in Table 20). Of course, adversaries will exploit the knowledge of our method (concatenating
an encryption cipher to the protected program) will and utilize that during white box analysis
attacks.

Section 5.6 introduces a methodology (depicted as Randomized A | B in Table 20) based on
the random program security model (introduced in Section 5.5) to combat such white box

116

analysis. The approach uses a non-VBB method of circuit randomization to make the resulting
protected circuit (program) hard to distinguish from a random circuit. If an adversary can tell
nothing more from a protected circuit than the information gained from analysis of a random
circuit, then we achieve white box protection. The method is both general and efficient, but for
small sizes, the probability increases that an adversary can discern seems between two
concatenated circuits.

Section 5.7 introduces a second white box methodology related to VBB (depicted as
Canonical A | B in Table 20). In this approach, we absolutely hide all semantic information of the
concatenated circuit (A | B) for general programs. However, the methodology only works for
programs with bounded input-size. This method holds great promise for a relevant class of
programs with typically small input-size: they can enjoy perfectly secure intent protection. This
method also provides basis for provably hiding small data constants within a program (including
embedded keys). We demonstrate that for encryption algorithm with bounded-input size, we can
securely embed a private key using this methodology.

Table 20: Program Encryption Results Overview
 XA YA = XB YB Security Practical
Canonical
Form A | B

Reveals There is a very high improbability that
any subcircuit of C contains any
representation of variation of the
circuit A: {0,1}|X|→{0,1}N

Reveals Strong Difficult to
create
(exponential)

Randomized A
| B

Reveals The likelihood of YA or XB being
recognized is based upon an
intractability argument for circuit
analysis. There is some probability
that the end of A or the beginning of
B can be calculated based on a
randomized equivalent version of A |
B, but the probability of detection
decreases only as the circuit size of
C increases.

Reveals Size
dependent

Polynomial or
linear time to
create

Semantic
A | B

Reveals It is very probable that (with the
knowledge of how C is constructed
via A | B), subcircuits or some
variation of the subcircuits A:
{0,1}|X|→{0,1}N and B: {0,1}N → {0,1}M
can be distinguished with A | B

Reveals Weak Very easy
(linear) time to
create

We provide conclusions concerning our research work next.

117

CHAPTER 6

CONCLUSIONS

Mobile agent security presents us with many hard problems to solve. Most researchers
attribute security as the top reason why mobile agents failed to achieve commercial or wide scale
implementation. The malicious host problem is not unique to mobile agents though. The problem
finds parallel manifestation in other secure function evaluation schemes. We motivated our initial
work with mobile agent security by trying to solve periphery problems that occurred in specific
implementations. Our initial labors led us to consider multi-agent architectures for solving certain
nagging problems related to colluding malicious hosts. The question of protecting the agent’s
privacy, even when architectural solutions can enforce other specific security requirements like
integrity, always come back to haunt you. Based on the most promising approaches for providing
that level of security, we naturally focused our work on secure multi-party protocols and schemes
for secure function evaluation.

As our research progressed, we considered the current work on obfuscation and their
associated impossibility results. This painted a bleak landscape for applying obfuscation
techniques to mobile agents with any expectation of provable security. Where we found our
greatest impact was considering obfuscation and obfuscation security under a different model.
Particularly, we understood that program intent protection was the primary security goal that
mobile agents required. If malicious parties cannot alter the code or game the input to produce
their (desired) result or output, then we have won the code protection game in malicious
environments and any other security requirements we enforce are bonus.

Our main contribution involves several definable security properties that we produce
concerning code security in remote environments. In spite of impossibility results, we created a
security model that describes code protection properties (particularly in mobile environments) with
provably security. The fruit of our efforts culminate in the research results we present here and
the several proofs we give for provable code security in Chapter 5.

Specifically, we prove that black box protection is general, provably secure, and accomplished
(relatively) efficiently. Black box code protection derives from the underlying semantic security of
data encryption algorithms themselves. As far as we know, our semantic encryption
transformation methodology was the first black box obfuscation approach with provable security
properties and strong cryptographic basis. It is simple in its design because it involves
composing the output of one (protected) program functionality with a (secure) data encryption
cipher.

As our research progressed further, the next natural question that arose was, “If you compose
two programs together, how can you hide the seam between the two?” The answer to this
question relies on the ability to provide (provably) secure white box protection. A provably
secure white box protection mechanism is equivalent to providing a provably secure virtual black
box code version. Since theoretical VBB is a flawed model for describing obfuscation security
strength, our research led us to consider cryptographic primitives such as randomization as a
basis for security. With randomization and the assumed existence of pseudorandom number
generators, we make an appeal for the existence of random programs, random circuits, and
pseudorandom program generators.

In describing obfuscators that incorporate randomization into their program protection model,
we further considered other natural cryptographic constructions including permutation/substitution
ciphers. We leverage such algorithms used by strong symmetric ciphers based on diffusion and
confusion of data and key material and produce a methodology of randomizing, sub-circuit
substitution and replacement, circuit encryption obfuscators. Using the random program model,
we demonstrate that an indistinguishability argument is the basis for semantically strong white
box protection. We also specify how we can employ circuit randomization techniques to produce
the white box property.

118

The question of whether we can provably hide the seam between one program and another,
however, relates directly to the size of a program itself. Randomness properties emerge only as
string sizes increase. Likewise, we wanted to prove that no seam detection between two
programs is possible at all, even when program sizes are small or one program (the encryption
program for example) has distinct properties that no degree of randomization can remove. In
seeking to hide the seam between two programs, our investigation produced a perfectly secure
white box protection method that is applicable to a relevant number of program classes. Unlike
our first white box approach, we prove under VBB assumptions that the information contained in
white box obfuscated circuit leaks no information about the original circuit, other than its input /
output relationships.

Our perfect white box protection scheme is general, but unfortunately not efficient for all
programs as our black box technique and randomizing white box technique are. However, when
we incorporate our black box methodology, we can prove perfect semantic security for an
obfuscated circuit or program. This result culminates from a long history of intermediary findings,
but is one that can allow the development of future, secure mobile agent applications. For
programs with bounded input-size, white box protection is both efficiently feasible and provably
secure.

The provably secure white box results also provide a companion result significant to the
security community. This approach proves that we can hide an embedded key within a program.
Such a technique foundationally addressed how to convert a private key system into a public key
system. The only stipulation, again, is that we must assume reasonable, bounded input sizes for
the data cipher. Given such assumptions, though, this technique is one of the first demonstrated
approaches for securing embedded-key ciphers and applications.

119

APPENDIX A

COMPREHENSIVE SURVEY OF MOBILE AGENT SECURITY

We provide in this appendix a comprehensive review of mobile agent security. We review first
defensive mechanisms that protect the host (Appendix A.2) and agent (Appendix A.3). We review
agent data-protection mechanisms in Appendix A.4 and discuss the integration of secure multi-
party computation techniques with mobile agents in Appendix A.5. We discuss multi-agent
approaches and their applicability to enhancing mobile agent security in Appendix A.6. We cover
background material and related trust infrastructure research in Appendix A.7. We give an
overview of software protection techniques related to mobile code privacy in Chapter 3. We also
provide technical reports that catalogue mobile agent security techniques in [222] and describe
integration of trust integration in [152].

A.1 Evaluating Agent Security Mechanisms

Section A.4 details numerous security mechanisms relevant to protecting partial results. As
we look towards mechanisms that meet various requirements for securing both mobile agents
and hosts, we consider the evaluation criteria useful for reviewing such frameworks. Mechanisms
for security in any field introduce overhead and we should weigh heavily such considerations for
mobile agent security. The highest levels of security often bring with them the highest overhead
in terms of cost, lost flexibility, and performance degradation.

A mobile agent system may not require every form of protection offered. Some protection
schemes are mutually exclusive as well—for example, free-roaming itineraries preclude solutions
that require knowledge of all hosts to be visited. Some defense mechanisms are only notional
and have no current usable implementation and some still have serious issues that limit their full
realization. As such, metrics need to be considered in a taxonomy for requirements. Evaluation
criteria can help determine the effectiveness of one criterion over another and address issues of
efficiency, integration, and cost. There are three considerations when examining agent-based
security mechanisms in the mobile environment, discussed next.

First, what is the performance cost of any added security mechanism? This cost can
include increased size of the migrating agent, increased network bandwidth, increased number of
messages, increased number of agent migrations or host visits, increased host-processing time,
increased computational complexity, and increased overall job time. For example, Gunupudi and
Tate [223] evaluate four different protection mechanisms that provide data integrity and
encapsulation. They characterize computational time and data growth size for each scheme and
provide simulation-based evidence that a new scheme (modified set authentication codes)
provides greater efficiency in certain dimensions. The hash chaining mechanism (discussed in
Section A.4.8), for example, is expensive in data growth when compared to other approaches.

Cryptographic primitives come with various overhead. Symmetric key cryptography offers the
greatest efficiency in terms of computational processing for mobile agent security, but it incurs
overhead for key distribution and maintenance. Asymmetric key cryptography requires greater
computational overhead but is easier for key distribution itself. On the other hand, public keys
require certificate verification and this normally incurs the overhead of a public key infrastructure
(PKI) with some form of certificate authority (CA) for scalability.

Sobrado [224] compares the security overhead of keying mechanisms in two different agent
protection schemes. His work analyzes one-time symmetric keys versus asymmetric
public/private keys and the associated cost of computing encryption and signatures over parts of
the agent data. Sobrado makes a case for the flexibility of the public key approach in this case,
citing the fact that the originating host in the symmetric case can only verify code and data but
honest hosts could provide detection for the agent when asymmetric crypto is used.

In terms of evaluating the actual security strength for a given mobile agent framework,
Fischmeister et al. [225] provide security analysis of three separate mobile agent frameworks

120

(Aglets, Jumping Beans, and Grasshopper). Security weaknesses exist in all three middleware
systems including authorization attacks, code repository attacks, interface attacks, runtime
system calls, and trusted code base attacks. Likewise, Altmann et al. [66] compare performance
and security tradeoffs of various mobile agent frameworks while Milagres et al. [226] give an
example of security analysis for an existing multi-agent architecture. Bellavista et al. [64] review
security mechanisms for the Condordia, Voyager, Aglets, D’Agents, Ajanta, MARISMA-A, SOMA,
Grasshopper, and NOMADS mobile agent system. Roth [109,112] performs protocol analysis of
several data protection mechanisms to show their security vulnerabilities by proof and then
proposed remedies for each protocol.

Agent architectures often use multiple classes of agents to enforce security, including our own
concept for data integrity via multiple cooperating agents [142, 227]. Performance issues involve
additional message overhead between cooperating agents and increased migrations for any
mobile agent classes involved. We find multi-agent system evaluations in current research and
detail them in Section A.6. To decide whether mobile agents are more efficient than static multi-
agents, we can evaluate different architectures appropriately. For example, O’Malley et al. [228]
conduct a simulation-based appraisal to determine whether multiple static agents are better than
multiple mobile agents. The performance results in their simulation indicate mobile agents
offered slight but reasonable advantages over static configurations of agents performing similar
tasks. What Kotz and Gray [59] give as assumptions (mobile agents are advantageous for
performance reasons), Gray et al. [10] also support later via analysis and simulation.

Table 21: Security Evaluation Criteria

♦ Location of security mechanism (host, agent, trusted third party, agent owner)
♦ Form of security mechanism (centralized, distributed)
♦ Individual host execution time
♦ Overall job execution time
♦ Flexibility of cryptographic approach
♦ Vulnerabilities of security approach
♦ Size of agent data state growth
♦ Communication/network bandwidth
♦ Number of messages and migrations
♦ Complexity of solution
♦ Requirements coverage of security mechanism
♦ Expressiveness of the security policy
♦ Ease of integration with existing security
♦ Customizability
♦ Agent user, framework implementer, host operator transparency
♦ Physical cost
♦ Learning and adaptability based on historical data
♦ Auditing capability
♦ Platform independence

The second consideration when evaluating agent security mechanisms is: What is the

increased physical cost? Classically, the use of trusted hardware solutions (detailed in Section
A.3.19) represents the highest level of protection achievable for mobile agent applications.
Unfortunately, the cost of deploying such solutions in a large ubiquitous network environment like
the Internet is not feasible and cost prohibitive. Other application domains, like the military or
specialized corporate settings, may be able to support such costs. Physical cost may also be
measured in terms of licensing and maintenance of agent frameworks themselves, especially
when security solutions may involve tasks such as proof construction, low level code
manipulation (assembly level), or formal analysis.

Lastly, the final consideration is: What is the increased reliance on proprietary solutions?
In many cases, mobile agent security mechanisms are typically monolithic and without

121

consideration for integration into real world infrastructures. Trusted hardware, trusted third party
software services, non-standard cryptography approaches, and the introduction of fixed non-
interoperable software architecture are all roadblocks to greater acceptance of mobile agents in a
wide domain. However, such solutions may be the only way implementers can achieve certain
levels of security when deploying a mobile agent application. We present a summary of criteria in
Table 21 for reference and use categories found in other tutorials such as [229].

Though not exhaustive, criteria in Table 21 form a reasonable collection of considerations for
application creators and system developers. We implement agent mobility (depicted as part of
our taxonomy in Figure 12) by agent middleware and agent middleware uses or implements one
or more security mechanisms. Middleware implementations address a subset of security threats
and security requirements by using some set of security mechanisms. We now provide a review
of these mechanisms—host-based protection in Section 2.3 followed by agent-based protection
in Section 2.4.

A.2 General Host Protection

The host platform defense against malicious mobile code is a combination of trade-offs. Host
platforms find it difficult to discerning program intentions or rely on a trust relationship from
unknown code. Mechanisms used to prevent malicious agent behavior can often restrict mobile
code with good intentions while failing to discern and restrict hostile code [137]. Malicious code
defense mechanisms fall into seven categories (listed in Table 22). Host middleware typically
enforce specific security requirements (see Table 3, p. 9) by use of one or more of these
mechanisms. Host protection ultimately seeks to limit the overall power of the execution
environment while reducing the overall vulnerability of a host to a malicious mobile agent.
Sometimes these are competing goals where we middleware must sacrifice one for the other.

Table 22: Host Protection Mechanisms
Section Mechanism
A.2.1 Sandboxing (SBFI)
A.2.2 Safe Interpreters
A.2.3 Code Signatures
A.2.4 State Appraisal
A.2.5 Proof Carrying Code
A.2.6 Path Histories
A.2.7 Policy Management/Authentication

A.2.1 Sandboxing (SBFI)

Sandboxing, as its name implies, provides a separate but protected place for unsafe code to
execute in as it enters the domain of a remote host. A sandbox may confine code through type
checking, properties of the language, and allocating code to protection domains [230].
Middleware can use fixed policies to limit the power given to an application within an execution
environment through the sandbox. Wahbe et al. [231] provided early work concerning a software-
based approach to isolate faults in lieu of hardware-based methods. Programs operate in isolated
virtual address spaces without chance of influencing other programs except through specific
cross-domain requests. By using software based fault isolation (SBFI), a developer can
encapsulate a module’s object code to prevent any references for addresses outside the fault
domain.

The Java sandbox is a common SBFI implementation because it restricts allowed operations
of remote mobile code (such as an applet) and erects a barrier between the code and host
resources [232, 233]. As Figure 74 illustrates, an execution environment such as the Java Virtual
Machine (JVM) can allow normal programs to be trusted with full (or normal) host access to
system resources. Hosts consider sandboxed programs, like remote code received in the JVM,
untrusted and give such programs only specific permissions for a subset of host resources. In
JDK 1.2, all code is considered untrusted and subject to fine-grained access-control mechanism

122

[234]. This method implements a policy framework approach to sandboxing. Java is a favorite
implementation environment for mobile frameworks [67] because of built-in capability for SBFI
and because each sandbox has its own set of privileges [70]. Middleware can also execute
programs written in unsafe languages like C within a sandboxed environment to minimize their
detrimental effect on the host environment [22]. Sandboxing can limit the effectiveness and power
of a given application and possibly limit the usefulness of applications that utilize this approach.
Sandboxes provide operating system specific protection from mobile code, but the design of
mobile agent languages and the use of safe interpretive languages bolster an execution
environment even more. We discuss these languages next.

Figure 74: Sandboxing

A.2.2 Safe Code Interpretation

Code interpretation offers better security features for remote code execution than compiled
environments because middleware interpreters can examine instructions for their intended
harmful effects before execution. We deem interpreters “safe” when fine-grained access control
decides which statements to execute. Of course, interpreters are slower in general and
developers consider languages like Java ill chosen for certain high performance applications on
these grounds alone. Other scripting languages (like TcL) can offer security primitives with
greater functionality than can be found in typical systems languages [235].

We can think of safe interpreters as sandboxing with quarantine [70] in the sense that we
execute commands in compartmentalized areas and alias commands to those that are safe by
some policy definition. Figure 75 illustrates the Safe TcL model [236] which utilizes this approach
in the form of two different interpreters: one for trusted code and one for untrusted. The host
gives the master interpreter normal levels of authority with system resources while it isolates
untrusted applets to the safe interpreter. The system hides unsafe commands and cannot invoke
them from within the padded cell. Instead, the commands have appropriate aliases assigned to
them, which call real commands in the master interpreter. Protected commands, such as those
that do file access or network communication, can have policy constraints associated with them
for protective purposes. This protection approach mimics the kernel-mode of various operating
systems where the system allows commands greater access to system resources that are not
normally available in user-mode.

Safe code interpretation and sandboxing go well together and both are implemented within the
Java specification and found in other scripted environments such as TcL17. In Java, we compile
source code into bytecode that allows the sandbox to perform certain runtime checks for security
purposes. The JVM for example provides the following security features:

♦ namespace separation through the applet class-loader
♦ bytecode checking to make sure commands conform to the language specification

17 Available: http://www.tcl.tk, October 2005.

123

♦ execution of system methods through a security manager, type-safe casting of
references

♦ garbage collection to avoid explicit deallocation of memory
♦ automatic array bounds checking

Sandboxing and safe interpretation provide operating system and language level protection of
the host, but they do not help establish trustworthiness of a given mobile agent program. For this
purpose, authentication via signatures is necessary.

Figure 75: Safe-TcL Padded Cell Concept

A.2.3 Code Signatures

Typically, the host cannot discern whether code is malicious. Though other mechanisms may
inch towards that goal, hosts most likely rely on trust primarily from authentication of an agent’s
identity. By using digital signatures, the host can verify the identity of the agent or at a minimum
the signer of the agent, which could be the author, transmitter, or owner of the code [237]. The
Microsoft ActiveX framework originally introduced code signatures and signed components
remain a standard part of the Java environment in the form of signed applets [238, 22]. As a
drawback, verifying authenticity of the static code via the signature says nothing about the
security or even non-malicious fault properties of the code except that one party trusts the source
from which the code came from.

Figure 76: Simple Authentication

Developers can generate and use code signatures in several different ways. Public key
cryptography signatures use a public/private key pair associated with a particular principle. As
Figure 76 depicts, the code owner digitally signs their code by encrypting it with their private
decryption key. On arrival, a prospective host verifies the signature by applying the public key of
the sender. Hosts can also use signatures to verify the integrity of the code when used in
conjunction with cryptographic strength one-way functions. Figure 77 illustrates how we can
generate the hash of the mobile code and use it as a message digest sent along with the mobile
code. After reception of the mobile agent, the host runs the same hash function. If the result
equals the message digest that came with the agent, then host verifies integrity.

124

The executing host must somehow verify the public key of the signer: the developer can add a
certificate to the contents of the mobile code package to accomplish this. A public key
infrastructure (PKI) must be in place to scale the approach for large numbers of agent servers. In
the browser model of today, an initial set of public keys are distributed with the browser itself and
new keys must be self-authenticated without a PKI in place. Developers and application owners
can use a slight variation with the message digest approach to prevent replays of prior code
transmissions and to improve certainty of ownership. In this case, the owner encrypts the
program and message digests together. The remote server decrypts the message and hashes
the program. If the generated and received digests match, the code is authentic.

Note that in the mobile agent paradigm, the “network transmission” in Figure 76 and Figure 77
can represent a multi-hop traversal of the agent. A verified signature on the code does not
guarantee an executing host can trust the mobile code—even non-malicious incorrect code
produces harmful results when given full access to local host resources. The trust model with
signed code is all or nothing in the sense that the executing host allows the code to run with some
set of privileges once it authenticates the code. The middleware can establish policy statements
for how to interpret valid code signatures: at a minimum, the system can imply some trust level
between an agent originator and the remote host executor.

Figure 77: Integrity and Authentication

A.2.4 State Appraisal

The state of an agent dynamically changes as it traverses a network due to interactions with
each host. One form of attack is to change values embedded within the state of the agent code or
to alter code for malicious purpose. Farmer et al. [239] proposed a defensive mechanism for
hosts in the mobile environment to verify state has not been altered during transit of the agent.
Developers link appraisal functions to code based on invariant values. The hope is that the
executing host can detect illegal alterations to other variant state values. The strength of this
technique relies on the assumption that attacks will dangerously alter the state of the agent in
detectable ways. Unfortunately, 100% detection is not possible, though high probability detection
is possible if high overhead is acceptable. Figure 78 depicts the exchanges in the state appraisal
model, which we describe next.

The architecture for the state appraisal mechanism is two fold. First, the host system
authenticates the agent to determine the responsible principle for the code. Next, the host

125

performs authorization by first running the agent’s state appraisal functions (seen as f1() and f2()
in Figure 78) and then formulating a set of requested agent privileges based on evaluation of
current agent state. After evaluation of the appraisal, a server can decide which permissions to
grant. We tie invariant information to the agent code itself and utilize even simple techniques
such as the sum of two variant values that must equal the same sum. State appraisal serves both
to protect agents and hosts from malicious activity since alterations can be performed by
malicious hosts to turn friendly agents into malicious agents that are forward to other hosts.

State space size can be large and designing appraisal functions that cover a majority of the
possible attacks to the state is unrealistic. It is likewise difficult to provide invariant functions that
cover less obvious alterations in the data state. Ultimately, a normal result may be
indistinguishable from a maliciously produced result, making state appraisal techniques difficult to
implement. When combined with other techniques, state appraisal can provide a simple method
for covering the most likely or important alterations in a mobile code segment. Having
authorization driven by an appraisal mechanism can greatly reduce vulnerability and operator fear
in host frameworks that execute mobile code.

Figure 78: State Appraisal Technique

A.2.5 Proof Carrying Code

Another form of code analysis technique that can be helpful to host defense is a formalized
approach that defines safety characteristics of a program. Lee and Necula [240, 241] develop
proof carrying code (PCC) with the idea that a remote host can verify the safety properties of the
code about to be executed. In this process, much work is done up front to construct a proof that
matches a security policy stipulated by a given agent server. Ultimately, an executing host uses
the approach to prevent malicious agent execution. Appel [242] and Feigenbaum et al. [243] also
contribute positions for using PCC for code protection.

Figure 79 depicts the overview of the PCC process as described by Necula [240]. Code
executors first provide safety rules that programs must conform to. Because of the
heterogeneous environment of a mobile agent transit, these rules may vary from host to host—
not all hosts may be known in advance (limiting use of freeroaming agents). Code producers
(agent originators) certify their code based on security predicates and code consumers (agent

126

servers) validate that proof before allowing the program to execute. The executing host would
detect malicious alterations to the code and prevent the code from passing verification—thus
preventing execution. PCC requires a formulatable safety predicate from the original mobile
program that embodies the semantic meaning of the program. The code developer or application
owner generates the predicate by following axiomatic rewriting rules and uses it to establish that
a given proof indeed corresponds to a given program. We describe safety rules in first order
predicate logic (based on Edinburgh logical framework) and tie them to compiler specifications of
the underlying architecture. The rules are a formal description of data-representation invariants
kept constant by a given program and the calling conventions a foreign function meets. The
safety proof essentially guarantees that the code meets invariants and calling conventions.

Figure 79: PCC Framework

We can see PCC as an extension to a signature, but instead of integrity or authentication, we
verify security end-to-end. PCC is also similar to state appraisal: the code producer must create
additional items that establish program correctness. The advantage of provable code is that it
reduces expensive run-time checks necessary in an interpretive environment. The disadvantage
of PCC is making proof development simple—a task not easily accomplished. In order for the
mechanism to be successful, the technique requires a standard way of expressing the security
policy in a formal manner and requires a limitation on proof size. Lastly, PCC ties safety rules to
underlying hardware and thus places a heavy proprietary burden within the agent execution
environment.

A.2.6 Path Histories

Another method of host protection exploits the history of the agent’s migration to evaluate the
relative trustworthiness of the agent result. Ordille [75] suggests agent trust level can correspond
to the minimum trust established by previously visited hosts (embodied in the agent itinerary) and
the agent trust level itself. To apply path history evaluation, hosts add signed entries to the agent
that contain the identity of the server and the next host in the planned itinerary. Figure 80 depicts
that each server signs a new entry in a non-repudiatable log that links the path to itself and the
next visited host. The log itself may be corrupted and we can use other measures to detect such
alterations [79]. Wilhelm et al. [76] suggest the incorporation of trusted hardware to guard the
agent itinerary while Westhof et al. [244] provide software based mechanisms to protect the

127

itinerary from colluding malicious hosts working in partnership. We can use other host defense
mechanisms that use chaining relationships for path history protection and we discuss these in
Section A.3.16 and A.3.18.

Figure 80: Path Histories

With path histories come some limitations. Namely, the signed path history grows with large
itineraries and it is not clear how an executing host would evaluate previous platforms and their
trustworthiness. Anonymity and agent privacy are also hard to maintain in this scheme because
servers have access to agent history and must be identifiable themselves to other servers. Some
applications require host anonymity, such as bidding or auction schemes, where participant
identities need secrecy. Like other solutions that involve signature methods, path histories
require a PKI to support authentication and non-repudiation.

A.2.7 Policy Management

Before agents can be allocated resources on a local host, their identity must be authenticated
and their authorization level determined. Policy management is a protection scheme, similar to
sandboxing, which assumes local policy enforcement is available on the host platform and that
agents use embedded policy attributes. Policy-based security management has become a
growing research area for mobile agent security as a spill over from work done in network
security management [Wright et al. 2002].

Policy frameworks ultimately protect both agent and host because they concern themselves
with expression and development of dynamic trust assessment in mobile contexts. Policies
ultimately allow the reigning in of application privileges as well as a limit on the authority of the
host itself. Bellavista et al. [64] mention several benefits of policy frameworks when used to
implement security: reusability, extendibility, verifiability, efficiency, context sensitivity. Efforts
have been underway for several years to integrate policy level management into mobile agent
environments [79,245,246,247,248,249]. Jansen [2001] formulates a privilege management
scheme (depicted in Figure 81) that shifts focus away from countermeasures designed into the
internal data structures of an agent [250].

Four weaknesses to embedding authentication or authorization methods in the internal state
of the agent include:

♦ the number of policy setting principles and trust levels is hard to manage
♦ policy expression is limited and not easy to extend when done internally
♦ protection means become more limited
♦ interoperability is greatly decreased

To overcome these shortfalls, we can embody the prescribed security policies for both the
agent and the host externally in separate certificates. The agent governs its use of resources by
an attribute certificate while the executing host uses a policy certificate to govern rules for visiting
agent. Policy certificates and attribute certificates are nearly synonymous except policy

128

certificates represent more than just a host platform; in some cases, the application system can
create and maintain policy certificates offsite from the host. Jansen’s policy framework allows an
agent to carry one or more attribute certificates (assigned by the owner or another authority) to
hosts in their itinerary, all of which determine the relevancy of a given certificate after verifying an
issuer’s identification. The executing host grants privileges to an agent based on whether
attribute certificates of the agent comply with policy certificates of the host.

Figure 81: Agent Policy Management

Authentication and authorization is in many cases delegated to an agent by various signature
schemes. Policy management insures agents do not violate owner intent or do not serve ulterior
motives after corruption by malicious hosts. Authentication in distributed systems is well
established as a research area [251, 252, 253] and it shares common issues with mobile agents.
Several different types of signature schemes for mobile agents have been posed including proxy
certificates [254], forward signature schemes [255, 256], strong non-designated proxy signatures
[257], multi-signatures [258], undetachable signatures [29, 30, 259], and one-time proxy
signatures [260, 261].

Policies should help agents represent their security levels while also giving visibility to the
underlying host resources that are accessible to them. Knoll et al. [79] use policies to establish
trust level of agents based on information contained in their history, namely by assigning trust
levels to IP addresses. Once the executing host verifies the integrity of an agent’s path and
determines trust, it can choose appropriate security policies. Roth and Jalali-Sohi [262,263]
postulate using policy management in a tree-based structure to facilitate cryptographic primitives
such as encryption and signature functions. Their quest for a generalized agent security model
included an integrating framework with security context, security policies, certificates, and access
keys associated with both static and dynamic parts of an agent. Jansen [250] mentions chained
authorizations as a corollary to normal certificate delegation—but hosts chain privilege across the
multiple hosts in the agent path. Since an agent migrates from host to host, it is difficult to know
in many cases the set of visited nodes a priori. In application contexts where agents cross
domains and associations, policy negotiation and dynamic trust establishment must take place
among principles. Scott et al. [248] appeal to policy management as a means to achieve
“sentient computing”—a term that describes transparent pervasive network environments that
allow users freedom to focus on tasks rather than systems. Their approach relies on modeling

129

agent interactions with ambient calculus-style primitives so that hosts can incorporate dynamic
changes to the agent’s environment back into their policies.

Table 23: Agent Protection Mechanisms

Section Mechanism
A.3.1 Contractual Agreements/ Reputation
A.3.2 Detection Objects
A.3.3 Oblivious Hashing
A.3.4 Protective Assertions
A.3.5 Execution tracing
A.3.6 Holographic Proofs
A.3.7 State Transition Verification
A.3.8 Reference States
A.3.9 Environmental Key Generation
A.3.10 Secure Routing
A.3.11 Multi-Hop Trust Model
A.3.12 Returning Home
A.3.13 Phoning Home
A.3.14 Trusted Nodes/Third Parties
A.3.15 Server Replication / Fault Tolerance
A.3.16 Agent Replication / Mutual Itinerary Recording
A.3.17 Route/Itinerary Protection
A.3.18 Sliding Encryption and Decryption
A.3.19 Trusted/Tamperproof Hardware
A.3.20 Function Hiding w/ Encrypted Functions
A.3.21 Function Hiding w/ Coding Theory
A.3.22 Undetachable Signatures
A.3.23 Policy Management
A.4 Data Protection
A.5 Secure Multi-Party Computation]
A.6 Multi-agent Mobile Architectures
A.6 Group Host Protection
5.3.2 Time-Limited Black box/Code Obfuscation

Bellavista et al. [64] consider two of the greatest needs in policy management research to be

an expressive language for specifying policy and an efficient mechanism to implement policies
with less performance overhead. Jansen [250] mentions both Abstract Syntax Notation (ASN)
and eXtended Markup Language (XML) as candidates for a policy language, with XML being
preferred. We can also use mobile calculi for policy expression—Scott et al. [248] for example
use Ambients—and mobile agent frameworks themselves (Fargo, Aglets, etc.) may come with
their own policy languages. Bradshaw et al. [246] point out trustworthy agent systems depend on
the ability of hosts to control and adjust agent behavior and the ability of agents to guarantee
hosts will follow specified policies.

Framework policies are another proprietary method for security that require infrastructure in
both agents and frameworks to implement. Despite this drawback, we might consider
frameworks as the only hope of an extensible generalized means for combined agent and host
defense. We now turn our attention specifically to the role of agent defense mechanisms.

A.3 General Agent Protection

Defending agents against malicious host attacks is the second major category for considering
security mechanisms. Table 23 gives overview of nearly thirty different protection mechanisms
found in literature and research.

130

A.3.1 Contractual Agreements/Reputation

A non-technical means of dealing with malicious host attacks is formation of contractual
agreements among host operators [31,129]. Host platforms can make agreements to operate
their agent environment in accordance with policies that do not violate the agent’s state or data in
terms of either privacy or integrity. Enforcement of such agreements remains a societal issue of
law with no verification mechanism in place to detect dishonest behavior. Reputation is also a
means posed by Rasmusson and Janson [264] to socially identify dishonest servers and prevent
agents from migrating to them.

A.3.2 Detection Objects

Being able to verify the correct execution of the mobile agent on a remote host is a coveted
goal in mobile agent security. Several methods aim at this by static code analysis or by runtime
code analysis; we introduce several more techniques in the following subsections with a similar
goal. In this case, the runtime state of an agent is at interest: particularly, has a host modified the
stack, variables, execution thread, or instruction counter of a running program to produce
unintended results or unintended control flow. Meadows [265] proposed a technique known as
detection objects which can discover such irregularities in code execution. By baiting mobile
code with dummy data items or functions, an agent owner can detect whether a malicious host
has likely altered the execution state of the agent in some way. The assumption albeit is that if
no detection objects were modified then the agent was not corrupted. The mechanism assumes
that developers can design enough tests to cover the various execution possibilities of the code
and that a smart adversary cannot discover which objects are being used for verification.

As a disadvantage, detection objects are not comprehensive in code scope and their use is
application-specific (much like proof carrying code and state appraisal techniques). Furthermore,
determining the properties of a given set of objects is ad-hoc and the developers may have to
change the objects themselves on a routine basis to prevent discovery. Positively, they offer a
simple method with small overhead for additional processing and code size that supports
rudimentary detection. When used with other supporting techniques, the approach shows great
promise.

A.3.3 Oblivious Hashing

Execution tracing is the ability to log or record the runtime behavior of a program given some
static code base. Chen et al. [266] posed oblivious hashing as a form of software fingerprinting
that can be used to perform remote code authentication and provide a level of execution tracing.
Oblivious hashing produces a hash of the program’s trace and works much like detection objects
by adding additional code to the original program. In the hashing approach, the code developer
adds additional computations so on-going program execution produces hash values.

Just like detection objects need seamless mixing into the original mobile agent, hashing code
requires indistinguishability in order for the technique to remain viable. In the abstract model for
this operation, we use a set of instructions and their corresponding memory side effects to
produce hashable trace values. Since the trace reflects actual execution, the hash value
represents a signature on the behavior of the function. Chen et al. implement this trace via code
injection that consists of one or more hashing instructions. Figure 82 illustrates the placement of
hash instructions in the midst of normal instructions. These commands take the results of
previous commands and perform operations on them so that results are stored in separately
identifiable memory locations. An actual implementation of their approach was done at the
syntax tree level (as opposed to the assembly level) to make hash instructions less obvious.

Local software tamper resistance and remote code authentication remain as possible
applications for oblivious hashing. This method parallels other work by Vigna [267] on execution
tracing and has immediate usefulness as an agent protection mechanism. The mechanism is
adaptable to validate dynamically the behavior of a mobile agent on a remote host by using a
form of challenge/response with randomly chosen inputs selected by the sending party or the
receiving party. Even though it poses the same disadvantages as detection objects (being

131

program specific and language dependent), future research could show its usefulness as a two-
way verification mechanism against both malicious agents and malicious host attacks.

Figure 82: Model for Oblivious Hashing

A.3.4 Protective Assertions

As another approach to runtime state evaluation, Kassab and Voas [268] present a
methodology similar to state appraisal and detection objects. In the protective assertion
approach, we expand traditional notions of run-time assertion checking to encompass tracking of
intermediate agent states given to an application owner in the form of snapshots. The owner
makes evaluations on whether the snapshots are consistent with expected execution of the
mobile program.

Figure 83 depicts the basic framework of how insertions would be loaded into a mobile agent.
In order to produce correct protective assertions, developers must make worst-case predictions
on agent code compromise. Developers use these assumptions as part of the fault injection
process to identify potential weak agent areas and provide insight into which computations need
hardening. We can define assertions by different categories as well, based on pre-conditions,
post-conditions, environmental conditions, or invariants to name a few. Once code the developer
parses or compiles code into a monitored form, the agent is ready for migration. The originating
host evaluates assertions based on the run-time state of the agent during execution or after the
agent completes execution.

 The assertion method is not comprehensive but does provide a level of detection capability
for tampered agents. There is an overhead associated with returning state snapshots to the host
for verification and the returned data itself has its own tamperproofing requirement. However, the
malicious host would have to anticipate the state check generated by the oracle (seen in Figure
83) in order for the alteration to go undetected. If an agent host bypasses assertions, the absence
of state snapshots can pinpoint malicious activity.

