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ABSTRACT 
 

Mobile agents are an application design scheme for distributed systems that combine mobile 
code principles with software agents. Mobile computing emerged over the last decade with a 
vision for code that changes its execution location—moving from platform to platform in a 
heterogeneous network carrying an embodied, updatable state.  Agents are software processes 
that act on a user’s behalf, perform particular functions autonomously, and interact with their 
environment to accomplish their goals. We consider in this thesis historical mobile agent security 
research while also gauging current trends.  

Program mobility and autonomy are ultimate distributed computing expressions—
programmers can view the network as a seamless canvas for application development.  
Disconnected host operations give a key advantage to mobile agents; however, researchers 
agree that protecting a stand-alone autonomous mobile agent with software-only approaches 
remains difficult.  In this thesis, we produce several results that enhance mobile agent security 
and provide generalized code protection.  We propose and define several novel techniques that 
protect mobile agents in ubiquitous environments and that solve practical problems in the 
program obfuscation field.  We contribute to the field in the following ways: 

 
Generalized Black Box Program Protection. We provide a novel technique for hiding a 

candidate program’s input/output relationships by using a data encryption padding technique.  
This method provides general program/circuit protection and relies on the semantic security 
strength found in common data encryption ciphers. Analyzing the black box relations for such 
protected programs cannot reproduce the original program’s input/output mapping. 

 
Generalized White Box Program Protection. We semantically protect the white-box source 

code/gate structure information for a relevant program class defined by bounded input size. By 
using simple Boolean canonical circuit forms, we create an obfuscation technique that effectively 
hides all information regarding the source code or circuit gate structure. 

 
Embedded-Key Program Protection.  Leveraging our white-box results, we demonstrate 

how to embed an encryption key in programs that have small input size with measurable security. 
This technique gives foundations for solving the classic computer security problem regarding how 
transform any private-key cryptosystem into a public-key cryptosystem.  

 
Analyzing Mobile Code Protection Schemes for Code Privacy. The Virtual Black Box 

(VBB) has been a theoretical foundation for understanding obfuscation strength for some time.  
We consider programmatic intent protection for mobile agents and pose a new model for 
obfuscated code security based on random programs.   

 
Tamperproofing Mobile Code. We lay foundations for a new code protection methodology 

for mobile agents based on techniques used in the data encryption field.  Specifically, we employ 
circuit encryption techniques that use combined sub-circuit permutation and substitution. As a 
result, we appeal to indistinguishability notions for circuits drawn uniformly from large sets and 
establish properties for obfuscators that provide intent protection based on randomization. 

 
Trust Framework for Mobile Agents. Security tends to be Boolean and rigid in its 

application.  Mobile agents in unknown and ubiquitous environments need a flexible security 
model that accounts for the unique challenges they face. We develop a novel framework to 
capture principles and trust relationships specific to the mobile agent paradigm.  Our framework 
fills in the shortfall gap in current trust frameworks that attempt to deal with agents and mobility. 

 



 

xv 

Application Security Models. Initial trust levels between mobile agent principals depend on 
the application security model.  Application designers can provide initial trust conditions to 
characterize the mobile execution environment; we seed a mobile interaction trust database with 
these conditions.  We define three different mobile agent settings that exhibit common security 
characteristics: the military model, the neutral services model, and the trade model.  We apply 
these models in context to our trust framework and show their relevance in designing secure 
mobile agent applications. 

 
Multiple-Agent Protection Based on Secure Mobile Agent Computations.  Multiple agents 

provide greater capability for security in mobile contexts.  We develop multiple agent architecture 
for mobility utilizing hybrid secure multi-party computation models, trusted high-speed threshold 
servers, and multiple agents.   

 
Multiple-Agent Scheme to Provide Data Encapsulation Protection. We develop a novel 

approach to deal with colluding malicious hosts in context to data state integrity attacks.  Our 
architecture utilizes three cooperating agent classes that prevent partial results disclosure by their 
interaction and by using public data bins. 

 
Comprehensive Mobile Agent Security History. We provide a comprehensive mobile agent 

security history.  We create and employ taxonomy for describing and understanding all security 
aspects that relate to mobile agents: mobility, threats, requirements, mechanisms, verification, 
evaluation metrics, and mechanisms. 
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CHAPTER 1 
 

INTRODUCTION 

Software agents are both a design paradigm and implementation level construct for designing 
distributed systems [1, 2].  Defined in artificial intelligence (AI) research, agents are software 
components that perform autonomous actions in order to accomplish predefined goals [3].  In the 
AI-based view, agents are software components that act on a user’s behalf by carrying 
knowledge, reasoning over beliefs, representing user intentions, and communicating via some 
standard mechanism with other agents [4]. Agents are autonomous, goal-driven, adaptive, 
proactive, mobile, and social based upon the rules and actions provided by the designer [5].   

Mobile agents [6] integrate software agents and the distributed programming paradigm known 
as mobile code [7, 8, 9].  Mobile programs that are autonomous and reactive to environmental 
changes (referred to henceforth as mobile agents) have found usefulness in domains such as 
information retrieval [10], e-commerce [11], network management [12, 13], digital image 
processing [14], tele-care assistance [15], grid computing [16], and peer-to-peer networking [17].  
Real-world commercial applications based on mobile agents are not realizable until agent 
frameworks adequately address security concerns—no matter how useful or beneficial the mobile 
agent paradigm may be. Our research contributes stepping-stones to a secure mobile agent 
paradigm. 

We begin by showing how to protect mobile agent data integrity when malicious hosts collude,  
provide architecture that guarantees host data privacy and execution integrity, and  show  how  to 
reason about security choices when agents interact with unknown parties. We organize this 
thesis to reflect the corresponding research agenda. In Chapter 3 we present methods that 
positively counter integrity and execution integrity attacks by using multiple agent coalitions.  In 
Chapter 4, we present a novel framework for exercising mobile trust management decisions.     

Our major accomplishment addresses how to protect mobile agent code privacy and 
execution integrity in remote environments.  In other words, we reduce a malicious party’s actions 
from intentioned, smart code alterations to blind disruption. In Chapter 5, we give novel 
approaches to solving this historically tough problem, in the face of several theoretic impossibility 
results for obfuscation and software tamperproofing.  We show first how to protect the black box 
properties of a general program with provable security and with reasonable efficiency; we define 
a new model by which to judge software obfuscation strength—according to known cryptographic 
security properties.  We demonstrate in this thesis a methodology for producing randomized, 
executably encrypted circuits with provable white box security properties that are not subject to 
the traditional impossibility results.  We design a methodology to provide perfect semantic white 
box program protection—with provable security properties—for a relevant class of programs.   
Finally, our approach gives one of the first known solutions for how to protect an embedded 
cryptographic key securely within a program and the first known public key encryption system that 
uses only symmetric key cryptographic computations. 

1.1 The Problem Area 

Current pioneers describe future generation computing with phrases such as “the network is 
the computer1” (network-aware programming) and terms such as “ubiquitous computing2” (the 
one-person-to-many-computer relationship common around the world today).  In this brave new 
computing world, we must protect privacy and execution integrity for code located outside 
developer control or outside its native executing environment. Mobile computing emerged in the 
last decade and envisioned programs with an embodied, updatable state that move from platform 
to platform in a heterogeneous network environment [18].   

                                                           
1 Trademark of Sun Microsystems, Inc 
2 Alan Key, Apple Computing (see http://www.ubiq.com/hypertext/weiser/UbiHome.html) 
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Migrating or “itinerant” agents act on a user’s behalf and perform a particular task 
autonomously. When they finish processing, agents return home or take further initiative once 
accomplishing their user-directed goal.  Some researchers have tried to analyze why mobile 
agents have not achieved a widespread use outside academic circles [19] to this point. A 
consistent fear that agent systems cannot guarentee availability, integrity, and scalability while 
keeping the overhead manageable [20] tops the list for their adoption failure.  

In order to be successful, practical mobile agent implementations must match system 
functionality with available security defenses and manage those protection aspects that are still 
unattainable.  Managing agent security mechanisms requires an infrastructure to support mobility 
beyond those required for typical distributed systems—causing cumbersome implementation 
headaches. In some cases, agent applications will require a new security perspective based on 
non-Boolean trust. Deploying future automonous/distributed applications running in possibly 
hostile computing environments will demand that security problems are addressed.  

We gain benefit by defining and solving security problems in the mobile agent realm. 
Particulary, if mobile agent security issues can be solved, other security problems associated with 
distributed computing paradigms pale in comparison. In addition, agent security requirements 
readily overlap with needs in other traditional research areas such as software tamperproofing, 
virus protection, security integration with software engineering, policy enforcement, piracy 
prevention, digital rights management, and secure remote computing.  Such ancillary result areas 
provide great impetus for our primary focus on furthering mobile agent security.  

Agent security requirements are normally distilled into two categories [21, 22]: host protection 
and agent protection.  We define our solution space starting with the hardest problem: protecting 
an agent from a malicious host.  As the agent migrates, an intermediate hosts can alter its current 
state (and therfore its functionality) in unintened and malicious ways [23, 24]. Explicity stated, 
how can agent integrity, privacy, availability, and authentication be protected when a remote host 
has full access to agent code and state being executed?  Our results address this target problem. 

Regarding agent protection, Bierman and Cloete [21] summarize four malicious host attack 
categories, illustrated in Figure 1: integrity attacks, availability refusal, confidentiality attacks, and 
authentication risks. Integrity and confidentiality alterations reveal and exploit the private 
information contained in the code and dynamic agent state.  Together with authentication risks, 
these attacks represent attempts by a malicious party to gain unfair advantage without explicitly 
refusing agent execution. Hosts that perform strict service denial can starve the agent for 
resources, provide the agent wrong information, or destroy the agent without execution or 
migration.  These host types represent the worst-case mobile agent risk.  

Farmer and Guttman in [23] believe the questions regarding whether an interpreter will run an 
agent correctly or whether a server will run an agent to completion are impossible to answer.  
Even though other impossibility claims in [23] have been challenged, such as whether agent code 
and data can be kept private [25, 26, 27] and whether an agent can carry a key [28, 29, 30], we 
do not argue whether or not certain server actions can be prevented. Agents that execute on 
interpreters located at a remote host execute under the remote host’s power and control—not the 
originator’s control.  

Single mobile agents are in many cases hard to protect against all possible malicious threats. 
In some cases, using multiple agents supports accountability or secure delegation without fixed 
hardware use. In other cases, introducing multiple agent classes enhances trusted hardware use. 
We investigate as a secondary goal possibilities for multi-agent architectures that increase mobile 
agent security and allow greater security requirements coverage.  

Assuming that mobile agents and their intended execution environments are in different 
security domains or administrative control realms, no mechanisms exist to prevent absolute 
service denial attacks such as resource starvation or to guarantee honest host input.  No current 
protection methods can reliably prevent strict denial of service in the mobile agent paradigm 
unless tamperproof hardware or secure co-processors [31, 32] completely control the remote 
execution environment. Even with tamperproof hardware, malicious parties can attack the remote 
host’s physical environment or indirectly influence an agent’s execution [22].  
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Figure 1: Malicious Host Threat Classification 

We can detect service denial by employing certain security mechanisms such as trusted 
verification servers [33] and timed execution limits [34].  We refer to this alteration form alteration 
as blind disruption because, at most, an adversarial host can only circumvent correct program 
execution blindly. On the other hand, adversaries that use effective tampering execute remote 
agents with the intent to observe or alter the normal code execution in order to gain some benefit 
(integrity, confidentiality, and authentication attacks).  Such threats include agent itinerary 
alteration, code replay attacks, changing execution pathways, and proprietary algorithm 
discovery.  Figure 2 illustrates the distinction among tampering attacks.  

Considering non-Byzantine faults that do not terminate a program, users prefer that programs 
terminate rather than continuing execution with erroneous or possibly corrupted results. Non-
malicious terminating faults are at least detectable—even though we may not discern the failure 
cause or its remedy easily.  For Byzantine program errors in mobile agents, we can detect strict 
service denial easier than partial denials where adversaries effectively alter mobile code for their 
own malicious intent without detection.  We desire to prevent effective tampering as a research 
goal, not only for mobile agents but also for software in general.  As a result, we present in this 
thesis results that preserve code privacy and execution integrity against attacks by malicious 
parties.  

1.2 Research Objectives 

Based on the malicious threat environment facing mobile applications, we pose and answer in 
this thesis three questions related to code security and agent protection: 

How can we enhance security with multiple agents? (Chapter 3) 
How can we integrate trust into mobile agent security? (Chapter 4) 
How can we tamperproof mobile agents and protect software in general? (Chapter 5) 
 

We provide relevant answers to these questions in both incremental results and significant 
contributions.  We frame each research area according to these questions and lay out results 
from our investigation in the following manner.  

1.2.1 Multi-Agent Architectures for Security 

In order for mobile agents to have widespread acceptance, mobile applications must 
adequately address user-specific security concerns.  Increased security requirements limit 
supportable system mobility, although distributed trust offers greater protection hope against 
malicious activity. Stand-alone mobile agents may require similar help in order to enforce security 
requirements.  Our thesis results give methods to strengthen security in mobile agent paradigms 
by using multiple agent interactions.  We pose and evaluate architectures that accomplish 
specific security requirements for mobile agents. Chapter 3 presents our research results for this 
objective. 



 

4 

 
Figure 2: Blind Disruption versus Effective Tampering 

1.2.2 Mobile Agent Trust Frameworks 

Traditionally, mobile agent security has focused on protection mechanisms that keep 
malicious parties from altering the agent and on protection mechanisms that keep malicious 
agents from harming other parties. Researchers have done little to bridge the gap between 
requirements, trust expression, and protection mechanisms at an application-centric level. When 
dealing with application development, trust properties clearly define security requirements.  Trust 
formulation has been given considerable thought both in distributed networking applications [35, 
36, 37, 38] and mobile agents [39, 40, 41, 42, 43].  Mobility as an application feature complicates 
security because a host receiving a mobile agent to execute must make distributed trust 
decisions with little or no prior knowledge.  Likewise, agents acting on a user’s behalf must 
evaluate trust relationships with hosts in possibly unknown environments.  Applications based 
upon mobile agents must blend user security requirements with environmental trust expectations 
where agents execute.   

Typically, execution platforms perform software authentication and integrity checking to 
manage trust in a networked environment. In a mobile computing environment, both remote hosts 
and mobile code may act maliciously. We develop a trust model for mobile agents with novel 
features: linking application security requirements with mechanisms based on trust, reasoning 
about trust properties for generic security mechanisms, and application models for initial trust 
among principals in a mobile agent setting. Chapter 4 details our research results for this 
objective. 

1.2.3 Program Encryption 

Providing protection against effective tampering attacks against mobile agents remains an 
open problem in computer science.  Researchers continue to seek ways to prevent certain 
tampering attacks realizing that they can only detect strict service denials (blind disruption) a 
posteriori.  Finding ways to reduce effective tampering to blind disruption remains an active 
interest area.  In this thesis, we develop effective means for both black box and white box 
protection that guard the agent’s programmatic intent.  These techniques are fully general for 
programs with small input size, but do not apply to all program classes.  We develop also a 
theoretical foundation for understanding code protection based on program recognition and 
random programs [44]. We present our research results for this objective in Chapter 5.  
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1.3 Conventions 

We briefly describe the notational conventions used throughout this thesis. 

1.3.1 Cryptographic Primitives and Protocols 

Cryptographic techniques provide secure functionality for enforcing various requirements such 
as confidentiality, integrity, and authentication.  

Symmetric key encryption employs a secret key to encrypt a message into ciphertext and 
the same key to decrypt the ciphertext into the original message. For our purposes, E(K,M) and 
EK(M) indicates a symmetric encryption algorithm E which encrypts data string M ∈ {0,1}*  using 
the secret key K to produce ciphertext C ∈ {0,1}*: C = E(K,M). Two notable symmetric encryption 
algorithms include Date Encryption Standard (DES) and Advanced Encryption Standard (AES).  

For clarification, we describe decryption under a symmetric key scheme by D(K,C) and DK(C) 
indicates a symmetric encryption algorithm D which decrypts data string C ∈ {0,1}* using the 
secret key K to reproduce the original plaintext M ∈ {0,1}*: M = D(K,C).  Under symmetric key 
cryptography, the message sender and receiver must agree on the secret key beforehand. 

Asymmetric key encryption involves the using two different keys: one public (K) and one 
private (K 

-1).  In order for Alice to send Bob a message, Alice encrypts her message M with Bob’s 
public key (KB). On receipt, Bob uses his private key (KB

-1) to decrypt the message. Signatures 
are an authentication technique associated with asymmetric encryption where a message 
originator encrypts a message with their private key (K 

-1). The other principal, upon receiving the 
message, can verify the sender’s identity using the sender’s public key (K). In order for Alice to 
verify Bob as the sender of a message M, Bob signs (encrypts) his message M with his private 
key (KB

-1)). On receipt, Alices uses Bob’s public key (KB) to verify the message. 
Symmetric Block Ciphers. A block cipher is a function E: {0,1}k x {0,1}m → {0,1}m that takes a 

k-bit key and an m-bit (block length) plaintext input and returns an m-bit ciphertext string. The 
inverse function D: {0,1}k x {0,1}m → {0,1}m takes the same k-bit key and an m-bit ciphertext string 
and returns an original m-bit plaintext string.  We let EK(M) denote the encryption of block 
message M ∈ {0,1}m with a specific key K ∈ {0,1}k and let DK(C) denote the decryption (inverse 
encryption) of block message C ∈ {0,1}m with the same key K ∈ {0,1}k. We assume that any block 
cipher E of interest to us is a strongly pseudorandom function that is a permutation on {0, 1}m, as 
defined for example by Goldreich in his textbook [188].   

Message Protocols.  When a principal X sends message mi to principal Y, we indicate this by 

n
m FFFFYX i ,...,,,: 321⎯→⎯ , where the message contents are the fields F1, F2, F3, … Fn. 

1.3.2 Boolean Functions and Circuits 

A Boolean function (also known as a gate) is a map f: {0,1}n→{0,1}.  For n = 2, f is a 2-input 
Boolean functions.  A basis Ω is a set of Boolean functions. We define a circuit over a basis as a 
directed acyclic graph (DAG) having either nodes corresponding to functions in Ω being termed 
gates or having nodes with in-degree 0 being termed inputs. We distinguish one (or more) nodes 
as outputs. We compute the value at a node by applying the corresponding function to the values 
of the preceding nodes. We define the circuit size as the number of gates. We define the circuit 
depth as the length of the longest directed path from an input to an output. We say the basis Ω is 
complete if and only if all f are computable by a circuit over Ω. We define the size of the basis Ω 
as the number of functions composing it and represent it using |Ω|. We define Bn as the set of all 
Boolean functions with n inputs.  

Combinational Circuit: We refer to standard Boolean circuits over Ω = {AND,OR,NOT} and 
let C be a circuit with n inputs and m outputs.  For x ∈ {0, 1}n, C(x) denotes the result of applying 
C on input x and specify that C computes function f : {0, 1}n → {0, 1}m. A combinational circuit 
(block, component) consists of logic gates that process n input signals xn-1, . . . , x0 into m output 
signals ym-1, . . . , y0 using a function y = f(x), in such a way that output signals depend only on the 
current input signals. 
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Truth Tables. Assuming P: {0,1}n → {0,1}m, T(P) indicates the m⋅2n size matrix of input/output 
pairs that represent the truth table (logical) relationship of P:  ∀x, [x,y] = [x, P(x)]. 

Canonical Forms. We represent the canonical form of a Boolean function f with n inputs as a 
sum of its products (minterms). Each product (∧) has n terms and the summation has at most 
2n ∨-terms. We give the upper-bound for the canonical form of any Boolean formula as O(n2n) 
gates.  
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1.3.3 Turing Machines and Programs 

Unless otherwise noted, Turing machines and circuits are identified by their normal descriptive 
representations as strings in {0,1}∗. TM stands for a Turing machine while PPT stands for a 
probabilistic polynomial-time Turing machine. Given algorithm ADV, algorithm M, and input string 
x, the notation ADVM(x) indicates the output of algorithm ADV when executed on input x using 
oracle (black box) access to M.  The black box oracle M can be a circuit or TM. When M is a 
circuit, algorithm ADV receives query responses M(x) from oracle M on input x; when M is a TM, 
algorithm ADV can perform black box queries of the form (x, 1t) and receive M(x) if M halts within 
t steps on x or receive the halt symbol (⊥) otherwise. 

When algorithm ADV is a PPT, ADV(x; r) indicates the output of ADV when executed on input 
x using random tape r.  ADV(x) is the distribution induced by choosing r uniformly from the 
distribution and executing ADV(x; r). For a distribution D, we indicate with the notation Dx R⎯ ⎯←  
a random variable x distributed according to D. For a set S, we indicate with the notation 

Sx R⎯ ⎯←  a random variable distributed uniformly over the all the elements of the set S.  A 
function α: N≈R+ is negligible if, for any positive polynomial p, there exists N ∈ N such that . α(n) < 
p(n)-1,  for any n > N. 

We let P | E refer to the concatenation of program P with the program E such that (P|E)(x) = E 
(P(x)), for all x.  Given a program P:{0,1}* → {0,1}* and ∀x, y = P(x), we let |xP| represent the input 
size of P in bits and let |yP| represent the output size of P in bits. Let P be defined as function 
P:{0,1}n → {0,1}|yP| and E:  {0,1} |xE| → {0,1}m.  We define the concatenation of P with E as P | E: 
{0,1}n → {0,1}m. 

1.4 Chapter Summary 

We introduce in this chapter the field of mobile agent security and software protection.  We 
give a review of several incremental results corresponding to our research and highlight the more 
significant results concerning program intent protection.  We outline the remainder of the thesis 
as follows.  Chapter 2 and Appendix A present a comprehensive literature review on mobile agent 
security, program protection, and trust frameworks that are applicable to our research. We 
present issues and results associated with our research objectives individually. Chapter 3 
describes the security utility and design benefits for using multi-agent architectures and provides 
results in developing such architectures. Chapter 4 introduces a novel framework for integrating 
trust into mobile agent security decisions.  Chapter 5 presents our research results for developing 
mobile code and software protection schemes that enhance code privacy and execution integrity. 
Chapter 6 concludes with a summary and discussion. 
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CHAPTER 2  
 

MOBILE AGENT SECURITY 

Our three-pronged approach to strengthening mobile agent security involves diverse computer 
science disciplines. In this section, we provide a literature review for appropriate areas related to 
our research and results.  Appendix A provides a more comprehensive analysis for the interested 
reader. In Section 2.1, we first define mobile agents and their characteristics as a distributed 
computing paradigm. In Section 2.2, we define the requirements and threats associated with 
securing mobile agent systems.  

2.1 Mobile Agent Paradigms 

Two worlds merge in the mobile agent paradigm: software agents and distributed computing. 
These worldviews have very different research goals, associated standards, and underlying 
assumptions. Mobile agent frameworks are the meeting point between theory and practice for 
mobile agents—providing a means for agent construction, migration, and execution in real-world 
applications. Figure 3 depicts this relationship and points us to considerations for mobile agent 
security.  

 
Figure 3: Considerations in Agent Mobility  

2.1.1 Defining Agents 

In applied artificial intelligence (AI), agents perform autonomous actions in order to meet user-
preferred goals [3].  We describe an agent as automated software that assists a user and acts on 
their behalf.  Agents perform tasks by carrying knowledge, reasoning over beliefs, representing 
user intentions, and communicating via some standard mechanism with other agents [4].  We 
describe agent behavior as autonomous, goal-driven, adaptive, proactive, mobile, and social 
based upon predefined rules and actions provided by their designer [5].   

Researches like Odell [45] describe agents not in human terms but as active objects with 
private execution threads. Agent actions in the object-centric view arise from thread interactions, 
conditional statements, method invocations, object interactions, exception handling, and 
serializable persistence [46]. Agents, under any definition, are software processes that execute 
within some environment.  Like any other software component, they communicate with both users 
and other processes via predefined protocols such as message passing. 

Single agents (like those that help a user to better customize repetitive tasks) do not require 
collaboration with other agents.  In multi-agent systems, we place agents into classes based on 
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labor divisions representing their functionality.  Single or multiple agent instances from different 
agent classes work together and are deployed for some common system goal: networking, 
interface assistance, filtering, information fusion, brokering, transaction processing, monitoring, 
decision making, knowledge management, and many others [47].  Agent infrastructures or 
middleware provide ability for agents to interact, communication via agent communication 
language (ACL) protocols, and specify standard ontology in a framework [48].  

 
Figure 4: Software Agent Space 

Several researchers have made strides in defining intelligent agents and developing agent-
oriented software engineering techniques; such results are established by Rao/Georgeff [49], 
Decker et al. [50], Bradshaw [2], Object Management Group [51], and Tosic/Agha [52].  
Researchers consider contributions by Wooldridge and Jennings [3, 5, 53, 54] to be seminal. 
Classic multi-agent scenarios involve cooperating processes with incomplete or specialized 
capabilities working in a decentralized manner, usually with distributed information across 
asynchronous computations [55]. 

Multi-agent systems embody social, goal directed behavior and establish message-passing 
protocols used by agents that define a system.  Gilbert et al. [56] describe autonomy and 
intelligence as orthogonal design spaces in considering software agents.  Mobility, which is the 
ability to migrate to another location and perform a task, remains an additional, but non-essential 
agent feature.  Figure 4, derived from Rothermel and Schwehm [57], depicts our interest in 
taxonomical definition from among these three spaces as the security aspects for agents that 
exhibit mobility.  

2.1.2 Defining Mobility 

In the distributed computing realm, mobile or itinerant agents are a natural extension to 
remote code execution [18].  Mobility removes the requirement that a process must remain 
confined to the host where it began execution. Mobile agents as a distributed computing 
paradigm manifest in four different expressions, illustrated in Table 1 [57].  Rothermel and 
Schwehm define each paradigm based on the program location (the know-how), the resources 
used by a program, and the execution environment (the processor) that a program runs on [7].  

In a mobile agent scheme, the program moves to its resource location and executes on the 
local environment using the remote processor to update its internal state.  Reduction in network 
loads and supporting asynchronous and disconnected operations are two benefits, among others, 
seen by researchers such as Lange and Oshima [58] and Kotz and Gray [59].  Researchers such 
as Chess et al. [18,60], Carzaniga et al [9], Ghezzi and Vigna [7], Fugetta et al. [8], Riordan and 
Schneier [61], Bradshaw et al. [1], and Milojicic et al. [62] establish foundational premises for 
combining code mobility with agency. 
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Table 1: Distributed Computing Paradigms 
Computing Paradigm Mobility  Mechanism 
Client-server 
Message passing 

Transporting 
data 

Remote Evaluation 
Code on Demand 

Transporting 
code + data 

Mobile Objects 
Weak Migration 

Migrating  
code + data 

Mobile Agent 
Strong Migration 

Migrating 
code + data + state 

 

2.1.3 Mobile Agent Interactions 

A static program (code), a dynamically changing state (data), and a program thread (execution 
state) together compose a mobile agent.  Agent construction, migration, and execution do not 
occur in a vacuum: applications must define security requirements for such interactions as well.  
Researchers use different models to represent agent and host interactions, with no agreed upon 
standard as to which representation generically captures a mobile agent system.  

Figure 5 illustrates the mobile agent lifecycle used by Hohl [63] and shows an agent from 
creation to termination.  An originator creates an agent with an initial state and dispatches it to the 
first host. Each subsequent host takes the previous agent state as a starting point and provides 
appropriate host input, updating the dynamic agent state appropriately.  Input encompasses all 
data provided to the agent while on the remote host:  communications from other agents on the 
same or different hosts, communications with the originating host, results from system calls, and 
results from service invocations.  An agent ends execution on a particular host when it completes 
local processing and requests migration.  The agent migrates back to the originating host and 
provides the task result to the application owner. 

 
 

Figure 5: Mobile Agent Lifecycle 

Host Environments. The agent platform or (remote) host must provide to agents an 
execution environment that we term middleware.  The host operating system controls this 
environment and the middleware provides all necessary services to an agent. Middleware may 
provide primitive operations to agent programmers via services and other facilities that adhere to 
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a predefined standard.  The agent middleware ensures correct itinerant or static code execution, 
provides runtime service access, and places constraints on native resources such as CPU, 
memory, local disk, or bandwidth [22].  

Several commercial and academic middleware systems exist and we provide Table 2 for 
reference. Bellavista et al. [64], Schoeman and Cloete [65], Altmann et al. [66], Wong et al. [67], 
Fuggetta et al. [68], and Rothermal et al. [69] provide descriptive analysis for mobile agent 
architectures. Fritz Hohl’s mobile agent list3 provides current commercial and research based 
mobile agent middleware while Thorn [70] presents an early literature review on mobile code 
languages and platforms.  

Table 2: Agent Middleware Systems 
System Languages Developer 
ADK JAVA Tryllian, Netherlands 
Aglets JAVA IBM, Japan 
Ajanta JAVA Univ. of Minnesota, USA 
Ara C/C++, TCL, JAVA Univ. of Kaiserslautern, Germany 
Concordia JAVA Mitsubishi, USA 
CyberAgents JAVA FTP Software Inc. 
D'Agents AgentTCL Dartmouth, USA 
FIPA-OS JAVA Nortel, USA 
ffMAIN TCL, Perl, JAVA Univ. of Frankfurt, Germany 
JACK JAVA Agent Oriented Software Group, USA 
JADE  JAVA Telecom Italia Group, Italy 
JATlite JAVA Stanford, USA 
KAFKA JAVA Fujitsu, Japan 
Knowbots Python CNRI, USA 
MOA JAVA Open Group, UK 
Mole JAVA Univ. of Stuttgart, Germany 
MonJa JAVA Mitsubishi, Japan 
NOMADS Aroma JVM Inst. for Human/Machine Cogn., USA 
OAA C, Java, VB SRI International, USA 
Plangent JAVA Toshiba, Japan 
TACOMA TCL, C, Python, Perl, Scheme Cornell, USA / Tromso, Norway 
sEmoa JAVA Fraunhofer-Institut GD, Germany 
SOMA JAVA Univ. of Bologna, Italy 
Voyager JAVA Objectspace, USA 
ZEUS JAVA BT Labs, UK 

 
Figure 6 depicts the agent middleware providing facilities to receive a marshaled agent, 

instantiate an execution environment for the agent based on its current state, and allow the agent 
to run until its next migration.  Agent middleware captures agent state and marshals it via a 
departure point defined as either a raw socket or a dedicated communication channel. Some 
mobile code systems force the programmer to transition state from one platform to another 
manually, though strongly mobile architectures do this implicitly for each migration.  Middleware 
offers native services for visiting agents (service points in Figure 6) or allows direct access to 
underlying operating system resources based on a predefined security policy.  

An agent interacts with a host environment in three ways that cause security concern.  First, 
mobile agents move and change their execution location.  Researchers distinguish the agent 
movement expression from distributed systems specification; agent security seeks to protect the 
agent itinerary specifically.   Second, mobile agents may need to talk with other agents or with the 
originating host using some predefined protocol, whether agent specific or not.  Agent middleware 
must protect communication availability, integrity, and secrecy. Third, agents interact with a host 
server in meaningful ways that change their state.  The code, state, and thread interactions 
between agent and host are described in different ways and examples can be found in Vitek and 
Castigna [71], Serugendo et al. [72], Fugetta et al. [68], Hohl [63], Borselius and Mitchell [73], and 
Yee [74]. 

                                                           
3 Available http://draco.cis.uoguelph.ca/link.html, October 2005 
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Figure 6: Host Agent Middleware 

Agent Mobility. Mobile agents visit one or more hosts in a heterogeneous network and may 
or may not return to their originator. We term a migration from server to server a hop: multi-hop 
agents visiting more than one server and single-hop or one-hop agents visiting only one server. 
One-hop agents are similar to Java applets that download into browsers; Ghezzi / Vigna [7] and 
Rothermel / Schwehm [57] classify applets as weak mobility forms.  Weak mobility also includes 
one-hop agents who transfer results back to the originating host via message passing.  Ordille 
[75] refers to an agent that visits a host and migrates immediately back to its originator as a two-
hop boomerang.    

We refer to an agent’s visited host set as an itinerary and depict them in Figure 7 as the 
migratory transitions between host platforms. We view route information as specialized agent 
data state, with some static code part dedicated toward updating and using it for migration, or as 
a special agent addendum used by the underlying middleware. The agent owner predetermines 
hosts in a fixed itinerary while an agent dynamically determines hosts as it migrates in free-
roaming itinerary. In the latter case, an agent decides the next hop in the route either with help 
from the host environment or on its own using built-in communication mechanisms.  

 

 
Figure 7: Agent Itinerary Description 
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An application owner may provide the agent a possible host superset to visit while also 
allowing the agent freedom to determine dynamically a subset to visit. Researchers like Ordille 
[75], Wilhelm and Staamann [76], Borrell et al. [77], Chen and Chang [78], and Knoll et al. [79] 
focus on describing and protecting agent itineraries. There are several possibilities for an agent’s 
itinerary, described notionally from the agent set and host set seen in Figure 7.  An agent with 
only the first hop specified represents the most difficult security requirement for integrity—
described as the set {A} based on Figure 7. For an autonomous, free-roaming scenario, the agent 
adds new possibly unknown hosts to its migration list every time it migrates. A fixed unordered 
superset can also be known a priori as a bound on the agent’s travel, represented by the 
unordered set {A,B,C,D,E,F,G} in Figure 7. This itinerary configuration allows dynamic free-
roaming traversal through a host subset.  Another mixed itinerary mode allows the originating 
host to embed an initial static itinerary within the agent while still allowing dynamic additions to 
the list as the agent migrates.  The originating host can also specify the exact host subset an 
agent can visit and in what order—creating the most restrictive configuration.  Figure 7 depicts 
this specification type as the ordered set {A, C, D, F}.  

Some security mechanisms require a fixed itinerary and a known host superset, while others 
are more flexible and support free-roaming traversals.  Researchers such as Aridore and Lange 
[80] and Tahara et al. [81] pose methods for using meta-level agent design patterns for specifying 
agent itinerary during software development phases; agent frameworks vary themselves in how 
they handle agent itinerary.  Satoh [82] defines formal agent itinerary specifications for free-
roaming scenario support.  

Several formal models derived from distributed systems research are used to reason logically 
about mobility.  We term these formal mobility expressions and their communicative relationships 
as process calculi or process algebras. Such calculi provide a strict notational expression for 
locations, resources, threads, networks, authorization, and programmatic execution used in 
describing mobility. Milner and his colleagues [83,84] created the π-calculus to model 
independent parallel processes that perform message-passing handshakes on specified 
channels.  π-calculus has become a baseline algebra from which many variations have 
descended and other calculi are compared against.  Serugendo et al. [85] compare the various 
formalisms used to describe mobile agents.  

 Polyadic π-calculus refers to architecture that models messages between multi-object 
processes and researchers typically extend the calculus for specific purposes.  Extensions to π-
calculus include support for asynchronous operations [86], support for mobility with distributed(D)-
π [87,88], modeling communication between processes with nomadic-π calculus [89], and 
incorporating security primitives like cryptographic operations with Spi calculus [90].  Other 
algebras that define mobility (most deriving from π) include the Join calculus [91], the mobile 
Ambient calculus [92] which describes cooperating mobile agent processes, the UNITY [93] and 
Mobile UNITY calculi [94, 95] which address specific mobile devices and disconnected wireless 
operations, and the Seal calculus [96] which models secure transactions over distributed 
networks like the Internet. 

Formally expressing security and “good/bad” relationships are possible in algebraic models. 
The crypto-loc calculus [97], the SLam calculus [98], and the Spi calculus [90], for example, 
support using cryptographic or security primitives in process interactions. These expressive 
frameworks extend work in other modal logics and assign distributed processes security and 
authentication properties.  

Agent Communication. Agents not only have the ability to change execution location but 
also have the ability to interact with other agents. Middleware may or may not provide specific 
facilities to support communication possibilities. Standards for multi-agent systems categorize 
agent communications as either intra-platform or inter-platform [99]. Rothermal and Schwem [57] 
subdivide them into four categories: agent-to-service interaction, mobile agent-to-mobile agent 
interaction, agent group communication [100], and user-to-agent interaction. All four classes carry 
with them security requirements to include privacy, integrity, and availability.  

Poslad et al. [101] review the agent communication methods found in the Foundation for 
Intelligent Physical Agent (FIPA) Message Transport Specification [99]. Figure 8 details the 
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different ways an agent can communicate with another agent according to the specification. The 
first method involves agents sending messages to a local agent communication channel (ACC) 
via some proprietary interface. The service then sends the message to the remote ACC using a 
message transfer protocol.   In the second method, an agent interfaces directly with the ACC on a 
remote host where another agent resides.  Finally, an agent can send a message directly to 
another agent using a direct non-FIPA communication method.      

 

 
Figure 8: FIPA Agent Communication Methods [Poslad et al. 2002]  

Chess et al. [18] define agent communication languages such as Knowledge Interchange 
Format (KIF), Knowledge Query Manipulation Language (KQML), and Ontolingua4 for specifying 
agent-to-server and agent-to-agent communications.  Thirunavukkarasu et al. [102] address basic 
security protection such as integrity, privacy, and authentication in KQML.  Their protocol allows 
agents that have some or no cryptographic primitive support to negotiate security using 
performatives.  Further, the protocol supports privacy, authentication, and non-repudiation, but 
does not address message replay.    

Other research efforts for securing agent communications deal with adapting security into 
newer standards.  Tan et al. [103] focus on FIPA inter-platform communication by creating 
security specifications for S/MIME content-type messages.  Their architecture includes signed 
data, enveloped data, clear-signed data, and signed-enveloped data as content types for KQML 
messaging, all accomplished by manipulating message data itself.  Mobile agent communications 
are slightly different, because the host and agent communicate something more than just data.  
Labrou et al. [104] summarize issues with integrating agent communication languages in mobile 
settings. 

Agent Resource Access. Agents may simply borrow the remote host’s processor; however, 
mobile architectures normally assume agents migrate to remote hosts to update their state by 
meaningful host interactions. Mobile agents accomplish work that usually requires an input from a 
particular host, whether the price for a particular good in an e-commerce setting or an information 
retrieval result. A mobile agent queries the host for this input, performs processing on the data, 
and embodies the result in its dynamic state.  Security mechanisms ensure that an application 
owner or host can distinguish meaningful changes from malicious changes.   

To reason about security requirements for host resource access and its effect on an agent 
(namely state transitions), researchers describe the agent-to-host interaction in different ways.  
Several authors [74, 105] describe the agent computation as a combined function pair: the state 
update function and the host output function. Yee [74] depicts this as a query sequence qi issued 
by an agent against a host resource set Ri on host Si.  Figure 9 depicts this interaction and 
identifies y in relation to the dynamic agent state, R in relation to host services, q in relation to the 
agent’s static code, and f() as an intermediate function that marks agent state transitions.   Yee 
expresses the agent static code (qi) as query exchanges and assumes it does not change during 
server execution on the agent’s behalf.  

                                                           
4 Ontolingua Homepages, Available: http://www.ksl.stanford.edu/software/ontolingua 
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Figure 9: Agent Interaction Model 

As Figure 9 illustrates, the query result (xi,1) depends on the query itself (qi) which incorporates 
the initial agent state on agent arrival (yi,0).  This query represents the server executing the 
agent’s static code, using the current agent state as a basis for interaction with the code, and 
then creating a new state version due to the interaction. After the host executes the first agent 
code segment, the host computes a new state (yi,1) and produces a new state used for the next 
agent query result (xi,2 = Ri(qi(yi,1))).  Each time the agent issues a query (executes another code 
segment), it obtains a new result xi,j and creates a new state (yi,j).  A given host can have several 
query exchanges with an agent in this model, representing the agent’s full static code execution 
and the final agent state just prior to its next migration.   

As another example, Hohl [106] uses the RASP abstract state machine model to define 
possible attacks on the mobile agent. Hohl cites deficiencies in other models (Turing machines, 
RAMS, and stack machines) that do not allow manipulating the state transition function—an 
essential facet in modeling mobile agent interactions.  The RASP model allows agent code 
representation and state information manipulation accordingly.  Other computational models for 
mobility express security properties broadly including data encapsulation, execution integrity, or 
execution privacy (see for example [25, 34, 107, 108, 109, 110, 111]). 

Agent Identity and Naming. Specifying the agent identity has many important security 
ramifications.  Leaving an agent unidentified makes the agent vulnerable to many possible 
attacks that include interleaving attacks from modified or mutated agents.  Roth [108, 112] 
devises a simple identification scheme based on the asymmetric key signature function and a 
secure one-way hash function to help counter cut-and-paste attacks in various protocols 
(depicted here in Figure 10).  

 

 
Figure 10: Agent Kernel and Identity Definition with Security Attributes 
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Roth defines the agent kernel and illustrates one method to identity an agent using security 
primitives. Agent migration represents a protocol exchange similar to those used in network 
protocol descriptions.  Figure 10 depicts the agent kernel (the agent’s static code or program 
embodiment) as a signed random number copy combined with the static code. The hashed 
signature provides a unique identity for a particular agent instance, assuming the application 
owner uses a sufficiently large random number not vulnerable to reuse.  

To summarize, we define agents according to resource access, communication, mobility, and 
identity.  Applications levy security requirements that relate directly to the mobile agent definition.   
Research communities express each interaction class differently. Agent middleware 
implementers, likewise, realize agent interactions differently using agent programming languages, 
communication languages, host services, and middleware architecture. The community requires 
a standardized definition for services and architecture to help simplify security specification—and 
we discuss possibility for such standards next. 

2.1.4 Emerging Standards 

Multi-agent and mobile agent systems use different architectures and implementation 
schemes.  They lack interoperability and security integration with each other and this situation 
stems largely in part from no clear emergent standards.  Rothermal et al. [69] point out that the 
early attraction to mobile agents in both academia and industry resulted in non-standard mobile 
agent system implementations.  Though standards for describing mobile agent interactions are 
few, even worse there are no agreed upon standards for describing mobile agent security [113].  

Two standards have emerged for multi-agent technology: the Object Management Group's 
(OMG) Mobile Agent Systems Interoperability Facility (MASIF) and the specifications 
promulgated by FIPA, mentioned previously. The CORBA security model for OMG essentially 
absorbs the MASIF standards for security, even though CORBA has no strict mobility 
perspective.  Poslad et al. [114, 115, 116, 117] present many security considerations for FIPA 
specification and they indicate FIPA appears to be the stronger candidate for adoption.   

In 1998, FIPA published a preliminary specification for security [118]. The architectural 
specification for FIPA [119] came short for proposing security services but did provide for 
identification, access permissions, content integrity, and content privacy.  Additionally, FIPA 
standards also address message transport protection, agent management protection, and 
security support protection.  In March 2005, the IEEE Computer Society5 became the umbrella 
organization for FIPA and formed a standards committee to support it. 

Figure 11 illustrates that, the FIPA specification subdivides an agent platform into distinct 
services and operations [120]. The proposed FIPA agent management model organizes multi-
agent systems, including those with mobility, by defining agents as autonomous processes that 
communicate via agent communication languages.  Agents can look up other agents via a 
standard Directory Facilitator that serves as “middleman broker”.  The Agent Management 
System controls agent operations on a particular host as a supervisor while the Message 
Transport Service [99] provides both intra- and inter-platform communication with other agents.  

 Roth et al. [121] posed a definition for mobile agent system interoperability which applies not 
only to underlying architectural assumptions but security protocols as well.   Specifically, systems 
are interoperable if a mobile agent in one framework/system can migrate to a second, 
heterogeneously different, framework/system and communicate seamlessly with native agents.   
Their approach, instead pushing FIPA or MASIF standards downward, comprises a bottom up 
push using voluntary, practical interoperability features.  Whether upward or downward in its 
implementation approach, standardization efforts in the future must include mobile agent security 
as an interoperability facet. 

Pogg et al. [122] and Zhang et al. [123] address how to add support to FIPA for agent security. 
Even though FIPA envisions primarily static agents in multi-agent contexts that might be mobile, 
the specifications are still applicable in many ways to mobile agents and security requirements.  
As Poslad et al. [115] further note, no single or de facto standard for mobile agent security has 

                                                           
5 IEEE Standards, Available: http://www.computer.org/standards 
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emerged despite feverish research efforts over the years.  Mobile agents are more interesting 
from the security perspective than static multi-agent interactions: more opportunities for malicious 
activity springs from the way migrating agents interact with executing hosts.  If researchers solve 
the security issues for mobile agents, they likewise solve most multi-agent issues as well. 

 
Figure 11: FIPA Agent Management Specification 

Richards [113] summarizes relationships between MASIF, OMG, FIPA, and other related 
standards by noting that realized security will vary greatly based on agent system differences and 
their specific implementations (even if standards are followed). Agent systems are not necessarily 
compatible with all the possible security mechanisms posed in the literature.  Solutions are 
normally middleware specific and applying all defensive mechanisms to one system remains an 
impractical task.  Researchers and implementers face a common dilemma: how do security 
mechanisms relate to requirements and standards, especially when applications drive specific 
security requirements?  

2.1.5 Research Trends 

Chess et al. [60] questioned claims touting mobile agent benefits, finding some claims still 
unproven at the time.  In the same spirit, Rothermal et al. [69] identified at least three key 
elements in mobile agent environments early on that were missing: 1) security standards, 2) 
control structures, and 3) transactional support.  Not surprisingly, Schoder and Eymann [124] 
noted some time after that the four top mobile agent technical challenges were security related: 1) 
a need for highly secure agent execution environments; 2) performance and functional limitations 
resulting from security; 3) virus scanning and epidemic control mechanisms; and 4) transmission 
efficiency, for example, a courier agent in contrast to a simple SMTP mail object. Initial mobile 
agent research seemed to solve many simple problems, while leaving many harder security 
related issues unanswered.    

Milojicic’s [62] interview with several researchers demonstrates a parochial mobility position in 
the agent community: some view mobility as a non-required but possibly beneficial agent system 
feature and others view mobility as a foundationally different paradigm to build applications 
around. Despite differences in the community over benefit, many researchers echoed Kotz and 
Gray’s sentiment [59] that mobile agents were inevitable and “coming soon”. Tschudin [125] 
termed mobility the “Zeitgeist” at the turn of the century. Designers envisioned more useful 
application features to end users in environments where limited bandwidth, disconnected 
operations, and mobile devices are prevalent.  

Researchers have analyzed why mobile agents did not achieve widespread use outside 
academia despite efforts from the previous decade.  Vigna [126] suggests ten reasons why 
agents have failed and his analysis shows nearly half are security related: 1) agents can be 
brainwashed; 2) they cannot keep secrets well; 3) they are difficult to authenticate and control; 
and 4) they have similar characteristics to worms.  Samaras [19], in examining why the industry 
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has not embraced the technology as most in the research community expected, states that 
security problems remain the culprit. Johansen [127] rightly points out that mobile paradigm 
opponents focus on inherent architecture problems, namely the technical details that guarantee 
host and agent integrity. Finally, Roth [20] details obstacles to mobile agent adoption and cites 
the security (or lack thereof) as a common basis for fear.  He observes that few sure mechanisms 
guarantee availability, integrity, and scalability in agent systems while keeping the overhead 
manageable. 

Like Kotz and Gray [59], we expect that agents are indeed “coming” in the future and that 
practical implementations for mobile agent systems are incumbent upon pairing system features 
with available security defenses—while managing those protection aspects that are not 
attainable.  The next section reviews security requirements and threats in the mobile agent 
environment and presents a framework for understanding both malicious host and malicious 
agent defense strategies. 

2.2 Mobile Agent Security 

As  Matthew Henry6 reminds us: “corruptio optimi est pessima—that which was originally the 
best becomes when corrupted the worst.” Mobile agents have potential for elegance and flexibility 
in distributed systems design; the risks posed by malicious mobile code or hosts currently 
overshadow any perceived benefit.  As a result, a possibly good design abstraction such as 
mobile agents becomes the worst security nightmare. Both agent servers (referred to as hosts) 
and mobile agents can be maliciously altered in ways that go beyond normal software, network, 
and systems operations [24].  The literature contains many candidate solutions that mitigate 
possible attacks from malicious hosts, malicious agents, network adversaries, and underlying 
host platform compromise. Trying to grasp relevant research results and choose candidate 
security solutions for implementation in real-world applications remains a difficult task. 

We assert that security engineering is vital to successful future mobile agent development 
efforts. Security must be incorprorated from the ground up into any mobile agent system.  
Bellavista et al. [64] echo this sentiment: 

 
“The ultimate challenge is … unifying security with system engineering… just as 
[mobile agent] system engineers analyze and select system features to answer 
functional requirements, security engineers must develop applicable security 
models and deploy those security measures that can make available different 
qualities of security service depending on specific security requirements of 
applications and on the most suitable trade-off between security and efficiency.” 
 

In order to address security requirements properly, we need to link mobile agent security 
mechanisms to the threats present in the mobile environment.  Classifying various security 
mechanisms and their relative effectiveness for achieving security goals are closely associated.  
We discuss next the security requirements for multi-agent and mobile agents systems and 
analyze implementation specific security properties. As Figure 12 highlights, by nature, agent 
mobility creates a unique threat environment that includes possibly untrusted agents executing on 
possibly untrusted hosts. Multi-agent security and mobile agent security share similar issues and 
we discuss these next.  

2.2.1 Multi-agent Issues 

Researchers have treated security in multi-agent systems essentially as an afterthought since 
the field’s inception (unlike the mobile agent field where researchers placed precedence on 
security from the beginning).  Wong and Sycara [128] consider malicious activity in multi-class 
systems and identify the need for several features: uniquely identifiable agents, agent key 
certification and revocation, agent services integrity, and secure communication channels.  

                                                           
6 Matthew Henry's Commentary: New Modern Edition, Electronic Database. Hendrickson Publishers, Inc., 1991. 
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Borselius [129,130] notes that agent security issues for communication are equivalent to normal 
requirements for confidentiality, integrity, authentication, availability, and non-repudiation in 
typical software applications.  

Multi-agent security deals primarily with the protecting ACL messages passed between static 
agents deployed around the network and the security properties associated with host execution 
environments.  Agents in multi-agent systems sense the environment and decide whether to raise 
the overall application security level.  Security reduces to whether applications allow unencrypted 
transactions. Wells et al. [131] define such a security approach as an adaptive defense 
coordination architecture. 

 
Figure 12: Taxonomy for Defining Mobile Agent Security 

Bresciani et al. [132] develop multi-agent descriptions for complexity and security associations 
between actors and provide an analysis framework for whether critical security measures are met 
by the system design.  Multi-agent systems often introduce security features via different agent 
classes that provide specific functionality (encryption, integrity checking, status checking, and so 
forth). The Tropos environment [133] analyzes whether certain agent classes are too taxed with 
security duties and assesses the consequences for their failure.  Braynov and Jadliwala [134] 
propose a formal analysis technique that uses coordination graphs to detect malicious agent 
confederacies.  This model assumes that cooperating malicious agents must cooperate to 
achieve their goals; coordination graphs reveal when malicious agents work together.  The 
algorithm defines links, relationships, and cooperation between agent group members in order to 
establish (malicious) task correlation. The graphs help root out insiders by highlighting actions 
that an agent cannot perform alone given current resources.  On the more practical side, Parks et 
al. [135] give initial results from a red-team approach that launches practical attacks against 
existing multi-agent architectures. Their attack categories consider the agent middleware and 
host operating system itself in addition to vulnerabilities at the communication level.  

Researchers in multi-agent systems are beginning to address security and introduce 
countermeasures to threats in the software analysis and design phase. Multi-agent systems focus 
on vulnerabilities related to static messaging protocols; however, the priorities, threats, and 
requirements in the mobile environment demand greater attention and we discuss these next. 

2.2.2 Threats and Requirements 

We consider that developing good requirements for mobile agent security and matching those 
with existing security mechanisms will increase long-term mobile architecture success. As 
researchers like Rothermel et al. [69] state:  

 
“The vision of mobile agents as the key technology for future electronic 
commerce applications can only become reality if all security issues are well 
understood and the corresponding mechanisms are in place.”  
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We agree that any future vision for using mobile agents must precisely define and address 

security issues—including current technology limitations, the problems that can be solvable, the 
problems that are impossible to solve, and the problems that remain left for research.  Orso et al. 
[136] pose non-mobile specific security solutions that automatically analyze security requirements 
to determine the correct countermeasures set for an application. Requirements for agent security 
should be expressible in clear and traceable relationships to security mechanisms.  We believe 
the catch-22 in mobile agent systems design is that “killer” mobile agent applications do not exist 
[127,137].  With so few real world mobile agent applications in existence, researchers encounter 
greater problems in devising candidate security solutions. The largely different variables and 
configuration possibilities that affect mobile agent security make solution / mechanism 
implementation even more difficult.   

Security issues have been at the research forefront since mobile code emerged as a design 
paradigm for distributed systems.  Chess [24] and Farmer et al. [23] describe several reasons 
why the mobile agent paradigm violates long held assumptions about the computational 
environment.  In particular, we can normally attribute program actions to a person and believe the 
person intended the program’s actions by its execution—an assumption not true when programs 
migrate. Mobile agents are similar to malicious viruses because they can migrate from host to 
host without an ability to discern their intent before malicious actions have corrupted a system. 
Agent middleware has full and complete control over the mobile code content—exposing 
programs to unusual vulnerability.  

Four threat categorizations in the mobile environment include: 1) attacks by malicious agents 
against hosts; 2) attacks by malicious hosts against agents; 3) attacks by agents against other 
agents; and 4) attacks by other entities against the host platform.  Figure 13 depicts these various 
interactions using arrows and letters:  

Figure 13-(A), malicious agents can attack host platforms. 
Figure 13-(B), malicious hosts can attack agents. 
Figure 13-(C), malicious agents can attack other agents on their current platform. 
Figure 13-(D), adversaries can attack the underlying network transport mechanism. 
Figure 13-(E), agents can attack agents on other platforms.  
Figure 13-(F), agent platforms can attack other platforms. 
Figure 13-(G), intruders can launch assaults on the underlying host operating system. 
 

 
 

Figure 13: Summarizing Mobile Agent System (MAS) Attacks 



 

20 

2.2.3 Malicious Agents  

An agent with hostile intent acting upon a server can exercise capabilities similar to a worm or 
virus.  A remote host grants an agent trust in order to execute and use resources.  Once given 
access, the agent executes like a normal process with rights to some or all host resources (CPU, 
disk, memory, bus, ALU, network channel, public host service, etc.).  The agent can attempt to 
either gain unauthorized access to host resources or wrongly use the authorizations granted by 
the host [48]. Figure 14 summarizes the threats posed by hijacked agents.    

 

 
Figure 14: Malicious Agent Threats 

Malicious agents can execute service denial attacks by unrestricted resource consumption on 
the host machine.  They can also work to disrupt host operations and other agents by 
unreasonable requests or blocking certain services. Service denial threats also involve agents 
that issue worthless resource requests. Agents can also eavesdrop and monitor remote host 
resources, such as the communications channel or host ports, and try to gain unauthorized 
access to private host information.  The host state, memory, and operating system resources may 
be all or partially available to the agent, depending on the middleware environment.  While agents 
need freedom to communicate with other agents, migrate, and execute their programs, this 
freedom also exposes the underlying resources to risk.  

An executing host demands agent accountability, especially when an agent maliciously 
commits or subverts transactions and denies involvement subsequently.  Changes to the agent 
state or code can cause an agent to become malicious in nature itself. Agents may also be 
programmed to act politely up to a point—and then may abuse the privileges they are given.  It 
remains a difficult task for the host to examine code intent, whether mobile or not, and to evaluate 
whether the agent possesses a legal execution state. As such, a receiving host needs a 
mechanism to monitor integrity changes to the agent state and code. Table 3 summarizes the 
threat and requirements correlation matrix for host security.  

Tschudin [125] recognizes three essential needs concerning the mobile agent host: 1) 
authenticating the mobile agent; 2) authorizing the agent to use host resources; and 3) allocating 
resources to the agent for execution.  These categories make useful analytic tools to formulate 
host requirements for possibly malicious agent interaction in future applications.  When we 
consider authentication, the central question becomes whether we can verifiably identify a 
principal.  The answer remains critical in mobile agent environments—normal trust relationships 
may be broken when an agent migrates along a multi-hop itinerary.  Wilhelm et al. [138] express 
agent trust with four different levels, ranging from blind trust, trust based on a good reputation, 
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trust based on control and punishment, and trust based on policy enforcement. Policy 
enforcement represents the only strong trust establishment mechanism that relies on technology.   

Table 3: Host Security Threat/Requirements Matrix 
Threat  (Mobile agents can…) Requirement  (Hosts should…) 
consume host resources unfairly 
(CPU, disk, memory, DOS) 

- monitor agent resource consumption 
- prevent illegal agent cloning 

delay responses to host to cause 
delays of service to other agents 

- monitor agent resource consumption 
- implement fine grained resource control based on policy 

masquerade as another user or agent - authenticate static agent code 
- establish agent identity or owner identity 

perform illegal operations on other 
processes, agents, or files 

- provide fault tolerant environments separate from normal 
processes 
- implement fine grained resource control based on policy 

have state corrupted due to traversal 
through the network 

- appraise dynamic agent data state integrity 
- implement trust-based agent authorization policies 

carry program code designed or 
altered for malicious intent 

- authenticate static agent code 
- appraise static agent code safety properties  

work together with other agents in 
joint colluding attacks 

- participate in inter-host data sharing 

deny execution results or activity - trace agent activity in non-repudiatable ways 
eavesdrop on agent or host 
communications (ports, channels, 
etc.) 

- implement fine grained resource control based on policy 
- secure intra-host agent communication channels 

steal information illegally from host or 
other agents 

- authorize agent to read or write only certain data 
- provide encryption services for visiting agents and local 
host resources 

be intercepted in route to a receiving 
host 

- secure inter-host communication  

 
Similarly, Swarup [139] describes three trust appraisal levels required for incoming agents: 

authentication, code appraisal, and state appraisal. Based on these requirements, hosts should 
provide a safe execution environment (for agents) that limits access to resources and provides 
authentication and appraisal mechanisms for arriving agent code and state. Static program 
checkers and cryptographic primitives that support authentication and integrity provide methods 
for code appraisal. Hosts require a verification mechanism to perform state appraisal; they must 
discern runtime program safety and may examine trace logs for such purposes.  Hosts decide the 
resource allocation level to grant an agent via code and state appraisal characterization and 
assign an appropriate authorization level. Reiser and Vogt [140] propose a conceptual 
architecture for host security that provides several hosts services and layered security services.  
Figure 15 illustrates the security features pipeline embodied in their approach.   

We describe existing mechanisms for host security in Section A.2. Hosts determine agent 
integrity and assess safety by code or state appraisal mechanisms.  Hosts allocate resources by 
combining access control and resource constraints based on the agent’s authorization level.  
Ideally, an agent should not be able to bypass the execution environment.  Jansen and 
Karygiannis [22] describe a reference monitor as a tamperproof service that mediates underlying 
resources. Among various reference monitor properties, several apply to host security for mobile 
agents.  Hosts require some mechanism to isolate agents from operating system processes and 
from other agent processes (the sandbox seen in Figure 15).   

Access control mechanisms guard computational resources and middleware providers must 
provide them to support mobile agent interactions.  Reference monitors support agent-to-host or 
agent-to-agent information exchange as a basic service and may require cryptographic primitive 
services from the host if the agent does not provide native encryption.  Hosts typically establish 
the agent identity, application owner identity, or itinerary host identity using cryptographic means.  
Finally, hosts need auditing capabilities for security-related environmental aspects—resource 
usage, file or process access, communication channel usage, and host operating system health.  
Malicious hosts can corrupt agents and use them against friendly hosts—therefore many agent 
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protection mechanisms (Section A.3) apply equally to host protection (Section A.2). We consider 
threats for malicious hosts and requirements for agent security next. 

 
Figure 15: Architecture for Host Security 

2.2.4 Malicious Hosts 

Host attacks are similar to agent attacks in many ways, but their problems remain the hardest 
to solve (host platforms could be mobile themselves but their resources are considered static for 
the agent’s local environment). As background, we discuss Hohl’s model [106] describing 
possible attacks in the malicious host environment.  Bierman and Cloete [21] also classify host 
threats and detail appropriate agent protection mechanisms against the malicious host by security 
category.  Five major concerns describe malicious host capabilities.  Figure 16 organizes these 
based on categorization by Cubillos and Guidi-Polanco [48] and Table 4 summarizes the host 
attack threats as expressed by Hohl’s model [106] with appropriate requirements for security 
implementation. 

 
(1) Inspection:  The host agent platform has the ability to inspect or observe an agent’s static 
and dynamic part. Agents may also communicate with other parties during their traversal—thus 
requiring a means to establish secure channels without malicious observation. In some mobile 
agent contexts, the ability to see other host computational results can give a host an unfair 
advantage—as in the case e-commerce bidding applications. The host platform can also see 
every instruction executed by the agent. If the owner desires to hide a particular algorithm,  a 
malicious host may reverse engineer the agent code if the code does not securely hide the 
computation [32].  In sum, the remote host has complete control over agent execution lacking 
other protection means [34].  We desire that hosts have the ability to execute code on a user’s 
behalf without gaining any knowledge regarding what that code accomplishes.  This ability 
remains a formidable challenge for malicious host protection and we provide solutions to 
counter such attacks in this thesis.   
 
(2) Modification: Host platforms can modify the static code (possibly introducing a malicious 
agent) or modify previous host data results.   Malicious parties can change code control flow to 
subvert or change the computational result [34].   Malicious attacks can include reading and 
writing data elements, program lines, state values, memory contents, and language 
expressions.  An adversary may also have the ability to override the agent code interpretive 
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environment and alter intended execution results.  The remote host may also change 
communications to influence an agent unfairly. 
 