A.3.5 Execution Tracing

Vigna [267] proposed a cryptographic tracing mechanism that allows servers to defend (or
indict) themselves concerning questions of mischief by producing historical evidence of agent
execution. It mimics path histories in some ways but instead of keeping itinerary records for
subsequent hosts, it examines prior agent execution history. Cryptographic traces extend the
ideas of protective assertions and oblivious hashes as another form of fingerprinting. The goal of
tracing is to detect illegal changes to the data, code or execution thread of a mobile agent. An

132

agent owner can check after termination whether the execution log conforms to a correct
execution tree. An executing host can send the hashed summary of the log to a trusted third
party or back to the application owner itself in order to prove non-repudiability.

Figure 83: Protective Assertion Framework

In order to implement execution tracing, applications require several ingredients: hosts must
store potentially large numbers of agent history, a PKI must be in place, a method to verify traces
after the agent returns home must exist, and a method for time-synchronization among all
participants must exist. An executing host provides a hashed trace log if the originating server
believes mischief took place. There is also an underlying assumption that the agent owner can
gather all of the inputs of each server in the agent’s itinerary (unless they are derivable from the
agent state). The owner then uses these inputs to run the agent independently to create a new
trace. If the hash of the owner’s trace is equivalent to the hash provided by the suspect server,
the owner verifies execution integrity. Because tracing every instruction in a program can be a
burdensome overhead, Vigna distinguishes between white and black code: black code is “tainted”
by some interaction with the host environment and is therefore the most important execution to
log. Figure 84 illustrates that white statements depend only on the internal state of the agent and
such statements remain uninfluenced by inputs of the host external environment. Figure 85
shows an example code fragment and a trace of the execution based on this classification,
utilized also by Hohl [63].

Trace logs consist of updates to black statements to minimize their size. As an alternative, the
system can use compression by only logging instructions that influence control flow. In practice,
execution tracing in a multi-hop environment requires a protocol to transfer or sign log traces for
future verification. Vigna suggests the use of a public/private asymmetric key pairs among
participants of the mobile agent application for authentication of the logs. Collection in a multi-hop
mode could rely on the agent itself and this variation allows a future host in the itinerary to verify
the execution of the agent from origination up to that point.

133

Figure 84: White and Black Code

Figure 85: Code Fragment and Trace

Figure 86 depicts the exchange of an agent using tracing during its network traversal. The
originating host can request traces on demand (method A, Figure 86) or have an appended set of
signed hash traces contained in the body (data state) of the agent (method B, Figure 86). If a
future honest host in the itinerary wants to verify execution of the agent, other hosts need to be
willing to divulge their inputs in order to do so (a scenario not likely in certain application
contexts). The drawbacks of proofs include the overhead storage of execution logs and the
transmittal of proofs to an owner or trusted third party. Even though some compression methods
can make logs smaller by limiting focus to selected ranges of statements (where pricing is
determined or a transaction is sealed for example), the mechanism is still only triggered on
suspicion and verification is conditioned on server agreement for disclosure.

Tan and Moreau [33] introduce an extension to tracing that somewhat mitigates these
disadvantages and solidifies the ad-hoc nature of the trace verification process. They introduce a
trusted third party, which serves the role of verification authority for traces generated by an agent
server. This solution reduces the individual overhead of trace log storage and induces the
detection of denial of service attacks when combined with a time-stamping service (to support
time-out determination) among the hosts. Figure 87 depicts the protocol exchange involved in this
extended environment. In extended tracing, one or more verification servers (VA and VB in Figure
87) provide cooperative agent migration among hosts in the itinerary. The verification server
receives both the agent body (code and state) and the execution trace from the host after it
accomplishes its previous execution. The executing host signs all protocol interactions such as
request for the agent, receipt of the agent, and receipt of the agent trace (m4, m6, m8 in Figure
87) to ensure non-repudiatability. EET performs tracing as part of the agent’s migration through
the network and thus provide immediate tamper detection.

134

Figure 86: Execution Tracing Model

Figure 87: Extended Execution Tracing

When used in conjunction with time synchronization, this approach also prevents denial of

service where an executing host unduly detains an agent or never releases an agent to its next
hop. The tracing process reflects a limited detection capability (which is application dependent
and assumes an adversary cannot create a valid trace to an altered program run). Traces only
indicate if a given result is a possible execution of the program and not necessarily the actual
execution of the program. Trusted third parties like the verification server decrease the openness
of this solution however in certain mobile agent environments.

A.3.6 Holographic Proofs

Yee [31] offers several mechanisms for agent protection, one of which is a cryptographically
based integrity checking method known as holographic proofs. In the Vigna [267] model, the
application owner needs to compare hashes or full traces of a program execution in order to
verify agent computation integrity—but transmission of large traces remains inefficient.
Holographic proofs improve efficiency of execution tracing for proof verification by reducing

135

overhead of these comparisons. Figure 88 highlights the sense of the holographic proof
exchange and shows that a predicate p(x,y) is equal to 0 when it represents the verified execution
of a program x (the mobile agent) that has generated an execution trace y (the trace from running
on a remote host). The size of y (the trace) is large but it can be encoded as holographic proof y’
having the property that only a few bits need to be examined to verify the execution. However,
the size of y’ is also large (in many cases larger than y) and thus prohibitive to send as well—so
another approach must be chosen.

If the remote server can discern which bits of the entire trace belong to the holographic proof,
it can subsequently invalidate the results of the proof itself. Figure 88 illustrates how the
originating host can query the bits of the holographic proof y’ without allowing the remote host to
know which bits are being evaluated by means of private information retrieval (PIR) techniques,
expounded further by Biehl et al. [269] and Gertner et al. [270], while Loureiro et al. [230] mention
it as a solution to the size problem. The overall result is that large proofs of integrity remain on
the execution platform (remote host) while execution tracing itself becomes more efficient.

Figure 88: Holographic Proof Checking

A.3.7 State Transition Verification

Yee [74] did further work on agent security with a proposed scheme to detect replay attacks
against migrating agents. Replays are essentially when an individual server executes an agent
repeatedly in order to understand and undermine the semantics of the program. If a server can
game the input of the agent to produce a desired output, it has essentially cheated. We refer to
this form of attack as internal replay. We can also define external replays as a cycle in the
itinerary of an agent induced by cooperating malicious nodes that send agents back to each other
over and over again. Figure 89 illustrates both types of attacks and depicts an agent migration
path through a network that includes three malicious hosts, two of which are cooperating.

Figure 89 illustrates the agent interaction model used by Yee to define properties of monotonic
operations. An agent computation can be seen conceptually as a set of functions qi used to
query resources Ri belonging to a server Si. The previous dynamic data state of the agent (yi-1,0)
provides an initial starting point for the server. New data states result when the agent issues a
query via its static code to the server, creating a sequence of intermediate data states (yy,j) that
are a function of the previous state and the output of a given query (xi,j). The executing host
packages the final data state with the agent and sends it forward to the next host. For internal
replays, the ability to monitor from the outside the sequence of individual state transitions is
required. Yee [74] describes monotonicity as the enforcement of one-way state transitions of the
executable state of a program in time. If developers can analyze code to indicate which program

136

statements create such transitions, then application principles can monitor state transitions to
identify and detect replay attacks. Yee develops the thought behind such one-way transitions
and asserts that agents cannot trust the state they are carrying and would need to rely on
verification services by an outside party.

Figure 89: Replay Attacks

Internal replay attacks are the hardest to prevent even when state transitions can be
adequately determined. The reasoning is that unless obfuscation or program encryption is used,
an adversary can eventually determine what part of the code communicates with an outside
verifier of the internal state transition. A malicious server may not need to understand all of the
agent internals either. It only needs to be able to predict some desirability factor of making a
given change to an input to be successful. External agent replay attacks are easier to detect
because intermediate hosts can help check state transition values (carried with the agent or
queried from a trusted third party). A similar problem is the detection of agent clones, which is
addressed further by Baek et al. [271], Lam and Wei [272], and Roth [109].

As a drawback, the mechanism attempts to model explicitly the extremely large statespace of
a program for correct determination of one-way state transitions. Therefore, developers look at
only certain state transitions, just as holographic proofs only look at certain black/white
statements [31]. State transition also depends on trusted hardware or a trusted third party to
assist in monitoring transition information associated with a mobile program.

A.3.8 Reference States

Another way to perform state analysis of a mobile agent does not involve tracing but rather full
comparison of an agent to a known good execution. Hohl [63] develops such an approach to
detect state modifications based on comparisons to a known good model. In this method, the
application owner generates a baseline agent state on a trusted reference platform and compares
the execution state to those created by executing hosts in the real environment. Figure 90 shows
the interaction of an agent execution based on a reference state monitor and we explain the
protocol next. Assuming that a developer or application owner digitally signs the constant values
within an agent to detect modification, the application owner can analyze the non-changing
values of interest in during agent execution. An untrusted host and a trusted reference version
provide the comparison opportunity, as long as all the host input is available for the reference
program. The method uses a replicated server for parallel agent processing during its itinerary
traversal. A reference state by definition is the variable part of a mobile agent executed by a host
with similar input (thus displaying reference behavior). Hohl [63] analyzed the core operations of
three protection mechanisms (state appraisal, execution tracing, and server replication) to
formulate a generalized model for reference behavior.

The application owner checks reference states either when the agent returns home or after
each intermediate host execution in the itinerary. As seen in Figure 90, before migration to Host1
(1) an agent sends its initial state (A) to the reference host. Assuming the moment of checking is

137

per-server execution, Host1 sends both its final agent state (C) and its reference data (B) to the
verification host. Since the next state of an agent is a function of the previous state (A) and any
reference input (B), the reference host can now compare the computed next state F(A,B) with the
received next state of the host (C). The reference data (which hosts must provide to mimic the
execution) varies according to verification time during the itinerary.

Figure 90: Reference State Mechanism

In terms of limitations, reference states cannot detect actions that do not result in a modified
agent state, such as a confidentiality attack where a malicious host exposes private information. It
can also not detect when the input and output on the remote server has been modified or is not
supplied properly. Variations exist to strengthen the approach which include being able to choose
an arbitrary checking algorithm (like execution tracing, oblivious hashing, etc.), using less than all
possible reference data, and having a subsequent host be empowered to perform the reference
check itself. This scheme of course induces a proprietary overhead for a trusted third party to be
a reference monitor and a lack of host data privacy, but the method itself does not require
modifications to the code or creation of proofs.

A.3.9 Environmental Key Generation

When an agent must carry private information or sensitive information that can only be used to
conduct certain transactions (like signing a transaction), it is sometimes best to keep the agent
naïve about the information it carries until the appropriate time arises. To prevent an adversary
from determining when the agent will expose its key for such purposes, Riordan and Schneier
[273] posed a solution that keeps the agent “clueless” about what it is looking for. A clueless
agent performs an appropriate decryption operation only when the agent executes on a host
meeting specific environmental conditions; such conditions arise when the executing host
executes the agent static code. The agent keeps code in an encrypted form until needed, then
dynamically decrypts it after the executing host meets the appropriate environmental condition.
Figure 91 depicts the general operation of the environmental key generation process.

This scheme utilizes a methodology similar to how UNIX-like operating systems store the hash
value of a password and compare that to the hash of passwords entered by a user at login.
Riordan and Schneier [273] give several methods for environmental information that agents may
respond to. A simple example involves a scenario where the code unlocks a key based on the
cryptographic hash of a piece of information the agent is interested in. Figure 91 illustrates, for
example, the string representation for a stock item of interest from a buy/sell transaction. The
hash of this key is h(h(I)), with I being the item of interest; the agent code contains this hash. A
malicious host wishing to subvert the transactional capability of the agent in some way cannot
determine from K or X what exactly the agent is looking for. If it could, it may offer a false bid or

138

query result in the hopes that the agent divulges a private signature key or reveals private
information. The agent can thus be decrypted only when the executing host meets the right
environmental conditions. A malicious host still has the opportunity to subvert the agent by
changing the execution of the agent to its advantage when it does meet a matching condition.
Another drawback is that certain agent frameworks may not allow dynamically generated code
execution, thus limiting the approach.

Figure 91: Environmental Key using Hash

A.3.10 Secure Routing

Secure routing assumes trusted hosts will never perform malicious activity and will send
agents only to hosts that have credentials with a certificate authority (CA). Farmer et al. [23],
Swarup [1997], and Knoll et al. [79] elaborate the mechanism usage which involves restricting
the itinerary of an agent via routing policies. Figure 92 illustrates how an agent may only visit
hosts that have an association such as IP address registration with a CA. Servers can also
create policies where they only accept agents with established security associations—much like
executing host can verify path histories to determine probabilities of malicious alteration.

Secure routing involves host infrastructures operated by a single party [106] or secure
networks induced by the presence of trusted hardware, discussed shortly. We do not control
servers in competitive environments or unknown security relationships in such a manner and
agents do not consider them trusted as a result. Even in a military scenario where friendly hosts
could be considered “trusted”, a compromised or captured node may or may not exhibit malicious
behavior while still being considered trusted. Because of these issues, we consider secure
routing best suited for protection in applications where mobile agents have a priori knowledge of
the executing host environment.

139

Figure 92: Routing Based on Associations

A.3.11 Multi-Hop Trust Model

Thorn [70] describes agent security policies based on the worst-case access privileges of all
prior visited hosts in the itinerary. Assuming that all hosts are at worst case malicious, this model
designs agent access control to be a decreasing set of privileges based on the itinerary. At each
hop, the agent merges the prior access control list (ACL) with current ACL so that security
privileges can only remain the same or decrease. Figure 93 shows a notional view of this with a
decreasing privilege list for the agent based on specific actions disallowed at a given host. Here,
an agent encounters a host with a limited policy that disallows remote procedure calls (RPC). As
the agent migrates, the subsequent executing hosts disallow access to a particular file as it
carries with it the previous restriction against RPC.

Figure 93: Multi-Hop Trust Model

A.3.12 Returning Home

Some mobile agent architectures require the mobile agent to return (migrate) to its home
platform after a single hop, which is described as the Jumping Beans model by Jansen [250].
Figure 94 illustrates the star shaped itinerary that centers on the originating host being available

140

during the lifetime of the agent. Single-hop and two-hop boomerang migrations in this
configuration allow for the strongest level of trust association and validation of the agent code and
state. The application owner verifies each subsequent hop first hand and prevents or detects
malicious activity incrementally. This approach involves migration of code and state versus
sending of static messages—thus requiring code within the agent to account for return trips home
and processing of information embedded within its state. Executing hosts can pass static
messages along to services or static agents without requiring additional change in logic. As a
drawback, there is increased communication overhead and a requirement for the host platform to
remain available during agent migration.

Figure 94: Agent Returning Home

A.3.13 Phoning Home

Grimley and Monroe [274] describe a countermeasure involving status updates and data sent
home by the migrating agent. In this mechanism, an agent sends a message to its originating
host either on arrival or migration from a remote server indicating that it is alive. When done in
conjunction with a time-based measurement, this scheme can be used to help avoid denial of
service attacks or to detect them being executed by a particular host. Several variations are
possible in this approach. Agents can send static messages (via KQML, KIF, or another form of
ACL) that include the host data result. If the application owner does not need to analyze data
until after the agent returns home, the agent does not have to carry the results any further.
Figure 95 illustrates that for every migration of the agent (2, 3, 4 ...) there is also a corresponding
static message (2a, 3a, 4a…) in conjunction with it. If the information is required as part of the
computational state of the agent, then at minimum the originating host has an unaltered copy of
each host’s data result.

We see other variations in several defense mechanisms (execution tracing, protective
assertions, holographic proofs, and reference states). The methodology does not totally avoid
host tampering but phoning home can eliminate the exposure of intermediate results to other
platforms and provide detection capabilities for the agent owner. In lieu of sending back collected
data, the agent can also maintain results in the data state but must use some type of protection
mechanisms to ensure the integrity and confidentiality of the accumulated data.

A.3.14 Trusted Nodes/Third Parties

A variation to phoning or returning home is to make used of trusted third parties. Wilhelm et
al. [138] define trust in this respect as belief that another party will abide by a published security
policy. Both parties (agent originators and agent executors) can create a trusted third party
relationship by introducing tamperproof hardware. Certain models place trust in specific entities
implicitly, like a base station in a mobile ad-hoc network, and always assume trusted operations.

141

As an alternative to requiring the originating host to be online during the course of an agent’s
execution lifecycle (which severely limits disconnected operations), Figure 96 illustrates how we
can introduce one or more trusted third parties (TTP) to facilitate agent verification between host
migrations.

Figure 95: Agent Phoning Home

Using TTPs reduce the bottleneck or single point of failure from reliance upon the originating
host and allows implementation flexibility for other security mechanisms. Extended execution
tracing, for example, extends normal tracing with a TTP to prevent denial of service attacks and
perform automatic execution log verification. Agents can also use a TTP as a location where
secure transactions can take place, such as signature using a private key embedded in the agent.
The TTP can take advantage of stronger security associations with an agent owner to support
sensitive operations that might lead to leakage of confidential information on a malicious host.
We can use TTPs to migrate agents securely, store sensitive agent information (private keys,
private originating host information, or private analysis results) and perform secure operations.
Proxies can also reduce malicious agent attacks by reassuring host operators that agents have
passed certain verification tests or proofs of integrity before dispatching them.

Ng and Cheung [275, 276] use a trusted party to individually negotiate the security
requirements and trust level between an agent and a host. Figure 97 depicts the interaction of an
agent with a TTP to establish trust relationships with all hosts that are in the itinerary. Trust level
exchange occurs in the sense that an agent owner and an agent server both delegate trust
verification services to the TTP—using it to establish authentication and trust levels upon agent
dispatch. In the first step of a multi-hop traversal, the TTP negotiates authentication information
with a particular host (Figure 97-2a). Next (Figure 97-2b), both the receiving execution host and
originating host communicate trust levels embedded in the agent.

142

Figure 96: Agent Protection Using TTP

Figure 97: Trust-Level Exchanging Protocol

Once the TTP accomplishes these steps for every host in the agent’s itinerary, the TTP can
perform various security countermeasures on behalf of both host and agent, including guarantee
of anonymity. For the host, the TTP may generate a proof of the mobile agent or certify the agent
using a trust token of some kind. For the agent, the TTP can apply an obfuscation algorithm,
introduce noisy code, or encrypt parts of the program. Trust level exchanging illustrates both host
and agent security on demand negotiated by a party that both sides trust. The TTP also performs
agent migration as in extended execution tracing. The approach provides flexibility by allowing
hosts and agents to specify security countermeasures on demand, a coveted facet of policy
negotiation. The drawback is the bottleneck and single point of failure for the TTP, though we can
mitigate risk by shared or multiple TTPs. Protocol exchanges further incur additional
communication overhead for every migration. If the host and TTP do not trust each other, the
scheme is not practical at all.

143

The presence of tamperproof hardware in most cases elevates trust to acceptable levels on
intermediaries or execution hosts in the mobile environment). Zachary and Brooks [2003] point
out that trusted intermediaries can perform functions to reduce risk of agent tampering such as
storing secret information in between host executions, maintaining non-repudiatable logs of host
activity, securely transmitting agent code to hosts, and providing authenticated control of host
access to mobile code. These schemes use some version of trusted hardware in the role of a
middleman—but they do not provide true privacy of computation unless prospective executing
hosts use trusted hardware.

Figure 98: Trusted Host Configurations

Figure 98 summarizes common intermediate hosts configurations: relying on trusted hosts in
the path to perform verification on behalf of an agent (Figure 98-A), sending partial results or
hash values of host computations to a trusted repository for later verification (Figure 98-B), or
relying on a trusted computing base to verify each step of an agent’s life cycle (Figure 98-C). We
refer to a final category of trusted third parties to as honest nodes, which are not necessarily
trusted but are simply not malicious. Trusted third parties typically support specific security
purposes whereas honest nodes execute security-conscience agent functions. We consider
honest nodes friendly in the sense they help to verify agent security during transit just by virtue of
executing the agent correctly. An honest host for example can use publicly verifiable detection
chains to discover tampering of intermediate results gathered and collected by the agent. The
public property allows the application owner to use honest nodes in the path without having to
rely on specifically designed trusted third parties, greatly reducing the proprietary nature of
candidate security solutions. Execution tracing, reference states, and route protection
mechanisms all rely on the friendliness of honest nodes to execute algorithms that detect
malicious behavior.

A.3.15 Server Replication/Fault Tolerance

Minsky et al. [277] developed early thought in fault-tolerant agent based computing. One
remedy to malicious host corruption of the computation is to duplicate the servers an agent might
visit and send multiple copies of the same agent to them. In terms of a simple agent computation
that traverses a network visiting several hosts in an itinerary, a pipelined view of the system
would see each host as a stage in the process and each migration as a step in the pipeline
(labeled as stages in Figure 99). The application owner achieves the final answer when the
agent processes on the last host, or last stage of the pipeline known as the actuator. Minsky et
al. note that hosts communicate any malicious activity introduced into the pipeline at an early
stage subsequently to all other pipeline stages as a result. Correct computations are therefore
dependent on propagating results of error-free runs in the pipeline.

From a fault-tolerant viewpoint, if we could duplicate a given server’s individual processing, we
could attain a more resilient agent computation. This assumes each stage is deterministic;
however, hosts perform computations in subsequent stages with unknown created values. If this
assumption holds, we can replicate each step of the process (each agent server) and take a vote
at each stage of the computation by that particular group of servers. The majority vote among
servers for that stage will decide which outcome of the computation will proceed to the next

144

stage. Figure 100 depicts two stages of an agent’s journey across three replicated servers. The
servers for stage 1 all have similar functionality; the originating host duplicates the original agent
and dispatches it to each one individually. After servers in the first group have completed
processing, the servers take a vote to see which state they will transmit to stage 2. This carries
forward until the end of the agent’s lifetime.

Figure 99: Simple Agent Pipeline

Figure 100: Replicated Agent Pipeline

Minsky and colleagues conclude the simple notion depicted in Figure 100 does not tolerate
one malicious node at each stage of the pipeline. We need to apply cryptographic techniques in
the replication scheme by equipping agents with a secret carried throughout their itinerary. The
methodology considers the use of the n-of-k secret threshold scheme proposed by Shamir [278]
to avoid misuse of the secret or destruction of the secret from preventing proper completion.
Resplitting of the secret share is actually required to make the scheme secure. Two proposed
protocols may mitigate the exponential message sizes involved with distributed secret sharing
and destruction of secret shares by one or more colluding hosts. Voting comes with a cost and
replicated servers and agents for each stage of an agent’s itinerary may not be realistic. Other
work by Pears et al. [279] illustrates how a malicious party could simply replicate their stage
(server) several times. As such, we do not expect replication to work well in competitive
environments but we may adapt it to work with other security mechanisms in a controlled host
deployment context.

A.3.16 Agent Replication/Mutual Itinerary Recording

Replicating servers and agents has some parallel applications to fault tolerant mechanisms.
Roth [280] for example proposed a protocol that partitions hosts into disjoint sets and tries to
decrease the likelihood of collusion across those sets. Two agents in this mechanism share the
authorization method for a transaction between them and verify the activity of the other agent.
This protocol (known as mutual itinerary recording) is a variation of path histories and relies on
itinerary information exchanged between two cooperating agents. However, this approach can
never prevent two colluding malicious hosts from being in the same set of visited hosts and
requires a secure communication channel between the two agents. Figure 101 depicts the
cooperating mutual agent approach and highlights the fact that agent communication of partial
results and itinerary takes place as each agent traverses its itinerary. The itinerary information

145

contains the previous hosts, current host, and the next host in the agent’s path, which forms a
non-repudiatable chained log. For example, agent A in Figure 101 would communicate to agent B
the previous hosts (1), the current host (2), and the next host to be visited (3). The figure also
depicts agent A communicating to agent B its data result (d2) obtained at host 2.

Figure 101: Cooperating Agents

The drawback to cooperating agents is that if one agent dies, the other agent may not be able
to finish its task properly. The size of the agent state grows linearly with the number of servers
visited by each agent, though other mechanisms also suffer from this overhead where the agent
carries intermediate results. An adversary can foil the scheme if the server partitions happen to
include cooperating malicious nodes working together or multiple colluding agents on the same
partition. Yee [31] proposed a two-agent scheme that used replicated servers and noted that
replication alone does not mitigate the individual “brainwashing” on an agent. However,
replicating agents and using simple cryptographic communication defense can solve certain
simple problems, such as limited applications that have at most one malicious host in the
itinerary. Figure 102 depicts the use of multiple agents with different itinerary orderings—all
visiting the same set of servers.

We can program a set of multiple agents that are identical in task to also transit the same
itinerary, but in different orderings. This scheme may help indicate when malicious activity has
occurred in the routes of any particular agent if the application owner compares results. This is
another form of replication where we use voting and analysis of returning agents to pinpoint the
presence of a malicious host. Agents can visit subsets of servers in multiple different set
arrangements. Though the mechanism is not preventative, it supports a relatively simple method
of detection and fault tolerance against multiple colluding hosts.

A.3.17 Route/Itinerary Protection

Protection of the itinerary, which determines the agent’s migration route in a network of
servers, is of particular interest for security mechanisms. The use of a trusted environment on
each host server provides a family of solutions in this regard. Wilhelm and Staamann [76], for
example, describe the use of the CryPO protocol for keeping the itinerary of a mobile agent
secure and private. They postulate that no possibility exists to enforce policy rules without relying
on a tamperproof hardware environment (though several results prove this assertion false in
limited contexts). In essence, because the executing host only decrypts and executes code in a
sealed environment, the mechanism for manipulating the itinerary is out of reach to a malicious
party.

146

Figure 102: Agents w/ Variable Itineraries

When we cannot rely upon trusted third parties or tamperproof environments in a mobile agent

environment, we must employ alternative mechanisms to protect agent data (including the
itinerary) from modification and disclosure. Several schemes in the literature provide for itinerary
protection and each scheme has varying degrees of secrecy and integrity. Westhoff et al. [244]
introduce a method to keep the itinerary of a free-roaming agent unaltered and confidential. Their
protocol uses a partial encryption technique based loosely on the onion routing scheme of Reed
et al. [281] that supports anonymous exchanges. The mechanism composes the itinerary of an
agent so that any host in the itinerary can at most know the previous and the next host. The
protocol requires public key operations to encrypt the addresses used by each host with the
signature of the originating agent owner. In this instance, only the originating host knows the full
route. Figure 103 depicts the notional exchange for such a procedure that uses anonymous
routing.

As part of the protocol, the agent carries with it signed and encrypted messages that contain
the previous, current, and next host in the itinerary. In Figure 103, host H1, H2, and H3 each
verify the signature on their particular piece of itinerary information found embedded in the agent
and then use their decryption key to determine which host to send the agent to next. The next
honest host is able to determine malicious host alterations of the itinerary because their particular
triplet would not match the sender and their own identity. In terms of limitations, the scheme does
assume a fixed agent itinerary and uses public key cryptography, which is less efficient and
computationally more costly than shared key methods. Westhoff et al. [244] provide an extended
mechanism where an executing host can dynamically add an itinerary fragment, provided it
supplies signed routing information like the original host does.

Knoll et al. [79] devise route protection via a method depicted in Figure 104. Their method for
providing itinerary protection for the NOMADS agent system resembles path histories but ensures
the history and future destinations of an agent form a verifiable chain of IP addresses. In
essence, this protocol verifies that the previous host added its identity appropriately, but suffers
from the inability to detect truncation when colluding malicious hosts work in tandem. This
lightweight protection method does not provide cryptographic security, but rather allows each host

147

to append path information directly. This mechanism supports free-roaming agent scenarios by
allowing non-static itineraries.

Figure 103: Anonymous Itinerary

As Figure 104 indicates, each time an agent migrates the current host appends a copy of its

path information (a collection of IP addresses and hostnames) to the agent’s data state. On
arrival at the next platform, the receiving host can verify the IP address from the communications
channel itself and verify that the sending host appended its correct information to the path
information set. The use of a TTP improves reliability and integrity of the chain itself. By keeping
the path unencrypted in the original form of the protocol, honest nodes can perform a path history
evaluation of the agent and apply a corresponding security policy.

Wang and Pang [282] develop an algorithm for parallel agent deployment that provides
protection for the agent path in context to Internet e-commerce applications. In this setting, the
agent reveals minimal path information to an executing host. As such, an application owner
dispatches a large number of agents to accomplish the same task, two at a time, in a binary tree
format so that migration information available to a host is never more than the right child agent.
The protocol prevents, for example, agent dispatch to a wrong host by linking the decryption of
the route to the dispatch tree. An honest host would eventually detect a route alteration and send
the agent back to its originating host. The binary dispatch model proposed points to an area of
research focused on finding optimal agent deployment strategies. In this case, the dispatch
model also provides security characteristics that protect the agent path.

Vijil and Iyer [283] address the issue of co-operating malicious hosts and pose an algorithmic
approach to detecting their activity. They extend the append-only container developed by Karnik
et al. [284] in the Ajanta mobile agent system and develop a container that uses a cryptographic
checksum applied every time a new entry is provided by a remote host. Each host signs its own
data element (which is an itinerary addendum) and then encrypts the signed item, identify of the
remote host, and current checksum with the public key of the originating owner. The protocol can

148

detect collusions in both static and dynamic itineraries while being able to solve the cut-paste
attack problems described by Roth [108,112]. As an added benefit, the protocol also pinpoints
malicious activity and indicates which host is responsible.

Figure 104: Chained IP Protocol

Figure 105: Public Key Data Encryption

Various topically related works exist in the literature concerning agent itinerary protection.

Borrell et al. [77] offer a partial solution to protecting the itinerary by forcing a level of non-
repudiation among host entries. In terms of efficient and secure route protection strategies,
Domingo-Ferrer [285] introduces a hash-based technique used in two separate protocols. The

149

first protocol uses hash collisions and looks to minimize computational costs of the remote agent
platform. The second protocol uses Merkle trees and looks to minimize cost of route protection
by the agent owner. Satoh [82] presents a general approach for selecting optimal and secure
mobile agents in a multi-agent setting based on their prospective itineraries. His contribution
includes a formalized method to define the itinerary using a specification language, a step
noticeably missing in many solutions.

We view route protection as a subset of the more involved agent defense requirement to
protect the free-roaming data state of an agent. Though some agent frameworks or standards
may treat the route separately from the computational state of the agent, the problems of integrity
and confidentiality are the same for itinerary and state. In particular, how can any data computed
at a remote host be kept from unauthorized disclosure or be kept from modification.

A.3.18 Sliding Encryption

As an agent migrates around the network, it may carry with it an increasing collection of data
results from each host that it visits. Section A.4 discusses requirements and terminology
associated with agent data state protection and motivates certain integrity and privacy
mechanisms. Desired properties for such mechanisms include confidentiality, forward privacy,
non-repudiation, and forward integrity. We illustrate one of the simplest methods to enforce data
privacy (keeping future hosts from seeing results of previous hosts) in Figure 105; it uses the
public key of the agent owner to encrypt results at each host.

Figure 106: Sliding Encryption

This method is very inefficient when the original information is small (< 10K) in comparison to
the block size of the encrypted ciphertext (~1K). The mechanism also does not prevent data
alteration or removal. To solve this problem, Young and Yung [286] introduce a method that
encrypts only small amounts of the most sensitive data using the public key of the agent owner
using a chain relationship known as sliding encryption. Sliding encryption provides confidentiality
of the data by using a storage relationship based on a randomly chosen block size that is some
smaller factor of the public key size. As Figure 106 illustrates, the executing host encrypts its
data result (which is small) and then chains it into an “accumulator” that is equivalent in length to

150

the key size. The agent only carries part of the previous encryption to the next host, which then
uses it with its own input to create another small accumulator block. When the agent returns
home, sliding decryption takes place beginning with the accumulator and proceeds by recovering
each host result in a chained fashion, in reverse of the encryption process.

Though more efficient than using public key partial result encryption alone, sliding encryption
also prevents partial results from being used in any subsequent agent computation—limiting its
use in certain applications where the next host relies on the computational results of previous
hosts. The mechanism comes with a computational cost involved with performing a public key
operation and the associated overhead of how to distribute public key certificates efficiently. We
mention sliding encryption in particular because of its identification as a popular defense
mechanism in most every piece of literature, though it falls in the same category as a large
number of mechanisms that provide agent data protection, discussed next.

A.3.19 Trusted/Tamper-resistant hardware

Farmer et al. [23] suggest that we could solve most malicious host threats by simply
disallowing agent migration outside of a trusted host environment. Since this notion is
inconsistent with many real world application scenarios for mobile agents, Yee [31] suggests the
use of trusted platforms or tamperproof devices that run unaltered Java interpreters in secure co-
processors. Likewise, Wilhelm [76,138] defines tamperproof in the context of a full execution
environment—complete with protected RAM, ROM, CPU, and volatile storage. In a fully
protected environment, the host operating system must provide an interface to the host protected
area—in essence creating a physical “black box” that cannot be interfered with or observed by
malicious parties on the outside. By encrypting, decrypting, and executing an application
(particularly a mobile agent) inside some protected computing environment, we can make strong
guarantees regarding the safety and security of the execution assuming the environment is truly
tamperproof.

As Figure 107 illustrates, an ideal environment is one in which all data and all resources
(memory, processor, non-volatile storage, etc.) are completely embedded in the trusted
environment and therefore completely shielded from any observation of the host—leaving only
the arriving and exiting state of the agent open to observation (1 and 2 in Figure 107). If the host
encrypts the agent upon arrival and departure, trust rests squarely on the physical security of the
tamperproof devices themselves. In more probable scenarios, the trusted hardware may have
partial interaction with data or resources outside the black box that come from the host platform
(3 and 4 in Figure 107). In this case, the data provided to the agent computation is observable
along with any use of resources such as memory or storage is observable as well. In either case,
TPH reduce the security to the physical characteristics of the devices or servers themselves.

Figure 107: Trusted Hardware – Full/Partial

Trusted or tamperproof devices, whether provided as full or partial execution environments,
can be used in a multitude of ways to enhance agent security. Karjoth [287] proposed the use of
trusted devices as platforms for secure execution of certain user routines in support of e-
commerce, Wilhelm and Staamann [138] suggest their use for agent itinerary protection, and
Loureiro and Molva [110] suggest a combination of trusted hardware used with other security
mechanisms to produce host-side privacy of computation. Since smart-cards have limited

151

processing capacity on a remote host, we must make some tradeoff to execute only small pieces
of efficient code. Loureiro and Molva combine smart cards with their approach to privacy of
execution based on encrypted circuits and secure function evaluation. There are other schemes
[27,43,107,288] that use a trusted service or host in combination with untrusted hosts to perform
services for an agent during its computation cycle. These mechanisms rely on a proxy
architecture where secure servers act on behalf of agents to guarantee the integrity of their
computational results.

Borselius et al. [259] propose two mechanisms that utilize trusted hosts in e-commerce
applications: equipping more than one agent with shares of a commitment function to complete a
transaction and the use of a single trusted host to allow multiple agents to report transaction
information back before the owner makes a purchase decision. The latter approach would
provide a safe “home base” separate from the originating host that an agent can interact with to
verify results before commitments are made on behalf of a user. Many researchers like Chess
[24] and Wilhelm and Staamann [76] feel that TTP offers the only feasible remote host agent
protection. Sander and Tschudin [25, 159] were one of the first to challenge this assumption and
pose software-only approaches. The next several sections deal specifically with software
protection of remote agents without reliance on TPH. These approaches use mathematical or
cryptographic methods for software hiding, thus reducing any remote host operation to blind
disruption.

A.3.20 Function Hiding with Encrypted Functions

Sander and Tschudin [25, 159] proposed one of the earliest software-only approaches to
agent security. In particular, they did not want a solution that required interactions beyond those
already assumed in a strongly mobile code paradigm. Programs, data, and messages need not
be executed or passed in cleartext either. Many researchers consider their work seminal in
describing software-based agent protection—Sander and Tschudin thus pose three important
questions that deal with malicious host protection:

(1) Can tampering by a malicious host be prevented?
(2) Can a program be concealed from a malicious host?
(3) Can cryptographic operations such as a signature function be performed without

revealing the private key?

Computing with encrypted functions (CEF) tries to give an affirmative answer to all three of

these questions. A companion problem to CEF is computing with encrypted data (CED), posed by
Abadi and others [289, 290], whose solution requires a number of rounds of communication
between parties. In CED, Alice encrypts her input x in such a way that Bob can compute f(x)
without knowing what the cleartext x was. Likewise, Alice cannot learn anything specific about
Bob’s private function f(.) by examining the resulting f(x). Abadi and Feigenbaum propose a
mechanism to accomplish this by embedding Alice’s input x into an encrypted Boolean circuit and
by performing several rounds of computation before giving Alice the final computation of f(x). As
Figure 108 illustrates, CEF is the opposite approach and expresses the mobile code paradigm
where an originator (Alice) wants to execute a function (with privacy of computation) on a remote
host (Bob) who will provide some private input x. In this case, Alice again will be able to decrypt
the resulting f(x) without learning x and Bob will not learn anything about f(.) itself.

The crux of the mobile agent paradigm is autonomy—the idea that code sent to perform a task
for a user should not have to interact with the user until it is finished. Original solutions to CED
were computationally infeasible because the protocol required a number of rounds based on the
circuit depth. CEF eliminated this restriction while presenting a mobile code paradigm that does
not rely on trusted hardware. Sander and Tschudin’s [291] CEF approach, illustrated in Figure
109, shows how Alice can conceptually encrypt a function, f(.), in some program P(E(f(.))) and
send Bob that program to be executed. The encrypted result can be understood by Alice with
Bob not being able to discover the semantics of the original function f(.), while also being able to
hide his input x from Alice. In order to achieve an encryptable program property, the user must
find a transformational program E that has certain cryptographic properties, detailed by Loureiro

152

and Molva [110] as the following: 1) given E(f), it must be infeasible to derive f from E(f) following
the intractability problem of computation; and 2) the resulting f(x), which is in cleartext, must be
derivable by Alice in polynomial time from the output P(E(f))(x) supplied by Bob. Unfortunately,
encrypted functions only work with programs reducible to polynomial or rational functions.
Sander et al. [292] did extend computational encryption to include all polynomial-time functions.

Figure 108: CED and CEF

Figure 109: Achieving Non-Interactive Privacy of Computation with CEF

Yokoo and Suzuki [293] extend secure dynamic programming by using homomorphic
encryption. In this approach, multiple agents perform a combinatorial optimization problem
without leakage of any private information. When used in conjunction with multiple auction
servers, their approach allows hiding of certain pricing information carried by a group of bidding
agents, even from the auction server. Cartrysse and van der Lubbe [294] also propose the use
of polynomially based secure execution functions that utilize ElGamal encryption. In [295],
Cartrysse and van der Lubbe define perfect secrecy in relationship to mobile programs and
illustrate the use of a one-time pad for polynomials. Their model, however, assumes no
interaction with a remote host and the agent, which is highly unlikely in normal mobile agent
scenarios where hosts give input to the agent for processing and result computation. We can

153

accomplish function hiding with other techniques beside homomorphisms in rings and groups.
We discuss next a novel approach using coding theory.

A.3.21 Function Hiding with Coding Theory

Loureiro and Molva describe another instance of computing with encrypted functions
[296,297]. They rely on the security of McEliece cryptosystem and the incorporation of error
correcting codes to hide the function from a potential host. Several cryptosystems exist whose
provable security rests on the difficulty of decoding or finding a minimum weight codeword in a
larger linear code. Though researchers view the general problem as NP-complete, some error
correcting codes remain more susceptible to attack than others. By using Goppa codes
generated from Goppa polynomials (adopted by McEliece in his cryptosystem), Loureiro and
Molva meet three criteria to create an intractable decoding sequence: 1) a large enough code
space to avoid duplication; 2) an efficient decoding algorithm for this class of codes; and 3) the
generator function for the code does not leak information. As Figure 110 illustrates, Alice
computes a function with parameters based on the McEliece paradigm; the protocol utilizes
matrices and generators of error correcting codes.

The function computed by Bob on his input x becomes a matrix operation whereas the
decryption performed by Alice is based on the existence of invertible matrices and the properties
of the Goppa decode operation. Because this approach relies on the reduction of a function to a
Boolean circuit as part of the computation, it suffers the same exponential increase in the
complexity of the circuit as those proposed by Sander and Tschudin [25]. It also suffers from the
lack of a general method to encode mobile agent program code. The fact that a code developer
has to be intimately familiar with both error-correcting codes and the McEliece cryptosystem
makes this solution difficult to apply in the general case.

Figure 110: A CEF Based On Coding Theory

The approaches for CEF posed by Loureiro and Molva [296] and Sander and Tschudin [111]
point out an important limitation of mobile agent execution first noted by Hohl in [34]: if
applications require privacy of computation, the models for such applications are restricted
because applications owners may send cleartext data only to trusted hosts. By computing with
an encrypted function E(f(x)) on some input x, the result y is left in an encrypted (albeit readable)
form. If the agent needs to use the cleartext results of computations from other servers or even
the current server, the encrypted results must be decrypted while still at the host. A problem
arises: if the originator gives the decryption algorithm to the host so that cleartext results can be
included in future computations of the agent, the privacy of the agent’s data is at risk. Loureiro
and Molva [110] incorporate trusted hardware (smart cards) to address this issue. The trusted
hardware requires a smaller amount of processing to allow decryption and use of the cleartext
server computation result. This computation requires less resources than the computation of the

154

encrypted function on input x performed by the host platform. Any executing host with
computations that use the server’s cleartext result (y) can thus perform operations in an
unobserved manner—preserving privacy of data as well as privacy of computation.

 Zhou and Sun [298] claim to provably secure an agent against all forms of computational
and data attack except denial of service using an interesting combination of the CEF protocol
based on Loureiro and Molva [296] and an adaptation of reference states proposed by Vigna
[267]. Zhou and Sun convert mobile agents into a series of one or more Boolean circuits and then
represent each circuit as a matrix. By incorporating coding theory/CEF approaches with
reference states, Zhou and Sun believe their approach prevents or detects all attacks except for
DoS. As with the original protocol [296], the Zhou/Sun protocol requires an in-depth knowledge
of the McEliece algorithm, coding theory, and Boolean circuit decomposition of a program in order
to be practical for implementation or viable for protocol analysis.

 Lastly, we envision other combinations of both prevention (privacy of computation) and
detection (privacy of data) that produce similar provably secure properties. The basis for
computing with encrypted functions assumes a malicious host cannot discern the original function
of an agent. If the results obtained from executing the agent remain encrypted, we can guarantee
privacy of computation in a mobile agent system. Thus, discovery of new methods for CEF and
new homomorphic encryption schemes continue to be an open area of research. A general-
purpose program encryption mechanism that is provably secure, general, and efficient—an
encryptable Turing machine for example—remains unfound. Only limited applications for
provably secure CEF using rational functions, polynomial functions, and small Boolean-circuit-
reducible programs are possible as a result. The easiest software-only solutions encrypt only
necessary parts of the agent computation and leave the majority observable as in [298,299]. We
consider now a less provably secure method for providing privacy of computation based on
masking the nature of a computation by confusion.

Figure 111: Undetachable Signature Scheme

A.3.22 Undetachable signatures

Despite the fact a general homomorphic encryption solution to protecting the privacy of an
agent program has not been found, one of the more important contributions by Sander and
Tschudin [291] is the concept of an undetachable signature scheme. This particular application
of CEF defines how an agent can carry a secret, such as the signature function of an originating
host, and then use that secret in public. The obvious problem with releasing a signature function
for use at remote servers is that a malicious server can reuse the function to sign transactions

155

which the original user had no intention of making—buying a new Porsche or booking a European
vacation. Sander and Tschudin proposed a scheme that would compose a signature function with
a task function, f(). As illustrated in Figure 111, a composed signature function can be sent from
an originating host (Alice) to a host platform (Bob) allowing a task function f to be executed with
Bob’s private input x and then signed with Alice’s signature function. The results of Alice’s
program with Bob’s input and Alice’s signature of the result are thus said to be undetachable from
each other—in other words, the signature function fsigned() is only valid when used with function f().
Unfortunately, Sander and Tschudin did not propose any practical application of this
undetachable scheme.

 Kotzanikolaou et al. [30] provide a practical implementation of the undetachable signature
scheme and give a real implementation of CEF with an RSA-based homomorphism. This
scheme, depicted in Figure 112, is able to bind the signature of a prospective server’s bid (bidS)
to a user’s requirements (reqC) in such a way that security is reducible to the strength of RSA
itself. The RSA-based signature function (which raises a message to the d power, where ed = 1
mod φ(n)) is computed on the hash of the bidding function f(). When the server computes f(x)
and thereby places a bid, the transaction is signed based on the input x with the composed
signature function. The originating customer, Alice, can therefore guarantee her signature is valid
only for signing transactions computed from the function f(.)—namely because a malicious server
would have to modify the constraints (found in reqC) then produce a matching undetachable
signature pair, (h’,k’). This is only possible if one can break the RSA signature scheme.

Figure 112: RSA-Based Undetachable Signature Scheme

 Borselius et al. [29, 259] use threshold cryptography which was first proposed by Desmedt
[300] in order to secure agent transactions. In a multi-party agreement scheme, we give a group
of n entities shares of key in a way that k members of the group can create a valid signature
together [301]. By applying threshold group schemes to undetachable signatures, we can achieve
similar agreement properties in a mobile agent environment. A user may desire to use more than
one agent and embed each with a share of the signature key, limiting the power of any one agent
to sign agreements from coerced malicious hosts. In an e-commerce example, even though
constraints embedded within an undetachable signature can limit the value of an item or the type
of item purchased by an agent, a malicious host can still commit the agent to a less than ideal
transaction.

156

 By deploying a certain number of agents for accomplishing a task, k of n agents can be used
to distribute the signature function of the agent to ensure agents are treated fairly (the threshold
aspect) while also constraining the type of transactions any one agent can sign (the undetachable
aspect). We can thus verify the correctness of a signature by a group of cooperating agents (or
trusted third parties) and we constrain agent power to at least k of n uncompromised parties.
Borselius et al. [29] also present an alternative to the RSA-based detachable signature of
Kotzanikolaou et al. [30] using conventional signatures and public keys. This scheme relies more
on secure delegation techniques that allow an agent to carry certification authority for only certain
transactions. The non-RSA approach proves to be more efficient because only one signature
(versus two) is required for the agent and the user need only generate a valid key pair and
certified public key—saving one exponentiation. Group agreement schemes such as
undetachable threshold signatures are very similar to another family of protection schemes that
rely on the power of multiple parties for security, discussed next.

A.3.23 Policy Management Architectures

Policy management is a method for both malicious host and malicious agent protection,
mentioned here for completeness. Varadharajan and Foster [302] and Shi et al. [303] point to the
need for an architectural view of agent security management. Policies play a key role in defining
such architectures and the incorporation of security mechanisms will confront system designers
for years to come. Because the success of the mobile agent paradigm is security dependent, we
must consider architectural viewpoints as well. Schoeman and Cloete [65] mention little reuse
currently of agent architectures or reintegration of lessons learned from various research efforts.
Policy management plays a key role in future standards and thoughts for common mobile agent
frameworks.

A.4 Agent Data Protection

This section provides an overview of related research material to results present in Chapter 3.

Privacy problems in mobile agents are invariably the source of many fears that prevent

widespread deployment of agent systems currently. A large body of research work reveals a
variety of proposed defense mechanisms that fall under the category of data state protection. We
list a large assortment of protection mechanisms reviewed in this section in Table 24.

Table 24: Data Protection Mechanisms

Section Data Protection Mechanism
A.3.18 Sliding Encryption
A.4.1 Digital Signature Protocol
A.4.2 One-Time Symmetric Keys
A.4.3 Bitmapped XOR Protocol
A.4.4 Targeted State
A.4.5 Append Only Container
A.4.6 Multi-Hops Integrity
A.4.7 Partial Result Authentication Codes
A.4.8 Hash Chaining
A.4.9 Set Hash Codes
A.4.10 OKGS
A.4.11 Configurable Protection
A.4.12 Modified Set Authentication Codes
A.4.13 Chained IP Protocol
A.4.14 ElGamal Encryption
A.4.15 Protocol Evaluation

157

Cartrysse [304] together with van der Lubbe [294,295] discuss the privacy and secrecy issues
of mobile agent systems and mention that agent privacy falls under the larger umbrella of privacy-
enhancing technology (PET). Accordingly, they cite several traditional methods to achieve privacy
cryptographically such as blind and partial-blind signatures and pseudonym systems—all of which
operate on the assumption that agents execute on fully trusted hosts. In the mobile agent case,
however, integrity of partial results requires other non-traditional means. Figure 113 illustrates a
conceptual view of data protection offered by Cartrysse [304] where an agent consists of static
code, static data, transmitted data, and dynamic data. Mechanisms (internally based rather than
policy-based) reside within the agent to ensure both privacy and trust maintenance. For each
type of data, there is some information regarded public (not requiring confidentiality) and some
information regarded private, which requires protection. All types of data—public or private—
require integrity verification (protection from alteration). If the static code (agent function) needs
protection, several mechanisms may accomplish this.

Under PET concepts, static data consists of information present in the agent before dispatch;
dynamic data on the other hand exists as part of the agent’s interaction with the host
environment. Transmitted data includes communications with other agents, entities, or the host
itself. Private static data can be information that will be eventually processed by the agent, but
that requires protection until that time (to-be-processed). Some private static data may remain
completely read-only and further concealed for certain remote hosts or intended for use only by
the agent itself. For transmitted data, both private and public transmission require some level of
time-stamping and integrity, while private read-only data still requires confidentiality. Dynamic
data has the same descriptive categories as static data, where read-only dynamic data remains
private for certain group members or only for the agent itself. The easiest data configuration
consists of publicly accessible functions (static code) whose entire inputs (parameters given by
each remote host in an itinerary) and outputs (intermediate host results) are publicly viewable.
Every agent application that has some level of desire data privacy.

Figure 113: Public/Private Data

158

A particular class of malicious host does not want to subvert or actively attack an agent
through code alteration. Instead, the host only wants to steal information or algorithms from a
passing agent. Cartrysse and van der Lubbe [2002a] present solutions for three problems in this
vein: private communication protection, task information privacy (the threshold amount for
purchase of an airline ticket or commodity for example), and secure private key transport (for
signature generation). Their approach to task information privacy is of interest for data protection
and discussed further in Section A.4.14.

We now review mechanisms that provide partial data result protection (private dynamic data)
in various contexts. We can readily see data collection in the typical e-commerce bidding
application. Notably, several authors point to the competitive bidding scenario and the role of the
agent to gather bids from each prospective vendor [31, 144]. The possibly malicious intent of any
one of the servers to tip the scales in their favor is the motivation behind several protection
mechanisms.

A.4.1 Digital Signature Protocol

A method of protection similar to sliding encryption or public key encryption of the partial result
can offer greater integrity protection. In a digital signature approach, each host signs its data
result after encryption takes place (normally with the public key of the agent owner). Using this
method, an intermediate honest server in the path can verify that offers from previous hosts
remain unaltered, thus contributing to overall security. As with public key encryption mentioned
above, the size of the agent will continue to grow as it collects partial results along its itinerary.
Simple schemes also offer no protection against various integrity attacks where malicious hosts
delete or insert results illegally.

A.4.2 One-Time Symmetric Keys

Several papers have proposed intermediate data protection mechanisms based on symmetric
keys, one-way operations such as hashing, or reversible operations such as XOR. Sobrado
specifies a simple scheme in [305] that does not require public key infrastructures, does not
require agents to carry keys, allows revisits of an agent to an already visited host, and does not
require the host to remain online during the entire transit of the agent. Figure 114 illustrates the
protocol and the essence of the protection mechanism. As an agent visits each host in the
itinerary, the remote host must generate a random one-time key and then use this key to perform
message protection.

The “pad” in this case refers to both the specialized method for generating a signature
proposed by Sobrado [305]. The signature is comprised of a codeword and message field
integral to the encryption process. The approach uses a random number for the code word and
uses rotated data bytes in an XOR operation with the one-time key generated by the host. Each
host generates and signs/encrypts its own data result, which the agent carries to the next host in
the itinerary (Figure 114-2c and Figure 114-3c). Each host in the route (host 1 and 2 for example
in Figure 114) keeps this one-time key until the agent owner asks for it a later time (Figure 114-
4a/b and Figure 114-5a/b). The agent owner recovers the symmetric key from each host visited
by an agent later. If each host guarantees the one-time use and subsequent deletion of each
key, this scheme achieves data privacy and authentication without requiring the agent to carry
keying material. This method parallels the asymmetric key approach except the protocol must
provide the public key of the originating owner to each remote host, either carried by the agent or
provided by a certificate authority (PKI) out of band. An agent can also revisit a host because the
originator does not request the symmetric key until after the agent returns home.

A host can locate its own information based on the digest/code-word of the register fields
embedded in the agent and replace it with a newly generated ciphertext, create from another
different one-time key. Though interaction is not required immediately, it is required at some
point in order for this scheme to work (the owner has to communicate with each host to transfer
the symmetric key). The one-time scheme protects against counterfeiting of data but does not
address integrity attacks where malicious hosts delete partial results altogether or make
insertions illegally. It counters agent “brainwashing” by reverting to the use of a trusted third party
referred to as a route server. Agents can communicate path information (or possibly other

159

information) to one or more route servers accessible in a network (Figure 114-2d/3d). Like many
other schemes, it does not offer full protection apart from using trusted intermediaries or
tamperproof hardware and assumes software-only protection is not possible.

Figure 114: One-Time Protection

A.4.3 Bitmapped XOR Protection

As the sliding encryption model illustrates, not all remote data needs to be protected—only
that which we classify as private in some way. A “fast and easy” approach is developed by Diaz
and Gutierrez [306,307] under this assumption. We consider it fast because it does not rely on
cryptographic techniques like digital signatures and we consider it easy because it relies on basic
bit operations. In the mechanism, the agent owner builds a data table—one copy remains with
the owner and the other embedded in the agent. Figure 115 shows the notional interaction of the
protocol—namely the application owner provides one row for each intended host that the agent
plans to visit—thus limiting this approach to bounded itineraries. Each row in the matrix has

160

several fields: a host identifier, the data gathered from a particular host, a random number code
word created at the remote host, and a cyclic redundancy check (CRC).

In the operation of the protocol, the owner fills the table with random numbers to create a
bitmapped basis for encryption. The originating host uses the original copy of the matrix to
recover data upon return of the agent. As the agent visits each host, the host creates a duplicate
of its original data row for its own archival and then inserts its identification and a random code
word into the table. Data blocks are loaded into each block through by means of applying the
XOR operation to the random number already in the agent—overwriting the existing number with
encrypted data. Because the application owner cannot detect some alterations where CRC
protection is used, the executing hosts apply rotations to both data and code words in a
recoverable manner. Servers use the next set of free rows to store their data. Unfortunately, the
mechanism does not provide a way to prevent deletion of results—only detection that a server
has acted dishonestly. The agent owner can re-insert the original code word into the matrix for
decryption operations in reverse of the host algorithm.

Figure 115: Bitmap/XOR Data Protection

Bitmap XOR operations are particularly useful for small data items such as dynamically
generated itinerary information, as long as we place some reasonable bound on the number of
hosts. Malicious hosts may attack the method by copying the data table in hopes that an agent
will revisit (or that a colluding malicious partner resends an agent). If this occurs, a malicious host
could perform the same decryption as the originating host. Diaz and Gutierrez suggest a remote
host can provide its own random bit row for XOR encryption to eliminate this vulnerability and
allow hosts to update their own data. The executing host, however, must still communicate the
random number data back to the originating host.

A.4.4 Targeted State

Karnik and Tripathi [284] deal with the problem of providing private data from the agent to a
remote host by using targeted states. Unlike protecting data gathered by the agent, this model

161

assumes agents carry data that is private except only on certain hosts, thus requiring protection
from observation by other malicious hosts or agents. A remote host receives from a visiting an
agent a signed collection of states, which it verifies, and then performs inspection to see whether
it can decrypt any target state using its own private key. If so, the host decrypts the state and
makes any plaintext available to the agent. Figure 116 depicts the interaction of this protocol.

Figure 116: Targeted State Protocol

A.4.5 Append-Only Containers

Karnik and Tripathi [284] also introduce the append-only container that considers the integrity
of the overall set of data items an agent carries, as opposed to just the confidentiality or integrity
of a single datum. As the name implies, an executing host can only append new items to such a
container and the originating host can detect modifications to existing items in the container. In
order to initiate the protocol, an originating host creates an initial container with a secret random
value and computes an initial checksum encrypted using the owner’s public key (seen as {r}KO in
Figure 117.). Intermediate executing hosts can use checksums of the item set to provide
intermediate verification as an agent visits each host in the itinerary. The append-only container
is thus defined as an ordered set of intermediate results plus a checksum, whose value will be
determined by the each host in turn: [{d1}K1

-1, {d2}K2
-1, … ,{dn}Kn

-1, Cn]. The previous hosts’
checksum becomes a part of that host’s data item so that each host forms a chained relationship
with each previous host. Each host also applies a digital signature to its data result (seen via
encryption with K1

-1, K2
-1 in Figure 117). As an agent visits a new host, the host signs its data and

includes it in the append-only container (AOC in Figure 117). The host then computes a new
checksum using the previous checksum and its own signed data result.

A.4.6 Multi-Hops Integrity

Corradi et al. [308] envision a similar protocol that provides chained protection of data results
from intermediate hosts. In their approach, the host begins again with a random number
(indicated by nonceO in Figure 118) and three data items: a message authentication code
(MACO), a data set (DataO), and a multi-hops code set (MHCO). This protocol sets up a chaining

162

relationship that not only ties the agent to the previous host (and the set of results collected so
far, but also incorporates the identity of the current host and the identity of the next visited host).
As the agent visits the next host in the itinerary, the host generates a new random number
(nonce) by hashing the value of the previous nonce (which is itself a hash value). Likewise, the
current hosts’ data result (dn) is combined with the previous nonce (noncen-1) and the previous
message authentication code (MACn-1) in a hash that binds the current hosts identity to it (seen
as id(Hostn) in Figure 118). The current host then signs the MAC by the current host and then
adds it to a set of previous signed MACs in MHCn. The host concatenates the data result itself to
the previous data chain and binds it with the identifier of the current host. The agent migrates to
the next host in the itinerary by sending MHCn, Datan, MACn, and the current noncen encrypted
with the public key of the next host to be visited ({noncen}Kn+1). On return to the originating host,
the owner of the agent should be able to create a non-repudiable chain of the agent’s activity
based on the one-way hashing operations and the public keys of each host the agent has visited.

Figure 117: Append-Only Container

A.4.7 Partial Result Authentication Codes

The multi-hops protocol uses the notion of a message authentication code, which incorporates
hashing to provide integrity verification of various values. Yee [31] offered original notions of such
integrity checks called partial result authentication codes (PRAC). PRACs are key-based hashes
that offer better efficiency compared to a digital signature and provide a weak form of data
forward integrity. MACs, when used in the mobile agent context, support more than just
authentication of origin; they also support verification of an intermediate result computed by any
previously visited host. MAC verification assumes parties share a common key by which both
sides verify integrity of data. Yee proposes three variations of PRACs for use in agent contexts.

Simple MAC-Based PRAC. In the simple case, Yee’s protocol requires an originator to
generate and keep a sequence of symmetric keys carried by the agent that are used per-server in
generating an encapsulation of the agent’s activity. The agent also sends a summarized version
of the local host execution back to its owner before migration to the next host or carries it for
transmission later. As seen in Figure 119, a major assumption in the approach is that an agent

163

can dispose of a key before visiting the next host in the chain—a requirement that is hard to
enforce without the help of a trusted third party or trusted hardware. The method also restricts
the agent itinerary to a known path because the application owner must know the number of keys
beforehand. The simple approach would guarantee a form of forward data integrity assuming
keys are not stolen or deleted properly.

Figure 118: Multi-Hops Protocol

Figure 119: Simple MAC-based PRAC

164

MAC-Based PRAC with Hash. Instead of n keys that the protocol distributes to some n

servers under the simple PRAC scheme, the owner holds a single key KO used to create a one-
way data stream to generate a series of keys used per-server. Figure 120 shows how an agent
only need carry the original key and then each host produces its per-server key by hashing the
previous key. The host still bears the responsibility of erasing knowledge of any key that it
generates, very similar to approaches discussed in Section A.4.2 and Section A.4.10.

Publicly Verifiable PRAC. To overcome the key theft issue, Yee suggests achieving forward
integrity by using a third party time-stamping service and digital signatures—providing a public
means of execution verification. Instead of secret symmetric keys, a third alternative uses public
keys and signature functions and allows honest nodes to participate in the detection process. The
intermediary does not need to know the shared secret between an originating host and an
already visited host in order to verify tampering has not occurred. Instead of loading the agent
with a set of shared keys, the originating host loads the agent with a set of signature functions,
each with its own unique verification function (see Figure 121).

The verification function (verifn(d,c) seen in Figure 121) is considered public (a remote host in
the itinerary can provide a publicly available certificate as input) while the signature function itself
is considered private. The agent signs each partial result with the signature function of that
particular host (sig1(d1), sig2(d2), etc. in Figure 121) and subsequent hosts can run the verification
function as the agent traverses the network to detect modifications. The protocol relies on an
intermediate remote host to delete its signature generation function, however, and there are no
guarantees that a malicious host can not alter or change signature or verification functions of
hosts yet to be visited (though that can be detected after the agent returns home by the
originator).

Figure 120: PRAC with Hash-Based MAC

As another variation, the method can reduce the secret signature function to a single version
held by the originator and a one-way relationship established as in the PRAC with hash-based
MAC version. An agent creates the partial result signature by executing sign(dn) and then
deleting it, as in the normal version. Then the agent creates a new signature and verification

165

function pair that supports certification of the new signature on future hosts. In this way, the
protocol defers signature generation to the executing host and not the originating host (which
might have less computational power).

As a benefit, the agent itself (as well as other honest hosts) can verify the status of its data
storage area. We consider Yee’s methods to provide weak forward integrity because it cannot
prevent certain data integrity attacks when hosts cooperate maliciously. PRAC incorporates
backward chaining but cannot prevent colluding hosts from truncation attacks, especially in the
case where an agent visits the first host in a chain again. When the application allows agents to
revisit prior hosts, a malicious host can delete data results captured between the first and second
visits and alter the path of the agent to exclude other servers completely. A malicious server may
also change a previous bid illegally (once it has gathered more information from other hosts in the
environment). We must consider forward integrity in the face of such activity differently.

Figure 121: Publicly Verifiable PRACS

A.4.8 Hash Chaining

In order to account for collusions, Karjoth et al. [144] define at least three alternatives to
defend against truncation of agent data when the path of an agent is not known in advance: 1)
embed some part of the itinerary in the agent; 2) have the originating host broadcast an agent’s
path after the fact to allow servers to verify their results were not deleted or altered; or 3) create a
verifiable function that computes the next hop in the agent path (forward chaining). Karjoth and
colleagues propose four different protocols that incorporate forward chaining and achieve varying
levels of strong forward data integrity and confidentiality. We refer to this approach as hash
chaining or partial result encapsulation and observe that it resembles the Corradi et al. [308]
multi-hops protocol. Hash chaining protocols link the current agent state to both the previous
state of the agent and the identity of the next visited host—all of which combine to offer stronger
resilience against certain collusions.

Karjoth et al. [144] define a chain O1, O2, O3, O4, …., On as an ordered set of data items
(offers) that are collected by an agent from a set of 1 .. n hosts. Dependence exists between each
element of the chain with a previous element and/or possibly the next element in the chain.
Based on the security properties defined in Table 5 and Table 6, the following mechanisms

166

attempt to strengthen PRAC-based protocols from Yee [31]—making it impossible for an
executing host or colluding partner to forge a previous data element. There are three essential
elements that define each protocol: the definition of the encapsulated offer, the chaining
relationship (hash code), and the protocol for migration, each illustrated in Figure 122 and
discussed in detail for each variation. In a hash chain relationship, the encapsulated offer is
composed of some set of data (the data result of the current host, a random nonce, a hash code,
etc.) that is either signed or encrypted by the remote host. Depending on whether public
verification or privacy is more important, future agent servers may be able to read data but not
modify it without detection. Likewise, the protocol can hold data private so that only the originating
host can read it or detect that integrity violations have occurred.

Publicly Verifiable Chained Digital Signature (PVCDS). The first approach Karjoth et. al
[1998] describe is an encapsulated signature chain that extends Yee’s [31] per-server digital
signature. The originating host generates a random number and hashes it together with the
identity of the first host in the itinerary. Every subsequent host takes a hash of the previous
encapsulated offer and the identity of the next host as the value for the “hash” part of the
encapsulation, as seen in Figure 123. The encapsulated offer is a publicly signed package of
both this hash value and a set of encrypted data offers (encrypted with the public key of the
owner normally). This provides forward and backward chaining which strengthens resilience
against modification without detection. Figure 123 gives an overview of the specific PVCDS
implementation.

Figure 122: Encapsulated Offers

The originating host begins the hash chain by encrypting the random nonce and a token with
its public key. Once the application owner dispatches an agent, the agent collects a set of
encapsulated offers, each linked to the previous and next host in the itinerary. Figure 123
illustrates the steps of the protocol for a notional third host (Host3) in an itinerary that has just
received an agent from host (Host2). Host3, in Figure 123, relies on the encapsulated offer of the
previous host (Host2) to derive its own hash value and links its execution explicitly to the next host
in the itinerary. In this mechanism, a server can verify links in the chain by decrypting any given
On in the set of encapsulated offers. Since each offer is composed of hn plus the encryption of

167

(dn,rn), intermediate hosts perform signature verification en-route to ensure data migrations have
not been altered. Whether positive or negative, a server cannot modify its own result even if an
agent revisits. Another downside to the approach is owner must determine the itinerary
beforehand and must perform final verification of the entire chain sequentially when the agent
returns home. PVCDS provides data confidentiality, non-repudiation, strong forward integrity,
publicly verifiable forward integrity (signatures of each intermediate host can test underlying
links), insertion resilience, and truncation resilience.

Chained Digital Signature with Forward Privacy. A slight variation of PVCDS involves
swapping the ordering for encryption and signature generation. In this case, a particular
encapsulated offer is itself an encryption (as seen in Figure 124 for a notional Host2) of the
chained hash (h2) plus a signed copy of its data result with nonce. This variation enforces
forward privacy but the protocol does not support publicly verifiable forward integrity—only the
originating host can decrypt any given encapsulated offer. It is a desired feature of any protocol to
enlist the help of honest nodes to perform integrity checks on the agent.

Figure 123: Protocol Interaction of PVCDS

Chained MAC Protocol. Since both variations of PVCDS assume a PKI is in operation,
Karjoth et al. posed two variations for hash chaining that do not rely on this assumption. Instead,
the only requirement is that each agent server knows the public key of the originating agent
(which is an easier key distribution problem). As an extension to Yee’s MAC protocol, Karjoth
takes advantage of the property where a key-based message authentication code (MAC) ties an
intermediate agent data state to a particular host platform. As seen in Figure 124 each
encapsulated offer is afforded privacy by encryption with the originating owners public key (KO)
and each subsequent host (Host3 for example) is provided a hash chain value (h3) that is
computed for it by the previous host (Host2 in Figure 124). This chaining relationship ties
together all previous results up to that point in the itinerary and binds the identity of the next host
in the chain. The random nonce included with each hash chain and encrypted by the host (for
example, r2 for Host2 in Figure 124) prevents a future agent platform from being able to replace
an encapsulated offer as well. The embedding of the identity of the next host does not provide

168

authentication of a given server, but allows the originating host to track agent migrations against
results embedded in the data state.

Karjoth et al. note also that embedding of the hash value itself (hn) into the encrypted offer
(On) could allow the originator to determine which malicious server broke the chaining
relationship. The chained MAC protocol, according to the authors, provides data confidentiality,
strong forward integrity, and forward privacy. Strong forward integrity is induced here because it
is not possible to modify a given encapsulation On without also modifying On+1 and hn+1 while still
maintaining the correct chaining relationship.

Publicly Verifiable Signature Chains. A final extension to Yee’s [31] publicly verifiable
PRAC where a secret signature and verification function pair is embedded in the agent is
depicted in Figure 125. In Yee’s approach, a server signs its partial result using the signature
function carried by the agent and then certifies the next signature verification function that will be
used the next host in the itinerary. The host destroys the signature generation function it receives
but adds its certified verification function to the agent. We can use both one-time and public key
signatures to sign intermediate results and Karjoth et al. [144] chose to use only the public key of
the originating host to set up the chaining mechanism.

Figure 124: Forward Privacy

Figure 126 illustrates publicly verifiable signature chains that use a one-time public/private key
pair generated by each remote host. The generation process relies on a chain starting with the
public key of the agent owner. Each host in turn generates and sends a signature key to its
successor (seen as OTK3

-1 in Figure 126) and provides certification for the corresponding public
key (seen as OTK3 in Figure 126). The current host signs each offer, On, digitally with the secret
key received from the previous host. The hash in this case remains embedded within each
encapsulation object and provides a forward and reverse link. This protocol when combined with
features from the chained digital signature mechanism provides both publicly verifiable forward
integrity and forward privacy.

The protocols of Yee [31] and Karjoth et al. [144] have vulnerabilities to include threats from
colluding hosts. Roth [109] identifies the root cause as agents which do not have a specifically
identifiable kernel (static code), thus allowing oracle and cut-and-paste replay attacks. Cheng
and Wei [309] enhanced the publicly verifiable signature scheme of Karjoth et al. [144] to shore
up truncation-attacks launched by two hosts in partnership. In their approach, a counter-

169

signature is required from the preceding host (almost like a counter-signed check) before sending
the agent to the next host in the path. Zhou et al. [310] find further weaknesses in the Cheng/Wei
[309] mechanism when loops are present in the agent’s itinerary, but are able to deter more
advanced truncation attacks by requiring two hosts to co-sign an agent’s integrity checksum/hash
value.

Figure 125: Chained MAC Interaction

Figure 126: Publicly Verifiable Signature

A.4.9 Set Hash Codes

In many ways, we can tie data integrity in the presence of malicious hosts to the itinerary of
the agent: how the agent travels in performing its task. An agent (by luck) can visit the only
malicious host in a network first and thus have less worry about deletion or substitution. On the
other hand, luck might have it that the agent visits the only malicious host in the network just prior
to returning to the originating host—putting the previous results of all hosts visited at risk to some
form of deletion. Loureiro and his associates [311] A form of protection that uses the integrity
checks for a collection of unordered objects, referred to here as set hashing, was proposed by.

The hashing method in this approach makes use of a strong (Sophie Germain) prime p, where
p = 2q + 1 and q is prime also. Given g as generator for cyclic group Z*

p, for every x in the set {1

170

.. (q-3)/2} the following relationship holds true: g’ = g2x + 1 mod p is also a generator for Z*
p. This

particular construction gives nice features for a set of n elements and an associated set hash
derived with this property: security, commutativity, cancellation, and a computation complexity
with only 2n multiplications, n additions, and one exponentiation. Figure 127 depicts the agent
data collection mechanism of Loureiro et al. [311] which integrates set hashing.

The agent in Figure 127 visits three hosts, two of which it visits more than once. The first part
of the protocol (1a,1b,1c in Figure 127) illustrates that the agent owner and every host in the
itinerary must establish a pre-existing shared secret before agent dispatch. This of course limits
the free-roaming nature of an agent to some degree, but lifts the dependence for a PKI. In the
depiction, Host1 shares key KA1 with the originating HostA. We can establish shared keys over
public channels readily via operations such as the Diffie-Hellman key exchange.

Figure 127: Set Hashing Data Collection

As the agent collects data at each remote host and places them into an embedded data set, it
computes a set hash based on the generator g mentioned above. Each element of the set hash
function is created by hashing the data result computed at the remote host (d1 for first visit of the
agent to host1 and d’1 the second time the agent visits in Figure 127) and the shared key (KA1,
KA2, KA3, etc.). The set hash is the data integrity mechanism that inserts set elements to be
added in an unordered sequence—and the mathematical properties of the generator allow a host
to cancel out a previous data item and reinsert a new one. Set hashing allows an agent to visit a
host more than once (a feature prevented in [31] and [144]) and allows a host to make no bid at
all. It provides a cryptographically based method for data integrity, insertion resilience, and
truncation resilience. Strengths include support for randomized agent itineraries, no requirement
for a public key infrastructure, and the reducibility of the set hashing data collection algorithm to
the security of solving a discrete logarithm in a finite field.