Table 4: Agent Security Threat/ Requirements Matrix 
Threat  (Hosts can …) Requirement  (Agents should have…) 
read and modify the data state 
information 

- tracing mechanisms to audit host execution steps 
- checking mechanisms for legal/correct execution state 
- evaluation mechanisms to verify state/code consistency  
- mechanisms to copy state for later verification 

read and modify static code - masking services to hide algorithm functionality 
- detection mechanism to determine code modification 

read and modify the agent state 
by manipulating host  

- tracing mechanisms to audit host execution steps 
- auditing of host user inputs with non repudiation 

modify runtime environment - verification services to guarantee interpreter integrity 
control results of system calls  - deadlock and livelock detection mechanisms 
read and modify agent 
communication channels 

- encryption capabilities for private communications 

 
 (3) Denial of Service:  The host environment places the agent at its mercy: it can simply 
remove the agent from its planned migration and create a virtual “black hole” (see [141]).  The 
host can also append any arbitrary computational result to an agent’s state, ignoring the 
original agent’s mission.  Likewise, since data services represent a key part in the agent’s 
execution life cycle, the server can deny mobile agents access to data sources or lie about their 
input [137].  Few detection mechanisms exist to address denial of service (DoS), and even 
fewer prevent DoS in the host environment.  We consider most security mechanisms 
successful if they reduce adversary attacks to blind disruption (DoS).  
 

 
Figure 16: Malicious Host Threats 

 
 (4) Replay: A malicious host can perform black box manipulation by providing an agent with 
arbitrary data to observe its outputs and possibly discern its intentions [34].  An adversary can 
execute an agent repeatedly using different inputs each time by replaying code. Wilhem et al. 
[32] note this experimentation type represents an indirect attack all agents are subject too, 
whether or not the application owner enforces privacy via cryptographic operations.    
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(5) Masquerading: When masquerading, adversaries steal an agent’s identity and launch 
subsequent impersonation attacks. Because the host can also fool an agent with wrong system 
call results, the host can trick the agent into believing it has arrived home so that the agent 
executes code that reveals confidential data. 
 
Middleware providers must provide protection for agent code, itinerary, and data state from 

these various threats. We consider the itinerary as a data state component, but, for security 
purposes, a middleware environment must protect the unique aspects of an itinerary that differ 
from the general agent data state. We address requirements for agent data protection further in 
Chapter 3 and provide a comprehensive review of existing data protection techniques in 
Appendix A.4. 

Protecting Agent Code. The agent possesses static code (unless a mobile agent uses self-
modifying code) and each code piece has an associated authentication and integrity property 
(signatures).  Appraisal mechanisms attempt to prevent maliciously altered code execution on the 
remote host based on static agent code evaluation.  This evaluation may provably determine an 
agent’s safety level and might involve satisfaction by an agent executor that an agent does not 
violate certain policies.  Agent and host protection are mutually dependent: malicious hosts can 
alter an agent and the next host in the multi-hop agent path must be able to discern such 
changes.  The same mechanisms that authenticate a mobile agent to a remote host are normally 
the same mechanisms that guarantee agent code integrity during its lifecycle.   

   We express agent code trustworthiness as three requirements: 
(1)  Authenticating the code’s owner/developer and the code’s identity 
(2)  Integrity verification that code received matches the code transmitted by the owner 
(3)  Probabilistic proofs that code meets some predefined security policy  

 
Protecting Agent Itinerary. Agents can travel either on a free-roaming or fixed itinerary.  

Some mobile code systems only require single-hop, weakly mobile programs. When the agent 
has a static itinerary, malicious activity includes forcing an agent to skip certain host platforms or 
redirecting the agent to unspecified hosts [76].  In the dynamic setting, an agent can obtain new 
hosts to visit while it migrates, thus exposing the itinerary to random alterations and deletions 
without an ability to know alteration has occurred.  Figure 17 shows the design space for the 
agent, including the case where some agent itinerary portion remains fixed and some remains 
dynamically determined.  

 
Figure 17: Itinerary Specification In Mobile Agents 

Agents lose trust with each new migration in a multi-hop setting without security mechanisms 
in place to protect the itinerary. Multiple colluding hosts can share itinerary information and 
therefore complicate protection.  Itinerary protection involves using outside parties if necessary to 
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ensure a malicious host does not alter entries, delete entries, or add entries to their benefit.  
When agents must provide their own protection, they can use honest parties or the dispatching 
host to detect prior modifications.   

2.3 Chapter Summary 

Mobile agents as a research field have an extensive history that crosses several related 
disciplines.  We divide our quest to strengthen mobile agent security into three major result areas: 
reducing effective tampering to blind disruption via program encryption, integrating trust into the 
security decision process for mobile agents, and finding practical multiple agents applications to 
enhance security.    

To introduce mobile agent security in this chapter, Section 2.1 briefly reviews code mobility 
paradigms and Section 2.2 introduces requirements related to mobile agent security.  We refer 
the reader to a more comprehensive mobile agent security review in Appendix A including 
descriptions.  We frame our results against multiple different host/agent protection mechanisms 
(Appendix A.2 and Appendix A.3).  For our Chapter 3 results, Appendix A.4 details the literature 
related to data encapsulation techniques, Appendix A.5 reviews literature for secure multi-party 
computation, and Appendix A.6 provides background on multi-agent security. We give further 
background material in Appendix A.7 for our Chapter 4 results relating to trust frameworks. 
Chapter 3, 4, and 5 present results related to the objectives we pose in Section 1.2:  how can we 
enhance security with multiple agents, how can we integrate trust, and how can tamperproof 
mobile agents.  We turn our attention first to how multiple agents enhance security in mobile 
contexts. 
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CHAPTER 3  
 

MULTI-AGENT ARCHITECTURES FOR SECURITY 

This chapter contains material from two published works—one describing a novel technique 
for partial result protection based on cooperating multiple agents [142] and the other appearing in 
Lecture Notes in Computer Science which describes a hybrid approach for integrating secure 
multi-party computation with multiple mobile agents [143]. 

3.1 Chapter Overview 

As Figure 18 expresses, two aspects compose agent protection: protecting the agent’s static 
executable code from disclosure or alteration and protecting the agent’s dynamic state as it 
incrementally changes during execution.  “Strength in numbers” can produce positive results for 
security to deter malicious parties from altering the agent’s data result.  We present two 
architectures in this chapter based on multiple agent interactions, which enforce specific 
requirements: enforcing strong data integrity a posteriori (Section 3.2) and guaranteeing host data 
privacy/state integrity (Section 3.3). We refer the reader to a more comprehensive background 
review on intermediate data state protection (discussed in Appendix A.4), group cryptographic 
techniques (discussed in A.5), and multi-agent paradigms (discussed in Appendix A.6).   

 
 

Static Code Dynamic Data State 

DDaattaa CCoonnffiiddeennttiiaalliittyy  
DDaattaa  IInntteeggrriittyy  

MMoobbiillee AAggeenntt

CCooddee  CCoonnffiiddeennttiiaalliittyy 
CCooddee  IInntteeggrriittyy  ??

 
Figure 18: Agent Protection Overview 

3.2 Mobile Agent Data Integrity using Multi-agent Architecture (MADIMA) 

We focus first on protecting the intermediate data results an agent gathers as it migrates 
through a network and introduce mobile agent data integrity using multi-agent architecture 
(MADIMA).  Agent data protection keeps the agent data state safe from observation 
(confidentiality) or keeps it safe from alteration (integrity) by malicious hosts.   Integrity violations 
are typically only detectable after the agent returns to its origination, when it reaches an honest 
host in the itinerary, or when it stores partial results with a trusted third party.  MADIMA prevents 
integrity violations (without data aggregation) and detects violations (with data aggregation) by 
using multiple cooperating agents to accomplish user tasks. 

We liken agent state integrity to transmitting a computation results collection back to an 
originating host without deletion, truncation, or alteration of individual results.  Current solutions 
for integrity attacks detect malicious activity a posteriori.  Such attacks require re-executing the 
agent and assume the application owner can successfully discover modifications even when 
multiple malicious hosts are present.  Existing mechanisms cannot detect certain attacks 
involving colluding malicious hosts. We devise a solution to this problem by transferring partial 
results via cooperating mobile agents and thus prevent alteration completely, even when 
cooperating malicious hosts are present. 
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3.2.1 Requirements for Data State Protection 

Roth [109] summarizes the requirements for agent data state protection.  First, agents may 
have information that needs to remain private until the agent migrates to a trusted host. Second, 
agents carry partial result computations that require protection.  The agent owner should be able 
to attribute a given partial result to the host that created it.  Both Yee [31] and Karjoth et al. [144] 
give solutions for protecting free-roaming agents and pose schemes for expressing agent data 
protection mechanisms.  Maggi and Sisto [107] formalize data privacy characteristics and 
attributes in their work.  An agent’s execution can be described by the set of hosts I, {i1, i2, …, ik}, 
and the associated set of data states D, {d1, d2, …, dk}, that represents the incremental change in 
agent state as it visits each host and performs its task.  Given an originating host i0, we describe 
the agent’s path as the ordered set {i0, i1, i2, …, ik, i0}.  Figure 19 illustrates this representational 
scheme.   

 
Figure 19: Partial Result Data Expression 

In certain application settings, an agent may visit the same host more than once before 
returning to the originator, and so the set D could represent an ordered or unordered data results 
set.  When an agent arrives back at its originating host, with task accomplished, the data results 
set D’, {d`1, d2, …, d`k`}, represents the incremental changes in agent state as it migrates around 
the network. The sets D and D’ should be equivalent if no malicious hosts were present.  Using 
this descriptive method, we define four attacks against the collected agent data integrity: 

 
(1) Truncation: An adversary initializes an agent’s state back to a state from 
some previous host visit, essentially erasing intermediate results between two or 
more colluding malicious hosts.  We state this as an attacker deleting all offers 
after the offer of host j and refer to this as “truncation at j”. 
(2) Cancellation: An adversary deletes a data item from the set D. 
(3) Insertion: An adversary inserts a data item into the set D. 
(4) Substitution: An adversary cancels a data item in D then immediately inserts 
another in its place, essentially replacing another host’s data result. We term a 
series of phony offers at some host j as “growing a fake stem at j”. 

 
Maggi and Sisto [107] and Karjoth et al. [144] provide several attributes that describe agent 

data privacy, summarized in Table 5, and desired data integrity properties, summarized in Table 
6.   As we discuss our approach to multi-agent data integrity, we reference these properties in 
relation to candidate protection mechanisms.  Hosts detect data integrity attacks (data insertion or 
results deletion) after an agent has visited a malicious host and an application owner must rely on 
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appropriate detection mechanisms to be in place.  Data confidentiality, however, must be 
proactive in the sense that it prevents revealing sensitive information to a host by using 
cryptographic primitives. Ideally, a mobile agent security scheme should provide data and origin 
confidentiality, data non-reputability, and strong data integrity.  

 

Table 5: Agent Data Privacy 

Term Definition 
Data 
Confidentiality 

Any data element, d`, should only be readable by the originating 
host i0. 

Origin 
Confidentiality 

(Forward Privacy) The identity of the host i` that contributed data 
result d` should only be determined by the originating host i0. 

Data 
Authenticity 

The originating host i0 can determine the identity of the host i` that 
added the data element d`.  

Data Non-
Repudiability 

(Stronger form of Data Authenticity)  The originating host i0 can 
prove the identity of the host i` that added the data element d`. 

 

Table 6: Agent Data Integrity Properties 

Property Definition 
Strong Data 
Integrity 

After receiving the agent back, the originating host i0 can 
detect any insertion or any cancellation: D ≠ D` 

Weak Data  
Forward Integrity 

After receiving the agent back, the originating host i0 can 
detect any cancellation: D ⊄  D` 

Trusted Data 
Integrity 

After receiving the agent back, the originating host i0 can 
detect any cancellation from a set trusted hosts, It: {di | ii  ∈  
It}  ⊄  D` 

Strong Data  
Forward Integrity 

After receiving the agent back, the originating host i0 can 
detect any substitution: di’ ≠ di 

Strong Data  
Truncation 
Resilience 

After receiving the agent back, the originating host i0 can 
detect any truncation 

Data  
Truncation 
Resilience 

After receiving the agent back, the originating host i0 can 
detect some truncations 

Insertion  
Resilience 

After receiving the agent back, the originating host i0 can 
detect any insertion 

Publicly Verifiable 
Forward Integrity 

Any intermediate server, i`, can verify the computation result 
of the computation state 

 

3.2.2 Partial Result Protection Mechanisms 

Historically, several protection mechanisms use multiple agents to transfer partial results for 
safekeeping during agent migration.  Roth [280] proposes that an agent transfers commitments to 
another cooperating agent that verifies and stores the information gathered (see Appendix 
A.3.16).  Dispatching hosts send agents to disjoint executing host sets and in turn send each 
other commitments via a host-provided secure communications channel.  Roth’s approach 
provides non-repudiation and requires a malicious host to corrupt other hosts that are on the co-
operating agent’s future itinerary.   

Chained encapsulated results, partial result authentication codes, per-server digital 
signatures, append-only containers, and sliding encryption provide various intermediate result 
protection levels (see Appendix A.4). These mechanisms use digital signatures, encryption, and 
hash functions in different chained relationships to provide detection and verification services.  
With these techniques, the originating host or an honest host in the agent path can identify when 
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previous servers have inserted, truncated, or changed information from previous intermediate 
results carried by the agent.  Loureiro et al. propose a subsequent protocol in [311] that allows a 
host to update its previous offer or bid.  Roth proves that several protocols suffer from replay and 
oracle attacks because they do not dynamically bind the agent data state to its static code [108].   

When malicious hosts collude, several protocols remain weak in detecting cooperating hosts 
that share secrets or send information to change intermediate host results.  Specifically, we 
define truncations as integrity attacks where a malicious host resets the agent data state to a 
previous state (computed at a previous host). Using dynamically determined itineraries, existing 
mechanisms cannot detect truncation attacks.  

Vijil and Iyer in [283] augment the append-only container with a means to detect mutual 
collusion and actually identify which hosts performed the tampering.  Protocols may not be able to 
detect truncations at all.  Maggi and Sisto in [107] provide a formal definition to describe protocol 
interactions in several different data protection mechanisms. In particular, they observe that 
protocols need to implement truncation resilience.  Our multi-agent architecture separates data 
computation and data collection into different agent classes and services—providing a viable 
means to protect against truncation attacks.  

3.2.3 Describing the Problem 

Initial work in mobile agents such as [18] identified two information-gathering modes: stateless 
and stateful. In a stateless approach, agents intermittently send information acquired back home 
to the originator or migrate home after each hop.  In a stateful mode, the agent embodies in its 
data state results from prior host execution and carries with it a growing information collection to 
each subsequent host in the itinerary. Independent data comprises the offers, bids, or results that 
an agent uses to make decisions.  Single-hop agents acting in a remote code execution paradigm 
[267] migrate to a remote host, operate on independent data, and then send results back to the 
home platform or migrate back to the home platform carrying the result. In other words, the agent 
“result” is independent from the “result” on any other host where the host carries out the same 
computation.  

To illustrate independent data, an agent that carries out a “sum” operation can do so by 
collecting inputs from a host and storing each value in a data collection.  When the agent returns 
home, the values stored in the collection are added together to complete the operation. The multi-
hop agent data state in this example depends on previous agent executions only in the sense that 
the collected data item set must be carried forward faithfully from the previous host.  In this case, 
malicious hosts carry out truncations, insertions, and deletions by modifying the “values” carried 
by the agent.   

When an agent migrates from host to host performing such a query or computation in a multi-
hop mode, the agent appends the current host results to previous results embodied in the agent.  
Figure 20, letter <C>, illustrates the agent migration paths for single-hop logic, where agents 
return to the originating host after each execution.  One single agent performs this computation 
type by making k roundtrip migrations in a single-hop manner while k agents can migrate to each 
host independently and perform the same computation, where k represents how many executing 
hosts the agent visits.  The application owner performs data fusion or sorting after the agent 
collects all host results.  

In some agent applications, the agent computational result at state dx depends on the 
computation results from previous agent states {d1, …, dx-1}.  Figure 20, letter <D>, indicates the 
multi-hop agent path as the agent traverses a network, migrating from host to host carrying out 
computations.  We represent in this application setting a competitive, electronic transaction where 
agents collect bids or offers in various contexts, such as airline reservation [18, 31, 144, 360].  A 
multi-hop bidding agent can be designed to embody all bids for each visited hosts in its data state 
and apply logic to determine the winner once all possible hosts are visited (thus utilizing 
independent data). 
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Figure 20: Stateful/Stateless Agent Interactions and Data Integrity 

In the multi-hop approach, the data set grows linearly as each host executes the agent code, 
adding a data state to the migrating agent’s protected area (we borrow the term “protected area” 
from standard literature on data protection [144] to describe agent data state encapsulations 
guarded by cryptographic techniques).  On migration from h1 to h2, for example, the data set 
grows from {d1} to {d1,d2} after execution by h2. The application owner can design the bidding 
agent to carry the lowest bid amount and the winner’s identity in its state and to allow updates 
based on each host input (illustrating dependent data).  Considering the “sum” example, an agent 
with dependent data carries a sum variable that each host in the itinerary updates by executing 
the agent code using their local input.  The agent returns home with the sum calculated from the 
last host that it visited.  We refer to independent data also as data aggregation because a 
correlation exists between the agent’s previous and current execution state. For the multi-hop 
agent, Figure 20-<B> illustrates the set D’ the agent does have on arrival back at the originating 
host and set D, Figure 20-<A>, indicates the data results it should have.  We define strong data 
integrity along with other researchers [107, 144] as the ability to detect whether set D, {d1, d2, …, 
dk} ≠ set D’, {d`1, d’2, …, d`k`} on the agent’s return to h0.   

 

   
Figure 21: Data Integrity Attacks 

Figure 21 illustrates two colluding malicious hosts (h1 and h4) and three different integrity 
attacks. Strong data integrity mechanisms detect all truncation attacks even when colluding hosts 
are involved.  On receiving the set D, the malicious host h4 may choose to do the following:  
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(1) delete a data state (d3 as seen in the Figure 21);  
(2) insert a new fictitious state (d’4 as seen in figure);  
(3) modify an earlier state (d’2 as seen in the Figure 21); or  
(4) completely erase all previous states by using the data set {d1} received from its malicious 
partner h1.   

3.2.4 Architecture Overview 

We assert that the simplest method to prevent data integrity attacks comes from avoiding 
contact with potential malicious hosts. In MADIMA, we attempt to reduce or eliminate exposing 
partial data state results—preventing malicious attacks versus detecting them a posteriori.  
MADIMA also leverages both stateless (single-hop) and stateful (multi-hop) agents by using three 
different agent class interactions: task agents, data computation agents, and data collection 
agents.   

A distinction exists between using the same agent logic replicated multiple times [277, 288] 
and using different agents to accomplish a single purpose-driven task [18], which our scheme 
utilizes. Kotzanikolaou et al. in [258] present architecture where a master agent and multiple 
slave agents conduct electronic transactions cooperatively.  Slave agents are mobile and travel to 
only one particular host to negotiate, but cannot complete a transaction without returning to the 
master agent.  Our approach resembles master/slave relationships in the sense that we use a 
master task agent that spawns and directs information gathering from multiple computation and 
collection agents, and then carries out any transaction logic separately. 

Similar to the master/slave relationship in [258], the task agent in MADIMA serves to 
coordinate task efforts using the other two classes.  Data computation agents perform a wide 
function range, but are dispatched either single-hop or multi-hop in different configurations 
depending on the requirements for security or reliability.  Computation agents leave data results 
in publicly accessible data services known as data-bins rather than carrying results in their 
mutable state.  Data collection agents visit hosts independently or the remote host generates 
them in response to computation agents visits. In either case, they carry results back to the 
application owner for fusion by the task agent.  This approach solves the truncation attack 
problem from colluding malicious hosts by eliminating partial results exposure to malicious 
parties. 

When we implement data aggregation in this manner, we have more freedom to use multi-hop 
agent logic. This architectural variation resembles execution tracing proposed by Vigna in [267], 
but we use communications with the host in our scheme to verify integrity of data (versus code 
execution) and we also automate collection activities (versus leaving them ad-hoc). The 
underlying data collection architecture supports other security measures that require log archival 
such as execution tracing and data encapsulation [31, 144, 286]. 

Task Agents. The task agent embodies an application owner’s task desire, such as 
purchasing an airline ticket with fixed criteria set. This single agent directs the overall job.  The 
task agent resides on the originating host or a trusted third party host that remains online (a 
buying service host for example). Task agents spawn either a single multi-hop agent or multiple 
single-hop agents to perform information gathering or bid requests.  Spawned computation 
agents have fixed or free-roaming itineraries that visit host servers in a specific subject domain 
(such as airline reservation systems) and perform queries based on user criteria.  The task agent 
waits until a minimum number of data results (specified by the user) are gathered or until a 
specified time elapses, at which point the task agent notifies the application owner the job failed. 
Upon receiving query results gathered by data collection agents, the task agent fuses data 
results.  Transaction logic may allow the task agent to complete a financial commitment based on 
the query responses from the computation/collection agents via a single-hop computation agent.  

Computation Agents.  Computation agents traverse an ordinary mobile agent route and 
need to be uniquely identifiable to prevent the replay attacks expounded by Roth in [108].  As 
Figure 22 illustrates, a task agent can remain at the originating host or the application owner can 
transfer the agent to a trusted third party so that the originating host may go offline.  The task 
agent contains the agent code for the various computations it requires and the itinerary. For 
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greater fault tolerance, the application owner can replicate computation agents as described in 
[277].  In either configuration, the data bin links each computational data result to the agent’s 
identity, the originating host’s identity, and a unique transaction identification known only to the 
application owner to support later pickup.  

  
Figure 22: Launching Task Agent (t) and Single-Hop Computation Agent (a) 

 
Figure 23: Using Replicated Computation Agents (a,b) 

Figure 22 depicts an application owner spawning the computation agent (a) that visits h1, h2, 
h3, and h4 with migrations a1, a2, a3, a4, and a5. Figure 23 depicts an application owner that 
launches two replicated multi-hop computation agents: agent a visits h1 and h2 with migrations a1, 
a2, and a3 while agent b visits h3 and h4 with migrations b1, b2, and b3.  At worst, a malicious host 
may only denial or delay service to the computation agent or keep back its own independent data 
result from the collection agent. We achieve authenticity and non-repudiability in MADIMA by 
binding the originating host’s identification and the unique agent identifier with the agent data 
state.  If multiple computation agents are launched single-hop, the computation agent leaves no 
data state simply returns to the originating host carrying the data result, as in remote evaluation 
operations [267].   



 

33 

Data Collection Agents. Data collection agents are responsible for the single-hop mission to 
carry back encapsulated data states or query results to the originating host.  Figure 24 illustrates 
the data collection agent’s activity.  The task agent (t) spawns the data collection agents after 
previously dispatching computation agent (a) seen in Figure 22.  Each data collection agent 
(a,b,c,d in Figure 24) stores its payload in the originating host’s private data bin and notifies the 
task agent on arrival.  In this aspect, MADIMA data bins provide private holding areas for data 
results to support task agent data fusion on the originating host and public holding areas where 
visiting computation agents may store results and collection agents retrieve them.  Depending on 
whether agent developer uses independent or dependent data modes, the application owner can 
encapsulate data results in the computation agent using standard data integrity approaches such 
as [31,144, 284, 286]. 

 
Figure 24: Data Collection Agents (a,b,c,d) 

 

 
Figure 25: Data Collection Modes 

Data collection agents are single-hop agents that have the highest security possible when 
they act in one-to-one relationship with executing hosts. As Figure 24 illustrates, data collection 
agents are executed in three possible configurations:  Figure 24-(a), server-based response 
mode; Figure 24-(b), host-based request mode; and Figure 24-(c), autonomous data collection 
mode.  In server-based response mode, each server visited by a computation agent spawns a 
data collection agent that performs an authenticated and encrypted single-hop result transfer.  In 
the host-based request mode, the originating host sends data collection agents to each host in 
the computation agent’s itinerary. The task agent responds to computation agent completion and 
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sends a collection agent in this mode. The autonomous data collection mode begins with a host 
that has just launched task agents or by agent servers who send results to trusted third party 
collection points on a recurring time interval; in either case, hosts spawn single-hop data 
collection agents that return a data result directly to the task agent/originating host.  This 
approach resembles the “garbage collection” service that runs in background within the JAVA 
interpreter.  With this method, we build data collection as a routine service that interfaces data 
bins with executing hosts and dispatching hosts.  

In MADIMA, data collection protocols ensure that only the originating host / task agent can 
retrieve its own data results and that a task agent can request previous data results for fusion 
only at locations where a trusted computing environment exist.  After all data collection activities 
have been accomplished and the task agent collates and filters results, it can spawn further 
computation agents that perform single-hop transactions or additional data gathering.  In such 
cases where single-hop agents accomplish transactions like credit card billing, the architecture 
does not require data collection.  To summarize, MADIMA utilizes three agent classes that use 
various interaction combinations to accomplish a user task.   

Data Collection Services (Bins).  MADIMA agent middleware uses a data service, referred 
to as a data bin, to store encapsulated (cryptographically protected) agent data states. Data 
lockers in [145] are described as a service provided for mobile users that keeps their data in 
secure and safe locations attached to fixed networks. We construct our data bin similarly: we use 
a data service to store intermediate agent computation results securely during an agent’s transit 
through a network. We incorporate data bins for security purposes versus the convenience 
normally associated with data lockers.  

Data bins have a public locker, where computation and collection agents can store and 
retrieve results, and a private locker, where host-originating task agents can store partial results 
for later fusion. In independent data operations, computation agents do not arrive back at the 
originating hosts with a state payload containing a protected result set. Instead, the computation 
agent leaves the execution result (embodied in the mutable state or as a query result) on each 
host via the public data bin service, protected with an agreed upon encryption scheme. The data 
collection protocol ensures via authentication and non-repudiation that only the originating host 
can retrieve its own data results from a data bin.   

3.2.5 Related Security Issues 

MADIMA relies on the general premise that hosts should perform agent computations 
separate from data state collection when using multi-hop agents.  The computation agent’s static 
code must interact with partial results from previous computations in order to produce a new data 
state result. To perform a multi-hop task that relies on dependent data, a host modifies a data 
computation agent so that it carries only the most recent state as its payload, while copying and 
leaving a secure encrypted state version behind at each host server.  We use data collection 
agents in this configuration as a verification authority because the application owner must 
compare the final agent data state against the incremental data states gathered by collection 
activities.  MADIMA supports detecting truncation violations when computation agents use 
dependent data mode, but cannot prevent truncation attacks by multiple colluding hosts when 
computation agents use dependent data.   

Figure 26 illustrates the design space for the three MADIMA agent classes. The agent class 
number (iterations) and types (single-hop/multi-hop) define the design space for a MADIMA 
application. Single-hop computation agents used with single-hop collections agents provide the 
strongest security associations possible, because interactions are always one-to-one with the 
application owner and remote host. Typical mobile agent scenarios for MADIMA envision a single 
multi-hop computation agent and multiple single-hop collection agents.   

Because intermediate results in a typical MADIMA operating mode are subject only to single 
host malicious activity, we prevent manipulation, extraction, and truncation attacks on information 
accumulated in a multi-hop free-roaming scenario. We do not address whether a server has 
provided false information to the agent.  We assume that alterations to the static agent code are 
detectable by honest hosts when we employ measures such as code signatures [31, 288] or 
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execution tracing [267].  We also assume that a public key infrastructure exists or that the ability 
to distribute shared secrets among participants exists.  

  
Figure 26: MADIMA Security Configurations 

MADIMA does not address service denial or random alterations to the code.  When multi-hop 
agents with dependent (aggregated) data are used, computations agents still need the ability to 
mask or guard the function against smart code alterations. We do not address the ability to keep 
keys used by both the computation and collection agent private in this architectural description, 
though Chapter 5 provides positive techniques for doing so and other related work for white-box 
key protection are described in [146, 147].  

Concerning multiple agents, Tate and Xu utilize multiple parallel agents that employ threshold 
cryptography to eliminate the need for a trusted third party in [288].  Tate and Xu observe their 
work was first to consider multi-agent settings solely for their security benefit.  Endsuleit follows 
suit with several multi-agent architectures for security as well [344, 353].  In MADIMA, we show 
continued benefit for using multiple agents in mobile contexts to exploit security advantages. 

3.2.6 Fault Tolerance Issues 

The MADIMA architecture uses multiple agent classes given information computation or data 
gathering duties.  The fault tolerance domain finds benefit for using multiple agents to provide 
guarantees on agent migration and task completion.  Researchers historically focus on integrating 
fault tolerance to increase mobile agent system reliability (see Appendix A.3.15). Minsky et al. 
[277] propose that replicated agents and voting can decide if malicious hosts have altered agent 
execution. Yee proposes a mechanism to detect replay attacks in [74] while Tan and Moreau 
extend an execution-tracing framework in [33] to prevent service denial attacks.   

Several fault tolerance issues arise in the MADIMA approach, just as in other schemes.  For 
example, when a data bin service exceeds storage space allocated by the host, data bins 
implement a queue process (much like routers discard packets under certain load conditions).  
We use one or more trusted third parties for data collection activities or task agent hosting to 
support disconnected host operations. We mitigate task agent time-outs while waiting for 
computation and data collection results by providing time-based services that indicate when 
(computation/collection) agents are unreasonably detained or diverted. 

Like other multi-agent or mobile agent systems, we do not address error recovery procedures 
when messages are undelivered or when migration is blocked.  If data bin services fail, we 
envision that secondary storage services in the network are present if the originating host or 
buying service TTP becomes unavailable. We mitigate the original task agent’s failure, failure of 
one or more computation agents, and failure of data collection agents by considering such 
approaches as the shadow model of [279]. Other work on fault-tolerance such as [148, 149, 277] 
provide approaches to mitigate host failures caused by malicious activity. 

3.2.7 Performance Issues 

In most cases, security comes at a cost.  Multiple interacting agents bring more complexity 
and performance overhead to a system and we consider added security benefits against 
increased communications costs.  We express performance issues as the difference between a 
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normal multi-hop agent that carries results with it and returns back to an originating host versus a 
static task agent that spawns one or more computation agents and receives responses from one 
or more collection agents.    

A traditional migrating mobile agent visits k servers and performs k+1 migrations (see Figure 
20).  The agent size grows linearly according to the added data state based on the query result 
size.  When we use dependent data in the agent logic, the agent data state may not grow 
appreciably at all.  For MADIMA, overhead increases by using a single static task agent (present 
on the originating host or a trusted third party) and by using computation agents with k+1 
migrations (assuming a multi-hop traversal).  At least k additional data collection agents 
communicate with data bin services and transport results back to the host.  In sum, MADIMA 
doubles the network transmission by (2k + 1) and increases consumption resources due to 
interactions from three agent classes.  

3.2.8 MADIMA Summary 

Various agent security schemes enforce various data-integrity security levels. MADIMA 
prevents data integrity attacks against mobile agents, especially truncations when multiple 
colluding hosts are present, by separating basic agent duties (computation from collection).  
Though other approaches communicate agent state forms to other agents or the originating host, 
MADIMA implements this approach in three cooperating multiple agent classes and introduces a 
data bin service to facilitate data computation and collection activities.  We believe this approach 
demonstrates several security benefits: 

 

1) We limit the impact any one malicious host can have on another host. 
2) No malicious host can influence previous computations during computation agent 

execution. 
3) Adversaries that wish to impact future computations in a multi-hop computation must 

perform smart code alteration, which we address further in Chapter 5. 
4) We reduce integrity attacks on data state to denial of service. 

 

We leverage the fact that an agent must carry computation results back at some point to the 
originating host; at a minimum, the agent must act upon inputs and interact with the originating 
host based on the result.  We separate data computation activities from data collection activities 
to eliminate incremental result exposure to possibly malicious hosts.  Whether the agent stores 
data results as a single modified agent state or as results embedded in different agent state 
values, the agent either carries data state with it or (under MADIMA) leaves the state at the host 
for delivery by more secure means. The multi-agent approach allows us to develop applications in 
a conceptual manner by leveraging agency while preventing attacks on data integrity.  We now 
discuss our second multi-agent approach based upon secure multi-party computation. 

3.3 Hybrid Approaches for Secure Multi-Agent Computations 

 
Figure 27: Secure Multi-Agent Computations 

In this section, we deal specifically with how a host can keep its data input private while 
guaranteeing agent task execution integrity.  In [143], we review and analyze methods proposed 
for securing agent operations when passive and active adversaries are present by using secure 
multi-party computations (SMC). As Figure 27 depicts, we explore specifically architectures that 



 

37 

support secure multi-agent computations. For greater context concerning hybrid SMC 
architectures, we refer the unfamiliar reader to Appendix A.5 where we discuss in detail SMC 
strengths and weaknesses and review research associated with mobile agent integration.  We 
begin with a brief review on SMC integration issues with agents and then present two hybrid 
schemes that reduce communication overhead and maintain flexibility when applying particular 
protocols. 

3.3.1 SMC Integration with Mobile Agency 

A secure multi-party computation has n players, (P1, P2, …, Pn), who wish to evaluate a 
function, y=F(x1,x2,…xn), where xi represents a secret value provided by Pi and y represents the 
(public) output. The protocol goal is to preserve player input privacy and guarantee computation 
correctness. SMC protocols offer several advantages for securely accomplishing a group 
transaction and have been a major thrust for possibly achieving code privacy in mobile contexts. 
Figure 28 depicts a mobile agent transaction as an idealized SMC protocol.  We achieve 
idealized perfect security in SMC when all parties (hosts) securely provide their inputs to a trusted 
third party (TTP).  The TTP executes function F on all inputs and we can hold the result private 
for only one party (P0) or give the result to all parties involved. Figure 28 depicts private host 
inputs (x1,x2,x3,…,xn) and a public function output y = F(x1,x2,x3,…,xn).  Functions such as mean, 
max, min, set intersection, and median are common SMC protocol questions.  

 
Figure 28: Agent Task Realized as Secure Multi-Party Computation 

SMC protocols solve problems where inputs have the same length and where we compute 
functionality in time polynomial on the input length.  We measure security based on the input 
length (using inputs 1n) and we cannot attain greater privacy beyond the idealized TTP.  When 
parties are motivated to submit their true inputs and can tolerate function result disclosure, we 
can securely implement the protocol without a TTP. Several approaches exist that define agents 
implementing garbled circuits in multi-party computations and that use oblivious transfer to 
evaluate the circuit.  The application owner can send a single agent with a cascading circuit 
whose last migration signals the last circuit computation.  Alternatively, the owner can send 
multiple agents with the same circuit that executes protocols in stepwise multi-round fashion.  We 
can use a single trusted execution site or multiple TTPs connected via high-speed communication 
links to evaluate the SMC protocol.  By combining these SMC protocols, multiple agents, and 
semi-trusted hosts, we achieve several security specific goals for mobile agents. 

The security/threat models for SMC traditionally protect against passive adversaries that steal 
private inputs or protect against active adversaries that corrupt the function output.  We assume 
TTPs do not to collude and assume individual parties involved in the transaction do not collude.  
Any given SMC protocol specifies a maximum tolerable limit for active and passive malicious 
parties. The overhead for multi-round protocols comes from large numbers of small message 
exchanges and for single round protocols comes from transferring one large message in non-
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interactive mode.  Multi-round interactive protocols typically assume a perfect network/broadcast 
channel.  

Non-interactive approaches are limited to a few protocols that derive from [25] or [105].  
Single-round approaches do not require trusted third parties but come with large message sizes 
and their own limitations that include reliance on a trusted entity similar to a PKI.  Tate / Xu [288] 
and Zhong / Yang [299] extend traditional garbled circuit non-interactive approaches with multiple 
agents and both architectures require knowing the visited host set before execution.  
Researchers continue to improve SMC protocol efficiency and we develop our agent architecture 
in a manner to integrate them seamlessly.   

Architectures that implement SMC in mobile agent systems seek to reduce message size, 
number of broadcast channels required, and circuit size.  To accommodate agent goals such as 
disconnected operations, the originator typically remains offline during the protocol evaluation.  In 
order to support agent autonomy, we require that the agent can decide where and when to 
migrate.  The requirement for full autonomy in the agent path and itinerary lends itself best to 
SMC protocols that balance trust with efficiency.  While we desire to eliminate the need or 
requirement for any trusted third party or trusted computation service (like PKI), some application 
environments for SMC tolerate such assistance with no problem. 

Malkhi et al. [335] note that SMC protocols find greater efficiency when implemented for 
specific tasks and this motivates researchers to focus on protocols that work in specific 
application contexts (like secure voting).  We find this true for mobile agents as well and seek to 
represent agent specific tasks like auctions, trading, or secure voting with greater efficiency.  
Fiegenbaum et al. [150] implement a secure computation mechanism utilizing SMC named 
FAIRPLAY for collecting survey results with sensitive information. Their scheme uses data-
splitting techniques and traditional Boolean circuit evaluation Yao-style [315].  Notably, 
FAIRPLAY uses a secure computation server, which acts as a trusted entity within the system, 
and initiates the 2-party function evaluation.  Applications like FAIRPLAY illustrate a practical 
SMC implementation where the application achieves data privacy and function integrity, but the 
environment supports using a trusted server.  Agent applications executed “in-house” benefit 
directly from trusted (or partially trusted) entity status.   

We now introduce several hybrid approaches to SMC integration with mobile agents that can 
accommodate free-roaming itineraries as well as reduce overall communication cost. We deem 
the architectures hybrid because they account for both the strengths and weakness found in 
traditional multi-round SMC protocols. Communication costs remain high for multi-round 
protocols; we mitigate this by using trusted or semi-trusted execution sites connected via high-
speed network connections.  Flexibility for SMC is limited in mobile agent environments to fixed 
itineraries; we mitigate this by agent classes that support free-roaming itineraries while supporting 
traditional SMC. These approaches leverage multiparty protocol security properties while 
providing flexibility to integrate higher efficiency protocols in the future. 

3.3.2 Invitation and Response Protocol 

We define the Invitation and Response Protocol as a multi-agent architecture that uses semi-
trusted execution sites. We define two agent classes: the invitation agent and the response 
agent, illustrated in Figure 29.  We define a user task F, executing hosts H1, H2, … Hn, with 
private inputs (x1, x2, …, xn) to F, and one or more fully-trusted or semi-trusted execution servers 
ES1, … ESz.  We design our protocol to use any SMC protocol that is provably secure against 
passive and active adversaries; we stipulate minimum protocol security that meets Canetti’s 
composable security properties [352].  We delineate four phases in the protocol and elaborate 
them in Figure 30 and Figure 31: Initialization, Invitation, Response, and Recovery.  We refer to 
the task owner F as the originator O and textually describe the protocol next.  

After initialization, the originator O begins the task by sending an invitation agent that has an 
initial host set or that at least knows the first host.  Invitation agents are free roaming and can 
make changes in their itinerary based on environmental conditions or information obtained from 
hosts or other information services. To guard the invitation agent against data integrity or service 
denial attacks, two different schemes are possible.  First, a single multi-hop agent (depicted in 
Figure 32-(a)) can use data encapsulation techniques (see Appendix A.4) to protect its itinerary 
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and perform a free-roaming traversal.  We assume the application owner binds the agent code to 
each agent’s dynamic state instance.  A second approach (Figure 32-(b)) is to use multiple 
invitation agents with possibly overlapping and redundant itineraries to reduce blind malicious 
intervention (service denial).   

 
Figure 29: User Task F Implemented as Secure Multi-Agent Computation 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30: Initialization and Invitation Phases 

Each invitation agent has a uniquely identifiable code/state (to avoid replay attacks), but the 
agent collection represents a single uniquely identifiable task (such as a specific auction or airline 
ticket purchase). If an executing host receives an agent requesting participation in the same 
unique event (bid, auction, etc.), it ignores subsequent requests much like network devices that 
only forward packets once. Invitation agents carry with them the specifications for input 

Initialization Phase:  
1. Originator O creates Response Agent R with code πR 
πR: code of R 

- Implements any multi-round SMC protocol realizing 
task function F 
- Migration from host Hi with local input xi  commits host 
to the input 

ξR: initial data state of R 
- Initialized at destination host Hi w/ private input xi 

ξR’: final data state of R 
- Evaluated through SMC exchanges on ESz 

IR: itinerary of R Itinerary (single-hop) 
- {ESz, O} 
- Protected by data encapsulation technique 

 
2. Originator O creates Invitation agent I using πR 
πI: code of I 

- Embedded with πR, returned by host output function 
ξI: initial data state of I 

- Uniquely identifiable 
- Based on nonce, cryptographic hash of agent ID 

ξI’: final data state of I 
- Received back by originator O 

II: itinerary of I (multi-hop) 
- {O, H1, H2, …, Hn, O} fixed 
- {O, H1 } free-roaming 
- Protected by authentication, integrity mechanism

Invitation Phase:
1. O → H1: I 

- Originator O dispatches I 
- Single, dynamic, multi-hop 
- Migrates to one execution site  
- Contact time for protocol execution required 
- Code/itinerary integrity assumed 

 
2. H1: πI(x1) = πR1  

- Invitation agent πI accepts input and dynamically 
generates circuit agent πR based on host input  
- Host input is encrypted protected with public or 
threshold key of ES: {x1}K-ES 

 
3. Hi → Hi+1: I  
    Hi+1: πI(xi+1) = πRi+1 

- Each host Hi+1 evaluates input xi+1on agent and receives 
response agent πRi+1 
- Each host must choose to execute response agent (agent 
itinerary is pre-established) by sending to execution site 

 
4. Hn → O: I  

- Migration back to owner of invitation agent(s) 
- Originator O verifies integrity of ξI’ 
- Timeouts are based on both return of invitation agent 
and response of SMC protocol evaluation on ES 
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corresponding to the originator’s task.  The specification represents the normal host query in a 
multiparty computation. Hosts respond to the invitation by dispatching the response agent 
obtained by executing the invitation agent on the host with their private input.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 31: Response and Recovery Phases 

We base the response agent’s code on the underlying secure multi-party computation protocol 
(based traditionally on garbled circuits) and we spawn them within our protocol using three 
different methods. First, the invitation agent can carry the code for the response agent that each 
host uses for response.  The host will execute the response agent first on its local input and then 
send the response agent to a semi-trusted execution location to actually evaluate the circuit (the 
protocol runs described in Figure 30 and Figure 31 assume this approach).  The second 
approach involves the invitation agent dynamically generating the code and circuit when a host 
responds positively with their input. A third method would involve each host responding to the 
invitation by sending its input encrypted directly to the semi-trusted execution site.  This method 
implements the ideal SMC environment where parties send their input to a TTP for protocol 
execution. 

     
(a)  single multi-hop                                              (b)  multiple multi-hop 

 

Figure 32: Invitation Agents Sending Host Requests 

 

Response Phase: 
1. ∀i, Hi: I 

- Host Hi verifies integrity/authentication of invitation agent I 
2. πI(x1) = πR1  

- Host executes πI on their private input xi, Hi: πI(xi) = πRi 
- Output of invitation agent is an input, execution server encrypted circuit agent Ri with code πRi 
- Itinerary of πRi is predetermined for execution server ES (or ESz) 

3. ∀i, Hi→ESz: Ri =  πRi | ξR 
- Ri carries host input embedded in initial state ξR 
- Ri migrates to one of the trusted execution sites for SMC protocol exchanges 

4. ES: y = SMC(πR1, πR2, …, πRn,) 
- After threshold of parties πRi, agents embodying code for SMC perform multi-round steps 
- Computations are performed on either single ES or set of execution servers connected via high speed network/high bandwidth 

 
Recovery Phase: 
1.  Method 1, ES→O: y = F(x1,…,xn) 

- The execution server sends the encrypted result of F(x1,…,xn) directly to originator O 
 
2.  Method 2, Hn→ES: I, ES→O: I, ξI’= F(x1,…,xn) 

- On last host in itinerary (Hn), I migrates to the execution server ES 
- After timeout (completion of protocol), I migrates to originator O 
- ES gives final state of I as result of SMC: ξI’= F(x1,…,xn) 

 
3. O: F(x1,…,xn) 

- O decrypts or receives final output of SMC according to rules of protocol 
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No matter which method we use, response agents in the protocol migrate to semi-trusted host 
environments in order to evaluate the protocol (depicted in Figure 33).  The semi-trusted hosts 
are specifically designed to serve multi-party computations (predefined based on an underlying 
protocol) or provide basic agent execution environments with communication facilities.  An 
adequate high bandwidth network to keep communication costs negligible must connect these 
hosts.  Neven et al. [355] suggest using agents in such manner and they bring agents closer 
together by using high-speed communication links among servers in their architecture (see Figure 
136 / Appendix A.4 for a more detailed explanation).  Environments are semi-trusted because 
group and threshold operations eliminate the full trust in any one server.  We describe one server 
in presenting example protocol runs below. 

In security terms, “Invitation and Response” demonstrates the following properties.  Hosts can 
only send one agent to the computation response—removing the possibility that a host evaluates 
a task circuit on multiple host inputs to game the task outcome. As long as we detect multiple 
host submissions (and therefore cheating), we preserve the originator’s privacy.  We keep the 
local host input private under three scenarios:   

1) When the execution sites are fully trusted, as depicted in Figure 33-a, we require no extra 
security and expect the single execution site to maintain host input privacy.  
2) When execution sites are semi-trusted, as depicted in Figure 33-b, we use multiple trusted 
sites so that no one TTP receives all host inputs. 
3) When execution sites are semi-trusted, as depicted in Figure 33-b, we may also use 
threshold mechanisms and data shares to distribute trust among all execution sites. 
The hybrid approach advantage includes the ability to accommodate true free-roaming agent 

scenarios and to use any secure multi-party protocol secure function evaluation.  We therefore 
favor protocols with high communication and low computational complexity because we send 
agents to a semi-trusted environment that has an assumed high-speed link among execution 
sites.  For fully trusted execution environments, we depend on execution servers to follow all the 
rules and to prevent malicious tampering in order to achieve privacy and integrity.  Semi-trusted 
environments (which map more accurately to real world scenarios) only operate on data shares 
where the SMC protocol uses threshold secret sharing schemes.  

 

                       
(a)  Fully-Trusted                                                          (b) Semi-Trusted 

 

Figure 33: Response Agents and Execution Environments 

Selecting execution environments become an issue with the invitation and response protocol.   
The two primary requirements include high-speed communications link between all servers and a 
common trust level among all protocol parties and the trusted servers. Response agents only 
make two subsequent migrations: to the trusted server environment and then back to the 
originator, who can decrypt the final agent state and obtain the result. 
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Algesheimer et al. in [27] discuss a common SMC/agent integration issue concerning how the 
host gets its local output as the mobile agent migrates.  In invitation and response, we handle 
local host output in two different ways. First, since we do not need to keep the function output 
private for the involved protocol hosts, we let the originator O provide the output to each host after 
the execution servers complete the secure function evaluation and response agents migrate back 
to the originator.  Second, execution sites may send the host output share or host function output 
back to each host through message passing or a second agent. 

3.3.3 Multi-Agent Trusted Execution 

When we know the agent itinerary beforehand, we can use simpler agent architecture to 
facilitate trusted execution. Several configurations are possible for host environments that 
evaluate a secure computation.  First, we can allow the host to act as computation environment 
for a cascaded circuit that requires only one execution round.  Next, we can allow the host to 
communicate with a semi-trusted party to evaluate an encrypted circuit or to communicate with 
semi-trusted parties that provide threshold signal decryption services in an oblivious manner. We 
allow the host to be the computation environment for a multi-round circuit that receives visits from 
by more than one agent.    

Figure 34 illustrates the four phases used in simple multi-agent trusted execution with a fully 
trusted intermediary execution site. Multiple agents are used to initiate a multi-party protocol 
among predefined hosts (beginning with Figure 34-Phase 1).  Similar to the approaches used by 
Endsuleit et al.  [344, 353], multi-agent trusted execution begins when agents migrate to 
prospective hosts, gather input (Figure 34-Phase 2), and then evaluate the protocol.  When all 
parties fully trust one trusted execution environment, agents can then migrate there to accomplish 
a multi-round protocol, as suggested by Neven et al. [355] and as depicted in Figure 34-Phase 3.  
Upon completing the multi-round protocol, each computation agent Ai migrates back to the 
originating host (Figure 34-Phase 4), which can obtain the task outcome y = F(x1, x2, …, xn). 

 

 
Figure 34: Fully-Trusted Middle Man with Multi-Agent/Multi-Round SMC 

In a less trusted environment (where a server might be corrupted or stolen), we require 
multiple trusted execution sites linked by a high-speed and high-bandwidth communications 
network.  Agents migrate to each host and migrate to the trusted execution site as before (Phase 
1, Phase 2).  Once agents obtain host input they migrate to a centralized trusted execution site 
and evaluate a multi-round SMC protocol.  Two possibilities exist for Phase 3, as illustrated by 
Figure 35, Option 1 and Option 2.  
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Figure 35: Phase 3 with Semi-Trusted Middlemen Execution Sites 

Figure 35-Option 1 depicts an SMC protocol where the agent carries its (unified) input and 
begins protocol execution after receiving a minimum number of participants.  We assign agents to 
execution sites such that no one execute site receives all host inputs/agents. Figure 35-Option 2 
depicts a secret-sharing scheme where execution sites have only a share of each host’s data 
input.  In this option, the SMC protocol chosen must protect input values using threshold 
encryption and decryption. This option supports shared secret schemes such as Zhong and 
Yang’s protocol [299] for code that requires integrity and confidentiality when TTPs may collude 
(or face physical threats and corruption).   

The trusted execution sites under Option 2 use cryptographic primitives such as verifiable 
distributed oblivious transfer (VDOT) perform operations based on Shamir’s secret sharing 
scheme [278, 299].  Verifiable secret sharing schemes allows operations on data shares 
distributed among different parties. By using sharing techniques, parties give inputs shares so 
that honest protocol parties can detect any attempt to alter a commitment.  Security primitives 
such as VDOT appeal to the security of Yao’s secure circuit evaluation, the security of the 1-out-
of-2 oblivious transfer, and the strength of threshold cryptography. Appendix A.5 provides a more 
in-depth discussion concerning these topics. After completing the protocol execution, all agents 
migrate to the originating host where share reconstruction takes place and the task owner 
receives the function output y = F(…) from the shares. 

 
Figure 36: Phase 4 Migration to Originating Host 

These hybrid architectures use underlying SMC protocol strength, mitigate performance 
overhead via a fully-trusted or semi-trusted execution network, and use agents that have a three-
step itinerary among known possible input hosts.  The agent code in this scheme uses a three 
step process involving migration/host data input gathering, migration/SMC protocol evaluation, 
and migration/data recovery with the originator. 

3.3.4 Hybrid SMC Approach Summary 

We illustrate with our hybrid architectures the distinct trade-off with integrating secure 
multiparty computations and mobile agent applications.  We overcome the computation and 
communication barriers and use generic SMC protocols in a more practical manner.  We have 



 

44 

defined two hybrid approach variations that utilize fully-trusted or semi-trusted execution 
environments for secure multi-agent computations.  These schemes offer an alternative to other 
architectures suggested to date; these protocols combine advantages related to non-interactive 
approaches and multi-round SMC approaches.  Invitation and response supports free-roaming 
agent scenarios where we do not know all hosts beforehand while multi-agent trusted execution 
enforces integrity and privacy despite colluding intermediate servers by using semi-trusted 
threshold data sharing.  Our future work in this area involves analyzing overhead that comes from 
specific SMC protocol implementations. 

3.4 Chapter Summary 

Multi-agent architectures yield benefit in solving specific mobile agent security headaches.  
Though they cannot address all mobile agent security requirements, we demonstrate in this 
chapter how specific multi-agent architectures enforce particular security requirements: partial 
result state protection despite multiple colluding hosts, guaranteeing host data input privacy, and 
supporting code execution integrity.  We focus now on the role trust plays in mobile agent security 
decisions and specifically show how trust-related security decisions are useful in ubiquitous 
environments for mobile agents.  
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CHAPTER 4  
 

MOBILE AGENT TRUST FRAMEWORK 

This chapter contains material from our published work on application security models 
appearing in Electronic Notes on Theoretical Computer Science [151].  A separate technical 
report [152] provides further background material related to our results in this area as well.  We 
provide in Appendix A.7 background literature relating to trust and give particular attention to how 
it applies to mobile agent contexts.  Appendix B provides illustrative demonstration for various 
trust model properties that we define in this chapter. 

4.1 Chapter Overview 

Traditionally, mobile agent security focuses on two protection issues: keeping malicious 
parties from altering the agent and keeping malicious agents from harming other parties including 
potential hosts. Several surveys [21, 22, 222] categorize and describe attacks against agent 
systems along with mechanisms for their defense. Researchers have given trust formulation 
considerable thought in both distributed networking applications [35, 36, 37, 38] and mobile 
agents [39, 40, 41, 42, 152].  Mobility as an application feature complicates trust because the 
receiving execution host must make distributed trust decisions with little or no prior knowledge. 
Likewise, user agents must evaluate trust with hosts in different security contexts. To date, other 
trust models for mobile agents have not addressed how to link requirements with appropriate 
agent protection mechanisms. Other trust models lack ability to integrate generic security 
mechanisms or reasoning about initial trust relationships. We bridge this gap by developing a 
trust-based security framework for mobile agents with three novel features: 

 
 Ability to link application security requirements with mechanisms based on trust 
 Reasoning about trust properties for generic security mechanisms 
 Application models for initial trust among principals in a mobile agent setting 

 
Our trust framework addresses several shortcomings in current models: handling generic 

trusted servers, describing generic security mechanisms, incorporating distributed trust 
paradigms, incorporating non-Boolean trust levels, relating applications to a security model with 
initial trust, modeling agent replay and cut/paste attacks, dealing with multiple agent interactions, 
and describing static interactions. We present results in this chapter in the following manner: first, 
we define security requirements as they relate to mobile agents and review how mechanisms 
relate to requirements (Section 4.2); we then define a trust framework that precisely defines all 
parties in the mobile agent application (Section 4.3).  The trust framework delineates principals, 
trust relationships, trust decisions, and the role played by trusted hosts; it further provides a 
mechanism to express trust algorithms for mobile agent applications (Section 4.4).  Based on this 
framework, we introduce application security models as a novel concept and show their relevance 
to mobile agent application design (Section 4.5). 

In the security sense, models are useful for several things such as: helping test a particular 
security policy for completeness or consistency, helping document security policies, helping 
conceptualize or design an implementation, or verifying an implementation satisfies a 
requirements set.  Our model for trust expression in mobile agent environments incorporates 
three separate notions: security requirements, security mechanisms, and trust in a mobile 
application setting.  We examine requirements and mechanisms first. 
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4.2 Security Requirements and Mechanisms for Mobile Agents 

We use trust to describe relationships among parties that have some behavioral expectation 
with each other. Models define participants in a system and the rules participants follow in 
interaction.  In order to accommodate future mobile applications, we need a new model for 
describing mobile agent interactions based on trust and security.  Agent systems and mobile 
applications need to balance security requirements with available security mechanisms in order to 
meet application-level security goals.  Linking trust with security requirements, linking participants 
with trust levels, and creating models for expressing mobile agent interactions are key steps 
toward ubiquitous computing goals involving agents.  

Practitioners routinely define security requirements as the desire to guarantee one or more 
specific properties: privacy, integrity, availability, authentication, and non-repudiation. Table 7 
summarizes agent/host security requirements derived from the traditional CIA model and 
provides an abbreviation code for reference. We target security mechanisms at enforcing one or 
more of these requirements. We design our framework with the ability to express security 
requirements and link those requirements with security mechanisms—using trust relationships as 
a basis for evaluating their required use.  Security requirements dictate both what are necessary 
for agent task accomplishment and the trust expectation that hosts have when interacting with an 
agent. To achieve these requirements, either a principal must highly trust another principal in the 
system in regards to a given security requirement or else a security mechanism must be in place 
to enforce that particular security requirement.  

 

Table 7: Agent/Host Security Requirements w/ Abbreviations 

 
 
As most current literature bears out in Chapter 2 and Appendix A.3, meeting security 

requirements for mobile agents is not as simple as just applying cryptographic primitives or 
introducing mechanisms. Agents complicate and extend normal security requirements for a 
typical network-based distributed application. Requirements for security in mobile agent 
applications (reviewed in Section 2.2.2) derive from the unique interactions in a mobile 
environment. Specifically, agents are programs with three elements: static program code, a 
dynamic data state, and a current execution thread.  Agents execute only in context to a 
migration path (itinerary) among a set of hosts (servers). 

We construct mobile agent applications using an underlying architecture or middleware that 
integrates agent mobility.  Since real-world practical applications drive security requirements, we 
assert that not all mobile agent applications require the same security level.  In many cases, a 
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given application’s security depends on its expected operating environment—including 
environments filled with adversarial relations, compromising insiders, or friendly alliances with 
common goals.   

We provide a literature review for the proposed mobile agent security mechanisms mentioned 
here in Appendix A, and list several for context. Host based mechanisms protect a host from 
malicious agents and include sandboxing, safe interpreters, code signatures, state appraisal, 
proof carrying code, path histories, and policy management. Agent-based mechanisms protect 
the agent from outside malicious activity and several commonly referenced mechanisms include 
encrypted functions, detection objects, replication with voting, reference states, time-limited 
execution, digital signatures, phoning home, anonymous routing, trusted third parties (TTP), 
secure multi-party computation (SMC), multi-agent systems (MAS), intermediate data result 
protection, undetachable signatures, environmental key generation, execution tracing, and 
tamperproof hardware (TPH).  

Protection mechanisms can allow agent transactions despite unknown or poor trust 
environments. Wilhelm et al. [138], for example, make a strong argument that installed trusted 
hardware and appropriate execution protocols can effectively shield private application data from 
observation on untrusted remote servers—thereby mitigating trust issues.  A principal can have 
different trust levels for different requirements, e.g., Alice may trust Bob to execute her agent 
without reverse engineering it (an expression of code privacy), but may not trust Bob to execute 
the agent without looking at previous results from other hosts (an expression of state privacy). 
When the desired trust level is not adequate between parties in the agent application, parties 
require that security mechanisms enforce specific security requirements before allowing 
agent/host execution. 

Table 8: Agent Security Requirements and Related Mechanisms 

 
 
Both application owners and potential agent execution environments have stake in the 

mechanisms we use to enforce security–whether they prevent or detect malicious behavior and 
what requirements aspect they enforce. Certain mechanisms are preventative in nature, not 
allowing malicious behavior a priori. Other mechanisms rely on a posteriori information to detect 
whether unauthorized actions occurred to either the agent or the host. Some mechanisms readily 
fit into both categories and the clear delineation remains unimportant. In general, we desire 
preventative mechanisms over detection mechanisms when available because they are stronger, 
but they usually come with more overhead, limited use, or complicated implementation.  We 
consider detection as a less stringent security method because an adversary has already violated 
system security in some way when the mechanism identifies the malicious activity. 

 No single security mechanism can address every security requirement for a mobile agent 
system. Application level security brings together a process for selecting security mechanisms 
that achieve a desired trust level within a mobile agent system.  Claessens et al. [360] delineate 
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several application level combinations for requirements/mechanisms that enforce desired security 
properties. Even when using mechanisms that establish trust in untrusted environments (such as 
tamperproof hardware), agent applications must taken into account other assumptions in order 
guarantee all desired security requirements are met.  Trusted hardware or multi-agent secure 
cryptographic protocols may be warranted or even feasible given certain application environment 
factors.  When such mechanisms are not available or are not practical to implement, higher trust 
levels are necessary; we require a more policy-driven approach to make dynamic decisions about 
agent execution.  We describe the ability to express such interactions formally next. 

4.3 Trust Framework 

Mobile agent systems deal with environments where partial knowledge and blind trust are 
common; therefore, subjective determinations are appropriate for incorporation into security 
mechanisms and agent execution decisions.  We consider trust as complex because mobile 
agent principals possess one-way trust for different security requirements. To formalize a mobile 
agent application, we define first the principals that can be assigned trust properties, define next 
the trust relationship nature between principals, and finally formulate what trust relationships can 
accomplish in mobile applications settings (the trust algorithm).  

4.3.1 Defining Principals 

Table 9 fully defines principals within our model, using extended BNF form7, and we discuss 
each composition individually. We find three distinct principal groups in mobile agent systems: 
agents, hosts, and entities. We define an agent as a composition that includes static software 
(code) and a set of dynamic states (state) representing the agent’s migratory results.  

Table 9: Principals in Mobile Agent Systems (expressed in extended BNF notation) 

 
We describe agents by their migration path (itinerary), any unique identifiers (id), a record 

describing agent or host activity (log), and a security specification (policy) that includes any 
historical trust information for other principals in the agent application. We can create agents 
using reusable components where each component has its own associated dynamic state and 
trust level. For simplification, we define an agent to have only a single static code.  The agent “id” 
encompasses more than one identity as well.  For agent naming, we use Roth’s agent kernel (see 
Figure 10, p. 14) that uniquely binds a specific mobile agent’s dynamic state to its static code.  
This identification eliminates the possibility for cut/paste and oracle-style attacks that plague 
certain posed security mechanisms.  The static code, the application owner, and the code 
developer all possess unique identities as well—which we capture in the id component.  Figure 
37 depicts the agent composition in a traditional Unified Modeling Language (UML) class 
notation, where we abuse the notation slightly for representational viewing. 