The secure data collection protocol does not provide data confidentiality in its basic protocol
but supports it as an add-on feature—leaving open applications where results in cleartext might
be advantageous or needed. Suen [312] poses the idea of combining set hashing with Vigna’s

171

data collection protocol. This approach allows an agent to carry the execution trace (Vigna) along
with the encapsulated set hash of data results so that the application can lift the requirement for
the trusted third party to process execution receipts. As with most all data protection
mechanisms, set hashing is unfortunately all or nothing: if verification fails when the agent returns
to the originating host then the application owner must throw all agent results away.

Figure 128: One Time Key Generation Scheme

A.4.10 One Time Key Generation (OKGS)

Park et al. in [313] proposed another one-time key generation method (OKGS) that integrates
a hash function and coupler—resulting in chains of previous results with current results. Figure
128 depicts interaction of an agent with a host. The scheme requires both time-stamping and
public key cryptography in order to work. The agent owner signs static code with a digital
signature (seen as DSAO(code) in Figure 128) and each agent framework verifies the signature of
the code before allowing execution. Each agent framework in the itinerary signs its own results
with a private digital encryption scheme (DES) key as well.

In OKGS, executing hosts use a unidirectional key chain for encryption using the DES
algorithm (a symmetric key scheme). The secret key (seen as agent key Sk in Figure 129) is
created by hashing the XOR of a random nonce (R1k) and previous agent coupler (Ck in Figure
128 and Figure 129). The current executing host XORs the agent key (Ak) with another random
nonce (R2k) and hashes it to produce the coupler that will be sent to the next host. In order to
recover the shared secret key and decrypt agent data state encrypted with it, the originating host
must have access to each set of nonces generated by each remote host. For this purpose, the
executing host uses the public key of the originating host to encrypt the two random numbers, a
timestamp, and a signature of the data with timestamp included.

OKGS provides data confidentiality and forward data integrity, though it does not support
publicly verifiable detection. The digital signature of each host’s data encrypted with the public
key of the sending host is similar to other data encapsulation techniques. By using time stamping,
the scheme eliminates replay attacks by setting keys valid for specified transaction periods.
OKGS also provides truncation resilience in the face of colluding malicious hosts. Unfortunately,

172

large overhead is involved in setting up a time stamping service and the data grows linearly with
the agent as in other cases where digital signatures are used.

Figure 129: Key Generation Module

A.4.11 Configurable Protection

Maggi and Sisto in [107] build upon the data integrity mechanisms proposed by Karjoth et al.
[144], Corradi et al. [308], and Karnik and Tripathi [284] to develop a configurable protocol that
can be adapted to varying levels of data integrity properties, depending on the application.
Building on the work of Roth [108, 112], they correct the problem of many data protection
mechanisms that do not bind the identity of the agent code to its state. An abstract model
captures the message exchange sequence between two agent servers in the itinerary of an
agent. In the abstract case, an agent consists of two basic elements: static agent code and a set
of encapsulated data elements. Table 25 summarizes the abstract model that defines a
configurable data protection scheme.

Table 25: Abstract Data Protection Model

Model Part Definition
ΠO (Static Agent Code, Timestamp, t,
Signature key of agent owner, KO

-1)
{Π, t}KO

-1

Identity of remote host hn
Data result computed at remote host n dn
Mn (Encapsulated data computed at host n) Dn || Cn
Set of data items carried by agent {MO, M1, …, Mn}
hn → hn+1 (Transmission of agent from host n to host n+1) ΠO, {MO, M1, …, Mn}
Dn (Protected data result or offer gathered at host n—
some function of data computed and host identity)

D(dn,hn)

Cn (Chained protection configuration parameter) C(hn, dn, Cn-1, in+1)

Four configurable protocols achieve detection of truncation and implement a binding

mechanism for agent data state. Each case extends the abstract protocol to incorporate varying
security features. As Table 25 illuminates, an agent migrates from host to host carrying a set of
encapsulated data results {M1,M2 ,…,Mn} and a signed copy of its static code tied to a timestamp.
We avoid interleaving attacks in the scheme by using the timestamp associated with the agent’s

173

static code. The system protects the data via some encryption method and links it to the identity
of the executing host (either through hashing or nonce). The parameter Dn is therefore some
function of the data and host identity that computed that data. A chained protection configuration
parameter Cn is used to link the data collected (dn) at a given host (hn) to the previous protection
check and the identity of the next host to be visited. Each protocol describe by Maggi and Sisto
[107] (named MS1 to MS4) defines both configuration parameters (Dn and Cn) to achieve certain
levels of protection. In order to achieve data authenticity, for example, a real protocol extends the
abstract model by choosing the manner in which we configure Dn and Cn. Since authenticity
deals only with verifying the identity of a piece of information, no encryption of the data is
required. For this level of protection, the following behavior is established:

D(d0,h0) = ∈
D(dn,hn) = dn
C(h0, d0n, C0, i1) = ∈
C(hn, dn, Cn-1, in+1) = (dn, ΠO}Kn

-1

Each intermediate host signs its data result along with the agent kernel using the executing

host’s signature key. Left open is how the signature key is established (shared secret,
asymmetric cryptography, hash-based methods, etc.). The originating host must only be able to
verify the signature. This protocol (referred to as MS1) supports not only data authenticity but
non-repudiability because neither side (agent owner or remote host) can disavow that the data
result came from execution of the agent’s code. As Maggi and Sisto point out, different agent
applications require different levels of security—some that require privacy, some needing publicly
verifiable qualities, and some needing protection from multiple colluding hosts. The configurable
protocol allows a wide variety of freedom in implementing specific mechanism such as hash
algorithm, keying methods, and agent identification. Table 13 summarizes the security properties
achieved by the protocols offered.

Table 13: Protection protocols MS1-MS4

Protocol Properties
MS1 Data authenticity

Data non-repudiability
Trusted data integrity (fixed itinerary)

MS2 MS1 features
Data confidentiality
Forward privacy
Origin confidentiality
Trusted data integrity
Strong data forward integrity (fixed itinerary)

MS3 MS2 features
Strong data forward integrity (weak free-roaming agent)

MS4 Weak trusted data integrity (full free-roaming agent)
Data confidentiality (can be added)

A.4.12 Modified Set Authentication Code

Research continues to improve upon data protection mechanisms proposed over the last
decade. Gunupudi and Tate [223] for example extend the set hash code proposed by Loureiro et
al. [230]. In the original protocol, the agent owner distributes a shared secret to each host in the
agent itinerary. Loureiro et al. suggest the use of Diffie-Hellman key exchange for this purpose,
while Gunupudi and Tate point out several shortcomings. A random host can be in the agent
itinerary, but the establishment of a shared secret requires the agent owner to remain on line for
the entire duration of the agent’s lifetime. Diffie-Hellman in its basic form can also be susceptible
to man-in-the-middle attacks.

174

In order to correct this deficiency, Gunupudi and Tate [223] develop a modified set
authentication code that allows the remote host to generate the secret key and then encapsulate
it as part of the agent’s data state using encryption under the originator’s public key. If updates
are required, a host has the choice of reusing its secret key or generating a completely new one.
The method has similarities to OKGS where secret key generation takes place at each host in the
itinerary. Once the application creates the secret key, each host makes normal use of the
message authentication code to produce an encapsulated offer. The owner can apply the set
integrity verification function as in the case of the original set hash code approach.

A malicious host cannot modify any data set in the agent without detection because only the
original executing host knows the secret key and the each host encrypts their encapsulated items
within the agent. A malicious host can still insert fake data elements with a completely different
secret key and then encrypt it using the agent owner’s public key—thus masquerading as other
hosts and introducing bogus data such as bids. As in the original set hash code (by Loureiro et
al. [230]), the scheme is not resilient to truncation attacks from two or more colluding hosts.

A.4.13 Chained IP Protocol

We discuss chained IP mechanisms and other itinerary protection schemes in Section A.3.17,
but mention them here for completeness. In the chained IP approach, the owner leaves the route
information unencrypted and appendable by each subsequent host in the agent’s route. The
approach establishes the strength of the chaining mechanism by the identities of the previous
host, the current host, and the next host in the itinerary. However, the chaining is susceptible to
truncation attacks when one or more malicious hosts collude.

A.4.14 ElGamal Encryption

Cartrysse and van der Lubbe [294] propose several mechanisms to protect agents including
support for confidential agent communications, task confidentiality, and support for agent
signature functions. In terms of providing and collecting confidential data, the authors state that a
necessary condition for an encryption algorithm that protects data across multiple parties must
have an E-E-D property, defined as a chained sequence of asymmetric key encryption and
decryption. In particular, when an agent carries confidential data that a remote host will use
(similar to anonymous itineraries), other intermediate hosts must not be able to read that
information. Figure 130 depicts an encryption scheme that helps support such privacy.

Figure 130: E-E-D Property

A needed property for data confidentiality as the agent traverses a network is for the
information to be encrypted by the agent owner (using the PKO in Figure 130) and also the public

175

key of the server where the data is intended (PKn in Figure 130). Normally, the encrypted
sequence ((d)K0)Kn can only be decrypted to get the data item d by using the private signature
key of the remote host (Kn

-1) first. The E-E-D encryption would allow decryption to get back the
data item encrypted with public key of the remote host without first using the private key of the
remote host n. The ElGamal encryption scheme [314] is the only suitable algorithm that can
support such a property and is proposed by Cartrysse and van der Lubbe as a means to protect
private data in an agent.

As a result, an agent owner embeds data intended for a specific remote host so that only that
host can decrypt and used the data given the agent’s private decryption key. We can use
different secret decryption keys for different data embedded within the agent to strengthen the
scheme. The protocol may divulge data unless hosts follow a correct ordering of operations—
requiring a trusted third party to be present to enforce ordering.

A.4.15 Protocol Evaluation

To conclude discussion of data protection mechanisms, we note mobile agent protocols suffer
from the same weaknesses as normal network protocols that attempt to exchange information or
establish trust in a secure way. Roth [112] reiterates that mobile agent protocols certainly have
undetected flaws in them and suggests development of a formal way to analyze these protocols.
Little research points out the vulnerability of mobile agent protocols—especially those designed to
provide malicious host protection—than has been asserted about protocols themselves. A
promising area of research is development of both formal methods and verification techniques
applicable to existing or newly developed mobile agent architectures.

Traditional network attack techniques combine execution of legal operations in multiple
execution strands. Roth [108, 112] describes weaknesses and flaws of protocols proposed by
Karjoth et al. [144], Karjoth [287], Corradi et al. [308] and Karnik and Tripathi [284]. In particular,
Roth illustrates how cut & paste techniques allow a malicious host to take a portion of one agent
and embed it in another agent for use in a parallel attack sessions. Roth also shows how
malicious hosts use the oracle exploit attack to create their own agent with the purpose of getting
other hosts to perform cryptographic operations on them (following the rules of the protocol),
thereby decrypting sensitive information and removing privacy mechanisms.

Roth concludes that in every protocol analyzed, non-malicious hosts act as a potential oracle
that performs encryptions, signatures, and decryptions on behalf of malicious hosts. He also
observes that interleaving attacks pose great problems to posed agent security mechanisms
because just digitally signing a mobile agent’s static code does not prove ownership or
authenticity of the agent. The possibility exists that an adversary can use agent code if the agent
state is not bound to the static code: such vulnerabilities exist in several primary data
encapsulation protocols. Maggi and Sisto [107] solve this deficiency and take steps to use an
agent kernel. Roth [109] also gives suggestions for improvement of each protocol to shore up
security vulnerabilities.

A tension exists among the many configuration properties in mobile agent data protection. For
example, some systems would be more secure if they provided anonymity (origin confidentiality)
of the individual hosts because collusion would be harder [144]. For non free-roaming agents,
applications can detect truncation and substitution attacks much easier because the owner knows
the list of visited hosts absolutely. Trusted intermediaries provide beneficial security
mechanisms, but we general view their presence as reducing interoperability. Knoll et al. [79]
conclude that reliance on a certification authority can introduce complexity when an agent moves
to different realms. The more secure a mobile agent system is, the more proprietary solutions
become.

176

A.5 Secure Multi-Party Computations

This section provides background material to results presented in Chapter 3 regarding
integration of SMC protocols with multiple mobile agent architectures.

Cryptographers have for some time sought how to perform a group function when there are a

number of mutually or partially distrusting participants to the operation. Yao’s blind millionaire
problem [315] is often cited as an early formulation for the two-party case where a function z =
f(x,y) is computed between Alice and Bob—without leaking any information about Alice’s input x
or Bob’s input y other than what can be deduced from z itself. Goldreich and his colleagues in
[316] extend secure computation to n parties—defined in the general case as a publicly available
function f that takes n private inputs and returns n private outputs: f(x1, x2, x3, …. , xn) = (y1, y2,
…, yn). In some instances, all parties learn the same function output such that y1=y2=…=yn,
making the output publicly known.

Secure computation is referred to synonymously as secure multi-party computation (SMC),
secure function evaluation (SFE) or secure circuit evaluation. Various contributions from active
research in the field can be found in [105, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327,
328, 329, 330, 331, 332, 333]. In terms of practical use, [334] summarize privacy-preserving,
real-world applications that can be represented as an SMC problem such as database query,
scientific computations, intrusion detection, statistical analysis, geometric computations, and data
mining. Malkhi et al. develop a full programmatic implementation of a two-party secure function
evaluator called Fairplay [335] that uses oblivious transfer [319, 320, 321, 336] and one-pass
Boolean circuits [315, 316, 327, 322].

SMC protocols typically involve several rounds of interaction between parties and assume
different types of communication channels including, for example, private channels between
every two parties [317, 318], a broadcast channel [322, 337], and broadcast subsets among
player triples [333]. In terms of security, we can reduce the correctness and privacy of any
protocol to the evaluation of a secure function protocol [322]. In the ideal setting, all parties to an
SMC can send their inputs via a secure private channel to a trusted third party that computes the
group function and return results fairly.

A primary security result concludes that any function we can compute with polynomial
resources (communication and computation) we transform and compute in a secure manner
using polynomial resources [330]. Corruption in multi-party computations deal either with an
honest-but-curious (semi-honest) adversary that passively reads information from corrupted
parties or an active (malicious) adversary that exerts full control over parties. Privacy of inputs is
at issue in passive attacks while correctness of the outputs is more at issue in active attacks.
Goldreich concludes in [328] that we can force two parties acting maliciously to behave in a semi-
honest manner or else catch them violating the security of the computation.

For any arbitrary function in the presence of an active adversary, we can securely accomplish
the computation as long as less than 1/2 of the players have not been corrupted [316]. The
unconditional security results found by [317, 318] state that computations can occur as long as
less than 1/3 of the players have been corrupted and secure channels exist in both directions
between any two players. When we introduce broadcast channels, unconditional security is
possible for the computation as long as less than 1/2 of the players are corrupt. Cachin and
colleagues [105] reiterate that computation between two unbounded parties with “full information”
is not securely possible for arbitrary functions and only limited to trivial functions g where g(x,y)
reveals y. We consider these results significant when applying multi-party computations in the
realm of mobile agents.

A.5.1 Evaluation Techniques and Primitives

Yao first posed the idea that we can model a function f and securely execute it as a Boolean
circuit [315, 338] using a protocol known as secure circuit evaluation. The circuit can be
“scrambled” in a way to secure host inputs and compute the group output. Abadi and
Feigenbaum posed a two-player scheme in [321] where one player runs a secret program for

177

another player who has a secret input. We find other techniques for circuit construction including
multi-party cases in works such as [316, 317, 318, 322, 327, 339]. Once we represent the
function f as a circuit, parties must run a protocol to evaluate every gate in the circuit.

Secure primitives in the circuit evaluation process include tools such as oblivious transfer (OT)
[340, 341, 342] and verifiable secret sharing (VSS). Work by [333] has sought to find minimal
complete primitives to accomplish SMC and characterize security and efficiency of such tools
beyond the two-party case. To accomplish secure circuit evaluation, we must encrypt (garble)
the original wire signals for both inputs and outputs of the circuit so that the actual wire signals
used by the parties no longer have their same semantic meaning. In order to translate inputs and
outputs to their true semantic meaning, data is exchanged between two parties in an oblivious
manner—typically 1-of-2 OT [336].

While OT deals with privacy in circuit-based SMC, we can address cheating by verifiable
secret sharing which allows a “dealer” to distribute shares of a piece of data among different
parties [278, 299]. Normally, parties in the computation must commit to their bits (which become
garbled for purposes of evaluation) before they are used. However, no other party could tell
whether the scrambled bits actually represent the real semantic meaning of a party’s input. By
using sharing techniques, parties give shares of their inputs so that other parties can detect any
attempt to alter a commitment. We find discussions on data re-sharing data to prevent a super
adversary with control over some set of parties from gathering enough shares to compromise a
system in [343, 344].

Not all protocols are as secure as their authors envision. For example, a vulnerability is
described in [345] in the constant round circuit evaluation of [322] where private information is
leaked when gates within a circuit share a common input wire. Efficiency is also a major issue
and much work has been done to improve protocols over time [346, 347, 348, 329, 332]. We
note other more efficient methods than Boolean circuits exist, for instance, to represent f such as
permutation branching programs, algebraic circuits, low degree and randomizing polynomials,
and matrices over large fields [330]. Hurt and Meier [329] present a protocol that is secure for
computing an n-party function with m multiplication gates in the presence of less than 1/3 actively
corrupted players with complexity O(mn2).

Typically, SMC protocols have been adapted for synchronous networks and suffer from
computational or communicational complexity too high for use in the real world. Mobile agents
operate in asynchronous environments and we therefore must consider other factors before we
can apply SMC techniques successfully. Work by Canetti and others [349, 350, 351, 352] have
created frameworks characterizing the composable nature of security properties for different
protocols operating across asynchronous networks—thus addressing the need to model realistic
network environments. As [344, 353] suggest, protocols need to integrate timeouts with
distributed computations for asynchronous networks (that model the Internet) and the
environment for mobile agent applications.

A.5.2 Single Round Computations and Agent Integration

Mobile agents exhibit three unique properties that make using SMC protocols difficult:
autonomy, mobility, and disconnected operations. All of the protocols mentioned thus far have
relied on the exchange of information between parties in multiple rounds, including the originator
of a function. Agents require non-interactive protocols because the originator of a function may
be offline during the actual computation. Autonomy stipulates that the agent does not return
home after the first host and can visit some set of known or unknown hosts. Mobility without the
help of a trusted third party and minimal communication among parties is a primary goal of agent
security schemes.

As discussed in [289, 354], there are two ways to view single round computations between
two parties in contrast to traditional secure function evaluation: computing with encrypted data
and computing with encrypted functions. CEF represents the mobile agent transaction scheme
best and we can extend it easily to a multiple host approach. Sander and Tschudin posed one of
the first non-interactive CEF approaches for mobile code execution based on homomorphic
encryption in [25]. Researchers have extended their results to include any function implemented
by logarithmic-size circuits in [292]. Cachin et al. in [105] developed a non-interactive protocol

178

(which we will refer to as the CCKM scheme) that evaluates all polynomial time functions via the
use of a scrambled circuits and oblivious transfer. Table 26 summarizes the nuances between
CED, CEF, and normal secure function evaluation.

We derive several important results from [105]:
1) for unbounded passive adversary, any function computable by a polynomial-size circuit can
be computed securely;
2) for a bounded active adversary, any function computable by a polynomial-size circuit can be
computed securely, given a public-key framework; and
3) any function computable by a polynomial-sized circuit has a one-round secure computation
in the model.
We summarize non-interactive SMC approaches and results by [105] and present them in

Table 27. The CCKM methodology is foundational to several approaches for mobile agent
security based on secure multi-party computation.

Mobile agent applications have brought a practical relevance to development of secure,
efficient cryptographic protocol schemes. Cryptographers have stated the goal of SMC as
guaranteeing the correctness of a function and the privacy of results among the parties. In
mobile code systems, similar notions exist: malicious hosts can spy on the code, state, or results
of mobile agents that they execute. Hosts can gain unfair advantages by altering the normal
sequence of execution, replaying agent computations using different inputs, or altering the state
information present in the agent. Software-only approaches to mobile agent security that are
secure, efficient, and removing need for trusted relationships have been the holy grail in the
research field for quite some time. There are two primary approaches to integrating SMC
protocols with mobile agents: use single agents that implement single-round non-interactive
protocols or use multiple agents that execute multi-round SMC protocols in coalition schemes.
We discuss approaches and issues with the former next.

Table 26: Methods of single-round secure function evaluation

Type Computation
Computing w/
Encrypted Data (CED)

Alice has input x while Bob holds function f(·). Alice sends an
encrypted version of x to Bob who computes and sends the
result back to Alice in a single round of interaction. Alice
decrypts the result to get f(x) while Bob does not learn x.

Computing w/
Encrypted Functions
(CEF)

Alice holds the function f(·) while Bob holds input y. In one-
round, Alice sends to Bob an encrypted version of f(·) who
provides his input y. Alice receives back and decrypts Bob’s
result to learn f(y) but does not learn y while Bob does not learn
f(·)

Secure Function
Evaluation (SFE)

Alice and Bob have private inputs to the function f(x,y). Alice
and Bob jointly compute the function f(x,y) in one round of
computation. Alice learns only the result (and nothing more)
while Bob learns neither the result nor Alice’s private input.

Table 27: Pertinent Results for Non-Interactive Secure Multi-party Computations

Contribution
[317] Trivial functions where A and B are unbounded
[25] Functions represented as polynomials, B is bounded
[292] Functions computable by logarithmic-depth circuits, B is bounded
[105] Functions computable by polynomial-depth circuits, only A is bounded or both A/B are bounded
[317] Trivial functions where A and B are unbounded

179

A.5.3 Non-Interactive SMC Approaches

To formulate a single-round secure multi-party computation, the following formal notation from
[27, 105] is used: an agent originator O embodies a private function executed by a set of hosts
H1,…,Hl. Two functions—gj(·) and hj(·)—describe the computation of an agent in terms of a state
x ∈ X and a host input z ∈ Z. Figure 131 illustrates the interaction of an agent which is captured
by a multi-party computation. The state update function gj takes a current state (brought by an
agent from the previous host) and the local host input and produces a next state xj. The host
output function hj, illustrated in Figure 132, takes the current state (brought by the agent from the
previous host) and its own local input to produce its own local output.

In the CCKM protocol, once we represent the agent computation as a Boolean circuit and
encrypted, we require translation tables to map actual signals to scrambled signals. We base the
circuit encoding on Yao’s two-party SFE protocol in [315]. In order to know what signals to use
for their local input, a host performs oblivious transfer with the originator to get a set of scrambled
signals, and the originator does not know which signals the other party chooses. We thus
establish the following security properties: 1) the originator has privacy of the function; 2) each
host has privacy in respect to their local input. The CCKM approach allows for autonomy in the
agent path by creating an encrypted circuit that is a cascade of sub-circuits. Each host in the
route of an agent’s path would receive an encrypted circuit on which their input is applied.
However, the CCKM protocol did not address the ability for each host to use the “unencrypted”
local output of the agent because the application owner is the only party that can evaluate the
encrypted result.

Figure 131: State Update Function

Figure 132: Host Output Function

180

Extending the CCKM approach further, Algesheimer et al. [27] produced a non-interactive
protocol (which we refer to as the ACCK protocol) similar to the trusted hardware of [110] that
would allow for secure decryption of host output when CEF is used. The ACCK scheme,
illustrated in Figure 133, makes use of a trusted generic computation service roughly equivalent
to the trust we place in a public key infrastructure. To decrypt the output of the agent at the local
host, we encrypt the mappings for the semantics of the signals with the public key of the generic
service. Each host accomplishes oblivious transfer with the generic service (instead of the
originator who may be offline) to decrypt the signals for the output. By using a secure middleman,
the ACCK protocol hides inputs, outputs, and computations of all hosts from the originator as well
as any other host visited by the agent. The main assumption is that this trusted third party (TTP)
does not collude with the originator or with any host, but as proposed would offer a generically
secure service for any application.

Figure 133: ACCK Protocol w/ Generic Computation Service

There have been two extensions proposed to the ACCK protocol that target replacement of
the TTP in some form. Zhong and Yang in [299] introduce a cryptographic primitive called
verifiable distributed oblivious-transfer (which we refer to as the VDOT protocol) and Tate and Xu
in [288] introduce a multi-agent approach utilizing their oblivious threshold decryption (which we
refer to as OTD). Figure 134 shows a notional arrangement of parties in the VDOT scheme while
Figure 135 shows a notional arrangement of parties in the OTD approach. In the VDOT protocol,
we divide mobile agent computations into security-sensitive and non-security-sensitive portions.
Under the scheme, we transform code that requires integrity or confidentiality into a garbled
Boolean circuit. Instead of interactions with one trusted third party, which has weaknesses
involving the corruption of a single server to the detriment of the entire system, VDOT uses
several trusted third party servers to replicate the functionality of the TTP. VDOT guarantees with
high probability the correctness of receiver’s output, enforcement of the code and state privacy,
protection from coalitions of malicious hosts and malicious TTPs, and the verification that servers
give correct decryption of host signals.

Distribution of trust among a group of servers strengthens the original ACCK protocol and
forces a group of servers that hold shares of the decryption to perform the table lookup for circuit
signals. The VDOT protocol is general purpose in the sense that each host need only provide an
interpreter for garbled circuits. By using distributed oblivious transfer, trusted third parties act as
a proxy for agent owners and provide translation tables for host inputs without being able to
discover host inputs themselves. Obvious disadvantages to the approach are increased
communication complexity (which the authors contend is negligible in practice) and the
complexity of breaking a program into security sensitive portions represented by a Boolean
circuit.

181

Figure 134: Verifiable Distributed Oblivious Transfer Protocol

Figure 135: Oblivious Threshold Decryption Protocol

The OTD protocol of [288] is similar in some regards to VDOT but actually eliminates the
trusted third-party requirement altogether. As a primary distinction, their approach relies on
multiple agents visiting disjoint sets of the possible host pool. Each of these agents act in a
threshold manner (similar to VDOT) to decrypt the encrypted signals for a given host input without
relying on the TTP. While the ACCK secure computation service overcame the interaction
requirement of Yao’s encrypted circuit evaluation—a limiting factor in the mobile code paradigm—
OTD replaces this by means of cryptographic operations and multiple agents that cooperate
together. Multiple agents must agree before decryption of the host’s input signals can occur and
this in turn prevents cheating by keeping a list of hosts that have already decrypted a signal.
Agents return to the originating host where the application decrypts all circuit results and
combines them to produce the function result. The security in this method rests on the security of
Yao’s secure circuit evaluation, the security of the 1-out-of-2 oblivious transfer, and the strength
of threshold cryptography. However, this protocol does not support free-roaming agents and
requires knowledge of the set of hosts an agent will visit.

182

Algesheimer et al. in [27] state the ACCK protocol does not require foreknowledge of the
agent’s path or the hosts that the agent will visit. Their approach upholds the disconnected and
autonomous nature of a mobile agent. However, it is not clear whether the number of host, ℓ,
must be specified or known beforehand. The OTD and VDOT extensions both assume a known
number of hosts or subsets of hosts in order to design the circuit representation of the group
function—thus limiting a true free-roaming dynamic itinerary. Though single-round non-
interactive protocols reduce the communication overhead for SMC, message sizes increase
proportionally, regardless of input or output size. Tate and Xu, for example, state that it roughly
takes 9 kilo-bytes to encrypt 32 bits of secret data [288] under this scheme. Zhong and Yang
mitigate overhead by keeping security sensitive portions separate from normal programmatic
requirements. Using multi-round SMC offers another approach to accomplishing secure
transactions with mobile agents, which we analyze now.

A.5.4 Multi-Round SMC Approaches

Secure multiparty computations have a tradeoff between trust and efficiency. Neven et al.
[355] were one of the first to envision the use of agents to implement SMC and reduce the
overhead of the communication itself. Figure 136 summarizes four different approaches to
integrating agents with hosts to accomplish SMC. Figure 136-a illustrates the ideal world where
agents carry host inputs to a trusted third party and a protocol is evaluated without the expense of
network broadcasts or bidirectional secure channels. In the context of the TTP, all parties can
evaluate the protocol and we assume the TTP to behave honestly with respect to host inputs.

We see the most secure but least efficient method in Figure 136-b: here hosts simply become
the execution environment and setup a multi-party protocol evaluation. In this case, we face both
the computational and communicational complexity inherent in the chosen protocol and only high-
speed links (represented by the dotted lines) make such protocols practical. We illustrate single-
round approaches discussed in the previous section in Figure 136-c where an agent embodies
the circuit for secure evaluation and each host provides private input as the agent migrates. In
[355], a hybrid solution as depicted in Figure 136-d involves high-speed communication links
present between one or more hosts. Participants in the n-party protocol send agents carrying
their private inputs to one of these intermediate TTPs who then efficiently and securely evaluate
the function according to the rules of the protocol.

Figure 136: Agent Approaches to SMC

183

In the realm of mobile agents, as with many real world applications, it is preferable not to rely
on a trusted third party and just perform an SMC among the parties of a function. Endsuleit and
Mie utilize a group of multiple agents to support such an approach in [344]. In their model, they
deploy multiple agents carrying the same realized circuit to remote hosts where parties evaluate
rounds of the secure protocols. Figure 137 illustrates that agents are located on some set of
hosts and implement multi-agent computations based on some underlying SMC protocol. In [344]
the authors assume the extensive use of a broadcast channel and suggest the protocol of [317]
with an implementation of secret sharing from [278]. In [353], follow-on work suggests the use of
more efficient protocols such as those of [329].

In such multiple agent schemes, we can use any SMC protocol as long as it meets the
composable security properties defined by Canetti [352]. In order to adapt the Canetti model,
which assume stationary parties, “slices” are defined [344,353] as periods where a set of n
different hosts executes a community of n agents with no migrations during that period. Hosts use
resharing of data shares via the Ostravsky and Yung method [343] to overcome the adverse
affects of migration where malicious hosts can use acquired shares over time to compromise
security. The system supports self-repairing code and threshold agreement of computations, as
long as up to 1/3 of the community (agents or hosts) remains uncompromised. Security results
follow because Canetti establishes proof of a secure protocol for n parties computing a joint
function in the presence of an active adversary corrupting up to some k limited servers. By using
such agents to implement a redundantly shared global state of computation and coordinate
activity, we can implement a wide variety of SMC protocols. However, as with any multi-round
solution, the communication complexity is extremely high and the originator must know a priori
which hosts will be part of the computation.

Figure 137: Multi-Agent Secure Computation

In [356], another software-only scheme is presented that implements multiple agents acting in
a threshold manner similar to [288,344,353]. However, there approach does not suppose the
presence of collusions among hosts or rely necessarily on multiparty protocols. Their approach,
which is termed Remote Distribution Scheme or RDS, depends on a set of agents that replicate
and share a transaction set. In RDS, the system also assumes a publicly known algorithm—a
feature that does not necessarily correspond to the mobile agent setting where code privacy is
required or application owners implement CEF.

184

A.6 Multi-Agent Architectures

This section provides background material to results presented in Chapter 3.

Multi-agent security is distinctly different from mobile agent security in terms of issues. Multi-

agent systems that use mobility explicitly, however, can provide security solutions not possible in
either the strictly static or the strictly mobile sense. In considering malicious host protection,
several solutions [31,277,280] rely on the use of multiple agents. Wang and Tan [357] for
example use parallel dispatch of multiple agents to provide route protection. We can accomplish
multi-party computations via multiple deployed agents in the network, but we distinguish here the
use of multiple identical agents (those that perform the same task or have identical static code)
from using multiple agents instantiated from multiple different agent classes. Both approaches
can achieve certain desired security properties with fault tolerance and we discuss the latter form
of multiple agents in this section.

Kotzanikolaou et al. [227] postulated two separate classes of agents used to conduct secure
electronic transactions. A master agent in this approach controls one or more slave agents, with
the master agent remaining static at the originating host. The system dispatches slave agents
individually to single remote servers in a single-hop fashion, gathering bids or relevant
information. Slave agents in this case are not empowered to perform a transaction but instead
are specialized to find agreement on pricing or return commitments. The master agent serves the
role of information filtering to pick the best offer and possibly dispatching a unique transaction
agent to finish the purchase process. We can alos use the multi-agent architecture to determine
which mobile agents have been victims of malicious behavior. The Sanctuary architecture [31]
uses various agent classes to perform different types of services. Agent owners can also create
agent groups that define agent sets running and migrating in synchronous activities. Each group
is composed of task-specific agents that perform different services such as data query, indexing,
and authorization. Merwe and Solms [11] implement trade agents as distributed objects that
communicate remotely and accomplish group tasks.

Multiple agents can support group agreement or threshold security mechanisms [259, 288].
Groups of agents can perform undetachable threshold signatures [301], group key establishment,
group agreement for purchase, and buddy checking of results [280, 358]. Borselius et al. [259]
for instance use a subset of multiply deployed agents to complete and authorize a transaction.
Their threshold scheme assumes that at least one of many possible transactions will receive
enough votes, even in the presence of a minority of malicious hosts. Baumann and Radouniklis
[100] set forth an architectural model for e-commerce that uses groups of mobile agents arranged
as initiators, administrators, receivers of information, coordinators, and normal members. Their
approach is set in the context of a mall-based application that supports group communication,
synchronization for task, and termination. Finally, the use of multiple agents for security
enhanced mobility is mentioned more frequently in current surveys [21, 48, 64, 359, 360].

Multiple replicated agents and multiple instances of multiple classes of agent can offer greater
security advantages when malicious hosts are at work together. In certain application
environments, it may also be possible to allow communities or groups of non-compromised hosts
to offer protection from one or more possibly malicious hosts. In a military or corporate intranet
environment, for example, hosts can be trusted when they are part of the community. Such
systems assume adversaries compromise hosts operating normally (from the inside) or capture
hosts at some point. Group host protection is similar to using trusted third parties or honest
nodes and expands the idea of specialized node acting as base-stations in trusted environments.
Guan and his colleagues [361, 362] use specialized hosts to perform security operations within
their community in what they term a “police” model. Certain hosts act as policemen to monitor
the health or status of agents during their transit.

Cheng and Wei [309] enhance the security of a publicly verifiable signature scheme by
introducing two hosts working in partnership. In their approach, the preceding host in an agent
itinerary is required to produce counter-signature before sending an agent to the next host in the
path. Zhou et al. [310] extend this method further by requiring two hosts in agreement with the

185

current host. Yokoo and Suzuki [293] utilize a set of trusted hosts to perform secure multi-party
computations with the help of multiple agents. In certain scenarios, even the auctioneer may not
be trustworthy and the use of multiple servers working together can help alleviate concerns of
data compromise. Societies of cooperating agents and hosts may offer the highest possible
security mechanisms for mobile agent architectures in the future, especially in the face of
malicious collusions.

186

A.7 Trust Infrastructures

This section provides background material to results presented in Chapter 4.

We review here foundational concepts appropriate to the realm of trust in security related

decision making. Defining trust is as precarious as defining the term agent—and though
researchers do not agree on either term they do discern the importance of both concepts in
framing research. We define trust loosely in a previous work [38] as the expectation of behavior
among parties and classify several different infrastructures for trust in dynamic networks.
Gambetta [363] defines trust as a subjective probability that is non-reflexive, changing, and
context driven. We note also that trust is not necessarily Boolean, does not necessarily have to
capture human intuition, and can involve third parties to facilitate certain issues. Trust can be
transitive and therefore delegated [364] or can be acquired by direct observation [365,366].

A.7.1 Trust Management in Distributed Environments

The trust management problem, as defined in [36], seeks to formulate a coherent framework
for defining policies, actions, relationships, and credentials in terms of trust. Trust management
systems such as [35,36,365,366,367] support specification, acquisition, revocation, degradation,
and evolution of trust according to some model. As we point out in [38], challenges in these
systems revolve around observing trust-related actions and then translating those observations
into a decision. In both mobile agents systems and dynamic networks, we must make trust
decisions before parties build trust relationships. The overlap of trust models with the
development and implementation of mobile agent security frameworks is a key to future support
of pervasive computing scenarios. We consider next the adaptation of trust mechanisms
specifically to the mobile agent paradigm.

Mobile agent applications and the idealized vision of a global computing scenario share many
common characteristics with distributed trust models for dynamic networks: a large number of
autonomous parties, principles can have no prior relationship, a trusted or centralized computing
base may not exist, virtual anonymity of principles may exist, different administration domains,
and hosts have different capabilities for transmission, mobility, and computational power.
Grandison and Sloman in [37] point out that trust cannot be hard-coded in applications that
require decentralized control in large-scale heterogeneous networks. Mobile agents particularly
need to separate the application purpose from the trust management framework if they are to
scale well in such environments. Because there is a large commonality between dynamic
networks and mobile agent applications, we can readily apply many proposals for defining trust
infrastructures in ad hoc networks to mobile agents. Kagal et al. [368] suggested the addition of
trust to enhance security for mobile computing scenarios and defined trust management activities
as those defined by [36]: developing security policies, assigning credentials, checking credentials
against policy requirements, and delegating trust to other parties.

Cahil et al. in [365] expound the research goals of Secure Environments for Collaboration
among Ubiquitous Roaming Entities (SECURE)—a project focused primarily on building trust
infrastructures for large ad hoc wireless networks. SECURE utilizes the use of both risk and trust
to determine whether interaction can occur in a scenario where billions of possible collaborators
may exist. In their authorization framework, a principle uses trust to decide an interaction based
on the risk involved. Carbone et al. expound the trust model for SECURE in [367] and provide a
formal way to reason about the trust relationship among principles. We find interest in the
SECURE model because they use a trust interval from 0 to 1, which reflects a measure of
uncertainty. The trust level in SECURE is thus a range with some upper bound—which sets the
maximum amount of trust within some factor of unknowing involved.

As Cahil and his colleagues also point out, traditional trust management systems delegate
permissions using certificates (credentials) that reduce to very static decisions that do not scale
well or allow change over time. They also point out as we do in [38] that trust decisions in

187

pervasive scenarios should come instead from trust information based on two sources: personal
observations (previous interactions) and recommendations from other parties we trust (transitive
or delegated trust). However, in [365] there is no link provided between security requirements,
trust, and application goals for mobile agents specifically—a goal we set forth to accomplish in
this paper.

In a similar vein, Capra in [366] defines a formal model for hTrust—a mobile network trust
framework that defines formation, dissemination, and evolution of trust. Capra reviews several
trust management frameworks that have the following limitations: they are suited for centralized
servers, they have too high of a computational overhead (for mobile devices), they lack dynamic
trust evolution, they lack details about local policy usage, and they lack subjective reasoning
capabilities. hTrust remedies these shortcomings and incorporates a human notion of trust
directly into the framework. hTrust models a range of trust values between principles so that
parties can distinguish a lack of evidence or knowledge decision from a trust-based decision that
reflects specific distrust towards another party. The trust data model also incorporates the notion
of time so that relationships degrade when not kept current. The system uses recommendations
when a principle has no past history or to partially rely on or trust a third-party assessment.

Just as in human interactions, hTrust captures the notion that we favor recommendations from
people who gave us good recommendations in the past and likewise reject or downgrade advice
from those who have disappointed us in the past. Finally, a key aspect of this model is its
incorporation of both a social context (the environment of principles arranged in a network by
which recommendations can be used) and a transactional context (the network of services which
are supplied by parties in the system). While hTrust provides a generic framework for mobile
application trust expression, it does not directly deal with mobile agent specific security
requirements or attempt to link mechanisms for security to trust levels or the agent lifecycle.

A.7.2 Trust and Mobile Agents

There has also been much work specifically focused on security evaluation and trust
expression for mobile agent systems. Karjoth et al. were one of the first to describe a security
model for Aglets—a specific type of mobile agents [369]. The Aglets model includes a set of
principles with distinct responsibilities and defines security policies that give access to local
resources. The notion of a policy database and user preferences are also included in the model
to govern interactions of aglets that have unspecified or unknown security properties. However,
the Aglets model does not address host-to-agent malicious interactions or incorporate the notion
of trust levels or dynamic trust determination.

Other security management systems designed specifically for mobile agents suffer from the
same limitations and focus on malicious code protection. Jansen poses a privilege management
system for agents in [370] that uses traditional certificate-based policy framework. In this model,
host-based policy specification enforces security compared to agent-based attribute certificates.
When these policies merge during agent execution, the system determines the security context of
the agent. Other works such as [371] describe reconfigurable policy support and surveys such as
[64] summarize issues and status with policy-based security implementation. Again, such
mechanisms tend to not scale well, tend towards static security interactions, and do not model
trust levels for specific security requirements.

Antonopoulos and his colleagues in [372] develop a general-purpose access control
mechanism that is distributed in nature and specifically focused on mobile agents. This approach
comes closer to expressing trust relationships among principles, but the approach relies on
access control lists and preventing malicious code activity as a fundamental basis. Kagal et al.
extend their delegation trust model to mobile agent scenarios in [41] and address FIPA-specific
weaknesses for securing the agent management system and directory facilitator services.
Although they address how multiple agents can establish trust when they are previously
unknown, their focus is primarily on authentication and they do not consider mobile-specific
security requirements and trust expression.

Tan and Moreau [39] develop a more comprehensive model of trust and belief specifically for
mobile agent-based systems based upon the distributed authentication mechanisms posed by
Yahalom et al. [35]. They found their trust derivation model on the similarities between distributed

188

authentication in pubic key infrastructures and mobile agent trust. The Tan/Moreau framework is
limited and simple, however, because it only incorporates the notion of trust associated with using
the extended execution tracing security mechanism [33] and does not account for generic
security mechanisms or requirements. Their unique contribution in the area is one of the only
works that link security mechanisms with

Borrell and Robles with several different colleagues have done significant work to incorporate
trust in mobile agent system development [40, 77, 373, 374, 375, 376, 377]. In [40], they present
a model that defines trust relationships expressed in the MARISM-A mobile agent platform [378].
Although initial work in the area by Robles and his colleagues assumed a static trust expression
among agents [373, 374, 375], MARISM-A now uses trust relationships that are defined among
entities and actions in a mobile agent transaction. We follow similarly with a formal model that
defines trust relationships between entities and associates actions and attributes to each
relationship. The MARISM-A model uses trust relationships to define decisions that permit,
obligate, designate, or prohibit certain actions within a certain scope of a mobile agent program.
We take a similar approach as Robles by associating agent security mechanisms with trust
relationships and by classifying their role as a deterrent, prevention, or correction. In addition to
certain similarities with the MARISM-A approach, we expound more fully in our model the
relationship between the agent application, principles, security mechanisms, trust levels, and trust
determination.

Ametller along with Robles and Ortega-Ruiz take the notion of policy-based security
mechanisms even further in [377]. In this scheme, agents select the appropriate security
mechanism to use by means of a security layer that exists within the agent itself–a layer untied to
the underlying agent execution platform. Security layers of the agent interact with hosts to
determine which mechanism the agent uses based on predetermined criteria. Assuming a
decryption interface and public key infrastructure are in place, the solution gives a novel security
addition implemented in JADE and provides a flexible approach to agent security. We build also
upon this approach by linking in our model and methodology security requirements for agent
applications that system supports via security mechanisms—all of which tie into evaluation and
evolution of trust relationships among principles in the mobile environment.

As many authors point out, no one security mechanism addresses every security requirement.
The use of security mechanisms in fact may establish a certain level of trust (or lack thereof) in
the face of certain environmental assumptions about malicious parties. An application level view
of security that we propose would bring together a process for selecting a combination of
techniques to achieve certain trust levels within a mobile agent system. Even when using
mechanisms that establish pure trust (such as tamperproof hardware), other assumptions must
be taken into account to make sure security is guaranteed. Trusted hardware or multi-agent
secure cryptographic protocols may be warranted or even feasible given certain application
environment factors. When such mechanisms are not available, the system can demand lower
trust levels and require a more policy-driven approach to make dynamic decisions about agent
execution.

We use models in many cases to help describe a particular set of relationships in more
precise terms. Models in the security sense do several things such as: help test a particular
security policy in terms of completeness or consistency, help document security policies, help
conceptualize or design an implantation, or verify that an implementation fulfills a set of
requirements [379]. We now present our trust framework for considering mobile agent
applications and describe a model for viewing principles, actions, and trust relations in the mobile
agent environment.

189

APPENDIX B

TRUST MODEL ELABORATION

In this appendix, we illustrate the descriptive capability of the framework described in Chapter
4. We begin first with a scenario that illustrates the nature of trust related decisions in mobile
agent application. Figure 138 depicts the three types of hosts (dispatching, executing, and
trusted) and the agent itself.

Figure 138: Trust Decisions and Principles in a Mobile Agent Setting

B.1 Trust Scenario with Mobility and Agency

We can liken the mobile agent trust problem to a person walking up to you in your office and
handing you a floppy disk. They say to you, “I have heard that you like sharing security research
information with others. Please run the file on this disk called ‘virus.exe’ on your computer for me
and then I’ll walk it to the next security researcher on my list of contacts when you are done. Don’t
worry about the output—the program keeps its state every time it executes.” You, acting as the
(executing) host, must ask a few probing questions of course. Before considering whether to run
the file or not, the mental process begins by first considering the trust you have in the person
(application owner) who brought (dispatched) the file (agent). This represents the application
owner in the mobile agent environment. Do you know them personally? If not, do you know
other people who know them? If not, how will you assess their trustworthiness? Will you ask
them for a resume or a list of references first?

Nonce

(Execution) Thread

Agent
id
itinerary

Data (State)

Code
digest

Agent Developer

Code Signature

Kernel

Application Owner

Agent Signature

Figure 139: Agent, Application Owner, and Agent Developer Trust Relation

190

If you do not know the person personally, you may want to see their credentials so that when
you ask for references you are sure you are talking about the right person. In the mobile agent
context, the application owner determines the agent signature: the binding between the
dispatcher (sender) of the agent program and the identity of that particular instance of the agent
code execution. When parties are completely unknown, you might determine trust based on
successful accomplishment of testing suites or rapid small transactions. If you know them to be
untrustworthy or assume that anyone asking to run files on your computer from a floppy is
untrustworthy by default, then the emphatic answer will be “No, I will not run that program.”

If you the person or the person has a history of dealings with you, you may (after verifying they
do not have an evil twin) entertain the idea of running ‘virus.exe’ on your computer. Assuming
you pass this first hurdle, the next mental process turns to the question of the code itself. Where
did ‘virus.exe’ come from? Who authored it? Did the dispatcher author the code or has the
developer authored other programs that proved trustworthy? Is the code developer identified with
hacker groups or malware or do they work for an official or approved organization? In the mobile
agent paradigm, there are limited ways to ascertain such trust relationships. If the person
indicates there is a software clearing-house that has reviewed and tested his code for safety and
malicious behavior (passing with certified safety properties), we may allay some of our fears.
This is equivalent to using a trusted third party to assess trustfulness of the agent code or the
code developer a priori. If the person says that the organization’s code development group
authored the code, a user may also place implicit trust in in the code. A code signature links the
developer with the code itself (even though many application owners may use that code in
multiple ways and instances over time). However, some other method of proving or verifying
code safety may be needed. Figure 139 depicts the relationships between signatures and
principles to the mobile agent transaction.

Figure 140: Host-Agent Trust Relations

If you know the person carrying the disk (let us say they are a good friend) and you know they
authored the software and you trust them enough to execute the file, the remaining questions
might focus on the nature and purpose of ‘virus.exe and the chain of custody of the courier’.
What does ‘virus.exe’ do? If the algorithm is private, the person may say “I can’t tell you, you just
have to trust me”—which at that point you determine that you still won’t run the program even for
a good friend. If the algorithm is public, then you may be relieved to find out that ‘virus.exe’ is a

191

statistical data gathering program that queries your anti-virus software to see when the last time
you updated your virus protection was and how many viruses have been detected in the last
month.

Table 28: Security Requirements with Associated Detection/Prevention Mechanisms
 Detection Prevention
CP agent code privacy TPH

secure multi-party computations
encrypted functions
obfuscation
multi-agent systems

CI agent code integrity code signatures
clone detection

code signatures

CF agent code safety state appraisal sandboxing
proof carrying code

CA agent code authenticity code signatures code signatures
IP agent itinerary privacy anonymous/onion routing

bidirectional dispatch
II agent itinerary integrity itinerary recording

replication and voting

SI agent state integrity state appraisal
detection objects
protective assertions
executing tracing
reference states
intermediate result protection
state transition verification
group host operations

TPH
intermediate result protection
secure multi-party computations
encrypted functions
environmental key generation
undetachable signatures

SP agent state privacy sliding encryption TPH
secure multi-party computations
encrypted functions
obfuscation
phoning home
multi-agent systems

AA agent authenticity signatures
AZ agent authorization signatures
AN agent non-repudiation signatures
AV agent availability time-limited execution w/

trusted third party
phoning home

AY agent anonymity trusted third party
HA host authenticity host signatures trusted third party
HN host non-repudiation host signatures trusted third party
HP host data privacy secure multi-party computations

trusted third party
HY host anonymity trusted third party
HV host availability state appraisal

path histories

sandboxing
safe interpreters
policy management

HI host integrity path histories

sandboxing
safe interpreters
proof carrying code

You may also want to know who has executed the agent before you. Even though you can

verify that the agent code remains unaltered and verify identity of the code developer or the
dispatching agent, the floppy contains a mutable state updated by some list of previous parties.
Depending on anonymity requirements, you can observe the routing slip of the courier and you
notice that the floppy was in the possession of Dr. Evil at some point. How can you be sure that
the state of the program and the code for virus.exe do not together cause a buffer overflow attack
on your machine when you execute it? If the program were collecting statistics, how could the
application owner be sure that Dr. Evil has not altered results in order to skew security decision
making? These questions all reflect our desire to ascertain code and data integrity. Figure 140
depicts the host and agent relationships that capture these nuances in our model. We now

192

describe these trust decision in terms of our model elements, security requirements, and trust
levels.

Table 29: Trust Decisions in Mobile Agent Applications
Principles Involved Decision

Agent Dispatch (Dispatching Host →Executing Host) Dispatching host
(DH) launches agent A to the first executing host in the itinerary (EH).
The agent is an instance of code created by a code developer (CD) and
the application owner (AO) is associated with the DH by some
managerial role. DH makes itinerary choice decision, EH makes
execution decision. DH makes policy decision regarding EH based on
security requirements / EH makes policy decision regarding A based on
security requirements: EH CD: CA, CF; EH DH/AO:HA, HN;
A/AO/DH EH: CP,CI,SI,SP,IP,II,HY,HA,HN; EH A:
AA,AZ,AN,HV,HI,IP,HY,HP

Agent Migration (Executing Host → Executing Host) Executing host
(EH) sends agent A to the next executing host in the itinerary (EH). DH
makes itinerary choice decision, EH makes execution decision. DH
makes policy decision regarding EH based on security requirements /
EH makes policy decision regarding A based on security requirements:
EH CD: CA, CF; EH DH/AO:HA, HN; EH EH:HA, HN; A/AO/DH
EH: CP,CI,SI,SP,IP,II,HY,HA,HN; EH A: AA,AZ,AN,HV,HI,IP,HY

Agent Termination (Executing Host → Dispatching Host) The last
executing host in the itinerary (EH) sends the agent back to the original
dispatching host (DH) where the agent terminates. DH makes itinerary
choice decision, EH makes execution decision. DH makes policy
decision regarding EH based on security requirements / EH makes
policy decision regarding A based on security requirements:
EH CD: CA, CF; EH DH/AO:HA, HN; A/AO/DH EH:
CP,CI,SI,SP,IP,II,HY,HA,HN; EH A: AA,AZ,AN,HV,HI,IP,HY

Trusted Dispatch (Dispatching Host →Trusted Host) Dispatching host
(DH) launches agent A to a trusted host in the itinerary (TH). The agent
is an instance of code created by a code developer (CD) and the
application owner (AO) is associated with the DH in some managerial
role. The trusted host performs a security function on behalf of the
agent and alters trust relations as a result: TH CD: CA, CF;
TH DH/AO:HA, HN; TH A: AA,AZ,AN,HV,HI,IP,HY

Trusted Migration (Executing Host → Trusted Host, Trusted Host →
Execution Host) Executing host (EH) sends agent A to a trusted host in
the itinerary (TH) or a trusted host migrates the agent to the next EH.
Executing hosts receiving agents from trusted hosts may have different
security requirements (i.e., implicit trust), and may therefore allow agent
execution based on the relationship.

Trusted Transfer (Trusted Host → Trusted Host) Trusted hosts migrate
agents from one to the other. Implicit trust, based on their status, is
assumed.

Trusted Termination (Trusted Host → Dispatching Host) A trusted host
sends the agent back to the original dispatching host (DH) where the
agent terminates.

Agent migration presents us with the basis trust decision among parties involved in the mobile

agent application. Table 28 provides a (non-exhaustive) summary of detection and prevention
mechanisms associated with various security requirements. The integration of any particular
mechanism of course varies with complexity and cost. Each principle in the system evaluates
trust tuples and computes a requirement for both agent and host security enforcement. Table 29
outlines typical policy decisions supported by the trust framework and a populated trust database.

193

The trust qualifiers such as foreknowledge, freshness, and level dictate the requirement for either
no mechanism or a weak/strong mechanism.

B.2 Modelling Agent Applications

We introduce here sample mobile agent applications that elaborate the trust framework
described in Chapter 4. We use these to illustrate the nuances that exist among principles to
include hosts, agents, and entities. These elaborations capture the notions for multiple agent
instances, running the same agent in multiple application instances, multiple agent interactions,
and trusted host interactions. We define the mobile agent application as follows:

Set H of possible hosts:

 {h0, h1, h2, … }

hx ∈ {D ∪ E ∪ T}
D: only 1 dispatching host
E: all possible executing hosts
T: all possible trusted hosts

Set A of uniquely
identifiable agents:

 {a0, a1, …}

Multiple agents with the same static code,
multiple agents with different static code, a
single agent.

Set Y of uniquely
identifiable agent states

For every ai ∈ A there is a corresponding set
of states Yi. After execution on k hosts in
itinerary:
 Yi = {Yi1, Yi2, … Yik}

Agent: (kernel, id, data,
itinerary, thread, policy)

kernel = (code, nonce)SIG agent signature
id = hash (kernel)
itinerary = {h0,h1,h2,…hk} ordered/unordered
code ∈ {c0, c1, c2, … } static/immutable

Given the ability to identify agent states from execution run to execution run, we can uniquely

identify different runs of the same agent codebase. This means, for example, that an application
owner that executes the same agent code twice executes two unique applications—not the same
one. Every agent therefore creates a unique application instance when executed. Figure 141
illustrates a basic application where a code developer creates agent code (c1) used by two
different application owners. Application owners use the digest and signature of the code to
create their own unique agent signature (ak1, ak2) based on their own random nonce (r1,r2). Each
application owner has a unique itinerary which includes one or more trusted hosts and different
executing hosts.

Figure 141: Host and Entity Interactions in Agent Application

194

Figure 142 illustrates a single agent instance (a1), a single dispatching host h0, and illustrates
the itinerary among a set of hosts (h1 .. h8). The state set Y1 indicates the data set results unique
to the agent with the specified kernel (Ka1) and id (hash(K)) based on code base c175.

Figure 142: Agent Code, Unique Agent Instance and State Set

Figure 143 illustrates another agent instance (a2), a single dispatching host h0, and illustrates
the itinerary among a set of hosts (h1 .. h8). The state set Y2 indicates the data set results unique
to the agent with the specified kernel (Ka2) and id (hash(K)) based on code base c175. This
elaboration represents multiple agent instances using the same codebase.

Figure 143: Same Agent Code used in Different Agent Instance

Figure 144 illustrates another agent instance (a3), a single dispatching host h0, and illustrates
the itinerary among a set of hosts (h3 .. h8). The state set Y3 indicates the data set results unique
to the agent with the specified kernel (Ka3) and id (hash(K)) based on code base c175. This
elaboration represents another agent instances using the same codebase but with different
itinerary. Figure 145 illustrates an application based on a different codebase (c85) but the same
itinerary as a previous agent application. The state set Y4 indicates the data set results unique to
the agent with the specified kernel (Ka4) and id (hash(K)) based on code base c85: again all
unique for this instance. This elaboration represents a different agent application logic sent to a
preidentified host set.

195

Figure 144: Same Agent Code, Different Agent Itinerary

Figure 145: Different Code Base, Same Agent Itinerary

Figure 146 illustrates a different agent codebase used for an agent sent to a completely
different host set. The same dispatching host and application owner send these in every case—
which represents the possible application of agent code by a single party for different purposes..
In Figure 147, another agent instance uses an itinerary with the capability to revisit prior hosts.
This elaboration is common for multi-bid updatable auction agents.

Figure 146: Different Codebase, Different Agent Itinerary

196

Figure 147: Agent That Revisits Hosts in Itinerary

Figure 148 illustrates a dispatching host that sends two agents, each using the same
codebase C28, to a disjoint set of hosts (each has a unique static itinerary). In every case, agents
possess a unique ID and kernel, no matter if they visit the same hosts from a prior instance or if
they use the same codebase. Several multi-agent protection schemes (including MADIMA), use
replicated, identical codebase agents. In Figure 149, multiple agents

Figure 148: Multiple Agents with Same Codebase, Unique Itineraries

Figure 149: Multiple Agents with Same Codebase, Common Itinerary

197

APPENDIX C

ENUMERATING COMBINATIONAL CIRCUITS

In this appendix, we elaborate the possibilities for enumerating combination circuits. For
future work, the use of sequential circuits (and thus the possibility of cycles within the the circuit
description) will change the enumeration possibilities for gate inputs to include any previous or
future gate.

Enumeration 1. Given a single dual input Boolean gate with n possible inputs, how many
combinations of circuits are possible? Since there are n objects (nodes/inputs) taken 2 at a time,
the permutation P(n,2) returns the possible number of combinations. Since two gates are
equivalent if they have the same input, regardless of order, (i.e, AND(x2,x1) ≈ AND(x1,x2)), we
want permutations where order does not count. The combination C(n,2) represents the possible
combinations:

)!2(!2

!)2,(
−

=
n
nnC

For example: Given a single dual input Boolean gate of type AND with possible inputs of {1,2,3},
the possible combinations of gates given these inputs are:
 AND(1,2) ≈ AND(2,1)
 AND(1,3) ≈ AND(3,1)
 AND(2,3) ≈ AND(3,2)

n = 3
C(3,2) = 3! / 2!(3-2)! = 6/2 = 3

Enumeration 2. If we allow gates to receive identical inputs, then given a single dual input
Boolean gate with n possible inputs, the number of possible combinations of inputs to gate (with
repetition) is given by adding the combination C(n,2) with the possible number of repeated input
combinations. For input size n, there n possible repeated input combinations (i.e, (1,1), (2,2), …
(n,n)). Given 2 inputs and n ways to choose them, the number of possible gate combinations is:

 n
n
nnnC +
−

=+
)!2(!2

)!()2,(

For example: Given a single dual input Boolean gate of type AND with possible inputs of {1,2,3},
the possible combinations of gates given these inputs are:
 AND(1,1)
 AND(1,2) ≈ AND(2,1)
 AND(1,3) ≈ AND(3,1)
 AND(2,2)
 AND(2,3) ≈ AND(3,2)
 AND(3,3)

n = 3
C(3,2) + 3 = 3! / 2!(3-2)! + 3 = 3 + 3 = 6

n
n
nnnC +
−

=+
)!2(!2

)!()2,(is equivalent to
)!2(!2

)!()2,1(
−

=+
n
nnC

198

2!2
)1(

!!2
)1(!

!!2

)1(!
)!1(!2
)1(!

)!21(!2
)!1()2,1(

2 nnnn
n

nnn

n
n

nn
n
nn

n
nnC +

=
+

=
+

=
+

=
−
+

=
−+

+
=+

22
2

22
)1(

!!2
)1(!

)1(
!!2

!
)!2(!2

!)2,(
22 nnnnnnnnn

n
nnnn

nn
n

nn
n
nnnC +

=+
−

=+
−

=+
−

=+

−

=+
−

=+

So, let)2,1(+nC represent the number of possible combinations of a single dual input Boolean
gate with n possible inputs.

Enumeration 3. Given a basis Ω with size |Ω|, the number of possible combinations of all single
dual input Boolean gates over this basis with n possible inputs is given by the total number of
possible input combinations per gate (from Definition 2, assuming we allow replicated inputs)
times the total number of possible gate types (give by the basis size |Ω|). Therefore, the number
of possible combinations is:

)!1(2

)!1(||||*
)!21(!2

)!1(||)*2,1(
−

+Ω
=Ω

−+
+

=Ω+
n

n
n
nnC

Enumeration 4. Let a circuit be defined by its inputs n and a set of gates {Gtn+1, Gt n+2,… , Gt n+s}.
We want to find the number of different possible circuits that can be created from the
combinations of gates over a basis Ω with input size n. Each gate in the circuit may be defined
only by inputs from any previous gate of the circuit. Therefore, the first gate in the circuit has
possible combinations based only on the input size of the circuit. All subsequent gates in the
circuit can be derived from combinations of inputs that come from any previous gates, including
the inputs.

Let G1 represent the number of possibilities for a 1-gate circuit (size s = 1) of input size n and
basis Ω, assuming we allow replicated inputs. G1 is given by Definition 3:

 G1 =
)!1(2

)!1(||||*
)!21(!2

)!1(||)*2,1(
−

+Ω
=Ω

−+
+

=Ω+
n

n
n
nnC

Enumeration 5. For a 2 gate-circuit (size s = 2) with basis Ω and input size n, the total number
of possible inputs for Gate 1 (G1) comes from only from the n inputs INPUTSn = {x1, .., xn}. The
number of possible gate configuration for Gate 1 is given by:

 G1 =
)!1(2

)!1(||||*
)!21(!2

)!1(||)*2,1(
−

+Ω
=Ω

−+
+

=Ω+
n

n
n
nnC

The number of inputs for Gate 2 derives from all possible combinations of {G1 ∪ INPUTSn}. The
possibilities for input to Gate 2 are the number of possible inputs choose 2 (since it is a dual input
Boolean gate). This is identical to the previous definition, except we have one more input to
choose from: n + 1 + 1 = n + 2. G2 is therefore given by:

 G2 =
!2

)!2(||||*
)!22(!2

)!2(||)*2,2(
n
n

n
nnC +Ω

=Ω
−+

+
=Ω+

The number of possible 2-gate circuits for basis Ω and input size n is given by G1 * G2, since
every possible Gate 1 (whose size is given by G1) has G2 possibilities for Gate 2 with which to
complete the 2-gate circuit.

199

Enumeration 6. Given an s-gate (size s) circuit C with gate set {Gtn+1, Gtn+2,… ,Gtn+s}, under
basis Ω and having input size n, the total number of possible combinations for any given gate z
(Gz) in the set of gates for C is given by the following relationship, from Definition 4 and 5:

 Gz =
)!2(!2

)!(||||)*2,(
−+

+Ω
=Ω+

zn
znznC

Enumeration 7. Given a circuit C of size s with input size n, the number of possible s-gate circuit
combinations GC possible under basis Ω is given by the product of the possibilities of each of the
individual gate possibilities.

 ∏
=

=
s

i
iC GG

1

From Enumeration 6:

 ∏
=

Ω+=
s

i
C inCG

1

||)*2,(

200

APPENDIX D

PROGRAM ENCRYPTION ARCHITECTURE

The Mobile Agent Software Code Obfuscation Tool (MASCOT) provides a foundational set of
applications for implementing and testing basic functionality associated with our theoretic results.
We have created a suite of applications that support the analysis work for the techniques
described in Section 5.4, 5.6, and 5.7. Figure 150 illustrates the basic architecture to support
circuit randomization and program black-box encryption. The Encryption Program Generation
Engine (EPGE) provides key-based unique data ciphers with associated recovery mechanisms
for use in program concatenation (accomplished by Program Output Concatenation Engine or
POCE). EPGE and POCE provide the basic functionailthy for taking input program P and
creating program P” = E(P,K). The TANGLE portion of the architecture takes program P” and
performs code-level randomization that approximates the random selection of a circuit from the
family of circuits that all implement the one-way function E. The output of the circuit replacement
library and TANGLE interaction represents the final encrypted program P’.

Figure 150: MASCOT Generalized Randomization

Figure 151 gives a deployment diagram for several architecture components that support the
generation and viewing of BENCH format circuits. We discuss each component of our system in
detail following. The bench component takes in BENCH format circuit-description files (discussed
next in Appendix E) and outputs a C file that creates a Boolean Expression Diagram (BED)
version of the circuit. The BED libraries are currently limited to UNIX/LINUX gcc implementation,
particularly where gcc is version 3.3.4 or earlier. Unfortunately, more current gcc versions do not
support deprecated features that the original BED libraries use extensively [204]. Future work will
involve creating custom BED (or DAG) manipulation libraries for both randomization and
visualization. We primarily use the BED libraries for visualization and we would need to expand
the library to incorporate native ability to select and replace sub-circuits or DAG sub-graphs with
specific properties. We must compile the BED C file (which we can produce on PC or LINUX
using standard C calls) under GCC version 3.4.4 on a Linux platform. Once compiled, we take the
executable version of the BED circuit file and use it to create a graphical view of the circuit
(currently). The executable BED circuit produces a DOT representation (discussed further in
Appendix E and F) that graphically describes the DAG in a hierarchiacal form. The DOT file
creates a corresponding graphical file using a standard PC-based tool known as graphviz.

201

Figure 151: ISCAS, BENCH, BED Deployment Diagram

The circuit generation library (cxl) currently runs only on LINUX platforms as well and we will
in future work port it to work in generic/portable C++ or Java libraries. Figure 152 describes the
series of components that we use to interface with the cxl library that requires pregeneration of
circuits that supports non-linear selection and replacement. The circuit generation library
currently produces binary representation of circuits (not BENCH format) and future work will
involve interfacing and porting the cxl library to interact directly with native BENCH format circuit
representations. The end-goal is to provide a functionality to read in a BENCH format
description, select a sub-circuit from within the DAG representation (with characteristic properties
such as fan-in, fan-out, or depth), and then replace that sub-circuit with a semantically equivalent
version. Once this functionality is complete, we can then perform this operation in a round-based
fashion. Future experimentation will involve determing how many rounds of selection and
replacement are necessary to randomize fully an input circuit with measurable properties.

Figure 152: Circuit Generation Library and Replacemen

202

We describe now the specific components that support end-to-end program and circuit
encryption. Figure 72 (p. 112) and Figure 73 (p. 115) give a high-level overview of our
generalized circuit randomization process and our perfect white-box protection technique. We
outline the codebase that currently suppots program-level and circuit-level analysis work as
follows.

EVALUATE. We need the ability to take a circuit specification and simulate its gates using
input to produce real output. The EVALUATE component provides this functionality by taking an
ISCAS BENCH format circuit and an associated input for that circuit. Typically, we require the full
2n range of n possible inputs. Figure 153 illustrates that EVALUATE reads the circuit description,
allocates appropriate data structures for each gate and input, applies the inputs provided, and
evaluates the circuit for each input to produce an associated output. The output of the
component is a truth table formatted (input with output) or single data column (output) that
represents the full execution of the circuit on all inputs. Currently, both input and output data is in
textual (as opposed to binary) form of ASCII ones and zeros (0/1). The figure illustrates the C-17
benchmark circuit after evaluation: all inputs and all outputs in truth table form.

Figure 153: MASCOT-EVALUATE Component

00000 00
00001 00
00010 11
00011 11
00100 00
00101 01
00110 11
00111 11
01000 00
01001 00
01010 11
01011 11
01100 00
01101 01
01110 00
01111 01
10000 10
10001 10
10010 11
10011 11
10100 10
10101 11
10110 11
10111 11
11000 10
11001 10
11010 11
11011 11
11100 00
11101 01
11110 00
11111 01

C17.tt.txt

c17
5 inputs
2 outputs
0 inverter
6 gates (6 NANDs)

INPUT(1)
INPUT(2)
INPUT(3)
INPUT(6)
INPUT(7)

OUTPUT(22)
OUTPUT(23)

10 = NAND(1, 3)
11 = NAND(3, 6)
16 = NAND(2, 11)
19 = NAND(11, 7)
22 = NAND(10, 16)
23 = NAND(16, 19)

C17.bench.txt

203

GENINPUT. As Figure 154 illustrates, GENINPUT produces a text based elaboration of all
inputs given some input size n. The output file is the 2n textual form of all inputs from {0}n to {1}n.
We can then use such input files to evaluate data ciphers or circuits (using EVALUATE) or to
produce truth table collections.

Figure 154: MASCOT-GENINPUT Component

PAD. Figure 155 illustrates the PAD component which takes some number of bits and an

existing textual file with binary inputs represented as 0/1 ASCII strings. PAD takes the original file
and prepends n number of 0 digits to each input row value. Such functionality is useful for
convertring circuit or program outputs to larger forms in order to meet input requirements for
target circuits (such as 3DESBIN). For elaborating data ciphers outputs given all inputs, such a
tool provides the ability to format input properly.

Figure 155: MASCOT-PAD Component

DEPAD. Figure 156 illustrates another input formatting tool that allows us to strip away the

superflous 0 bits from a series of binary strings. The program calculates the largest pre-string of
0s common to all strings in the file and then depads that number of bits from each binary string.
This component is useful for formatting outputs of ciphers (such as RSABIN) that produce non-
uniform output.

204

Figure 156: MASCOT-DEPAD Component

RANDCIRCUIT. In order to analyze the properties of random

circuits based on some basis, an input and output size, and some
maximum number of circuits, we find it useful to create circuits with
random properties and specified parameters. Figure 157 illustrates
that RANDCIRCUIT produces an ISCAS BENCH format specification
based on given parameters. Currently, we only consider combination
circuit logic and the possibility exists for future sequential
consideration. RANDCIRCUIT first ensures that all inputs are used,
the total gate size is reached, and that the basis gates are distributed
uniformly across wires. Future work will involve changing the core
randomization algorithm and examining variance across circuit
encarnations. Figure 157 lists the BENCH code for a 10 input, 2
output random circuit with 30 total gates.

Figure 157: MASCOT-RANDCIRCUIT Component

NANDCONVERT. Figure 158 illustrates a rudimentary component
for circuit specification manipulation. Specifically, we need the ability
to examine uniform bases such as {NAND} and understand their effect
on circuit recognition and randomization properties. We provide a
NANDCONVERT feature that reads in a circuit description in BENCH format and produces an
equivalent NAND only version. The conversion performs a gate-by-gate conversion process that
ensures a semantically equivalent circuit version, in BENCH format.

r10-2-30g
10 inputs
2 outputs
30 total gates

INPUTS
INPUT(C1)
INPUT(C2)
INPUT(C3)
INPUT(C4)
INPUT(C5)
INPUT(C6)
INPUT(C7)
INPUT(C8)
INPUT(C9)
INPUT(C10)

OUTPUTS
OUTPUT(C39)
OUTPUT(C40)

GATES
C11 = NAND(C8, C6)
C12 = NAND(C1, C6)
C13 = NAND(C9, C6)
C14 = NAND(C8, C6)
C15 = NAND(C7, C6)
C16 = NAND(C1, C6)
C17 = NAND(C5, C5)
C18 = NAND(C4, C10)
C19 = NAND(C2, C3)
C20 = NAND(C11, C16)
C21 = NAND(C11, C14)
C22 = NAND(C18, C16)
C23 = NAND(C19, C11)
C24 = NAND(C10, C14)
C25 = NAND(C15, C19)
C26 = NAND(C20, C11)
C27 = NAND(C18, C18)
C28 = NAND(C13, C15)
C29 = NAND(C13, C22)
C30 = NAND(C23, C14)
C31 = NAND(C25, C16)
C32 = NAND(C13, C14)
C33 = NAND(C14, C17)
C34 = NAND(C19, C15)
C35 = NAND(C23, C29)
C36 = NAND(C33, C29)
C37 = NAND(C34, C27)
C38 = NAND(C17, C18)
C39 = NAND(C13, C36)
C40 = NAND(C22, C15)

205

Figure 158: MASCOT-NANDCOVERT Component

RSABIN. Figure 159 illustrates a useful component to support EPGE operations under both

white-box perfect encryption and circuit randomization. As we state in our theoretical results, the
beginning point of program encryption are one-way functions. We provide RSABIN as program
that will take an RSA key (modulus,E,D) and a sequence of binary string inputs (in ASCII) and
then produce the corresponding ciphertext for each string using the RSA algorithm. The program
is useful for concatenating outputs of a program as input to an RSA cipher with a specific key.
RSABIN has options to format the output either as a single output column or as a truth table
version. The program also has the option to perform encrypt or decrypt operations (or both) on
given binary string inputs.