Hosts provide an execution environment for the agent. They encompass the underlying 
physical hardware, runtime services, and middleware necessary for agent migration and 
execution. Agents see a host as a collection of computational, communicational, informational, 
and management resources. Hosts offer services provided by local (non-itinerant) agents, 
advertise host based software processes, offer host-based physical resources such as memory 

                                                           
7 ISO/IEC 14977:1996(E), see http://www.nist.fss.ru/hr/doc/mstd/iso/14977-96.htm 

<agent> = <code>, <state>+, <itinerary>, <id>, <log>, <policy>  
<host> = <resource>+, <id>, <log, <policy>, <host-type> 

<host-type> = <dispatching> | <executing> | <trusted> 
<entity-type> = <code developer> | <application owner> | <host manager> 

<entity> = <organization>, <entity-type> 
<principal> = <agent> |  <host> | <entity> 

<trust> = <level>,<foreknowledge>,<timeliness> 
<application> = <principal>+ , (<principal>,<principal>,<security requirements>+, <trust>)* 
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and processor, and provide any information necessary for the agent to accomplish its task. Hosts 
also have security policies that support the trust formation and decision process.  

 

Code

State

ID

Itinerary

Log

Security Policy

Thread

Agent

 
Figure 37: Defining the Agent 

Three host types are relevant to mobile computations: the dispatching host (DH) associated 
with the application owner that launches mobile agents, the executing host (EH) where mobile 
computations occur, and trusted hosts (TH) which have ability to change trust relationships 
among other principals based on services they offer. The DH owns one or more agents that are 
acting on its behalf and remains partially responsible for agents under its control. For simplicity, 
we assume that a mobile agent application has only one dispatching host.  One or more 
executing hosts comprise an agent itinerary: each host acts upon the agent code/state to produce 
a local host output and updated agent state. Trusted hosts conceptualize servers that provide 
security benefit for agents during their lifetime.  They assume trusted third party status in many 
different security mechanisms—such as extended execution tracing [39] or multi-agent secure 
computation schemes (Chapter 3).   

Figure 38 depicts in UML form the relationships between these three host types:  each host 
type can have a one-way trust/belief relationship with another host.  Dispatching hosts have 
trust/beliefs regarding executing hosts and every executing host has some trust/belief about 
agents received from a dispatching host.  Likewise, dispatching hosts have trust/belief 
relationships with trusted hosts and each trusted host has a distinct relationship with every 
dispatching host.  In every case, trust relationships do not have to be the same.  Executing hosts 
and trusted hosts may also have trust/belief regarding other executing and trusted hosts as well.  

As Figure 39 depicts, three entities have bearing on security relationships in mobile settings. 
We define the static agent code creator as the code developer (CD) and define the code user as 
the application owner (AO). The CD and AO may be the same. 
The computer owner, the systems manager, and computer user 
can be the same person, or can be separate individuals with 
different trust levels. For simplicity, we view the host owner, 
manager, and user as synonymous and apply the term host 
manager (-M) to refer to all three responsible parties. In human terms, we trust machines (hosts) 
and software (agents) in some cases because we trust the manager associated with the 
environment or the developer for the software. We equate the trust that we have in the host 
manager (DH-M, EH-M, TH-M) as the trust we have in any other host (DH, EH, TH), realizing that 
the host manager for the dispatching host (DH), the code developer (CD), and the application 
owner (AO) can all be different entities or the same entity. In Appendix B, we provide Figure 140 
to conceptualize in UML form the trust relatins between host and agent and Figure 139 to depict 
the associations between the application owner, agent developer, and dispatching host with the 
agent. 

 

trust(DH)  ≈  trust(DH-M)
trust(EH)  ≈   trust(EH-M) 
trust(TH)  ≈   trust(TH-M)



 

50 

Hosts

Execution

Dispatching

Trusted

trust/belief

trust/belief

trust/belief
trust/belief

trust/belief

trust/belief  
Figure 38: Defining Executing/Dispatching/Trusted Hosts 

 

 
 

Figure 39: Three Entities Affecting Trust in Mobile Agent Environments 

We define an application as the collection of all possible hosts involved in the agent task and 
the set of uniquely identifiable agents that implement a user function. This intuition captures 
single agents and multiple collaborating agents including those with the same static code and 
different itineraries and those with different static code. Applications, not agents, therefore 
become the focal point for trust determination, security requirements, and security mechanisms. 
We now define trust relationships shared among principals in our model.    
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4.3.2 Defining Trust Relationships 

One security task is to attribute rightfully the observed actions within the system to a given 
party. The code developer, the dispatching host, and all visited hosts 
influence the agent’s data state and code–making attribution for 
malicious behavior difficult. For simplicity, we equate the trust in the 
agent code with trust in the code developer and we will equate trust 
we have in the dispatching host as the trust we have in the application owner. We define a trust 
relationship δ: P → P → S → (L ,F, M) as a mapping δ between two principals (Px, Py) and some 
number of security requirements (S) with three associated parameters: trust level (L), 
foreknowledge (F), and timeliness (M),  defined in Table 10.  

Thread

CodeAgent Developer
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State

Log

Dispatching Host

ID

Agent

Security Policy
Application Owner

 
Figure 40: Principals and Entities Associated with an Agent 

 

We categorize trust levels (L) in a range from highly untrusted (HU/U) to highly trusted (HT/T), 
where in some instances we assume trust is not determined (ND).  Trust levels are non-Boolean 
and reflect a one-way subjective belief that one party will behave towards another party at some 
perceived malicious intent level (HU, U, ND, T, HT). Trust can be discretely categorized 
negatively and positively as ranges between [-1, 1]: (HT, T) > 0, ND = 0, (U, HU) < 0.  Our model 
considers levels in the range [0, 1].   

Foreknowledge (F) defines prior interaction between principals.  Agents traveling in a dynamic 
free-roaming itinerary can encounter unknown hosts.  Likewise, hosts are likely to encounter 
agents with no prior experience.  We describe the foreknowledge held by a principal as either 
well-known (WK), known (K), or unknown (UK).  Well-known principals have established histories 
while we identify known principals for possible agent execution/migration. 

Timeliness (M) characterizes information currency and we express it with values expired, 
stale, or fresh. We establish timeliness by mechanisms such as timestamps [366] and we use 
age comparisons to determine whether we can rely on recommended or delegated trust 
decisions.  Given the same interaction volume, trust is higher when the interaction period is 
longer. When the elapsed time since the last interaction is short, we can place higher confidence 
in interactions that are more recent. 

For a specific mobile agent application, we derive principals using all sets for possible 
concerned parties.  Based on simplifying assumptions, which we depict in Figure 41, we define 
four possible principal sets:  dispatching host/application owner (DH/AO), all executing hosts 
(EH), all trusted hosts (TH), and all agents/code developers (A/CD).  If a more precise trust 

trust(A)  ≈   trust(CD)
trust(DH)  ≈   trust(AO) 
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relationship needs expression for these specific entities, we can treat code developers and 
application owners separately.   

 
Trust level, foreknowledge, and timeliness bind trust from two principals (an application owner, 

an executing host, a dispatching host, an agent, etc.) with one or more security requirements 
(elaborated in Table 7). Though we represent foreknowledge, trust level, and timeliness 
discretely, they can be converted to continuous ranges ([−1, 1] or [0, 1] for example) to 
accommodate different trust algorithms.   

Table 10: Trust Relationships 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 41: Simplifying Trust Assumptions in Mobile Agent Application 

4.4 Trust Algorithm 

We now discuss how our model supports trust-based decision making in mobile agent 
contexts. Given an application G with associated hosts set Hx, a set containing uniquely 
identifiable agents Ay, and a set with trust relationships Ti,j, we can formulate the trust actions and 
decisions that are possible in the application space based on trust relationships among all 
principals.  Appendix B provides elaboration of various agent scenarios using the trust model. 

4.4.1 Trust Decisions 

Trust decisions in pervasive scenarios come from two primary information sources: personal 
observations (previous interactions) and recommendations from other parties (transitive or 

<application> = <principal>+ , (<principal>,<principal>,<security requirements>+, <trust>)* 

<δ> =  <Px>, <Py>, <S>+ , <L>, <F>, <M> 
<L> =    <highly untrusted> | <untrusted> | <non-determined>  |  

  <trusted> | <highly trusted> 
<F> =   <well known>  | <known>  |  <unknown>  
<M> =   <expired> | <stale> | <fresh>  
<S> =    <agent code privacy> | <agent code integrity>  |  

  <agent code safety> | <agent code authenticity>  |  
  <agent itinerary privacy> | <agent itinerary integrity> | 
  <agent state integrity> | <agent state privacy> |  
  <agent authenticity>  | <agent authorization> |  
  <agent non-repudiation>  | <agent availability>  |  
  <agent anonymity> | <host authenticity> |  
  <host non-repudiation>  | <host data privacy>  |  
  <host anonymity>  | <host availability> | <host integrity>  
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delegated trust). We can use Spy agents [153] to build and maintain a trust profile by validating 
behavior in small interactions. Trust-earning actions build relationships and principals use these 
to determine which security mechanisms will meet the application owner’s desired security level.  

Trust in the mobile agent environment affects security mechanism selection, agent itinerary, 
policy decisions, and code distribution. For example, if the application owner (AO) has non-
determined (ND) or low (U) trust toward any prospective host, the owner may require detection 
mechanisms to guarantee agent state integrity or agent state privacy. If no trust (HU/U) exists at 
all, the AO may require stringent mechanisms that prevent agent state integrity/privacy. If the AO 
has full trust (T/HT) in prospective hosts, no security mechanism may be required to allow agent 
migration and execution.  

To link agent security mechanisms with application requirements, our framework processes 
initial, recommended, and first-hand trust to render a mechanism-based decision that meets the 
security objectives for involved principals. Highly trusted and trusted principals will tend to yield 
no requirement for security mechanisms. Non-determined trust will tend to require 
detection−oriented mechanisms while untrusted relationships will tend to demand 
prevention−oriented mechanisms. Migration decisions are also determined based on trust level.  

 

 
Figure 42: Trust Decisions for Mobile Agent Security 

Figure 42 depicts the inputs and outputs to our trust determination process for mobile 
applications with the outcome selecting one or more mechanisms that will meet bidirectional 
requirements between principals defined by the trust relationships. The trust algorithm produces 
an appropriate host-based mechanism set and an appropriate agent-based mechanism set. We 
generalize the initial trust set based on the agent’s application environment.  We define the initial 
trust component for the trust-based decision seen in Figure 42 by a relationships set (the 
application model) which is context-dependent on the application.  We define three different 
application model scenarios in Section 4.5.   

Several decisions are possible based on principal interactions within the mobile agent 
application. We summarize the interactions that are possible in the agent lifecycle in Appendix B, 
Table 29, but discuss two in detail here: agent dispatch and agent migration.  Figure 43 highlights 
the trust relationships required for agent dispatch while Figure 44 highlights trust and security for 
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agent migration.  For simplicity, we consider the application owner (AO) / dispatching host (DH) 
synonymous and consider the code developer (CD) / agent (A) synonymous in trust expectation.  

 
Figure 43: Trust/Security Decisions on Agent Dispatch 

The first executing host (EH) in the agent itinerary has trust expectations (possibly different) 
from those expressed by the application owner.  Recalling the definition for a trust tuple,  δ: P → 
P → S → (L, F, M), there exists tuple forms such as (AO,EH,SEH, (L,F,M)), (EH,AO,SAO, (L,F,M))), 
and (EH,DH,SA, (L,F,M))) in a fully populated trust database.  The set of security requirements 
SEH that an application owner (AO) wishes to enforce for any prospective executing host (EH) 
may include code privacy, code integrity, state integrity, state privacy, agent availability, agent 
anonymity, host authenticity, and host non-repudiation.  The set of security requirements SAO an 
executing host (EH) may specify towards an application owner (AO) include host data privacy, 
host anonymity, agent state authenticity, and agent non-repudiation.  The set of security 
requirements SA an executing host (EH) may specify towards an agent/code developer (A/CD) 
may include agent code safety (to ensure host availability and host integrity), agent code 
authenticity, and agent code integrity.   

                 
Figure 44: Trust/Security Decisions on Agent Migration 

A single tuple exists in a policy database for every security requirement desired, each 
mapping to an allowable foreknowledge level (F), trust level (L), and timeliness level (T).   Figure 
43 for example indicates that an application owner can specify security requirements for 
executing hosts who are known (K) to have non-determined trust (ND) with stale (S) timeliness on 
their information.  Executing hosts, likewise, specify security requirements for application owners 
who are unknown (UK) with non-determined trust (ND) and with expired (E) timeliness on their 
information.  Figure 44 depicts the trust relationships that our trust framework evaluates during 
agent migration.  Here, principals include two executing hosts (EH), the agent (A), and the 
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application owner (AO).  Because a previous host may corrupt the agent, state integrity and 
privacy become paramount. 

Required security mechanisms (none, detection, prevention) for a particular principal are 
determined based on trust level.   For example, if an unknown agent requests migration to a host 
that requires agent code integrity and no mechanism enforces that requirement, the executing 
host refuses agent migration according to the policy database.  If a well-known agent requests 
migration and no tuples specify policy otherwise, the executing host allows the migration and 
execution.  Trust exists as a unidirectional property: what one principle (an executing host) 
considers allowable for security mechanisms may not be adequate for the other principal 
(application owner). 

Given a trust relationship set that exists between principals, a policy engine using this 
framework can make several trust-based decisions:  

- which agent/host security mechanism to use; 
- which hosts an agent can include in the itinerary; 
- which agent code parts are executed by the host; 
- which agents are allowed host resources; 
- which principals can share policy information;  
- whether trust levels can increase (whether you are allowed to recover from negative trust); 
- whether or not trust recommendations from other parties should be given merit to include 
how much weight they are given.  
Figure 45 pictorially summarizes our trust framework components for mobile agent 

applications using standard UML generalization and compositional notation. 
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Figure 45: Trust Framework 
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4.4.2 Trust Acquisition 

We link trust relationships to one or more security mechanisms in our model.  Given principal, 
trust, and application definitions, we can exercise security decisions based on requirements. We 
enforce trust using security mechanisms; applications link the principal’s trust expectations 
through security requirements to a trust level, foreknowledge, and timeliness.  

To formulate trust, our model supports three different acquisition modes: initial trust, first-hand 
trust, and recommended trust.  Initial trust is the relationship set belonging to an agent or host 
before interaction history takes place over time.  We argue that such an initial trust relationship 
set can be generalized based on the agent’s application environment and pose at least three 
such models.  Next, principals gather first-hand trust over time through specific interactions with 
other principals.  We gain recommended trust when we accept or rely on trust levels offered by 
other principals. When the initial binding of trust at various stages of the mobile agent, we define 
the following lifecycle points for trust expression: 

(1) creation and development of code bind trust to a code developer 
(2) ownership of an agent binds trust to an application owner 
(3) dispatching an agent binds trust to a dispatching host 
(4) execution of an agent binds trust to all prior hosts an agent has visited plus its dispatcher 
(5) migration binds trust to the next host in the agent itinerary 
(6) termination binds trust of the entire application to the entire set of execution hosts and the 

network environment 
Our model allows a principal to earn trust or degrade trust based on actions observed over 

time. Figure 46 illustrates the trust cycle where an agent execution using one or more executing 
hosts affects trust among all principals in a policy database. Observable trust-related actions 
during execution can change trust levels among mobile agents and hosts. Trust relationships 
evolve from initial trust according to predefined rules–which represent a security policy. In 
previous work on trust in ad-hoc networks [38], four different trust acquisition categories are 
formulated which we apply in the mobile application context: trust-earning actions over time, trust-
earning actions by count, trust-earning actions by magnitude, and trust-defeating actions.  

 

 

Figure 46: Acquired Trust over Multiple Applications 

Because many methods already exist for evaluating delegated and acquired trust in mobile 
agent systems [39, 40, 41, 42, 152], we leave identification of specific delegated algorithms open 
for implementation. We focus instead on the novel aspects found in our approach—which include 
representation of mechanisms/requirements and how to express the role of trusted hosts.  

4.4.3 The Role of Trusted Hosts 

Trusted hosts (TH) are distinguished from dispatching (DH) or executing hosts (EH) in an 
agent application and we pose a novel expression for their role.  Trusted hosts conceptualize 



 

57 

properties normally associated with trusted third parties (TTP) in various agent security 
mechanisms and have specialized, static, and pre-determined trust relationships with principals. 
TTP trust levels do not change with agents or hosts that interact with them, though we describe 
the concept of partially trusted third party in Chapter 3.  If TTPs do not have full trust in an 
application environment, we represent them as an executing host (EH) with normal trust 
relationships.   

Execution hosts in the agent itinerary that have a trust level equal to “highly trusted” or 
“trusted”  can be used to detect malicious behavior such as verifying intermediate data integrity.  
A trusted host, on the other hand provides, a third-party service such as information lookup, 
mediation, brokering, communication service, or middle-agent hosting.  We are not concerned 
with whether an agent communicates statically or migrates dynamically to the trusted host.  We 
capture the primary intuition that trusted hosts provide a means for either increasing or 
decreasing trust levels for other principals—with all parties in the application giving confidence 
and agreement for them to do so.  

For example, in extended execution tracing (EET), the trusted server verifies agent execution 
integrity for both executing hosts and the dispatching host [33, 39].  Trusted servers in EET 
facilitate the migration process and become the only means by which agents can move from one 
executing host to another.  When a host violates agent integrity, the trust policy framework lowers 
the trust level for that executing host and communicates the violation to other principals in the 
system.  A host can delegate trust to another via the trusted server chain and a trust acquisition 
methodology. 

High trust levels in mobile applications derive from several possibilities: having tamperproof 
hardware (TPH) installed, having a good reputation, being under the same management domain, 
and having an established trusted/non-malicious interaction history. An application owner, for 
example, may trust highly an executing host in its own management domain that has TPH such 
as a smart card reader.  Yee [74] points out that we routinely use TPH to offset trust levels when 
remote hosts have non-determined trust or are assumed untrusted. Host-installed TPH that 
supports agent execution can allow the application owner to assign a trusted or highly trusted 
status not possible otherwise. 

Trusted hosts normally implement a particular security mechanism, such as in EET or multi-
agent secure computation. The trusted host can therefore notionally increase or decrease trust 
among principals in an application based on their services.  TTPs may affect trust level 
relationships between host and agent, agent and host, host and host, or agent and agent. When 
trusted hosts service an agent via migration, they can inspect the agent or otherwise interact with 
the agent like any other host. When agents interact with the TTP by static communication, they 
can pass information to the trusted host for data logging, result protection, integrity checks, or 
phoning information back to their dispatching host.   

Trusted hosts introduced in a mobile application can thus change trust relations among 
principals and enforce particular security requirements for executing hosts and application 
owners.  When agents and hosts interact with the trusted host, TTPs adjust trust mappings based 
on particular security requirements and their interaction.  Services provided by trusted hosts can 
alter an agent’s state, itinerary, or security policy.  An agent, for example, may use a trusted host 
to determine the next host to visit and alter its itinerary based on the interaction.  No matter which 
principals are involved in the transaction, we assume trusted hosts to act in the best interest for 
both agents and hosts and therefore achieve guaranteed application level security goals for all 
parties involved.  

An application environment model generalizes the adversarial nature that exists among 
principals. The next section gives our novel concept for such models in defining initial mobile 
agent security relationships. 

4.5 Application Security Models  

Models come in many shapes and sizes. In all cases, we use them to focus and detail a 
particular problem aspect. Security models help test whether security policies are complete or 
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can verify whether an implementation fulfills a requirements set. Application models for multiple 
agent systems describe how agents accomplish tasks based on an underlying pattern such as 
publish/subscribe, courier/broker, and supervisor/worker. The application context determines 
security responsibilities for principals and limits trust award to occurring only through specific 
interactions. As we illustrate in Figure 47, applications (APPA, APPB, APPC) typically have one 
application model that describes the behaviorial aspects of parties within their particular 
environment. In some cases, we can use applications (APPD) in more than one application model 
setting by adjusting security requirements, mechanisms, or trust assumptions about parties within 
the environment.  

 

 
Figure 47: Application Security Models 

 
In our security framework, we establish trust three ways: initial trust, acquired trust, and 

recommended trust (see Figure 42 and Figure 45). Over time, trust will change based on 
observed actions and delegated decisions. Every application has unique security requirements, 
but many applications share a common trust environment that can be the starting point for trust-
enhanced security decisions.  Application scenarios dictate how we derive principals and how 
they act towards each other. We define scenarios to set boundaries on whether we can acquire 
trust over time–whether we can promote principals from untrusted (U) to non-determined (ND) or 
from non-determined (ND) to trusted (T). 

We leverage the notion that initial trust relationships exist in a mobile agent application 
(between agents and hosts) based on a common trust environment.  This initial trust is the 
starting point for trust-enhanced security decisions and we define the set of initial trust relations 
as an application security model. We provide three real world environments that reflect mobile 
agent applications and that share common trust assumptions: the military model, the trade model, 
and the neutral services model. These initial trust relationships couple the security requirements 
and trust levels from various participants. As a result, agents in an application can initially 
determine which security mechanisms they are willing to support and hosts can initially specify 
their required security mechanisms. 

4.5.1 The Military Model 

We base the military model on the notion that a wall or ”Maginot Line” exists between friendly 
and adversarial entities. Within friendly borders, entities typically know each other as 
authenticated, highly-trusted principals. At some point, however, an adversary may take a given 
principal captive. This captured entity (whether a host or agent) may continue to function 
passively in order to discover information or leak secrets on the capturer’s behalf. Captured 
entities may become overtly malicious by delaying and denying service, corrupting friendly 
communications, and attacking privacy and group integrity operations.  

The military model formulates common application characteristics between principals and 
helps focus security requirements. For instance, although hosts might be ad-hoc or mobile, a 
managerial entity verifies their identity within the environment. Figure 48 illustrates how initial trust 
relationships capture this notion: every dispatching host/agent originator (DH/AO) has a ”known” 
and ”trusted” relationship with every executing host (EH) to begin with. We indicate this by ”K/T” 
in the row for DH/AO that intersects the EH column in Figure 48. In the military model, trust 
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relationships are implicit as long as the management domain can verify the principal’s identity. 
We commonly know all principals beforehand in the military model, so we grant more trust to 
authenticated agents and hosts as a result.  

 

 
Given military model application G with principal set P, 
dispatching host set DH, execution host set EH, trusted 
host set TH, application owner set AO, code developer set 
CD, and trust relation set ν: 

 
1. DH ⊆ EH 
2. TH ≠ ∅ 
3. ∀ pi,pj ∈ P: i ≠ j  and  ∀ δ (pi,pj,s) ∈ ν:   
     F  = <known>, or 
     F  = <well known> 

 

Figure 48: Military Model Initial Trust Relationships 

 
The military model fits requirements and trust relationships where using trusted third parties, 

trusted hardware, group security operations, multiple security levels, multiple trust levels, and 
distinct organizational structures exist. We find this environment in many corporate infrastructures 
(as well as the military itself) where a trusted computing base is financially possible or mandated. 
Implicit trust among principals allows hosts to work efficiently in cooperation with agents to 
provide mutual prevention and detection services.  

The military model also suggests common agent characteristics exist within an environment 
where a centralized authority designs, develops, and deploys agents. In industry, corporations 
may delegate development to outsourced teams or an information technology department with in-
house programmers. The military model reflects programming environments where only 
authorized mobile agent applications are used and agents act as peers. Other initial trust models 
can reflect agents that take on adversarial roles with one another. Even corporate divisions have 
proprietary and sensitive information that may require protection.  

In the military model, agents may still have requirements for integrity and privacy, but we can 
verify their identity, safety, authorization, and authentication within a circle of trust. The military 
model also places less emphasis on distinction between executing and dispatching hosts.  Agent 
servers play the role interchangeably in some cases as the dispatcher and in other cases as the 
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execution host. Initial trust in this model reflects many real-world computing paradigms where 
agent-based applications accomplish group collaboration, systems management, and information 
gathering. Centralized management domains exist and form a key feature in the military trust 
model.  

Figure 48 summarizes the military model initial trust relationships and describes how we 
initialize a set of trust relations ν. We illustrate two simplifying assumptions: the application owner 
(AO) and the dispatching host (DH) are equivalent for trust purposes and the code developer 
(CD) has equivalent trust to the agent (A). The matrix also depicts, for example, the dispatching 
host (DH) / application owner (AO) initially knows and trusts (K/T) all executing hosts (EH). It also 
illustrates how the AO knows and trusts all agents (A/CD) it will use.  

Based on this initial trust relationship set, the trust algorithm dynamically determines acquired 
or recommended trust. Acquired trust mechanisms (where we define negative trust) facilitate 
discovery of infiltrators. These relationships also determine the security mechanisms required by 
each host or agent. In the military model, we assume that some agents or hosts will eventually fall 
under “enemy” control. Two primary security-related tasks consume the majority of time in the 
military model: 1) protecting insiders from outsiders and 2) detecting whether or not an adversary 
has compromised or captured an agent or host. 

The latter security task becomes detecting anomalous or malicious behavior and removing 
malicious parties from the circle of trust. This scenario best represents application environments 
with a peer (non-adversarial) relationship among agents and hosts. As Figure 48 illustrates, the 
initial trust relationships among all principals in the system begin at a known and trusted level and 
when trusted servers are used (TH), they are ”highly trusted” (HT).  

Trusted third-party and trusted hardware roles, as well as coalition security mechanisms, 
focus their attention on identifying principals that have violated the circle of trust or are attempting 
to gain access to the circle of trust.  A strong military model may require that all executing hosts 
be equipped with tamperproof hardware. Other application scenarios are better suited for 
expressing e-commerce interactions, discussed next. 

4.5.2 The Trade Model 

A second model we define is the trade model: it captures the intuition for a competitive 
interaction among actors that are all bargaining for resources. Such an environment could also be 
termed an economic model, a buy/sell model, or a supply/demand model where we consider 
economic benefit as the chief motivator. This application scenario represents the Internet 
computing model where prospective buyers deploy E-commerce mobile agents. It describes 
applications where disjoint communities of mobile agent dispatchers want to use services or 
obtain goods from a set of host commodity or service providers. Agent literature routinely 
represents such a model as an agent dispatched to find an airline ticket among a group of airline 
reservation servers.  The agent accomplishes the transaction autonomously while finding the best 
price within user constraints.  

Figure 49 illustrates the initial trust relationships for security requirements in the trade model 
and depicts the adversarial relationship among principals. In this scenario, we express several 
trust facets: 1) buyers (application owners) do not trust sellers (hosts) to deal honestly with them; 
2) sellers do not trust other sellers to work for their best interest; 3) buyers do not trust sellers to 
act non-maliciously; and 4) buyers are in competitive relationships with other buyers for the same 
goods and services. Initial relationships between dispatching hosts/application owners (DH/AO) 
and executing hosts (EH) thus have an implicit untrusted (U) relationship for parties that are 
known (K) and an implicit highly untrusted (HU) relationship for parties that are unknown (UK)-
seen in the Figure 49 matrix. Executing hosts in the matrix (EH) have untrusted relationships 
(U/HU) with other executing hosts, whether known (K) or unknown (UK). We express the buyer’s 
adversarial relationship by defining the initial trust between agents/code developers (A/CD) as 
non-determined (ND) or highly untrusted (UH) in the case of known/unknown parties.  

The largest possibilities for perceived mobile agent applications typically fall into the trade 
model when describing security requirements. In this context, we do not necessarily know 
principals before interaction takes place. In most cases, no trust or foreknowledge exists between 
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users that want to execute agents and hosts that would like to execute agents. This model relies 
more on acquired or delegated trust decisions and reflects that executing hosts are as equally 
distrusting with agents as they are with other executing hosts. Application owners see hosts as 
implicitly untrusted in the sense that they can gain economic benefit if hosts alter agent execution 
integrity or maliciously collude together. 

 

 
Given trade model application G with principal set P, 
dispatching host set DH, execution host set EH, trusted 
host set TH, application owner set AO, code developer set 
CD, and trust relation set ν: 

 
1. DH ∩ EH = ∅ 
2. TH ≠ ∅ 
3. ∀ pi,pj ∈ P: i ≠ j  and  ∀ δ (pi,pj,s) ∈ ν:   
     F  = <unknown>, or 
     F  = <known>, or 
     F  = <well known> 
 

Figure 49: Trade Model Initial Trust Relationships 

 

4.5.3 The Neutral Services Model 

As a third notion to capture application-level security requirements, we define the neutral 
services model with the intuition that one or more agents acquire a service (or set of information) 
from providing hosts. Service providers do not themselves have an adversarial relationship with 
each other, but we view them as having disjoint trust communities. The primary difference in the 
neutral services model and the trade model is that host communities exist with no adversarial 
relationship among themselves. These communities are essentially neutral regarding their 
commitments to each other–neither friendly nor hostile.  Figure 50 gives the initial trust relations 
for this model. 

This model fits application environments designed around information or database services. 
Information providers typically have no economic gain from altering the results or influencing the 
itinerary for agents that they service. Hosts provide services honestly in the sense that they would 
not alter the path or intermediate data results for an agent or induce service denial. Service 
providers can and in most cases do charge a small fee for using their service, however. A 
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dispatching application owner in this model may be concerned with whether a host bills it 
correctly after agent interaction. In this respect, if information providers charge for their service, it 
is to their benefit to alter an agent’s execution integrity and illegally charge an agent for more than 
was legitimately received.  

Adversarial relationships exist between agents from the “client” community and hosts in the 
“server” community, but trusts within the same community do not necessarily trust or distrust 
towards each other (they tend to be neutral to one another). Neutral hosts see no benefit from 
altering an agent that might be carrying results from other hosts or from preventing them from 
visiting other hosts. Hosts in this realm are in essence a “one-of-many” information provider. This 
paradigm may not fit a search engine model where a mobile agent visits and collates search 
results from engines such as Google, Yahoo, and Alta Vista. In this case, one of these engines 
(who get benefit from every agent hit since advertisers might pay more for a more frequently 
visited search engine) may have desire to alter the itinerary or search results from agents that 
visit other hosts. It might also benefit a search engine in this example to maliciously alter search 
results from other engines carried by the agent and make them ”less useful”; as a result, the 
malicious engine looks “better” to the application owner by making their competitor look “worse”. 
For cases like this, the trade model would fit better to describe initial security requirements among 
principals.  

 

 
Given neutral services model application G with principal 
set P, dispatching host set DH, execution host set EH, 
trusted host set TH, application owner set AO, code 
developer set CD, and trust relation set ν: 

 
1. DH ∩ EH = ∅ 
2. TH ≠ ∅ or TH = ∅ 
3. ∀ pi,pj ∈ P: i ≠ j  and  ∀ δ (pi,pj,s) ∈ ν:   
     F  = <unknown>, or 
     F  = <known>, or 
     F  = <well known> 

 

Figure 50: Neutral Services Model Initial Trust Relationships 
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The protection required for applications falling under the neutral services model revolves 
primarily around the agent’s execution integrity. To that effect, hosts that bill customers for usage 
might be tempted to cheat and wrongly charge agents for resources they did not use. Likewise, 
agents may want to convince a host falsely that it did not provide a service or information, when 
in fact it did. Trusted relationships between neutral third parties are also more conducive in this 
environment and trusted third parties may interact with various communities to provide services 
themselves. 

4.6 Chapter Summary 

When we consider application development, we desire methods that help transform 
requirements into implementation. We present in this chapter a trust model for mobile agent 
application development that supports trust-enhanced security decisions.  We implement at least 
three novel concepts in our framework: we unify security requirements with security mechanisms, 
we address initial trust requirements at an application-specific level, and we define the 
relationships for trusted third parties.  

Our formalized model remains more robust and comprehensive than current trust models for 
mobility in defining principals and their possible trust relationships.  We also give the first 
definition for an application security model that seeds a trust framework. We give three model 
examples and characterize how to generate initial trust relationships based on the trust 
assumptions between parties involved in mobile agent interactions. Both developers and 
researchers benefit from this model because they can reason about security requirements and 
mechanisms from an application level perspective; the model allows them to integrate trust-based 
decisions into the mobile agent security architecture and define allowable security mechanisms.  
In the next chapter, we deal specifically with mechanisms that address the hardest problems in 
agent protection: how to protect the agent from meaningful alteration at the remote execution site. 

 



 

64 

CHAPTER 5  
 

PROGRAM ENCRYPTION 

This chapter contains material from a collection of published papers [44, 154, 155, 156] and 
manuscripts under review [157, 158].  We first give a chapter overview and motivate the question 
for why we want to “executably encrypt” a program afterward. 

5.1 Chapter Overview 

In their seminal work on homomorphic encryption in mobile agent settings [25], Sander and 
Tschudin challenge the idea that a program running on a remote host requires trusted hardware 
in order to guarantee integrity or privacy.  They ask three specific questions that provide context 
for our thesis: 

 
(1)  Can a mobile agent protect itself against tampering by a malicious host? (code and 

execution integrity) 
(2)  Can a mobile agent conceal the program it wants to have executed? (code privacy) 
(3)  Can a mobile agent remotely sign a document without disclosing the user’s private key? 

(computing with secrets in public) 
 
We present results in this chapter that make positive contributions towards answering these 

questions affirmatively.  In Figure 51, we summarize these significant results related to protecting 
software (generally) and protecting mobile agents (specifically) and show their relationship to both 
efficiency and perfect semantic security. 
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Semantic Security 
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Input-Size 
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Encryption 

Randomization Canonical 
Reduction 

Section 5.4 Section 5.7 Section 5.5 - 5.6 
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Box 

Perfect  
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Figure 51: Results in Program Encryption  

 
Section 5.2 gives the motivational basis for several program classes that benefit from 

executable encryption.  Section 5.3 defines specifically what we mean by program encryption, its 
relationship to obfuscation, and gives definition for several program protection related metrics.  
Section 5.4 presents our results for achieving perfectly secure black box program protection.  
Section 5.5 defines a novel method for measuring obfuscation security strength based on random 
programs.  Section 5.6 presents our results for defining randomizing obfuscators.  Section 5.7 
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presents our methodology for achieving perfectly secure white-box protection for bounded-input 
size programs. 

As a foundational result, we demonstrate that you can only securely obfuscate a program by 
first translating the program’s semantic meaning (input/output relationships) into a one-way 
function (assuming the program is not a one-way function itself).  We discuss this approach for 
black box protection in Section 5.4 and give a provable methodology for semantic encryption 
transformation. Given this translation basis (which securely hides the original program’s 
input/output mappings) and given an associated recovery process (which reproduces the original 
program’s intended output), we then consider how to hide the white-box information associated 
with a circuit’s gate structure or a program’s source code.  In Section 5.5, we give an alternative 
obfuscation security model that finds applicability with (practical) obfuscation techniques currently 
in use today.  In Section 5.6, we present our results for semantic security based on randomization 
techniques similar to those found in traditional data ciphers, representing a (more) efficient 
general approach to white-box protection.  White-box protection can also be perfectly secure and 
generalized for programs with bounded input-size, and we give our methodology for this using 
canonical circuit reduction in Section 5.7. 

5.2 Motivating the Question 

We believe that the future distributed computing success depends upon securing intellectual 
rights found in software (in general) and protecting mobile program integrity and privacy (in 
particular). The malicious host problem (Section A.2) in mobile agent settings provides an 
interesting case for analyzing what is possible with program protection.  In particular, a remote 
host has complete control over any code that it executes—creating a scenario where malicious 
parties may alter a program’s execution without detection.  

Methods for preserving code privacy in such environments have included multi-party secure 
computation (Chapter 3 and Section A.5), computing with encrypted functions (Section A.3.20 
and Section A.3.21), homomorphic encryption [25, 159, 291], tamperproof hardware (Section 
A.3.19), server-side execution, time-limited black boxes [34], tamper resistance/tamperproofing 
[160, 161, 162, 163, 164, 165], software watermarking [166, 167],  and obfuscation  [168, 169, 
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186].   Many 
researchers seek to define obfuscation in cryptographically strong ways that show provable 
security according to some adversarial model or based on specific heuristic techniques.  We seek 
methods for how to “executably encrypt” a program and show positive results in this thesis toward 
that goal.  We borrow the term program encryption from traditional cryptography and define its 
properties in the next section.  We distinguish obfuscation from program encryption based on 
provable cryptographic properties associated with the latter. 

The goal of program obfuscation is to disguise programs so that a user can execute them but 
cannot determine their intent. It essentially entails constructing programs so that they are 
unrecognizable in a definable way.  When an adversary cannot discern what a program is trying 
to accomplish, the adversary gains no benefit by copying the program or attempting to change 
the program in any meaningful way.  Two questions naturally arise: 

 
(1)  How can running an unrecognizable program provide anything valuable? 
(2)  Why would anyone risk running a program they do not understand? 
 
Consider a military application where the enemy captures a hand held device. If an adversary 

captures a device with an open session, they can observe input and output relationships. If we 
protect the program against black box analysis, the enemy cannot determine the device’s function 
from an arbitrary number of input-output pairs. However, if we assume a sophisticated adversary, 
they may be able to analyze the device from a white box perspective; that is, they can execute 
arbitrary input and analyze the control flow and data manipulations in the program code as they 
occur.  If we protect a program from white box analysis, we prevent the enemy from learning the 
program's intent by watching its execution or analyzing its code.  Finally, in the military 
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environment, trusted parties would typically configure and load software to the handheld devices, 
using trusted hardware, so we have little concern regarding executing programs that we do not 
understand. 

Although the mobile agent security field directly benefits from developing provable 
tamperproofing techniques, our results for program encryption apply to the computer science field 
in general and include protection for other significant program classes.  Program classes exist 
containing applications with relatively small (bounded) input size and, in Section 5.7, we define an 
end-to-end methodology to protect these programs specifically. Using our methodology, we 
demonstrate how to protect several relevant program classes with perfect semantic secrecy. We 
give six specific applications next that benefit directly from the results described in this chapter—
though there are certainly other candidate applications. 

5.2.1 Mobile Agents 

Mobile agents visit untrusted host environments and they do not always know or trust the 
security of their executing environment.  Instead, agents must provide their own application layer 
security or the host middleware must enforce security on the agent’s behalf. The best we can 
achieve for security in such environments is to reduce adversary’s power from effective tampering 
to blind disruption.  When we apply our black box protection mechanism in Section 5.4 to general 
programs, we can protect agents running in trusted hardware environments—as long as the TPH 
enforces virtual black box security (see Appendix A.3.19).  Executably encrypted agents can hide 
their purpose/results in such a way that an adversary gains no benefit from trying to game their 
input/output or from altering the agent‘s code to their advantage.   

5.2.2 Sensor Nets 

Sensors are canonically resource-constrained devices that typically process small sized input 
data, e.g. 16 bits. A manufacturer could executably encrypt the embedded sensor code to protect 
their intellectual property. Take for example a sensor that we deploy in a remote operating 
location as illustrated in Figure 52.  The sensor output is a broadcast stream of binary digits (64 
bits at a time) that we carry by some means (satellite uplink possibly) to a remote processing 
facility.  If an adversary captures the sensor and utilizes the capability to disassemble the sensor 
and look at its internal structure, the adversary may become aware (after some reverse hardware 
engineering process) that the sensor uses temperature readings and motion sensor related data. 
For temperature, the sensor uses an 8-bit input size (capturing a range from -100O C to 100O C) 
and, for motion sensor data, the sensor requires 24 bits.  The software inside the sensor thus 
takes 32 bits of input and outputs 64 bits of data every time it takes a reading (all of which are 
observable by the adversary).   

 

 
Figure 52: Application Example for Program Encryption 
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We want to protect the application intent for the software embedded in the sensor so that the 
adversary cannot foil the detection properties of the sensor.  We want to prevent the adversary 
from understanding (based on the input) what processed information the sensor relays back to its 
processing facility. In other words, we want to protect provably the input/output (black box) 
relationships of the sensor and the algorithmic (white-box) information contained in the sensor’s 
embedded circuitry. 

5.2.3 Geo-Positional Location Information 

Positioning devices utilize numerically intensive functions. We can often represent 
mathematical input very efficiently. Thus, location finding or tracking devices are potential 
program encryption applications.  

5.2.4 Financial Transactions 

There is a clear need to protect programs that compute financial data. Many important 
financial programs take small mathematical input and, thus can be target applications for perfectly 
secure obfuscation.  The ability to hide small pieces of security information (bank PIN, account 
number) embedded in a user-specific financial application also becomes a reality under this 
construction. 

5.2.5 Protecting Embedded Keys in Programs 

A major contribution of our research includes a methodology to protect embedded key 
encryption algorithms contained in executing program code.  For an application with suitable input 
size, we give a methodology to mask its input/output relationships and effectively protect its 
source code representation from leaking information. We can provably hide the key (and the 
seam between the application and the encryption algorithm) within the obfuscated program. 

5.2.6 Transforming Private Key Crypto-Systems into Public Key Systems 

Our approach to program encryption lays the foundation for solving the more (long-standing) 
problem in computer science of how to transform any private-key cryptosystem into a public-key 
system.  Specifically, Alice can take a private-key data cipher with encryption algorithm E(K,M) 
and decryption algorithm D(K,C), embed a specific private key KA in the encryption algorithm, 
obfuscate E(KA,M) to produce E’KA(M), and then publish the obfuscated cipher E’KA as a virtual 
public key.  Alice distributes E’KA while keeping the private key KA secret.  Bob can use E’KA to 
send Alice encrypted messages that only she can decrypt (using D(K,C) and her secret key KA).  
Diffie and Hellman [187] considered this idea in their original seminal work on passing secrets in 
public.  As they point out, any encryption algorithm candidate E(K,M) must be complex enough so 
that input/output pair analysis does not easily reveal the decryption algorithm D(K,C).    

5.3 Defining Program Encryption 

These motivating examples provide building blocks for the possibility of protecting mobile code 
from malicious execution environments and effectively protecting programs from malicious intent. 
Ultimately, we desire to prevent the adversary from knowing the purpose of a program in order to 
reduce attacks from effective tampering to blind disruption.  Sander and Tschudin make this 
similar observation: 

 
“… if we can execute encrypted programs without decrypting them, we 
automatically have a) code privacy and b) code integrity in the sense that specific 
tampering is not possible. Attacks by a malicious host would then be reduced to 
actions “at the surface of the mobile agent”: denial of service, random 
modifications of the program or of its output as well as replay attacks.” [25] 
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We posit that the research community already recognizes important opportunities for 
obfuscation applications, but they have yet to find a precise security definition with positive results 
that apply to current commercial obfuscation implementations. Our work leverages existing 
obfuscation techniques, but we move past traditional obfuscation to establish a baseline definition 
for the field of program encryption.  In doing so, we hope to provide the community a practical yet 
theoretical basis for protecting programs while giving greater clarity to researchers for analyzing 
existing obfuscation techniques. 

5.3.1 Measuring Cryptographic Security 

Two approaches exist for measuring cryptographic security strength [188]: information-
theoretic and computational-complexity.  We base information-theoretic security on whether 
breaks are possible (unconditionally) and base computational measures on whether breaks are 
feasible. Concerning data ciphers, cryptographers deem an encryption scheme insecure in the 
information-theoretic sense if the ciphertext contains any information about the plaintext. In the 
computational-complexity model, cryptographers only care whether an adversary can efficiently 
extract information about the plaintext contained in the ciphertext. With information-theoretic 
secrecy, we use an ideal security model to show that any candidate security solution is nearly as 
good as the ideal one. This implicit approach is quite different from the explicit complexity method 
that must define an adversary task and then show that the task is computationally difficult.   

5.3.2 Heuristic Views of Obfuscation 

Heuristic techniques and some computational approaches represent a form of “fuzzy” security 
(neither well defined nor precise) because they rely on capturing all possible adversarial actions. 
These techniques also rely on less formal security properties that gauge an adversary’s mental or 
cognitive state concerning software (i.e., whether software is “hard to understand”). Table 11 
summarizes several metrics that Collberg and his colleagues [167, 169, 170, 183, 185] use to 
define and analyze complexity.  Defining adversarial actions requires ad-hoc definition and 
computational/heuristic approaches suffer typically from a use/break/tweak/use cycle as a result.  
These foundational differences in defining security apply directly to program obfuscation security.  

Table 11: Heuristic Obfuscation Metrics 

 
Heuristic approaches for obfuscation include techniques based on the hardness of 

interprocedural analysis [183], key-based generation of pseudorandom encrypted cope 
(decrypted just prior to execution) [164], and applying cryptographic primitives for constant hiding 
[175].  Drape [184] characterizes obfuscation as a refinement/proof process on data structures 
(versus algorithms).  In almost all heuristic cases, the adversary has an ability to recover the 
original source code only related to the relative complexity of the obfuscated code version.  As 
Table 11 illustrates, we can derive software complexity measures based on numbers of 
predicates [189], conditional structure nesting [190], and data structure complexity [191] and 
utilize them for obfuscation measurements. Many obfuscation techniques leverage known hard 
problems such as inter-procedural and control flow analysis [162, 163, 179] to provide complexity 

Metric Name Definition 
Cyclomatic 
Complexity 

Function complexity increases as number of predicates increase 

Nesting 
Complexity 

Function complexity increases as conditional structure nesting levels 
increase 

Data Structure 
Complexity 

Function complexity increases as static data structure complexity increases 

Potency Measures the complexity of the obfuscated program versus that of the 
original program 

Resilience Measures the ability of an obfuscation to withstand a deobfuscation attack 
Overhead Measures the time or space increase of an obfuscation 
Stealth Measures the recognizable difference between obfuscated code and normal 

code within a program 
Quality Measures the combined qualities of potency, overhead, and resilience 
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increase. Other researchers use hardware supported program security [161, 192] and protecting 
embedded keys [146, 147]. 

Most obfuscators prevent an adversary from effective decompilation and re-assembly; 
practical obfuscation implementations invariably appeal to confusion or complexity as a measure 
of security.  Specific obfuscation techniques vary greatly and we summarize the common ones in 
Table 12. Commercial obfuscators [193] use only a few of these techniques and we list several 
current products with their respective protection techniques in Table 13.  Despite the lack of 
provable security properties, commercial vendors relate the security of their products to the 
inability of an adversary to reverse engineer, decompile, or effectively recover the original source 
code of an original program. 

Table 12: Heuristic Obfuscation Techniques 

 

5.3.3 Theoretical Views of Obfuscation 

For some time, obfuscation researchers have found results based on both computational and 
information-theoretic models.  The security characterization of obfuscation has been described as 
NP-easy [174], derivable in limited contexts [163 , 175, 176], and proven to be NP-hard [182, 183, 
186] / PSPACE-hard [179] based on specific protection mechanism.  Yu and his colleagues have 
recently found several positive results for completely hiding circuit topology in the information 
theoretic sense [180, 181].  In Section 5.4, we introduce a secure black box program protection 
mechanism similar to Ostrovsky and Skeith’s recent work [171] based on public-key obfuscation 
that produces encrypted, recoverable program output.   

One definition of obfuscation is the ability to rewrite a program efficiently so that an adversary 
who possesses the obfuscation gains no advantage beyond having observable program 

Technique Methodology 
Opaque Predicates Using predicates with known values at obfuscation time: always true, 

sometimes true, always false 
Variable Renaming Renaming variables and data structures to cognitively meaningless names 
Control Flow Mangling Reordering normal program control and execution flow to prevent 

decompilation and disassembly 
Memory Mangling Adding or reversing the order of addressing/dereferencing operations 
String Encryption Encrypting sensitive data strings using a data cipher and decrypting them 

prior to use 
Multiple Functions Introducing additional functions into code to obscure the original (intended) 

function 
Code Encryption Encrypting parts of the code using a data cipher and decrypting them prior 

to execution 
Loop Unrolling Confusing the normal logic of a loop by altering indexes or executing some 

number of loop runs 
Array Merging / 
Splitting 

Splitting an array into two arrays or merging two arrays into one large one 
in order to confuse the index logic  

Method Cloning Creating different versions of the same method 
Code Interleaving Merging two pieces of code in parallel and using specific means to 

distinguish the original methods. Interleaving unrelated code segments 
increases deobfuscation complexity 

Code Concatenation Merging two pieces of code serially by taking the output of one and using it 
as the input of the other:  f(x), g(y) → g(f(x)) 

Code Outlining Taking a statement sequence and creating a separate function 
Code Inlining Replacing a function call with its actual code 
Random Statements Inserting execution neutral statements with proper characteristics in 

random and pre-selected places 
Randomized Ciphers Altering well-known data ciphers in random ways to produce embedded 

key-based encryptions unique to a particular application 
Code Morphing Creating self-modifying code that changes the runtime and static code 

structure of the obfuscated program on execution 
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input/output behavior. This intuition has received substantial research and applied attention, yet a 
gap currently exists between practical and theoretical obfuscation security. The current de facto 
standard theoretical obfuscation model is the Virtual Black Box (VBB) paradigm [172].  Barak et 
al. prove that there is an unobfuscatable family of functions under VBB, and thus that efficient, 
general obfuscators do not exist.  Wee [178] proves that we can obfuscate particular classes of 
point functions, whose result is true on one and only one input and false otherwise, under VBB 
given certain complexity assumptions.  Lynn et al. [176] provide variations for protecting point 
functions based on random oracles while Canetti [177] demonstrates cases where hash functions 
replace oracles. Goldwasser and Kalai [173] show that you cannot efficiently obfuscate functions 
families with respect to a priori information given to adversaries—giving unconditional 
impossibility results under VBB unrelated to one-way functions. 

Table 13: Examples of Commercial Obfuscators 

 
We review briefly the first proof given by Barak et al. in [172] that no 2-Turing Machine (2-TM) 

or 2-Circuit obfuscator exists, as we reference the proof in our later constructions.  Informally, we 
define an obfuscator O as an efficient, probabilistic algorithm that takes a program (or circuit) P 
and produces a new program or circuit P’ = O(P). Candidate obfuscators must exhibit the 
following properties in relation to P and P’: 

 
(1) functionality, ∀x, P(x) = P’(x), where P ’= O(P),  
(2) polynomial slowdown, which says O(P) is at most polynomially slower than P (for circuits 
the requirement is that the size of O(P) is at most polynomially greater than P), and  
(3) virtual black box (VBB) property.   
 
We define the virtual black box property uniquely for the class of programs (TM) or circuits we 

wish to analyze.  Definition 1 and Definition 2 describe the requirements for 2-TM and 2-circuit 
constructions. The generalized VBB property mathematically states that you should not be able to 
learn more from the obfuscated version of a program (O(M)) than from a simulator (S<M>) for the 
original program with oracle access.  Equation 1 gives the formulation as follows: 

Equation 1. |)(||]1)1(Pr[]1))((Pr[| || MnegSMA MM ≤=−=Ο ><
 

 

Product Company Obfuscation Techniques 
Dotfuscator  (.NET) 
DashO  (JAVA) 

PreEmptive 
Solutions 

Uses class/field/method renaming, string encryption, and 
control-flow confusion 
Available: http://www.preemptive.com 

SourceGuard  (JAVA) 4thPass Uses class/field/method renaming, removes debug meta-
data, and introduces control-flow confusion 
Available: http://www.4thpass.com 

RetroGuard (JAVA) RetroLogic 
Systems 

Uses class file symbol renaming 
Available: http://www.retrologic.com 

yGuard (JAVA) yWorks Uses class/field/method renaming 
Available: http://www.yworks.com 

Salamander  (.NET) RemoteSoft Uses variable renaming and method overloading, removes 
debug meta-data 
Available: http://www.remotesoft.com 

JCloak  (JAVA) 
 

Force5 
Software 

Uses class file symbol renaming 
Available: http://www.force5.com  

Smokescreen  (JAVA) Lee 
Software 

Uses variable renaming, control-flow obfuscations (shuffles 
stack operations), and fake exceptions 
Available: http://www.leesw.com/smokescreen 

Klassmaster  (JAVA) Zelix Uses variable renaming, string encryption, and control flow 
obfuscation (breaks up loops using gotos) 
Available: http://www.zelix.com/klassmaster 
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Definition 1.  (2-TM Obfuscator) A probabilistic algorithm O is a 2-TM obfuscator if the 
following three conditions hold:    

1. (functionality) For every TM M, the string O(M) describes a TM that computes the same 
function as M. 
2. (polynomial slowdown) The description length and running time of O(M) are at most 
polynomially larger than that of M. That is, there is a polynomial p such that for every TM 
M, |O(M)| ≤ p(|M|),  if M halts in t steps on some input x, then O(M) halts within p(t) steps 
on x. 
3. (VBB property)  For any PPT A, there is a PPT S and a negligible function α such that 
for all TMs M,N: 

|})||,(min{||]1)1(Pr[]1))(),((Pr[| ||||, NMSNOMA NMNM α≤=−=Ο +><><
 

We say that O is efficient if it runs in polynomial time. 

Definition 2.  (2-Circuit Obfuscator) A probabilistic algorithm O is a 2-circuit 
obfuscator if the following three conditions hold: 

1. (functionality) For every circuit C, the string O(C) describes a circuit that computes the 
same function as C. 
2. (polynomial slowdown) There is a polynomial p such that for every circuit C, |O(C)| ≤ 
p(|C|). 
3. (VBB property) For any PPT A, there is a PPT S and a negligible function α such that for 
all TMs M,N: 

|})||,(min{||]1)1(Pr[]1))(),((Pr[| ||||, DCSDOCA DCDC α≤=−=Ο +
 

 
We say that O is efficient if it runs in polynomial time. 

Proposition 1. Neither 2-TM nor 2-Circuit Obfuscators exist. 

In [172], the proof for Proposition 1 that 2-TM/2-Circuit obfuscators do not exist illustrates the 
nature of the contrived functions used in all their proofs. Specifically, they contrive two functions: 
C is a point-function that takes in a string of size k and returns a string of size k and D is a 
TM/circuit decider that takes in the description of a TM/circuit and outputs a Boolean answer 
(0,1). Both C and D depend on parameters α, β ∈ {0,1}k where k ∈ N in the following manner: 
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In essence, Dα,β is a decider for some circuit Cα’,β’.  If (α = α’) and (β = β’) for Cα’,β’, then Dα,β 
returns 1.  Otherwise, Dα,β always returns 0.  Zk is a TM machine that always returns a string of k 
zeros, 0k.  In order to prove the claim that 2-TM/2-Circuit obfuscators do not exist, we can show 
the VBB property violation in the following manner.  First, we define an adversary PPT A that 
receives the description or source code of two circuits as input.  The adversary simply runs the 
second circuit on the first circuit: A(C,D) = D(C).  If the adversary were given A(Cα,β,Dα,β), Dα,β 
always returns a 1 when given Cα,β as input.  Thus, the probability that an adversary, when given 
any equivalent version of Cα,β and Dα,β (which of course includes obfuscated versions of Cα,β and 
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Dα,β), D(C) always returns 1.  Equation 2 states this relationship.  Equation 3 shows that when we 
give the adversary a description for an all zero function Zk, then Dα,β(Zk) always returns 0.  Thus 
the probability that Dα,β(Zk)  returns a 1 is always 0. 

 

Equation 2. 1]1))(),((Pr[ ,, ==βαβα DOCOA   
 

Equation 3. 0]1))(),((Pr[ , ==βαDOZOA k  
 

The contradiction for Definition 1 and Definition 2 arises when we consider computing the 
(0,1)-predicate concerning programs C ,D, and Z.  If we execute any version of the source code 
for C, D, and Z, we can compute predicates (in Equation 2 and Equation 3) absolutely. However, 
when given PPT simulators of C, D, and Z, we cannot compute the same predicates with better 
odds than guessing.  A poly(k)-time algorithm S which has oracle access to Cα,β and Dα,β 
(represented by SCα,β,Dα,β) cannot be distinguished from another algorithm S which has oracle 
access to Zk and Dα,β (represented by SZk,Dα,β).  We express this in Equation 4 and show that 
having oracle access is less powerful than having (obfuscated) source code access.  Therefore, 
under VBB, no amount of obfuscation / confusion ever overcomes this inherent limitation for 
defining semantic security. 

Equation 4. 
)(,, 2|]1)1(Pr[]1)1(Pr[| ,,, kkDZkDC kSS Ω−≤=−= βαβαβα

 
 

The strength of the impossibility proofs depend on large k and the contrived examples assume 
we must provide the decider D a TM (or circuit) description.   As we point out by the constructions 
in Section 5.7, given a small k with associated polynomial bound, a simulator with oracle access 
can construct a circuit based on the enumeration of all truth table inputs in polynomial time, even 
though the algorithm it uses is exponential.  Using our methodology, we demonstrate the 
possibility of perfect semantic encryption for a relevant class of programs.   

5.3.4 Why We Need a Different Security Model 

The VBB model of measuring obfuscation security essentially levies an information theoretic 
requirement: an adversary should learn no more when given the obfuscated version (i.e., 
executable ciphertext) of a program than it should when given black box access to the original 
(executable plaintext) version of the program. Because of the impossibility results under VBB, it 
has been very hard (impossible) for any practical implementations of obfuscation to demonstrate 
measurable security properties.   

Barak et al. claim that the virtual black box paradigm is “inherently flawed”. Since the VBB 
model is unsuitable for reasoning about program obfuscation, we require a new model if we hope 
to effectively hide program properties for security.  Researchers suggest that these foundations 
leave us two directions to pursue:  

 
(1) Are there weaker or alternative models for obfuscation that provide meaningful results?  
(2) Can we construct obfuscators for restricted but non-trivial/interesting classes of programs? 
 
In other words, can we prove practical obfuscation methods secure against some threats and 

attacks, but not necessarily all? We believe an alternative model for describing obfuscation 
security strength based on the complementary notions of random programs and black box 
semantic transformation give an affirmative answer to these questions.  We provide a basis for 
understanding intent-protected programs using this paradigm in Section 5.5 and consider 
obfuscators that make random selections from a set of black box protected programs in Section 
5.6.  As a result, we relax both the hiding property and the program classes considered for 
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obfuscation.  We purposefully produce obfuscated programs that are not semantically equivalent 
to the original version so that M(x) ≠ O(M(x)) and we show that a general obfuscator exists in our 
model that is not subject to Barak’s impossibility proof.  

5.3.5 Program Understanding 

We propose to protect programs from tampering by hiding their intent—essentially preventing 
intruders from understanding a program. The direct implication is that if malicious parties do not 
know what the program is trying to do, they cannot perpetrate attacks that achieve a predictable 
manifestation. Thus, their interference is limited to blind disruption, or at least to a subset of well-
known, non-application specific attacks (e.g. buffer overflow attacks that have no semantic 
application relationship). 

We consider four distinct, but related program-understanding paradigms. In the first, we 
consider the generic, intuitive notion of “understanding” that an adversary’s ability to anticipate a 
program’s operational manifestation(s) reflects their program understanding. Secondly, an 
adversary may gain intent indications by comparing the obfuscated code, or segments, to known 
code libraries. Third, we recognize VBB’s theoretical and practical importance. Finally, 
information content in program code is our primary focus. 

While we motivate our work by using program prediction for malicious purposes and 
obfuscation for security, the notion of program clarity for maintenance applies in a direct way.  A 
maintenance programmer must be able to understand program intent in order to make purposeful 
changes, e.g. to fix bugs, improve performance, and port code to a different environment. In the 
same sense, a malicious host must understand what a program is doing (in some sense) to 
effectively copy, modify, run, or forward the program to accomplish a semantic-oriented purpose. 

Side effects are an example of an unintended outcome of a program, segment, or construct, 
or at least an outcome that is not clearly intended. Some programmers consider their code 
elegant because of their stylistic use of obscure approaches to accomplish intended function in 
ways that are not obvious. When programs with obscure mechanisms are changed, the 
maintenance programmer is unlikely to recognize all the impacts of the change. Our review of 
heuristic obfuscation techniques and commercial obfuscators bears witness that understanding 
programs precisely is a naturally hard problem.   

For example, attackers may not require precision; i.e. they may only need a high-level 
understanding of program function or be able to recognize a subset of the functionality in order to 
accomplish their intended malice. Once again, there is little in the literature that quantifies or 
qualifies the level of understanding necessary to maintain, or attack, a program. We offer our 
formalization in this regard and begin first with the intuition behind it. 

The foundation for our approach is that an adversary only understands a program if they are 
able to predict its operation in one of two ways. First, an adversary that understands a program 
can predict a program's output with any given input. For example, for the program that computes 
the simple function given in Equation 5, an adversary need not run the program to know that its 
output is 7 on input 2. As a more complex example, consider a program P that implements a 
small degree polynomial. Even if an adversary is unable to expose P itself, but can plot a graph 
based on gathered input-output pairs, they may be able to guess output for a given, arbitrary 
input without running P. 

 
Equation 5. y = x + 5 
 
The second notion regarding program understanding is that an adversary that understands a 

program is able to reason about the input required to produce a desired semantic result. For the 
program P that implements Equation 5, an adversary that understands P and desires that P 
produce an output of, say 19, knows to feed 14 into the program. This "one-way" property 
captures the important intent quality we focus on. A common threat to mobile code is that the 
adversary desires the query to produce a favorable result from their perspective. Accordingly, 
their goal is to modify the input or code to produce a result with these properties. If we protect the 
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mobile code's intent, the adversary can only guess with low probability at the input necessary to 
produce the desired result. 

We mention intuition and graphing as ways that an adversary may come to understand a 
program's intent, but there are many others. For example, an adversary may be able to guess the 
output of P by determining that P is equivalent to another program8, Pi, that the adversary 
recognizes (i.e. understands its intent). Essentially, the adversary could run Pi as their "prediction 
process" as long as they are confident that for any arbitrary input x, P(x) = Pi(x).  

We formalize program understanding in Definition 3 as an entity's ability to derive the input 
corresponding to an arbitrary output based on their program understanding.  While we speak in 
terms of functional response, we recognize the broader notion of any persistent state change or 
information transfer to another process or device as output9. 

Definition 3.   (Program Understanding) Alice understands terminating program P: 
X→Y, iff given arbitrary output y ∈ Y, Alice can guess x ∈ X such that y = P(x) in 
polynomial time on the length of P, with probability greater than ε, where ε is a small 
constant. 