Figure 159: MASCOT-RSABIN Component

3DESBIN. Much like RSABIN, 3DESBIN provides functionality to create binary string output

given binary string input based on a 3DES cipher algorithm. Figure 160 illustates input as 64-bit
binary strings and output as 64-bit binary strings, assuming a given set of 3DES keys (56-bits
each). The 3DESBIN component allows the easy creation of truth table formatted output that
supports canonical circuit creation and minimization.

206

Figure 160: MASCOT-3DESBIN Component

CONCAT. This component takes two inputs circuits A and B (in ISCAS BENCH format) and

creates a new circuit C such that ∀x, C(x) = B(A(x)). This component supports concatentation of
a target program P with a key-embedded data cipher algorithm EK. Figure 161 illustrates circuit A
(5 input/3 output) and circuit B (8 input, 4 ouput) concated together to produce circuit C (5 input/4
output). In this example, the output of circuit A (3 bits) must be padded to 8 bits (5 pad bits) in
order to match the input specification for circuit C.

Figure 161: MASCOT-CONCAT Component

MERGE. This component takes two inputs circuits A and B (in ISCAS BENCH format) and

creates a new circuit C such that ∀x, C(x) = A(x) X B(x). The merge functionality indicates that
the composite circuit (C) takes the input space of both A and B and produces a binary output
string that is the output of A(x) concatenated with the output of B(x). Figure 162 illustrates circuit
A (4 inputs/3 outputs) and circuit B (8 inputs/4 outputs) merged to produce circuit C with 4+8 (12)
inputs and 3+4 (7) outputs. Merge operations support circuit obfuscation techniques where we
introduce multi-function logic in order to confuse or obscure true functionality or logic. We may
also use such techniques to provide a smart form of padded input, especially when the merged
circuit is a randomly selected circuit with fixed input and output.

207

Figure 162: MASCOT-MERGE Component

EMBEDMULTI. Figure 163 illustrates the EMBEDMULTI component within MASCOT that

produces a simple, perfect secrecy encryption circuit (A) and appropriate recovery circuit (R)
based on a given key schedule. The perfect secrecy cipher provides a useful and simple
technique to create experimental encryption circuits used to concatenate the output of a target
circuit or program P. The cipher circuits provide a customizable input and output interface for
target programs with specific number of output bits.

Figure 163: MASCOT-EMBEDMULTI Component

CIRC2PROG. Figure 164 illustrates the operation of the CIRC2PROG component that takes

any ISCAS BENCH format file and creates a semantically equivalent C program using a custom
Boolean component library that we developed in our research. The C program takes the same
number of inputs, produces the same number of outputs as the BENCH circuit, and ensures truth
table equivalence of both. The custom C library operates on binary string data (in ASCII format)
and uses C library routines to simulate individual dual Boolean gate operations (AND, OR, XOR,
NOR, etc). The CIRC2PROG component provides a seamless method for creating native binary
programs for various architectures (PC, LINUX, etc.) based on BENCH logic. The equivalent C
program takes identicial input and produces identical output as the BENCH circuit.

208

Figure 164: MASCOT-CIRC2PROG Component

CIRCUITGEN. Figure 165 represents unrealized functionality of a circuit generation library

that produces BENCH format circuit descriptions for a family of circuits with the same input/output
size, maximum gate size, and basis. We currently employ a circuit generation library running
under UNIX/LINUX that produces binary formatted circuit descriptions in compact notation.
Figure 166 illustrates the binary specification format for single output functions with small number
of inputs and gate size. We generate all circuits with the specified size and I/O footprint and
categorize them according to signature. Future work will involve the use of ISCAS/BENCH
representations instead of binary/logic representations. CIRCUITGEN directly support sub-
circuit identification and replacement by giving us the ability to elaborate all circuits with a known
signature and I/O footprint.

Figure 165: MASCOT-CIRCUITGEN Component

Figure 166: Circuit Library Specification (Binary)

209

CANONICAL. Figure 167 illustrates one of the key architectural components to support

perfect white-box encryption operations. CANONICAL takes as input a textual truth table file and
realizes a complete sum-of-products circuit expression that reproduces the semantics of the truth
table. CANONICAL currently does not perform any minimization on the complete SOP form, but
we will incorporate such options in future work. The ISCAS format circuit represents the Boolean
logic that exactly implements the supplied truth table. This component is the practical realization
for perfectly white-box protected circuits created via concatentation using strong data ciphers (P +
E).

Figure 167: MASCOT-CANONICAL Component

210

APPENDIX E

ISCAS CIRCUIT DEFINITIONS AND BENCH FORMAT

In order to facilitate circuit randomization techniques (described in Section 5.6), we chose a
standard textual circuit representation language and a well-known set of benchmark circuits that
provide combination logic to work with. Davidson and Harlow provide an overview of the process
involved for benchmark-circuit library development in [380]. As they describe, Franc Brglez and
Hideo Fujiwara began work in 1984 on initial collection of combinational circuit benchmarks for
use in automatic test pattern generation (ATPG). Researchers presented results for using these
circuits in 1985 at the International Symposium on Circuits and Systems (ISCAS). The ISCAS ’85
benchmarks (seen in Table 30), and their successors, are now available in several net list
formats. The Association for Computing Machinery, Design Automation Special Interest Group
(ACM/SIGDA) benchmarks as well as the ITC suite provides us with a future body of known logic
that includes both sequential and combinational testing possibilities. Hansen et al. [203] provide
a summary of their reverse engineering work on the ISCAS 85 circuits and Table 30 presents
several of their high-level functional graphical representation views.

Figure 168 illustrates the C-17 benchmark in BENCH notation and a sample logic circuit with 5
inputs and 2 outputs (with 5 logic gates). BENCH is a circuit description language originally
utilized for describing ISCAS-85 benchmarks but that still remains widely used in academia and
industry for testing18. Figure 169 illustrates the BENCH format in extended BNF notation.
Circuits based on sequential logic use Boolean gates with feedback, such as flip-flops. Such
netlists do map to directed acyclic representations because cycles are inherently present with
feedback or memory logic. Several academic and industrial tools are equipped to convert
BENCH formats to other textual representation forms such as VHDL, Verilog, and library
exchange format (LEF).

(a) C17-Benchmark Circuit (b) 5-input/2 Output/5 Gate Circuit

Figure 168: BENCH Circuit Format

18 See http://www.fm.vslib.cz/~kes/asic/iscas/

211

Table 30: High Level View of ISCAS-85 Circuit Library
c432 : 27-channel interrupt controller

36 inputs
7 outputs
160 logic gates
5 major functional blocks

c499/c1355: 32-bit single error correcting
circuit

41 inputs / 32 outputs
202 (546) logic gates
2 major functional blocks

c880: 8-bit ALU

60 inputs
26 outputs
383 logic gates
7 major functional blocks

c1908: 16-bit single error correcting /
double error detecting circuit

33 inputs / 25 outputs
880 logic gates
6 major functional blocks

c2670: 12-bit ALU and controller 233 inputs / 140 outputs

1,193 logic gates / 7 major functional blocks
c3540: 8-bit ALU 50 inputs / 22 outputs

1,699 logic gates / 11 major functional blocks
c5315: 9-bit ALU 178 inputs / 123 outputs

2,307 logic gates / 10 major functional blocks
c6288 : 16x16 multiplier 32 inputs / 32 outputs

2,406 logic gates / 240 major functional blocks
c7552 : 32-bit adder/comparator 207 inputs / 108 outputs

3,512 logic gates / 8 major functional blocks

212

Figure 169: BENCH Grammar in Extended BNF Notation

213

APPENDIX F

BOOLEAN EXPRESSION DIAGRAMS

Solving constraint satisfaction problems and formal verification have been catalyst to a myriad
of graphical structures that support graph-based Boolean function manipulation: Binary Decision
Diagrams (BDD), Reduce Ordered Binary Decision Diagrams (ROBDD), FDD, OBDD, ADD,
MTBDD, BMD, KMDD, and BGD to name a few. Anderson and Hulgaard [204] develop Boolean
Expression Diagrams (BEDs) as another extension to BDDs; these forms can represent any
Boolean function in linear space and provide standard graph-based tools for dealing with
combinational-level logic problems. BEDs have been useful for efficiently determining circuit
equivalence. Although varieties of graphical representation languages exist for combinational
circuits, we chose BEDs because they come with an available library of functions in C that prove
useful for implementation.

Anderson and Hulgaard provide a library for manipulating and creating BEDs. There libraries
support algorithms that transform a BED into a reduced ordered BDD (ROBDD): one algorithm
using the BDD apply-operator and the other exploiting information of the Booelan expression.
Standard BDD techniques present NP-complete problems that are infeasible to solve while BED
approaches give relatively fast solution possibilities. In particular, Anderson and Hulgaard define
a Boolean Expression Diagram in [204] as follows:

Definition 19. (Boolean Expression Diagram) A BED is a directed acyclic graph G = (V,
E) with vertex set V and edge set E. The vertex set V contains three types of vertices:
terminal, variable, and operator.

A terminal vertex v has as attributes a value value(v) ∈ {0,1}
A variable vertex v has as attributes a variable var(v), and two sons low(v), high(v) ∈ V.
An operator vertex v has as attributes a binary Boolean operator op(v), and two sons
low(v), high(v) ∈ V.

The edge set E is defined by {(v,low(v)), (v,high(v)) | v ∈ V and v is not a terminal vertex}. 0
and 1 are the two terminal vertices. Variable vertices correspond to the if-then-else
operator x→f1, f0 = (x ∧ f1) ∨ (¬x ∧ f0). Operator vertices correspond to their respective
Boolean connectives, leading to a correspondence between BEDs and Boolean functions.

We utilize the code libraries for BEDs to build DAG representations of various combinational

circuits in our architecture. We can construct BED nodes in either reduced or unreduced form: A
BED program with reductions turned on will produce DAG representations with simplified Boolean
expressions in reduced form. BED programs are normally used to define constraint satisfaction
problems. In the MASCOT architecture, we utilize the inherent graphical display capabilities of
the BED libraries to visualize and analyze combinational circuits. In order to use the BED
libraries, a C pogram must include the BED C/C++ libraries and make appropriate library calls. A
basis BED program allocates space for variables, creates bed nodes, and then performs other
BDD operations as appropriate.

Our framework only currently produces a graphical version of the BED in DOT19 notation by
using the bed_io_graph() library call. DOT is an opensource graphics library that draws directed
graphs as hierarchies. It reads attributed files (which we create using BED programs specific to a
particular circuit) and writes out drawings in other graphical formats (GIF, JPG, PNG, SVG,
Postscript). DOT specifies its own language, which we may use in future work to replace the
BED libraries with our own custom DAG manipulation tools. Figure 170 illustrates the custom C

19 http://www.graphviz.org/Documentation/dotguide.pdf

214

file we create from a BENCH specification (in this case, the C-17 ISCAS benchmark seen in
Figure 61 and Figure 62 on p. 92). Once this program is compiled and executed, it produces a
DOT file representing the BED graphical representation (either reduced or unreduced) of the
circuit.

#include <stdio.h>
#include "bed.h"
#include "bedio.h"

int main()
{
 FILE *outFile;

 bed_init(800*1024, 500*1024);
 bed_node_list *nodes = il_new();

 bed_var vin = bed_new_variables(256);

 bed_node c1 = bed_mk_var(vin, bed_false, bed_true);
 il_append (nodes, c1);
 bed_node c2 = bed_mk_var(vin+1, bed_false, bed_true);
 il_append (nodes, c2);
 bed_node c3 = bed_mk_var(vin+2, bed_false, bed_true);
 il_append (nodes, c3);
 bed_node c6 = bed_mk_var(vin+3, bed_false, bed_true);
 il_append (nodes, c6);
 bed_node c7 = bed_mk_var(vin+4, bed_false, bed_true);
 il_append (nodes, c7);
 bed_node c10 = bed_mk_op (BED_NAND, c1, c3);
 il_append (nodes, c10);
 bed_node c11 = bed_mk_op (BED_NAND, c3, c6);
 il_append (nodes, c11);
 bed_node c16 = bed_mk_op (BED_NAND, c2, c11);
 il_append (nodes, c16);
 bed_node c19 = bed_mk_op (BED_NAND, c11, c7);
 il_append (nodes, c19);
 bed_node c22 = bed_mk_op (BED_NAND, c10, c16);
 il_append (nodes, c22);
 bed_node c23 = bed_mk_op (BED_NAND, c16, c19);
 il_append (nodes, c23);

 if ((outFile = fopen("c17.dot", "w")) == NULL) {
 printf ("File could not be opened\n");
 exit(0);
 }

 bed_io_graph (outFile, nodes);
 bed_done();

 close (outFile);
 return 0;
}

Figure 170: BED C Program Created from C-17 BENCH Specification

To illustrate the graphical properties of the same circuit and the variability of circuit
representation themselves, we consider next an example circuit description (P)
with 3 inputs and 2 outputs. We can represent the circuit under different
bases as well: Ω = {AND, OR, NAND, NOR, XOR, XNOR} and Ω = {NAND}.
We show also the truth table view for the larger base circuit.

P, Ω = {AND, OR, NAND, NOR, XOR, XNOR} P, Truth Table P, Ω = {NAND}

Figure 171: Example Circuit P – Gate Level and Truth Table View

INPUT(3)
INPUT(2)
INPUT(1)

OUTPUT(7)
OUTPUT(6)

4a = NAND(3, 2)
4 = NAND(4a, 4a)
5a = NAND(4, 4)
5b = NAND(1, 1)
5 = NAND(5a, 5b)
6a = NAND(4, 4)
6b = NAND(3, 3)
6c = NAND(3, 6a)
6d = NAND(4, 6b)
6 = NAND(6c, 6d)
7 = NAND(5,6)

INPUT(3)
INPUT(2)
INPUT(1)

OUTPUT(7)
OUTPUT(6)

4 = AND(3,2)
5 = OR(4,1)
6 = XOR(4,3)
7 = NAND(5,6)

215

Using example circuit P, we now illustrate several variations of this circuit with different BED
manifestations. Figure 172 shows the original and all-NAND versions of P in BED format—in
both reduced and unreduced forms. Figure 173 illustrates the canonical sum-of-products view of
circuit P (including the all-NAND version) and their corresponding reduced BED views. Figure
174 illustrates our framework’s ability to characterize the graphical changes incduced by change
of base (to all-NAND) and to visualize the reductions inherent in the BED structure.

Circuit P (Original)

Circuit P (ALL-NAND)

Circuit P (Reduced BED)

Circuit P (ALL-NAND, Reduced BED)

Figure 172: Example Circuit P in BED Notational Views

216

Canonical P (Unreduced)

Canonical P (ALL-NAND, Unreduced)

Canonical P (Reduced)

Canonical P (ALL-NAND, Reduced)

Figure 173: Example Circuit P (Canonical SOP) in BED Notational Views

217

C432 (Unreduced)

C432 (ALL-NAND, Unreduced)

C432 (Reduced)

C432 (ALL-NAND, Reduced)

Figure 174: ISCAS C432 in BED Notational Views

218

REFERENCES

[1] Bradshaw, J., Greaves, M., Holmback, H., Jansen, W., Karygiannis, T., Silverman, B.G., Suri, N.,

and Wong, A., "Agents for the Masses?" IEEE Intelligent Systems, 1999, no. March/April, pp. 53-
63.

[2] Bradshaw, J.M., “An Introduction to Software Agents”, in Software Agents, 1997, AAAI Press,
Menlo Park, Calif., USA: Cambridge, MA, pp. 3-46.

[3] Jennings, N.R. and Wooldridge, M., "Applications of Intelligent Agents", in Agent Technology:
Foundations, Applications, and Markets, Jennings, N. and Wooldridge, M.J. (eds.), 1998, Springer-
Verlag: New York, NY, pp. 3-28.

[4] Labrou, Y., Finin, T., and Peng, Y., "Agent Communication Languages: The Current Landscape",
IEEE Intelligent Systems, 1999, vol. 14, no. 2, pp. 45-52.

[5] Jennings, N.R., Sycara, K., and Wooldridge, M., "A Roadmap of Agent Research and
Development", Journal of Autonomous Agents and Multi-Agent Systems, 1998, vol. 1, no. 1, pp. 7-
38.

[6] Picco, G.P., "Mobile Agents: An Introduction", Journal of Microprocessors and Microsystems, 2001,
vol. 25, no. 2, pp. 65-74.

[7] Ghezzi, C. and Vigna, G., "Mobile Code Paradigms and Technologies: A Case Study", in
Proceeding of the 1st International Workshop on Mobile Agents (MA '97), vol. 1219 of Lecture in
Computer Science, 1997, Springer-Verlag, pp. 39-49.

[8] Fuggetta, A., Picco, G.P., and Vigna, G., "Understanding Code Mobility", IEEE Transactions on
Software Engineering, 1998, vol. 24, no. 5, pp. 342-361.

[9] Carzaniga, A., Picco, G.P., and Vigna, G., "Designing Distributed Applications with a Mobile Code
Paradigm", in Proc. of the 19th International Conference on Software Engineering, 1997, Boston
MA, USA: ACM Press.

[10] Gray, R.S., Cybenko, G., Kotz, D., Peterson, R.A., and Rus, D., "D'agents: Applications and
Performance of a Mobile-Agent System", Software--Practice and Experience, 2002, vol. 32, no. 6,
pp. 543-573.

[11] Merwe, J. and Solms, S., "Electronic Commerce with Secure Intelligent Trade Agents", in
Proceedings of ICICS’97, vol. 1334 of Lecture Notes in Computer Science, 1997, Springer-Verlag,
pp. 452-462.

[12] Kramer, K.H., Minar, N., and Maes, P., "Tutorial: Mobile Software Agents for Dynamic Routing",
Mobile Computing and Communications Review, 1999, vol. 3, no. 2.

[13] Baldi, M., Gai, S., and Picco, G.P., "Exploiting Code Mobility in Decentralized and Flexible Network
Management", in Rothermel, K. and Popescu-Zeletin, R. (eds.), Mobile Agents, vol. 1219 of Lecture
Notes in Computer Science, 1997, Springer, pp. 13-26.

[14] Falchuk, B. and Karmouch, A., "Agentsys, a Mobile Agent System for Digital Media Access and
Interaction on the Internet", in Proc. of the IEEE GLOBECOM ’97, 1997, Phoenix, AZ.

[15] Pozo, S., Gasca, R.M., and Gómez, M.T., "Securing Mobile Agent Based Tele-Assistance
Systems", in Proc. of the 1st International Workshop on Tele-Care and Collaborative Virtual
Communities in Elderly Care (TELECARE 2004), 2004, Porto, Portugal.

[16] Robles, S., Navarro, G., Pons, J., Rifà, J., and Borrell, J., "Mobile Agents Supporting Secure Grid
Environments", in Proc. of the Euroweb 2002 Conference, 2002, Oxford, UK: British Computer
Society, pp. 195-197.

[17] Lubke, D. and Gomez, J.M., "Applications for Mobile Agents in Peer-to-Peer-Networks", in Proc. of
the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based
Systems (ECBS'04), 2004.

[18] Chess, D.M., Grosof, B., Harrison, C., Levine, D., Parris, C., and Tsudik, G., "Itinerant Agents for
Mobile Computing", Journal IEEE Personal Communications, 1995, vol. 2, no. 5, pp. 34-49.

[19] Samaras, G., “Mobile Agents: What About Them? Did They Deliver What They Promised? Are
They Here to Stay?,” in Proc. of the IEEE International Conference on Mobile Data Management
(MDM'04), 2004, Berkeley, California.

[20] Roth, V., “Obstacle to the Adoption of Mobile Agents”, In Proc. of the IEEE International
Conference on Mobile Data Management (MDM'04), 2004, Berkeley, CA.

[21] Bierman, E. and Cloete, E., "Classification of Malicious Host Threats in Mobile Agent Computing",
in Proc. of the 2002 Annual Research Conference of the South African Institute of Computer
Scientists and Information Technologists on Enablement Through Technology, 2002, Port
Elizabeth, South Africa.

[22] Jansen, W. and Karygiannis, T., NIST Special Publication 800-19: Mobile Agent Security, National
Institute of Standards and Technology, 2000.

219

[23] Farmer, W.M., Guttman, J.D., and Swarup, V., "Security for Mobile Agents: Issues and

Requirements", in Proc. of the 19th National Information Systems Security Conference, 1996,
Baltimore, MD.

[24] Chess, D.M., “Security Issues in Mobile Code Systems,” in G. Vigna (ed.), Mobile Agents and
Security, vol. 1419 of Lecture Notes in Computer Science, 1998, Springer-Verlag, p. 1-14.

[25] Sander, T. and Tschudin, C.F., "Protecting Mobile Agents against Malicious Hosts", in Vigna, G.
(ed.), Mobile Agent Security, vol. 1648 of Lecture Notes in Computer Science, 1998, Springer-
Verlag, pp. 44-60.

[26] Cartrysse, K. and van der Lubbe, J.C.A., “Providing Privacy to Agents in an Untrustworthy
Environment”, in Handbook of Privacy and Privacy-Enhancing Technologies, 2003, pp. 79-96.

[27] Algesheimer, J., Cachin, C., Camenisch, J., and Karjoth, G., "Cryptographic Security for Mobile
Code", in Proc. of the IEEE Symposium on Security and Privacy, 2001, pp. 2-11.

[28] Riordan, J. and Schneier, B., "Environmental Key Generation Towards Clueless Agents", in Vigna,
G. (ed.), Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer Science, 1998,
Springer-Verlag, pp. 15-24.

[29] Borselius, N., Mitchell, C.J., and Wilson, A.T., "On Mobile Agent Based Transactions in Moderately
Hostile Environments", in Proc. of the Advances in Network and Distributed Systems Security, IFIP
TC11 WG11.4 First Annual Working Conference on Network Security, 2001, KU Leuven, Belgium:
Kluwer Academic Publishers, Boston.

[30] Kotzanikolaou, P., Burmester, M., and Chrissikopoulos, V., "Secure Transactions with Mobile
Agents in Hostile Environments", in Proc. of the 5th Australasian Conference on Information
Security and Privacy, 2000.

[31] Yee, B., "A Sanctuary for Mobile Agents", in Vitek, J. and Jensen, C. (eds.), Secure Internet
Programming: Security Issues for Mobile and Distributed Objects, vol. 1603 of Lecture Notes in
Computer Science, 1999, Springer-Verlag, pp. 261-274.

[32] Wilhelm, U.G., Staamann, S., and Buttyán, L., "Introducing Trusted Third Parties to the Mobile
Agent Paradigm", in Secure Internet programming: Security Issues for Mobile and Distributed
Objects, vol. 1603 of Lecture Notes in Computer Science, 2001, Springer-Verlag, pp. 469 - 489.

[33] Tan, H.K. and Moreau, L., "Extending Execution Tracing for Mobile Code Security", in Proc. of the
2nd Intl Workshop on Security of Mobile MultiAgent Systems (SEMAS'2002), 2002, Bologna, Italy.

[34] Hohl, F., "Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts", in
Vigna, G. (ed.), Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer Science,
1998, Springer, pp. 92-113.

[35] Yahalom, R., Klein, B., and Beth, T., "Trust Relationships in Secure Systems-a Distributed
Authentication Perspective", in Proc. of the IEEE Symposium on Research in Security and Privacy,
1993.

[36] Blaze, M., Feigenbaum, J., and Lacy, J., "Decentralized Trust Management", in Proc. of the IEEE
Conference on Security and Privacy, 1996, Oakland, CA.

[37] Grandison, T. and Sloman, M., "A Survey of Trust in Internet Applications", IEEE Communications
Surveys & Tutorials, 2000, vol. 4th Quarter.

[38] Burmester, M. and Yasinsac, A., "Trust Infrastructures for Wireless, Mobile Networks", WSEAS
Transactions on Telecommunications, 2004, vol. 3, no. 1, pp. 377-382.

[39] Tan, H.K. and Moreau, L., "Trust Relationships in a Mobile Agent System", in Picco, G. (ed.),
Proceedings of the 5th IEEE International Conference on Mobile Agents, vol. 2240 of Lecture
Notes in Computer Science, 2001, Springer-Verlag, pp. 15-30.

[40] Robles, S. and Borrell, J., "Trust in Mobile Agent Environments", in Proc. of the 7th Spanish Meeting
about Cryptology and Information Security, 2002, Oviedo.

[41] Kagal, L., Finin, T., and Joshi, A., "Developing Secure Agent Systems Using Delegation Based
Trust Management", in Proc. of the 2nd International Workshop on Security of Mobile MultiAgent
Systems (SEMAS'2002), 2002, Bologna, Italy.

[42] Lin, C., Varadharajan, V., Wang, Y., and Mu, Y., "On the Design of a New Trust Model for Mobile
Agent Security", in 1st International Conference on Trust and Privacy in Digital Business
(TrustBus´04), Zaragoza, Spain, vol. 3184 of Lecture Notes in Computer Science, 2004, Springer-
Verlag, pp. 60-69.

[43] Zachary, J. and Brooks, R., "Bidirectional Mobile Code Trust Management Using Tamper Resistant
Hardware", Mobile Networks and Applications, 2003, vol. 8, no. 2, pp. 137-143.

[44] McDonald, J.T. and Yasinsac, A., "Of Unicorns and Random Programs", To appear in Proc.of the
3rd IASTED International Conference on Communications and Computer Networks
(IASTED/CCN), 2005, Marina del Rey, CA.

220

[45] Odell, J., "Objects and Agents Compared", Journal of Object Technology, 2002, vol. 1, no. 1, pp.

41-53.
[46] Lange, D., "Mobile Objects and Mobile Agents: The Future of Distributed Computing?" in Jul, E.

(ed.), Proceedings of ECOOP’98, vol. 1445 of Lecture Notes in Computer Science, 1998, Springer-
Verlag, pp. 1-12.

[47] Franklin, S. and Graesser, A., "Is It an Agent, or Just a Program? A Taxonomy for Autonomous
Agents", in Proc. of the Workshop on Intelligent Agents III, Agent Theories, Architectures, and
Languages, 1996, pp. 21-35.

[48] Cubillos, C.F. and Guidi-Polanco, F., "Security Isues on Agent-Based Technologies", in Proc. of the
VIP Scientific Forum of the International IPSI-2003 Conference, 2003.

[49] Rao, A. and Georgeff, M., "Bdi Agents: From Theory to Practice", in Proc. of the 1st International
Conference on MAS (ICMAS’ 95), 1995, San Francisco, CA.

[50] Decker, K., Williamson, M., and Sycara, K., "Matchmaking and Brokering", in Proc. of the 2nd
International Conference on Multi-Agent Systems (ICMAS-96), 1996, pp. 432.

[51] Object-Management-Group, "Agent Technology Green Paper", Agent Working Group, OMG
Document ec/2000-03-01, Version 1.0. 2000.

[52] Tosic, P.T. and Agha, G.A., "Towards a Hierarchical Taxonomy of Autonomous Agents", in Proc. of
the IEEE International Conference on Systems, Man and Cybernetics, 2004, The Hague, The
Netherlands.

[53] Wooldridge, M. and Jennings, N.R., "Intelligent Agents: Theory and Practice", The Knowledge
Engineering Review, 1995, vol. 10, no. 2, pp. 115-152.

[54] Jennings, N.R., "Building Complex, Distributed Systems: The Case for an Agent-Based Approach",
Communications of the ACM, 2001, vol. 4, no. 4, pp. 35-41.

[55] Weiss, G., "Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence", 1999,
Cambridge, MA: The MIT Press.

[56] Gilbert, D., Aparicio, M., Atkinson, B., Brady, S., Ciccarino, J., Grosof, B., O’Connor, P., Osisek, D.,
Pritko, S., Spagna, R. and Wilson, L., "IBM Intelligent Agent Strategy", White Paper, 1995.

[57] Rothermel, K. and Schwehm, M., "Mobile Agents", Encyclopedia for Computer Science and
Technology, Kent, A. and Williams, J.G. (eds.), 1998, New York: M. Dekker Inc.

[58] Lange, D. and Oshima, M., "Seven Good Reasons for Mobile Agents", Communications of the
ACM , 1999, vol. 42, no. 3, pp. 88-89.

[59] Kotz, D. and Gray, R.S., "Mobile Agents and the Future of the Internet ", ACM Operating Systems
Review, 1999, vol. 33, no. 3, pp. 7-13.

[60] Chess, D.M., Harrison, C.G., and Kershenbaum, A., "Mobile Agents: Are They a Good Idea?" in
Vitek, J. and Tschudin, C.F. (eds.), Mobile Object Systems: Towards the Programmable Internet,
vol. 1222 of Lecture Notes in Computer Science, 1997, Springer-Verlag, pp. 46-48.

[61] Riordan, J. and Schneier, B., "Environmental Key Generation Towards Clueless Agents", in Vigna,
G. (ed.), Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer Science, 1998,
Springer-Verlag, pp. 15-24.

[62] Milojicic, D., "Mobile Agent Applications", IEEE Concurrency, 1999, vol. 7, no. 3, pp. 80-90.
[63] Hohl, F., "A Framework to Protect Mobile Agents by Using Reference States", in Proc. of the 20th

International Conference on Distributed Computing Systems (ICDCS 2000), 2000.
[64] Bellavista, P., Corradi, A., Federici, C., Montanari, R., and Tibaldi, D., "Security for Mobile Agents:

Issues and Challenges", in Handbook of Mobile Computing, 2004.
[65] Schoeman, M. and Cloete, E., "Architectural Components for the Efficient Design of Mobile Agent

Systems", in Proc. of the 2003 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists on Enablement through Technology, 2003:
South African Institute for Computer Scientists and Information Technologists, pp. 48-58.

[66] Altmann, J., Gruber, F., Klug, L., Stockner, W., and Weippl, E., "Using Mobile Agents in Real
World: A Survey and Evaluation of Agent Platforms", in Proc. of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS at the 5th International Conference on
Autonomous Agents, 2001, Montreal, Canada: ACM Press.

[67] Wong, D., Paciorek, N., and Moore, D., "Java-Based Mobile Agents", Communications of the ACM
42(3), 1999, pp. 92.

[68] Fuggetta, A., Picco, G.P., and Vigna, G., "Understanding Code Mobility", IEEE Transactions on
Software Engineering, 1998, vol. 24, no. 5, pp. 342-361.

[69] Rothermel, K., Hohl, F., and Radouniklis, N., "Mobile Agent Systems: What Is Missing?" in Proc. of
the International Working Conference on Distributed Applications and Interoperable Systems
(DAIS'97), 1997, Cottbus, Germany, pp. 111-124.

221

[70] Thorn, T., "Programming Languages for Mobile Code", ACM Computing Surveys, 1997, vol. 29, no.

3, pp. 213-239.
[71] Vitek, J. and Castagna, G., "Towards a Calculus of Secure Mobile Computations", in Proc. of the

Workshop on Internet Programming Languages, 1998, Chicago, IL.
[72] Serugendo, G., Muhugasa, M., and Tschudin, C., "A Survey of Theories for Mobile Agents", World

Wide Web, 1998, vol. 1, no. 3, pp. 139-153.
[73] Borselius, N. and Mitchell, C.J., "Securing FIPA Agent Communication", in Proc. of the 2003

International Conference on Security and Management (SAM'03), 2003, Las Vegas, Nevada, USA:
CSREA Press, pp. 135-141.

[74] Yee, B., "Monotonicity and Partial Results Protection for Mobile Agents", in Proc. of the 23rd
International Conference on Distributed Computing Systems, 2003, Providence, Rhode Island.

[75] Ordille, J.J., "When Agents Roam, Who Can You Trust?" in Proc. of the First Annual Conference
on Emerging Technologies and Applications in Communications, 1996.

[76] Wilhelm, U.G. and Staamann, S., "Protecting the Itinerary of Mobile Agents", in Proc. of the
ECOOP Workshop on Distributed Object Security and 4th Workshop on Mobile Object Systems:
Secure Internet Mobile Computations, 1998, pp. 135-145.

[77] Borrell, J., Robles, S., Serra, J., and Riera, A., "Securing the Itinerary of Mobile Agents through a
Non-Repudiation Protocol", in Proc. of the 33rd Annual 1999 International Carnahan Conference on
Security Technology, 1999: IEEE Press, pp. 461-464.

[78] Chen, P. and Chang, S., "An Itinerary-Diagram-Based Approach for Mobile Agent Application
Development", Tamkang Journal of Science and Engineering, 2000, vol. 3, no. 3, pp. 209-227.

[79] Knoll, G., Suri, N., and Bradshaw, J.M., "Path-Based Security for Mobile Agents", in Proc. of the 1st
International Workshop on Security of Mobile Multiagent (SEMAS 2001), Electronic Notes in
Theoretical Computer Science, vol. 63, 2001, Montreal, Canada: Elsevier, pp. 1-16.

[80] Aridor, Y. and Lange, D.B., "Agent Design Patterns: Elements of Agent Application Design", in
Proc. of the Second International Conference on Autonomous Agents (AGENTS’98), 1998: ACM
Press, pp. 108-115.

[81] Tahara, Y., Ohsuga, A., and S., H., "Agent System Development Method Based on Agent
Patterns", in Proc. of the IEEE International Conference on Software Engineering (ICSE’99), 1999:
IEEE Computer Society, pp. 356-367.

[82] Satoh, I., "Selection of Mobile Agents", in Proc. of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS'2004), 2004: IEEE Computer Society, pp. 484-493.

[83] Milner, R., Parrow, J., and Walker, D., "A Calculus of Mobile Processes, Part I and Ii", Journal of
Information and Computation, 1992, vol. 100, no. 1, pp. 1-77.

[84] Milner, R., "Communicating and Mobile Systems: The π-Calculus", 1999: Cambridge University
Press.

[85] Serugendo, G., Muhugasa, M., and Tschudin, C., "A Survey of Theories for Mobile Agents", World
Wide Web, 1998, vol. 1, no. 3, pp. 139-153.

[86] Honda, K. and Tokoro, M., "An Object Calculus for Asynchronous Communication", in America, P.
(ed.), Proceedings of the ECOOP '91, vol. 512 of Lecture Notes in Computer Science, 1991,
Springer-Verlag, pp. 133-147.

[87] Riely, J. and Hennessy, M., "Distributed Processes and Location Failures", in Verlag, S. (ed.),
ICALP ’97, vol. 1256 of Lecture Notes in Computer Science, 1997, pp. 471-481.

[88] Hennessy, M. and Riely, J., "Resource Access Control in Systems of Mobile Agents", Information
and Computation, 2002, vol. 173, no. 1, pp. 82-120.

[89] Swell, P., Wojciechowski, P.T., and Pierce, B., "Location-Independent Communication for Mobile
Agents: A Two-Level Architecture", in Workship on Internet Programming Languages, vol. 1686 of
Lecture Notes in Computer Science, 1998, Springer.

[90] Abadi, M. and Gordon, A.D., "A Calculus for Cryptographic Protocols: The Spi Calculus",
Information and Computation, 1999, vol. 149, no. 1, pp. 1-70.

[91] Fournet, C., Gonthier, G., Levy, J., Marnaget, L., and Remy, D., "A Calculus of Mobile Agents", in
Proceedings of CONCUR ’96, vol. 1119 of Lecture Notes in Computer Science, 1996, Springer, pp.
406-421.

[92] Cardelli, L. and Gordon, A., "Mobile Ambients", in Proceedings of Foundations of Software Science
and Computer Structures, vol. 1378 of Lecture Notes in Computer Science, 1998, pp. 140-155.

[93] Chandy, K. and Misra, J., "Parallel Program Design: A Foundation", 1988, Boston, MA: Addison-
Wesley.

[94] Picco, G., Roman, G., and McCann, P.J., "Reasoning About Code Mobility with Mobile Unity", ACM
Transactions on Software Engineering and Methodology, 2001, vol. 10, no. 3, pp. 338 - 395.

222

[95] McCann, P.J. and Roman, G., "Compositional Programming Abstractions for Mobile Computing",

IEEE Transaction on Software Engineering, 1998, vol. 24, no. 2, pp. 97-110.
[96] Vitek, J. and Castagna, G., "Seal: A Framework for Secure Mobile Computations", in Internet

Programming Language (ICCL’98) Workshop, vol. 1686 of Lecture Notes in Computer Science,
1999, Springer, pp. 47-77.

[97] Blanchet, B. and Aziz, B., "A Calculus for Secure Mobility", in Proc. of the 8th Asian Computing
Science Conference (ASIAN'03), 2003, Mumbai, India.

[98] Heintz, N. and Riecke, J., "The SLAM Calculus: Programming with Secrecy and Integrity", in Proc.
of the Conference Record of the ACM Symposium on Principles of Programming Languages, 1998,
San Diego: ACM Press.

[99] Foundation for Intelligent Physical Agents, FIPA00067, FIPA Agent Message Transport Service
Specification, 2000. Available: http://www.fipa.org/repository.

[100] Baumann, J. and Radouniklis, N., "Agent Groups in Mobile Agent Systems", in Proceedings of the
International Working Conference on Distributed Applications and Interoperable Systems
(DAIS’97), 1997.

[101] Poslad, S., Calisti, M., and Charlton, P., "Specifying Standard Security Mechanisms in Multi-Agent
Systems", in Proceedings of the AAMAS 2002 Workshop on Deception, Fraud And Trust, 2002,
Bologna, Italy.

[102] Thirunavukkarasu, C., Finlin, T., and Mayfield, J., "Secret Agents - a Security Architecture for Kqml
Agent Communication Languages", in Proc. of the Intelligent Information Agents Wrkshp
(CIKM’95), 1995, Baltimore, MD.

[103] Tan, J., Titkov, L., and Neophytou, C., "Securing Multi-Agent Platform Communication", in Proc. of
the Working Notes Second International Workshop on Security of Mobile Multiagent Systems,
2002, pp. 66-72.

[104] Labrou, Y., Finin, T., and Peng, Y., "The Interoperability Problem: Bringing Together Mobile Agents
and Agent Communication Languages. " in Proc. of the Hawaii International Conference On
System Sciences, 1999, Maui, Hawaii, pp. 45-52.

[105] Cachin, C., Camenisch, J., Kilian, J., and Müller, J., "One-Round Secure Computation and Secure
Autonomous Mobile Agents", in Montanari, U., Rolim, J.P., and Welzl, E. (eds.), Proceedings of the
27th International Colloquium on Automata Languages and Programming (ICALP), vol. 1853 of
Lecture Notes in Computer Science, 2000, Springer-Verlag, pp. 512-523.

[106] Hohl, F., "A Model of Attacks of Malicious Hosts against Mobile Agents", in Proc. of the 4th
Workshop on Mobile Object Systems: Secure Internet Mobile Computations, 1998, France.

[107] Maggi, P. and Sisto, R., "A Configurable Mobile Agent Data Protection Protocol." in Proc. of the
AAMAS’03, 2003, Melbourne, Australia.

[108] Roth, V., "On the Robustness of Some Cryptographic Protocols for Mobile Agent Protection", in
Mobile Agents, vol. 2240 of Lecture Notes in Computer Science, 2001, Springer-Verlag.

[109] Roth, V., "Empowering Mobile Software Agents", in Proc. of the 6th IEEE Mobile Agents
Conference, vol. 2535 of Lecture Notes in Computer Science, 2002, Springer-Verlag, pp. 47-63.

[110] Loureiro, S. and Molva, R., "Mobile Code Protection with Smartcards", in Proc. of the ECOOP 2000
Workshop on Mobile Object Systems, 2000, Cannes, France.

[111] Sander, T. and Tschudin, C., "Towards Mobile Cryptography", in Proc. of the IEEE Symposium on
Security and Privacy, 1998.

[112] Roth, V., "Programming Satan’s Agents", in Proc. of the 1st International Workshop on Secure
Mobile Multi-Agent Systems, 2001, Montreal, Canada.

[113] Richards, M., "The State of Security Standards for Mobile Agents", in Proc. of the Decision
Sciences Institute 2002 Annual Meeting, 2002, pp. 268-272.

[114] Poslad, S. and Calisti, M., "Towards Improved Trust and Security in FIPA Agent Platforms", in
Autonomous Agents, 2000: Barcelona, Spain.

[115] Poslad, S., Calisti, M., and Charlton, P., "Specifying Standard Security Mechanisms in Multi-Agent
Systems", in Proc. of the AAMAS 2002 Workshop on Deception, Fraud And Trust, 2002, Bologna,
Italy.

[116] Poslad, S., Buckle, P., and Hadingham, R., "The FIPA OS Agent Platform: Open Source for Open
Standards", in Proc. of the 5th Int’l Conference and Exhibition on the Practical Application of
Intelligent Agents and Multi-Agents, 2000, Manchester, UK, pp. 355-368.

[117] Poslad, S. and Calisti, M., "Standardizing Agent Interoperability: The FIPA Approach", in Proc. of
the Autonomous Agents 2000, Lecture Notes in Artificial Intelligence: Multi-Agent Systems and
Applications, 2001: Springer-Verlag, pp. 98-117.

223

[118] Foundation for Intelligent Physical Agents, FIPA 98 Part 10, Version 1.0: Agent Security

Management Specification (Obsolete), 1998. Available: http://www.fipa.org/repository/
obsoletespecs.html.

[119] Foundation for Intelligent Physical Agents, FIPA Abstract Architecture Specification, Version L,
2004. Available: http://www.fipa.org/repository/architecturespecs.html.

[120] Foundation for Intelligent Physical Agents, FIPA00023, FIPA Agent Management Specification,
2000. Available: http://www.fipa.org/repository.

[121] Roth, V., Pinsdorf, U., and Binder, W., "Mobile Agent Interoperability Revisited", in Proc. of the 5th
IEEE International Conference on Mobile Agents, 2001, Atlanta, Georgia.

[122] Pogg, A., Rimassa, G., and Tomaiuolo, M., "Multi-User and Security Support for Multi-Agent
Systems", in Proc. of the Workshop from Objects to Agents (WOA 2001), 2001, Modena, Italy.

[123] Zhang, M., Karmouch, A., and Impey, R., "Towards a Secure Agent Platform Based on FIPA", in
Proceedings of International Conference on Mobile Agents for Telecommunication Applications
(MATA 2001), vol. 2164 of Lecture Notes in Computer Science, 2001, Springer-Verlag, pp. 277-
289.

[124] Schoder, D. and Eymann, T., "The Real Challenges of Mobile Agents", Communications of the
ACM 43(6), 2000, pp. 111-112.

[125] Tschudin, C., "Chapter 18: Mobile Agent Security", Intelligent Information Agents: Agent-Based
Information Discovery and Management on the Internet, Klusch, M. (ed.), 1999, Springer-Verlag,
431-445.

[126] Vigna, G., "Mobile Agents: Ten Reasons for Failure", in Proc. of the IEEE International Conference
on Mobile Data Management (MDM'04), 2004, Berkeley, CA: IEEE Computer Society, pp. 298-299.

[127] Johansen, D., "Mobile Agents: Right Concept, Wrong Approach", in Proc. of the IEEE International
Conference on Mobile Data Management (MDM'04), 2004, Berkeley, CA: IEEE Computer Society.

[128] Wong, H.C. and Sycara, K., "Adding Security and Trust to Multi-Agent Systems", in Proc. of the
Autonomous Agents '99 (Workshop on Deception, Fraud and Trust in Agent Societies), 1999,
Seattle, WA, pp. 149-161.

[129] Borselius, N., "Mobile Agent Security", Electronics & Communication Engineering Journal 14(5),
2002, pp. 211-218.

[130] Borselius, N., "Security in Multi-Agent Systems", in Proc. of the 2002 International Conference on
Security and Management (SAM'02), 2002, Las Vegas, NV, USA: CSREA Press, pp. 31-36.

[131] Wells, D., Pazandak, P., Nodine, M., and Cassandra, A., "Adaptive Defense Coordination in Multi-
Agent Systems", in Proc. of the 1st IEEE Symposium on Multi-Agents Security and Survivability
(MASS ’04), 2004, Philadelphia, PA.

[132] Bresciani, P., Giorgini, P., Mouratidis, H., and Manson, G., "Multi-Agent Systems and Security
Requirements Analysis", in Lucena, C., et al. (eds.), Advances in Software Engineering for Multi-
Agent Systems, vol. 2940 of Lecture Notes in Computer Science, 2004, Springer-Verlag.

[133] Mouratidis, H., Giorgini, P., and Manson, G., "Modeling Secure Multiagent Systems", in Proc. of the
2nd International Joint Conference on Autonomous Agents and Multiagent Systems, 2003,
Melbourne, Australia, pp. 859 - 866.

[134] Braynov, S. and Jadliwala, M., "Detecting Malicious Groups of Agents", in Proc. of the 1st IEEE
Symposium on Multi-Agents Security and Survivability (MASS'04), 2004, Philadelphia, PA.

[135] Parks, R., Jung, R., and Ramotowski, K., "Attacking Agent Based Systems", in Proc. of the 1st
IEEE Symposium on Multi-Agents Security and Survivability (MASS'04), 2004, Philadelphia, PA.

[136] Orso, A., Harrold, M., and Vigna, G., "MASSA: Mobile Agents Security through Static/Dynamic
Analysis", in Proc. of the ICSE Wrkshp on Software Engineering and Mobility, 2001, Toronto,
Ontario.

[137] Zachary, J., "Protecting Mobile Code in the Wild", IEEE Internet Computing 7(2), 2003, pp. 2-6.
[138] Wilhelm, U., Staamann, S., and Buttyan, L., "On the Problem of Trust in Mobile Agent Systems", in

Proc. of the IEEE Network and Distributed Systems Security Symposium, 1999, San Diego, CA,
pp. 11-13.

[139] Swarup, V., "Trust Appraisal and Secure Routing of Mobile Agents", in Proc. of the DARPA
Workshop on Foundations for Secure Mobile Code, 1997.

[140] Reiser, H. and Vogt, G., "Threat Analysis and Security Architecture of Mobile Agent Based
Management Systems", in Proc. of the Network Operations and Management Symposium, 2000,
Honolulu, Hawaii.

[141] Dobrev, S., Flocchini, P., Prencipe, G., and Santoro, N., "Finding a Black Hole in an Arbitrary
Network: Optimal Mobile Agents Protocols", in Proc. of the 21st ACM Symp. on Princ. of Distr.
Computing (PODC 2002), 2002, pp. 153-162.

224

[142] McDonald, J.T., Yasinsac, A. and Thompson, W., “Mobile Agent Data Integrity Using Multi-agent

Architecture,” in Proc. of the Int’l Workshop on Security in Parallel and Distributed Systems (PDCS
2004), San Francisco, CA, 2004.

[143] McDonald, J.T., “Hybrid Approach for Secure Mobile Agent Computations,” in Proc. of the Secure
Mobile Ad-hoc Networks and Sensors Workshop (MADNES '05), vol. 4074 of Lecture Notes in
Computer Science, 2005, Springer-Verlag, pp. 38-53.

[144] Karjoth, G., Asokan, N., and Gulcu, C., "Protecting the Computation Results of Freeroaming
Agents", in Rothermel, K. and Hohl, F. (eds.), in Proc. of the 2nd International Workshop, Mobile
Agents 98, vol. 1477 of Lecture Notes in Computer Science, 1998, Springer-Verlag, pp. 195-207.

[145] Villate, Y., Illarramendi, A., and Pitoura, E., "Data Lockers: Mobile-Agent Based Middleware for the
Security and Availability of Roaming Users Data", in Proc. of the 7th Int’l Conf. on Cooperative
Information Systems (CoopIS 2000), vol. 1901 of Lecture Notes in Computer Science, 2000,
Springer, pp. 275-286.

[146] Chow, S., Eisen, P., Johnson, H., and van Oorschot, P. C., "A White-box DES Implementation for
DRM Applications," Proc. of the 2nd ACM Workshop on Digital Rights Management (DRM 2002),
vol. 2696 of Lecture Notes in Computer Science, 2003, pp. 1-15.

[147] Chow, S., Eisen, P., Johnson, H., and van Oorschot, P. C., “White-Box Cryptography and an AES
Implementation”, in Proc. of the Ninth Workshop on Selected Areas in Cryptography (SAC 2002).

[148] Schneider, F., “Towards Fault Tolerant and Secure Agentry,” in Proc. of the 11th Int. Worskhop on
Distributed Algorithms, vol. 1320 of Lecture Notes in Computer Science, Springer-Verlag, Berlin
Germany, 1997.

[149] H. Vogler, T. Hunklemann and M. Moschgath, “An Approach for Mobile Agent Security and Fault
Tolerance Using Distributed Transactions,” in Proc. Int’l Conference on Parallel and Distributed
Systems (ICPADS’97), , Seoul, December 1997, pp.268-274.

[150] Feigenbaum, J., Pinkas, B., Ryger, R., and Saint Jean, F., "Secure Computation of Surveys", in
Proc. of the EU Workshop on Secure Multiparty Protocols, 2004.

[151] McDonald, J.T. and Yasinsac, A., “Application Security Models for Mobile Agent Systems,” in Proc.
of the 1st Int’l Workshop on Security and Trust Management, Milan, Italy, 2005, Electronic Notes
in Theoretical Computer Science, vol. 157, no. 3, 25 May 2006, pp. 43-59.

[152] McDonald, J.T. and Yasinsac, A., "Trust in Mobile Agent Systems", Technical Report TR-050330,
Dept. of Computer Science, Florida State University, March 2005, available
http://www.cs.fsu.edu/research/reports/TR-050330.pdf.

[153] Kalogridis, G., Mitchell, C. J., and Clemo, G., “Spy Agents: Evaluating Trust in Remote
Environments,” in Proc. of the Intl Conf. on Security and Management, Las Vegas, NV, 2005.

[154] Yasinsac, A. and McDonald, J.T., “Foundations for Security Aware Software Developmen
Education,“ in Proc. of the 39th Annual Hawaii Int’l Conference on System Sciences (HICSS’06),
2006, p. 219.

[155] Thompson, W., Yasinsac, A., and McDonald, J. T., "Semantic Encryption Transformation Scheme,"
in Proc. of the Int’l Workshop on Security in Parallel and Dist. Systems (PDCS 2004), San
Francisco, CA, 2004.

[156] McDonald, J.T. and Yasinsac, A., “Program Intent Protection Using Circuit Encryption,” to appear,
in Proc. of 8th Int’l Symposium on Systems and Information Security, Sao Paulo, Brazil, Nov. 8-10,
2006.

[157] Yasinsac, A. and McDonald, J.T., “Tamper Resistant Software through Intent Protection,”
unpublished manuscript.

[158] McDonald, J.T. and Yasinsac, A., “On the Possibility of Perfectly Secure Obfuscation for Bounded
Input-Size Programs,” submitted to 4th Theory of Cryptography Conference (TCC’07), Feb. 21-24,
2007, Amsterdam, The Netherlands (decision October 2006).

[159] Sander, T. and Tschudin, C.F., "On Software Protection Via Function Hiding", in Proc. of the
Second International Workshop on Information Hiding, vol. 1525 of Lecture Notes in Computer
Science, 1998, pp. 111-123.

[160] Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., and Horowitz, M.,
"Architectural Support for Copy and Tamper Resistant Software", in Proc. of the 9th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOSIX), 2000, pp. 169-177.

[161] Lie, D., Mitchell, J., Thekkath, C.A., and Horowitz, M., "Specifying and Verifying Hardware for
Tamper-Resistant Software", in Proc. of the IEEE Symposium on Security and Privacy, 2003,
Berkeley, CA., pp. 166.

225

[162] Ogiso, T., Sakabe, Y., Soshi, M., and Miyaji, A., "Software Tamper Resistance Based on the

Difficulty of Interprocedural Analysis", in Proc. of the 3rd International Workshop on Information
Security Applications (WISA 2002), 2002, pp. 437-452.

[163] Wang, C., Hill, J., Knight, J., and Davidson, J., "Software Tamper Resistance: Obstructing Static
Analysis of Programs", Technical Report CS-2000-12, University of Virginia. 2000.

[164] Aucsmith, D., "Tamper-resistant Software: An Implementation," Proc. of the 1st Int’l Workshop on
Information Hiding, vol. 1174 of Lecture Notes in Computer Science, pp. 317-333. London, UK:
Springer-Verlag, 1996,

[165] Wang, C., "A Security Architecture for Survivability Mechanisms," PhD thesis, Department of
Computer Science, University of Virginia, 2000.

[166] Palsberg, J., Krishnaswamy, S., Minseok,K., Ma, D., Shao, Q., and Zhang, Y., "Experience with
Software Watermarking," in Proc. of the 16th Annual Computer Security Applications Conference,
ACSAC ’00, IEEE, 2000, pp. 308–316.

[167] Collberg, C. and Thomborson, C., "Software Watermarking: Models and Dynamic Wmbeddings," in
Principles of Programming Languages 1999, POPL’99, Jan.1999.

[168] D'Anna, L., Matt, B., Reisse, A., Vleck, T.V., Schwab, S., and LeBlanc, P., "Self-Protecting Mobile
Agents Obfuscation Report", Technical Report #03-015, Network Associates Labs. 2003.

[169] Collberg, C., Thomborson, C., and Low, D., "Breaking Abstractions and Unstructuring Data
Structures", in Proc. of the IEEE International Conf. Computer Languages (ICCL'98), 1998.

[170] Collberg, C., Thomborson, C., and Low, D., "A Taxonomy of Obfuscating Transformations",
Technical Report, Department of Computer Science, University of Auckland, New Zealand, 1997.

[171] Ostrovsky, R. and Skeith, W., “Private Searching on Streaming Data,” CRYPTO ‘2005, 2005.
[172] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S. P., and Yang, K., "On

the (Im)possibility of Obfuscating Programs," in Proc. of CRYPTO '01, J. Kilian, Ed. Santa Barbara,
California: Springer-Verlag, vol. 2139 of Lecture Notes in Computer Science, Aug. 19-23 2001, pp.
1-18.

[173] Goldwasser, S. and Kalai, Y., “On the Impossibility of Obfuscation with Auxiliary Input,” in Proc. of
the 46th Annual IEEE Symp. on Foundations of Computer Science, 2005.

[174] Appel, A., "Deobfuscation is in NP," unpublished manuscsript, preprint available from
http://www.cs.princeton.edu/~appel/papers/deobfus.pdf, 2002.

[175] Varnovsky, N. and Zakharov, V., "On the Possibility of Provably Secure Obfuscating Programs,"
Perspectives of System Informatics, vol. 2890 of Lecture Notes in Computer Science, pp. 91-102,
2003.

[176] Lynn, B., Prabhakaran, M., and Sahai, A., "Positive Results and Techniques for Obfuscation,"
EUROCRYPT'04, 2004.

[177] Canetti, R., “Towards Realizing Random Oracle: Hash Functions that Hide All Partial Information,”
CRYPTO’97, pp. 455-469.

[178] Wee, H., “On Obfuscating Point Functions,” in Proc. of ACM STOC’05, pp. 523-532, May 22-24,
2005.

[179] Chow, S., Gu, Y., Johnson, H. and Zakharov, V.A., “An Approach to the Obfuscation of Control-
Fow of Sequential Computer Programs,” in Proc. of ISC 2001, vol. 2200 of Lecture Notes in
Computer Science, pp. 144-155, 2001.

[180] Yu, Y., Leiwo, J., and Premkumar, B., “Hiding Circuit Topology From Unbounded Reverse
Engineers,” in L. Batten and R. Safavai-Naini (Eds.): in Proc. of ACISP 2006, vol. 4058 of Lecture
Notes in Computer Science, pp. 171-182, 2006.

[181] Yu, Y., Leiwo, J., and Premkumar, B., “Securely Utilizing External Computing Power,” in Proc. of
the IEEE Int’l Conf. on Information Technology: Coding and Computing (ITCC’05), 2005.

[182] Ogiso, T., Sakabe, Y., Soshi, M., and Miyaji, A., “Software Obfuscation on a Theoretical Basis and
its implementation,” IEICE Trans. Fundamentals, vol E86-A, no. 1, January 2003.

[183] Collberg, C.S. and Thomborson, C., "Watermarking, tamper-proofing, & obfuscation - tools for
software protection," IEEE Trans. on Software Engin., vol. 28, pp. 735-746, 2002.

[184] Drape, S., “Obfuscation of abstract data types,” Doctoral thesis, Department of Computer Science,
St. John’s College, University of Oxford, UK.

[185] Collberg, C. S., Thomborson, C., and Low, D., "Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs," in Proc. of the 25th ACM Symposium on Principles of Programming
(POPL1998), 1998.

[186] Wang, C., "A Security Architecture for Survivability Mechanisms," PhD thesis, Department of
Computer Science, University of Virginia, 2000.

[187] Diffie, W. and Hellman, M.E., ”New Directions in Cryptography,” IEEE Transactions on Information
Theory, vol. 22, no. 6, pp. 644-654.

226

[188] Goldreich, O. Foundations of Cryptography. Cambridge University Press, 2001.
[189] McCabe, T., “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. 2, no. 4,

pp. 308–320, 1976.
[190] Harrison, W. and Magel, K., “A Complexity Measure Based on Nesting Level.” SIGPLAN Notices,

vol. 16, no. 3, pp. 63–74, 1981.
[191] Munson, J. and Khoshgoftaar, T., "Measurement of Data Structure Complexity," Journal of

Systems Software, vol. 20, no. 3, pp. 217–225, 1993.
[192] Herzberg, A. and Pinter, S., "Public Protection of Software," ACM Trans. Comput. Syst., vol. 5, no.

4, pp. 371–393, 1987.
[193] MacBride, J., Mascioli, C., Marks, S., Tang, Y., Head, L., and Ramachandran, R.P., “A

Comparative Study of Java Obfuscators,” in Tsai, W. and Hamza, M. (ed), Proc. of Software
Engineering and Applications (SEA 2005), Phoenix, AZ, 2005.

[194] Menezes, A., van Oorschot, P., Vanstone,S., Handbook of Applied Cryptography. CRC Press,
1996.

[195] Adida, B. and Wikström, D., “Obfuscated Ciphertext Mixing,” IACR Eprint Archive, no. 394, 2005.
[196] Kolmogorov, A.N., “Logical Basis for Informatino Theory and Probability Theory,” IEEE. Trans.

Inform. Theory, vol. IT-14, pp. 662-664, Sept. 1968.
[197] Chaitin, G.J., “Information-Theoretic Computational Complexity,” IEEE. Trans. Inform. Theory, vol.

IT-20, pp. 10-15, 1974.
[198] Harrison, W., “An Entropy-Based Measure of Software Complexity,” IEEE Transactions on Soft.

Eng., vol. 18, no. 11, pp. 1025-1029, Nov. 1992.
[199] Wegener, I., The Complexity of Boolean Functions (Wiley-Teubner Series in Computer Science).

John Wiley & Sons, 1987.
[200] Brglez, F. and Fujiwara, H., “A Neutral Netlist of 10 Combinational Benchmark Circuits,” in Proc. of

the IEEE Int’l Symp. On Circuits and Systems, IEEE Press, pp. 695-698, 1985.
[201] Basto, L., “First Results of ITC’99 Benchmark Circuits,” IEEE Design & Test of Computers, vol. 17,

no. 3, July/Sept. 2000.
[202] Edwards, S., “The Challenges of Hardware Synthesis from C-like Languages,” in Proc. of the

Confernce on Design, Automation and Test in Europe, pp. 66-67, IEEE Computer Society, 2005.
[203] Hansen, M., Yalcin, H., and Hayes, J. P., "Unveiling the ISCAS-85 Benchmarks: A Case Study in

Reverse Engineering," IEEE Design and Test, vol. 16, pp. 72-80, 1999.
[204] Anderson, H. R. and Hulgaard, H., "Boolean Expression Diagrams," in Proc. of the IEEE

Symposium on Logic in Computer Science (LICS'97), 1997.
[205] Jain, J., Yan, A., Fujita, M., and Sangiovanni-Vincentelli, A., “A Survey of Techniques for Formal

Verification of Combinational Circuits,” in Proc. of the 1997 Int’l Conf. on Computer Design
(ICCD’97), IEEE Press, 1997.

[206] Bryant, R., “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Transactions on
Computers, vol. C-35, no. 8, pp. 677-691, Aug. 1986.

[207] Boutaleb, K., Jegou, P., and Terrioux, C., “Strong learnt (no)goods in ROBDDs for solving
structured CSPs,” in Proc. of the AAAI 2006 Workshop on Learning for Search, American
Assocation for Artificial Intelligence, 2006.

[208] Hulgaard, H., Williams, P. F., and Andersen, H. R., "Equivalence Checking of Combinational
Circuits using Boolean Expression Diagrams," IEEE Transactions on Computer-Aided Design of
Integrated Circuits, vol. 18, pp. 903-917, 1999.

[209] Shannon, C.E., "Communication Theory of Secrecy Systems", Bell System Technical Journal, vol.
28, no. 4, pp. 656-715, 1949.

[210] Kerckhoff, A, “La Cryptograhpie Militaire”, Journal des Sciences Militaries, vol. IX, pp. 5-83, Jan.
1883.

[211] Feistel , H., "Cryptography and Computer Privacy," Scientific American, vol. 228, pp. 15-23, 1973.
[212] Nyberg, K., "Perfect Nonlinear S-Boxes," in Advances in Cryptology (EUROCRYPT '91), 1991.
[213] Brickell, E. F., Moore, J. H., and Purtill, M. R., "Structure in the S-boxes of the DES," in Advances

in Cryptology (CRYPTO'86), vol. 263, pp. 3-9, A. M. Odlyzko, Ed. New York: Springer-Verlag,
1987.

[214] Dawson, M. and Tavares, S., "An Expanded Set of S-box Design Criteria Based on Information
Theory and its Relation to Differential-like Attacks," in Advances in Cryptology (EUROCRYPT '91),
1991.

[215] Gargiulo, J. “S-Box modifications and their effect on DES-like encryption systems,” White Paper,
Information Security Reading Room, SANS Institute, 2002.

[216] Webster, A. and Tavares, S., “On the Design of S-Boxes,” in Advances in Cryptology (CRYPTO
'85), pp. 523-534, 1985.

227

[217] Meier, W. and Staffelbach, O., "Nonlinearity Criteria for Cryptographic Functions," in Advances in

Cryptology (EUROCRYPT '89), 1989.
[218] Pieprzyk, J. and Finkelstein, G., "Towards Effective Nonlinear Cryptosystem Design," IEE

Proceedings, Part E, vol. 135, pp. 325-335, 1988.
[219] Gregg, J., Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the Logic of Sets.

IEEE Press. 1998.
[220] Mendelson, E. Schaum’s Outline Series: Theory and Problems of Boolean Algreba & Switching

Circuits. McGraw-Hill Book Company, 1970.
[221] Bellare, M., Desai, A., Jokipii, E., and Rogaway, P., “A Concrete Security Treatment of Symmetric

Encryption: Analysis of the DES Modes of Operation,” in Proc. of the 38th Symp. on FOCS, IEEE,
1997.

[222] McDonald, J.T., Yasinsac, A., and Thompson, W., "A Survey of Mobile Agent Security", Technical
Report TR-050329, Dept. of Computer Science, Florida State University, March 2005, available
http://www.cs.fsu.edu/research/reports/TR-050329.pdf.

[223] Gunupudi, V. and Tate, S., "Performance Evaluation of Data Integrity Mechanisms for Mobile
Agents", in Proc. of the International Conference on Information Technology: Coding and
Computing (ITCC'04), 2004, Las Vegas, NV, USA, pp. 62-69.

[224] Sobrado, I., "Evaluation of Two Security Schemes for Mobile Agents", ACM SIGCOMM Computer
Communication Review, 2001, vol. 31, no. 2, pp. 2-19.

[225] Fischmeister, S., Vigna, G., and Kemmerer, R.A., "Evaluating the Security of Three Java-Based
Mobile Agent Systems", in Picco, G. (ed.), Proc. of the 5th IEEE International Conference on
Mobile Agents, vol. 2240 of Lecture Notes in Computer Science, 2001, Springer-Verlag, pp. 31-40.

[226] Milagres, F., Moreira, E., Pimentao, J., and Sousa, P., "Security Analysis of a Multi-Agents System
in Eu's Deepsia Project", in Proc. of the EBR'2002 - First Seminar On Advanced Research In
Electronic Business 2002, 2002, Rio de Janeiro, pp. 155-162.

[227] Kotzanikolaou, P., Katsirelos, G., and Chrissikopoulos, V., "Mobile Agents for Secure Electronic
Transactions", Recent Advances in Signal Processing Communications, Mastorakis, N. (ed.), 1999,
River Edge, NJ: World Scientific Engineering Society, 363-368.

[228] O'Malley, S., Self, A., and DeLoach, S., "Comparing Performance of Static Versus Mobile
Multiagent Systems", in Proc. of the National Aerospace and Electronics Conference (NAECON),
2000, Dayton, OH.

[229] Thomas, R., "A Survey of Mobile Code Security Techniques", in Proc. of the Proceedings of the
22nd National Information Systems Security Conference, 1999.

[230] Loureiro, S., Molva, R., and Roudier, Y., "Mobile Code Security", in Proc. of the ISYPAR 2000
(4ème Ecole d'Informatique des Systèmes Parallèles et Répartis), Code Mobile, 2000: Toulouse,
France.

[231] Wahbe, R., Lucco, S., Anderson, T., and Graham, S., "Efficient Software-Based Fault Isolation", in
Proc. of the 14th ACM Symposiumon Operating System Principles, ACM SIGOPS Operating
Systems Review, 1993: ACM Publishers, pp. 203-216.

[232] Gosling, J., Joy, B., and Steele, G., The JAVA Language Specification, 1996: Addison Wesley.
[233] Gong, L., "JAVA Security: Present and near Future", IEEE Micro, 1997, vol. 17, no. 3, pp. 14-19.
[234] Gong, L., Inside Java 2 Platform Security, 1999: Addison Wesley.
[235] Ousterhout, J.K., "Scripting: Higher-Level Programming for the 21st Century", IEEE Computer,

1998, pp. 23-30.
[236] Ousterhout, J.K., Levy, J., and Welch, B., "The Safe-TcL Security Model", in Vigna, G. (ed.), Mobile

Agents and Security, vol. 1419 of Lecture Notes in Computer Science, 1998, Springer, pp.
[237] Gong, L. and Schemers, R., "Signing, Sealing, and Guarding JAVA Objects", in Vigna, G. (ed.),

Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer Science, 1998, Springer-
Verlag, pp. 206-216.

[238] Hopwood, D.A., “Comparison between JAVA and ActiveX Security”, 1997, updated: December
1997. Available: http://www.users.zetnet.co.uk/hopwood/papers/compsec97.html.

[239] Farmer, W.M., Guttman, J.D., and Swarup, V., "Security for Mobile Agents: Authentication and
State Appraisal", in Bertino, E., et al., (eds.), Computer Security--Proceedings of the European
Symposium on Research in Computer Security (ESORICS 96), vol. 1146 of Lecture Notes in
Computer Science, 1996, pp. 118-130.

[240] Necula, G.C., "Proof-Carrying Code", in Proc. of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1997, Paris, France, pp. 106-119.

[241] Lee, P. and Necula, G., "Research on Proof-Carrying Code for Mobile-Code Security", in Proc. of
the DARPA Workshop on Foundations for Secure Mobile Code, 1997, Monterey, CA.

228

[242] Appel, A.W., "Foundational Proof-Carrying Code", in Proc. of the 16th Annual IEEE Symposium on

Logic in Computer Science (LICS '01), 2001: IEEE Computer Society, pp. 247.
[243] Feigenbaum, J. and Lee, P., "Trust Management and Proof-Carrying Code in Secure Mobile Code

Applications: Position Paper", in Proc. of the DARPA Workshop on Foundations for Secure Mobile
Code, 1997.

[244] Westhoff, D., Schneider, M., Unger, C., and Kaderali, F., "Protecting a Mobile Agent's Route
against Collusions", in Proc. of the 6th Annual International Workshop on Selected Areas in
Cryptography, vol. 1758 of Lecture Notes in Computer Science, 1999, Springer, pp. 215-225.

[245] Bradshaw, J.M., Beautement, P., Bunch, L., and Drakunov, S., "Making Agents Acceptable to
People", in Handbook of Intelligent Informtion Technology, 2003, IOS Press: Amsterdam,
Netherlands.

[246] Bradshaw, J., Cabri, G., and Montanari, R., "Taking Back Cyberspace", IEEE Computer, 2003, vol.
36, no. 7.

[247] Bradshaw, J.M., Suri, N., Kahn, M., Sage, P., Weishar, D., and Jeers, R., "Terraforming
Cyberspace: Toward a Policy-Based Grid Infrastructure for Secure, Scalable, and Robust
Execution of Java-Based Multi-Agent Systems", in Proc. of the Autonomous Agents 2001
Workshop on Scalable Agent Infrastructure, 2001, Montreal, Canada.

[248] Scott, D., Beresford, A., and Mycroft, A., "Spatial Security Policies for Mobile Agents in a Sentient
Computing Environment", in Pezz’e, M. (ed.), Proc. of FASE 2003, vol. 2621 of Lecture Notes in
Computer Science, 2003, Springer, pp. 102-117.

[249] Corradi, A., Dulay, N., Montanari, R., and Stefanelli, C., "Policy-Driven Management of Mobile
Agent Systems", in Proc. of the Int’l Workshop on Policies for Distributed Systems and Networks -
Policy 2001, vol. 1995 of Lecture Notes in Computer Science, 2001, Springer-Verlag, pp. 214-229.

[250] Jansen, W., "Countermeasures for Mobile Agent Security", Computer Communications, Special
Issue on Advanced Security Techniques for Network Protection, 2000.

[251] Neuman, B., "Proxy-Based Authorization and Authentication and Accounting for Distributed
Systems", in Proc. of the 13th Int’l Conference on Distributed Computing Systems, 1993, pp. 283-
291.

[252] Lampson, B., Abadi, M., Burrows, M., and Wobber, E., "Authentication in Distributed Systems:
Theory and Practice", ACM Transactions on Computer Systems, 1992, vol. 10, pp. 265-310.

[253] Berkovits, S., Guttman, J.D., and Swarup, V., "Authentication for Mobile Agents", in Vigna, G. (ed.),
Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer Science, 1998, Springer-
Verlag, pp. 114-136.

[254] Romao, A. and Da Silva, M., "Proxy Certificates: A Mechanism for Delegating Digital Signature
Power to Mobile Agents", in Proc. of the Workshop on Agents in Electronic Commerce, 1999, pp.
131-140.

[255] Bellare, M. and Miner, S., "A Forward-Secure Digital Signature Scheme", in Weiner, M. (ed.),
Advances in Cryptology-CRYPTO ’99, vol. 1666 of Lecture Notes in Computer Science, 1999, pp.
431-448.

[256] Krawczyk, H., "Simple Forward-Secure Signatures from Any Signature Scheme", in Proc. of the 7th
ACM Conference on Computer and Communications Security, 2000, pp. 108-115.

[257] Lee, B., Kim, H., and Kim, K., "Secure Mobile Agent Using Strong Nondesignated Proxy
Signature", in Proc. of ACISP, vol. 2119 of Lecture Notes in Computer Science, 2001, Springer-
Verlag, pp. 474-486.

[258] Kotzanikolaou, P., Burmester, M., and Chrissikopoulos, V., "Dynamic Multi-Signatures for Secure
Autonomous Agents", in Proc. of the DEXA-MDDS Conference, 2001: IEEE Computer Society, pp.
587-591.

[259] Borselius, N., Mitchell, C.J., and Wilson, A., "Undetachable Threshold Signatures", in Proc. of the
8th IMA Int’l Conference: Cryptography and Coding, vol. 2260 of Lecture Notes in Computer
Science, 2001, Springer-Verlag, pp. 239-244.

[260] Kim, H., Baek, J., Lee, B., and Kim, K., "Computing with Secrets for Mobile Agent Using One-Time
Proxy Signature", in Proc. of the SCIS 2001, 2001, Oiso, Japan, pp. 845-850.

[261] Yi, X., Siew, C.K., and Syed, M.R., "Digital Signature with One-Time Pair of Keys", Electronics
Letters, 2000, vol. 36, no. 2, pp. 130-131.

[262] Roth, V. and Jalali-Sohi, M., "Access Control and Key Management for Mobile Agents", Computers
& Graphics, 1998, vol. 22, no. 4, pp. 457-461.