We consider Program Understandability (PU) to be Boolean. That is, given an arbitrary 
program P, there may exist an algorithm APU(P) that returns either true or false if it understands P. 
It is possible that PU is Boolean, yet that no efficient algorithm exists that distinguishes between 
programs that are understandable and those that are not.  It is also possible that the Boolean 
viewpoint is too narrow. For example, there may be programs that have no notion of 
understandability, i.e. programs that have no overriding intention10 or pattern (possibly created 
with that in mind to confound potential intruders11). 

If PU is Boolean, we can use this to reason about what it means to understand a program. 
Consider the set of all programs, P. We can partition P into two subsets, the set of all 
understandable programs (R) and the set of all non-understandable programs (U), where P = R ∪ 
U.  We observe that many functions are fundamentally understandable, and therefore we cannot 
securely obfuscate them.  For example, for any program P that implements the function y = x2, 
the input/output patterns of P reveal its function clearly. No matter how random the code 
implementing this function may be, an adversary need not look at the code to know what the 
program is doing.  It need only conduct black box (input/output) analysis. 

Since P is infinite, one or both of the sets R and U are infinite. It is also reasonable to ask if 
either R or U is empty. In the former, we may argue that ALL programs have unintended impacts 
at some level of abstraction, or even that our ability to articulate intentions precludes any program 
from comprehensively meeting them. In the latter, we may point to the Barak result as sufficient to 
ensure that U is empty. We know that simple polynomials are not good candidates for intent 
protection, but we posit that strong encryption functions are excellent candidates. Specifically, we 
know that cryptographically strong data ciphers are not susceptible to black box analysis. 
However, all well-known encryption algorithms have program structures that betray their intent to 
a sophisticated adversary with white box analysis capabilities.  

We have a strong intuition regarding what it means to understand a program from Definition 3. 
However, we have not formalized what it means for a program to be understandable. Following 
the security paradigm of data encryption, we define secure obfuscation only if an obfuscated 
program leaks no intention-relative information, i.e. it is indistinguishable from a random program. 
We argue that this notion is sufficiently strong to preclude intentioned attacks, though we 
recognize that weaker formalizations may prevent some (or even most) intentioned attacks. Thus, 
a conservative protection goal is to generate “executably-encrypted” code that is indistinguishable 
from random programs, which we define in Section 5.6. The manifestation of this outlook is that if 

                                                           
8 We consider program equivalence issues seperately 
9 Obviously, programs that do not have output in this sense are not necessarily suitable to our obfuscation approach. 
10 Random programs or programs that have no impact on the environment. 
11 We presently ignore the self contradiction of having programs whose purpose is to have no purpose. 
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we effectively obfuscate (intent protect) a program, an adversary cannot predict or guess the 
program's behavior (as in Definition 3). 

5.3.6 Program Context 

A major challenge to protecting a program's intent is the role that contextual information plays. 
In most mobile applications, it is impossible to protect all contextual information from the 
executing host. Items such as program size, execution time, controlled input performance and 
resource use variations, response to injected errors, and many other operational program aspects 
are under the executor's control. It is a prerequisite for protecting a program's intent that the 
adversary has limited contextual information available. Thus, inherently, we cannot obfuscate 
many programs using our approach.  

Consider an agent program that comes from a vendor known to provide travel plans, and the 
computer we access contains only flight information and pricing for a known airline with very 
limited availability dates (e.g. last minute flights).  In this case, even a casual observer may infer 
that the program is gathering flight information to prepare imminent travel plans for the 
dispatcher's client.  If an adversary knows too much context, intent protection is unlikely. 
Therefore, we assume context-independent protection suffices for our methodology. 

5.3.7 Protecting Program Intent using Program Encryption 

The VBB flaws result from the breadth the approach seeks, essentially to be a comprehensive 
model for all program obfuscation. Our goal is comparatively modest. We reduce the goal from 
general obfuscation to protecting program intent, under our narrower definition, against specific 
attacks.  As we have illustrated, we limit our model by recognizing that there are programs that 
we cannot obfuscate (securely). There are also programs that we can obfuscate but the approach 
we describe in this chapter may not be appropriate for them.  

For our purposes, we consider intent protection a game between an originator and an 
adversary or intruder (we use these terms interchangeably). We consider that intruders desire to 
understand or recognize programs (discern their intent) for three purposes: 

 
(1) To manipulate the code in order to attain a known output effect 
(2) To manipulate input to attain a known output effect 
(3) To understand the input/output correlation for use with contextual information 
 
We illustrate the first two of these by considering an Internet purchase application where a 

mobile agent gathers bids for a product or service. If the adversary residing on a visited host 
recognizes the program, they may manipulate the data they provide to the agent or they may 
locally modify the agent code in order to elevate their opportunity to win the bid falsely. Intent 
protection (hiding) does not prevent an intruder from changing input or code, but reduces this 
type of tampering to blind disruption by preventing the intruder from being able to predict the 
effect of an input or code change.  

In the third objective, we envision adversarial environments where parties gather information 
or intelligence about one another.  In an Internet purchase scenario, adversaries may operate 
with modified purposes.  Here we anticipate that the adversary may gain important information, 
not so much about the specific transaction that is underway, but about the underlying business 
practice or strategy that the agent executes. If the adversary is able to understand what the 
program is doing, it may be possible to infer fundamental business information from the 
transaction. Conversely, if the program does not divulge its intent, an intruder is unable to gather 
any information about the dispatcher's activity. 

Program intent may become evident through repeated execution and observation of the input-
output pairs, so programs that hide their intent must protect against black box analysis.  Malicious 
parties that acquire code or can corrupt hardware may be able to examine executing code with 
automated tools such as debuggers. As Figure 53 depicts, there are three primary approaches to 
context-independent program intent detection:  
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(1) Input-output (black box) analysis 
(2) Static analysis 
(3) Run-time analysis 
 
We recognize that malicious parties are likely to attack intention protection using hybrid 

methods that combine static analysis, black box testing, and dynamic analysis.  We collectively 
term latter activities as white box analysis.  Program Recognizability (PR) is a classic concept in 
computer science and relates to Program Understandability (PU). Classic PR refers to the 
context-free notion of being able to determine whether a string is a member of a particular 
language. This represents a form of static analysis. Compiler optimization techniques refine the 
class of languages that automata can recognize, allowing program segment identification through 
signature analysis. Combined with reverse engineering techniques, compiler optimization 
techniques complicate hiding program intentions. 

 
Figure 53: Adversarial Program Intent Detection 

Static analysis involves actions that an adversary takes without executing that code. Static 
approaches include inspection, parsing, optimization, pattern matching, etc. These actions can 
give the adversary hints about the nature of the data, control structures, resources used by the 
program, etc. Dynamic analysis occurs as the program is executing. Run-time tools such as 
debuggers reveal control flow, data manipulations and evolution, and resource access and 
consumption. If either static or dynamic analysis or the two applied collaboratively can reveal a 
program's intent, the program is white box understandable. 

Traditional obfuscation applies data and control flow confusion techniques to complicate these 
attacks, with little or no measurable protection. Only imagination and resources limit the number 
of methods that a motivated and sophisticated adversary can employ to reveal a program's 
protected intent. Nonetheless, the literature point to black box and white box analysis as the 
classical approaches for defeating program obfuscation. Without loss of generality, we address 
these attacks by assuming an adversary maliciously examines programs off line, where they 
exploit software on computers with large, but polynomially bounded resources.  In practice, the 
adversary may only be able to employ on line attacks (especially for time-dependent mobile 
agents). In either case, while the adversary can glean much of the information gathered in off line 
attacks just as easily from on line attacks, off line attacks reflect the stronger adversarial model. 

Consider an industrial application on a stolen laptop. An adversary may desire to know how 
the laptop owner generates business or financial estimates, how their decision process works, or 
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other business or organizational information. For a black box protected program, the enemy 
cannot determine the device’s function from an arbitrary number of input-output pairs. However, if 
the enemy is sophisticated, they examine the executable code structure or analyze the 
application’s control flow and data manipulations as they occur. Programs that are white box 
protected prevent the enemy from learning the program's intent by watching its execution.  

We formalize the intuition and ideas for understandability, obfuscation, and intent protection in 
the following definitions.  Because we do not attempt to formalize the definition for white box 
analysis approaches (static and dynamic adversary analysis), we give only an introductory, 
informal white box definition.  In Section 5.5.2, we give a more formal definition for white box 
protection based on the existence of a random program oracle.  

Definition 4. (Black Box Understandable/Obfuscated) Program P → {X,Y} is black 
box understandable if and only if, given an arbitrarily large set of pairs IO = (xi, yi) such that 
yi = P(xi) and yj an arbitrary element of Y (not an element of IO), an adversary can guess 
[compute] xj such that yj = P(xj) in polynomial time on the length of P with probability > ε. 
Otherwise, we say P is black box obfuscated. 

Definition 5. (White Box Understandable/Obfuscated, Informal) Program P is white 
box understandable if it is understandable (under Definition 3) through static or dynamic 
analysis of P or a collaboration of the two. Otherwise, we say P is white box obfuscated. 

Definition 6. (Intent Protected) Program P is intent protected if and only if it is black 
box protected, white box protected, and protected from any composition of the two. If P is 
both black box obfuscated and white box obfuscated, then P is also intent protected.  We 
refer to an intent-protected program P as an executably encrypted program or as a 
program that implements program encryption. 

5.4 Creating Perfect Black Box Obfuscation 

We naturally encapsulate program functionality by pairs that map pre-image to image. Thus, a 
natural way to try to identify a program's intent is to analyze known input/output parings. 
Traditionally, obfuscation has considered producing different versions of the same program, 
where one version is (or likely is) understandable, but the obfuscated version of the same 
program is not understandable (more complex to understand).  Barak et al. show this form of 
obfuscation is impossible in the general, efficient case.  We now build an alternative model for 
defining obfuscation under the narrow definition of intent protection using the existence of one-
way functions and strong cryptographic data ciphers. 

5.4.1 One-Way Functions and Black Box Obfuscation 

Since protection of programs that retain their semantic equivalence is impossible, we appeal 
to a class of functions that have known (strong) cryptographic properties and apply their use to 
the obfuscation problem.  We begin first by stating function definitions used in traditional 
cryptographic arguments [188, 194]. 

Definition 7. (One-Way Functions and Permutations) A function f with domain X and 
range Y, f: X→Y, x ∈X, y ∈Y, is called a one-way function if, ∀x ∈ X, f(x) is easy to 
compute and if, ∀y ∈ Y, it is computationally infeasible given any y to find x such that y = 
f(x).  A one-way permutation is a bijection from the set of all binary strings with length n to 
itself, whose image is easy to compute, but whose inverse pre-image is difficult to 
compute: f: {0,1}n → {0,1}n. 

There are some cases where for some values y ∈Y, it is easy to find an x ∈X such that y = 
F(x).  One may compute several values for y = F(x) for a small number of x and find an 
appropriate inverse based on table look up.  We specify, normally, that the inversion process is 
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hard for any x chosen randomly from X.  Cryptographers have given the subject of one-way 
functions rigorous treatment. Goldreich [188] lists several candidate one-way functions including 
integer factorization, Rabin quadratic residue functions, discrete logarithms in a finite field (RSA), 
and the DES function families.  “Hard to invert” normally means that an upper bound of success 
exists for some efficient inverting algorithm. Therefore, proving one-way functions exist implies 
that complexity classes P ≠ NP.  We assume one-way functions exist (as most cryptographers 
do) and appeal to their strength in describing cryptographically strong obfuscation (program 
encryption).   

For strong cryptographic data ciphers, encryption is an algorithm that computes (efficiently) 
the functional output (ciphertext) of any given input (plaintext), but the inverse of any functional 
output (the ciphertext) is hard (infeasible) to compute.  Of course, the purpose of data ciphers is 
that recovery of the plaintext from the ciphertext is feasible given some piece of special 
knowledge (normally termed the key).  We capture this notion by defining a trapdoor one-way 
function in Definition 8.  In Definition 9, we express the definition for cryptographically strong data 
ciphers that are not breakable (systematically), apart from brute-force key discovery.  

Definition 8. (Trapdoor One-Way Functions) A function f: X→Y is trapdoor one-way if 
f is a one-way function and, given some additional information termed the “trapdoor” and 
given any y ∈Y, it is feasible to compute x such that y = f(x). 

Definition 9.  (Strong Data Encryption)  An encryption scheme is breakable, if an 
adversary (without prior knowledge of the encryption or decryption keys) can systematically 
recover plaintext from a ciphertext efficiently (within a specified time).  Encryption schemes 
that are not breakable (apart from brute-force key search) exhibit strong data encryption 
security and are representations of trapdoor one-way permutations. 

Based on these definitions, we now pose the possibility of black box obfuscators that support 
intent protection.  Barak et al. show that general, efficient obfuscators do not exist if one-way 
functions exist.  Unlike their impossibility result based on a contrived function family, we 
demonstrate here that unless one-way functions exist, secure obfuscation that guarantees intent 
protection is impossible.  We focus first on black box obfuscation. 

Proposition 2. If (efficient) trapdoor one-way functions exist, then general (efficient) black 
box obfuscators exist (under Definition 4). 

Cryptographically strong program obfuscation results from the nature of strong data encryption 
algorithms. We prove Proposition 2 with two lemmas and one theorem. Lemma 1 states that 
given an arbitrary ciphertext output y, an adversary cannot efficiently compute the corresponding 
input to a semantically strong encryption program E. This represents the property of a strong data 
encryption algorithm under Definition 8 and Definition 9.  We define such properties to be the 
fundamental characteristics of any strong program encryption algorithm. In Lemma 2, we use 
black box obfuscated programs as the starting point to consider situations where adversaries are 
able to extract executing code for out-of-band, white-box analysis. 

Lemma 1.   Any program that implements a cryptographically strong data encryption 
algorithm is black box obfuscated (under Definition 4, Definition 9).  

Proof: Arbitrarily select the cryptographically strong data encryption algorithm E, a 
plaintext message M, and choose encryption key K randomly from the uniform distribution 
of possible keys in the keyspace.  Assume E is black box understandable. Then there 
exists y = E(M, K) where an adversary can guess M given Y with negligible probability. 
This violates the definition of cryptographically strong data encryption. Similar to Lemma 1, 
If an adversary can efficiently guess the cipher text for one plaintext message it can easily 
distinguish that cipher text from the cipher text of another message. This contradicts the 
encryption algorithm's strong semantic security. 
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Lemma 2.  Programs that are not one-way functions cannot be intent-protected 
obfuscated (under Definition 6) by any obfuscator O where O(P) = P’ and,∀x , P’(x) = P(x). 

Proof:  Follows directly from Definition 4 and Definition 7. Given the family of programs P, 
and for all programs P∈ P, assume P: X→Y  is not one-way. Assume obfuscator O is a 
black box obfuscator for the class of programs P such that O(P) = P’ and, ∀x, P’(x) = P(x).  
Therefore, ∀x ∈ X, P(x) is easy to compute and ∀y ∈ Y, it is computationally feasible 
given any y to find x such that y = f(x). Given any program P∈ P, an adversary can guess 
[compute] xj such that yj = P(xj) in polynomial time on the length of P with probability > ε.  
Therefore, P’ = O(P) is black box understandable for all P in P. This contradicts the 
statement that O is a black box obfuscator for the class of programs P. 
 
We stipulate by these two lemmas that all obfuscators O, where P’ = O(P), must semantically 

change the I/O mappings of any candidate program P into strong, one-way functional 
relationships in order to achieve black box obfuscation. Therefore, we alleviate all black box 
analysis threats as a foundational (first) program encryption step.  

An interesting and important side effect is that this property simply and absolutely insulates 
our model against the impossibility result in [172]. Their elegant impossibility proofs rely on the 
existence of a Turing machine decider (D) that, given a program or circuit description, can 
appropriately detect a particular function type.  In our model, this proof technique cannot apply, 
since all obfuscations we create are one-way functions. There are no point functions (the type of 
function that Barak et al. used in their proof), nor are there any other functional program 
categories. Thus, the only relevant decider is one that detects one-way functions; such a decider 
will return “true” on all obfuscations under our model. 

5.4.2 Implementing Perfect Black Box Obfuscation 

We now consider obfuscators that deviate from the semantic equivalence rule under VBB and 
implement Lemma 2. Sander and Tschudin [159], Ostravsky and Skeith [171], and Adida and 
Wikström [195] all adopt similar non-semantic equivalence approaches in their respective 
program protection models. The fundamental property of our model, shown in Figure 54, is that 
the output of the obfuscated program (p') is not equivalent to the output of the original program 
(p).  In other words, if t(p,k) produces p’, then ∀x, p’(x) ≠ p(x).  

We define the semantic encryption transformation (SETS) process t that generates a program 
version (p’) that is not black box understandable (under Definition 4). The program p' must have 
recoverable (invertible) functionality with respect to the output of p, y = p(x). We accomplish this 
by creating p' as the concatenation of the original program p with a strong encryption algorithm e 
so that for all x ∈ X, p'(x) = e(p(x)).  Equation 6 describes the output of obfuscation process t(p,k): 
given a program p, we generate a new program (p’) and a recovery program (r) with the 
properties that p(x) = r(p'(x)) and where r is simple to compute and output of p’(x)=y’ is simple to 
invert given knowledge of special information (k-1).  

 

Equation 6. 
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The obfuscation process uses a key that provides security control and allows correlation with 

data encryption paradigms. To be cryptographically strong, the obfuscation method must be 
public and its strength dependent only on knowledge of the key.  We express the protection 
properties of such a transformation process formally in Theorem 1 and illustrate the black box 
obfuscated program in Figure 55. 
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 Input x 

Program p Program p′ 

Output y Output y′ 

Transformation
t(p, k) = r, p′ 

Recovery 
r(y′, k-1) = y

 
Figure 54: Black box Obfuscation with Recovery Model 

Theorem 1. Let t(p, e, k) = (p', r) be a process that creates program p' by composing the 
output of program p to the input of a black box obfuscated data encryption program e 
(defined under Lemma 1). Then p' is black box obfuscated.  

Proof: Follows directly from Definition 4 and Lemma 1. If e is black box obfuscated, then p' 
is also black box obfuscated since the output of p' is [also] the output of e: y’ = p’(x) = 
e(p(x),k).   
 

 
Figure 55: Black box Obfuscated Program 

 

We emphasize that Theorem 1 is the foundation for any further (white-box) obfuscation 
approaches. If an adversary can interpret or understand a program through black box analysis, 
the program is not obfuscatable.  This approach overcomes the primary weakness of the Virtual 
Black Box (VBB) paradigm and ensures us that black box protection is not only possible for 
general programs, but it is easy to accomplish. Furthermore, it gives us insight into why 
obfuscation is meaningful.  The notion of intentioned manipulation precisely captures an 
important intrusion category and limits blind disruption to sophisticated intruders. Moreover, it 
provides a foundation to expand our research into situations where adversaries are able to 
extract executing code for out of band, white box, analysis.  To define such white box attacks 
more formally, we discuss in the next section a program-intent protection model that uses random 
bit string properties as a measurement basis.  We term this the random program security model 
and illustrate its usefulness for analyzing white box protection next.  
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5.5 Defining the Random Program Security Model 

To summarize the main result of Section 5.4, black box obfuscated programs must be the 
foundation to protect against out-of-band, white-box analysis.  Most commercial and heuristic-
based obfuscators focus attention on white-box unrecognizability and complexity.  Most have no 
theoretical basis apart from appeals to provably hard (NP-complete) problems that increase 
complexity of adversary analysis.  We too seek to make programs unrecognizable in some sense, 
but introduce in this section a formal, theoretical framework to measure such confusion.  As we 
appealed to the cryptographic properties of strong data ciphers for black box obfuscation, we 
appeal now to the cryptographic properties associated with randomness and pseudo-random 
number generators.  Instead of using random data strings, however, we use random programs as 
a security baseline.  To outline our model, Section 5.5.1 briefly introduces random programs and 
shows their similarity with random data, Section 5.5.2 gives a formal definition for white box 
protection using random programs, Section 5.5.3 gives proof for the existence of random 
programs, and Section 5.5.4 describes the existence and construction of random circuits. 

5.5.1 Random Data and Random Programs/Circuits 

We believe provable program protection can only find its security characterization by 
comparison with provable data protection. When evaluating cryptographic data ciphers, we 
assume that mechanisms exist to simulate truly random bit strings.  We can compare encrypted 
data to the output of a pseudo-random number generator—that we assume to mimic a truly 
random number generator given an appropriate seed.  Program ciphers, likewise, need to have a 
baseline for comparison; we refer to this baseline as the “random program”.   

Several cryptographic constructions rely on the existence of (pseudo) random data strings that 
are indistinguishable from truly random data strings.  In measuring data randomness, we concern 
ourselves with sets of binary strings with the same length n; the set of all strings of the same 
length we term an ensemble.  A pseudo-random string is close enough to random if a polynomial 
distinguisher cannot tell it apart from a truly random string efficiently.  We give an intuitive 
definition for a pseudo-random generator in Definition 10 and relate the traditional formal 
definition for indistinguishability in Definition 11 [194]. 

Definition 10. (Pseudorandom Generator) A deterministic program that, when given a 
short random sequence of bits (termed the seed), generates a long sequence of bits which 
look like random bit sequences.         

Definition 11. (Polynomial Time Indistinguishability) Two bit string ensembles X = 
{Xn}n∈N  and Y={Yn}n∈N are indistinguishable in polynomial time if for every probabilistic 
polynomial-time algorithm D, every positive polynomial p(⋅), and all sufficiently large n:         

)(
1]1)1,Pr[D(-]1)1,Pr[D(
np

YX n
n

n
n <==  

where the probabilities are taken over the relevant distribution (X or Y) and over the 
internal coin tosses of algorithm D. 
 
According to this definition, the probability that D accepts (outputs 1 on input) a string taken 

from the first distribution (Xn) compared to the probability that D accepts a string taken from the 
second distribution (Yn) is negligibly different.  In other words, if the two probabilities are close, we 
say that D does not distinguish the two distributions.  For cryptographic algorithms, this reflects 
the foundational concept for “efficient” procedures that have the ability to distinguish the output of 
two different algorithms. The VBB proofs appeal to similar indistinguishability arguments 
concerning source code access and simulator/oracle access.  In information theoretic arguments, 
strong data ciphers produce strings that are indistinguishable from random data.  
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We consider the question of what properties accompany an encrypted program.  Unlike 
encrypted data, an executable encrypted program must be intelligible to some underlying 
interpreter or execution engine.  We assume that random programs follow the rules of an 
underlying interpretive architecture and that random (combinational) circuits follow legal 
construction rules (current inputs only derive from previous inputs). 

In Figure 56, we compare the notion of random data generated by a pseudorandom generator 
and a random circuit (program) produced by a pseudorandom obfuscator.  A strongly pseudo-
random number generator, based on some seed, will produce data sequences that are 
indistinguishable from truly random data sequences.  We envision obfuscators that, based on 
some key/seed information, produce data sequences (specifically, data sequences that are circuit 
or program descriptions) that are computationally indistinguishable from random circuit (random 
program) descriptions.  We prove shortly that pseudorandom descriptions for both programs and 
circuits exist.  

 

       
 

Figure 56: Considering Random Data and Random Circuits/Programs 

Like computational indistinguishability, unbiased selection is another way to think of 
randomness. Generally, if we select an element from a population without bias (i.e. each 
population member is equally likely for selection), that element is a randomly selected element of 
the population. The element itself is no more “random” than any other element; only the unbiased 
selection gives the element the random property. More specifically, we can only select a random 
bit if we can construct an unbiased selection process, where we select 1 and 0 with equal 
likelihood. Unfortunately, this problem is impossible in practice since we cannot create a “perfect 
coin”. The theoretic idea that strongly pseudorandom generators exist represents our best 
(scientific) attempt to produce simulators that provide nearly random bit selection.  

We can produce random selections only when we choose without bias absolutely; if those 
selections are bits, we refer to their conglomeration as a random bit stream. Perfect data 
encryption rests on generating cipher text that is indistinguishable from a random bit stream of the 
same length. The [accurate] intuition here is that cipher text that closely simulates randomness is 
unlikely to give away any hints about the corresponding plaintext.  We extend that notion to 
expect that streams with strong randomness properties also have high entropy and low 
information content.  Such random bit streams reveal only confusion under inspection and 
cryptanalysis.  We leverage this paradigm and transfer its notions from data encryption (where we 
protect information secrecy) to program encryption (where we protect program intent). 

Random programs are similar to randomized data produced by strong data encryption 
algorithms. Digitized random data, for example, has no discernible patterns and has typical bit 
representations where each bit is equally likely to be zero or one. Considering all random data bit 
strings of size n, a non-linear, random selection should produce, on average, a string with roughly 
equal 1s and 0s and no repeating patterns. Similarly, given the infinite set PA that contains all 
programs that implement some functionality A and the large, but finite set PX that contains all 
programs of length X, the intersection set PAX contains all programs that are of size X and that 
implement A. If we randomly choose q from PX, we consider q to be a random program. Figure 57  
illustrates the relationship between PX, PA, PAX, and the selection of a random program q.  

Random selection is only valuable if it provides or ensures entropy in some form. Just as 
randomness properties for strings (no patterns or lengthy uniform sections, similar number of 
zero/one, etc.) only emerge as string length increases, so program entropy only emerges as 
program size increases. Intuitively, there are many more ways to write an unrecognizable 
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program, e.g. to write in unintelligible spaghetti code, than there are to write versions that reveal 
their intent through static analysis.  
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Figure 57: Random Program Selection 

Intuitively, if a maintenance programmer statically inspects two programs that compute the 
same function (one with more source lines of code than the other), we expect the programmer will 
need to process more ”information” cognitively for the larger program version than they will need 
to for the smaller version.  Of course this makes no assumptions regarding the information 
content of any one line of source code when compared to another (obfuscated code competitions 
illustrate the cognitive complexity of compressed code).  We state this intuition as Proposition 3 
and relate program size with entropy; we provide an initial proof sketch for programs here and in 
a later section give empirical reasoning to support the exponential growth claim based on circuit 
constructions.  No universal argument for complexity and entropy exist, but Proposition 3 is 
similar to the notion of Kolmogorov-Chaitin complexity [196, 197], which provides a definition for 
algorithmic information theory. The theory states loosely that objects are “simple” if they require 
small quantities of information to describe them and “complex” if they require much.  Specifically, 
the information content of a string increases as the randomness in the string increases and 
therefore entropy increases as a measure of the randomness of a string. The Kolmogorov 
metrics, however, remain uncomputable. 

Proposition 3. Entropy of randomly selected programs increases (exponentially) on the 
program size. 

Proof Sketch: Randomness properties emerge as string length increases and therefore as 
program description length increases.  Given two program ensemble families Pn={Pn}n∈N 
and Pm={Pm}m∈N, where n < m, select programs randomly p1 and p2 where p1 ∈ Pn and p2 ∈ 
Pm.   Based on Kolmogorov-Chaitin complexity, since the [random] string p1 is smaller than 
p2, p2 has greater emergent randomness and therefore more entropy than p1.  
 
We also point to researchers like Harrison [198] that define entropy-based metrics for software 

complexity (based on empirical probability distribution of operators within a program). We do not 
contend that delivering a random program (chosen in the method we describe) guarantees 
program intent protection; only that an adversary is highly unlikely to discover the intent of a 
random program through static analysis. Our intuition, however, is that random selection also 
provides strong dynamic analysis protection, and we give deeper insight into this with the circuit 
construction methodology in Section 5.6.  

Given Proposition 3, we may characterize program encryption strength as its ability to select a 
program randomly from a set of equivalent, bounded implementations. Classically, such 
mechanisms are measured based on an adversary’s ability to distinguish an executably 
encrypted (i.e. randomly selected) program p’ of size x that implements A from a random program 
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q of size x, that does not implement A. If the adversary can distinguish p’ from q, then the 
obfuscation (program encryption) technique may leak the intent of p.  This leads us to a better 
(formal) definition for white box obfuscation. 

5.5.2 Random Program Oracles and White Box Obfuscation 

To fully protect intent under white box protection, an obfuscator must systematically confuse p' 
so that an adversary cannot learn anything about program intent by analyzing the static code 
structure or by observing program execution. The confusion must make the code and all possible 
execution paths that it produces display random program properties. For example, if a 
sophisticated adversary can distinguish between the functional program and the composite 
encryption program, they may be able to extract valuable intent information. Definition 6 extends 
and incorporates white box protection to define full intent protection as preventing all combined 
means of analysis that discover programmatic intent. 

Recall that input/output behavior is the primary means to discover programmatic intent based 
on black box understandability (already established under Definition 4 and Theorem 1).  A secure 
(white box) obfuscation produces a program p’ that is indistinguishable from a random program 
selected from the set of all programs the same size as p’.  White box security encompasses both 
cases. White-box security is the ability to shield program intent from code analysis. Thus, white 
box protected obfuscations protect against analysis intended to reveal embedded data, seams 
between functions, the number of functions, or other such program properties. We specify a more 
formal definition of white box protection in Definition 12 and illustrate the random program oracle 
interaction in Figure 58.  

 

 
Figure 58: Random Program Oracle 

 

Definition 12.   (White Box Understandable, Formal)  Let PPT algorithm E be a white 
box program obfuscator let random program oracle RPO take any program p and 
computes p’= E(p) as an executably encrypted version of p.  Let PPT algorithm adversary 
A be able to query RPO and receive any encrypted program p’x in the following manner:  
after knowing any n pairs of original / executably encrypted program pairs {(p1, p’1), (p2, 
p’2), …, (pn-1, p’n-1), (pn, p’n)},  adversary A supplies a subsequent program pn+1 and 
receives p’n+1 from RPO which is either: a random program (PR) or the encrypted version of 
the program p’n+1 = E(pn+1)  
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The program p’n+1 is white box understandable if the probability is greater than or equal to 
½ + ε (where ε is the negligible error probability), that the adversary A is able to distinguish 
whether p’n+1 is either E(pn+1) or is a random program PR.  Therefore, the program 
encryption algorithm E(p) provides white box obfuscation if and only an adversary is able to 
distinguish the encrypted program (p’n+1) from a random program (PR) with probability  less 
than or equal to ½ + ε, where ε is the negligible error probability.  
 
We define formally white box strength for executably encrypted programs based on the 

existence of a random program oracle.  We demonstrate the existence of random programs with 
a contrived architecture in Section 5.5.3 and give two algorithms for constructing random circuits 
in Section 5.5.4.  We assume the existence of a random program oracle because of the general 
existence of a random oracle that simulates creation of random data strings.  If we can simulate 
the creation of random data strings (with a pseudorandom generator), then we can simulate the 
creation of random programs. 

Figure 58 illustrates our model where the oracle performs two functions: when given a 
program, it can generate an encrypted version of that program based on a predefined algorithm 
E(p) or it can generate a random program PR from the set of all random programs with polynomial 
description size to p.  The adversary sends an original program p to the oracle and the oracle 
executably encrypts using the underlying algorithm, E.  The algorithm can be any tamperproofing, 
obfuscation, or piracy prevention mechanism. The oracle returns the corresponding encrypted 
program p′ = E(p). As we depict in via the top two arrows labeled Figure 58-1 and Figure 58-2, 
the adversary may build some polynomial history of n pairs.  After building the history, Figure 58-
3 shows that the adversary then sends program pn+1 to the oracle and the oracle then returns 
p’n+1 (Figure 58-4).  

The adversary must decide whether the program p’n+1 given by the oracle is the encrypted 
version of program p’n+1 = E(pn+1) or if it is a random program PR. The adversary attempts to make 
a prediction by returning bit b ∈ {0, 1} corresponding to the guess of either PR or p’n+1 as shown 
by Figure 58-5.  Under this definition, we measure the security strength of any obfuscation 
approach as a computational indistinguishability question based on random programs and a 
random program oracle model.   We now define the nature of the random program, PR, generated 
by the random program oracle and demonstrate their existence. 

5.5.3 Proving Random Programs Exist 

To review, the canonical notion of a random x is that of a randomly selected member of a 
target space of items, say group X.  The problem of whether or not a random x exists reduces to 
1) the ability to define the group X and 2) creating a method to select one item randomly from it 
without bias.  The mechanism must select items with an equal probability.   

Proposition 4. Random programs exist. 

We state in Proposition 4 our belief that random programs exist and give proof in the following 
text.  We establish first a well-defined set P that is the set of all legal programs and then propose 
mechanisms for randomly selecting a legal program from P. 

Legal Programs. Selecting a random program is impossible without knowing the maximum 
program length, since it is impossible to select randomly an item from an infinite set. We first 
bound the program length to n statements, words, bits, or any other meaningful metric that 
bounds program size at n units. Choosing bits as our metric, there are 2n possible programs and 
we let Pn represent the function ensemble of programs of length n bits or less.  

To select without bias, we must ensure that we can identify legal programs, with many related 
considerations towards legality. For example, a legal program is syntactically and grammatically 
correct.  The selection mechanism must guarantee that we do not select programs with illegal 
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symbols or illegally constructed words or phrases, if our programming language allows such 
constructs.  Parsers and compilers routinely facilitate this filtering process.  

A second illegality category includes programs with runtime failures, e.g. dividing by zero. 
Identifying runtime flaws is a difficult problem; if we could completely solve it, the software 
engineering field would be essentially obsolete. We can solve this problem for very simple 
architectures and go on to propose heuristics for dealing with the dilemma in real world 
applications.  Similarly, legal programs must terminate on all input. Termination may be 
dependent on the underlying interpreter or environment and can range from reaching the last 
program statement, executing a HALT instruction, reaching a final state, or reaching a maximum 
number of instructions.  While the general halting problem is well beyond our scope, we again 
propose a solution in a simple environment.   We address all of these problems more simply 
under the circuit model, discussed in the following subsection, because legal circuit descriptions 
are much easier to produce.  

Table 15 summarizes legal program characteristics (for our purposes) from which we can 
make some simple observations. For example, there are 2n possible programs that are n bits 
long. For a given architecture, we count the number of programs that are illegal in each category 
(h, i, j, k) respectively and assign m = h+i+j+k as the possible number of illegal programs.  We 
therefore know 2n - m legal programs exist whose length is less than or equal to n.   We assume 
that categories are mutually exclusive such that all grammatically incorrect programs are 
syntactically correct, all programs with runtime failures are syntactically and grammatically 
correct, and so forth. 

Table 14: Legal Program Considerations 
Legality Category Metric 
h: Syntactically correct Lexical Analysis 
i: Grammatically correct Parsing 
j: No runtime failure Testing/verification 
k: Halts Proof 

 
We have not shown how to identify all of these categories for any architecture yet, but we can 

show them for specific architectures under specific rules. Moreover, for the method to work, we 
must guarantee that selection considers every possible legal program with equal likelihood. In this 
case, any PPT algorithm D that decides legality of a program x, where x ∈ Pn, has probability of 
success Pr[D(x,1n)=1] = (2n - m)-1. In the next section, we demonstrate random program selection 
that meets these criteria and give a concrete example using a contrived program space termed 
the Ten-Bit Instruction Architecture. 

Random Bit Stream Programs. We address first the belief stated in Proposition 4: do 
random programs exit? As we establish in the preceding sections, we consider digitized programs 
as data with special syntactic rules governing their construction.  Random programs are 
indistinguishable from a random bit stream, i.e. that they have no discernable bit patterns, each 
bit is equally likely to be zero or one, and any sub-string of any reasonable length has 
approximately the same number of zero's as it has ones.  

We illustrate this notion with an abstract machine (depicted in Figure 59) that uses a saturated 
instruction space.  Our machine consists of four operations (instructions), sixteen four-bit 
registers, operations defined with two-four bit operands, and ten-bit instructions (Table 15). The 
contents of the registers upon program termination reflect the program output. In this architecture, 
any bit stream whose length is divisible by ten represents a legal program. 

Table 15: Ten Bit Instruction Set Architecture (TBIA) 
Op Opnd 1 Opnd 2 Description 
LD Rega Regb Copy values fm regb to rega 
LDV Regb Opnd Copy values fm opnd to regb 
ADD Rega Regb Add regs a&b, trunc result in rega 
MUL Rega Regb Mult regs a&b, trunc result in rega 
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Theorem 2. Random programs exist in the Ten Bit Instruction Architecture (TBIA).  
Therefore, random programs exist. 

Proof.  Using a strongly pseudorandom generator with appropriate seed, generate p' as a 
random bit stream of length 10·c, where c is a large constant. Then with instructions 
interpreted serially from beginning to end, p' is a random program in TBIA.  
  

1. p' is a legal program. It is syntactically and grammatically correct, since 
(a) There are no illegal instructions, therefore no syntactic or grammatical errors 
exist 
(b) There are no vulnerable instruction sequences, therefore no execution 
failures exist 
(c) There are no loops and programs are finite, therefore all programs halt 
(d) The architecture can compute meaningful programs 

 
2. p' is a random selection from P10c.  A strongly pseudorandom generator that 

produces a string {0,1}10·c, where c is a large constant,  selects a string with equal 
probably from the ensemble consisting of all bit strings of size 10·c.  Since we 
represent the ensemble by the TBIA program set P10c, p’ is an unbiased random 
choice with equal selection probability from all other programs in the ensemble. 

 
3. p' is a random string. In every reasonable sense of the term, assuming the strong 

pseudorandomness of the generator, p' has no discernible pattern in:   
(a) Static representation (otherwise, it would not be a random bit stream) 
(b) Data representation 
(c) Control flow 

 
QED, p’ is a random program. 
 

 
Figure 59: TBIA Machine Depiction 
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Corallary 1.  Assuming one-way permutations exist, pseudorandom data generators exist.  
Then, if one-way permutations exist and if random programs exist, pseudorandom program 
generators exist also. 
 
We extend Theorem 2 by stating what many cryptographers such as Goldreich [188] assume 

to be true:  if one-way permutations exist, we know that strongly pseudorandom data generators 
exist.  By proving the existence of random programs, we also prove that if one-way permutations 
exist, pseudorandom program generators exist under the same assumptions.  This again 
provides a much stronger cryptographic basis for which to define white box obfuscation under.  It 
relies on well-known cryptographic primitives and proofs—and assumes nothing about cognitive 
or mental ability of the adversary.  

Composing Random Programs. We plan to extend these results to more functional 
architectures in the future. In order to do so, it may be possible to use random program 
composition. Here we pose a second question: can we create random programs from other 
random programs? We conjecture that composition (concatenation) of two random programs 
always produces a random program, but we note that recursive composition produces patterns 
(possibly repeated segments). However, the program resulting from concatenation of atomic 
(independent) random segments is random.  

Random Instruction Selection Programs. TBIA concretely illustrates that random programs 
exist. We now extend this notion to a more complex machine where the instruction space is not 
saturated. For example, we extend TBIA to include a fifth operator with a shift operator (SFT) that 
shifts the value in Rega left one bit and stores the result in Regb, as shown in Table 16.  

Table 16: Modified TBIA with New Instruction 
Op Opnd 1 Opnd 2 Description 
LD Rega Regb Copy values fm regb to rega 
LDV Regb Opnd Copy values fm opnd to regb 
ADD Rega Regb Add regs a&b, trunc result in rega 
MUL Rega Regb Mult regs a&b, trunc result in rega 
SFT Rega Regb Shft Rega left 1 bit-> Store Regb 

 
To accommodate the additional instruction, we increase the operator length to three bits. 

Thus, a random bit stream interpreted as a program in TBIA may contain illegal instructions. To 
address architectures where the operator space is not saturated, we may think of a random 
program as having the operators equally distributed across the program. In this scenario, we 
generate a random program by randomly selecting each operator from all possible operators and 
similarly selecting the operands.  Programs generated in this way have random properties similar 
to those in TBIA, such as having a similar count of each instruction type, no patterns among 
operands, and no observable patterns between instructions. During execution, the data and 
control flow reflect the random properties of the instructions. 

The examples in TBIA and its extension clearly illustrate that our model need not be complex 
or sophisticated to allow random programs. We consider next more sophisticated random 
program versions. We use random selection with TBIA to produce random programs. Such 
random selection allows a systematic way to generate random programs that avoid illegal 
instructions. We discuss the ramifications for more sophisticated architectures by considering 
different program representation schemes . 

Random Function Selection Programs (RFSP). To extend the notion of random programs 
beyond the simple architecture of TBIA, we consider a random program as simply a collection of 
higher-level structures, composed with no discernable pattern or plan.  A large library of random 
program segments (random programs which themselves may be incorporated unmodified into 
other random programs) can provide the possibility for composition. We can compose12 selected 

                                                           
12 In TBIA, composition consists of concatenation. We recognize the administrative actions necessary in higher level languages and posit 
that these are well understood and that segment compatibility issues are overcome easily. 
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segments to create another, larger random program, but it remains unclear which randomness 
properties we preserve in the composition.  

Consider, for example, the one-bit architecture depicted by the four operations in Figure 60.   
In a simple architecture like TBIA, we can recognize usable patterns in segments even when they 
derive from random creation themselves. In a one-bit architecture, we define the functionality of 
every segment as one of the four operations in Figure 60. Thus, by purposefully selecting 
segments, the composition may not be random or may even have a usable function with obvious 
pattern. This concern diminishes rapidly as the architectural complexity increases, since randomly 
generated segments are less likely to have a usable, recognizable function. Still, we may also 
increase the confusion of generated RFSPs by governing segment selection. 

 

 
Figure 60: Simple One-Bit Architecture 

We retain reference to TBIA because it is sufficiently simple to illustrate our concepts, yet 
complex enough to give a flavor of its strength. Given a large constant cl (e.g., cl  > 100) a small 
constant cs (e.g., 10 < cs < 30), and an integer l, the following algorithm will generate RFSPs of 
length l * cs statements. 

 
1. Generate (cl * cs) random statements.  
2. Partition the statements into cl random segments of length cs. Number the 

segments from one to cl. 
3. Create a program p by randomly selecting l segments (without replacement) and 

concatenate them. 
 
Then, p is an RFSP. 

 
By virtue of the properties proved in Theorem 2, we can claim p is a random program. Were 

replacement allowed, it would be possible to include the same segment more than once, resulting 
in a discernable pattern and diluting p's randomness. However, we observe that, because of the 
random construction, these patterns reveal very little about the program. This is easily seen if 
consider each segment as a named subroutine and replace each segment with its name and 
arguments to create p'. Then p' is a random program, since the repeated subroutines are 
randomly placed. A final extension of this notion is to consider randomly composing non-random 
segments. Clearly, this injects patterns into the code. Again, if we name and replace each of the 
segments in p with their name, p is a random program. 

Random Turing Machines. Random programs may also be Turing machines. Consider a 
Turing machine T = {Q, Γ, S, b, F, δ} where: 

 
Q is a finite set of states  
Γ is a finite set of the tape alphabet  
S ∈ Q is the initial state  
b ∈ Γ is the blank symbol  
F ⊆ Q is the set of final or accepting states  
δ  is the transition function: Q x  Γk -> Q x (Γ x {L, R, S})k 

 

1. 0→0, 1→0 
2. 0→1, 1→0 
3. 0→0, 1→1 
4. 0→1, 1→1 
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Following our model, we construct a random Turing machine t using the following algorithm: 
 

1. Randomly select a small number of states and number them 1-i. 
2. Similarly, select a small alphabet numbered 1-j. 
3. Randomly select the start state from the state space. 
4. Define the transition function as follows: for each state and each alphabet 

member, randomly select: 
a) A head movement from {R, L} 
b) An operation from {write, none} 
c) An alphabet element to write 
d) A state to transition to  
 

Then t is a random Turing machine. 
 
By these constructions, we illustrate a consistent theme concerning random programs: each 

type of randomness has discernable properties, just like random (data) bit streams. The more we 
know about random program properties, the more likely we will be able to generate intentioned 
programs that reflect random program properties.  We believe the random program security 
model represents a (better) theoretical basis for analyzing obfuscators that rely on complexity and 
confusion.  The underlying tenet for white box security found in Definition 12 is the first model 
(that we know of) to consider protection based on cryptographic properties (as opposed to known 
hard NP-complete problems that assume complex adversarial workload).   

5.5.4 Proving Random Circuits Exist 

The term “program” is less precise than traditional TM definitions. Therefore, we 
predominantly use combinational circuits to describe obfuscators that provide white box 
protection using randomization in Section 5.6.  We introduce here the notion that random circuits, 
like random programs, exist.  We discuss first our circuit description nomenclature, define a bit 
string language to construct circuits, and then give support for Proposition 5 that random circuits 
exist by elaborating three separate algorithms for their construction. 

Proposition 5. Random circuits exist. 

Circuits provide an alternative to Turing machines for considering computational complexity 
and defining functional operations.  Literature abounds with references to circuit and complexity 
relationships, and we mention several known results that are detailed further in textbooks such as 
Wegener’s [199].  We can simulate the computation of a Turing machine M on inputs having 
length n with a single n-input circuit with size O((|<M>| + n + t(n))2).  t(n) defines the bound on the 
running time of M in inputs of length n. Thus, a non-uniform family of polynomial-size circuits can 
simulate a non-uniform sequence of polynomial-time machines.   Likewise, a non-uniform 
sequence of polynomial-time machines can simulate a non-uniform family of polynomial-size 
circuits. Machines with polynomial description lengths may integrate polynomial-size circuits and 
simulate their computations in polynomial (bounded) time. 

There are several advantages for using circuit representations. Circuits only have one 
polynomial representation space (which is their size), while Turing machines have two (for their 
size and for their running time).  Turing machines are uniform concerning input whereas circuits 
are non-uniform because each different input length may have a different associated circuit 
(gate). It is possible to show that we can construct all (physical) machines with bounded memory 
via (sequential) circuits and binary memory units. We can completely simulate machines whose 
computations terminate with circuits.   

Combinational Circuit Families.  In digital circuit theory, combinatorial or combinational logic 
represents circuits whose output is a function of only the present input.  Sequential logic has 
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output that depends not only on the present input but also on historical input. Sequential logic 
supports memory while combinatorial circuits do not. Combinational circuits (whose gate values 
depend only on its current signals from any previous gate) can represent any straight-line 
programs, meaning those with no loops or branches.  However, we can compute many important 
functions in a straight-line manner while conveniently describing their functionality as a circuit or 
directed acyclic graph. 

Physical computer circuits normally contain a mixture of the two logic modes.  For example, 
ALU components that perfom mathematical calculations are typically combinatorial while the 
control signals for the ALU require sequential logic.  At its lowest level, a computer is represented 
as (lots) of Boolean circuit combinations.  However, hardware relies on synchronous time signals 
and clock signals to direct their activity. 

We discuss families of Boolean circuits according to a set of common features that they share.  
We let CnmsΩ indicate the set of all circuits with the same input size (n), output size (m), circuit size 
(s), and basis (Ω).   A circuit over Ω is a directed acyclic graph (DAG) having either nodes 
mapping to functions in Ω (gates) or having nodes with in-degree 0 being termed inputs.  We also 
distinguish one (or more) as outputs. The basis Ω is complete if and only if all functions f are 
computable by a circuit over Ω. The basis sets {AND, OR, NOT}, {AND, NOT}, {OR, NOT}, 
{NAND}, and {NOR} are all known to be complete. By definition, the 6-gate basis Ω = {AND, OR, 
NOR, NAND, XOR, NXOR} is complete and has basis size |Ω| = 6.  

Circuits that implement the same Boolean function, f: {0,1}n → {0,1}m, must have the same 
input size (n) and output size (m), although a larger (padded) input size n’ is possible as long as 
n’ > n.  Functionally equivalent circuits may differ according to size (s) and basis (Ω).  However, 
they share common characteristics (depending on the terminology you wish to use) such as 
having the same signature (truth table output columns), the same truth table representation, 
equivalent fully minimized Boolean formulae, and equivalent input/output mappings.  

Circuit Description Languages.  There are three ways of referring to circuit description 
languages: textual description languages, graphical representations, and binary representations.  
Because our interest is ultimately pseudorandom bit generation, the binary representation is more 
suitable for demonstrating provable white box security properties.  We discuss the first two forms 
because they also apply to our research implementation efforts. 

Textual description languages are similar to programming languages (whether machine level, 
assembly level, or high level).  Textual circuit representation languages are regular grammars 
with syntactic rules for construction.  Their syntax supports expression of gates, electrical signals, 
components, and gate interconnections. Over time, organizations like IEEE have developed 
libraries of standardized circuit definitions that support application testing, algorithm analysis, and 
integrated circuit optimization [200]. Researchers used a conference-style approach to develop 
and review the ISCAS (International Symposium of Circuits and Systems) and ITC [201] 
(International Technical Conference on Circuits) benchmark sets.  Benchmark circuits come in 
many different textual formats as well13.  BENCH, CKT, VERILOG, and VHDL are several just to 
name a few.  Most formats typically reflect complex hardware components and languages such 
as VERILOG / VHDL facilitate direct hardware synthesis. The BENCH format is very close to a 
true Boolean circuit definition and we adopt this as textual description language in our (MASCOT) 
implementation architecture described further in Section 5.8 and Appendix D/E. 

Finding direct translators of high-level language (HLL) to circuit representation is hard outside 
of government14 or commercial applications [202] designed for digital circuit design.  In order to 
facilitate our research and implementation activities, we identified existing definitions for 
combinatorial Boolean circuits with well-known functionality instead of attempting to convert from 
HLL to circuit representation directly.  We use the ISCAS benchmarks in our implementation 
activities because they give us known functionality to start with and provide readily available 
Boolean logic.  For future work, we plan to devote attention to the HLL-to-Boolean-logic 
conversion problem.   
                                                           
13 ISCAS-85, ISCAS-89, ISCAS-99 circuits available at http://www.fm.vslib.cz~kes/asic/iscas/ in 6 textual forms 
14 Wright Laboratories contracted a C-to-VHDL translator under BAA, http://www.stormingmedia.us/51/5170/A517013.html 
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We prefer to illustrate the notion of randomization for white box protection using pre-existing 
circuit definitions where possible and we conclude from our current work that it is much easier to 
work with known functionality than to convert high-level programs into Boolean logic. The ISCAS-
85 set of benchmark circuits provide a rich source of both known functionality and research 
interest [203, 204].  Figure 61 illustrates a BENCH (textual) specification and schematic 
(graphical) diagram of the ISCAS-85 C17 circuit. The ISCAS-85 benchmarks include definitions for 
functions such as a 27-channel interrupt controller, a 32-bit SEC circuit, an 8-bit ALU, a 16-bit 
SEC/DED circuit, a 12-bit ALU/controller, an 8-bit ALU, a 16x16 multiplier, and a 32-bit 
adder/comparator just to name a few.  Appendix E describes both the ISCAS benchmark circuits 
and the BENCH circuit representation language in detail. 

 

 
Figure 61: The ISCAS-85 C17 Benchmark Circuit in BENCH Notation 

Combinational circuits in BENCH notation represent textual circuit descriptions. Figure 61 
represents the other (traditional) graphical representation form as a collection of binary Boolean 
gates connected with wires.  We can also use directed acyclic graphs to represent equivalent 
circuit information as long as we associate gate types with each node. Formally analyzing circuit 
designs is a known hard problem that has led researchers to produce efficient, graphical 
representations for Boolean circuits that facilitate verification.  Solving constraint satisfaction 
problems and formal verification have been catalyst to a myriad of graphical structures that 
support graph-based Boolean function manipulation: Binary Decision Diagrams (BDD), Reduce 
Ordered Binary Decision Diagrams (ROBDD), FDD, OBDD, ADD, MTBDD, BMD, KMDD, and 
BGD to name a few [205, 206, 207].   

Boolean Expression Diagrams (BEDs), another extension to BDDs, represent any Boolean 
function in linear space and provide standard graph-based tools for dealing with combinational-
level logic problems [204]. BEDs have been useful for efficiently determining whether two 
combinational circuits implement the same Boolean function [208] and come with several 
desirable features practical to our current work. Figure 62 shows the graphical BED-based 
definition for the C17 benchmark circuit described earlier in Figure 61. The creators of the BED 
library provide an ability to generate DOT-based15 graphical notations for circuits, which we utilize 
for viewing circuit definitions extensively.  Appendix F describes in detail how we integrate BEDs 
into our current implementation activities and gives several illustrative examples of BED diagrams 
for the ISCAS-85 circuit benchmarks. 

                                                           
15 IBM AT&T Research Labs, http://citeseer.ist.psu.edu/331854.html 
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Figure 62: BED Definition of ISCAS-85 C17 

The canonical theoretic representation for a binary circuit is a binary string.  We envision 
circuit randomization techniques in Section 5.6 that manipulate binary circuit representations 
using traditional cryptographic cipher primitives such confusion and diffusion.  We describe our 
method for annotating Boolean logic circuits as binary strings here.  In canonical representation, 
we can view a circuit C: {0,1}n → {0,1}m with n inputs and m outputs as collection of its (m) output 
subcircuits C1, C2, …, Cm.  For all subcircuits Ci, 1 ≤ i ≤ m, and each subcircuit Ci corresponds to 
exactly the ith output of circuit C.  The canonical sum-of-products form expresses each output 
subcircuits Ci as a collection of minterm products related to each possible input of the circuit.   

We refer to a circuit signature as the collection of truth table values associated with an output 
gate (i.e., subcircuit Ci) corresponding to the canonical ordering of input values. For two input and 
one output gate, the signature for the gate corresponds to the inputs pairs (0,0),(0,1),(1,0),(1,1) 
and we represent the corresponding signature as [{0,1}1,{0,1}2,{0,1}3,{0,1}4 ] where G: (0,0) → 
{0,1}1, G: (0,1) → {0,1}2, G: (1,0) → {0,1}3, and G: (1,1) → {0,1}4.  Figure 63 gives two examples 
of such signatures: one for a 4-input/1-output circuit and the other for a 3-input/2-output circuit. 

 

                           
Figure 63: Examples of Circuit Signatures 
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For Boolean circuits over Ω2 (which define 16 possible 2-input Boolean gates), every gate in a 
circuit C has function G: {0,1} x {0,1} → {0,1}.  Table 17 lists the full set of gates under Ω2 and the 
corresponding symbol which we use to identify traditional Boolean circuit gates types (AND, OR, 
XOR, NOR, NAND, NXOR).  For the function values, we let x’ indicate the negation of Boolean 
variable x, ^ indicate the logical AND, ∨ indicate the logical OR, and ⊕ indicate the logical XOR. 
As long as we have a complete basis Ω, we can generate all functions over that basis and we do 
not require all 16 (gate) types to enumerate circuits within a functional family.   

Table 17: Gate Definitions Under Ω2 
G(x1,x2) Symbol Signature G(x1,x2) Symbol Signature 
0 const 0 [0,0,0,0] x1’ ^ x2’ NOR [1,0,0,0] 
x1 ^ x2 AND [0,0,0,1] (x1 ⊕ x2)’ NXOR [1,0,0,1] 
x1 ^ x2’  [0,0,1,0] x2’  [1,0,1,0] 
x1  [0,0,1,1] x1 ∨ x2’  [1,0,1,1] 
x1’ ^ x2  [0,1,0,0] x1’  [1,1,0,0] 
x2  [0,1,0,1] x1’ ∨ x2  [1,1,0,1] 
x1 ⊕ x2 XOR [0,1,1,0] x1’ ∨ x2’ NAND [1,1,1,0] 
x1 ∨ x2 OR [0,1,1,1] 1 const 1 [1,1,1,1] 

 
Recalling our circuit family definition, CnmsΩ, we can give the encoding of any circuit C ∈ CnmsΩ 

by a set of gates W = {w1, w2, … , wn+s} set depicted in Table 18.  This set includes n inputs, s 
total gates, s - m intermediate gates, and m output gates.  

Table 18: Circuit Encoding for Family CnmsΩ 

Structure Size Encoding 
Inputs n w1, w2, …, wn 

Gates (intermediate) 
 
 
 

 

s - m 
 
 

 

wn+1 = Gn+1 (wx1
1, wx2

1) 
wn+2 = Gn+2 (wx1

2, wx2
2) 

… 
… 
wn+s-m = Gn+s-m  (wx1

s-m, wx2
s-m) 

Gates (output) 

 
 
 
 

s 

m wn+s-m+1 = Gn+s-m+1 (wx1
s-m+1, wx2

s-m+1) 
 … 
wn+s = Gn+s (wx1

s, wx2
s) 

 
For all gates Gi, we assume x1i ≤ x2i < n + i for the corresponding inputs wx1

i and wx2
i, for all 1 

≤ i ≤ s.  This states that gate inputs can be the same and insures us that gate inputs can only 
come from previously computed gates (thus guaranteeing the acyclic nature of the circuit).  To 
characterize the binary string representation of a circuit, we need only replace the textual 
encoding for the circuit with a binary equivalent form (much as we would translate assembly 
language into binary).   For example, given Ω = {NAND, NOR}, we can represent the gate type 
with one bit.  For n = 8 inputs, we can represent each input with three bits.  For s = 25 gates, we 
can represent each gate with the upper bound logarithm on s, which is five bits.  Table 19 
summarizes the computations for determining the total binary string size of any circuit with n 
inputs, s gates, and basis Ω.  Definition 13 incorporates these computations as a point of 
reference. 

Definition 13.   (Binary Size for Circuit Descriptions)  Given a circuit C of size s with 
input size n and basis Ω , the upper bound size for a binary string representing the circuit is 
given by: 

   n ⎡lg(n)⎤  +  3s⎡lg(s)⎤  +  s⎡lg(|Ω|)⎤ 
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Table 19: Binary Size Representation for Circuit Encoding 
Representation Number Bit Size 
Enumerate Each Input (wi) n ⎡lg(n)⎤ 
Enumerate Each Gate (wi) s ⎡lg(s)⎤ 
Enumerate Inputs for Each Gate (x1i,  x2i) 2 2⎡lg(s)⎤ 
Enumerate Function Type for each Gate (Gi) |Ω| ⎡lg(|Ω|)⎤ 
Representation Bit Size 
All Inputs n ⎡lg(n)⎤ 
Each Gate Gate ID: ⎡lg(s)⎤ 

Input ID: 2⎡lg(s)⎤ 
Function: ⎡lg(|Ω|)⎤ 

Total: 3⎡lg(s)⎤ +  ⎡lg(|Ω|)⎤ 
All Gates s(3⎡lg(s)⎤ +  ⎡lg(|Ω|)⎤) 
Entire Circuit = All Inputs + All Gates n ⎡lg(n)⎤ + 3s⎡lg(s)⎤ + s⎡lg(|Ω|)⎤ 

 
The only other consider for circuit representation is its signature. We find it useful to classify 

circuits according to their function family (versus their representation size) and we use the 
smallest succinct (truth table) embodiment to do so.  As we have described previously (see 
Figure 63), a circuit with m outputs will have a signature size 2n bits corresponding to the 2n 
possible input combinations that produce each 1-bit output of the signature.  We assume a 
canonical ordering of inputs that reflects directly in the signature.  Representing a (full) signature 
thus requires 2n·m bits. 

Enumerating Circuit Descriptions.   We specify how to represent a single circuit as a binary 
string and how to characterize its size.  We now consider how to characterize the number of 
possible circuit descriptions that are contained in a set of circuits with a specific size and basis.    
In Appendix C, we give full exposition for circuit enumeration possibilities and give only the 
summarized representation for number in Definition 14. 

Definition 14.   (Total Number of Circuit Enumeration Possibilities)  Given a circuit C 
of size s with input size n, the number of possible s-gate circuits GC possible under basis Ω 
(assuming gates can have identical inputs) is given by the following product:  

 ∏
=

Ω+=
s

i
C inCG

1

||)*2,(  

See Appendix C for the entire circuit enumeration possibilities. 
 
Entropy and Circuit Size.  Given that we can specify a textual circuit description as a binary 

string and given that we know how many circuits we can generate based upon a given circuit size 
and basis, we can now characterize entropy as it relates to circuit size (from Proposition 3). 
Consider the set CnmsΩ such that n = 2, m = 1, m ≤ s, and  Ω = {AND, OR, XOR, XNOR, NOR, 
NAND}.  Assuming we know the basis, we refer to this circuit family ensemble as C2,1,s.  Given 
this circuit family set, we consider the subset of circuits within C2,1,s that implement the AND 
function or, in other words, have a signature of [0,0,0,1].  At a minimum, C2,1,s contains circuits of 
(total) size K = 3 or above, where total size K is the number of edges in a circuit DAG (K = inputs 
+ gates = n + s).  We can enumerate all node arrangement possibilities and with K or fewer 
edges and determine which circuits have the characteristic AND signature. 
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We let C’n+s represent the subset of all circuits in C2,1,s that implement function and let |C’n+s| 
indicate the cardinality of the set (the number circuits with AND functionality).  Through 
experimentation, we generate a circuit family for various gate sizes (C2,1,1, C2,1,2, C2,1,3, C2,1,4, …) 
and count the number of circuit representations that produce the characteristic [0,0,0,1] signature.  
In doing such experimentation, we demonstrate exponential blowup in the possible number of 
AND function representations as K increases. For example, when K = 4, there are 66 total 
possible circuit combinations (circuits of total size 4 composed of any legal combination basis 
gates) and three of these circuits have signature [0,0,0,1]:  

 
|C’4| = 3 
 
C’4= { 

(x0, x1, x2=x1 AND x0),   s = 1, K = 3 
(x0, x1, x2=x1 XNOR x0, x3=x2 AND x1), s = 2, K = 4 
(x0, x1, x2=x1 XNOR x0, x3=x2 AND x0)  s = 2, K = 4 

} 
 

Figure 64 shows our observed increase as follows: 
|C’5| = 81 (K=5);  
|C’6| = 81971 (K=6);  
|C’7| = 8122,881 (K=7);  
|C’8| = 581,203 (K=8);  
|C’9| = 14,793,117 (K=9).  
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Figure 64: Exponential Blowup of Functional Representation 

 
The set C’9 of circuits total size 9 or less which implement AND functionality contains nearly 15 

million circuits. Any random selection from this set gives a circuit with equivalent logical AND 
functionality.  Because we represent larger circuits with larger binary strings (by Definition 13), we 
show empirical evidence here that entropy of circuits increases exponentially with size, given the 
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same functionality.  This tends to support also our conjecture under Proposition 3 regarding 
program size and entropy. This illustrates that for complex functionality, the number of circuits 
implementing that functionality is large, but we can provide a bound on circuit size to keep 
numbers within (efficient) manageable reach.  Assuming a linear increase to the circuit size, we 
can also increase the complexity or understandability of a Boolean circuit by converting all gates 
to an atomic gate type such as NAND or NOR.   