[263] Roth, V. and Jalali-Sohi, M., "Concepts and Architecture of a Security-Centric Mobile Agent
Server", in Proc. of the 5th International Symposium on Autonomous Decentralized Systems
(ISADS 2001), 2001, Dallas, Texas: IEEE Computer Society, pp. 435-442.

229

[264] Rasmusson, L. and Janson, S., "Simulated Social Control for Secure Internet Commerce", in Proc.

of the New Security Paradigms Workshop, 1996, Lake Arrowhead, CA: ACM Press, pp. 18-26.
[265] Meadows, C., "Detecting Attacks on Mobile Agents", in Proc. of the DARPA Workshop on

Foundations for Secure Mobile Code, 1997, Monterey CA.
[266] Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., and Jakubowski, M.H., "Oblivious

Hashing: A Stealthy Software Integrity Verification Primitive", in Information Hiding, vol. 2578 of
Lecture Notes in Computer Science, 2002, Springer-Verlag, pp. 400-414.

[267] Vigna, G., "Cryptographic Traces for Mobile Agents", in Vigna, G. (ed.), Mobile Agents and
Security, vol. 1419 of Lecture Notes in Computer Science, 1998, Springer-Verlag.

[268] Kassab, L. and Voas, J., "Agent Trustworthiness", in Proc. of the ECOOP Workshop on Distributed
Object Security and 4th Workshop on Mobile Object Systems Secure Internet Mobile
Computations, 1998, Brussels.

[269] Biehl, I., Meyer, B., and Wetzel, S., "Ensuring the Integrity of Agent-Based Computations by Short
Proofs", in Rothermel, K. and Hohl, F. (eds.), Proc. of the 2nd Int’l Workshop, Mobile Agents 98,
vol. 1477 of Lecture Notes in Computer Science, 1998, Springer-Verlag, pp. 183-194.

[270] Gertner, Y., IshaiI, Y., Kushilevitz, E., and Malkin, T., "Protecting Data Privacy in Private
Information Retrieval Schemes", in Proc. of the 30th Annual ACM Symposium on Theory of
Computing (STOC), 1998, pp. 151-160.

[271] Baek, J., Lee, D., and Ramakrishna, R.S., "A Design of Protocol for Detecting an Agent Clone in
Mobile Agent Systems and Its Correctness Proof", in Proc. of the 8th Annual ACM Symposium on
Principles of Distributed Computing, 1999, Atlanta, GA: ACM Press, pp. 269.

[272] Lam, T. and V., W., "A Mobile Agent Clone Detection System with Itinerary Privacy", in Proc. of the
11th IEEE International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE'02), 2002, Pittsburgh, Pennsylvania, USA, pp. 68.

[273] Riordan, J. and Schneier, B., "Environmental Key Generation Towards Clueless Agents", in Vigna,
G. (ed.), Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer Science, 1998,
Springer-Verlag, pp. 15-24.

[274] Grimley, M.J. and Monroe, B.D., "Protecting the Integrity of Agents", ACM Magazine, 1999.
[275] Ng, S. and Cheung, K., "Protecting Mobile Agents against Malicious Hosts by Intention Spreading",

in Proc. of the International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA '99), 1999, pp. 725-729.

[276] Ng, S. and Cheung, K., "A Trust-Level Exchanging Protocol in Mobile Agent Systems for Security
and Performance Benefits", in Proc. of the World Wide Web: Technologies and Applications for the
New Millenium, 2000: CSREA, pp. 27-35.

[277] Minsky, Y., Renesse, R., Schneider, F.B., and Stoller, S.D., "Cryptographic Support for Fault-
Tolerant Distributed Computing", in Proc. of the 7th ACM SIGOPS European Workshop, 1996,
Connemara, Ireland, pp. 109-114.

[278] Shamir, A., "How to Share a Secret", Communications of the ACM, 1979, vol. 22, no. 11, pp. 612-
613.

[279] Pears, S., Xu, J., and Boldyreff, C., "A Dynamic Shadow Approach for Mobile Agents to Survive
Crash Failures", in Proc. of the 6th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC'03), 2003, Hakodate, Hokkaido, Japan, pp. 113-120.

[280] Roth, V., "Mutual Protection of Co--Operating Agents", in Vitek, J. and Jensen, C. (eds.), Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, vol. 1603 of Lecture
Notes in Computer Science, 1999, Springer-Verlag, pp. 275-285.

[281] Reed, M., Syverson, P., and Goldshlag, D., "Anonymous Connections and Onion Routing", IEEE
Journal on Selected Areas in Communication, Special Issue on Copyright and Privacy Protection,
1998, vol. 16, no. 4, pp. 482-494.

[282] Wang, Y. and Pang, X., "Security and Robustness Enhanced Route Structures for Mobile Agents",
Mobile Networks and Applications, 2003, vol. 8, no. 4, pp. 413-423.

[283] Vijil, E. and Iyer, S., "Identifying Collusions: Co-Operating Malicious Hosts in Mobile Agent
Itineraries", in Proc. of the 2nd International Workshop on Security of Mobile MultiAgent Systems
(SEMAS'2002), 2002, Bologna, Italy.

[284] Karnik, N. and Tripathi, A., "A Security Architecture for Mobile Agents in Ajanta", in Proc. of the
20th International Conference on Distributed Computing Systems, 2000: IEEE Computer Society
Press, pp. 402-409.

[285] Domingo-Ferrer, J., "Mobile Agent Route Protection through Hash-Based Mechanisms", in Rangan,
C.P. and Ding, C. (eds.), Proc. of INDOCRYPT '01, vol. 2247 of Lecture Notes in Computer
Science, 2001, Springer-Verlag, pp. 17-29.

230

[286] Young, A. and Yung, M., "Sliding Encryption: A Cryptographic Tool for Mobile Agents", in Proc. of

the 4th International Workshop on Fast Software Encryption (FSE ’97), vol. 1267 of Lecture Notes
in Computer Science, 1997, Springer-Verlag, pp. 230-241.

[287] Karjoth, G., "Secure Mobile Agent-Based Merchant Brokering in Distributed Marketplaces", in Kotz,
D. and Mattern, F. (eds.), Proc. of ASA/MA 2000, vol. 1882 of Lecture Notes in Computer Science,
2000, Springer Verlag, pp. 44-56.

[288] Tate, S.R. and Xu, K., "Mobile Agent Security through Multi-Agent Cryptographic Protocols", in
Proc. of the 4th International Conference on Internet Computing (IC 2003), 2003, pp. 462-468.

[289] Abadi, M. and Feigenbaum, J., "Secure Circuit Evaluation: A Protocol Based on Hiding Information
from an Oracle", Journal of Cryptology, 1990, vol. 2, no. 1, pp. 1-12.

[290] Abadi, M., Feigenbaum, J., and Kilian, J., "On Hiding Information from an Oracle", Journal of
Computer and System Sciences, 1989, vol. 39, no. 1, pp. 21-50.

[291] Sander, T. and Tschudin, C., "Mobile Cryptography", in Proc. of the IEEE Symposium on Security
and Privacy, 1998, pp. 215-224.

[292] Sander, T., Young, A., and Yung, M., "Non-Interactive Cryptocomputing for NC1", in Proc. of the
40th IEEE Symposium on Foundations of Computer Science, 1999, pp. 17-19.

[293] Yokoo, M. and Suzuki, K., "Secure Multi-Agent Dynamic Programming Based on Homomorphic
Encryption and Its Application to Combinatorial Auctions", in Proc. of the 1st International Joint
Conference on Autonomous Agents and Multiagent Systems (ICAA'02), 2002, Bologna, Italy, pp.
112-119.

[294] Cartrysse, K. and van der Lubbe, J.C.A., "Privacy in Mobile Agents", in Proc. of the 1st IEEE
Symposium on Multi-Agents Security and Survivability (MASS'04), 2004, Philadelphia, PA.

[295] Cartrysse, K. and van der Lubbe, J.C.A., "Secrecy in Mobile Code", in Proc. of the 25th Symposium
on Information Theory in the Benelux, 2004, pp. 161-168.

[296] Loureiro, S. and Molva, R., "Function Hiding Based on Error Correcting Codes", in Proc. of the
International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC '99), 1999: City
University of Hong Kong Press.

[297] Loureiro, S. and Molva, R., "Privacy for Mobile Code", in Proc. of the Distributed Object Security
Wrkshp (OOPSLA'99), 1999, Denver, CO, pp. 37-42.

[298] Zhou, C. and Sun, Y., "SPMH: A Solution to the Problem of Malicious Hosts", Journal of Computer
Science and Technology, 2002, vol. 17, no. 6, pp. 738 - 748.

[299] Zhong, S. and Yang, Y.R., "Verifiable Distributed Oblivious Transfer and Mobile Agent Security", in
Proc. of the 2003 Joint Workshop on Foundations of Mobile Computing, 2003.

[300] Desmedt, Y., "Society and Group Oriented Cryptography", in Pomerance, C. (ed.), Advances in
Cryptology - CRYPTO’87, vol. 293 of Lecture Notes in Computer Science, 1988, Springer-Verlag,
pp. 120-127.

[301] Shoup, V., "Practical Threshold Signatures", in Preneel, B. (ed.), Advances in Cryptology -
EUROCRYPT 2000, vol. 1807 of Lecture Notes in Computer Science, 2000, Springer-Verlag, pp.
207-220.

[302] Varadharajan, V. and Foster, D., "A Security Architecture for Mobile Agent Based Applications",
World Wide Web, 2003, vol. 6, no. 1, pp. 93-122.

[303] Shi, W., Lee, H., Lu, C., and Ghosh, M., "Towards the Issues in Architectural Support for Protection
of Software Execution", in Proc. of the Workshop on Architectural Support for Security and Anti-
Virus (WASSA), 2004.

[304] Cartrysse, K., "Security and Privacy in Mobile Agent Systems", in Proc. of the Safe-NL Workshop
Security: Applications, Formal Aspects, and Environments, 2002: University of Twente.

[305] Sobrado, I., “A One-Time Pad Cipher for Data Protection in Distributed Environments”, 2000,
updated: August 2005. Available: http://xxx.lanl.gov/abs/cs.CR/0005026.

[306] Diaz, J.A.P. and Gutierrez, D.A., "Protecting the Data State of Mobile Agents by Using Bitmaps and
Xor Operators", Informatica, International Journal of Computing and Informatics, 2002, vol. 26, no.
4.

[307] Diaz, J.A.P. and Gutierrez, D.A., "A Fast Data Protection Technique for Mobile Agents to Avoid
Attacks in Malicious Hosts", Electronic Notes in Theoretical Computer Science, 2001, vol. 30, no. 3.

[308] Corradi, A., Montanari, R., and Stefanelli, C., "Mobile Agents Integrity in E-Commerce
Applications", in Proc. of the 19th IEEE International Conference on Distributed Computing
Systems Workshop (ICDCS’99), 1999, Austin, Texas: IEEE Computer Society Press, pp. 59-64.

[309] Cheng, J. and Wei, V., "Defenses against the Truncation of Computation of Free-Roaming Agents",
in Proc. of the 4th International Conference on Information and Communication Security, vol. 2513
of Lecture Notes in Computer Science, 2002, pp. 1-12.

231

[310] Zhou, J., Onieva, J., and Lopez, J., "Analysis of a Free Roaming Agent Result-Truncation Defense

Scheme", in Proc. of the IEEE Conference on Electronic Commerce, 2004.
[311] Loureiro, S., Molva, R., and Pannetrat, A., "Secure Data Collection with Updates", Electronic

Commerce Research Journal, 2001, vol. 1, no. 2, pp. 119-130.
[312] Suen, A., "Mobile Agent Protection with Data Encapsulation and Execution Tracing, Master’s

Thesis. Technical Report TR-030402, Department of Computer Science, Florida State University,
2003.

[313] Park, J., Lee, D., and Lee, H., "One-Time Key Generation System for Agent Data Protection", IECE
Transactions on Information and Systems, 2000, vol. E83-D, pp. 11.

[314] El Gamal, T., " A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms", IEEE Transactions on Information Theory, 1985, vol. 31, no. 4, pp. 469-472.

[315] Yao, A.C., "How to Generate and Exchange Secrets", in Proc. of the 27th IEEE Symposium on
Foundations of Computer Science, 1986, pp. 162-167.

[316] Goldreich, O., Micali, S., and Wigderson, A., "How to Play Any Mental Game", in Proc. of the 19th
Annual ACM Symposium on Theory of Computing (STOC), 1987, pp. 218-229.

[317] Ben-Or, M., Goldwasser, S., and Wigderson, A., "Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation", in Proc. of the Annual ACM Symposium on Theory of
Computing ’88, 1988: ACM, pp. 1-10.

[318] Chaum, D., Crépeau, C., and Damgard, I., "Multiparty Unconditionally Secure Protocols (Extended
Abstract)", in Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC), 1988,
Chicago, Illinois, pp. 11-19.

[319] Kilian, J., "Founding Cryptography on Oblivious Transfer", in Proc. of the 20th Annual ACM
Symposium on Theory of Computing (STOC), 1988, pp. 20-31.

[320] Abadi, M., Feigenbaum, J., and Kilian, J., "On Hiding Information from an Oracle", Journal of
Computer and System Sciences, 1989, vol. 39, no. 1, pp. 21-50.

[321] Abadi, M. and Feigenbaum, J., "Secure Circuit Evaluation: A Protocol Based on Hiding Information
from an Oracle", Journal of Cryptology, 1990, vol. 2, no. 1, pp. 1-12.

[322] Bellare, M., Micali, S., and Rogaway, P., "The Round Complexity of Secure Protocols", in Proc. of
the 22nd Annual ACM Symposium on Theory of Computing (STOC), 1990, Baltimore, Maryland,
United States: ACM Press, pp. 503-513.

[323] Beaver, D., "Foundations of Secure Interactive Computing", in Proc. of the 11th Annual
International Cryptology Conference on Advances in Cryptology, vol. 576 of Lecture Notes in
Computer Science, 1991, Springer-Verlag, pp. 377-391.

[324] Micali, S. and Rogaway, P., "Secure Computation", in Advances in Cryptology - CRYPTO’91, vol.
576 of Lecture Notes in Computer Science, 1992, Springer-Verlag, pp. 392-404.

[325] Canetti, R., Feige, U., Goldreich, O., and Naor, M., "Adaptively Secure Multi-Party Computation",
in Proc. of the 34th Annual ACM Symposium on Theory of Computing (STOC), 1996, pp. 639-648.

[326] Cramer, R., Damgard, I., Dziembowski, S., Hirt, M., and Rabin, T., "Efficient Multiparty
Computations with Dishonest Minority", in Stern, J. (ed.), Proc. of EUROCRYPT '99, vol. 1592 of
Lecture Notes in Computer Science, 1999, IACR, Springer-Verlag, pp.

[327] Naor, M., Pinkas, B., and Sumner, R., "Privacy Preserving Auctions and Mechanism Design." in
Proc. of the 1st ACM Conference on Electronic Commerce, 1999, pp. 129-139.

[328] Goldreich, O., "Secure Multi-Party Computation. Working Draft, Version 1.2". 2000.
[329] Hirt, M. and Maurer, U.M., "Robustness for Free in Unconditional Multi-Party Computation", in Proc.

of the 21st Annual International Cryptology Conference on Advances in Cryptology, vol. 2139 of
Lecture Notes in Computer Science, 2001, Springer-Verlag, pp. 101-118.

[330] Naor, M. and Nisim, K., "Communication Complexity and Secure Function Evaluation", Electronic
Colloquium on Computational Complextiy (ECCC), 2001, vol. 8, pp. 62.

[331] Canetti, R., Lindell, Y., Ostrovski, R., and Sahai, A., "Universally Composable Two-Party and Multi-
Party Secure Computation", in Proc. of the 34th Annual ACM Symposium on Theory of Computing
(STOC), 2002, pp. 494-503.

[332] Damgard, I. and Nielsen, J., "Universally Composable Efficient Multiparty Computation from
Threshold Homomorphic Encryption", in Advances in Cryptology - CRYPTO'03, vol. 2729 of
Lecture Notes in Computer Science, 2003, pp. 247-264.

[333] Fitzi, M., Garay, J., Mauerer, U., and Ostravsky, R., "Minimal Complete Primitives for Secure Multi-
Party Computation", Journal of Cryptography, 2005, vol. 18, no. 1, pp. 37-61.

[334] Du, W. and Atallah, M., "Secure Multi-Party Computation Problems and Their Applications: A
Review and Open Problems", in Proc. of the New Security Paradigms Workshop, 2001, Cloudcroft,
NM, USA, pp. 11-20.

232

[335] Malkhi, D., Nisan, D., Pinkas, B., and Sella, Y., "Fairplay-a Secure Two-Party Computation

System", in Proc. of the Usenix Security Symposium '04, 2004, pp. 287-302.
[336] Bellare, M. and Micali, S., "Non-Interactive Oblivious Transfer and Applications", in Proc. of the

Advances in Cryptology - CRYPTO'89, 1990, Santa Barbara, California, USA: Springer-Verlag, pp.
547-559.

[337] Rabin, T. and Ben-Or, M., "Verifiable Secret Sharing and Multiparty Protocols with Honest
Majority." in Proc. of the 21st Annual ACM Symposium on Theory of Computing, 1989, Seattle,
Washington, USA, pp. 73-85.

[338] Yao, A.C., "Protocols for Secure Computation", in Proc. of the 23rd Annual IEEE Symposium on
Foundations of Computer Science, 1982.

[339] Chaum, D., Damgard, I., and Van De Graaf, J., "Multiparty Computations Ensuring Privacy of Each
Party’s Input and Correctness of the Result", in Pomerance, C. (ed.), A Conference on the Theory
and Applications of Cryptographic Techniques on Advances in Cryptology, vol. 293 of Lecture
Notes in Computer Science, 1988, pp. 87-119.

[340] Naor, M. and Pinkas, B., "Efficient Oblivious Transfer Protocols", in Proc. of the SODA 2001 (SIAM
Symposium on Discrete Algorithms), 2001, Washington, D.C.

[341] Naor, M. and Pinkas, B., "Distributed Oblivious Transfer", in Advances in Cryptology -
ASIACRYPT'00, vol. 1976 of Lecture Notes in Computer Science, 2000, Springer-Verlag, pp. 200-
219.

[342] Naor, M. and Pinkas, B., "Oblivious Transfer and Polynomial Evaluation", in Proc. of the 31st
Annual ACM Symposium on Theory of Computer Science (STOC), 1999, Atlanta, GA, pp. 245-254.

[343] Ostravsky, R. and Yung, M., "How to Withstand Mobile Virus Attacks", in Proc. of the 10th Annual
ACM Symposium on Principles of Distributed Computing (PODC), 1991, pp. 51-59.

[344] Endsuleit, R. and Mie, T., "Secure Multi-Agent Computations", in Proc. of the International
Conference on Security and Management (CSREA), 2003, pp. 149-155.

[345] Tate, S.R. and Xu, K., "On Garbled Circuits and Constant Round Secure Function Evaluation",
CoPS Lab Technical Report 2003-02. 2003.

[346] Gennaro, R., Rabin, M.O., and Rabin, T., "Simplified Vss and Fast-Track Multiparty Computations
with Applications to Threshold Cryptography", in Proc. of the 17th ACM Symposium on Principles
of Distributed Computing (PODC), 1998, pp. 101-111.

[347] Beaver, D., Feigenbaum, J., Kilian, J., and Rogaway, P., "Security with Low Communication
Overhead", in Proc. of the 10th Annual International Cryptology Conference on Advances in
Cryptology, vol. 537 of Lecture Notes in Computer Science, 1990, Springer-Verlag, pp. 62-76.

[348] Cramer, R., Damgard, I., and Nielsen, J.B., "Multiparty Computation from Threshold Homomorphic
Encryption", in Advances in Cryptology - EUROCRYPT’01, vol. 2045 of Lecture Notes in Computer
Science, 2001, pp. 280-300.

[349] Ben-Or, M., Canetti, R., and Goldreich, O., "Asynchronous Secure Communications", in Proc. of
the 25th Annual ACM Symposium on Theory of Computing (STOC), 1993: ACM, pp. 52-61.

[350] Ben-Or, M., Kelmer, B., and Rabin, T., "Asynchronous Secure Computations with Optimal
Resilience", in Proc. of the 13th Annual ACM Symposium on Principles of Distributed Computing
(PODC), 1994, pp. 183-192.

[351] Canetti, R., "Security and Composition of Multiparty Cryptographic Protocols", Journal of
Cryptology, 2000, vol. 13, no. 1, pp. 143-202.

[352] Canetti, R., "Universally Composable Security: A New Paradigm for Cryptographic Protocols", in
Proc. of the 42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 136.

[353] Endsuleit, R. and Wagner, A., "Possible Attacks on and Countermeasures for Secure Multi-Agent
Computation", in Proc. of the International Conference on Security and Management (SAM), 2004,
pp. 221-227.

[354] Rivest, R.L., Adleman, L., and Dertouzos, M.L., "On Data Banks and Privacy Homomorphisms", in
Proc. of the Foundations of Secure Computation, 1978: Academic Press, pp. 169-177.

[355] Neven, G., Van Hoeymissen, E., De Decker, B., and Piessens, F., "Enabling Secure Distributed
Computations: Semi-Trusted Hosts and Mobile Agents." Networking and Information Systems
Journal, 2000, vol. 3, pp. 1-18.

[356] Dadon-Elichai, A., "RDS: Remote Distributed Scheme for Protecting Mobile Agents", in Proc. of the
Autonomous Agents and Multi-Agent Systems Conference (AAMAS’04), 2004, New York City, NY:
ACM.

[357] Wang, Y. and Tan, K., "Dispatching Mobile Agents with Secure Routes in Parallel", in Qing, S.,
Okamoto, T., and Zhou, J. (eds.), ICICS 2001, vol. 2229 of Lecture Notes in Computer Science,
2001, Springer-Verlag, pp. 386-397.

233

[358] Page, J., Zaslavsky, A., and Indrawan, M., "A Buddy Model of Security for Mobile Agent

Communities Operating in Pervasive Scenarios", in Proc. of the 2nd Australasian Information
Security Workshop (AISW2004), 2004, Dunedin (New Zealand), pp. 17-25.

[359] Pleisch, S. and Schiper, A., "Approaches to Fault-Tolerant and Transactional Mobile Agent
Execution---an Algorithmic View", ACM Computing Surveys, 2004, vol. 36, no. 3, pp. 219-262.

[360] Claessens, J., Preneel, B., and Vandewalle, J., "(How) Can Mobile Agents Do Secure Electronic
Transactions on Untrusted Hosts? A Survey of the Security Issues and the Current Solutions",
ACM Transactions on Internet Technology, 2003, vol. 3, no. 1, pp. 28-48.

[361] Guan, S.U. and Yang, Y., "SAFE: Secure-Roaming Agent for E-Commerce", in Proc. of the 26th
International Conference on Computers and Industrial Engineering, 1999, pp. 33-37.

[362] Guan, S.U., Yang, Y., and You, J., "POM - a Mobile Agent Security Model against Malicious
Hosts." in Proc. of the 4th International Conference on High-Performance Computing in the Asia-
Pacific Region, 2000, Beijing, China.

[363] Gambetta, D., "Can We Trust Trust?" Trust: Making and Breaking Cooperative Relations,
Gambetta, D. (ed.), 1990, Basil Blackwell, Oxford, 213-237.

[364] Kagal, L., Finin, T., and Peng, Y., "A Delegation Based Model for Distributed Trust", in Proc. of the
IJCAI-01 Workshop on Autonomy, Delegation, and Control, 2001.

[365] Cahill, V., Gray, E., Seigneur, J.M., Jensen, C.D., Chen, Y., Shand, B., Dimmock, N., Twigg, A.,
Bacon, J., English, C., Wagealla, W., Terzis, S., Nixon, P., Serugendo, G.d.M., Bryce, C., Carbone,
M., Krukow, K., and Nielsen, M., "Using Trust for Secure Collaboration in Uncertain Environments",
Pervasive Computing Mobile And Ubiquitous Computing, 2003, vol. 2, no. 3, pp. 52-61.

[366] Capra, L., "Engineering Human Trust in Mobile System Collaborations", in Proc. of the 12th
International Symposium on the Foundations of Software Engineering (SIGSOFT 2004/FSE-12),
2004, Newport Beach, CA.

[367] Carbone, M., Nielsen, M., and Sassone, V., "A Formal Model for Trust in Dynamic Networks", in
Proc. of the 1st International Conference on Software Engineering and Formal Methods (SEFM’03),
2003, Brisbane, Australia, pp. 54-63.

[368] Kagal, L., Finin, T., and Joshi, A., "Moving from Security to Distributed Trust in Ubiquitous
Computing Environments", IEEE Computer, 2001.

[369] Karjoth, D., Lange, D.B., and Oshima, M., "A Security Model for Aglets", IEEE Internet Computing,
1997, vol. 1, no. 4, pp. 68-77.

[370] Jansen, W., "A Privilege Management Scheme for Mobile Agent Systems", in Proc. of the
International Conference on Autonomous Agents, 2001, Montreal, Canada.

[371] Hashii, B., Malabarba, S., Pandey, R., and Bishop, M., "Supporting Reconfigurable Security
Policies for Mobile Programs", in Proc. of the 9th International World Wide Web Conference
(WWW9), 2000, Amsterdam, Netherlands.

[372] Antonopoulos, N., Koukoumpetsos, K., and Ahmad, K., "A Distributed Access Control Architecture
for Mobile Agents", in Proc. of the International Network Conference, 2000, Plymouth, UK.

[373] Robles, S., Borrell, J., Bigham, J., Tokarchuk, L., and Cuthbert, L., "Design of a Trust Model for a
Secure Multi-Agent Marketplace", in Proc. of the 5th International Conference on Autonomous
Agents, 2001, Montreal: ACM Press, pp. 77-78.

[374] Robles, S., Poslad, S., Borrell, J., and Bigham, J., "A Practical Trust Model for Agent-Oriented
Electronic Business Applications", in Proc. of the 4th International Conference on Electronic
Commerce Research, 2001, Dallas, USA, pp. 397-406.

[375] Robles, S., Poslad, S., Borrell, J., and Bigham, J., "Adding Security and Privacy to Agents Acting in
a Marketplace: A Trust Model", in Proc. of the 35th Annual IEEE International Carnahan
Conference on Security Technology, 2001, London: IEEE Press, pp. 235-239.

[376] Navarro, G., Robles, S., and Borrell, J., "An Access Control Method for Mobile Agents in Sea-of-
Data Applications", Upgrade, 2002, vol. III, pp. 47-51.

[377] Ametller, J., Robles, S., and Ortega-Ruiz, J.A., "Self-Protected Mobile Agents", in Proc. of the 3rd
International Conference on Autonomous Agents and Multi Agents Systems, 2004: ACM Press.

[378] Robles, S., Mir, J., and Borrell, J., "MARISMA-A: An Architecture for Mobile Agents with Recursive
Itinerary and Secure Migration", in Proc. of the 2nd Information Workshop on Security of Mobile
Multiagent Systems, 2002, Bologna, Italy.

[379] Pfleeger, C. and Pfleeger, S.L., Security in Computing., 3rd ed, 2003, Upper Saddle River, NJ:
Prentice Hall.

[380] Davidson, S. and Harlow, J., “Guest Editor’s Introduction: Benchmarking for Design and Test,”
IEEE Design & Test of Computers, vol. 17, no. 3, July-Sept 2000, pp. 12-14.

234

BIOGRAPHICAL SKETCH

J. Todd McDonald is an active duty Lieutenant Colonel in the United States Air Force and is currently
assigned as an Assistant Professor with Department of Electrical and Computer Engineering, Air Force
Institute of Technology, Wright Patterson Air Force Base, OH. He was born in Atlanta, GA to Wayne
McDonald and the late Margie McDonald. He is married to the former Angela Lodge of Calvary, GA and
they have two children, Allie and Tucker. He graduated from Cairo High School, Cairo, GA, in 1986. Todd
is an associate member of the Institute of Electrical and Electronic Engineers (IEEE) and the Association of
Computing Machinery (ACM).

Service History
Aug 2003 – Dec 2006, PhD Candidate, Dept of Computer Science, Florida St University, Tallahassee, FL.
Graduate student and research assistant working towards doctoral degree in Computer Science. Working
with Dr. Alec Yasinsac, worked to develop advanced security techniques to protect mobile computations and
mobile agent applications.

Jun 2002 – July 2003, Advisor to the Chief Scientist, AFOTEC, Albuquerque, NM.
Staff officer assisting the Technical Advisor to the Commander and the Chief Scientist of AFOTEC in
technical analysis, research projects, and coordination of AFOTEC technical direction. Contract manager
and technical lead for $1M study effort that determines 4 year/$50M spending plan for directed energy test
infrastructure funded by OSD.

Mar 2001 – Jun 2002, Chief, Test Capability Analysis Branch, AFOTEC, Albuquerque, NM.
Test manager conducting operational utility analysis of the Joint Modeling and Simulation System… led joint
service evaluation of software system coordinating Army and Navy evaluation teams. Led trade-off analysis
studies of test infrastructure capabilities (open air range assets, hardware-in-the-loop facilities, man/pilot-in-
the-loop facilities, modeling and simulation systems) required for successful operational testing of major
weapons systems (CV-22, F-22, Joint Strike Fighter, Space Based IR Systems, F-15, B-1B).

Apr 2000 – Mar 2001, Chief, Software Plans Branch, AFOTEC, Albuquerque, NM.
Performed software analysis on weapon systems in support of operational testing conducted by AFOTEC for
C-130J, CV-22, and C-130 modernization programs. Conduct and execute methodologies that determine
maintainability, reliability, code quality, maturity, and process (CMM) level implementation.

Jul 1998 – Apr 2000, Masters Student, AF Institute of Technology, Dayton, OH.
Completed 75 course hours with a 3.86 GPA to earn a Master’s of Science degree in Computer
Engineering. Pursued 3 different elective tracks to include: database-information retrieval (IR), software
engineering, and artificial intelligence (AI). Thesis work focused on practical application of object-oriented
database technology (OODBMS), agent oriented systems (AOIS) design, and object-oriented data modeling
(OOA/OOD) to a real-world AF problem.

Jun 1996 – Jul 1998, Commander, Information Systems Flight
Assigned as manager of an 11-person development team specializing in Graphical User Interface (GUI)
software in Ada95 and Open-GL. Planned, organized, and directed upgrade of existing COBOL MIS
application suite for base-level applications into 3-tier, RDBMS, Web-enabled architecture.

Aug 1994 - Jun 1996, Chief, Data Administration Section
Part of a software development and support team; took over database administration Managed the Oracle
Relational Database Management System (RDBMS) on VAX, IBM, and SGI, and Windows NT platforms.
Oversaw the installation, upgrade, and support of database systems that service over 500 users. Lead
developer for an Oracle RDBMS based application used by over 150 users.

Aug 1990 - Aug 1994, Simulation Analyst, AF Wargaming Institute, Montgomery, AL.
Developed GUI front-end/RDBMS back-end application and support tools to execute theater-level seminar
wargames played by over 700 students annually. Responsible for the installation and execution of wargame
software at the Command and General Staff College (Ft. Leavenworth, KS), the Royal Air Forces Staff
College (RAF Bracknell, UK), and the Canadian Forces Staff College (Toronto, ON).

Jun 1986 - Jun 1990, Cadet, US Air Force Academy (USAFA), Colorado Springs, CO.

235

Degrees Conferred
Bachelors of Computer Science (B.S), May 1990
U.S. Air Force Academy, CO

Masters of Business Administration (M.B.A), December 1996
University of Phoenix, Nellis AFB Campus

Masters of Science in Computer Engineering (M.S.C.E.), March 2000
AF Institute of Technology, Wright Patterson AFB, OH

Doctor of Philosophy in Computer Science (Ph.D.), Fall 2006
Florida State University, Tallahassee, FL

Instructor Experience
2000 – 2002, MIS Faculty Member, National American University
Rio Rancho, NM Campus / Albuquerque, NM Campus
Fall 2000, CI2350 Intro to UNIX
Winter 2000, CI1420 Principles of Programming
Winter 2000, CI3520 Programming in C/C++
Winter 2000, CI4070 SQL Server Administration
Spring 2001, CI3520 Programming in C/C++
Spring 2001, CI4520 Advanced C/C++ Programming
Summer 2001, CI1150 Introduction to CIS
Summer 2001, CI1420-A Principles of Programming
Summer 2001, CI1420-B Principles of Programming
Fall 2002, CI1420 Principles of Programming
Fall 2002, CI2490 Structured Query Language
Fall 2002, CI4680 Advanced JAVA Programming
Summer 2002, CI1420 Principles of Programming
Summer 2002, CI3680 JAVA Programming
Winter 2002, CI1420 Principles of Programming

2002 – Present, MIS Faculty Member, University of Phoenix Online Campus
2002/07, POS370 Principles of Programming
2002/10 POS370 Principles of Programming
2002/12, POS370 Principles of Programming
2003/08, POS370 Principles of Programming
2003/10, POS370 Principles of Programming
2004/06, POS370 Principles of Programming
2004/07, MTH208 College Mathematics I
2004/12, CSS561 Programming Concepts
2005/11, CSS561 Programming Concepts
2006/11, MTH208 College Mathematics I

2006 – Present, Assistant Professor, AF Institute of Technology, WPAFB, OH
2006/10, CSCE593, Introduction to Software Engineering

236

Publications
J. T. McDonald and A. Yasinsac, “On the Possibility of Perfectly Secure Obfuscation for Bounded Input-Size
Programs,” submitted to 4th Theory of Cryptography Conference (TCC’07), Feb. 21-24, 2007, Amsterdam,
The Netherlands (decision October 2006).

J. T. McDonald and A. Yasinsac, “Program Intent Protection Using Circuit Encryption,” to appear, in Proc. of
8th Int’l Symposium on Systems and Information Security, Sao Paulo, Brazil, Nov. 8-10, 2006.

A. Yasinsac and J. T. McDonald, “Foundations for Security Aware Software Developmen Education,“ in
Proc. of the 39th Annual Hawaii Int’l Conference on System Sciences (HICSS’06), 2006, p. 219.

J. T. McDonald and A. Yasinsac, “Of Unicorns and Random Programs,” Proc. of the 3rd IASTED
International Conference on Communications and Computer Networks (IASTED/CCN), Marina del Rey, CA,
October 24-26, 2005.

J. T. McDonald, “Hybrid Approach for Secure Mobile Agent Computations,” in Proc. of the Secure Mobile
Ad-hoc Networks and Sensors Workshop (MADNES '05), vol. 4074 of Lecture Notes in Computer Science,
2005, Springer-Verlag, pp. 38-53.

J. T. McDonald and A. Yasinsac, “Application Security Models for Mobile Agent Systems,” in Proc. of the 1st
Int’l Workshop on Security and Trust Management, Milan, Italy, 2005, Electronic Notes in Theoretical
Computer Science, vol. 157, no. 3, 25 May 2006, pp. 43-59.

J. T. McDonald, A. Yasinsac, W. Thompson, “Mobile Agent Data Integrity Using Multi-agent Architecture,” in
Proc. of the International Workshop on Security in Parallel and Distributed Systems (PDCS 2004), San
Francisco, CA, 14-17 September 2004.

W. Thompson, A. Yasinsac, J. T. McDonald, “Semantic Encryption Transformation Scheme,” in Proceedings
of the International Workshop on Security in Parallel and Distributed Systems (PDCS 2004), San Francisco,
CA, 14-17 September 2004.

J.T. McDonald, M. Talbert, “Agent-Based Architecture for Modeling and Simulation Integration”, in
Proceedings of the National Aerospace & Electronics Conference (NAECON 2000), Dayton, OH, Oct 2000.
(2nd Place Best Paper for NAECON 2000 in the Student Award Category)

J.T. McDonald, M. Talbert, and S. Deloach, “Heterogeneous Database Integration Using Agent-Oriented
Information Systems”, in Proceedings of the International Conference on Artificial Intelligence (IC-AI’2000),
Las Vegas, NV, Jun 2000.

J.T. McDonald, “Agent-Based Framework for Collaborative Engineering Model Development”, MS Thesis,
Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, AFIT/GE/ENG/00M-16, March 2000.

	dissertation-final1-70.pdf
	dissertation-final71-150.pdf
	dissertation-final151-210.pdf
	dissertation-final211-251.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