Generating Random Circuits.  We have established several foundational premises (as we 
did with programs) to now consider the existence of random circuits.  We have given a concrete 
methodology for describing circuits as binary strings, characterized the size for such a 
description, characterized the size for a set of circuits with a specific gate size and basis, and 
characterized the entropy for functionality as circuit size increases.  We have also given rules for 
constructing legal circuits and we now describe a (random) selection from a known population of 
circuits. 

Considering our entropy example, we show how to concretely describe the family of 2-input / 
1-output circuits with gate-size = 7 and total-size = 9.  We also, by experimentation, generate a 
subset of this population with a specific functionality (AND) and refer to this circuit ensemble as 
C’9.  If we have a mechanism to select a circuit randomly from the subset C’9, this selection 
constitutes an unbiased, equally likely representative from the population. That selection, by 
definition, is a random circuit. As with programs, however, we prefer to have a method for 
generating random circuits as validation basis for their existence. We provide three such 
algorithms, with varying efficiency. 

 
Algorithm 1: Random Circuit Generation by Enumeration 

Initialization: 
1. Choose a complete basis Ω 
2. Choose input size n 
3. Choose output size m 
4. Choose circuit size s 
5. Elaborate all possible combinations of circuits with size s or less. 
    Create circuit ensemble C from this elaboration process. 
6. Assign each circuit in C a unique number, 1 < x < |C| 
 
Selection: 
7. Using a pseudorandom number generator, generate x such that 1 < x < |C|. Pick 

circuit Cx where Cx ∈ C. 
 
Then, Cx is a random circuit.  Therefore, random circuits exist under Proposition 5. 
 

Algorithm 1 exhibits super exponential run time because we must enumerate all possible 
circuit combinations, which involve multiple selection loops that cover all possible functions in the 
basis and all possible combinations of prior inputs for each gate in the circuit (Definition 14 
defines a combinatorial bound). A second (more efficient) approach is to generate one circuit 
based on pseudorandom choices for each gate’s function type and signals. This process involves 
direct enumeration of all s gates within the circuit in a straightforward manner.    

We reflect in the third algorithm yet another approach using a set of all binary strings with 
length b.  Given the string ensemble, we make an unbiased selection from the entire population.  
However, just as with programs, we must make sure that selection is a legal circuit description. 
Although conceptually easier with circuits (because we need not worry about termination), illegal 
circuits would only be encountered when any of the given circuit parameters do not fully saturate 
the binary space allocated for them.  In other words, a basis with size 6 does not fully saturate the 
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3-bit representation space needed for representing gate types under that basis. A basis size of 4, 
however, would fully saturate its bit-representation space of 2 bits.   

The other form of illegal circuit definition occurs when gate inputs derive from future inputs 
instead of only previous inputs.  For this reason, legal (combinational) circuit constructions create 
directed acyclic graph representations.  Such gate/input wire combinations are legal for 
sequential circuits, however, and in future models we may actually desire such configurations. 

 
 

Algorithm 2: Random Circuit Generation by Construction 
Initialization and Selection: 
1. Choose a complete basis Ω 
2. Choose input size n 
3. Choose output size m 
4. Choose circuit size s 
5. Generate circuit C in the following manner using gate set W: 
    Set i := n+1 

 For ∀ wi ∈ {wn+1, w2, … , wn+s}:  
     (a) Using a (pseudorandom) choice, pick gate type Gi from Ω where there 

are  1 .. |Ω|  possible functions to choose from 
     (b) Using a (pseudorandom) choice, pick input x1i for Gi where there are 1 .. 

i-1 possible previous gates to choose from 
(c) Using a (pseudorandom) choice, pick input x2i for Gi where there are 1 .. 
i-1 possible previous gates to choose from 
(d) Assign wi = Gi (wx1

i, wx2
i) 

 
 
C is a legal circuit definition and exhibits properties of a random circuit in terms of 
each gate’s inputs and Boolean function. Then, C is a random circuit and we affirm 
random circuits exist under Proposition 5. 
 

 
Algorithm 3: Random Circuit Generation by Test 

Initialization: 
1. Choose a string size (b) 
 
Selection: 
2. Repeat the following process until a legal circuit description is chosen 
      (a) Make a (pseudo)random string selection C from the population {0,1}b 
      (b) Test to see if C is a legal circuit definition, returning yes or no 

For specific n,m,s,Ω:  the test is efficient to compute 
For unknown n,m,s,Ω:  the test is hard to compute 

 
C is a legal circuit definition (by decision).  By its selection, it represents an unbiased 
choice from a population of all (possible circuit representation) strings for a specific 
class of circuits with size s, input size n, output size m, and basis Ω.  Then, C is a 
random circuit.  
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  We complete this section by noting that random programs and random circuits are a 
foundational premise for proving white box protection attributes under the random program 
security model.  We introduce next obfuscators that leverage this concept of randomization and 
polynomial time indistinguishability under our formal definition for white box obfuscation found in 
Definition 12. 

5.6 Creating White Box Protection Based on Randomization 

Classic security research reveals many reasons to seek strong program obfuscation theory 
and technology. Protecting the seam between two composed programs (black box protection 
under Theorem 1) is a canonical white box obfuscation goal central to our model.  Recall that we 
compose a protected function (P) with an encryption function (E) to provide black box protection. 
If the adversary can identify the seam between P and E through white box analysis, the black box 
protection provided by E disappears. White box security encompasses both cases and gives 
ability to shield program intent from code analysis. Thus, white box protected obfuscations protect 
against analysis intended to reveal embedded data, seams between functions, the number of 
functions, or other such program properties. Our goal is to define a systematic, measurable 
defense against white box threats using the random program security model defined in Section 
5.5. 

The extensive history surrounding data encryption provides important insights into 
understanding information and its representation. We contend that programs (and circuits) are no 
more than a special information class with well-defined syntax and semantics. Moreover, 
scrambling techniques (for code) are limited because the final form must adhere to this rigid 
syntax and semantics. However, as we demonstrate in the previous section, program code and 
circuit descriptions possess information content equivalent to information content in any other 
type of bit stream.  We present in this section a methodology for building white box obfuscators 
that attempts to meet both informal and formal protection specifications given under Definition 5 
and Definition 12.  We begin by comparing data and program encryption in Section 5.6.1 and 
point out the parallel lines of development we believe the (newer) field of program encryption will 
follow.  

5.6.1 Comparing Data and Program Encryption 

We introduce randomization to the obfuscation problem and make an appeal using traditional 
methods found in data encryption schemes. As we discuss in Section 5.3.1, we analyze data 
cipher security properties in one of two ways: 1) an information theoretic viewpoint, where data is 
secure regardless of computational resources; or 2) a complexity viewpoint, where data is secure 
based on limited resources. Data encryption strength reflects whether we can reduce possible 
breaks to known hard problems (e.g., factoring). Asymmetric ciphers use trapdoor one-way 
functions based on algebraic groups or rings. Symmetric cipher security proofs, on the other 
hand, do not rely on number theory. Confusion, diffusion, and composition operations form the 
foundation for the Data Encryption Standard (DES), AES, RC4, etc. Security proofs leverage 
Shannon’s perfect secrecy [209], though security confidence relies on the fundamental theory of 
cryptography, i.e. that no easy attacks on symmetric schemes like DES have been found despite 
voluminous research efforts over the years16. Symmetric cryptosystems rely on brute force 
exhaustive search as their strength metric. Yet, symmetric ciphers are widely accepted as strong, 
despite absence of mathematical proof formulations.  

There are two analogous threads in program obfuscation research. The Virtual Black Box is 
the de facto standard “provable security” approach, pitting the ability of a Turing machine given 
obfuscated code against one with only oracle access to the original function. Conversely, we use 
random programs as a baseline for measuring program intent protection through entropy. Figure 
65 summarizes these notions.  

Practical (heuristic) program obfuscation techniques are, in large part, observation generated.  
Software engineers have known for decades that certain program structures reveal more about 
                                                           
16 Observation from RSA Security, http://www.rsasecurity.com 
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program intent than others. These intuitions led to obfuscation techniques such as adding ruse 
code, eliminating structured constructs, generating “elegant” algorithms, type casting, code 
reordering, code interleaving, and many others. The foundation was that if structured, concise 
code is easy to understand, then non-structured, elaborate code must be difficult to understand. 
Unfortunately, the software engineering model that seeks to understand code and the security 
model whose goal is to protect intent do not correspond well at their extremes. Specifically, to 
protecting intent against sophisticated intruders is fundamentally different from revealing intent to 
maintenance programmers. Thus, program obfuscation techniques focus on confusing code, with 
little theory or evidence that independent mechanisms are complementary, or even that they are 
not counter-productive. 

 
Asymmetric Data Encryption Symmetric Data Encryption 
Based on mathematical algebraic primitives Based on repetitive permutation/substitution 
Provably secure relative to mathematical theory Time-tested,  secure based on limited resources 
Key-based, systematic, recoverable 
Seeks to create ciphered data with discernible randomness properties 
  
Program Obfuscation Program Encryption 
Spurious, heuristic, limited Based on repetitive, heuristic use of  

permutation/substitution primitives with 
composition 

Not provably secure in the general case (VBB);  
secure in limited contexts 

Time-tested / complexity  
(secure based on limited resources) 

Mechanism-specific, non-generalized Key-based, systematic, recoverable 
Seeks to protect programs against 
 specific attacks using specific techniques 

Seeks to create ciphered programs with 
discernible properties of randomness 

Figure 65: Comparing Data Ciphers with Program Obfuscation / Encryption 

We contend that we can measure confusion by comparing our systematically obfuscated code 
(hereafter referred to as “encrypted code”) or circuits against random code or circuits. We adhere 
to Kerckhoffs’ security principle [210] and leverage substitution and permutation engines similar 
to symmetric key encryption techniques.  We thus consider our methodology a form of program 
“encryption” rather than program “obfuscation”.   

We specify obfuscators that generate key-based, white box secure software modules that 
remain executable.  We reiterate the difference in our approach from using a data cipher to 
encrypt code, making the code a random data stream unintelligible to the code’s (originally) 
intended interpretive environment. In Aucsmith’s approach [164], he utilizes a key to generate 
pseudorandom blocks of encrypted code that are decrypted just prior to execution.  Our approach 
is similar to homomorphic forms of encryption, but instead of mathematical group operations, we 
utilize executably semantic preserving primitives found in traditional symmetric data ciphers.  We 
refer to these primitives as confusion and diffusion.  We define and show the utility of random 
programs in Section 5.5 for measuring the (relative) randomization that any given obfuscator 
produces.  

Program (or circuit) encryption mechanisms are key-based functions, with corresponding 
recovery mechanisms. These algorithms produce programs with well-understood randomness 
properties. Program protection algorithms that utilize confusion, diffusion, and composition 
strategies (like DES) are not necessarily weaker than mathematically based functional-
transformations such as homomorphic encryption schemes or RSA.  To illustrate, consider 
permutation and substitution data ciphers.  

Data permutation, or transposition, shuffles the order of data, where the key dictates the 
shuffle order. When used alone as a data cipher mechanism, permutation diffuses data across 
ciphertext (as Figure 66 illustrates), but is not cryptographically strong alone.  When applied in 
isolation (by itself), we may rightfully consider data permutation a data obfuscation method.  Data 
substitution, or replacement, when used alone as a cipher technique, confuses bits within a 
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ciphertext but is not individually cryptographically strong either.  We can rightly consider it a form 
of data obfuscation by itself.   

However, cryptographers strategically compose permutation and substitution in round-based 
production block ciphers.  In doing so, they can create strong encryption, evidenced in well-
known symmetric ciphers like DES.  Even though DES strength is difficult to mathematically 
express in other than brute force terms, most cryptographers recognize it as a strong cipher that 
has no known attacks significantly more efficient than brute force key discovery.  

                           
Figure 66: Example of Data Permutation and Substitution 

We leverage the program encryption analogy that uses confusion and diffusion that are not 
strong themselves, but when composed in systematic, round-based algorithms produce 
executably encrypted code.  Analyzing program encryption security under our randomization 
model breaks any relationship with VBB security; instead, we appeal to the random program 
security model (Section 5.5).  We next illustrate circuit indistinguishability as a program encryption 
security metric.  

5.6.2 Integrating Black and White Box Protection 

Under Definition 4, the goal of black box intent discovery by an adversary is to establish the 
I/O relationship that exists for an obfuscated program p’. If the adversary cannot find the 
functionality class A given runtime analysis of the obfuscated version p’, black box protection is 
achieved. By definition, the family of all programs that implement one-way functions consists of 
programs whose input/output behavior is hard to learn. The security game played with an 
adversary involves not knowing or being able to determine a program’s I/O class or functional 
category.  

In Definition 12, we express how to measure whether an adversary has an advantage when 
given the obfuscated program (code) or circuit over oracle-only access to the original program. 
We analyze whether the adversary distinguishes the obfuscated program from a randomly 
selected program of the same size. This includes an adversary who not only performs black box 
analysis but also performs static or dynamic analysis of the code itself, specifically to determine 
program intent. To reiterate, we do not attempt to prove general security against all-powerful 
adversaries—rather we seek a more narrowly defined goal of intent protection and a framework 
to evaluate security of practical obfuscation techniques. 

To afford full intention protection (under Definition 6), we must protect against both black box 
and white box analysis.  Figure 67 depicts the program families of interest that afford intent 
protection, beginning with the foundational program class of strongly one-way functions.   
Trapdoor functions, from Definition 8, are one-way functions where the inverse is easy to 
compute given the key, but hard otherwise. We assume that black box protection uses 
cryptographically strong, one-way trapdoor functions under Definition 9.  We let E represent a 
trapdoor one-way encryption function that takes a plaintext message M and key K and returns a 
recoverable ciphertext C = E(M,K).  We assume an inverse function D related to E provides 
recovery of the plaintext given a ciphertext and symmetric key K: M = D(C,K). 

Our black box protection mechanism forms a special subclass of trapdoor one-way programs 
that has a special input/output relationship defined by the functionality class A and any program P 
∈ A.  Specifically, when we concatenate a program P that has a specific functionality A (P ∈ A) 
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with an encryption algorithm E from the trapdoor one-way function family E, we have programs 
consistent with those described in Theorem 1. We show this family of programs in Figure 67 as 
the subset TDOWA. Given the transformation process t of Theorem 1 that creates a specific 
subclass of programs in TDOW, a recovery algorithm r recovers the intended output y of any 
program P, given the output of y’ = P’(x), where P’ ∈ TDOWA in Figure 67.  The set of programs 
TDOWA is black box intent protected under Definition 4 with respect to the functionality class A. 

 
Figure 67: White Box Protected Programs 

From a compositional approach, any black box obfuscator O (under Definition 4) that 
implements Theorem 1 is a compiler that produce P’ = O(P) from an original program P ∈ A and a 
strong, trapdoor one-way program E ∈ E such that P’(x) = E(P(x),K). Here P’ ∈ TDOWA and 
indicates that the set TDOWA contains all programs whose input/output relationship accommodates 
the domain of A and produces the range of E such that P’: {0,1}|xP| → {0,1}|yE|.  A black box 
obfuscator that meets Theorem 1 thus produces obfuscated programs whose input/output 
characteristics are consistent with E and are thus one-way functions.  We clarify that the selection 
of the particular class of functions E is a key-based decision part of an overall obfuscation 
process. Thus, E is randomized along with other parameters and the functionality class A may 
itself include strongly one-way programs, trapdoor one-way programs, or data encryption 
algorithms.  

5.6.3 Intent Protection with White Box Randomizing Transformations 

At this point we refer specifically to Boolean circuits (using TDOWA to refer to a set of circuits) 
and of obfuscators that algorithmically manipulate circuits.   As we elaborate in Section 5.5.4, 
circuits provide a better meeting point between theoretic limits and practical implementation and 
eliminate the need to worry about program termination.  Considering both forms of intent 
protection (from Definition 4 and Definition 12), we now define obfuscators that perform 
systematic circuit transformations based on indistinguishability from a random circuit.  Such white 
box obfuscators assume any candidate circuit P’ ∈ TDOWA as a starting point.  Since TDOWA is 
infinitely large, we bound the possibilities by specifying only circuits with a maximum size N or 
less.  For example, if E were the N-bounded family of Boolean circuits that implement the DES 
algorithm, all elements in E are circuits of size N or less that produce the mapping EDES56: {0,1}64 x  
{0,1}54→ {0,1}64 based on 64-bit message size and a 56-bit key K.  If we choose a specific 56-bit 
key K, then we have and embedded-key DES function defined as EDES56,K: {0,1}64→ {0,1}64.  
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The specified maximum circuit size N represents the desired obfuscated circuit efficiency; we 
consider obfuscators that randomize a circuit in a way that produces exponential circuit blow up 
unless bounded otherwise. The lower bound size of circuits in TDOWA is based on the size of the 
most efficiently reduced circuits that implement P’(x) = E(P(x),K). A maximum circuit size N 
bounds the number of circuits that implement E. Likewise, N provides a bound on the number of 
circuits in the set of all trapdoor one-way functions.  

We base white box protection on an indistinguishability argument.  As Definition 12 states, we 
achieve white box intent protection if a circuit obfuscator (encryptor) produces an obfuscation of P 
that is indistinguishable from a random circuit PR.  We use the random program (circuit) model as 
the security basis and ask whether obfuscators exist that achieve this intent protection form.  By 
Corollary 1, which affirms that pseudorandom program generators exist, we conjecture that 
pseudorandom program generators can exist also that reliably transform one program (circuit) 
form into a semantically equivalent / executably encrypted program (circuit) form.  

We again leverage the well-understood notion of traditional data ciphers to illuminate our 
paradigm. Strong data encryption produces ciphertext that is indistinguishable from a string 
chosen randomly from the set of all strings of the same size. Cryptographically strong data 
ciphers that use permutation, substitution combinations accomplish this successfully.  Our desire 
is to design or find obfuscators that utilize circuit permutation and substitution to produce 
randomized circuits; these randomized circuits are indistinguishable with respect to P from any 
other circuit of comparable size chosen randomly. If random circuit selection provides white box 
protection, as we contend, then our effort is reduced to finding mechanisms that produce suitably 
randomized “cipher code” (to coin a phrase).   

An obfuscator O that provides full intent protection for a program (circuit) P (under Definition 
6), such that P’ = O(P), can thus be seen as a two-step compiler. O first provides black box 
obfuscation by a semantic transformation on P to P” under Theorem 1 (depicted in Figure 68-A).  
O then provides static white box obfuscation by randomization of P” to P’ (depicted in Figure 68-
B).   

 

                   
      (A) Semantic Transformation                (B) Randomizing Indistinguishability 

 

Figure 68: Full Intent-Protected Program P’ 

We have already demonstrated in Section 5.4 that we can produce obfuscators that satisfy 
black box protection. In order to create a full intent-protection obfuscator, we must ensure that 
any candidate O selects programs P’ from the set TDOWA in a uniform, random, key-based, and 
repeatable fashion. We conjecture that if we randomly select a circuit from TDOWA, this selection is 
indistinguishable from a random selection from the parent set E (recall that by virtue of 
construction, P’(x) = E(P(x),K), where E ∈ E).  We further investigate whether the selection of P’ 
can be made indistinguishable from a random circuit selection taken from the parent sets of E, 
which include TDOW and from SOW (seen in Figure 67). 

We have two goals based on these foundations. First, if an obfuscator randomly selects a 
bounded size circuit from TDOWA, this selection is indistinguishable from a bounded size circuit 
randomly selected from E.  Secondly, we investigate whether efficient obfuscators exist that 
randomly selects a circuit from TDOWA. The secondary goal has to do with practical 
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implementation of the first and we discuss our initial results toward that aim next. In a sense, the 
second step corresponds with classic efforts to confuse code. While other approaches lack 
structure, in our approach, there is a well-understood goal (randomization) and a metric (non-
linearity). 

5.6.4 Distinguishing Random Selections of TDOWA from PR 

A circuit has input/output mappings that reflect its functional behavior. We summarize such 
mappings by either truth table or the characteristic Boolean function of the circuit in some 
reduced, canonical form. By definition, circuits in the set TDOWA are one-way functions and are 
therefore not analyzable by their input/output mappings—they are indeed hard to learn based on 
their membership in the set of all one-way functions. Given a circuit P” ∈ TDOWA, P”: {0,1}64→ 
{0,1}64, with an appreciably large input size (64 bits) and appreciably large output size (64 bits), 
the truth table for such a circuit P” has 264 rows. Without being able to analyze the input/output 
pairs of circuits in P”, no link to an original P is possible on the basis of input/output analysis 
alone, given that P” = E(P(x),K). An adversary must then analyze circuits that come from the 
family TDOWA using combined static and dynamic techniques.  

 There are uncountably many circuits in the unbounded sets E and TDOWA. Given only circuits 
of size N, E and TDOWA are finite and allow possible uniform selection.  Given a basis Ω, there is a 
large but countable set of circuits of size N or less that implement encryption functionality E and 
that ultimately compose TDOWA. The set TDOWA has large, but finite, cardinality and E is by 
implication much larger.  We stipulate that at least one element of the set TDOWA is selected as 
the first step of a full intent-protection obfuscator: the circuit created by black box protection using 
the Theorem 1 (semantic transformation of P to P” seen in Figure 68-A). However, by applying 
both sub-circuit confusion and diffusion to P” in a round-based, repetitive manner, we select an 
equivalent, random circuit from TDOWA which we refer to as P’ (seen in Figure 68-B).  Note also 
that P” and P’ are semantically equivalent to each other (they come from the same set TDOWA) 
whereas P” and P’ are neither semantically equivalent to the circuit we are interested in protecting 
(P):  P” = P’ = E(P(x),K). 

 Given a mechanism (obfuscator) that randomly selects a circuit from the set TDOWA, we assert 
that such a circuit is indistinguishable from a randomly chosen circuit from the set E. The group of 
all permutations of {0,1}64 is considered large enough to satisfy a brute-force discovery of the key 
(having 264! elements), even though some attacks on DES slightly reduce the number of 
plaintext/ciphertext pairs required to be successful.  We draw a parallel and say that the number 
of representations for circuits that implement P” = E(P(x),K) with characteristically large 
input/output {0,1}64 → {0,1}64 form a pool for random selection. Recall that selection from TDOWA 
does not preserve the original functionality of P, but preserves black box protected functionality. 
In Section 5.5.4, we make an argument for exponential entropy increase in circuits that have 
increasing size and increasingly complex functionality. We show by our empirical experimentation 
that for simple functionality (a single AND), the number of circuits implementing that functionality 
is (exponentially) large.   As the complexity of a circuit’s function increases (i.e., implementing a 
data encryption cipher versus simple AND), we also would expect a corresponding increase in 
the (exponentially) large number of circuit combinations that can implement that functionality.  By 
observation, E and TDOW are much larger than TDOWA.   Our premise is that an adversary, when 
given a random circuit (PR) that implements the one-way function class of E, cannot distinguish 
that circuit from one that comes from the subset TDOWA.  If we can create an obfuscator with such 
properties, we accomplish white box protection. 

5.6.5 Obfuscators that Randomly Select Circuits from TDOWA 

Given a binary string representing a circuit, we define a process that selects legal sub-circuit 
substitutions-permutations that preserve circuit functionality. The resultant binary representation 
reflects these transformations and mimics data plaintext replacement with an equivalent cipher-
text substring. In symmetric, Feistel-based [211] data ciphers, security strength comes from the 
ability to perform key-based operations that are random and uniform across the plaintext. Ciphers 
normally accomplish this one plaintext block at a time and return recoverable ciphertext blocks. In 
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confusion-diffusion approaches, ciphers transform each block by a series of key-based 
operations that include some type of non-linear substitution on small portions of the string (4 bits 
for example) and then permutation across the entire string. 

We leverage non-linear substitution for sub-circuit replacement within a parent circuit. Even 
thought circuits in TDOWA are large, we build the obfuscator to work with fixed (small) size sub-
circuits and create sets (substitution boxes) of circuits that preserve functionality (i.e., produce the 
same truth table or signature). The intuition is that given a bounded size circuit, if sub-circuits are 
randomly chosen and replaced repetitively (up to some number of rounds), the resultant circuit 
has properties consistent with a randomly selected circuit from the pool of circuits TDOWA. 

As the basis for non-linear security properties in DES [212, 213, 214, 215, 216, 217, 218],  S-
boxes transform bit strings from larger to smaller sizes.  In the case of circuits, we replace a 
circuit of some (small) size with an equivalent circuit of closely smaller, equal, or greater size that 
has equal number of inputs and outputs. We assume initially that circuit substitution boxes 
produce equivalent sized circuits.  Cryptographic algorithms based on the strength of non-linear 
substitution also rely on a given number of confusion/diffusion rounds. We define a circuit 
substitution operation as a non-linear equivalent replacement of a sub-circuit and a circuit 
diffusion operation as a substitution that comes because of two different replacement operations.  

Figure 69 shows a notional circuit transformation where two other sub-circuit replacements 
diffuse the original functionality. Beginning with the circuit P” = E(P(x),K), we apply round-based 
sub-circuit selection-replacement so that all gates are considered for replacement at least once. 
Each selection-replacement round within P” is key-based. Unlike block-ciphers, not all sub-circuit 
definition blocks are contiguous. This dictates multiple selection/replacement rounds using 
various (small) input size and output size sub-circuits. A one-time, up-front cost is required to 
create equivalence classes for circuits—much like the requirement to design S-boxes part of 
symmetric data ciphers. 

 
Figure 69: Circuit Substitution and Permutation 

An obfuscator that takes a circuit P” and produces an equivalent circuit P’ based on this 
process produces a string representation of P” with properties consistent to a random circuit.  
Such an obfuscator fulfills the requirements we lay out for full intent-protection (black box and 
white box) in Definition 4 and Definition 12. In particular, the binary string representations of P” 
compared to P’ would map closely to the plaintext/ciphertext pair produced by a symmetric data 
cipher like DES. If the obfuscator functions in this manner, the resultant circuit is indeed 
indistinguishable from a random circuit.  We envision incorporating such a white box protection 
approach into a higher-level algorithm that provides fully general program intent protection, 
illustrated in Figure 70.  We discuss our implementation activities further in Section 5.8 and 
Appendix D. 

The creation process for a randomizing white box obfuscator resembles the DES creation 
process in many ways: we must be able to analyze an implementation in order to measure its true 
resilience. On a theoretic level, we have provided arguments that fully intent-protected 
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obfuscators based on semantic transformation and circuit randomization would defeat combined 
black box and white box analysis attacks.  Given that we pre-construct circuit substation boxes 
(an efficient operation for small circuit sizes), the algorithm for subcircuit selection and 
replacement on P” to create P’ would have similar DES efficiencies for general circuits of 
reasonable size as well.   

 
Figure 70: Circuit Encryption in Context to HLL Code Protection 

By Kerckhoff’s principle (i.e., the adversary has knowledge of the encryption process), we 
prefer a tighter proof that an adversary cannot perform certain (specific) actions.  Particularly, 
when an adversary is given a circuit that by its creation represents a random selection from a 
large population (making it indistinguishable from a random circuit), can we provably assert that 
this random circuit completely prevents the adversary from finding the “seam” that separates 
circuit (program) P from circuit (program) E?  Though fully implementing our randomizing circuit 
obfuscator requires additional future work (and thus future analysis in this regard), we are able to 
provide an alternative theoretical view of white box protection that does prove perfect semantic 
security (even when an embedded-key encryption algorithm is used).  For bounded input-size 
programs and circuits, this methodology not only exhibits provably perfect semantic white box 
security, but also affords practical, real-world implementation (which we accomplish under our 
current work).  We discuss this approach next. 

5.7 Creating Perfect White Box Protection 

In this section, we show how to produce a semantically secure obfuscation for {Pn}n∈N, which is 
the class of programs with input size n.  Unlike other (obfuscation) results, the only definition we 
give for Pn is a polynomially related bound b on the input size such that n, b ∈ N and 2n ≤ nb. 
Given such a bound, we show how to produce obfuscated circuits that are efficient, semantically 
equivalent, and virtual black box protected to the original program. The algorithmic complexity of 
the obfuscation is exponential, but, when bounded polynomially, is practical for a relevant class of 
programs (which we motivate in Section 5.2).  In our formulation, we actually appeal to the VBB 
notion that (any) source code version should not leak more information than a simulator with 
oracle access to the source code. 

To bridge the gap between theory and practice, we address the “best-case” of what can be 
achieved. Turing machines are not physically constructible, even though they represent the 
theoretical underpinning of computer science; any best-case implementation of a Turing machine 
would require a (bounded) limit on infinitely defined tapes. What does the best case, practical 
virtual black box circuit look like from a security perspective? We answer that question by 
considering obfuscators that are based only on oracle-access to a function P, and not the original 
function P itself.  By definition, an obfuscated circuit P’ should not leak any more information 
about P than the oracle of P reveals.  This is our baseline for perfect white box protection as we 
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state in Definition 16 the notion of a bounded input-size program obfuscator.  In Definition 15, we 
give a reminder definition for the negligible function. 

Definition 15. (Negligible Function) Function α: N≈R+ is negligible if, for any positive 
polynomial p, there exists N∈N s.t α(n) < p(n)-1 for any n > N 

Definition 16. (Bounded Input-size Program Obfuscator)  An algorithm O is an 
obfuscator for the class of b-bounded input size programs {Pn }n,b∈N, 2

n
≤ n

b, where P ∈ Pn if: 

1.  Semantic Equivalence: ∀x, P(x) = P’(x), where P’=O(P) 
2.  Efficiency: There is a polynomial l(⋅) such that for every n,b∈N where 2n ≤  nb,  and for 

every P in P, |O(P)| ≤ l(|P|) 
3.  Perfectly Secure Obfuscation:  For any PPT A, there is a PPT simulator S and a 

negligible function α such that for every n,b∈N where 2n ≤  nb, and for every P ∈ Pn  
 
In their argument formulation, Barak et al. acknowledge a valid obfuscation exists for circuits 

in the following manner:  
 
“Note that if we had not restricted the size of the obfuscated circuit O(C), then the 
(exponential size) list of all the values of the circuit would be a valid obfuscation (provided 
we allow S running time poly(|O(C)|) rather than poly(|C|)).” [172] 
   
We explore this statement and define explicitly the constructions related to this possibility.  

The VBB impossibility proofs in general deal with (contrived) functions where the input size is too 
large for practical truth table enumeration—therefore a simulator with oracle access to an original 
program P (defined as SP) can do no better than guessing based on oracle-queries.  We consider 
instead the family of functions whose input size is small and therefore whose input/output 
behavior is not prohibitive for a simulator to enumerate.   

Barak et al. also state that the foundation of (all) of their proofs derive from the “fundamental 
difference between getting black box access to a function and getting a program that computes it, 
no matter how obfuscated” [172].  They go on to state that this difference disappears if the 
function is learnable completely from oracle (black box) queries. Our interest in bounded input-
size programs/circuits is that we (or a simulator) can obtain their truth tables efficiently when they 
have a sufficiently limited input size. 

5.7.1 Existence of 2-TM Obfuscators for Bounded Input-Size Programs 

Since we have already introduced the Barak impossibility proofs earlier in Section 5.3.3, we 
proceed immediately to our interest regarding them: defining a version of the VBB property 
related to a bounded input-size parameter.  Regarding Equation 4 (p. 72), when we bound the 
input size k polynomially, the probability that we can compute the predicates in Equation 4 is 
much different—and this corresponds exactly with what Barak et al. state.  Under a bounded k 
assumptionm, we can distinguish a poly(k)-time algorithm S that has oracle access to Cα,β and 
Dα,β from another algorithm S that has oracle access to Zk and Dα,β.  This is because both 
simulators (SCα,β,Dα,β

  and SZk,Dα,β) can enumerate the truth table for Cα,β or Zk, create a circuit from 
that truth table, and get a decision from Dα,β accordingly (we describe how obfuscators do exactly 
this in the theorems that follow).  Thus:  

 

Equation 7. 1|]1)1(Pr[]1)1(Pr[| ,,, ,, ==−= kDZkDC kSS βαβαβα
, for bounded k 
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Equation 7 shows precisely, given bounded input size k, that the difference between oracle 
black box access and source code access does indeed vanish.  We leverage this fact and 
introduce constructions next that meet the VBB security definition for a useful class of programs 
that we can obfuscate: those with small input size.  This also does not contradict the VBB results 
in [172] at all because functions with enumerable input/output (exactly learnable via oracle 
queries) are candidates for meeting the VBB property. 

5.7.2 Provably Secure Obfuscators for Bounded Input-Size Programs 

In the information theoretic sense, we define perfectly secure obfuscation by information 
gained by a PPT simulator SP that has oracle-only access to some original program P.  If a PPT 
algorithm uses only the information gained from an oracle of P to construct a semantically 
equivalent circuit P’ for P, then it is impossible for any circuit P’ created in a such a manner to 
leak more information than what the oracle for P could give. In particular, an oracle for P 
simulates an algorithm that utilizes the truth table of P.  The existence of such an oracle simulator 
for P assumes that the possible input range of P and its corresponding output can be fully 
enumerated, stored, and accessed.  

We pause to clarify and amplify an oracle’s capability. Classically, an oracle answers 
questions with no notion, reference, or intuition on our part as to how it knows the answer; we 
universally accept that the oracle’s answers are correct. We utilize truth tables in our arguments 
because truth tables capture the oracle’s capability for answering function queries, since each 
answer, essentially, fills in a space in the function’s truth table.  

Some functions are easily learnable (as Barak et al. point out) in that we can learn them from 
partial truth tables. Our results address functions whose truth tables we can completely construct 
in polynomially bounded time from oracle access, and point out that, even for functions whose 
complexity grows exponentially, truth table construction complexity simulates polynomial growth 
for small input sizes. This function class provides the opportunity to observe provably VBB 
protected circuit implementations. These circuit implementations possess [VBB] perfect security 
because, given the circuit Cα,β’s truth table (using an example from the impossibility proofs), we 
can canonically construct a circuit exclusively from that truth table. Since the truth table is 
generated by oracle access and the obfuscated Cα,β’ is generated canonically from that truth table 
also, the circuit can reveal nothing more about the original circuit C than does the oracle. This 
concept is illustrated and leveraged in Theorem 3. 

A natural question to ask is: “How does protecting a circuit whose truth table can be computed 
provide security?” As we mention in our review of obfuscation security models, a well-
demonstrated value exists for obfuscation models that operate on semantically non-equivalent 
versions of programs and circuits. In our ideal black box construction (under Theorem 1), we 
protect the truth table for the obfuscated circuit via black box semantic transformation, and thus 
do not reveal anything about the original circuit’s I/O. Moreover, the canonical circuit construction 
described in Theorem 3, when used as an obfuscation technique, reveals nothing about the 
original circuit structure, thus providing perfect white box protection.  

Theorem 3. Perfectly secure white-box obfuscators exist for b-bounded input-size 
programs (under Definition 16). 

 

Proof: Our proof is by construction. We give a three-step obfuscator O(P) that takes any 
executable program P, generates the truth table from oracle access to P, and applies a 
Boolean canonical reduction on the truth table to produce a circuit that is semantically 
equivalent to P.  Assume n is the input size of P and let 2n ≤ nb, for some user specified b.  
Then: O is a b-bounded input-size program obfuscator for the class of programs {Pn}n,b∈N, 

2
n

≤ n
b, for any P ∈ Pn, under the following construction: 

 

Step 1.  Using P, acquire or create SP as an efficient oracle emulation of P. 
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Step 2.  Generate the truth table for P, T(P), by running SP on all 2n inputs of P. Given P: 
{0,1}n → {0,1}m, T(P) is the m⋅2n size matrix of input/output pairs obtained in the following 
manner:  ∀x, [x,y] = [x, SP(x)], where SP is a PPT simulator with oracle access to P. 
Step 3.  Create circuit P’ by applying the algorithm for canonical complete-sum of products 
[219, 220] to T(P).  P’=∑i=1,…,n πi, is in disjunctive normal form (DNF) where each product πi 
is a conjunct of literals and each literal is either an input variable xj or its negation x’j (1 ≤ j ≤ 
n). Minimize P’ via minimal-sum of products algorithm such as Blake’s reduction based on 
Shannon’s recursive expansion.  
 
1.  P’ is perfectly secure with respect to P. Since P’ = O(P), T(P) is fully derivable given P 

assuming some polynomially bound b on input size n.  Given bounded size, the 
following relationship holds between any PPT simulator SP and obfuscator O. Both can 
derive T(P) and thus a canonical circuit for P in polynomially bounded time.  

            )(]1))1(Pr[]1))((Pr[ nSPOA nP α≤=−= , for bounded n 

     Because the adversary may query the obfuscated program in polynomially bounded 
time and derived the full truth table, T(P), then Pr[A(O(P)) = 1] = 1.  Because the 
simulator, given black box access to P, may use polynomially bounded time black box 
queries and derive the full truth table, Pr[SP(1n)) = 1] = 1.  Thus, the two can distinguish 
properties of P with equally likely probability and thus with negligible difference. 

2.  For ∀x, P(x) = P’(x). By construction, P' precisely implements T(P). 
3.  There is a polynomial l(⋅) such that for every n,b ∈ N where 2n ≤ nb,  and for every P in 

P, |O(P)| ≤ l(|P|).  In the worst case, a complete sum-of-products expansion is 
composed of m outputs consisting of up to 2n minterms composed of up to n-1 products 
(AND) and up to 2n-1 summations (OR). The maximum size, m2n(n-1)(2n-1), is O(2n) 
while the minimal possible size is Ω(m)—representing where each output is constant 0. 
By bounding the input size of program P with b, the size for the complete sum of 
products expansion circuit becomes O(nb).  We would not (in practice), use the 
complete sum of products expansion because much more efficient representations are 
possible.  From the security aspect alone, however, any more-efficient derivation of the 
complete sum of products circuit retains the perfectly secure obfuscation (hiding) 
property.   

4.  The minimal SOP expression of P’ is polynomially equivalent in input-size to the original 
P related to some polynomial bound b, because n = |xP| and |P’| ≤ nb. 

 
We point out that obfuscators constructed under Theorem 3 produce perfectly white-box 

protected circuits (in the information theoretic sense) from bounded input-size programs, but 
assume nothing about the hardness or difficulty of learning the original program P.  If the 
input/output of P (and thus any semantically equivalent version of P such as P’), reveals the intent 
or function of P, then no degree of white-box hiding can prevent the adversary from learning the 
function of P from the input/output relationships of P’ (we state this precisely in Lemma 2).  The 
truth-table derived construction of Theorem 3 perfectly hides only the algorithmic construction of 
P—and nothing more.  

5.7.3 Perfect Obfuscation in a Private Key Setting 

In the VBB constructions, P is assumed to be a function whose input/output behavior is hard 
to learn to begin with. However, constructions under Theorem 3 point out two useful practical 
realizations when used in context to hard-to-learn, one-way, pseudorandom functions: truth-table-
based circuit derivations provide a method to hide embedded encryption keys programmatically 
and perfectly secure obfuscated private-key encryption schemes are possible where the 
(unpadded) input size (of the plaintext) is bounded.  
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Several block-cipher-based, private-key encryption schemes exist with pseudorandom 
properties.  The hardness of key recovery and the one-way properties of ciphers such as DES 
are well established and pseudorandom properties of the DES family is discussed by Bellare et 
al. in [221] and Goldreich in [188]. Our interest in the DES family of functions, including variants 
such as 3-DES, is the comparatively small block size of the plaintext (64 bits).  Though the virtual 
key size of 3-DES is larger than 56 bits, we focus on DES nonetheless with its standard 56-bit 
key space.  

Definition 17.  (Private-key Block Encryption Program Obfuscator) The tuple of PPT 
algorithms (KG,E,D,O) enforces perfectly secure obfuscation in the private-key setting with 
security parameter k and block-size m for the class of programs {Ek,m} where E ∈ Ek.m if: 

1. Private Key Encryption: (KG,E,D) defines a pseudorandom private-key block 
encryption scheme with block-size m and security parameter k:  

KG: a probabilistic algorithm which picks K (on input 1k, produces key K); assume 
KG never produces “weak” keys  
E: {0,1}k x {0,1}m → {0,1}m, on input K ∈ {0,1}k and plaintext message M ∈ {0,1}m, 
produces ciphertext C ∈ {0,1}m  
D: {0,1}k x {0,1}m → {0,1}m, for all )1( kR KGK ⎯⎯← and M ∈ {0,1}m, DK(EK(M)) =M 

2. Semantic Equivalence:  Given )1( kR KGK ⎯⎯← and program E∈ Ek.m,∀x, E(K,x) = 
E’(x), where E’=O(K,E)=EK(·) 

3.  Efficiency: There is a polynomial l(⋅) for every E in Ek.m |O(K,E)| ≤ l(|E|) 
4. Perfectly Secure Obfuscation:  For any PPT A, there is a PPT simulator S and a 

negligible function α such that for every for every E ∈ Ek.m and for every 
)1( kR KGK ⎯⎯←  

)(]1))1(,Pr[]1)),((,Pr[ nSEEKOAE mEK α≤=−=  

We assume any distinguisher does not have access to the private key K but has 
knowledge of the encryption program E. 
 
In Definition 17, we specify the requirements for an obfuscator of block-based private-key 

encryption schemes (such as DES), that provides a semantically secure hiding of an encryption 
key. In essence, the obfuscator O(K,E), under this definition, takes a private-key K and block 
encryption algorithm E(K,·) and returns EK(·) such that no key-recovery attack can reveal the key 
K based on analysis of the source code/gate structure of EK. Theorem 4 now gives the 
formulation for obfuscating a key-embedded block cipher under the construction of Theorem 3.   

Theorem 4. Perfectly secure obfuscators exist for b-bounded input-size private-key block 
encryption programs. 

Proof: Our proof is by construction. We give a three step obfuscator O that takes 
)1( kR KGK ⎯⎯←  and block-cipher program E with block-size m and key-size k, generates the 

truth table from oracle access to E(K, ·), and applies a Boolean canonical reduction on the 
truth table to produce a circuit E’ that is semantically equivalent to E(K, ·). 
 

At this point, we distinguish between the block-size of cipher E which is m and our desired 
(bounded) input-size n.  We establish that n ≤ m and 2n ≤ nb for some user specified b.  
Where n = m, no padding of the input is necessary for E(K,M).  Where n = m is too large 
for a user chosen bound b (meaning there are not enough computational resources 
available to achieve truth table elaboration or the reduced sum-of-products circuit 
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derivation), an input size reduction is necessarily in order to meet the efficiency 
requirements for a polynomial bounded circuit size on E’ or polynomial time speed for O. 
Where n < m, we must choose whether to pad with m - n zeros or to pad with a (randomly) 
chosen m - n bit string.  We assume padding with 0 for simplicity at this point but point out 
that our plaintext message space is now {0,1}n as opposed to {0,1}m.  The security 
ramifications where the adversary knows that a (possibly) reduced (virtual) block size is 
being used is a separate but related discussion to whether the adversary can recover the 
key K when given the source code (gate structure) of E’.  
 

Let circuit E’ = O(TEK)= O(K,E) be an obfuscation of the encryption program E with 
embedded key K (i.e. E' retains the functionality of E(K,·)) where TEK is the truth table of 
E(K, ·). Assume m is the input size of E and n is the virtual (unpadded) input size of the 
plaintext where n ≤ m and let 2n ≤ nb, for some user specified b.  Let TEK be generated 
through the PPT simulator SE.  
 

Then: O is a b-bounded input-size private-key block encryption program obfuscator for the 
class of programs {En}n,k,b∈N, n≤m, 2

n
≤ n

b, for any E ∈ Ek.m 
 

Given E ∈ Ek,m and )1( kR KGK ⎯⎯←  

Step 1.  Acquire an efficient implementation of E, SE, to use as oracle emulation.  
Step 2.  Generate the truth table for E(K,·), TEK by running SE on all 2n inputs of E, where n 
is related to the polynomial efficiency bound b. Where n < m, pad each input with m-n 
zeros. 
Step 3.  Create circuit E’ by applying the algorithm for canonical complete-sum of products 
to TEK.  E’=∑i=1,…,n πi, is in disjunctive normal form (DNF) where each product πi is a conjunct 
of literals and each literal is either an input variables xj or its negation x’j (1 ≤ j ≤ n). 
Minimize E’ via minimal-sum of products algorithm such as Blake’s reduction based on 
Shannon’s recursive expansion.  
 

From Theorem 4, E’ has the same characteristics based on its construction and meets 
requirements for semantic equivalence, efficiency, and perfectly secure obfuscation. 
 
Consider, for example, that we could easily encrypt the output of our sensor from Figure 52, p. 

66, using an embedded-key DES program because the sensor outputs 64 bits of data at a time 
(which matches the block input size of DES). We could then send the encrypted computational 
result DESK(sensor(x)) back to the processing facility, decrypt the output using the private key K, 
and then analyze the true sensor data.  The only stipulation given under Theorem 4 is that we 
have computational resources related to the bound b such that 232 < 32b.  The primary limiting 
factor is the input size of the sensor since the size of circuit is related only polynomially to the 
number of outputs (which would be a factor of the encryption algorithm E). If there are adequate 
computational resources to accomplish the truth table enumeration for the 32-bit input / 64-bit 
output matrix, then circuit E’ can be constructed and a perfectly secure key-embedded circuit can 
be used in the sensor.  
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Figure 71: Bounded-Size Input DES 

Assume that the output of the sensor described in Figure 52 were 32 bits instead of 64.  We 
now must consider that only 32 bits (not the total 64 bit block size) of DES are under 
consideration.  Figure 71 illustrates the issue of key recovery attacks and puts this in perspective 
of a DES program that takes messages that are 32 bits long. Here, the job of the adversary is to 
find the one truth table out of the approximately 256 possible truth tables (excluding those based 
on weak keys) that is based upon the specific K that is embedded in E’.  For our specific sensor 
example, each truth table is a possibly 232 enumeration (versus a 264 enumeration) of entries 
corresponding to each message/ciphertext pair.   

The obfuscators defined under Theorem 4 need only produce one of these truth tables in 
order to embed the key with perfect semantic protection in the circuit E’. The adversary (on the 
other hand), must enumerate up to 256 such truth tables in order to use the circuit E’ to pinpoint 
the particular key K embedded within. Because of the construction process for circuit E’, which is 
based only on the input/output relationships of an embedded-key encryption operation, the 
adversary cannot discover the key K by examination of the actual gates of circuit E’.  In fact, the 
gates of E’ yield only semantic information concerning the input/output behavior of EK, and 
nothing more. The adversary can do no more than observe input/output pairs which are obtained 
from execution of E’ itself: this describes both the intuitive and theoretical notion of a virtual black 
box. 

Given a possibly reduced message space, we relate the security of the circuit E’ more to the 
key-space of DES than to the reduced message space 2n versus 2m. We can leverage this 
observation and replace the DES56 program with 3DES56, AES128, AES512, RSA512, RSA1024, or 
even an RSA2048 variant.  In each replacement just mentioned, the efficiency of the obfuscator 
under Theorem 4 given a bounded input size (32-bits in our example) increases only in 
relationship to the additional running time incurred by the oracle for each prospective encryption 
algorithm to generate one truth table.  The circuit size of E’ does not vary based on the encryption 
algorithm chosen other than a linear variation based on additional output bits (64-bits versus 128, 
512, 1024, etc.).  We can use public key encryption algorithms under this same construction with 
both public and private keys held private—especially in the computational model of a sensor net 
because the execution environment of the program (the sensor) does not require decryption of 
the data it is processing.  

 
 

Circuit P’ 

P” =P | E 

 
Figure 72: Fully Generalized Bounded Input-Size Program Obfuscation 
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5.7.4 Protecting Bounded Input-Size Programs with Easily Learnable Input 

Consider now a sensor that takes in 32 bits of data and produces 32 bits of input: an 
adversary may observe much less than 232 input/output pairs of the sensor in order to adequately 
determine the programmatic intent of the sensor and therefore find an (effective) way to subvert 
it.  Theorem 5 provides a basis to consider any bounded input-size program P that has (easily) 
learnable input/output patterns versus one-way relationships (like DES56) that we assume to have 
provably hard-to-learn I/O.  Figure 72 gives a notional / specific view of this construction using a 
program P and a 3DES encryption algorithm.  In this construction, we create circuit P’ as a 
concatenation of the output of program P with a data encryption cipher E (which is a 3DES cipher 
that uses 2 keys in E-D-E relationship).  As illustrated, P is a function P: {0,1}|xP| → {0,1}|yP| and E 
is a function 3DESK1,K2: {0,1}64 → {0,1}64 with two embedded keys.  We assume the output size of 
P, |yP|, is less than or equal to the input size of E (which for 3DES is 64 bits).  The circuit P’ is a 
concatenation of P and E that then becomes a virtual black box, such that for all input x, P’(x) = 
3DESK1,K2(P(x)).  

In Theorem 5, we extend the results of Theorem 1 (which is a provable black box 
construction) and incorporate a provable white box construction based on VBB.  The 
constructions of Theorem 5 provably meet the definition of full intent protection under our 
Definition 6. To distinguish our approaches, the circuit randomization methodology we define in 
Section 5.6 is not VBB-based, but rather random program model based.  We note that Ostravsky 
and Skeith define similar public key encryption-program-padding obfuscators in [171] with follow 
on work by that implements such constructions in obfuscated mixnet programs.  We provide now 
the definition and theoretical construction that would take any bounded-input size program P with 
easily learnable I/O and concatenate the output of that program with an embedded-key strongly 
pseudorandom encryption algorithm (producing P”).  Then we white box protect that program with 
canonical circuit reduction to produce P’.  We only specify the symmetric/private-key block cipher 
variant and follow the construction for obfuscated mixnets given in [195]. 

 
We let P | EK refer to the concatenation of program P with the program E such that (P | 
EK)(x) = EK(P(x)), for all x. Let P be defined as function P:{0,1}n → {0,1}|yP| and E: {0,1}k 

x{0,1}m → {0,1}m.  Let P | EK for encryption algorithm E with embedded key K be defined as 
P | EK: {0,1}n → {0,1}m. 

Definition 18.  (General White/Black box Obfuscator for Bounded Input-size 
Programs) For PPT algorithms KG,E,D,O, obfuscator O provides perfectly secure 
obfuscation for the class of b-bounded programs{Pn}n,k,b∈N,n<m, 2

n
≤ n

b where P ∈ Pn if: 

1. Private Key Encryption: (KG,E,D) defines a pseudorandom private-key block 
encryption scheme with block-size m and security parameter k under Definition 2. 

2. Semantic Equivalence:  Given )1( kR KGK ⎯⎯← and program P∈ Pn,∀x, P(x) = 
DK(P’(x)) where P’= O(K,P,E). Furthermore,∀x, P’(x) = EK(P(x)).  

3. Generality: (|xP| = n) ≤  m, for all E ∈ Ek,m under Definition 17 
4.  Efficiency: There is a polynomial l(⋅) for every P in Pn, |O(K,P,E)| ≤ l(|P|) 
5.  Perfectly Secure Obfuscation:  For any PPT A, there is a PPT simulator S and a 

negligible function α such that for every n, b ∈ N where 2n ≤  nb, and for every P ∈ Pn 

and for every )1( kR KGK ⎯⎯←  

)(]1))1(,Pr[]1)),,((,Pr[ nSEEPKOAE nEK α≤=−=  

Theorem 5. Perfectly secure obfuscators exist for b-bounded input-size programs with 
easily learned I/O relationships. 
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Proof: Our proof is by construction. We give a three-step obfuscator O() that takes as 
input )1( kR KGK ⎯⎯← , a block-cipher encryption program E with block-size m and key-
size/security parameter k, and a b-bounded program P with input size n and output size 
|yP| ≤ m, and where 2n ≤  nb, for some user defined b. Let circuit P’ = O(K,P,E) be an 
obfuscation of any general program P with these constraints such that ∀x, P(x) = DK(P’(x)) 
and, ∀x, P’(x) = EK(P(x)).  
 
Construct P’ = O(K,P,E) in the following manner: 

Step 1. Given )1( kR KGK ⎯⎯← , let P” = P | EK. Acquire an efficient implementation of 
ORACLEP”  to use as oracle emulation. 
Step 2. Generate the truth table T(P”) by executing ORACLEP”(x) = E(K,P(x)) for all 2n 
possible inputs x of P.  Where |yP| < m, pad the output of P(x) with m - |yP| zeros.  
Step 3.  Create circuit P’ by applying the algorithm for canonical complete-sum of products 
to TP”, as defined in Theorem 3. Minimize P’ via a standard 2-level Boolean circuit 
reduction technique.  
 
Then:  

1.  E is hard to learn and therefore P” and P’ are hard to learn from black box 
observation alone. However, recovery of any intended output of P (which is easy to 
learn) is possible because ∀x, P(x) = DK(P’(x)) = DK(EK(P(x)).  Thus, the semantic 
equivalence between P’ and P is established.  

2.  P’ is a perfectly secure obfuscation with respect to P and the embedded-key 
encryption algorithm EK because P’ is produced only from oracle access to P” = P | 
EK. 

3.  |P’| is poly-(n) given bound b. 
4.  O is a general, efficient obfuscator for any program P that runs in poly-(n) time, 

given a bound b related to the input size of P.  P’ is roughly equivalent in efficiency 
to P. The minimal SOP expression of P’ is polynomially equivalent in size to P 
related to some bound b, because |P’| ≤ nb.  Note that the size characteristics of P’ 
are related to the input size of P and not the possible input size of E.  

5.8 Implementation Work 

We describe briefly the circuit construction and manipulation architecture that supports our 
research results.  Figure 73 provides a high-level overview of the software pieces in our 
architecture that implement perfect white box protection methodology outlined in Theorem 5.  We 
have built several software pieces (GENINPUT, PAD, CANONICAL, CIRC2PROG, BENCH, etc.) 
that work together as an end-to-end program encryption architecture. We describe their 
interactions next. 

We first provide a capability to generate binary input, either padded or unpadded, for some 
inputs size n (GENINPUT).  Given a generic program P (p.exe) with bounded input size, we 
enumerate all inputs for P using GENINPUT and then execute P (p.exe) on all inputs.  We take 
the (binary) output of P and provide a padding mechanism (PAD) to configure the output of P to 
match the candidate encryption algorithm E (3DESBIN in Figure 73).  Using an encryption 
algorithm, we generate a pseudorandom key choice and keep the key private.   In our illustration, 
the 3DES algorithm uses three keys, so we provide three embedded private-keys to the 
application 3DESBIN.  Using the (padded) output of P (p.exe) generated by elaborating all 
possible inputs to P, we now execute all outputs of P on the encryption algorithm (3DESBIN).  
Using the input of P (p.exe) and the output of E (3DESBIN), we now have a full truth table 
relationship for P” = E(P(x), K) for all x.  
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Using the truth table relationships for P” (P”.TT.TXT), we use a program CANONICAL to 
generate a BENCH circuit specification based on the complete sum-of-products form.   Future 
work will address reductions on this specification.   This specification now represents a fully black 
box and white box protected version of P, with respect to recoverability of encrypted output 
related to E.  We then use the circuit specification (P’.BENCH) as input to our program 
CIRC2PROG.  This program takes a generic BENCH specification and produces a C++ 
specification that implements the same I/O functionality.  This C++ specification (P’.CPP) can 
then be compiled using the native O/S compiler to produce an executable program (p’.exe).  
p’.exe represents a provably secure, efficient given bounded input-size, white box and black box 
protected version of program p.exe. 

 

 
Figure 73: Architecture for General Program Intent Protection (P.exe→  P’.exe) 

We discuss our implementation work further in Appendix D and note that this architecture 
provides an end-to-end native binary transformation for any generic executable program p.exe to 
a perfectly intent protected executable version p’.exe.  

5.9 Chapter Summary 

We present in this chapter a number of novel techniques for end-to-end program encryption to 
support provably secure program intent protection.  We give some of the first results in the field 
that tie cryptographic primitives such as data encryption and randomization directly into 
obfuscation.  We also provide one of the first proposed obfuscation security models with a 
measurable cryptographic basis (random programs).    

Our program encryption results provide several positive indications that we can intent protect 
program securely.   We pose three different program intent-protection methodologies in this 
chapter and summarize their results in Table 20.  Section 5.4 introduces a perfectly secure black 
box obfuscation approach that is general and efficient for all programs (depicted as Semantic A | 
B in Table 20).  Of course, adversaries will exploit the knowledge of our method (concatenating 
an encryption cipher to the protected program) will and utilize that during white box analysis 
attacks.     

Section 5.6 introduces a methodology (depicted as Randomized A | B in Table 20) based on 
the random program security model (introduced in Section 5.5) to combat such white box 
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analysis.  The approach uses a non-VBB method of circuit randomization to make the resulting 
protected circuit (program) hard to distinguish from a random circuit.  If an adversary can tell 
nothing more from a protected circuit than the information gained from analysis of a random 
circuit, then we achieve white box protection.   The method is both general and efficient, but for 
small sizes, the probability increases that an adversary can discern seems between two 
concatenated circuits. 

Section 5.7 introduces a second white box methodology related to VBB (depicted as 
Canonical A | B in Table 20).  In this approach, we absolutely hide all semantic information of the 
concatenated circuit (A | B) for general programs.  However, the methodology only works for 
programs with bounded input-size.  This method holds great promise for a relevant class of 
programs with typically small input-size: they can enjoy perfectly secure intent protection.  This 
method also provides basis for provably hiding small data constants within a program (including 
embedded keys).   We demonstrate that for encryption algorithm with bounded-input size, we can 
securely embed a private key using this methodology. 
 

Table 20: Program Encryption Results Overview 
 XA   YA =  XB   YB Security Practical 
Canonical 
Form A | B 

Reveals There is a very high improbability that 
any subcircuit of C contains any 
representation of variation of the 
circuit A: {0,1}|X|→{0,1}N 

Reveals Strong Difficult to 
create 
(exponential) 

Randomized A 
|  B  

Reveals The likelihood of YA or XB being 
recognized is based upon an 
intractability argument for circuit 
analysis. There is some probability 
that the end of A or the beginning of 
B can be calculated based on a 
randomized equivalent version of A | 
B, but the probability of detection 
decreases only as the circuit size of 
C increases. 

Reveals Size 
dependent 

Polynomial or 
linear time to 
create 

Semantic 
A |  B 

Reveals It is very probable that (with the 
knowledge of how C is constructed 
via A | B),  subcircuits or some 
variation of the subcircuits A: 
{0,1}|X|→{0,1}N and B: {0,1}N → {0,1}M 
can be distinguished with A | B 

Reveals Weak Very easy 
(linear) time to 
create 

 
We provide conclusions concerning our research work next. 
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CHAPTER 6  
 

CONCLUSIONS 

Mobile agent security presents us with many hard problems to solve.  Most researchers 
attribute security as the top reason why mobile agents failed to achieve commercial or wide scale 
implementation.  The malicious host problem is not unique to mobile agents though.  The problem 
finds parallel manifestation in other secure function evaluation schemes.  We motivated our initial 
work with mobile agent security by trying to solve periphery problems that occurred in specific 
implementations.  Our initial labors led us to consider multi-agent architectures for solving certain 
nagging problems related to colluding malicious hosts.  The question of protecting the agent’s 
privacy, even when architectural solutions can enforce other specific security requirements like 
integrity, always come back to haunt you.  Based on the most promising approaches for providing 
that level of security, we naturally focused our work on secure multi-party protocols and schemes 
for secure function evaluation. 

As our research progressed, we considered the current work on obfuscation and their 
associated impossibility results.  This painted a bleak landscape for applying obfuscation 
techniques to mobile agents with any expectation of provable security.  Where we found our 
greatest impact was considering obfuscation and obfuscation security under a different model.  
Particularly, we understood that program intent protection was the primary security goal that 
mobile agents required.  If malicious parties cannot alter the code or game the input to produce 
their (desired) result or output, then we have won the code protection game in malicious 
environments and any other security requirements we enforce are bonus.    

Our main contribution involves several definable security properties that we produce 
concerning code security in remote environments.   In spite of impossibility results, we created a 
security model that describes code protection properties (particularly in mobile environments) with 
provably security.  The fruit of our efforts culminate in the research results we present here and 
the several proofs we give for provable code security in Chapter 5.  

Specifically, we prove that black box protection is general, provably secure, and accomplished 
(relatively) efficiently.  Black box code protection derives from the underlying semantic security of 
data encryption algorithms themselves. As far as we know, our semantic encryption 
transformation methodology was the first black box obfuscation approach with provable security 
properties and strong cryptographic basis.   It is simple in its design because it involves 
composing the output of one (protected) program functionality with a (secure) data encryption 
cipher. 

As our research progressed further, the next natural question that arose was, “If you compose 
two programs together, how can you hide the seam between the two?”  The answer to this 
question relies on the ability to provide (provably) secure white box protection.   A provably 
secure white box protection mechanism is equivalent to providing a provably secure virtual black 
box code version.    Since theoretical VBB is a flawed model for describing obfuscation security 
strength, our research led us to consider cryptographic primitives such as randomization as a 
basis for security.  With randomization and the assumed existence of pseudorandom number 
generators, we make an appeal for the existence of random programs, random circuits, and 
pseudorandom program generators.   

In describing obfuscators that incorporate randomization into their program protection model, 
we further considered other natural cryptographic constructions including permutation/substitution 
ciphers.  We leverage such algorithms used by strong symmetric ciphers based on diffusion and 
confusion of data and key material and produce a methodology of randomizing, sub-circuit 
substitution and replacement, circuit encryption obfuscators.   Using the random program model, 
we demonstrate that an indistinguishability argument is the basis for semantically strong white 
box protection.   We also specify how we can employ circuit randomization techniques to produce 
the white box property. 
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The question of whether we can provably hide the seam between one program and another, 
however, relates directly to the size of a program itself.  Randomness properties emerge only as 
string sizes increase.  Likewise, we wanted to prove that no seam detection between two 
programs is possible at all, even when program sizes are small or one program (the encryption 
program for example) has distinct properties that no degree of randomization can remove.  In 
seeking to hide the seam between two programs, our investigation produced a perfectly secure 
white box protection method that is applicable to a relevant number of program classes.  Unlike 
our first white box approach, we prove under VBB assumptions that the information contained in 
white box obfuscated circuit leaks no information about the original circuit, other than its input / 
output relationships.   

Our perfect white box protection scheme is general, but unfortunately not efficient for all 
programs as our black box technique and randomizing white box technique are.  However, when 
we incorporate our black box methodology, we can prove perfect semantic security for an 
obfuscated circuit or program.  This result culminates from a long history of intermediary findings, 
but is one that can allow the development of future, secure mobile agent applications.  For 
programs with bounded input-size, white box protection is both efficiently feasible and provably 
secure.   

The provably secure white box results also provide a companion result significant to the 
security community.  This approach proves that we can hide an embedded key within a program.  
Such a technique foundationally addressed how to convert a private key system into a public key 
system.  The only stipulation, again, is that we must assume reasonable, bounded input sizes for 
the data cipher.  Given such assumptions, though, this technique is one of the first demonstrated 
approaches for securing embedded-key ciphers and applications. 
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APPENDIX A 
 

COMPREHENSIVE SURVEY OF MOBILE AGENT SECURITY 

We provide in this appendix a comprehensive review of mobile agent security.  We review first 
defensive mechanisms that protect the host (Appendix A.2) and agent (Appendix A.3). We review 
agent data-protection mechanisms in Appendix A.4 and discuss the integration of secure multi-
party computation techniques with mobile agents in Appendix A.5.  We discuss multi-agent 
approaches and their applicability to enhancing mobile agent security in Appendix A.6. We cover 
background material and related trust infrastructure research in Appendix A.7.  We give an 
overview of software protection techniques related to mobile code privacy in Chapter 3.  We also 
provide technical reports that catalogue mobile agent security techniques in [222] and describe 
integration of trust integration in [152].  

A.1 Evaluating Agent Security Mechanisms 

Section A.4 details numerous security mechanisms relevant to protecting partial results.  As 
we look towards mechanisms that meet various requirements for securing both mobile agents 
and hosts, we consider the evaluation criteria useful for reviewing such frameworks.  Mechanisms 
for security in any field introduce overhead and we should weigh heavily such considerations for 
mobile agent security.   The highest levels of security often bring with them the highest overhead 
in terms of cost, lost flexibility, and performance degradation.  

A  mobile agent system may not require every form of protection offered. Some protection 
schemes are mutually exclusive as well—for example, free-roaming itineraries preclude solutions 
that require knowledge of all hosts to be visited. Some defense mechanisms are only notional 
and have no current usable implementation and some still have serious issues that limit their full 
realization.  As such, metrics need to be considered in a taxonomy for requirements.  Evaluation 
criteria can help determine the effectiveness of one criterion over another and address issues of 
efficiency, integration, and cost.  There are three considerations when examining agent-based 
security mechanisms in the mobile environment, discussed next. 

First, what is the performance cost of any added security mechanism?  This cost can 
include increased size of the migrating agent, increased network bandwidth, increased number of 
messages, increased number of agent migrations or host visits, increased host-processing time, 
increased computational complexity, and increased overall job time. For example, Gunupudi and 
Tate [223] evaluate four different protection mechanisms that provide data integrity and 
encapsulation.  They characterize computational time and data growth size for each scheme and 
provide simulation-based evidence that a new scheme (modified set authentication codes) 
provides greater efficiency in certain dimensions. The hash chaining mechanism (discussed in 
Section A.4.8), for example, is expensive in data growth when compared to other approaches.  

Cryptographic primitives come with various overhead.  Symmetric key cryptography offers the 
greatest efficiency in terms of computational processing for mobile agent security, but it incurs 
overhead for key distribution and maintenance.  Asymmetric key cryptography requires greater 
computational overhead but is easier for key distribution itself.  On the other hand, public keys 
require certificate verification and this normally incurs the overhead of a public key infrastructure 
(PKI) with some form of certificate authority (CA) for scalability.   

Sobrado [224] compares the security overhead of keying mechanisms in two different agent 
protection schemes.  His work analyzes one-time symmetric keys versus asymmetric 
public/private keys and the associated cost of computing encryption and signatures over parts of 
the agent data.  Sobrado makes a case for the flexibility of the public key approach in this case, 
citing the fact that the originating host in the symmetric case can only verify code and data but 
honest hosts could provide detection for the agent when asymmetric crypto is used.  

In terms of evaluating the actual security strength for a given mobile agent framework, 
Fischmeister et al. [225] provide security analysis of three separate mobile agent frameworks 
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(Aglets, Jumping Beans, and Grasshopper).  Security weaknesses exist in all three middleware 
systems including authorization attacks, code repository attacks, interface attacks, runtime 
system calls, and trusted code base attacks.  Likewise, Altmann et al. [66] compare performance 
and security tradeoffs of various mobile agent frameworks while Milagres et al. [226] give an 
example of security analysis for an existing multi-agent architecture. Bellavista et al. [64] review 
security mechanisms for the Condordia, Voyager, Aglets, D’Agents, Ajanta, MARISMA-A, SOMA, 
Grasshopper, and NOMADS mobile agent system. Roth [109,112] performs protocol analysis of 
several data protection mechanisms to show their security vulnerabilities by proof and then 
proposed remedies for each protocol. 

Agent architectures often use multiple classes of agents to enforce security, including our own 
concept for data integrity via multiple cooperating agents [142, 227]. Performance issues involve 
additional message overhead between cooperating agents and increased migrations for any 
mobile agent classes involved.  We find multi-agent system evaluations in current research and 
detail them in Section A.6. To decide whether mobile agents are more efficient than static multi-
agents, we can evaluate different architectures appropriately.  For example, O’Malley et al. [228] 
conduct a simulation-based appraisal to determine whether multiple static agents are better than 
multiple mobile agents.  The performance results in their simulation indicate mobile agents 
offered slight but reasonable advantages over static configurations of agents performing similar 
tasks.  What Kotz and Gray [59] give as assumptions (mobile agents are advantageous for 
performance reasons), Gray et al. [10] also support later via analysis and simulation. 

 

Table 21: Security Evaluation Criteria 

♦ Location of security mechanism  (host, agent, trusted third party, agent owner) 
♦ Form of security mechanism (centralized, distributed) 
♦ Individual host execution time 
♦ Overall job execution time 
♦ Flexibility of cryptographic approach 
♦ Vulnerabilities of security approach 
♦ Size of agent data state growth 
♦ Communication/network bandwidth 
♦ Number of messages and migrations 
♦ Complexity of solution 
♦ Requirements coverage of security mechanism 
♦ Expressiveness of the security policy 
♦ Ease of integration with existing security 
♦ Customizability 
♦ Agent user, framework implementer, host operator transparency 
♦ Physical cost 
♦ Learning and adaptability based on historical data 
♦ Auditing capability 
♦ Platform independence 

 
The second consideration when evaluating agent security mechanisms is: What is the 

increased physical cost? Classically, the use of trusted hardware solutions (detailed in Section 
A.3.19) represents the highest level of protection achievable for mobile agent applications. 
Unfortunately, the cost of deploying such solutions in a large ubiquitous network environment like 
the Internet is not feasible and cost prohibitive.  Other application domains, like the military or 
specialized corporate settings, may be able to support such costs. Physical cost may also be 
measured in terms of licensing and maintenance of agent frameworks themselves, especially 
when security solutions may involve tasks such as proof construction, low level code 
manipulation (assembly level), or formal analysis.  

Lastly, the final consideration is: What is the increased reliance on proprietary solutions?  
In many cases, mobile agent security mechanisms are typically monolithic and without 
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consideration for integration into real world infrastructures.  Trusted hardware, trusted third party 
software services, non-standard cryptography approaches, and the introduction of fixed non-
interoperable software architecture are all roadblocks to greater acceptance of mobile agents in a 
wide domain.  However, such solutions may be the only way implementers can achieve certain 
levels of security when deploying a mobile agent application.  We present a summary of criteria in 
Table 21 for reference and use categories found in other tutorials such as [229].  

Though not exhaustive, criteria in Table 21 form a reasonable collection of considerations for 
application creators and system developers.   We implement agent mobility (depicted as part of 
our taxonomy in Figure 12) by agent middleware and agent middleware uses or implements one 
or more security mechanisms.  Middleware implementations address a subset of security threats 
and security requirements by using some set of security mechanisms.  We now provide a review 
of these mechanisms—host-based protection in Section 2.3 followed by agent-based protection 
in Section 2.4. 

A.2 General Host Protection 

The host platform defense against malicious mobile code is a combination of trade-offs.  Host 
platforms find it difficult to discerning program intentions or rely on a trust relationship from 
unknown code.  Mechanisms used to prevent malicious agent behavior can often restrict mobile 
code with good intentions while failing to discern and restrict hostile code [137]. Malicious code 
defense mechanisms fall into seven categories (listed in Table 22).  Host middleware typically 
enforce specific security requirements (see Table 3, p. 9) by use of one or more of these 
mechanisms. Host protection ultimately seeks to limit the overall power of the execution 
environment while reducing the overall vulnerability of a host to a malicious mobile agent. 
Sometimes these are competing goals where we middleware must sacrifice one for the other.   

Table 22: Host Protection Mechanisms 
Section Mechanism 
A.2.1 Sandboxing (SBFI) 
A.2.2 Safe Interpreters 
A.2.3 Code Signatures   
A.2.4 State Appraisal 
A.2.5 Proof Carrying Code 
A.2.6 Path Histories 
A.2.7 Policy Management/Authentication 

 

A.2.1 Sandboxing (SBFI) 

Sandboxing, as its name implies, provides a separate but protected place for unsafe code to 
execute in as it enters the domain of a remote host. A sandbox may confine code through type 
checking, properties of the language, and allocating code to protection domains [230]. 
Middleware can use fixed policies to limit the power given to an application within an execution 
environment through the sandbox. Wahbe et al. [231] provided early work concerning a software-
based approach to isolate faults in lieu of hardware-based methods. Programs operate in isolated 
virtual address spaces without chance of influencing other programs except through specific 
cross-domain requests.  By using software based fault isolation (SBFI), a developer can 
encapsulate a module’s object code to prevent any references for addresses outside the fault 
domain.  

The Java sandbox is a common SBFI implementation because it restricts allowed operations 
of remote mobile code (such as an applet) and erects a barrier between the code and host 
resources [232, 233].  As Figure 74 illustrates, an execution environment such as the Java Virtual 
Machine (JVM) can allow normal programs to be trusted with full (or normal) host access to 
system resources.  Hosts consider sandboxed programs, like remote code received in the JVM, 
untrusted and give such programs only specific permissions for a subset of host resources.  In 
JDK 1.2, all code is considered untrusted and subject to fine-grained access-control mechanism 
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[234].  This method implements a policy framework approach to sandboxing.  Java is a favorite 
implementation environment for mobile frameworks [67] because of built-in capability for SBFI 
and because each sandbox has its own set of privileges [70].   Middleware can also execute 
programs written in unsafe languages like C within a sandboxed environment to minimize their 
detrimental effect on the host environment [22]. Sandboxing can limit the effectiveness and power 
of a given application and possibly limit the usefulness of applications that utilize this approach. 
Sandboxes provide operating system specific protection from mobile code, but the design of 
mobile agent languages and the use of safe interpretive languages bolster an execution 
environment even more.  We discuss these languages next. 

 

 
Figure 74: Sandboxing 

A.2.2 Safe Code Interpretation 

Code interpretation offers better security features for remote code execution than compiled 
environments because middleware interpreters can examine instructions for their intended 
harmful effects before execution.  We deem interpreters “safe” when fine-grained access control 
decides which statements to execute. Of course, interpreters are slower in general and 
developers consider languages like Java ill chosen for certain high performance applications on 
these grounds alone.  Other scripting languages (like TcL) can offer security primitives with 
greater functionality than can be found in typical systems languages [235].  

We can think of safe interpreters as sandboxing with quarantine [70] in the sense that we 
execute commands in compartmentalized areas and alias commands to those that are safe by 
some policy definition.  Figure 75 illustrates the Safe TcL model [236] which utilizes this approach 
in the form of two different interpreters: one for trusted code and one for untrusted.  The host 
gives the master interpreter normal levels of authority with system resources while it isolates 
untrusted applets to the safe interpreter.  The system hides unsafe commands and cannot invoke 
them from within the padded cell. Instead, the commands have appropriate aliases assigned to 
them, which call real commands in the master interpreter.  Protected commands, such as those 
that do file access or network communication, can have policy constraints associated with them 
for protective purposes.  This protection approach mimics the kernel-mode of various operating 
systems where the system allows commands greater access to system resources that are not 
normally available in user-mode.  

Safe code interpretation and sandboxing go well together and both are implemented within the 
Java specification and found in other scripted environments such as TcL17.  In Java, we compile 
source code into bytecode that allows the sandbox to perform certain runtime checks for security 
purposes.  The JVM for example provides the following security features:  

♦ namespace separation through the applet class-loader 
♦ bytecode checking to make sure commands conform to the language specification 

                                                           
17 Available: http://www.tcl.tk, October 2005. 
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♦ execution of system methods through a security manager, type-safe casting of 
references 

♦ garbage collection to avoid explicit deallocation of memory 
♦ automatic array bounds checking   

Sandboxing and safe interpretation provide operating system and language level protection of 
the host, but they do not help establish trustworthiness of a given mobile agent program.  For this 
purpose, authentication via signatures is necessary. 

 
Figure 75: Safe-TcL Padded Cell Concept  

A.2.3 Code Signatures 

Typically, the host cannot discern whether code is malicious.  Though other mechanisms may 
inch towards that goal, hosts most likely rely on trust primarily from authentication of an agent’s 
identity. By using digital signatures, the host can verify the identity of the agent or at a minimum 
the signer of the agent, which could be the author, transmitter, or owner of the code [237].  The 
Microsoft ActiveX framework originally introduced code signatures and signed components 
remain a standard part of the Java environment in the form of signed applets [238, 22].  As a 
drawback, verifying authenticity of the static code via the signature says nothing about the 
security or even non-malicious fault properties of the code except that one party trusts the source 
from which the code came from. 

 

 
Figure 76: Simple Authentication 

Developers can generate and use code signatures in several different ways. Public key 
cryptography signatures use a public/private key pair associated with a particular principle.  As 
Figure 76 depicts, the code owner digitally signs their code by encrypting it with their private 
decryption key.   On arrival, a prospective host verifies the signature by applying the public key of 
the sender.  Hosts can also use signatures to verify the integrity of the code when used in 
conjunction with cryptographic strength one-way functions.  Figure 77 illustrates how we can 
generate the hash of the mobile code and use it as a message digest sent along with the mobile 
code.   After reception of the mobile agent, the host runs the same hash function.  If the result 
equals the message digest that came with the agent, then host verifies integrity.    
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The executing host must somehow verify the public key of the signer: the developer can add a 
certificate to the contents of the mobile code package to accomplish this.  A public key 
infrastructure (PKI) must be in place to scale the approach for large numbers of agent servers.  In 
the browser model of today, an initial set of public keys are distributed with the browser itself and 
new keys must be self-authenticated without a PKI in place. Developers and application owners 
can use a slight variation with the message digest approach to prevent replays of prior code 
transmissions and to improve certainty of ownership.  In this case, the owner encrypts the 
program and message digests together.  The remote server decrypts the message and hashes 
the program.  If the generated and received digests match, the code is authentic.  

Note that in the mobile agent paradigm, the “network transmission” in Figure 76 and Figure 77 
can represent a multi-hop traversal of the agent. A verified signature on the code does not 
guarantee an executing host can trust the mobile code—even non-malicious incorrect code 
produces harmful results when given full access to local host resources. The trust model with 
signed code is all or nothing in the sense that the executing host allows the code to run with some 
set of privileges once it authenticates the code.  The middleware can establish policy statements 
for how to interpret valid code signatures: at a minimum, the system can imply some trust level 
between an agent originator and the remote host executor. 

 

 
Figure 77: Integrity and Authentication  

A.2.4 State Appraisal 

The state of an agent dynamically changes as it traverses a network due to interactions with 
each host. One form of attack is to change values embedded within the state of the agent code or 
to alter code for malicious purpose. Farmer et al. [239] proposed a defensive mechanism for 
hosts in the mobile environment to verify state has not been altered during transit of the agent.  
Developers link appraisal functions to code based on invariant values.  The hope is that the 
executing host can detect illegal alterations to other variant state values.  The strength of this 
technique relies on the assumption that attacks will dangerously alter the state of the agent in 
detectable ways. Unfortunately, 100% detection is not possible, though high probability detection 
is possible if high overhead is acceptable.  Figure 78 depicts the exchanges in the state appraisal 
model, which we describe next. 

The architecture for the state appraisal mechanism is two fold.  First, the host system 
authenticates the agent to determine the responsible principle for the code.  Next, the host 
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performs authorization by first running the agent’s state appraisal functions (seen as f1() and f2() 
in Figure 78) and then formulating a set of requested agent privileges based on evaluation of 
current agent state.  After evaluation of the appraisal, a server can decide which permissions to 
grant.  We tie invariant information to the agent code itself and utilize even simple techniques 
such as the sum of two variant values that must equal the same sum. State appraisal serves both 
to protect agents and hosts from malicious activity since alterations can be performed by 
malicious hosts to turn friendly agents into malicious agents that are forward to other hosts.  

State space size can be large and designing appraisal functions that cover a majority of the 
possible attacks to the state is unrealistic. It is likewise difficult to provide invariant functions that 
cover less obvious alterations in the data state. Ultimately, a normal result may be 
indistinguishable from a maliciously produced result, making state appraisal techniques difficult to 
implement.  When combined with other techniques, state appraisal can provide a simple method 
for covering the most likely or important alterations in a mobile code segment. Having 
authorization driven by an appraisal mechanism can greatly reduce vulnerability and operator fear 
in host frameworks that execute mobile code.  

 

 
Figure 78: State Appraisal Technique 

A.2.5 Proof Carrying Code 

Another form of code analysis technique that can be helpful to host defense is a formalized 
approach that defines safety characteristics of a program.  Lee and Necula [240, 241] develop 
proof carrying code (PCC) with the idea that a remote host can verify the safety properties of the 
code about to be executed.  In this process, much work is done up front to construct a proof that 
matches a security policy stipulated by a given agent server.  Ultimately, an executing host uses 
the approach to prevent malicious agent execution.  Appel [242] and Feigenbaum et al. [243] also 
contribute positions for using PCC for code protection.  

Figure 79 depicts the overview of the PCC process as described by Necula [240].  Code 
executors first provide safety rules that programs must conform to. Because of the 
heterogeneous environment of a mobile agent transit, these rules may vary from host to host—
not all hosts may be known in advance (limiting use of freeroaming agents).  Code producers 
(agent originators) certify their code based on security predicates and code consumers (agent 
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servers) validate that proof before allowing the program to execute.  The executing host would 
detect malicious alterations to the code and prevent the code from passing verification—thus 
preventing execution. PCC requires a formulatable safety predicate from the original mobile 
program that embodies the semantic meaning of the program. The code developer or application 
owner generates the predicate by following axiomatic rewriting rules and uses it to establish that 
a given proof indeed corresponds to a given program.  We describe safety rules in first order 
predicate logic (based on Edinburgh logical framework) and tie them to compiler specifications of 
the underlying architecture.  The rules are a formal description of data-representation invariants 
kept constant by a given program and the calling conventions a foreign function meets.  The 
safety proof essentially guarantees that the code meets invariants and calling conventions. 

 

 
Figure 79: PCC Framework 

We can see PCC as an extension to a signature, but instead of integrity or authentication, we 
verify security end-to-end.  PCC is also similar to state appraisal: the code producer must create 
additional items that establish program correctness. The advantage of provable code is that it 
reduces expensive run-time checks necessary in an interpretive environment.  The disadvantage 
of PCC is making proof development simple—a task not easily accomplished.  In order for the 
mechanism to be successful, the technique requires a standard way of expressing the security 
policy in a formal manner and requires a limitation on proof size.  Lastly, PCC ties safety rules to 
underlying hardware and thus places a heavy proprietary burden within the agent execution 
environment. 

A.2.6 Path Histories 

Another method of host protection exploits the history of the agent’s migration to evaluate the 
relative trustworthiness of the agent result.  Ordille [75] suggests agent trust level can correspond 
to the minimum trust established by previously visited hosts (embodied in the agent itinerary) and 
the agent trust level itself. To apply path history evaluation, hosts add signed entries to the agent 
that contain the identity of the server and the next host in the planned itinerary. Figure 80 depicts 
that each server signs a new entry in a non-repudiatable log that links the path to itself and the 
next visited host.  The log itself may be corrupted and we can use other measures to detect such 
alterations [79].  Wilhelm et al. [76] suggest the incorporation of trusted hardware to guard the 
agent itinerary while Westhof et al. [244] provide software based mechanisms to protect the 
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itinerary from colluding malicious hosts working in partnership.  We can use other host defense 
mechanisms that use chaining relationships for path history protection and we discuss these in 
Section A.3.16 and A.3.18. 

 
Figure 80: Path Histories 

With path histories come some limitations.  Namely, the signed path history grows with large 
itineraries and it is not clear how an executing host would evaluate previous platforms and their 
trustworthiness.  Anonymity and agent privacy are also hard to maintain in this scheme because 
servers have access to agent history and must be identifiable themselves to other servers.  Some 
applications require host anonymity, such as bidding or auction schemes, where participant 
identities need secrecy.  Like other solutions that involve signature methods, path histories 
require a PKI to support authentication and non-repudiation.  

A.2.7 Policy Management 

Before agents can be allocated resources on a local host, their identity must be authenticated 
and their authorization level determined.  Policy management is a protection scheme, similar to 
sandboxing, which assumes local policy enforcement is available on the host platform and that 
agents use embedded policy attributes.  Policy-based security management has become a 
growing research area for mobile agent security as a spill over from work done in network 
security management [Wright et al. 2002].  

Policy frameworks ultimately protect both agent and host because they concern themselves 
with expression and development of dynamic trust assessment in mobile contexts.  Policies 
ultimately allow the reigning in of application privileges as well as a limit on the authority of the 
host itself. Bellavista et al. [64] mention several benefits of policy frameworks when used to 
implement security:  reusability, extendibility, verifiability, efficiency, context sensitivity. Efforts 
have been underway for several years to integrate policy level management into mobile agent 
environments [79,245,246,247,248,249]. Jansen [2001] formulates a privilege management 
scheme (depicted in Figure 81) that shifts focus away from countermeasures designed into the 
internal data structures of an agent [250].   

Four weaknesses to embedding authentication or authorization methods in the internal state 
of the agent include:  

♦ the number of policy setting principles and trust levels is hard to manage 
♦ policy expression is limited and not easy to extend when done internally 
♦ protection means become more limited 
♦ interoperability is greatly decreased 

To overcome these shortfalls, we can embody the prescribed security policies for both the 
agent and the host externally in separate certificates.  The agent governs its use of resources by 
an attribute certificate while the executing host uses a policy certificate to govern rules for visiting 
agent. Policy certificates and attribute certificates are nearly synonymous except policy 
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certificates represent more than just a host platform; in some cases, the application system can 
create and maintain policy certificates offsite from the host.  Jansen’s policy framework allows an 
agent to carry one or more attribute certificates (assigned by the owner or another authority) to 
hosts in their itinerary, all of which determine the relevancy of a given certificate after verifying an 
issuer’s identification.  The executing host grants privileges to an agent based on whether 
attribute certificates of the agent comply with policy certificates of the host. 

 

 
Figure 81: Agent Policy Management 

Authentication and authorization is in many cases delegated to an agent by various signature 
schemes.  Policy management insures agents do not violate owner intent or do not serve ulterior 
motives after corruption by malicious hosts.  Authentication in distributed systems is well 
established as a research area [251, 252, 253] and it shares common issues with mobile agents. 
Several different types of signature schemes for mobile agents have been posed including proxy 
certificates [254], forward signature schemes [255, 256], strong non-designated proxy signatures 
[257],  multi-signatures [258], undetachable signatures [29, 30, 259], and one-time proxy 
signatures [260, 261]. 

Policies should help agents represent their security levels while also giving visibility to the 
underlying host resources that are accessible to them.    Knoll et al. [79] use policies to establish 
trust level of agents based on information contained in their history, namely by assigning trust 
levels to IP addresses. Once the executing host verifies the integrity of an agent’s path and 
determines trust, it can choose appropriate security policies.  Roth and Jalali-Sohi [262,263] 
postulate using policy management in a tree-based structure to facilitate cryptographic primitives 
such as encryption and signature functions.  Their quest for a generalized agent security model 
included an integrating framework with security context, security policies, certificates, and access 
keys associated with both static and dynamic parts of an agent. Jansen [250] mentions chained 
authorizations as a corollary to normal certificate delegation—but hosts chain privilege across the 
multiple hosts in the agent path.  Since an agent migrates from host to host, it is difficult to know 
in many cases the set of visited nodes a priori.  In application contexts where agents cross 
domains and associations, policy negotiation and dynamic trust establishment must take place 
among principles.  Scott et al. [248] appeal to policy management as a means to achieve 
“sentient computing”—a term that describes transparent pervasive network environments that 
allow users freedom to focus on tasks rather than systems.  Their approach relies on modeling 
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agent interactions with ambient calculus-style primitives so that hosts can incorporate dynamic 
changes to the agent’s environment back into their policies.  

 

Table 23: Agent Protection Mechanisms 

Section Mechanism 
A.3.1 Contractual Agreements/ Reputation 
A.3.2 Detection Objects 
A.3.3 Oblivious Hashing 
A.3.4 Protective Assertions 
A.3.5 Execution tracing  
A.3.6 Holographic Proofs 
A.3.7 State Transition Verification 
A.3.8 Reference States 
A.3.9 Environmental Key Generation 
A.3.10 Secure Routing 
A.3.11 Multi-Hop Trust Model 
A.3.12 Returning Home 
A.3.13 Phoning Home 
A.3.14 Trusted Nodes/Third Parties 
A.3.15 Server Replication / Fault Tolerance 
A.3.16 Agent Replication / Mutual Itinerary Recording 
A.3.17 Route/Itinerary Protection 
A.3.18 Sliding Encryption and Decryption 
A.3.19 Trusted/Tamperproof Hardware 
A.3.20 Function Hiding w/ Encrypted Functions 
A.3.21 Function Hiding w/ Coding Theory  
A.3.22 Undetachable Signatures 
A.3.23 Policy Management 
A.4 Data Protection 
A.5 Secure Multi-Party Computation] 
A.6 Multi-agent Mobile Architectures 
A.6 Group Host Protection 
5.3.2 Time-Limited Black box/Code Obfuscation 

 
Bellavista et al. [64] consider two of the greatest needs in policy management research to be 

an expressive language for specifying policy and an efficient mechanism to implement policies 
with less performance overhead.  Jansen [250] mentions both Abstract Syntax Notation (ASN) 
and eXtended Markup Language (XML) as candidates for a policy language, with XML being 
preferred. We can also use mobile calculi for policy expression—Scott et al. [248] for example 
use Ambients—and mobile agent frameworks themselves (Fargo, Aglets, etc.) may come with 
their own policy languages.  Bradshaw et al. [246] point out trustworthy agent systems depend on 
the ability of hosts to control and adjust agent behavior and the ability of agents to guarantee 
hosts will follow specified policies.   

Framework policies are another proprietary method for security that require infrastructure in 
both agents and frameworks to implement.  Despite this drawback, we might consider 
frameworks as the only hope of an extensible generalized means for combined agent and host 
defense.  We now turn our attention specifically to the role of agent defense mechanisms. 

A.3 General Agent Protection 

Defending agents against malicious host attacks is the second major category for considering 
security mechanisms.    Table 23 gives overview of nearly thirty different protection mechanisms 
found in literature and research.   
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A.3.1 Contractual Agreements/Reputation 

A non-technical means of dealing with malicious host attacks is formation of contractual 
agreements among host operators [31,129].  Host platforms can make agreements to operate 
their agent environment in accordance with policies that do not violate the agent’s state or data in 
terms of either privacy or integrity.  Enforcement of such agreements remains a societal issue of 
law with no verification mechanism in place to detect dishonest behavior.  Reputation is also a 
means posed by Rasmusson and Janson [264] to socially identify dishonest servers and prevent 
agents from migrating to them.   

A.3.2 Detection Objects  

Being able to verify the correct execution of the mobile agent on a remote host is a coveted 
goal in mobile agent security. Several methods aim at this by static code analysis or by runtime 
code analysis; we introduce several more techniques in the following subsections with a similar 
goal.  In this case, the runtime state of an agent is at interest: particularly, has a host modified the 
stack, variables, execution thread, or instruction counter of a running program to produce 
unintended results or unintended control flow. Meadows [265] proposed a technique known as 
detection objects which can discover such irregularities in code execution.  By baiting mobile 
code with dummy data items or functions, an agent owner can detect whether a malicious host 
has likely altered the execution state of the agent in some way.  The assumption albeit is that if 
no detection objects were modified then the agent was not corrupted.  The mechanism assumes 
that developers can design enough tests to cover the various execution possibilities of the code 
and that a smart adversary cannot discover which objects are being used for verification.     

As a disadvantage, detection objects are not comprehensive in code scope and their use is 
application-specific (much like proof carrying code and state appraisal techniques).  Furthermore, 
determining the properties of a given set of objects is ad-hoc and the developers may have to 
change the objects themselves on a routine basis to prevent discovery.  Positively, they offer a 
simple method with small overhead for additional processing and code size that supports 
rudimentary detection.  When used with other supporting techniques, the approach shows great 
promise. 

A.3.3 Oblivious Hashing 

Execution tracing is the ability to log or record the runtime behavior of a program given some 
static code base. Chen et al. [266] posed oblivious hashing as a form of software fingerprinting 
that can be used to perform remote code authentication and provide a level of execution tracing. 
Oblivious hashing produces a hash of the program’s trace and works much like detection objects 
by adding additional code to the original program. In the hashing approach, the code developer 
adds additional computations so on-going program execution produces hash values.  

Just like detection objects need seamless mixing into the original mobile agent, hashing code 
requires indistinguishability in order for the technique to remain viable.   In the abstract model for 
this operation, we use a set of instructions and their corresponding memory side effects to 
produce hashable trace values.  Since the trace reflects actual execution, the hash value 
represents a signature on the behavior of the function.  Chen et al. implement this trace via code 
injection that consists of one or more hashing instructions.  Figure 82 illustrates the placement of 
hash instructions in the midst of normal instructions.  These commands take the results of 
previous commands and perform operations on them so that results are stored in separately 
identifiable memory locations.  An actual implementation of their approach was done at the 
syntax tree level (as opposed to the assembly level) to make hash instructions less obvious.  

Local software tamper resistance and remote code authentication remain as possible 
applications for oblivious hashing.  This method parallels other work by Vigna [267] on execution 
tracing and has immediate usefulness as an agent protection mechanism.  The mechanism is 
adaptable to validate dynamically the behavior of a mobile agent on a remote host by using a 
form of challenge/response with randomly chosen inputs selected by the sending party or the 
receiving party.  Even though it poses the same disadvantages as detection objects (being 
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program specific and language dependent), future research could show its usefulness as a two-
way verification mechanism against both malicious agents and malicious host attacks.  

 
Figure 82: Model for Oblivious Hashing 

A.3.4 Protective Assertions 

As another approach to runtime state evaluation, Kassab and Voas [268] present a 
methodology similar to state appraisal and detection objects.  In the protective assertion 
approach, we expand traditional notions of run-time assertion checking to encompass tracking of 
intermediate agent states given to an application owner in the form of snapshots.   The owner 
makes evaluations on whether the snapshots are consistent with expected execution of the 
mobile program. 

Figure 83 depicts the basic framework of how insertions would be loaded into a mobile agent.   
In order to produce correct protective assertions, developers must make worst-case predictions 
on agent code compromise.  Developers use these assumptions as part of the fault injection 
process to identify potential weak agent areas and provide insight into which computations need 
hardening.  We can define assertions by different categories as well, based on pre-conditions, 
post-conditions, environmental conditions, or invariants to name a few.  Once code the developer 
parses or compiles code into a monitored form, the agent is ready for migration. The originating 
host evaluates assertions based on the run-time state of the agent during execution or after the 
agent completes execution.  

 The assertion method is not comprehensive but does provide a level of detection capability 
for tampered agents.  There is an overhead associated with returning state snapshots to the host 
for verification and the returned data itself has its own tamperproofing requirement. However, the 
malicious host would have to anticipate the state check generated by the oracle (seen in Figure 
83) in order for the alteration to go undetected. If an agent host bypasses assertions, the absence 
of state snapshots can pinpoint malicious activity. 

A.3.5 Execution Tracing 

Vigna [267] proposed a cryptographic tracing mechanism that allows servers to defend (or 
indict) themselves concerning questions of mischief by producing historical evidence of agent 
execution.  It mimics path histories in some ways but instead of keeping itinerary records for 
subsequent hosts, it examines prior agent execution history. Cryptographic traces extend the 
ideas of protective assertions and oblivious hashes as another form of fingerprinting. The goal of 
tracing is to detect illegal changes to the data, code or execution thread of a mobile agent.  An 
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agent owner can check after termination whether the execution log conforms to a correct 
execution tree.  An executing host can send the hashed summary of the log to a trusted third 
party or back to the application owner itself in order to prove non-repudiability.  

 

 
Figure 83: Protective Assertion Framework 

In order to implement execution tracing, applications require several ingredients: hosts must 
store potentially large numbers of agent history, a PKI must be in place, a method to verify traces 
after the agent returns home must exist, and a method for time-synchronization among all 
participants must exist.  An executing host provides a hashed trace log if the originating server 
believes mischief took place. There is also an underlying assumption that the agent owner can 
gather all of the inputs of each server in the agent’s itinerary (unless they are derivable from the 
agent state).  The owner then uses these inputs to run the agent independently to create a new 
trace.  If the hash of the owner’s trace is equivalent to the hash provided by the suspect server, 
the owner verifies execution integrity.  Because tracing every instruction in a program can be a 
burdensome overhead, Vigna distinguishes between white and black code: black code is “tainted” 
by some interaction with the host environment and is therefore the most important execution to 
log.  Figure 84 illustrates that white statements depend only on the internal state of the agent and 
such statements remain uninfluenced by inputs of the host external environment.  Figure 85 
shows an example code fragment and a trace of the execution based on this classification, 
utilized also by Hohl [63].  

Trace logs consist of updates to black statements to minimize their size.  As an alternative, the 
system can use compression by only logging instructions that influence control flow. In practice, 
execution tracing in a multi-hop environment requires a protocol to transfer or sign log traces for 
future verification.  Vigna suggests the use of a public/private asymmetric key pairs among 
participants of the mobile agent application for authentication of the logs. Collection in a multi-hop 
mode could rely on the agent itself and this variation allows a future host in the itinerary to verify 
the execution of the agent from origination up to that point.  
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Figure 84: White and Black Code  

 

 
Figure 85: Code Fragment and Trace 

 

Figure 86 depicts the exchange of an agent using tracing during its network traversal.  The 
originating host can request traces on demand (method A, Figure 86) or have an appended set of 
signed hash traces contained in the body (data state) of the agent (method B, Figure 86).  If a 
future honest host in the itinerary wants to verify execution of the agent, other hosts need to be 
willing to divulge their inputs in order to do so (a scenario not likely in certain application 
contexts).  The drawbacks of proofs include the overhead storage of execution logs and the 
transmittal of proofs to an owner or trusted third party.  Even though some compression methods 
can make logs smaller by limiting focus to selected ranges of statements (where pricing is 
determined or a transaction is sealed for example), the mechanism is still only triggered on 
suspicion and verification is conditioned on server agreement for disclosure.  

Tan and Moreau [33] introduce an extension to tracing that somewhat mitigates these 
disadvantages and solidifies the ad-hoc nature of the trace verification process.  They introduce a 
trusted third party, which serves the role of verification authority for traces generated by an agent 
server.  This solution reduces the individual overhead of trace log storage and induces the 
detection of denial of service attacks when combined with a time-stamping service (to support 
time-out determination) among the hosts. Figure 87 depicts the protocol exchange involved in this 
extended environment.  In extended tracing, one or more verification servers (VA and VB in Figure 
87) provide cooperative agent migration among hosts in the itinerary.  The verification server 
receives both the agent body (code and state) and the execution trace from the host after it 
accomplishes its previous execution.  The executing host signs all protocol interactions such as 
request for the agent, receipt of the agent, and receipt of the agent trace (m4, m6, m8 in Figure 
87) to ensure non-repudiatability.  EET performs tracing as part of the agent’s migration through 
the network and thus provide immediate tamper detection.   
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Figure 86: Execution Tracing Model 

 
 

       
Figure 87: Extended Execution Tracing 

 
When used in conjunction with time synchronization, this approach also prevents denial of 

service where an executing host unduly detains an agent or never releases an agent to its next 
hop. The tracing process reflects a limited detection capability (which is application dependent 
and assumes an adversary cannot create a valid trace to an altered program run). Traces only 
indicate if a given result is a possible execution of the program and not necessarily the actual 
execution of the program.  Trusted third parties like the verification server decrease the openness 
of this solution however in certain mobile agent environments. 

A.3.6 Holographic Proofs 

Yee [31] offers several mechanisms for agent protection, one of which is a cryptographically 
based integrity checking method known as holographic proofs.  In the Vigna [267] model, the 
application owner needs to compare hashes or full traces of a program execution in order to 
verify agent computation integrity—but transmission of large traces remains inefficient. 
Holographic proofs improve efficiency of execution tracing for proof verification by reducing 
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overhead of these comparisons.  Figure 88 highlights the sense of the holographic proof 
exchange and shows that a predicate p(x,y) is equal to 0 when it represents the verified execution 
of a program x (the mobile agent) that has generated an execution trace y (the trace from running 
on a remote host).  The size of y (the trace) is large but it can be encoded as holographic proof y’ 
having the property that only a few bits need to be examined to verify the execution.  However, 
the size of y’ is also large (in many cases larger than y) and thus prohibitive to send as well—so 
another approach must be chosen.    

If the remote server can discern which bits of the entire trace belong to the holographic proof, 
it can subsequently invalidate the results of the proof itself.  Figure 88 illustrates how the 
originating host can query the bits of the holographic proof y’ without allowing the remote host to 
know which bits are being evaluated by means of private information retrieval (PIR) techniques, 
expounded further by Biehl et al. [269] and Gertner et al. [270], while Loureiro et al. [230] mention 
it as a solution to the size problem.  The overall result is that large proofs of integrity remain on 
the execution platform (remote host) while execution tracing itself becomes more efficient. 

 
Figure 88: Holographic Proof Checking 

 

A.3.7 State Transition Verification  

Yee [74] did further work on agent security with a proposed scheme to detect replay attacks 
against migrating agents.  Replays are essentially when an individual server executes an agent 
repeatedly in order to understand and undermine the semantics of the program.  If a server can 
game the input of the agent to produce a desired output, it has essentially cheated.  We refer to 
this form of attack as internal replay. We can also define external replays as a cycle in the 
itinerary of an agent induced by cooperating malicious nodes that send agents back to each other 
over and over again.  Figure 89 illustrates both types of attacks and depicts an agent migration 
path through a network that includes three malicious hosts, two of which are cooperating.  

Figure 89 illustrates the agent interaction model used by Yee to define properties of monotonic 
operations.  An agent computation can be seen conceptually as a set of functions qi used to 
query resources Ri belonging to a server Si.  The previous dynamic data state of the agent (yi-1,0) 
provides an initial starting point for the server.  New data states result when the agent issues a 
query via its static code to the server, creating a sequence of intermediate data states (yy,j) that 
are a function of the previous state and the output of a given query (xi,j).  The executing host 
packages the final data state with the agent and sends it forward to the next host.  For internal 
replays, the ability to monitor from the outside the sequence of individual state transitions is 
required. Yee [74] describes monotonicity as the enforcement of one-way state transitions of the 
executable state of a program in time.  If developers can analyze code to indicate which program 
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statements create such transitions, then application principles can monitor state transitions to 
identify and detect replay attacks.  Yee develops the thought behind such one-way transitions 
and asserts that agents cannot trust the state they are carrying and would need to rely on 
verification services by an outside party. 

 
Figure 89: Replay Attacks 

Internal replay attacks are the hardest to prevent even when state transitions can be 
adequately determined.  The reasoning is that unless obfuscation or program encryption is used, 
an adversary can eventually determine what part of the code communicates with an outside 
verifier of the internal state transition.  A malicious server may not need to understand all of the 
agent internals either.  It only needs to be able to predict some desirability factor of making a 
given change to an input to be successful.  External agent replay attacks are easier to detect 
because intermediate hosts can help check state transition values (carried with the agent or 
queried from a trusted third party).  A similar problem is the detection of agent clones, which is 
addressed further by Baek et al. [271], Lam and Wei [272], and Roth [109]. 

As a drawback, the mechanism attempts to model explicitly the extremely large statespace of 
a program for correct determination of one-way state transitions.  Therefore, developers look at 
only certain state transitions, just as holographic proofs only look at certain black/white 
statements [31]. State transition also depends on trusted hardware or a trusted third party to 
assist in monitoring transition information associated with a mobile program. 

A.3.8 Reference States  

Another way to perform state analysis of a mobile agent does not involve tracing but rather full 
comparison of an agent to a known good execution. Hohl [63] develops such an approach to 
detect state modifications based on comparisons to a known good model.  In this method, the 
application owner generates a baseline agent state on a trusted reference platform and compares 
the execution state to those created by executing hosts in the real environment.  Figure 90 shows 
the interaction of an agent execution based on a reference state monitor and we explain the 
protocol next.  Assuming that a developer or application owner digitally signs the constant values 
within an agent to detect modification, the application owner can analyze the non-changing 
values of interest in during agent execution.   An untrusted host and a trusted reference version 
provide the comparison opportunity, as long as all the host input is available for the reference 
program.  The method uses a replicated server for parallel agent processing during its itinerary 
traversal. A reference state by definition is the variable part of a mobile agent executed by a host 
with similar input (thus displaying reference behavior). Hohl [63] analyzed the core operations of 
three protection mechanisms (state appraisal, execution tracing, and server replication) to 
formulate a generalized model for reference behavior.  

The application owner checks reference states either when the agent returns home or after 
each intermediate host execution in the itinerary.  As seen in Figure 90, before migration to Host1 
(1) an agent  sends its initial state (A) to the reference host.  Assuming the moment of checking is 
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per-server execution, Host1 sends both its final agent state (C) and its reference data (B) to the 
verification host. Since the next state of an agent is a function of the previous state (A) and any 
reference input (B), the reference host can now compare the computed next state F(A,B) with the 
received next state of the host (C).  The reference data (which hosts must provide to mimic the 
execution) varies according to verification time during the itinerary.  

 

 
Figure 90: Reference State Mechanism 

In terms of limitations, reference states cannot detect actions that do not result in a modified 
agent state, such as a confidentiality attack where a malicious host exposes private information. It 
can also not detect when the input and output on the remote server has been modified or is not 
supplied properly. Variations exist to strengthen the approach which include being able to choose 
an arbitrary checking algorithm (like execution tracing, oblivious hashing, etc.), using less than all 
possible reference data, and having a subsequent host be empowered to perform the reference 
check itself. This scheme of course induces a proprietary overhead for a trusted third party to be 
a reference monitor and a lack of host data privacy, but the method itself does not require 
modifications to the code or creation of proofs. 

A.3.9 Environmental Key Generation 

When an agent must carry private information or sensitive information that can only be used to 
conduct certain transactions (like signing a transaction), it is sometimes best to keep the agent 
naïve about the information it carries until the appropriate time arises.  To prevent an adversary 
from determining when the agent will expose its key for such purposes, Riordan and Schneier 
[273] posed a solution that keeps the agent “clueless” about what it is looking for.  A clueless 
agent performs an appropriate decryption operation only when the agent executes on a host 
meeting specific environmental conditions; such conditions arise when the executing host 
executes the agent static code. The agent keeps code in an encrypted form until needed, then 
dynamically decrypts it after the executing host meets the appropriate environmental condition.  
Figure 91 depicts the general operation of the environmental key generation process. 

This scheme utilizes a methodology similar to how UNIX-like operating systems store the hash 
value of a password and compare that to the hash of passwords entered by a user at login. 
Riordan and Schneier [273] give several methods for environmental information that agents may 
respond to.  A simple example involves a scenario where the code unlocks a key based on the 
cryptographic hash of a piece of information the agent is interested in.  Figure 91 illustrates, for 
example, the string representation for a stock item of interest from a buy/sell transaction.  The 
hash of this key is h(h(I)), with I being the item of interest; the agent code contains this hash.  A 
malicious host wishing to subvert the transactional capability of the agent in some way cannot 
determine from K or X what exactly the agent is looking for.  If it could, it may offer a false bid or 
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query result in the hopes that the agent divulges a private signature key or reveals private 
information. The agent can thus be decrypted only when the executing host meets the right 
environmental conditions. A malicious host still has the opportunity to subvert the agent by 
changing the execution of the agent to its advantage when it does meet a matching condition.  
Another drawback is that certain agent frameworks may not allow dynamically generated code 
execution, thus limiting the approach. 

 

 
Figure 91: Environmental Key using Hash 

A.3.10 Secure Routing  

Secure routing assumes trusted hosts will never perform malicious activity and will send 
agents only to hosts that have credentials with a certificate authority (CA).  Farmer et al. [23], 
Swarup [1997], and Knoll et al. [79] elaborate the mechanism usage which  involves restricting 
the itinerary of an agent via routing policies.   Figure 92 illustrates how an agent may only visit 
hosts that have an association such as IP address registration with a CA.  Servers can also 
create policies where they only accept agents with established security associations—much like 
executing host can verify path histories to determine probabilities of malicious alteration.  

Secure routing involves host infrastructures operated by a single party [106] or secure 
networks induced by the presence of trusted hardware, discussed shortly.  We do not control 
servers in competitive environments or unknown security relationships in such a manner and 
agents do not consider them trusted as a result.  Even in a military scenario where friendly hosts 
could be considered “trusted”, a compromised or captured node may or may not exhibit malicious 
behavior while still being considered trusted.  Because of these issues, we consider secure 
routing best suited for protection in applications where mobile agents have a priori knowledge of 
the executing host environment. 
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Figure 92: Routing Based on Associations 

A.3.11 Multi-Hop Trust Model  

Thorn [70] describes agent security policies based on the worst-case access privileges of all 
prior visited hosts in the itinerary.  Assuming that all hosts are at worst case malicious, this model 
designs agent access control to be a decreasing set of privileges based on the itinerary.  At each 
hop, the agent merges the prior access control list (ACL) with current ACL so that security 
privileges can only remain the same or decrease.  Figure 93 shows a notional view of this with a 
decreasing privilege list for the agent based on specific actions disallowed at a given host.  Here, 
an agent encounters a host with a limited policy that disallows remote procedure calls (RPC).  As 
the agent migrates, the subsequent executing hosts disallow access to a particular file as it 
carries with it the previous restriction against RPC. 

 
Figure 93: Multi-Hop Trust Model 

 
 

A.3.12 Returning Home  

Some mobile agent architectures require the mobile agent to return (migrate) to its home 
platform after a single hop, which is described as the Jumping Beans model by Jansen [250]. 
Figure 94 illustrates the star shaped itinerary that centers on the originating host being available 



 

140 

during the lifetime of the agent. Single-hop and two-hop boomerang migrations in this 
configuration allow for the strongest level of trust association and validation of the agent code and 
state.  The application owner verifies each subsequent hop first hand and prevents or detects 
malicious activity incrementally. This approach involves migration of code and state versus 
sending of static messages—thus requiring code within the agent to account for return trips home 
and processing of information embedded within its state.  Executing hosts can pass static 
messages along to services or static agents without requiring additional change in logic.  As a 
drawback, there is increased communication overhead and a requirement for the host platform to 
remain available during agent migration.   

 

 
Figure 94: Agent Returning Home 

A.3.13 Phoning Home 

Grimley and Monroe [274] describe a countermeasure involving status updates and data sent 
home by the migrating agent.  In this mechanism, an agent sends a message to its originating 
host either on arrival or migration from a remote server indicating that it is alive.   When done in 
conjunction with a time-based measurement, this scheme can be used to help avoid denial of 
service attacks or to detect them being executed by a particular host.  Several variations are 
possible in this approach.  Agents can send static messages (via KQML, KIF, or another form of 
ACL) that include the host data result.  If the application owner does not need to analyze data 
until after the agent returns home, the agent does not have to carry the results any further.  
Figure 95 illustrates that for every migration of the agent (2, 3, 4 ...) there is also a corresponding 
static message (2a, 3a, 4a…) in conjunction with it. If the information is required as part of the 
computational state of the agent, then at minimum the originating host has an unaltered copy of 
each host’s data result. 

We see other variations in several defense mechanisms (execution tracing, protective 
assertions, holographic proofs, and reference states).  The methodology does not totally avoid 
host tampering but phoning home can eliminate the exposure of intermediate results to other 
platforms and provide detection capabilities for the agent owner. In lieu of sending back collected 
data, the agent can also maintain results in the data state but must use some type of protection 
mechanisms to ensure the integrity and confidentiality of the accumulated data. 

A.3.14 Trusted Nodes/Third Parties 

A variation to phoning or returning home is to make used of trusted third parties.  Wilhelm et 
al. [138] define trust in this respect as belief that another party will abide by a published security 
policy.  Both parties (agent originators and agent executors) can create a trusted third party 
relationship by introducing tamperproof hardware.  Certain models place trust in specific entities 
implicitly, like a base station in a mobile ad-hoc network, and always assume trusted operations. 
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As an alternative to requiring the originating host to be online during the course of an agent’s 
execution lifecycle (which severely limits disconnected operations), Figure 96 illustrates how we 
can introduce one or more trusted third parties (TTP) to facilitate agent verification between host 
migrations.   

 

 
Figure 95: Agent Phoning Home 

 

Using TTPs reduce the bottleneck or single point of failure from reliance upon the originating 
host and allows implementation flexibility for other security mechanisms.  Extended execution 
tracing, for example, extends normal tracing with a TTP to prevent denial of service attacks and 
perform automatic execution log verification. Agents can also use a TTP as a location where 
secure transactions can take place, such as signature using a private key embedded in the agent.  
The TTP can take advantage of stronger security associations with an agent owner to support 
sensitive operations that might lead to leakage of confidential information on a malicious host.  
We can use TTPs to migrate agents securely, store sensitive agent information (private keys, 
private originating host information, or private analysis results) and perform secure operations.  
Proxies can also reduce malicious agent attacks by reassuring host operators that agents have 
passed certain verification tests or proofs of integrity before dispatching them.  

Ng and Cheung [275, 276] use a trusted party to individually negotiate the security 
requirements and trust level between an agent and a host.  Figure 97 depicts the interaction of an 
agent with a TTP to establish trust relationships with all hosts that are in the itinerary.  Trust level 
exchange occurs in the sense that an agent owner and an agent server both delegate trust 
verification services to the TTP—using it to establish authentication and trust levels upon agent 
dispatch. In the first step of a multi-hop traversal, the TTP negotiates authentication information 
with a particular host (Figure 97-2a).  Next (Figure 97-2b), both the receiving execution host and 
originating host communicate trust levels embedded in the agent. 
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Figure 96: Agent Protection Using TTP 

 

 
Figure 97: Trust-Level Exchanging Protocol  

Once the TTP accomplishes these steps for every host in the agent’s itinerary, the TTP can 
perform various security countermeasures on behalf of both host and agent, including guarantee 
of anonymity.  For the host, the TTP may generate a proof of the mobile agent or certify the agent 
using a trust token of some kind.  For the agent, the TTP can apply an obfuscation algorithm, 
introduce noisy code, or encrypt parts of the program. Trust level exchanging illustrates both host 
and agent security on demand negotiated by a party that both sides trust.  The TTP also performs 
agent migration as in extended execution tracing.  The approach provides flexibility by allowing 
hosts and agents to specify security countermeasures on demand, a coveted facet of policy 
negotiation. The drawback is the bottleneck and single point of failure for the TTP, though we can  
mitigate risk by shared or multiple TTPs. Protocol exchanges further incur additional 
communication overhead for every migration.  If the host and TTP do not trust each other, the 
scheme is not practical at all.   
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The presence of tamperproof hardware in most cases elevates trust to acceptable levels on 
intermediaries or execution hosts in the mobile environment). Zachary and Brooks [2003] point 
out that trusted intermediaries can perform functions to reduce risk of agent tampering such as 
storing secret information in between host executions, maintaining non-repudiatable logs of host 
activity, securely transmitting agent code to hosts, and providing authenticated control of host 
access to mobile code.  These schemes use some version of trusted hardware in the role of a 
middleman—but they do not provide true privacy of computation unless prospective executing 
hosts use trusted hardware.   

 

 
Figure 98: Trusted Host Configurations 

Figure 98 summarizes common intermediate hosts configurations:   relying on trusted hosts in 
the path to perform verification on behalf of an agent (Figure 98-A), sending partial results or 
hash values of host computations to a trusted repository for later verification (Figure 98-B), or 
relying on a trusted computing base to verify each step of an agent’s life cycle (Figure 98-C).  We 
refer to a final category of trusted third parties to as honest nodes, which are not necessarily 
trusted but are simply not malicious.  Trusted third parties typically support specific security 
purposes whereas honest nodes execute security-conscience agent functions.  We consider 
honest nodes friendly in the sense they help to verify agent security during transit just by virtue of 
executing the agent correctly.  An honest host for example can use publicly verifiable detection 
chains to discover tampering of intermediate results gathered and collected by the agent.  The 
public property allows the application owner to use honest nodes in the path without having to 
rely on specifically designed trusted third parties, greatly reducing the proprietary nature of 
candidate security solutions.  Execution tracing, reference states, and route protection 
mechanisms all rely on the friendliness of honest nodes to execute algorithms that detect 
malicious behavior. 

A.3.15 Server Replication/Fault Tolerance 

Minsky et al. [277] developed early thought in fault-tolerant agent based computing.  One 
remedy to malicious host corruption of the computation is to duplicate the servers an agent might 
visit and send multiple copies of the same agent to them.  In terms of a simple agent computation 
that traverses a network visiting several hosts in an itinerary, a pipelined view of the system 
would see each host as a stage in the process and each migration as a step in the pipeline 
(labeled as stages in Figure 99).  The application owner achieves the final answer when the 
agent processes on the last host, or last stage of the pipeline known as the actuator.  Minsky et 
al. note that hosts communicate any malicious activity introduced into the pipeline at an early 
stage subsequently to all other pipeline stages as a result.  Correct computations are therefore 
dependent on propagating results of error-free runs in the pipeline.       

From a fault-tolerant viewpoint, if we could duplicate a given server’s individual processing, we 
could attain a more resilient agent computation.  This assumes each stage is deterministic; 
however, hosts perform computations in subsequent stages with unknown created values.  If this 
assumption holds, we can replicate each step of the process (each agent server) and take a vote 
at each stage of the computation by that particular group of servers.  The majority vote among 
servers for that stage will decide which outcome of the computation will proceed to the next 
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stage.  Figure 100 depicts two stages of an agent’s journey across three replicated servers.  The 
servers for stage 1 all have similar functionality; the originating host duplicates the original agent 
and dispatches it to each one individually.  After servers in the first group have completed 
processing, the servers take a vote to see which state they will transmit to stage 2.  This carries 
forward until the end of the agent’s lifetime. 

 
Figure 99: Simple Agent Pipeline 

 

 
Figure 100: Replicated Agent Pipeline 

Minsky and colleagues conclude the simple notion depicted in Figure 100 does not tolerate 
one malicious node at each stage of the pipeline.  We need to apply cryptographic techniques in 
the replication scheme by equipping agents with a secret carried throughout their itinerary. The 
methodology considers the use of the n-of-k secret threshold scheme proposed by Shamir [278] 
to avoid misuse of the secret or destruction of the secret from preventing proper completion.  
Resplitting of the secret share is actually required to make the scheme secure.  Two proposed 
protocols may mitigate the exponential message sizes involved with distributed secret sharing 
and destruction of secret shares by one or more colluding hosts.  Voting comes with a cost and 
replicated servers and agents for each stage of an agent’s itinerary may not be realistic.  Other 
work by Pears et al. [279] illustrates how a malicious party could simply replicate their stage 
(server) several times.  As such, we do not expect replication to work well in competitive 
environments but we may adapt it to work with other security mechanisms in a controlled host 
deployment context.  

A.3.16 Agent Replication/Mutual Itinerary Recording  

Replicating servers and agents has some parallel applications to fault tolerant mechanisms. 
Roth [280] for example proposed a protocol that partitions hosts into disjoint sets and tries to 
decrease the likelihood of collusion across those sets.   Two agents in this mechanism share the 
authorization method for a transaction between them and verify the activity of the other agent.  
This protocol (known as mutual itinerary recording) is a variation of path histories and relies on 
itinerary information exchanged between two cooperating agents.  However, this approach can 
never prevent two colluding malicious hosts from being in the same set of visited hosts and 
requires a secure communication channel between the two agents. Figure 101 depicts the 
cooperating mutual agent approach and highlights the fact that agent communication of partial 
results and itinerary takes place as each agent traverses its itinerary.  The itinerary information 
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contains the previous hosts, current host, and the next host in the agent’s path, which forms a 
non-repudiatable chained log. For example, agent A in Figure 101 would communicate to agent B 
the previous hosts (1), the current host (2), and the next host to be visited (3).  The figure also 
depicts agent A communicating to agent B its data result (d2) obtained at host 2.  

 

 
Figure 101: Cooperating Agents 

The drawback to cooperating agents is that if one agent dies, the other agent may not be able 
to finish its task properly.  The size of the agent state grows linearly with the number of servers 
visited by each agent, though other mechanisms also suffer from this overhead where the agent 
carries intermediate results.  An adversary can foil the scheme if the server partitions happen to 
include cooperating malicious nodes working together or multiple colluding agents on the same 
partition.   Yee [31] proposed a two-agent scheme that used replicated servers and noted that 
replication alone does not mitigate the individual “brainwashing” on an agent. However, 
replicating agents and using simple cryptographic communication defense can solve certain 
simple problems, such as limited applications that have at most one malicious host in the 
itinerary.  Figure 102 depicts the use of multiple agents with different itinerary orderings—all 
visiting the same set of servers.  

We can program a set of multiple agents that are identical in task to also transit the same 
itinerary, but in different orderings.  This scheme may help indicate when malicious activity has 
occurred in the routes of any particular agent if the application owner compares results.   This is 
another form of replication where we use voting and analysis of returning agents to pinpoint the 
presence of a malicious host.  Agents can visit subsets of servers in multiple different set 
arrangements. Though the mechanism is not preventative, it supports a relatively simple method 
of detection and fault tolerance against multiple colluding hosts.  

A.3.17 Route/Itinerary Protection  

Protection of the itinerary, which determines the agent’s migration route in a network of 
servers, is of particular interest for security mechanisms.  The use of a trusted environment on 
each host server provides a family of solutions in this regard.  Wilhelm and Staamann [76], for 
example, describe the use of the CryPO protocol for keeping the itinerary of a mobile agent 
secure and private.  They postulate that no possibility exists to enforce policy rules without relying 
on a tamperproof hardware environment (though several results prove this assertion false in 
limited contexts).  In essence, because the executing host only decrypts and executes code in a 
sealed environment, the mechanism for manipulating the itinerary is out of reach to a malicious 
party.  
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Figure 102: Agents w/ Variable Itineraries 

 
When we cannot rely upon trusted third parties or tamperproof environments in a mobile agent 

environment, we must employ alternative mechanisms to protect agent data (including the 
itinerary) from modification and disclosure.  Several schemes in the literature provide for itinerary 
protection and each scheme has varying degrees of secrecy and integrity.  Westhoff et al. [244] 
introduce a method to keep the itinerary of a free-roaming agent unaltered and confidential. Their 
protocol uses a partial encryption technique based loosely on the onion routing scheme of Reed 
et al. [281] that supports anonymous exchanges. The mechanism composes the itinerary of an 
agent so that any host in the itinerary can at most know the previous and the next host.  The 
protocol requires public key operations to encrypt the addresses used by each host with the 
signature of the originating agent owner.  In this instance, only the originating host knows the full 
route.  Figure 103 depicts the notional exchange for such a procedure that uses anonymous 
routing.  

As part of the protocol, the agent carries with it signed and encrypted messages that contain 
the previous, current, and next host in the itinerary.  In Figure 103, host H1, H2, and H3 each 
verify the signature on their particular piece of itinerary information found embedded in the agent 
and then use their decryption key to determine which host to send the agent to next.  The next 
honest host is able to determine malicious host alterations of the itinerary because their particular 
triplet would not match the sender and their own identity. In terms of limitations, the scheme does 
assume a fixed agent itinerary and uses public key cryptography, which is less efficient and 
computationally more costly than shared key methods.  Westhoff et al. [244] provide an extended 
mechanism where an executing host can dynamically add an itinerary fragment, provided it 
supplies signed routing information like the original host does. 

Knoll et al. [79] devise route protection via a method depicted in Figure 104. Their method for 
providing itinerary protection for the NOMADS agent system resembles path histories but ensures 
the history and future destinations of an agent form a verifiable chain of IP addresses.  In 
essence, this protocol verifies that the previous host added its identity appropriately, but suffers 
from the inability to detect truncation when colluding malicious hosts work in tandem.  This 
lightweight protection method does not provide cryptographic security, but rather allows each host 
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to append path information directly.  This mechanism supports free-roaming agent scenarios by 
allowing non-static itineraries.  

 

 
Figure 103: Anonymous Itinerary 

 
As Figure 104 indicates, each time an agent migrates the current host appends a copy of its 

path information (a collection of IP addresses and hostnames) to the agent’s data state.  On 
arrival at the next platform, the receiving host can verify the IP address from the communications 
channel itself and verify that the sending host appended its correct information to the path 
information set.  The use of a TTP improves reliability and integrity of the chain itself.  By keeping 
the path unencrypted in the original form of the protocol, honest nodes can perform a path history 
evaluation of the agent and apply a corresponding security policy. 

Wang and Pang [282] develop an algorithm for parallel agent deployment that provides 
protection for the agent path in context to Internet e-commerce applications.  In this setting, the 
agent reveals minimal path information to an executing host.  As such, an application owner 
dispatches a large number of agents to accomplish the same task, two at a time, in a binary tree 
format so that migration information available to a host is never more than the right child agent.  
The protocol prevents, for example, agent dispatch to a wrong host by linking the decryption of 
the route to the dispatch tree.  An honest host would eventually detect a route alteration and send 
the agent back to its originating host.  The binary dispatch model proposed points to an area of 
research focused on finding optimal agent deployment strategies.  In this case, the dispatch 
model also provides security characteristics that protect the agent path. 

Vijil and Iyer [283] address the issue of co-operating malicious hosts and pose an algorithmic 
approach to detecting their activity.  They extend the append-only container developed by Karnik 
et al. [284] in the Ajanta mobile agent system and develop a container that uses a cryptographic 
checksum applied every time a new entry is provided by a remote host.  Each host signs its own 
data element (which is an itinerary addendum) and then encrypts the signed item, identify of the 
remote host, and current checksum with the public key of the originating owner. The protocol can 
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detect collusions in both static and dynamic itineraries while being able to solve the cut-paste 
attack problems described by Roth [108,112].  As an added benefit, the protocol also pinpoints 
malicious activity and indicates which host is responsible. 

 

 
Figure 104: Chained IP Protocol 

 

 

 
Figure 105: Public Key Data Encryption 

 
Various topically related works exist in the literature concerning agent itinerary protection.  

Borrell et al. [77] offer a partial solution to protecting the itinerary by forcing a level of non-
repudiation among host entries.  In terms of efficient and secure route protection strategies, 
Domingo-Ferrer [285] introduces a hash-based technique used in two separate protocols. The 
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first protocol uses hash collisions and looks to minimize computational costs of the remote agent 
platform.  The second protocol uses Merkle trees and looks to minimize cost of route protection 
by the agent owner.  Satoh [82] presents a general approach for selecting optimal and secure 
mobile agents in a multi-agent setting based on their prospective itineraries.  His contribution 
includes a formalized method to define the itinerary using a specification language, a step 
noticeably missing in many solutions. 

We view route protection as a subset of the more involved agent defense requirement to 
protect the free-roaming data state of an agent.  Though some agent frameworks or standards 
may treat the route separately from the computational state of the agent, the problems of integrity 
and confidentiality are the same for itinerary and state.  In particular, how can any data computed 
at a remote host be kept from unauthorized disclosure or be kept from modification.   

A.3.18 Sliding Encryption 

As an agent migrates around the network, it may carry with it an increasing collection of data 
results from each host that it visits. Section A.4 discusses requirements and terminology 
associated with agent data state protection and motivates certain integrity and privacy 
mechanisms.  Desired properties for such mechanisms include confidentiality, forward privacy, 
non-repudiation, and forward integrity. We illustrate one of the simplest methods to enforce data 
privacy (keeping future hosts from seeing results of previous hosts) in Figure 105; it uses the 
public key of the agent owner to encrypt results at each host.  

 

 
Figure 106: Sliding Encryption 

This method is very inefficient when the original information is small (< 10K) in comparison to 
the block size of the encrypted ciphertext (~1K).  The mechanism also does not prevent data 
alteration or removal.  To solve this problem, Young and Yung [286] introduce a method that 
encrypts only small amounts of the most sensitive data using the public key of the agent owner 
using a chain relationship known as sliding encryption. Sliding encryption provides confidentiality 
of the data by using a storage relationship based on a randomly chosen block size that is some 
smaller factor of the public key size.  As Figure 106 illustrates, the executing host encrypts its 
data result (which is small) and then chains it into an “accumulator” that is equivalent in length to 
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the key size. The agent only carries part of the previous encryption to the next host, which then 
uses it with its own input to create another small accumulator block.  When the agent returns 
home, sliding decryption takes place beginning with the accumulator and proceeds by recovering 
each host result in a chained fashion, in reverse of the encryption process. 

Though more efficient than using public key partial result encryption alone, sliding encryption 
also prevents partial results from being used in any subsequent agent computation—limiting its 
use in certain applications where the next host relies on the computational results of previous 
hosts.   The mechanism comes with a computational cost involved with performing a public key 
operation and the associated overhead of how to distribute public key certificates efficiently.  We 
mention sliding encryption in particular because of its identification as a popular defense 
mechanism in most every piece of literature, though it falls in the same category as a large 
number of mechanisms that provide agent data protection, discussed next.   

A.3.19 Trusted/Tamper-resistant hardware  

Farmer et al. [23] suggest that we could solve most malicious host threats by simply 
disallowing agent migration outside of a trusted host environment.  Since this notion is 
inconsistent with many real world application scenarios for mobile agents, Yee [31] suggests the 
use of trusted platforms or tamperproof devices that run unaltered Java interpreters in secure co-
processors. Likewise, Wilhelm [76,138] defines tamperproof in the context of a full execution 
environment—complete with protected RAM, ROM, CPU, and volatile storage.  In a fully 
protected environment, the host operating system must provide an interface to the host protected 
area—in essence creating a physical “black box” that cannot be interfered with or observed by 
malicious parties on the outside.  By encrypting, decrypting, and executing an application 
(particularly a mobile agent) inside some protected computing environment, we can make strong 
guarantees regarding the safety and security of the execution assuming the environment is truly 
tamperproof.    

As Figure 107 illustrates, an ideal environment is one in which all data and all resources 
(memory, processor, non-volatile storage, etc.) are completely embedded in the trusted 
environment and therefore completely shielded from any observation of the host—leaving only 
the arriving and exiting state of the agent open to observation (1 and 2 in Figure 107).  If the host 
encrypts the agent upon arrival and departure, trust rests squarely on the physical security of the 
tamperproof devices themselves.  In more probable scenarios, the trusted hardware may have 
partial interaction with data or resources outside the black box that come from the host platform 
(3 and 4 in Figure 107).  In this case, the data provided to the agent computation is observable 
along with any use of resources such as memory or storage is observable as well.  In either case, 
TPH  reduce the security to the physical characteristics of the devices or servers themselves. 

 

 
Figure 107: Trusted Hardware – Full/Partial 

Trusted or tamperproof devices, whether provided as full or partial execution environments, 
can be used in a multitude of ways to enhance agent security. Karjoth [287] proposed the use of 
trusted devices as platforms for secure execution of certain user routines in support of e-
commerce, Wilhelm and Staamann [138] suggest their use for agent itinerary protection, and 
Loureiro and Molva [110] suggest a combination of trusted hardware used with other security 
mechanisms to produce host-side privacy of computation. Since smart-cards have limited 
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processing capacity on a remote host, we must make some tradeoff to execute only small pieces 
of efficient code. Loureiro and Molva combine smart cards with their approach to privacy of 
execution based on encrypted circuits and secure function evaluation. There are other schemes 
[27,43,107,288] that use a trusted service or host in combination with untrusted hosts to perform 
services for an agent during its computation cycle. These mechanisms rely on a proxy 
architecture where secure servers act on behalf of agents to guarantee the integrity of their 
computational results.   

Borselius et al. [259] propose two mechanisms that utilize trusted hosts in e-commerce 
applications: equipping more than one agent with shares of a commitment function to complete a 
transaction and the use of a single trusted host to allow multiple agents to report transaction 
information back before the owner makes a purchase decision.   The latter approach would 
provide a safe “home base” separate from the originating host that an agent can interact with to 
verify results before commitments are made on behalf of a user. Many researchers like Chess 
[24] and Wilhelm and Staamann [76] feel that TTP offers the only feasible remote host agent 
protection. Sander and Tschudin [25, 159] were one of the first to challenge this assumption and 
pose software-only approaches.  The next several sections deal specifically with software 
protection of remote agents without reliance on TPH. These approaches use mathematical or 
cryptographic methods for software hiding, thus reducing any remote host operation to blind 
disruption. 

A.3.20 Function Hiding with Encrypted Functions  

Sander and Tschudin [25, 159] proposed one of the earliest software-only approaches to 
agent security.  In particular, they did not want a solution that required interactions beyond those 
already assumed in a strongly mobile code paradigm.  Programs, data, and messages need not 
be executed or passed in cleartext either. Many researchers consider their work seminal in 
describing software-based agent protection—Sander and Tschudin thus pose three important 
questions that deal with malicious host protection: 

(1) Can tampering by a malicious host be prevented? 
(2) Can a program be concealed from a malicious host? 
(3) Can cryptographic operations such as a signature function be performed without 

revealing the private key? 
 
Computing with encrypted functions (CEF) tries to give an affirmative answer to all three of 

these questions. A companion problem to CEF is computing with encrypted data (CED), posed by 
Abadi and others [289, 290], whose solution requires a number of rounds of communication 
between parties.  In CED, Alice encrypts her input x in such a way that Bob can compute f(x) 
without knowing what the cleartext x was.  Likewise, Alice cannot learn anything specific about 
Bob’s private function f(.) by examining the resulting f(x). Abadi and Feigenbaum propose a 
mechanism to accomplish this by embedding Alice’s input x into an encrypted Boolean circuit and 
by performing several rounds of computation before giving Alice the final computation of f(x).  As 
Figure 108 illustrates, CEF is the opposite approach and expresses the mobile code paradigm 
where an originator (Alice) wants to execute a function (with privacy of computation) on a remote 
host (Bob) who will provide some private input x.  In this case, Alice again will be able to decrypt 
the resulting f(x) without learning x and Bob will not learn anything about f(.) itself.  

The crux of the mobile agent paradigm is autonomy—the idea that code sent to perform a task 
for a user should not have to interact with the user until it is finished.  Original solutions to CED 
were computationally infeasible because the protocol required a number of rounds based on the 
circuit depth. CEF eliminated this restriction while presenting a mobile code paradigm that does 
not rely on trusted hardware.  Sander and Tschudin’s [291] CEF approach, illustrated in Figure 
109, shows how Alice can conceptually encrypt a function, f(.), in some program P(E(f(.))) and 
send Bob that program to be executed.  The encrypted result can be understood by Alice with 
Bob not being able to discover the semantics of the original function f(.), while also being able to 
hide his input x from Alice. In order to achieve an encryptable program property, the user must 
find a transformational program E that has certain cryptographic properties, detailed by Loureiro 
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and Molva [110] as the following: 1) given E(f), it must be infeasible to derive f from E(f) following 
the intractability problem of computation; and 2) the resulting f(x), which is in cleartext, must be 
derivable by Alice in polynomial time from the output P(E(f))(x) supplied by Bob. Unfortunately, 
encrypted functions only work with programs reducible to polynomial or rational functions.  
Sander et al. [292] did extend computational encryption to include all polynomial-time functions.   

 
Figure 108: CED and CEF 

 

 
Figure 109: Achieving Non-Interactive Privacy of Computation with CEF 

Yokoo and Suzuki [293] extend secure dynamic programming by using homomorphic 
encryption.  In this approach, multiple agents perform a combinatorial optimization problem 
without leakage of any private information.  When used in conjunction with multiple auction 
servers, their approach allows hiding of certain pricing information carried by a group of bidding 
agents, even from the auction server.   Cartrysse and van der Lubbe [294] also propose the use 
of polynomially based secure execution functions that utilize ElGamal encryption. In [295], 
Cartrysse and van der Lubbe define perfect secrecy in relationship to mobile programs and 
illustrate the use of a one-time pad for polynomials.  Their model, however, assumes no 
interaction with a remote host and the agent, which is highly unlikely in normal mobile agent 
scenarios where hosts give input to the agent for processing and result computation. We can 
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accomplish function hiding with other techniques beside homomorphisms in rings and groups.  
We discuss next a novel approach using coding theory. 

A.3.21 Function Hiding with Coding Theory 

Loureiro and Molva describe another instance of computing with encrypted functions 
[296,297].  They rely on the security of McEliece cryptosystem and the incorporation of error 
correcting codes to hide the function from a potential host.   Several cryptosystems exist whose 
provable security rests on the difficulty of decoding or finding a minimum weight codeword in a 
larger linear code. Though researchers view the general problem as NP-complete, some error 
correcting codes remain more susceptible to attack than others. By using Goppa codes 
generated from Goppa polynomials (adopted by McEliece in his cryptosystem), Loureiro and 
Molva meet three criteria to create an intractable decoding sequence: 1) a large enough code 
space to avoid duplication; 2) an efficient decoding algorithm for this class of codes; and 3) the 
generator function for the code does not leak information.  As Figure 110 illustrates, Alice 
computes a function with parameters based on the McEliece paradigm; the protocol utilizes 
matrices and generators of error correcting codes.   

The function computed by Bob on his input x becomes a matrix operation whereas the 
decryption performed by Alice is based on the existence of invertible matrices and the properties 
of the Goppa decode operation. Because this approach relies on the reduction of a function to a 
Boolean circuit as part of the computation, it suffers the same exponential increase in the 
complexity of the circuit as those proposed by Sander and Tschudin [25].  It also suffers from the 
lack of a general method to encode mobile agent program code.  The fact that a code developer 
has to be intimately familiar with both error-correcting codes and the McEliece cryptosystem 
makes this solution difficult to apply in the general case.  

 

 
Figure 110: A CEF Based On Coding Theory 

The approaches for CEF posed by Loureiro and Molva [296] and Sander and Tschudin [111] 
point out an important limitation of mobile agent execution first noted by Hohl in [34]: if 
applications require privacy of computation, the models for such applications are restricted 
because applications owners may send cleartext data only to trusted hosts.  By computing with 
an encrypted function E(f(x)) on some input x, the result y is left in an encrypted (albeit readable) 
form.  If the agent needs to use the cleartext results of computations from other servers or even 
the current server, the encrypted results must be decrypted while still at the host. A problem 
arises: if the originator gives the decryption algorithm to the host so that cleartext results can be 
included in future computations of the agent, the privacy of the agent’s data is at risk.  Loureiro 
and Molva [110] incorporate trusted hardware (smart cards) to address this issue.  The trusted 
hardware requires a smaller amount of processing to allow decryption and use of the cleartext 
server computation result.  This computation requires less resources than the computation of the 
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encrypted function on input x performed by the host platform.  Any executing host with 
computations that use the server’s cleartext result (y) can thus perform operations in an 
unobserved manner—preserving privacy of data as well as privacy of computation. 

   Zhou and Sun [298] claim to provably secure an agent against all forms of computational 
and data attack except denial of service using an interesting combination of the CEF protocol 
based on Loureiro and Molva [296] and an adaptation of reference states proposed by Vigna 
[267]. Zhou and Sun convert mobile agents into a series of one or more Boolean circuits and then 
represent each circuit as a matrix.  By incorporating coding theory/CEF approaches with 
reference states, Zhou and Sun believe their approach prevents or detects all attacks except for 
DoS.  As with the original protocol [296], the Zhou/Sun protocol requires an in-depth knowledge 
of the McEliece algorithm, coding theory, and Boolean circuit decomposition of a program in order 
to be practical for implementation or viable for protocol analysis.   

   Lastly, we envision other combinations of both prevention (privacy of computation) and 
detection (privacy of data) that produce similar provably secure properties. The basis for 
computing with encrypted functions assumes a malicious host cannot discern the original function 
of an agent. If the results obtained from executing the agent remain encrypted, we can guarantee 
privacy of computation in a mobile agent system.  Thus, discovery of new methods for CEF and 
new homomorphic encryption schemes continue to be an open area of research. A general-
purpose program encryption mechanism that is provably secure, general, and efficient—an 
encryptable Turing machine for example—remains unfound.  Only limited applications for 
provably secure CEF using rational functions, polynomial functions, and small Boolean-circuit-
reducible programs are possible as a result.  The easiest software-only solutions encrypt only 
necessary parts of the agent computation and leave the majority observable as in [298,299].  We 
consider now a less provably secure method for providing privacy of computation based on 
masking the nature of a computation by confusion. 

 

 
Figure 111: Undetachable Signature Scheme 

A.3.22 Undetachable signatures  

Despite the fact a general homomorphic encryption solution to protecting the privacy of an 
agent program has not been found, one of the more important contributions by Sander and 
Tschudin [291] is the concept of an undetachable signature scheme.  This particular application 
of CEF defines how an agent can carry a secret, such as the signature function of an originating 
host, and then use that secret in public.  The obvious problem with releasing a signature function 
for use at remote servers is that a malicious server can reuse the function to sign transactions 
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which the original user had no intention of making—buying a new Porsche or booking a European 
vacation. Sander and Tschudin proposed a scheme that would compose a signature function with 
a task function, f().  As illustrated in Figure 111, a composed signature function can be sent from 
an originating host (Alice) to a host platform (Bob) allowing a task function f to be executed with 
Bob’s private input x and then signed with Alice’s signature function.  The results of Alice’s 
program with Bob’s input and Alice’s signature of the result are thus said to be undetachable from 
each other—in other words, the signature function fsigned() is only valid when used with function f().  
Unfortunately, Sander and Tschudin did not propose any practical application of this 
undetachable scheme. 

   Kotzanikolaou et al. [30] provide a practical implementation of the undetachable signature 
scheme and give a real implementation of CEF with an RSA-based homomorphism.  This 
scheme, depicted in Figure 112, is able to bind the signature of a prospective server’s bid (bidS) 
to a user’s requirements (reqC) in such a way that security is reducible to the strength of RSA 
itself.  The RSA-based signature function (which raises a message to the d power, where ed = 1 
mod φ(n)) is computed on the hash of the bidding function f().  When the server computes f(x) 
and thereby places a bid, the transaction is signed based on the input x with the composed 
signature function. The originating customer, Alice, can therefore guarantee her signature is valid 
only for signing transactions computed from the function f(.)—namely because a malicious server 
would have to modify the constraints (found in reqC) then produce a matching undetachable 
signature pair, (h’,k’).  This is only possible if one can break the RSA signature scheme. 

 

 
Figure 112: RSA-Based Undetachable Signature Scheme 

   Borselius et al. [29, 259] use threshold cryptography which was first proposed by Desmedt 
[300] in order to secure agent transactions. In a multi-party agreement scheme, we give a group 
of n entities shares of key in a way that k members of the group can create a valid signature 
together [301]. By applying threshold group schemes to undetachable signatures, we can achieve 
similar agreement properties in a mobile agent environment.  A user may desire to use more than 
one agent and embed each with a share of the signature key, limiting the power of any one agent 
to sign agreements from coerced malicious hosts.  In an e-commerce example, even though 
constraints embedded within an undetachable signature can limit the value of an item or the type 
of item purchased by an agent, a malicious host can still commit the agent to a less than ideal 
transaction. 
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   By deploying a certain number of agents for accomplishing a task, k of n agents can be used 
to distribute the signature function of the agent to ensure agents are treated fairly (the threshold 
aspect) while also constraining the type of transactions any one agent can sign (the undetachable 
aspect).  We can thus verify the correctness of a signature by a group of cooperating agents (or 
trusted third parties) and we constrain agent power to at least k of n uncompromised parties. 
Borselius et al. [29] also present an alternative to the RSA-based detachable signature of 
Kotzanikolaou et al. [30] using conventional signatures and public keys.  This scheme relies more 
on secure delegation techniques that allow an agent to carry certification authority for only certain 
transactions.  The non-RSA approach proves to be more efficient because only one signature 
(versus two) is required for the agent and the user need only generate a valid key pair and 
certified public key—saving one exponentiation. Group agreement schemes such as 
undetachable threshold signatures are very similar to another family of protection schemes that 
rely on the power of multiple parties for security, discussed next. 

A.3.23 Policy Management Architectures 

Policy management is a method for both malicious host and malicious agent protection, 
mentioned here for completeness.  Varadharajan and Foster [302] and Shi et al. [303] point to the 
need for an architectural view of agent security management.  Policies play a key role in defining 
such architectures and the incorporation of security mechanisms will confront system designers 
for years to come.  Because the success of the mobile agent paradigm is security dependent, we 
must consider architectural viewpoints as well.  Schoeman and Cloete [65] mention little reuse 
currently of agent architectures or reintegration of lessons learned from various research efforts.  
Policy management plays a key role in future standards and thoughts for common mobile agent 
frameworks.   

A.4 Agent Data Protection 

This section provides an overview of related research material to results present in Chapter 3.  
 
Privacy problems in mobile agents are invariably the source of many fears that prevent 

widespread deployment of agent systems currently.  A large body of research work reveals a 
variety of proposed defense mechanisms that fall under the category of data state protection. We 
list a large assortment of protection mechanisms reviewed in this section in Table 24.  

Table 24: Data Protection Mechanisms 

Section Data Protection Mechanism 
A.3.18 Sliding Encryption 
A.4.1 Digital Signature Protocol 
A.4.2 One-Time Symmetric Keys  
A.4.3 Bitmapped XOR Protocol  
A.4.4 Targeted State  
A.4.5 Append Only Container  
A.4.6 Multi-Hops Integrity 
A.4.7 Partial Result Authentication Codes 
A.4.8 Hash Chaining 
A.4.9 Set Hash Codes  
A.4.10 OKGS  
A.4.11 Configurable Protection  
A.4.12 Modified Set Authentication Codes  
A.4.13 Chained IP Protocol  
A.4.14 ElGamal Encryption  
A.4.15 Protocol Evaluation  
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Cartrysse [304] together with van der Lubbe [294,295] discuss the privacy and secrecy issues 
of mobile agent systems and mention that agent privacy falls under the larger umbrella of privacy-
enhancing technology (PET). Accordingly, they cite several traditional methods to achieve privacy 
cryptographically such as blind and partial-blind signatures and pseudonym systems—all of which 
operate on the assumption that agents execute on fully trusted hosts.  In the mobile agent case, 
however, integrity of partial results requires other non-traditional means.  Figure 113 illustrates a 
conceptual view of data protection offered by Cartrysse [304] where an agent consists of static 
code, static data, transmitted data, and dynamic data.  Mechanisms (internally based rather than 
policy-based) reside within the agent to ensure both privacy and trust maintenance.  For each 
type of data, there is some information regarded public (not requiring confidentiality) and some 
information regarded private, which requires protection.  All types of data—public or private—
require integrity verification (protection from alteration).  If the static code (agent function) needs 
protection, several mechanisms may accomplish this. 

Under PET concepts, static data consists of information present in the agent before dispatch; 
dynamic data on the other hand exists as part of the agent’s interaction with the host 
environment.  Transmitted data includes communications with other agents, entities, or the host 
itself.  Private static data can be information that will be eventually processed by the agent, but 
that requires protection until that time (to-be-processed).  Some private static data may remain 
completely read-only and further concealed for certain remote hosts or intended for use only by 
the agent itself.  For transmitted data, both private and public transmission require some level of 
time-stamping and integrity, while private read-only data still requires confidentiality.  Dynamic 
data has the same descriptive categories as static data, where read-only dynamic data remains 
private for certain group members or only for the agent itself.  The easiest data configuration 
consists of publicly accessible functions (static code) whose entire inputs (parameters given by 
each remote host in an itinerary) and outputs (intermediate host results) are publicly viewable.  
Every agent application that has some level of desire data privacy.  

 
Figure 113: Public/Private Data 

 



 

158 

A particular class of malicious host does not want to subvert or actively attack an agent 
through code alteration. Instead, the host only wants to steal information or algorithms from a 
passing agent.  Cartrysse and van der Lubbe [2002a] present solutions for three problems in this 
vein: private communication protection, task information privacy (the threshold amount for 
purchase of an airline ticket or commodity for example), and secure private key transport (for 
signature generation). Their approach to task information privacy is of interest for data protection 
and discussed further in Section A.4.14.   

We now review mechanisms that provide partial data result protection (private dynamic data) 
in various contexts.  We can readily see data collection in the typical e-commerce bidding 
application.  Notably, several authors point to the competitive bidding scenario and the role of the 
agent to gather bids from each prospective vendor [31, 144].  The possibly malicious intent of any 
one of the servers to tip the scales in their favor is the motivation behind several protection 
mechanisms.  

A.4.1 Digital Signature Protocol 

A method of protection similar to sliding encryption or public key encryption of the partial result 
can offer greater integrity protection.  In a digital signature approach, each host signs its data 
result after encryption takes place (normally with the public key of the agent owner). Using this 
method, an intermediate honest server in the path can verify that offers from previous hosts 
remain unaltered, thus contributing to overall security.  As with public key encryption mentioned 
above, the size of the agent will continue to grow as it collects partial results along its itinerary.  
Simple schemes also offer no protection against various integrity attacks where malicious hosts 
delete or insert results illegally. 

A.4.2 One-Time Symmetric Keys 

Several papers have proposed intermediate data protection mechanisms based on symmetric 
keys, one-way operations such as hashing, or reversible operations such as XOR. Sobrado 
specifies a simple scheme in [305] that does not require public key infrastructures, does not 
require agents to carry keys, allows revisits of an agent to an already visited host, and does not 
require the host to remain online during the entire transit of the agent.  Figure 114 illustrates the 
protocol and the essence of the protection mechanism.  As an agent visits each host in the 
itinerary, the remote host must generate a random one-time key and then use this key to perform 
message protection.    

The “pad” in this case refers to both the specialized method for generating a signature 
proposed by Sobrado [305].  The signature is comprised of a codeword and message field 
integral to the encryption process.  The approach uses a random number for the code word and 
uses rotated data bytes in an XOR operation with the one-time key generated by the host.  Each 
host generates and signs/encrypts its own data result, which the agent carries to the next host in 
the itinerary (Figure 114-2c and Figure 114-3c).  Each host in the route (host 1 and 2 for example 
in Figure 114) keeps this one-time key until the agent owner asks for it a later time (Figure 114-
4a/b and Figure 114-5a/b). The agent owner recovers the symmetric key from each host visited 
by an agent later.  If each host guarantees the one-time use and subsequent deletion of each 
key, this scheme achieves data privacy and authentication without requiring the agent to carry 
keying material.  This method parallels the asymmetric key approach except the protocol must 
provide the public key of the originating owner to each remote host, either carried by the agent or 
provided by a certificate authority (PKI) out of band.  An agent can also revisit a host because the 
originator does not request the symmetric key until after the agent returns home.   

A host can locate its own information based on the digest/code-word of the register fields 
embedded in the agent and replace it with a newly generated ciphertext, create from another 
different one-time key.  Though interaction is not required immediately, it is required at some 
point in order for this scheme to work (the owner has to communicate with each host to transfer 
the symmetric key).  The one-time scheme protects against counterfeiting of data but does not 
address integrity attacks where malicious hosts delete partial results altogether or make 
insertions illegally.  It counters agent “brainwashing” by reverting to the use of a trusted third party 
referred to as a route server.  Agents can communicate path information (or possibly other 
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information) to one or more route servers accessible in a network (Figure 114-2d/3d). Like many 
other schemes, it does not offer full protection apart from using trusted intermediaries or 
tamperproof hardware and assumes software-only protection is not possible. 

 

 
Figure 114: One-Time Protection 

 

A.4.3 Bitmapped XOR Protection 

As the sliding encryption model illustrates, not all remote data needs to be protected—only 
that which we classify as private in some way.  A “fast and easy” approach is developed by Diaz 
and Gutierrez [306,307] under this assumption.  We consider it fast because it does not rely on 
cryptographic techniques like digital signatures and we consider it easy because it relies on basic 
bit operations.  In the mechanism, the agent owner builds a data table—one copy remains with 
the owner and the other embedded in the agent.  Figure 115 shows the notional interaction of the 
protocol—namely the application owner provides one row for each intended host that the agent 
plans to visit—thus limiting this approach to bounded itineraries.  Each row in the matrix has 
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several fields: a host identifier, the data gathered from a particular host, a random number code 
word created at the remote host, and a cyclic redundancy check (CRC).  

In the operation of the protocol, the owner fills the table with random numbers to create a 
bitmapped basis for encryption.  The originating host uses the original copy of the matrix to 
recover data upon return of the agent.  As the agent visits each host, the host creates a duplicate 
of its original data row for its own archival and then inserts its identification and a random code 
word into the table. Data blocks are loaded into each block through by means of applying the 
XOR operation to the random number already in the agent—overwriting the existing number with 
encrypted data.  Because the application owner cannot detect some alterations where CRC 
protection is used, the executing hosts apply rotations to both data and code words in a 
recoverable manner.  Servers use the next set of free rows to store their data.  Unfortunately, the 
mechanism does not provide a way to prevent deletion of results—only detection that a server 
has acted dishonestly.  The agent owner can re-insert the original code word into the matrix for 
decryption operations in reverse of the host algorithm.   

   

 
Figure 115: Bitmap/XOR Data Protection 

 

Bitmap XOR operations are particularly useful for small data items such as dynamically 
generated itinerary information, as long as we place some reasonable bound on the number of 
hosts.  Malicious hosts may attack the method by copying the data table in hopes that an agent 
will revisit (or that a colluding malicious partner resends an agent).  If this occurs, a malicious host 
could perform the same decryption as the originating host.  Diaz and Gutierrez suggest a remote 
host can provide its own random bit row for XOR encryption to eliminate this vulnerability and 
allow hosts to update their own data.   The executing host, however, must still communicate the 
random number data back to the originating host.   

A.4.4 Targeted State 

Karnik and Tripathi [284] deal with the problem of providing private data from the agent to a 
remote host by using targeted states.  Unlike protecting data gathered by the agent, this model 
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assumes agents carry data that is private except only on certain hosts, thus requiring protection 
from observation by other malicious hosts or agents.  A remote host receives from a visiting an 
agent a signed collection of states, which it verifies, and then performs inspection  to see whether 
it can decrypt any target state using its own private key.  If so, the host decrypts the state and 
makes any plaintext available to the agent.  Figure 116 depicts the interaction of this protocol.   

 

 
Figure 116: Targeted State Protocol 

 

A.4.5 Append-Only Containers 

Karnik and Tripathi [284] also introduce the append-only container that considers the integrity 
of the overall set of data items an agent carries, as opposed to just the confidentiality or integrity 
of a single datum.  As the name implies, an executing host can only append new items to such a 
container and the originating host can detect modifications to existing items in the container.  In 
order to initiate the protocol, an originating host creates an initial container with a secret random 
value and computes an initial checksum encrypted using the owner’s public key (seen as {r}KO in 
Figure 117.). Intermediate executing hosts can use checksums of the item set to provide 
intermediate verification as an agent visits each host in the itinerary.  The append-only container 
is thus defined as an ordered set of intermediate results plus a checksum, whose value will be 
determined by the each host in turn: [{d1}K1

-1, {d2}K2
-1, … ,{dn}Kn

-1, Cn]. The previous hosts’ 
checksum becomes a part of that host’s data item so that each host forms a chained relationship 
with each previous host.  Each host also applies a digital signature to its data result (seen via 
encryption with K1

-1, K2
-1 in Figure 117).  As an agent visits a new host, the host signs its data and 

includes it in the append-only container (AOC in Figure 117).  The host then computes a new 
checksum using the previous checksum and its own signed data result. 

A.4.6 Multi-Hops Integrity 

Corradi et al. [308] envision a similar protocol that provides chained protection of data results 
from intermediate hosts.  In their approach, the host begins again with a random number 
(indicated by nonceO in Figure 118) and three data items: a message authentication code 
(MACO), a data set (DataO), and a multi-hops code set (MHCO).  This protocol sets up a chaining 
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relationship that not only ties the agent to the previous host (and the set of results collected so 
far, but also incorporates the identity of the current host and the identity of the next visited host).  
As the agent visits the next host in the itinerary, the host generates a new random number 
(nonce) by hashing the value of the previous nonce (which is itself a hash value).  Likewise, the 
current hosts’ data result (dn) is combined with the previous nonce (noncen-1) and the previous 
message authentication code (MACn-1) in a hash that binds the current hosts identity to it (seen 
as id(Hostn) in Figure 118).   The current host then signs the MAC by the current host and then 
adds it to a set of previous signed MACs in MHCn.  The host concatenates the data result itself to 
the previous data chain and binds it with the identifier of the current host.  The agent migrates to 
the next host in the itinerary by sending MHCn, Datan, MACn, and the current noncen encrypted 
with the public key of the next host to be visited ({noncen}Kn+1). On return to the originating host, 
the owner of the agent should be able to create a non-repudiable chain of the agent’s activity 
based on the one-way hashing operations and the public keys of each host the agent has visited. 

 
 

 
Figure 117: Append-Only Container  

 

A.4.7 Partial Result Authentication Codes 

The multi-hops protocol uses the notion of a message authentication code, which incorporates 
hashing to provide integrity verification of various values. Yee [31] offered original notions of such 
integrity checks called partial result authentication codes (PRAC). PRACs are key-based hashes 
that offer better efficiency compared to a digital signature and provide a weak form of data 
forward integrity. MACs, when used in the mobile agent context, support more than just 
authentication of origin; they also support verification of an intermediate result computed by any 
previously visited host. MAC verification assumes parties share a common key by which both 
sides verify integrity of data. Yee proposes three variations of PRACs for use in agent contexts. 

Simple MAC-Based PRAC. In the simple case, Yee’s protocol requires an originator to 
generate and keep a sequence of symmetric keys carried by the agent that are used per-server in 
generating an encapsulation of the agent’s activity.  The agent also sends a summarized version  
of the local host execution back to its owner before migration to the next host or carries it for 
transmission later.  As seen in Figure 119, a major assumption in the approach is that an agent 
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can dispose of a key before visiting the next host in the chain—a requirement that is hard to 
enforce without the help of a trusted third party or trusted hardware.  The method also restricts 
the agent itinerary to a known path because the application owner must know the number of keys 
beforehand.  The simple approach would guarantee a form of forward data integrity assuming 
keys are not stolen or deleted properly. 

 
Figure 118: Multi-Hops Protocol 

 

 
Figure 119: Simple MAC-based PRAC 
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MAC-Based PRAC with Hash. Instead of n keys that the protocol distributes to some n 

servers under the simple PRAC scheme, the owner holds a single key KO used to create a one-
way data stream to generate a series of keys used per-server.  Figure 120 shows how an agent 
only need carry the original key and then each host produces its per-server key by hashing the 
previous key. The host still bears the responsibility of erasing knowledge of any key that it 
generates, very similar to approaches discussed in Section A.4.2 and Section A.4.10.   

Publicly Verifiable PRAC. To overcome the key theft issue, Yee suggests achieving forward 
integrity by using a third party time-stamping service and digital signatures—providing a public 
means of execution verification.  Instead of secret symmetric keys, a third alternative uses public 
keys and signature functions and allows honest nodes to participate in the detection process. The 
intermediary does not need to know the shared secret between an originating host and an 
already visited host in order to verify tampering has not occurred. Instead of loading the agent 
with a set of shared keys, the originating host loads the agent with a set of signature functions, 
each with its own unique verification function (see Figure 121). 

The verification function (verifn(d,c) seen in Figure 121) is considered public (a remote host in 
the itinerary can provide a publicly available certificate as input) while the signature function itself 
is considered private.  The agent signs each partial result with the signature function of that 
particular host (sig1(d1), sig2(d2), etc. in Figure 121) and subsequent hosts can run the verification 
function as the agent traverses the network to detect modifications. The protocol relies on an 
intermediate remote host to delete its signature generation function, however, and there are no 
guarantees that a malicious host can not alter or change signature or verification functions of 
hosts yet to be visited (though that can be detected after the agent returns home by the 
originator). 

   
Figure 120: PRAC with Hash-Based MAC 

 

As another variation, the method can reduce the secret signature function to a single version 
held by the originator and a one-way relationship established as in the PRAC with hash-based 
MAC version.  An agent creates the partial result signature by executing sign(dn) and then 
deleting it, as in the normal version.  Then the agent creates a new signature and verification 
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function pair that supports certification of the new signature on future hosts.  In this way, the 
protocol defers signature generation to the executing host and not the originating host (which 
might have less computational power).   

As a benefit, the agent itself (as well as other honest hosts) can verify the status of its data 
storage area. We consider Yee’s methods to provide weak forward integrity because it cannot 
prevent certain data integrity attacks when hosts cooperate maliciously. PRAC incorporates 
backward chaining but cannot prevent colluding hosts from truncation attacks, especially in the 
case where an agent visits the first host in a chain again.  When the application allows agents to 
revisit prior hosts, a malicious host can delete data results captured between the first and second 
visits and alter the path of the agent to exclude other servers completely. A malicious server may 
also change a previous bid illegally (once it has gathered more information from other hosts in the 
environment).  We must consider forward integrity in the face of such activity differently.   

 

 
Figure 121: Publicly Verifiable PRACS 

A.4.8 Hash Chaining 

In order to account for collusions, Karjoth et al. [144] define at least three alternatives to 
defend against truncation of agent data when the path of an agent is not known in advance: 1) 
embed some part of the itinerary in the agent; 2) have the originating host broadcast an agent’s 
path after the fact to allow servers to verify their results were not deleted or altered; or 3) create a 
verifiable function that computes the next hop in the agent path (forward chaining). Karjoth and 
colleagues propose four different protocols that incorporate forward chaining and achieve varying 
levels of strong forward data integrity and confidentiality.  We refer to this approach as hash 
chaining or partial result encapsulation and observe that it resembles the Corradi et al. [308] 
multi-hops protocol.  Hash chaining protocols link the current agent state to both the previous 
state of the agent and the identity of the next visited host—all of which combine to offer stronger 
resilience against certain collusions.  

Karjoth et al. [144] define a chain O1, O2, O3, O4, …., On as an ordered set of data items 
(offers) that are collected by an agent from a set of 1 .. n hosts. Dependence exists between each 
element of the chain with a previous element and/or possibly the next element in the chain.  
Based on the security properties defined in Table 5 and Table 6, the following mechanisms 
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attempt to strengthen PRAC-based protocols from Yee [31]—making it impossible for an 
executing host or colluding partner to forge a previous data element.  There are three essential 
elements that define each protocol: the definition of the encapsulated offer, the chaining 
relationship (hash code), and the protocol for migration, each illustrated in Figure 122 and 
discussed in detail for each variation.  In a hash chain relationship, the encapsulated offer is 
composed of some set of data (the data result of the current host, a random nonce, a hash code, 
etc.) that is either signed or encrypted by the remote host.  Depending on whether public 
verification or privacy is more important, future agent servers may be able to read data but not 
modify it without detection. Likewise, the protocol can hold data private so that only the originating 
host can read it or detect that integrity violations have occurred.  

Publicly Verifiable Chained Digital Signature (PVCDS). The first approach Karjoth et. al 
[1998] describe is an encapsulated signature chain that extends Yee’s [31] per-server digital 
signature.  The originating host generates a random number and hashes it together with the 
identity of the first host in the itinerary.  Every subsequent host takes a hash of the previous 
encapsulated offer and the identity of the next host as the value for the “hash” part of the 
encapsulation, as seen in Figure 123.  The encapsulated offer is a publicly signed package of 
both this hash value and a set of encrypted data offers (encrypted with the public key of the 
owner normally). This provides forward and backward chaining which strengthens resilience 
against modification without detection.  Figure 123 gives an overview of the specific PVCDS 
implementation.  

 
Figure 122: Encapsulated Offers  

The originating host begins the hash chain by encrypting the random nonce and a token with 
its public key. Once the application owner dispatches an agent, the agent collects a set of 
encapsulated offers, each linked to the previous and next host in the itinerary.  Figure 123 
illustrates the steps of the protocol for a notional third host (Host3) in an itinerary that has just 
received an agent from host (Host2).  Host3, in Figure 123, relies on the encapsulated offer of the 
previous host (Host2) to derive its own hash value and links its execution explicitly to the next host 
in the itinerary.  In this mechanism, a server can verify links in the chain by decrypting any given 
On in the set of encapsulated offers.  Since each offer is composed of hn plus the encryption of 
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(dn,rn), intermediate hosts perform signature verification en-route to ensure data migrations have 
not been altered.  Whether positive or negative, a server cannot modify its own result even if an 
agent revisits.  Another downside to the approach is owner must determine the itinerary 
beforehand and must perform final verification of the entire chain sequentially when the agent 
returns home.  PVCDS provides data confidentiality, non-repudiation, strong forward integrity, 
publicly verifiable forward integrity (signatures of each intermediate host can test underlying 
links), insertion resilience, and truncation resilience.   

Chained Digital Signature with Forward Privacy. A slight variation of PVCDS involves 
swapping the ordering for encryption and signature generation.  In this case, a particular 
encapsulated offer is itself an encryption (as seen in Figure 124 for a notional Host2) of the 
chained hash (h2) plus a signed copy of its data result with nonce.  This variation enforces 
forward privacy but the protocol does not support publicly verifiable forward integrity—only the 
originating host can decrypt any given encapsulated offer. It is a desired feature of any protocol to 
enlist the help of honest nodes to perform integrity checks on the agent. 

 

 
Figure 123: Protocol Interaction of PVCDS 

 

Chained MAC Protocol. Since both variations of PVCDS assume a PKI is in operation, 
Karjoth et al. posed two variations for hash chaining that do not rely on this assumption.  Instead, 
the only requirement is that each agent server knows the public key of the originating agent 
(which is an easier key distribution problem).  As an extension to Yee’s MAC protocol, Karjoth 
takes advantage of the property where a key-based message authentication code (MAC) ties an 
intermediate agent data state to a particular host platform.  As seen in Figure 124 each 
encapsulated offer is afforded privacy by encryption with the originating owners public key (KO) 
and each subsequent host (Host3 for example) is provided a hash chain value (h3) that is 
computed for it by the previous host (Host2 in Figure 124).  This chaining relationship ties 
together all previous results up to that point in the itinerary and binds the identity of the next host 
in the chain. The random nonce included with each hash chain and encrypted by the host (for 
example, r2 for Host2 in Figure 124) prevents a future agent platform from being able to replace 
an encapsulated offer as well. The embedding of the identity of the next host does not provide 
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authentication of a given server, but allows the originating host to track agent migrations against 
results embedded in the data state.   

Karjoth et al. note also that embedding of the hash value itself (hn) into the encrypted offer 
(On) could allow the originator to determine which malicious server broke the chaining 
relationship.  The chained MAC protocol, according to the authors, provides data confidentiality, 
strong forward integrity, and forward privacy.  Strong forward integrity is induced here because it 
is not possible to modify a given encapsulation On without also modifying On+1 and hn+1 while still 
maintaining the correct chaining relationship.  

Publicly Verifiable Signature Chains. A final extension to Yee’s [31] publicly verifiable 
PRAC where a secret signature and verification function pair is embedded in the agent is 
depicted in Figure 125.  In Yee’s approach, a server signs its partial result using the signature 
function carried by the agent and then certifies the next signature verification function that will be 
used the next host in the itinerary.  The host destroys the signature generation function it receives 
but adds its certified verification function to the agent.   We can use both one-time and public key 
signatures to sign intermediate results and Karjoth et al. [144] chose to use only the public key of 
the originating host to set up the chaining mechanism. 

 

 
Figure 124: Forward Privacy 

 

Figure 126 illustrates publicly verifiable signature chains that use a one-time public/private key 
pair generated by each remote host.  The generation process relies on a chain starting with the 
public key of the agent owner.  Each host in turn generates and sends a signature key to its 
successor (seen as OTK3

-1 in Figure 126) and provides certification for the corresponding public 
key (seen as OTK3 in Figure 126).  The current host signs each offer, On, digitally with the secret 
key received from the previous host.  The hash in this case remains embedded within each 
encapsulation object and provides a forward and reverse link.  This protocol when combined with 
features from the chained digital signature mechanism provides both publicly verifiable forward 
integrity and forward privacy.  

The protocols of Yee [31] and Karjoth et al. [144] have vulnerabilities to include threats from 
colluding hosts.  Roth [109] identifies the root cause as agents which do not have a specifically 
identifiable kernel (static code), thus allowing oracle and cut-and-paste replay attacks.  Cheng 
and Wei [309] enhanced the publicly verifiable signature scheme of Karjoth et al. [144] to shore 
up truncation-attacks launched by two hosts in partnership.  In their approach, a counter-
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signature is required from the preceding host (almost like a counter-signed check) before sending 
the agent to the next host in the path. Zhou et al. [310] find further weaknesses in the Cheng/Wei 
[309] mechanism when loops are present in the agent’s itinerary, but are able to deter more 
advanced truncation attacks by requiring two hosts to co-sign an agent’s integrity checksum/hash 
value. 

 
Figure 125: Chained MAC Interaction 

 
 

 
Figure 126: Publicly Verifiable Signature 

A.4.9 Set Hash Codes 

In many ways, we can tie data integrity in the presence of malicious hosts to the itinerary of 
the agent:  how the agent travels in performing its task.  An agent (by luck) can visit the only 
malicious host in a network first and thus have less worry about deletion or substitution.  On the 
other hand, luck might have it that the agent visits the only malicious host in the network just prior 
to returning to the originating host—putting the previous results of all hosts visited at risk to some 
form of deletion.  Loureiro and his associates [311] A form of protection that uses the integrity 
checks for a collection of unordered objects, referred to here as set hashing, was proposed by. 

The hashing method in this approach makes use of a strong (Sophie Germain) prime p, where 
p = 2q + 1 and q is prime also.  Given g as generator for cyclic group Z*

p, for every x in the set {1 
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.. (q-3)/2} the following relationship holds true: g’ = g2x + 1 mod p is also a generator for Z*
p.  This 

particular construction gives nice features for a set of n elements and an associated set hash 
derived with this property: security, commutativity, cancellation, and a computation complexity 
with only 2n multiplications, n additions, and one exponentiation.    Figure 127 depicts the agent 
data collection mechanism of Loureiro et al. [311] which integrates set hashing. 

The agent in Figure 127 visits three hosts, two of which it visits more than once.  The first part 
of the protocol (1a,1b,1c in Figure 127) illustrates that the agent owner and every host in the 
itinerary must establish a pre-existing shared secret before agent dispatch.  This of course limits 
the free-roaming nature of an agent to some degree, but lifts the dependence for a PKI.  In the 
depiction, Host1 shares key KA1 with the originating HostA.  We can establish shared keys over 
public channels readily via operations such as the Diffie-Hellman key exchange.  

 

 
Figure 127: Set Hashing Data Collection 

As the agent collects data at each remote host and places them into an embedded data set, it 
computes a set hash based on the generator g mentioned above.  Each element of the set hash 
function is created by hashing the data result computed at the remote host (d1 for first visit of the 
agent to host1 and d’1 the second time the agent visits in Figure 127) and the shared key (KA1, 
KA2, KA3, etc.).  The set hash is the data integrity mechanism that inserts set elements to be 
added in an unordered sequence—and the mathematical properties of the generator allow a host 
to cancel out a previous data item and reinsert a new one.  Set hashing allows an agent to visit a 
host more than once (a feature prevented in [31] and [144]) and allows a host to make no bid at 
all.  It provides a cryptographically based method for data integrity, insertion resilience, and 
truncation resilience.  Strengths include support for randomized agent itineraries, no requirement 
for a public key infrastructure, and the reducibility of the set hashing data collection algorithm to 
the security of solving a discrete logarithm in a finite field. 

The secure data collection protocol does not provide data confidentiality in its basic protocol 
but supports it as an add-on feature—leaving open applications where results in cleartext might 
be advantageous or needed.  Suen [312] poses the idea of combining set hashing with Vigna’s 
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data collection protocol.  This approach allows an agent to carry the execution trace (Vigna) along 
with the encapsulated set hash of data results so that the application can lift the requirement for 
the trusted third party to process execution receipts.  As with most all data protection 
mechanisms, set hashing is unfortunately all or nothing: if verification fails when the agent returns 
to the originating host then the application owner must throw all agent results away.   

 

 
Figure 128: One Time Key Generation Scheme 

 

A.4.10 One Time Key Generation (OKGS) 

Park et al. in [313] proposed another one-time key generation method (OKGS) that integrates 
a hash function and coupler—resulting in chains of previous results with current results.  Figure 
128 depicts interaction of an agent with a host.  The scheme requires both time-stamping and 
public key cryptography in order to work. The agent owner signs static code with a digital 
signature (seen as DSAO(code) in Figure 128) and each agent framework verifies the signature of 
the code before allowing execution.  Each agent framework in the itinerary signs its own results 
with a private digital encryption scheme (DES) key as well.   

In OKGS, executing hosts use a unidirectional key chain for encryption using the DES 
algorithm (a symmetric key scheme).  The secret key (seen as agent key Sk in Figure 129) is 
created by hashing the XOR of a random nonce (R1k) and previous agent coupler (Ck in Figure 
128 and Figure 129).  The current executing host XORs the agent key (Ak) with another random 
nonce (R2k) and hashes it to produce the coupler that will be sent to the next host.  In order to 
recover the shared secret key and decrypt agent data state encrypted with it, the originating host 
must have access to each set of nonces generated by each remote host.  For this purpose, the 
executing host uses the public key of the originating host to encrypt the two random numbers, a 
timestamp, and a signature of the data with timestamp included.   

OKGS provides data confidentiality and forward data integrity, though it does not support 
publicly verifiable detection.  The digital signature of each host’s data encrypted with the public 
key of the sending host is similar to other data encapsulation techniques. By using time stamping, 
the scheme eliminates replay attacks by setting keys valid for specified transaction periods.  
OKGS also provides truncation resilience in the face of colluding malicious hosts.  Unfortunately, 
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large overhead is involved in setting up a time stamping service and the data grows linearly with 
the agent as in other cases where digital signatures are used. 

 
Figure 129:  Key Generation Module  

 

A.4.11 Configurable Protection 

Maggi and Sisto in [107] build upon the data integrity mechanisms proposed by Karjoth et al. 
[144], Corradi et al. [308], and Karnik and Tripathi [284] to develop a configurable protocol that 
can be adapted to varying levels of data integrity properties, depending on the application.  
Building on the work of Roth [108, 112], they correct the problem of many data protection 
mechanisms that do not bind the identity of the agent code to its state.  An abstract model 
captures the message exchange sequence between two agent servers in the itinerary of an 
agent.  In the abstract case, an agent consists of two basic elements: static agent code and a set 
of encapsulated data elements.  Table 25 summarizes the abstract model that defines a 
configurable data protection scheme.  

Table 25: Abstract Data Protection Model 

Model Part Definition 
ΠO  (Static Agent Code, Timestamp, t,  
Signature key of agent owner, KO

-1) 
{Π, t}KO

-1 

Identity of remote host hn 
Data result computed at remote host n  dn 
Mn (Encapsulated data computed at host n ) Dn || Cn 
Set of data items carried by agent {MO, M1, …, Mn} 
hn → hn+1 (Transmission of agent from host n to host n+1) ΠO, {MO, M1, …, Mn} 
Dn  (Protected data result or offer gathered at host n— 
some function of data computed and host identity) 

D(dn,hn) 

Cn (Chained protection configuration parameter) C(hn, dn, Cn-1, in+1) 
 
Four configurable protocols achieve detection of truncation and implement a binding 

mechanism for agent data state.  Each case extends the abstract protocol to incorporate varying 
security features.  As Table 25 illuminates, an agent migrates from host to host carrying a set of 
encapsulated data results {M1,M2 ,…,Mn} and a signed copy of its static code tied to a timestamp. 
We avoid interleaving attacks in the scheme by using the timestamp associated with the agent’s 
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static code.  The system protects the data via some encryption method and links it to the identity 
of the executing host (either through hashing or nonce).  The parameter Dn is therefore some 
function of the data and host identity that computed that data.  A chained protection configuration 
parameter Cn is used to link the data collected (dn) at a given host (hn) to the previous protection 
check and the identity of the next host to be visited. Each protocol describe by Maggi and Sisto 
[107] (named MS1 to MS4) defines both configuration parameters (Dn and Cn) to achieve certain 
levels of protection.  In order to achieve data authenticity, for example, a real protocol extends the 
abstract model by choosing the manner in which we configure Dn and Cn.  Since authenticity 
deals only with verifying the identity of a piece of information, no encryption of the data is 
required.  For this level of protection, the following behavior is established: 

D(d0,h0) = ∈ 
D(dn,hn) = dn 
C(h0, d0n, C0, i1) = ∈ 
C(hn, dn, Cn-1, in+1) = (dn, ΠO}Kn

-1 
 
Each intermediate host signs its data result along with the agent kernel using the executing 

host’s signature key.  Left open is how the signature key is established (shared secret, 
asymmetric cryptography, hash-based methods, etc.).  The originating host must only be able to 
verify the signature.  This protocol (referred to as MS1) supports not only data authenticity but 
non-repudiability because neither side (agent owner or remote host) can disavow that the data 
result came from execution of the agent’s code.  As Maggi and Sisto point out, different agent 
applications require different levels of security—some that require privacy, some needing publicly 
verifiable qualities, and some needing protection from multiple colluding hosts. The configurable 
protocol allows a wide variety of freedom in implementing specific mechanism such as hash 
algorithm, keying methods, and agent identification. Table 13 summarizes the security properties 
achieved by the protocols offered. 

Table 13:  Protection protocols MS1-MS4  

Protocol Properties 
MS1 Data authenticity 

Data non-repudiability 
Trusted data integrity (fixed itinerary) 

MS2 MS1 features 
Data confidentiality 
Forward privacy 
Origin confidentiality 
Trusted data integrity 
Strong data forward integrity (fixed itinerary) 

MS3 MS2 features 
Strong data forward integrity (weak free-roaming agent) 

MS4 Weak trusted data integrity (full free-roaming agent) 
Data confidentiality (can be added)  

 

A.4.12 Modified Set Authentication Code 

Research continues to improve upon data protection mechanisms proposed over the last 
decade.  Gunupudi and Tate [223] for example extend the set hash code proposed by Loureiro et 
al. [230].  In the original protocol, the agent owner distributes a shared secret to each host in the 
agent itinerary.  Loureiro et al. suggest the use of Diffie-Hellman key exchange for this purpose, 
while Gunupudi and Tate point out several shortcomings. A random host can be in the agent 
itinerary, but the establishment of a shared secret requires the agent owner to remain on line for 
the entire duration of the agent’s lifetime. Diffie-Hellman in its basic form can also be susceptible 
to man-in-the-middle attacks.  
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In order to correct this deficiency, Gunupudi and Tate [223] develop a modified set 
authentication code that allows the remote host to generate the secret key and then encapsulate 
it as part of the agent’s data state using encryption under the originator’s public key.  If updates 
are required, a host has the choice of reusing its secret key or generating a completely new one.   
The method has similarities to OKGS where secret key generation takes place at each host in the 
itinerary.  Once the application creates the secret key, each host makes normal use of the 
message authentication code to produce an encapsulated offer.  The owner can apply the set 
integrity verification function as in the case of the original set hash code approach. 

A malicious host cannot modify any data set in the agent without detection because only the 
original executing host knows the secret key and the each host encrypts their encapsulated items  
within the agent.  A malicious host can still insert fake data elements with a completely different 
secret key and then encrypt it using the agent owner’s public key—thus masquerading as other 
hosts and introducing bogus data such as bids.  As in the original set hash code (by Loureiro et 
al. [230]), the scheme is not resilient to truncation attacks from two or more colluding hosts. 

A.4.13 Chained IP Protocol 

We discuss chained IP mechanisms and other itinerary protection schemes in Section A.3.17, 
but mention them here for completeness.  In the chained IP approach, the owner leaves the route 
information unencrypted and appendable by each subsequent host in the agent’s route.  The 
approach establishes the strength of the chaining mechanism by the identities of the previous 
host, the current host, and the next host in the itinerary.  However, the chaining is susceptible to 
truncation attacks when one or more malicious hosts collude. 

A.4.14 ElGamal Encryption 

Cartrysse and van der Lubbe [294] propose several mechanisms to protect agents including 
support for confidential agent communications, task confidentiality, and support for agent 
signature functions.  In terms of providing and collecting confidential data, the authors state that a 
necessary condition for an encryption algorithm that protects data across multiple parties must 
have an E-E-D property, defined as a chained sequence of asymmetric key encryption and 
decryption. In particular, when an agent carries confidential data that a remote host will use 
(similar to anonymous itineraries), other intermediate hosts must not be able to read that 
information.  Figure 130 depicts an encryption scheme that helps support such privacy.  

 

 
Figure 130:  E-E-D Property 

 

A needed property for data confidentiality as the agent traverses a network is for the 
information to be encrypted by the agent owner (using the PKO in Figure 130) and also the public 
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key of the server where the data is intended (PKn in Figure 130).  Normally, the encrypted 
sequence ((d)K0)Kn can only be decrypted to get the data item d by using the private signature 
key of the remote host (Kn

-1) first. The E-E-D encryption would allow decryption to get back the 
data item encrypted with public key of the remote host without first using the private key of the 
remote host n.  The ElGamal encryption scheme [314] is the only suitable algorithm that can 
support such a property and is proposed by Cartrysse and van der Lubbe as a means to protect 
private data in an agent. 

As a result, an agent owner embeds data intended for a specific remote host so that only that 
host can decrypt and used the data given the agent’s private decryption key.  We can use 
different secret decryption keys for different data embedded within the agent to strengthen the 
scheme.  The protocol may divulge data unless hosts follow a correct ordering of operations—
requiring a trusted third party to be present to enforce ordering.   

A.4.15 Protocol Evaluation 

To conclude discussion of data protection mechanisms, we note mobile agent protocols suffer 
from the same weaknesses as normal network protocols that attempt to exchange information or 
establish trust in a secure way.  Roth [112] reiterates that mobile agent protocols certainly have 
undetected flaws in them and suggests development of a formal way to analyze these protocols. 
Little research points out the vulnerability of mobile agent protocols—especially those designed to 
provide malicious host protection—than has been asserted about protocols themselves.  A 
promising area of research is development of both formal methods and verification techniques 
applicable to existing or newly developed mobile agent architectures. 

Traditional network attack techniques combine execution of legal operations in multiple 
execution strands.  Roth [108, 112] describes weaknesses and flaws of protocols proposed by 
Karjoth et al. [144], Karjoth [287], Corradi et al. [308] and Karnik and Tripathi [284].  In particular, 
Roth illustrates how cut & paste techniques allow a malicious host to take a portion of one agent 
and embed it in another agent for use in a parallel attack sessions.  Roth also shows how 
malicious hosts use the oracle exploit attack to create their own agent with the purpose of getting 
other hosts to perform cryptographic operations on them (following the rules of the protocol), 
thereby decrypting sensitive information and removing privacy mechanisms.   

Roth concludes that in every protocol analyzed, non-malicious hosts act as a potential oracle 
that performs encryptions, signatures, and decryptions on behalf of malicious hosts.  He also 
observes that interleaving attacks pose great problems to posed agent security mechanisms 
because just digitally signing a mobile agent’s static code does not prove ownership or 
authenticity of the agent.  The possibility exists that an adversary can use agent code if the agent 
state is not bound to the static code: such vulnerabilities exist in several primary data 
encapsulation protocols.  Maggi and Sisto [107] solve this deficiency and take steps to use an 
agent kernel. Roth [109] also gives suggestions for improvement of each protocol to shore up 
security vulnerabilities. 

A tension exists among the many configuration properties in mobile agent data protection.  For 
example, some systems would be more secure if they provided anonymity (origin confidentiality) 
of the individual hosts because collusion would be harder [144].  For non free-roaming agents, 
applications can detect truncation and substitution attacks much easier because the owner knows 
the list of visited hosts absolutely.  Trusted intermediaries provide beneficial security 
mechanisms, but we general view their presence as reducing interoperability. Knoll et al. [79] 
conclude that reliance on a certification authority can introduce complexity when an agent moves 
to different realms. The more secure a mobile agent system is, the more proprietary solutions 
become. 
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A.5 Secure Multi-Party Computations 

This section provides background material to results presented in Chapter 3 regarding 
integration of SMC protocols with multiple mobile agent architectures.  

  
Cryptographers have for some time sought how to perform a group function when there are a 

number of mutually or partially distrusting participants to the operation. Yao’s blind millionaire 
problem [315] is often cited as an early formulation for the two-party case where a function z = 
f(x,y) is computed between Alice and Bob—without leaking any information about Alice’s input x 
or Bob’s input y other than what can be deduced from z itself.  Goldreich and his colleagues in 
[316] extend secure computation to n parties—defined in the general case as a publicly available 
function f that takes n private inputs and returns n private outputs: f(x1, x2, x3, …. , xn) = (y1, y2, 
…, yn). In some instances, all parties learn the same function output such that y1=y2=…=yn, 
making the output publicly known.  

Secure computation is referred to synonymously as secure multi-party computation (SMC), 
secure function evaluation (SFE) or secure circuit evaluation.  Various contributions from active 
research in the field can be found in [105, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 
328, 329, 330, 331, 332, 333].  In terms of practical use, [334] summarize privacy-preserving, 
real-world applications that can be represented as an SMC problem such as database query, 
scientific computations, intrusion detection, statistical analysis, geometric computations, and data 
mining.  Malkhi et al. develop a full programmatic implementation of a two-party secure function 
evaluator called Fairplay [335] that uses oblivious transfer [319, 320, 321, 336] and one-pass 
Boolean circuits [315, 316, 327, 322].  

SMC protocols typically involve several rounds of interaction between parties and assume 
different types of communication channels including, for example, private channels between 
every two parties [317, 318], a broadcast channel [322, 337], and broadcast subsets among 
player triples [333].  In terms of security, we can reduce the correctness and privacy of any 
protocol to the evaluation of a secure function protocol [322].  In the ideal setting, all parties to an 
SMC can send their inputs via a secure private channel to a trusted third party that computes the 
group function and return results fairly. 

A primary security result concludes that any function we can compute with polynomial 
resources (communication and computation) we transform and compute in a secure manner 
using polynomial resources [330]. Corruption in multi-party computations deal either with an 
honest-but-curious (semi-honest) adversary that passively reads information from corrupted 
parties or an active (malicious) adversary that exerts full control over parties.  Privacy of inputs is 
at issue in passive attacks while correctness of the outputs is more at issue in active attacks.  
Goldreich concludes in [328] that we can force two parties acting maliciously to behave in a semi-
honest manner or else catch them violating the security of the computation. 

For any arbitrary function in the presence of an active adversary, we can securely accomplish 
the computation as long as less than 1/2 of the players have not been corrupted [316].  The 
unconditional security results found by [317, 318] state that computations can occur as long as 
less than 1/3 of the players have been corrupted and secure channels exist in both directions 
between any two players.  When we introduce broadcast channels, unconditional security is 
possible for the computation as long as less than 1/2 of the players are corrupt.  Cachin and 
colleagues [105] reiterate that computation between two unbounded parties with “full information” 
is not securely possible for arbitrary functions and only limited to trivial functions g where g(x,y) 
reveals y. We consider these results significant when applying multi-party computations in the 
realm of mobile agents. 

A.5.1 Evaluation Techniques and Primitives 

Yao first posed the idea that we can model a function f and securely execute it as a Boolean 
circuit [315, 338] using a protocol known as secure circuit evaluation. The circuit can be 
“scrambled” in a way to secure host inputs and compute the group output. Abadi and 
Feigenbaum posed a two-player scheme in [321] where one player runs a secret program for 
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another player who has a secret input.  We find other techniques for circuit construction including 
multi-party cases in works such as [316, 317, 318, 322, 327, 339]. Once we represent the 
function f as a circuit, parties must run a protocol to evaluate every gate in the circuit.   

Secure primitives in the circuit evaluation process include tools such as oblivious transfer (OT) 
[340, 341, 342] and verifiable secret sharing (VSS).  Work by [333] has sought to find minimal 
complete primitives to accomplish SMC and characterize security and efficiency of such tools 
beyond the two-party case.  To accomplish secure circuit evaluation, we must encrypt (garble) 
the original wire signals for both inputs and outputs of the circuit so that the actual wire signals 
used by the parties no longer have their same semantic meaning.  In order to translate inputs and 
outputs to their true semantic meaning, data is exchanged between two parties in an oblivious 
manner—typically 1-of-2 OT [336].   

While OT deals with privacy in circuit-based SMC, we can address cheating by verifiable 
secret sharing which allows a “dealer” to distribute shares of a piece of data among different 
parties [278, 299].  Normally, parties in the computation must commit to their bits (which become 
garbled for purposes of evaluation) before they are used. However, no other party could tell 
whether the scrambled bits actually represent the real semantic meaning of a party’s input.  By 
using sharing techniques, parties give shares of their inputs so that other parties can detect any 
attempt to alter a commitment. We find discussions on data re-sharing data to prevent a super 
adversary with control over some set of parties from gathering enough shares to compromise a 
system in [343, 344]. 

Not all protocols are as secure as their authors envision.  For example, a vulnerability is 
described in [345] in the constant round circuit evaluation of [322] where private information is 
leaked when gates within a circuit share a common input wire. Efficiency is also a major issue 
and much work has been done to improve protocols over time [346, 347, 348, 329, 332].  We 
note other more efficient methods than Boolean circuits exist, for instance, to represent f such as 
permutation branching programs, algebraic circuits, low degree and randomizing polynomials, 
and matrices over large fields [330].  Hurt and Meier [329] present a protocol that is secure for 
computing an n-party function with m multiplication gates in the presence of less than 1/3 actively 
corrupted players with complexity O(mn2).   

Typically, SMC protocols have been adapted for synchronous networks and suffer from 
computational or communicational complexity too high for use in the real world.   Mobile agents 
operate in asynchronous environments and we therefore must consider other factors before we 
can apply SMC techniques successfully.  Work by Canetti and others [349, 350, 351, 352] have 
created frameworks characterizing the composable nature of security properties for different 
protocols operating across asynchronous networks—thus addressing the need to model realistic 
network environments. As [344, 353] suggest, protocols need to integrate timeouts with 
distributed computations for asynchronous networks (that model the Internet) and the 
environment for mobile agent applications.   

A.5.2 Single Round Computations and Agent Integration 

Mobile agents exhibit three unique properties that make using SMC protocols difficult: 
autonomy, mobility, and disconnected operations. All of the protocols mentioned thus far have 
relied on the exchange of information between parties in multiple rounds, including the originator 
of a function.  Agents require non-interactive protocols because the originator of a function may 
be offline during the actual computation.  Autonomy stipulates that the agent does not return 
home after the first host and can visit some set of known or unknown hosts. Mobility without the 
help of a trusted third party and minimal communication among parties is a primary goal of agent 
security schemes.  

As discussed in [289, 354], there are two ways to view single round computations between 
two parties in contrast to traditional secure function evaluation: computing with encrypted data 
and computing with encrypted functions.  CEF represents the mobile agent transaction scheme 
best and we can extend it easily to a multiple host approach.  Sander and Tschudin posed one of 
the first non-interactive CEF approaches for mobile code execution based on homomorphic 
encryption in [25]. Researchers have extended their results to include any function implemented 
by logarithmic-size circuits in [292]. Cachin et al. in [105] developed a non-interactive protocol 
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(which we will refer to as the CCKM scheme) that evaluates all polynomial time functions via the 
use of a scrambled circuits and oblivious transfer.  Table 26 summarizes the nuances between 
CED, CEF, and normal secure function evaluation.  

We derive several important results from [105]:  
1) for unbounded passive adversary, any function computable by a polynomial-size circuit can 
be computed securely;  
2) for a bounded active adversary, any function computable by a polynomial-size circuit can be 
computed securely, given a public-key framework; and  
3) any function computable by a polynomial-sized circuit has a one-round secure computation 
in the model.   
We summarize non-interactive SMC approaches and results by [105] and present them in 

Table 27. The CCKM methodology is foundational to several approaches for mobile agent 
security based on secure multi-party computation.  

Mobile agent applications have brought a practical relevance to development of secure, 
efficient cryptographic protocol schemes.  Cryptographers have stated the goal of SMC as 
guaranteeing the correctness of a function and the privacy of results among the parties.  In 
mobile code systems, similar notions exist:  malicious hosts can spy on the code, state, or results 
of mobile agents that they execute.  Hosts can gain unfair advantages by altering the normal 
sequence of execution, replaying agent computations using different inputs, or altering the state 
information present in the agent.  Software-only approaches to mobile agent security that are 
secure, efficient, and removing need for trusted relationships have been the holy grail in the 
research field for quite some time. There are two primary approaches to integrating SMC 
protocols with mobile agents: use single agents that implement single-round non-interactive 
protocols or use multiple agents that execute multi-round SMC protocols in coalition schemes.  
We discuss approaches and issues with the former next. 

Table 26: Methods of single-round secure function evaluation 

Type Computation 
Computing w/  
Encrypted Data (CED)  

Alice has input x while Bob holds function f(·).  Alice sends an 
encrypted version of x to Bob who computes and sends the 
result back to Alice in a single round of interaction. Alice 
decrypts the result to get f(x) while Bob does not learn x. 

Computing w/  
Encrypted Functions 
(CEF) 

Alice holds the function f(·) while Bob holds input y.  In one-
round, Alice sends to Bob an encrypted version of f(·) who 
provides his input y.  Alice receives back and decrypts Bob’s 
result to learn f(y) but does not learn y while Bob does not learn 
f(·) 

Secure Function  
Evaluation (SFE) 

Alice and Bob have private inputs to the function f(x,y).  Alice 
and Bob jointly compute the function f(x,y) in one round of 
computation. Alice learns only the result (and nothing more) 
while Bob learns neither the result nor Alice’s private input. 

 

Table 27: Pertinent Results for Non-Interactive Secure Multi-party Computations 

Contribution 
[317] Trivial functions where A and B are unbounded 
[25] Functions represented as polynomials, B is bounded 
[292] Functions computable by logarithmic-depth circuits, B is bounded 
[105] Functions computable by polynomial-depth circuits, only A is bounded or both A/B are bounded 
[317] Trivial functions where A and B are unbounded 
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A.5.3 Non-Interactive SMC Approaches 

To formulate a single-round secure multi-party computation, the following formal notation from 
[27, 105] is used: an agent originator O embodies a private function executed by a set of hosts 
H1,…,Hl. Two functions—gj(·) and hj(·)—describe the computation of an agent in terms of a state 
x ∈ X and a host input z ∈ Z. Figure 131 illustrates the interaction of an agent which is captured 
by a multi-party computation. The state update function gj takes a current state (brought by an 
agent from the previous host) and the local host input and produces a next state xj. The host 
output function hj, illustrated in Figure 132, takes the current state (brought by the agent from the 
previous host) and its own local input to produce its own local output.  

In the CCKM protocol, once we represent the agent computation as a Boolean circuit and 
encrypted, we require translation tables to map actual signals to scrambled signals.  We base the 
circuit encoding on Yao’s two-party SFE protocol in [315].  In order to know what signals to use 
for their local input, a host performs oblivious transfer with the originator to get a set of scrambled 
signals, and the originator does not know which signals the other party chooses.  We thus 
establish the following security properties: 1) the originator has privacy of the function; 2) each 
host has privacy in respect to their local input.   The CCKM approach allows for autonomy in the 
agent path by creating an encrypted circuit that is a cascade of sub-circuits.  Each host in the 
route of an agent’s path would receive an encrypted circuit on which their input is applied. 
However, the CCKM protocol did not address the ability for each host to use the “unencrypted” 
local output of the agent because the application owner is the only party that can evaluate the 
encrypted result. 

 
Figure 131: State Update Function 

 

 

 
Figure 132: Host Output Function 
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Extending the CCKM approach further, Algesheimer et al. [27] produced a non-interactive 
protocol (which we refer to as the ACCK protocol) similar to the trusted hardware of [110] that 
would allow for secure decryption of host output when CEF is used. The ACCK scheme, 
illustrated in Figure 133, makes use of a trusted generic computation service roughly equivalent 
to the trust we place in a public key infrastructure.  To decrypt the output of the agent at the local 
host, we encrypt the mappings for the semantics of the signals with the public key of the generic 
service. Each host accomplishes oblivious transfer with the generic service (instead of the 
originator who may be offline) to decrypt the signals for the output. By using a secure middleman, 
the ACCK protocol hides inputs, outputs, and computations of all hosts from the originator as well 
as any other host visited by the agent.  The main assumption is that this trusted third party (TTP) 
does not collude with the originator or with any host, but as proposed would offer a generically 
secure service for any application. 

 

 
Figure 133: ACCK Protocol w/ Generic Computation Service 

There have been two extensions proposed to the ACCK protocol that target replacement of 
the TTP in some form. Zhong and Yang in [299] introduce a cryptographic primitive called 
verifiable distributed oblivious-transfer (which we refer to as the VDOT protocol) and Tate and Xu 
in [288] introduce a multi-agent approach utilizing their oblivious threshold decryption (which we 
refer to as OTD).  Figure 134 shows a notional arrangement of parties in the VDOT scheme while 
Figure 135 shows a notional arrangement of parties in the OTD approach. In the VDOT protocol, 
we divide mobile agent computations into security-sensitive and non-security-sensitive portions. 
Under the scheme, we transform code that requires integrity or confidentiality into a garbled 
Boolean circuit.  Instead of interactions with one trusted third party, which has weaknesses 
involving the corruption of a single server to the detriment of the entire system, VDOT uses 
several trusted third party servers to replicate the functionality of the TTP.  VDOT guarantees with 
high probability the correctness of receiver’s output, enforcement of the code and state privacy, 
protection from coalitions of malicious hosts and malicious TTPs, and the verification that servers 
give correct decryption of host signals.  

Distribution of trust among a group of servers strengthens the original ACCK protocol and 
forces a group of servers that hold shares of the decryption to perform the table lookup for circuit 
signals.  The VDOT protocol is general purpose in the sense that each host need only provide an 
interpreter for garbled circuits.  By using distributed oblivious transfer, trusted third parties act as 
a proxy for agent owners and provide translation tables for host inputs without being able to 
discover host inputs themselves.  Obvious disadvantages to the approach are increased 
communication complexity (which the authors contend is negligible in practice) and the 
complexity of breaking a program into security sensitive portions represented by a Boolean 
circuit.  
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Figure 134: Verifiable Distributed Oblivious Transfer Protocol  

 

 
Figure 135: Oblivious Threshold Decryption Protocol 

The OTD protocol of [288] is similar in some regards to VDOT but actually eliminates the 
trusted third-party requirement altogether. As a primary distinction, their approach relies on 
multiple agents visiting disjoint sets of the possible host pool.  Each of these agents act in a 
threshold manner (similar to VDOT) to decrypt the encrypted signals for a given host input without 
relying on the TTP. While the ACCK secure computation service overcame the interaction 
requirement of Yao’s encrypted circuit evaluation—a limiting factor in the mobile code paradigm—
OTD replaces this by means of cryptographic operations and multiple agents that cooperate 
together.  Multiple agents must agree before decryption of the host’s input signals can occur and 
this in turn prevents cheating by keeping a list of hosts that have already decrypted a signal.  
Agents return to the originating host where the application decrypts all circuit results and 
combines them to produce the function result.  The security in this method rests on the security of 
Yao’s secure circuit evaluation, the security of the 1-out-of-2 oblivious transfer, and the strength 
of threshold cryptography.  However, this protocol does not support free-roaming agents and 
requires knowledge of the set of hosts an agent will visit. 
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Algesheimer et al. in [27] state the ACCK protocol does not require foreknowledge of the 
agent’s path or the hosts that the agent will visit.  Their approach upholds the disconnected and 
autonomous nature of a mobile agent.  However, it is not clear whether the number of host, ℓ, 
must be specified or known beforehand.  The OTD and VDOT extensions both assume a known 
number of hosts or subsets of hosts in order to design the circuit representation of the group 
function—thus limiting a true free-roaming dynamic itinerary.  Though single-round non-
interactive protocols reduce the communication overhead for SMC, message sizes increase 
proportionally, regardless of input or output size.  Tate and Xu, for example, state that it roughly 
takes 9 kilo-bytes to encrypt 32 bits of secret data [288] under this scheme.  Zhong and Yang 
mitigate overhead by keeping security sensitive portions separate from normal programmatic 
requirements.  Using multi-round SMC offers another approach to accomplishing secure 
transactions with mobile agents, which we analyze now. 

A.5.4 Multi-Round SMC Approaches 

Secure multiparty computations have a tradeoff between trust and efficiency.  Neven et al. 
[355] were one of the first to envision the use of agents to implement SMC and reduce the 
overhead of the communication itself.  Figure 136 summarizes four different approaches to 
integrating agents with hosts to accomplish SMC.  Figure 136-a illustrates the ideal world where 
agents carry host inputs to a trusted third party and a protocol is evaluated without the expense of 
network broadcasts or bidirectional secure channels.  In the context of the TTP, all parties can 
evaluate the protocol and we assume the TTP to behave honestly with respect to host inputs.    

We see the most secure but least efficient method in Figure 136-b: here hosts simply become 
the execution environment and setup a multi-party protocol evaluation.  In this case, we face both 
the computational and communicational complexity inherent in the chosen protocol and only high-
speed links (represented by the dotted lines) make such protocols practical.  We illustrate single-
round approaches discussed in the previous section in Figure 136-c where an agent embodies 
the circuit for secure evaluation and each host provides private input as the agent migrates.  In 
[355], a hybrid solution as depicted in Figure 136-d involves high-speed communication links 
present between one or more hosts.  Participants in the n-party protocol send agents carrying 
their private inputs to one of these intermediate TTPs who then efficiently and securely evaluate 
the function according to the rules of the protocol. 

 

 
Figure 136: Agent Approaches to SMC 



 

183 

In the realm of mobile agents, as with many real world applications, it is preferable not to rely 
on a trusted third party and just perform an SMC among the parties of a function. Endsuleit and 
Mie utilize a group of multiple agents to support such an approach in [344]. In their model, they 
deploy multiple agents carrying the same realized circuit to remote hosts where parties evaluate 
rounds of the secure protocols.  Figure 137 illustrates that agents are located on some set of 
hosts and implement multi-agent computations based on some underlying SMC protocol.  In [344] 
the authors assume the extensive use of a broadcast channel and suggest the protocol of [317] 
with an implementation of secret sharing from [278]. In [353], follow-on work suggests the use of 
more efficient protocols such as those of [329].   

In such multiple agent schemes, we can use any SMC protocol as long as it meets the 
composable security properties defined by Canetti [352].  In order to adapt the Canetti model, 
which assume stationary parties, “slices” are defined [344,353] as periods where a set of n 
different hosts executes a community of n agents with no migrations during that period. Hosts use 
resharing of data shares via the Ostravsky and Yung method [343] to overcome the adverse 
affects of migration where malicious hosts can use acquired shares over time to compromise 
security.  The system supports self-repairing code and threshold agreement of computations, as 
long as up to 1/3 of the community (agents or hosts) remains uncompromised.  Security results 
follow because Canetti establishes proof of a secure protocol for n parties computing a joint 
function in the presence of an active adversary corrupting up to some k limited servers.  By using 
such agents to implement a redundantly shared global state of computation and coordinate 
activity, we can implement a wide variety of SMC protocols.  However, as with any multi-round 
solution, the communication complexity is extremely high and the originator must know a priori 
which hosts will be part of the computation. 

 

 
Figure 137: Multi-Agent Secure Computation 

 

In [356], another software-only scheme is presented that implements multiple agents acting in 
a threshold manner similar to [288,344,353]. However, there approach does not suppose the 
presence of collusions among hosts or rely necessarily on multiparty protocols.  Their approach, 
which is termed Remote Distribution Scheme or RDS, depends on a set of agents that replicate 
and share a transaction set.  In RDS, the system also assumes a publicly known algorithm—a 
feature that does not necessarily correspond to the mobile agent setting where code privacy is 
required or application owners implement CEF. 
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A.6 Multi-Agent Architectures 

This section provides background material to results presented in Chapter 3.  
 
Multi-agent security is distinctly different from mobile agent security in terms of issues. Multi-

agent systems that use mobility explicitly, however, can provide security solutions not possible in 
either the strictly static or the strictly mobile sense.  In considering malicious host protection, 
several solutions [31,277,280] rely on the use of multiple agents.  Wang and Tan [357] for 
example use parallel dispatch of multiple agents to provide route protection.  We can accomplish 
multi-party computations via multiple deployed agents in the network, but we distinguish here the 
use of multiple identical agents (those that perform the same task or have identical static code) 
from using multiple agents instantiated from multiple different agent classes. Both approaches 
can achieve certain desired security properties with fault tolerance and we discuss the latter form 
of multiple agents in this section.   

Kotzanikolaou et al. [227] postulated two separate classes of agents used to conduct secure 
electronic transactions.  A master agent in this approach controls one or more slave agents, with 
the master agent remaining static at the originating host.  The system dispatches slave agents 
individually to single remote servers in a single-hop fashion, gathering bids or relevant 
information.  Slave agents in this case are not empowered to perform a transaction but instead 
are specialized to find agreement on pricing or return commitments.  The master agent serves the 
role of information filtering to pick the best offer and possibly dispatching a unique transaction 
agent to finish the purchase process.  We can alos use the multi-agent architecture to determine 
which mobile agents have been victims of malicious behavior. The Sanctuary architecture [31] 
uses various agent classes to perform different types of services.  Agent owners can also create 
agent groups that define agent sets running and migrating in synchronous activities.  Each group 
is composed of task-specific agents that perform different services such as data query, indexing, 
and authorization.  Merwe and Solms [11] implement trade agents as distributed objects that 
communicate remotely and accomplish group tasks.    

Multiple agents can support group agreement or threshold security mechanisms [259, 288].  
Groups of agents can perform undetachable threshold signatures [301], group key establishment, 
group agreement for purchase, and buddy checking of results [280, 358].  Borselius et al. [259] 
for instance use a subset of multiply deployed agents to complete and authorize a transaction.   
Their threshold scheme assumes that at least one of many possible transactions will receive 
enough votes, even in the presence of a minority of malicious hosts.  Baumann and Radouniklis 
[100] set forth an architectural model for e-commerce that uses groups of mobile agents arranged 
as initiators, administrators, receivers of information, coordinators, and normal members.  Their 
approach is set in the context of a mall-based application that supports group communication, 
synchronization for task, and termination.  Finally, the use of multiple agents for security 
enhanced mobility is mentioned more frequently in current surveys [21, 48, 64, 359, 360]. 

Multiple replicated agents and multiple instances of multiple classes of agent can offer greater 
security advantages when malicious hosts are at work together.  In certain application 
environments, it may also be possible to allow communities or groups of non-compromised hosts 
to offer protection from one or more possibly malicious hosts.  In a military or corporate intranet 
environment, for example, hosts can be trusted when they are part of the community. Such 
systems assume adversaries compromise hosts operating normally (from the inside) or capture 
hosts at some point.  Group host protection is similar to using trusted third parties or honest 
nodes and expands the idea of specialized node acting as base-stations in trusted environments. 
Guan and his colleagues [361, 362] use specialized hosts to perform security operations within 
their community in what they term a “police” model.  Certain hosts act as policemen to monitor 
the health or status of agents during their transit.   

Cheng and Wei [309] enhance the security of a publicly verifiable signature scheme by 
introducing two hosts working in partnership.  In their approach, the preceding host in an agent 
itinerary is required to produce counter-signature before sending an agent to the next host in the 
path.  Zhou et al. [310] extend this method further by requiring two hosts in agreement with the 
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current host.  Yokoo and Suzuki [293] utilize a set of trusted hosts to perform secure multi-party 
computations with the help of multiple agents.  In certain scenarios, even the auctioneer may not 
be trustworthy and the use of multiple servers working together can help alleviate concerns of 
data compromise. Societies of cooperating agents and hosts may offer the highest possible 
security mechanisms for mobile agent architectures in the future, especially in the face of 
malicious collusions. 
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A.7 Trust Infrastructures 

This section provides background material to results presented in Chapter 4.  
 
We review here foundational concepts appropriate to the realm of trust in security related 

decision making.  Defining trust is as precarious as defining the term agent—and though 
researchers do not agree on either term they do discern the importance of both concepts in 
framing research. We define trust loosely in a previous work [38] as the expectation of behavior 
among parties and classify several different infrastructures for trust in dynamic networks.  
Gambetta [363] defines trust as a subjective probability that is non-reflexive, changing, and 
context driven. We note also that trust is not necessarily Boolean, does not necessarily have to 
capture human intuition, and can involve third parties to facilitate certain issues. Trust can be 
transitive and therefore delegated [364] or can be acquired by direct observation [365,366].  

A.7.1 Trust Management in Distributed Environments 

The trust management problem, as defined in [36], seeks to formulate a coherent framework 
for defining policies, actions, relationships, and credentials in terms of trust.  Trust management 
systems such as [35,36,365,366,367] support specification, acquisition, revocation, degradation, 
and evolution of trust according to some model.  As we point out in [38], challenges in these 
systems revolve around observing trust-related actions and then translating those observations 
into a decision.  In both mobile agents systems and dynamic networks, we must make trust 
decisions before parties build trust relationships.  The overlap of trust models with the 
development and implementation of mobile agent security frameworks is a key to future support 
of pervasive computing scenarios.  We consider next the adaptation of trust mechanisms 
specifically to the mobile agent paradigm. 

Mobile agent applications and the idealized vision of a global computing scenario share many 
common characteristics with distributed trust models for dynamic networks: a large number of 
autonomous parties, principles can have no prior relationship, a trusted or centralized computing 
base may not exist, virtual anonymity of principles may exist, different administration domains, 
and hosts have different capabilities for transmission, mobility, and computational power.  
Grandison and Sloman in [37] point out that trust cannot be hard-coded in applications that 
require decentralized control in large-scale heterogeneous networks.  Mobile agents particularly 
need to separate the application purpose from the trust management framework if they are to 
scale well in such environments. Because there is a large commonality between dynamic 
networks and mobile agent applications, we can readily apply many proposals for defining trust 
infrastructures in ad hoc networks to mobile agents.  Kagal et al. [368] suggested the addition of 
trust to enhance security for mobile computing scenarios and defined trust management activities 
as those defined by [36]: developing security policies, assigning credentials, checking credentials 
against policy requirements, and delegating trust to other parties.  

Cahil et al. in [365] expound the research goals of Secure Environments for Collaboration 
among Ubiquitous Roaming Entities (SECURE)—a project focused primarily on building trust 
infrastructures for large ad hoc wireless networks.  SECURE utilizes the use of both risk and trust 
to determine whether interaction can occur in a scenario where billions of possible collaborators 
may exist.  In their authorization framework, a principle uses trust to decide an interaction based 
on the risk involved. Carbone et al. expound the trust model for SECURE in [367] and provide a 
formal way to reason about the trust relationship among principles. We find interest in the 
SECURE model because they use a trust interval from 0 to 1, which reflects a measure of 
uncertainty.  The trust level in SECURE is thus a range with some upper bound—which sets the 
maximum amount of trust within some factor of unknowing involved. 

As Cahil and his colleagues also point out, traditional trust management systems delegate 
permissions using certificates (credentials) that reduce to very static decisions that do not scale 
well or allow change over time.  They also point out as we do in [38] that trust decisions in 
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pervasive scenarios should come instead from trust information based on two sources: personal 
observations (previous interactions) and recommendations from other parties we trust (transitive 
or delegated trust).  However, in [365] there is no link provided between security requirements, 
trust, and application goals for mobile agents specifically—a goal we set forth to accomplish in 
this paper.   

In a similar vein, Capra in [366] defines a formal model for hTrust—a mobile network trust 
framework that defines formation, dissemination, and evolution of trust.  Capra reviews several 
trust management frameworks that have the following limitations: they are suited for centralized 
servers, they have too high of a computational overhead (for mobile devices), they lack dynamic 
trust evolution, they lack details about local policy usage, and they lack subjective reasoning 
capabilities.  hTrust remedies these shortcomings and incorporates a human notion of trust 
directly into the framework.  hTrust models a range of trust values between principles so that 
parties can distinguish a lack of evidence or knowledge decision from a trust-based decision that 
reflects specific distrust towards another party. The trust data model also incorporates the notion 
of time so that relationships degrade when not kept current.  The system uses recommendations 
when a principle has no past history or to partially rely on or trust a third-party assessment.  

Just as in human interactions, hTrust captures the notion that we favor recommendations from 
people who gave us good recommendations in the past and likewise reject or downgrade advice 
from those who have disappointed us in the past. Finally, a key aspect of this model is its 
incorporation of both a social context (the environment of principles arranged in a network by 
which recommendations can be used) and a transactional context (the network of services which 
are supplied by parties in the system).   While hTrust provides a generic framework for mobile 
application trust expression, it does not directly deal with mobile agent specific security 
requirements or attempt to link mechanisms for security to trust levels or the agent lifecycle.  

A.7.2 Trust and Mobile Agents 

There has also been much work specifically focused on security evaluation and trust 
expression for mobile agent systems. Karjoth et al. were one of the first to describe a security 
model for Aglets—a specific type of mobile agents [369].  The Aglets model includes a set of 
principles with distinct responsibilities and defines security policies that give access to local 
resources.   The notion of a policy database and user preferences are also included in the model 
to govern interactions of aglets that have unspecified or unknown security properties.  However, 
the Aglets model does not address host-to-agent malicious interactions or incorporate the notion 
of trust levels or dynamic trust determination.   

Other security management systems designed specifically for mobile agents suffer from the 
same limitations and focus on malicious code protection.  Jansen poses a privilege management 
system for agents in [370] that uses traditional certificate-based policy framework.  In this model, 
host-based policy specification enforces security compared to agent-based attribute certificates. 
When these policies merge during agent execution, the system determines the security context of 
the agent.  Other works such as [371] describe reconfigurable policy support and surveys such as 
[64] summarize issues and status with policy-based security implementation.  Again, such 
mechanisms tend to not scale well, tend towards static security interactions, and do not model 
trust levels for specific security requirements.  

Antonopoulos and his colleagues in [372] develop a general-purpose access control 
mechanism that is distributed in nature and specifically focused on mobile agents.  This approach 
comes closer to expressing trust relationships among principles, but the approach relies on 
access control lists and preventing malicious code activity as a fundamental basis.  Kagal et al. 
extend their delegation trust model to mobile agent scenarios in [41] and address FIPA-specific 
weaknesses for securing the agent management system and directory facilitator services.  
Although they address how multiple agents can establish trust when they are previously 
unknown, their focus is primarily on authentication and they do not consider mobile-specific 
security requirements and trust expression. 

Tan and Moreau [39] develop a more comprehensive model of trust and belief specifically for 
mobile agent-based systems based upon the distributed authentication mechanisms posed by 
Yahalom et al. [35]. They found their trust derivation model on the similarities between distributed 
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authentication in pubic key infrastructures and mobile agent trust.  The Tan/Moreau framework is 
limited and simple, however, because it only incorporates the notion of trust associated with using 
the extended execution tracing security mechanism [33] and does not account for generic 
security mechanisms or requirements.  Their unique contribution in the area is one of the only 
works that link security mechanisms with    

Borrell and Robles with several different colleagues have done significant work to incorporate 
trust in mobile agent system development [40, 77, 373, 374, 375, 376, 377].  In [40], they present 
a model that defines trust relationships expressed in the MARISM-A mobile agent platform [378].   
Although initial work in the area by Robles and his colleagues assumed a static trust expression 
among agents [373, 374, 375], MARISM-A now uses trust relationships that are defined among 
entities and actions in a mobile agent transaction.  We follow similarly with a formal model that 
defines trust relationships between entities and associates actions and attributes to each 
relationship.  The MARISM-A model uses trust relationships to define decisions that permit, 
obligate, designate, or prohibit certain actions within a certain scope of a mobile agent program.  
We take a similar approach as Robles by associating agent security mechanisms with trust 
relationships and by classifying their role as a deterrent, prevention, or correction.  In addition to 
certain similarities with the MARISM-A approach, we expound more fully in our model the 
relationship between the agent application, principles, security mechanisms, trust levels, and trust 
determination. 

Ametller along with Robles and Ortega-Ruiz take the notion of policy-based security 
mechanisms even further in [377].  In this scheme, agents select the appropriate security 
mechanism to use by means of a security layer that exists within the agent itself–a layer untied to 
the underlying agent execution platform.  Security layers of the agent interact with hosts to 
determine which mechanism the agent uses based on predetermined criteria.  Assuming a 
decryption interface and public key infrastructure are in place, the solution gives a novel security 
addition implemented in JADE and provides a flexible approach to agent security.  We build also 
upon this approach by linking in our model and methodology security requirements for agent 
applications that system supports via security mechanisms—all of which tie into evaluation and 
evolution of trust relationships among principles in the mobile environment.   

As many authors point out, no one security mechanism addresses every security requirement.   
The use of security mechanisms in fact may establish a certain level of trust (or lack thereof) in 
the face of certain environmental assumptions about malicious parties.  An application level view 
of security that we propose would bring together a process for selecting a combination of 
techniques to achieve certain trust levels within a mobile agent system.  Even when using 
mechanisms that establish pure trust (such as tamperproof hardware), other assumptions must 
be taken into account to make sure security is guaranteed.  Trusted hardware or multi-agent 
secure cryptographic protocols may be warranted or even feasible given certain application 
environment factors.   When such mechanisms are not available, the system can demand lower 
trust levels and require a more policy-driven approach to make dynamic decisions about agent 
execution.   

We use models in many cases to help describe a particular set of relationships in more 
precise terms.  Models in the security sense do several things such as: help test a particular 
security policy in terms of completeness or consistency, help document security policies, help 
conceptualize or design an implantation, or verify that an implementation fulfills a set of 
requirements [379].  We now present our trust framework for considering mobile agent 
applications and describe a model for viewing principles, actions, and trust relations in the mobile 
agent environment. 
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APPENDIX B 
 

TRUST MODEL ELABORATION 

In this appendix, we illustrate the descriptive capability of the framework described in Chapter 
4.  We begin first with a scenario that illustrates the nature of trust related decisions in mobile 
agent application. Figure 138 depicts the three types of hosts (dispatching, executing, and 
trusted) and the agent itself.   

 
Figure 138: Trust Decisions and Principles in a Mobile Agent Setting 

B.1 Trust Scenario with Mobility and Agency 

We can liken the mobile agent trust problem to a person walking up to you in your office and 
handing you a floppy disk.  They say to you, “I have heard that you like sharing security research 
information with others. Please run the file on this disk called ‘virus.exe’ on your computer for me 
and then I’ll walk it to the next security researcher on my list of contacts when you are done. Don’t 
worry about the output—the program keeps its state every time it executes.”  You, acting as the 
(executing) host, must ask a few probing questions of course.  Before considering whether to run 
the file or not, the mental process begins by first considering the trust you have in the person 
(application owner) who brought (dispatched) the file (agent).  This represents the application 
owner in the mobile agent environment.  Do you know them personally?  If not, do you know 
other people who know them?  If not, how will you assess their trustworthiness?  Will you ask 
them for a resume or a list of references first?   
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Figure 139: Agent, Application Owner, and Agent Developer Trust Relation 
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If you do not know the person personally, you may want to see their credentials so that when 
you ask for references you are sure you are talking about the right person.  In the mobile agent 
context, the application owner determines the agent signature:  the binding between the 
dispatcher (sender) of the agent program and the identity of that particular instance of the agent 
code execution. When parties are completely unknown, you might determine trust based on 
successful accomplishment of testing suites or rapid small transactions.  If you know them to be 
untrustworthy or assume that anyone asking to run files on your computer from a floppy is 
untrustworthy by default, then the emphatic answer will be “No, I will not run that program.”   

If you the person or the person has a history of dealings with you, you may (after verifying they 
do not have an evil twin) entertain the idea of running ‘virus.exe’ on your computer.  Assuming 
you pass this first hurdle, the next mental process turns to the question of the code itself.  Where 
did ‘virus.exe’ come from?  Who authored it?  Did the dispatcher author the code or has the 
developer authored other programs that proved trustworthy?  Is the code developer identified with 
hacker groups or malware or do they work for an official or approved organization? In the mobile 
agent paradigm, there are limited ways to ascertain such trust relationships.  If the person 
indicates there is a software clearing-house that has reviewed and tested his code for safety and 
malicious behavior (passing with certified safety properties), we may allay some of our fears.  
This is equivalent to using a trusted third party to assess trustfulness of the agent code or the 
code developer a priori. If the person says that the organization’s code development group 
authored the code, a user may also place implicit trust in in the code. A code signature links the 
developer with the code itself (even though many application owners may use that code in 
multiple ways and instances over time).  However, some other method of proving or verifying 
code safety may be needed.  Figure 139 depicts the relationships between signatures and 
principles to the mobile agent transaction.  

 

 
 

Figure 140: Host-Agent Trust Relations 

If you know the person carrying the disk (let us say they are a good friend) and you know they 
authored the software and you trust them enough to execute the file, the remaining questions 
might focus on the nature and purpose of ‘virus.exe and the chain of custody of the courier’.  
What does ‘virus.exe’ do?  If the algorithm is private, the person may say “I can’t tell you, you just 
have to trust me”—which at that point you determine that you still won’t run the program even for 
a good friend.  If the algorithm is public, then you may be relieved to find out that ‘virus.exe’ is a 
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statistical data gathering program that queries your anti-virus software to see when the last time 
you updated your virus protection was and how many viruses have been detected in the last 
month.   

Table 28: Security Requirements with Associated Detection/Prevention Mechanisms 
  Detection Prevention 
CP agent code privacy  TPH 

secure multi-party computations 
encrypted functions 
obfuscation 
multi-agent systems 

CI agent code integrity code signatures 
clone detection 

code signatures 

CF agent code safety state appraisal sandboxing 
proof carrying code 

CA agent code authenticity code signatures code signatures 
IP agent itinerary privacy  anonymous/onion routing 

bidirectional dispatch 
II agent itinerary integrity itinerary recording  

replication and voting 
 

SI agent state integrity state appraisal 
detection objects 
protective assertions 
executing tracing 
reference states 
intermediate result protection 
state transition verification 
group host operations 

TPH 
intermediate result protection 
secure multi-party computations 
encrypted functions 
environmental key generation 
undetachable signatures 

SP agent state privacy sliding encryption TPH 
secure multi-party computations 
encrypted functions 
obfuscation  
phoning home 
multi-agent systems 

AA agent authenticity  signatures 
AZ agent authorization  signatures 
AN agent non-repudiation  signatures 
AV agent availability time-limited execution w/ 

trusted third party 
phoning home 

 

AY agent anonymity  trusted third party 
HA host authenticity host signatures trusted third party 
HN host non-repudiation host signatures trusted third party 
HP host data privacy  secure multi-party computations 

trusted third party 
HY host anonymity  trusted third party 
HV host availability state appraisal 

path histories 
 

sandboxing  
safe interpreters 
policy management 

HI host integrity path histories 
 

sandboxing  
safe interpreters  
proof carrying code 

 
You may also want to know who has executed the agent before you.  Even though you can 

verify that the agent code remains unaltered and verify identity of the code developer or the 
dispatching agent, the floppy contains a mutable state updated by some list of previous parties.  
Depending on anonymity requirements, you can observe the routing slip of the courier and you 
notice that the floppy was in the possession of Dr. Evil at some point.  How can you be sure that 
the state of the program and the code for virus.exe do not together cause a buffer overflow attack 
on your machine when you execute it?  If the program were collecting statistics, how could the 
application owner be sure that Dr. Evil has not altered results in order to skew security decision 
making?  These questions all reflect our desire to ascertain code and data integrity.  Figure 140 
depicts the host and agent relationships that capture these nuances in our model.  We now 
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describe these trust decision in terms of our model elements, security requirements, and trust 
levels.   

Table 29: Trust Decisions in Mobile Agent Applications 
Principles Involved Decision 

 

Agent Dispatch (Dispatching Host →Executing Host) Dispatching host 
(DH) launches agent A to the first executing host in the itinerary (EH). 
The agent is an instance of code created by a code developer (CD) and 
the application owner (AO) is associated with the DH by some 
managerial role. DH makes itinerary choice decision, EH makes 
execution decision. DH makes policy decision regarding EH based on 
security requirements / EH makes policy decision regarding A based on 
security requirements: EH CD: CA, CF; EH DH/AO:HA, HN; 
A/AO/DH  EH: CP,CI,SI,SP,IP,II,HY,HA,HN; EH  A: 
AA,AZ,AN,HV,HI,IP,HY,HP 

 

Agent Migration (Executing Host → Executing Host) Executing host 
(EH) sends agent A to the next executing host in the itinerary (EH). DH 
makes itinerary choice decision, EH makes execution decision. DH 
makes policy decision regarding EH based on security requirements / 
EH makes policy decision regarding A based on security requirements: 
EH CD: CA, CF; EH DH/AO:HA, HN; EH EH:HA, HN; A/AO/DH  
EH: CP,CI,SI,SP,IP,II,HY,HA,HN; EH  A: AA,AZ,AN,HV,HI,IP,HY 

 

Agent Termination (Executing Host → Dispatching Host) The last 
executing host in the itinerary (EH) sends the agent back to the original 
dispatching host (DH) where the agent terminates. DH makes itinerary 
choice decision, EH makes execution decision. DH makes policy 
decision regarding EH based on security requirements / EH makes 
policy decision regarding A based on security requirements: 
EH CD: CA, CF; EH DH/AO:HA, HN; A/AO/DH  EH: 
CP,CI,SI,SP,IP,II,HY,HA,HN; EH  A: AA,AZ,AN,HV,HI,IP,HY 

 

Trusted Dispatch (Dispatching Host →Trusted Host) Dispatching host 
(DH) launches agent A to a trusted host in the itinerary (TH). The agent 
is an instance of code created by a code developer (CD) and the 
application owner (AO) is associated with the DH in some managerial 
role.  The trusted host performs a security function on behalf of the 
agent and alters trust relations as a result: TH CD: CA, CF; 
TH DH/AO:HA, HN; TH  A: AA,AZ,AN,HV,HI,IP,HY 

 
 

Trusted Migration (Executing Host → Trusted Host, Trusted Host → 
Execution Host) Executing host (EH) sends agent A to a trusted host in 
the itinerary (TH) or a trusted host migrates the agent to the next EH. 
Executing hosts receiving agents from trusted hosts may have different 
security requirements (i.e., implicit trust), and may therefore allow agent 
execution based on the relationship. 

 

Trusted Transfer (Trusted Host → Trusted Host) Trusted hosts migrate 
agents from one to the other.  Implicit trust, based on their status, is 
assumed.   
 
 

 

Trusted Termination (Trusted Host → Dispatching Host) A trusted host 
sends the agent back to the original dispatching host (DH) where the 
agent terminates.   
 
 

 
Agent migration presents us with the basis trust decision among parties involved in the mobile 

agent application.  Table 28 provides a (non-exhaustive) summary of detection and prevention 
mechanisms associated with various security requirements.  The integration of any particular 
mechanism of course varies with complexity and cost.  Each principle in the system evaluates 
trust tuples and computes a requirement for both agent and host security enforcement.  Table 29 
outlines typical policy decisions supported by the trust framework and a populated trust database. 
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The trust qualifiers such as foreknowledge, freshness, and level dictate the requirement for either 
no mechanism or a weak/strong mechanism. 

B.2 Modelling Agent Applications 

We introduce here sample mobile agent applications that elaborate the trust framework 
described in Chapter 4.  We use these to illustrate the nuances that exist among principles to 
include hosts, agents, and entities. These elaborations capture the notions for multiple agent 
instances, running the same agent in multiple application instances, multiple agent interactions, 
and trusted host interactions.  We define the mobile agent application as follows:  

 
Set H of possible hosts: 

   {h0, h1, h2, … } 
 

hx ∈ {D ∪ E ∪ T} 
D: only 1 dispatching host 
E: all possible executing hosts 
T: all possible trusted hosts 
 

Set A of uniquely 
identifiable agents: 

   {a0, a1, …} 

Multiple agents with the same static code, 
multiple agents with different static code, a 
single agent. 
 

Set Y of uniquely 
identifiable agent states 

 
 

For every ai ∈ A there is a corresponding set 
of states Yi. After execution on k hosts in 
itinerary: 
      Yi = {Yi1, Yi2, … Yik} 
 

Agent: (kernel, id, data, 
itinerary, thread, policy) 

 

kernel = (code, nonce)SIG   agent signature 
id = hash (kernel)  
itinerary = {h0,h1,h2,…hk}   ordered/unordered 
code ∈ {c0, c1, c2, … }     static/immutable 

 
Given the ability to identify agent states from execution run to execution run, we can uniquely 

identify different runs of the same agent codebase.  This means, for example, that an application 
owner that executes the same agent code twice executes two unique applications—not the same 
one.  Every agent therefore creates a unique application instance when executed. Figure 141 
illustrates a basic application where a code developer creates agent code (c1) used by two 
different application owners.  Application owners use the digest and signature of the code to 
create their own unique agent signature (ak1, ak2) based on their own random nonce (r1,r2).  Each 
application owner has a unique itinerary which includes one or more trusted hosts and different 
executing hosts.  

 
Figure 141: Host and Entity Interactions in Agent Application 
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Figure 142 illustrates a single agent instance (a1), a single dispatching host h0, and illustrates 
the itinerary among a set of hosts (h1 .. h8).  The state set Y1 indicates the data set results unique 
to the agent with the specified kernel (Ka1) and id (hash(K)) based on code base c175. 

 
 

Figure 142: Agent Code, Unique Agent Instance and State Set 

Figure 143 illustrates another agent instance (a2), a single dispatching host h0, and illustrates 
the itinerary among a set of hosts (h1 .. h8).  The state set Y2 indicates the data set results unique 
to the agent with the specified kernel (Ka2) and id (hash(K)) based on code base c175.  This 
elaboration represents multiple agent instances using the same codebase. 

 

 
 

Figure 143: Same Agent Code used in Different Agent Instance 

Figure 144 illustrates another agent instance (a3), a single dispatching host h0, and illustrates 
the itinerary among a set of hosts (h3 .. h8).  The state set Y3 indicates the data set results unique 
to the agent with the specified kernel (Ka3) and id (hash(K)) based on code base c175.  This 
elaboration represents another agent instances using the same codebase but with different 
itinerary.  Figure 145 illustrates an application based on a different codebase (c85) but the same 
itinerary as a previous agent application.  The state set Y4 indicates the data set results unique to 
the agent with the specified kernel (Ka4) and id (hash(K)) based on code base c85: again all 
unique for this instance. This elaboration represents a different agent application logic sent to a 
preidentified host set.   
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Figure 144: Same Agent Code, Different Agent Itinerary 

 

 
Figure 145: Different Code Base, Same Agent Itinerary 

Figure 146 illustrates a different agent codebase used for an agent sent to a completely 
different host set.  The same dispatching host and application owner send these in every case—
which represents the possible application of agent code by a single party for different purposes.. 
In Figure 147, another agent instance uses an itinerary with the capability to revisit prior hosts.  
This elaboration is common for multi-bid updatable auction agents. 

  

 
Figure 146: Different Codebase, Different Agent Itinerary 
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Figure 147: Agent That Revisits Hosts in Itinerary 

Figure 148 illustrates a dispatching host that sends two agents, each using the same 
codebase C28, to a disjoint set of hosts (each has a unique static itinerary). In every case, agents 
possess a unique ID and kernel, no matter if they visit the same hosts from a prior instance or if 
they use the same codebase.   Several multi-agent protection schemes (including MADIMA), use 
replicated, identical codebase agents. In Figure 149, multiple agents  

 
Figure 148: Multiple Agents with Same Codebase, Unique Itineraries 

 

 
Figure 149: Multiple Agents with Same Codebase, Common Itinerary 
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APPENDIX C 
 

ENUMERATING COMBINATIONAL CIRCUITS 

In this appendix, we elaborate the possibilities for enumerating combination circuits.  For 
future work, the use of sequential circuits (and thus the possibility of cycles within the the circuit 
description) will change the enumeration possibilities for gate inputs to include any previous or 
future gate. 

 
Enumeration 1.  Given a single dual input Boolean gate with n possible inputs, how many 
combinations of circuits are possible?  Since there are n objects (nodes/inputs) taken 2 at a time, 
the permutation P(n,2) returns the possible number of combinations.  Since two gates are 
equivalent if they have the same input, regardless of order, (i.e, AND(x2,x1) ≈ AND(x1,x2)), we 
want permutations where order does not count.  The combination C(n,2) represents the possible 
combinations:  

 
)!2(!2

!)2,(
−

=
n
nnC  

 
For example: Given a single dual input Boolean gate of type AND with possible inputs of {1,2,3}, 
the possible combinations of gates given these inputs are: 
 AND(1,2)  ≈ AND(2,1) 
 AND(1,3)  ≈ AND(3,1) 
 AND(2,3)  ≈ AND(3,2) 
 
n = 3 
C(3,2) = 3! / 2!(3-2)! = 6/2 = 3 
 
 
Enumeration 2.  If we allow gates to receive identical inputs, then given a single dual input 
Boolean gate with n possible inputs, the number of possible combinations of inputs to gate (with 
repetition) is given by adding the combination C(n,2) with the possible number of repeated input 
combinations.  For input size n, there n possible repeated input combinations (i.e, (1,1), (2,2), … 
(n,n)).  Given 2 inputs and n ways to choose them, the number of possible gate combinations is:  

 n
n
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For example: Given a single dual input Boolean gate of type AND with possible inputs of {1,2,3}, 
the possible combinations of gates given these inputs are: 
 AND(1,1) 
 AND(1,2)  ≈ AND(2,1) 
 AND(1,3)  ≈ AND(3,1) 
 AND(2,2) 
 AND(2,3)  ≈ AND(3,2) 
 AND(3,3)  
 
n = 3 
C(3,2) + 3 = 3! / 2!(3-2)!  + 3 = 3 + 3 = 6 

n
n
nnnC +
−

=+
)!2(!2

)!()2,(  is equivalent to 
)!2(!2

)!()2,1(
−

=+
n
nnC  
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So, let )2,1( +nC  represent the number of possible combinations of a single dual input Boolean 
gate with n possible inputs. 
 
Enumeration 3. Given a basis Ω with size |Ω|, the number of possible combinations of all single 
dual input Boolean gates over this basis with n possible inputs is given by the total number of 
possible input combinations per gate (from Definition 2, assuming we allow replicated inputs) 
times the total number of possible gate types (give by the basis size |Ω|).  Therefore, the number 
of possible combinations is: 
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Enumeration 4.  Let a circuit be defined by its inputs n and a set of gates {Gtn+1, Gt n+2,… , Gt n+s}.  
We want to find the number of different possible circuits that can be created from the 
combinations of gates over a basis Ω with input size n.  Each gate in the circuit may be defined 
only by inputs from any previous gate of the circuit.   Therefore, the first gate in the circuit has 
possible combinations based only on the input size of the circuit.  All subsequent gates in the 
circuit can be derived from combinations of inputs that come from any previous gates, including 
the inputs.  
 
Let G1 represent the number of possibilities for a 1-gate circuit (size s = 1) of input size n and 
basis Ω, assuming we allow replicated inputs.  G1 is given by Definition 3: 
 

 G1 = 
)!1(2
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Enumeration 5.   For a 2 gate-circuit (size s = 2) with basis  Ω and input size n, the total number 
of possible inputs for Gate 1 (G1) comes from only from the n inputs INPUTSn = {x1, .., xn}.  The 
number of possible gate configuration for Gate 1 is given by: 
 

 G1 = 
)!1(2
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The number of inputs for Gate 2 derives from all possible combinations of {G1 ∪ INPUTSn}.  The 
possibilities for input to Gate 2 are the number of possible inputs choose 2 (since it is a dual input 
Boolean gate). This is identical to the previous definition, except we have one more input to 
choose from:  n + 1 + 1 = n + 2. G2 is therefore given by:  
   

 G2 = 
!2

)!2(||||*
)!22(!2

)!2(||)*2,2(
n
n

n
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=Ω
−+

+
=Ω+  

 
 
The number of possible 2-gate circuits for basis Ω and input size n is given by G1 * G2, since 
every possible Gate 1 (whose size is given by G1) has G2 possibilities for Gate 2 with which to 
complete the 2-gate circuit. 
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Enumeration 6.   Given an s-gate (size s) circuit C with gate set {Gtn+1, Gtn+2,… ,Gtn+s}, under 
basis  Ω and having input size n, the total number of possible combinations for any given gate z 
(Gz) in the set of gates for C is given by the following relationship, from Definition 4 and 5: 
   

 Gz = 
)!2(!2
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Enumeration 7. Given a circuit C of size s with input size n, the number of possible s-gate circuit 
combinations GC possible under basis  Ω is given by the product of the possibilities of each of the 
individual gate possibilities. 
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From Enumeration  6: 
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APPENDIX D 
 

PROGRAM ENCRYPTION ARCHITECTURE 

The Mobile Agent Software Code Obfuscation Tool (MASCOT) provides a foundational set of 
applications for implementing and testing basic functionality associated with our theoretic results.  
We have created a suite of applications that support the analysis work for the techniques 
described in Section 5.4, 5.6, and 5.7. Figure 150 illustrates the basic architecture to support 
circuit randomization and program black-box encryption.  The Encryption Program Generation 
Engine (EPGE) provides key-based unique data ciphers with associated recovery mechanisms 
for use in program concatenation (accomplished by Program Output Concatenation Engine or 
POCE).   EPGE and POCE provide the basic functionailthy for taking input program P and 
creating program P” = E(P,K).  The TANGLE portion of the architecture takes program P” and 
performs code-level randomization that approximates the random selection of a circuit from the 
family of circuits that all implement the one-way function E.  The output of the circuit replacement 
library and TANGLE interaction represents the final encrypted program P’.   

 
Figure 150: MASCOT Generalized Randomization  

Figure 151 gives a deployment diagram for several architecture components that support the 
generation and viewing of BENCH format circuits.  We discuss each component of our system in 
detail following.  The bench component takes in BENCH format circuit-description files (discussed 
next in Appendix E) and outputs a C file that creates a Boolean Expression Diagram (BED) 
version of the circuit.  The BED libraries are currently limited to UNIX/LINUX gcc implementation, 
particularly where gcc is version 3.3.4 or earlier.  Unfortunately, more current gcc versions do not 
support deprecated features that the original BED libraries use extensively [204].  Future work will 
involve creating custom BED (or DAG) manipulation libraries for both randomization and 
visualization. We primarily use the BED libraries for visualization and we would need to expand 
the library to incorporate native ability to select and replace sub-circuits or DAG sub-graphs with 
specific properties. We must compile the BED C file (which we can produce on PC or LINUX 
using standard C calls) under GCC version 3.4.4 on a Linux platform. Once compiled, we take the 
executable version of the BED circuit file and use it to create a graphical view of the circuit 
(currently).  The executable BED circuit produces a DOT representation (discussed further in 
Appendix E and F) that graphically describes the DAG in a hierarchiacal form.  The DOT file 
creates a corresponding graphical file using a standard PC-based tool known as graphviz.  
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Figure 151: ISCAS, BENCH, BED Deployment Diagram 

The circuit generation library (cxl) currently runs only on LINUX platforms as well and we will 
in future work port it to work in generic/portable C++ or Java libraries.  Figure 152 describes the 
series of components that we use to interface with the cxl library that requires pregeneration of 
circuits that supports non-linear selection and replacement.  The circuit generation library 
currently produces binary representation of circuits (not BENCH format) and future work will 
involve interfacing and porting the cxl library to interact directly with native BENCH format circuit 
representations.  The end-goal is to provide a functionality to read in a BENCH format 
description, select a sub-circuit from within the DAG representation (with characteristic properties 
such as fan-in, fan-out, or depth), and then replace that sub-circuit with a semantically equivalent 
version.  Once this functionality is complete, we can then perform this operation in a round-based 
fashion.  Future experimentation will involve determing how many rounds of selection and 
replacement are necessary to randomize fully an input circuit with measurable properties. 

 
Figure 152: Circuit Generation Library and Replacemen 
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We describe now the specific components that support end-to-end program and circuit 
encryption.  Figure 72 (p. 112) and Figure 73 (p. 115) give a high-level overview of our 
generalized circuit randomization process and our perfect white-box protection technique.  We 
outline the codebase that currently suppots program-level and circuit-level analysis work as 
follows. 

EVALUATE.   We need the ability to take a circuit specification and simulate its gates using 
input to produce real output. The EVALUATE component provides this functionality by taking an 
ISCAS BENCH format circuit and an associated input for that circuit.  Typically, we require the full 
2n range of n possible inputs.  Figure 153 illustrates that EVALUATE reads the circuit description, 
allocates appropriate data structures for each gate and input, applies the inputs provided, and 
evaluates the circuit for each input to produce an associated output.  The output of the 
component is a truth table formatted (input with output) or single data column (output) that 
represents the full execution of the circuit on all inputs.  Currently, both input and output data is in 
textual (as opposed to binary) form of ASCII ones and zeros (0/1).  The figure illustrates the C-17 
benchmark circuit after evaluation: all inputs and all outputs in truth table form. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 153: MASCOT-EVALUATE Component 

 

00000 00 
00001 00 
00010 11 
00011 11 
00100 00 
00101 01 
00110 11 
00111 11 
01000 00 
01001 00 
01010 11 
01011 11 
01100 00 
01101 01 
01110 00 
01111 01 
10000 10 
10001 10 
10010 11 
10011 11 
10100 10 
10101 11 
10110 11 
10111 11 
11000 10 
11001 10 
11010 11 
11011 11 
11100 00 
11101 01 
11110 00 
11111 01 

 

C17.tt.txt 

# c17 
# 5 inputs 
# 2 outputs 
# 0 inverter 
# 6 gates ( 6 NANDs ) 
 
INPUT(1) 
INPUT(2) 
INPUT(3) 
INPUT(6) 
INPUT(7) 
 
OUTPUT(22) 
OUTPUT(23) 
 
10 = NAND(1, 3) 
11 = NAND(3, 6) 
16 = NAND(2, 11) 
19 = NAND(11, 7) 
22 = NAND(10, 16) 
23 = NAND(16, 19) 
 

 
C17.bench.txt 
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GENINPUT.   As Figure 154 illustrates, GENINPUT produces a text based elaboration of all 
inputs given some input size n.  The output file is the 2n textual form of all inputs from {0}n to {1}n.  
We can then use such input files to evaluate data ciphers or circuits (using EVALUATE) or to 
produce truth table collections.  

 

 
Figure 154: MASCOT-GENINPUT Component 

  
PAD.   Figure 155 illustrates the PAD component which takes some number of bits and an 

existing textual file with binary inputs represented as 0/1 ASCII strings.  PAD takes the original file 
and prepends n number of 0 digits to each input row value.  Such functionality is useful for 
convertring circuit or program outputs to larger forms in order to meet input requirements for 
target circuits (such as 3DESBIN).  For elaborating data ciphers outputs given all inputs, such a 
tool provides the ability to format input properly. 

 

 
Figure 155: MASCOT-PAD Component 

 
DEPAD.   Figure 156 illustrates another input formatting tool that allows us to strip away the 

superflous 0 bits from a series of binary strings.  The program calculates the largest pre-string of 
0s common to all strings in the file and then depads that number of bits from each binary string.  
This component is useful for formatting outputs of ciphers (such as RSABIN) that produce non-
uniform output.  
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Figure 156: MASCOT-DEPAD Component 

 
RANDCIRCUIT.   In order to analyze the properties of random 

circuits based on some basis, an input and output size, and some 
maximum number of circuits, we find it useful to create circuits with 
random properties and specified parameters.  Figure 157 illustrates 
that RANDCIRCUIT produces an ISCAS BENCH format specification 
based on given parameters. Currently, we only consider combination 
circuit logic and the possibility exists for future sequential 
consideration.  RANDCIRCUIT first ensures that all inputs are used, 
the total gate size is reached, and that the basis gates are distributed 
uniformly across wires.  Future work will involve changing the core 
randomization algorithm and examining variance across circuit 
encarnations.  Figure 157 lists the BENCH code for a 10 input, 2 
output random circuit with 30 total gates. 

 

  
Figure 157: MASCOT-RANDCIRCUIT Component 

 

NANDCONVERT.   Figure 158 illustrates a rudimentary component 
for circuit specification manipulation.  Specifically, we need the ability 
to examine uniform bases such as {NAND} and understand their effect 
on circuit recognition and randomization properties.  We provide a 
NANDCONVERT feature that reads in a circuit description in BENCH format and produces an 
equivalent NAND only version.  The conversion performs a gate-by-gate conversion process that 
ensures a semantically equivalent circuit version, in BENCH format.  

# r10-2-30g 
# 10 inputs 
# 2 outputs 
# 30 total gates 
# 
 
# INPUTS 
INPUT(C1) 
INPUT(C2) 
INPUT(C3) 
INPUT(C4) 
INPUT(C5) 
INPUT(C6) 
INPUT(C7) 
INPUT(C8) 
INPUT(C9) 
INPUT(C10) 
 
 
# OUTPUTS 
OUTPUT(C39) 
OUTPUT(C40) 
 
 
# GATES 
C11 = NAND(C8, C6) 
C12 = NAND(C1, C6) 
C13 = NAND(C9, C6) 
C14 = NAND(C8, C6) 
C15 = NAND(C7, C6) 
C16 = NAND(C1, C6) 
C17 = NAND(C5, C5) 
C18 = NAND(C4, C10) 
C19 = NAND(C2, C3) 
C20 = NAND(C11, C16) 
C21 = NAND(C11, C14) 
C22 = NAND(C18, C16) 
C23 = NAND(C19, C11) 
C24 = NAND(C10, C14) 
C25 = NAND(C15, C19) 
C26 = NAND(C20, C11) 
C27 = NAND(C18, C18) 
C28 = NAND(C13, C15) 
C29 = NAND(C13, C22) 
C30 = NAND(C23, C14) 
C31 = NAND(C25, C16) 
C32 = NAND(C13, C14) 
C33 = NAND(C14, C17) 
C34 = NAND(C19, C15) 
C35 = NAND(C23, C29) 
C36 = NAND(C33, C29) 
C37 = NAND(C34, C27) 
C38 = NAND(C17, C18) 
C39 = NAND(C13, C36) 
C40 = NAND(C22, C15)
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Figure 158: MASCOT-NANDCOVERT Component 

 
RSABIN.   Figure 159 illustrates a useful component to support EPGE operations under both 

white-box perfect encryption and circuit randomization.  As we state in our theoretical results, the 
beginning point of program encryption are one-way functions.  We provide RSABIN as program 
that will take an RSA key (modulus,E,D) and a sequence of binary string inputs (in ASCII) and 
then produce the corresponding ciphertext for each string using the RSA algorithm.  The program 
is useful for concatenating outputs of a program as input to an RSA cipher with a specific key.   
RSABIN has options to format the output either as a single output column or as a truth table 
version.  The program also has the option to perform encrypt or decrypt operations (or both) on 
given binary string inputs. 

 

 
Figure 159: MASCOT-RSABIN Component 

 
3DESBIN.   Much like RSABIN, 3DESBIN provides functionality to create binary string output 

given binary string input based on a 3DES cipher algorithm.   Figure 160 illustates input as 64-bit 
binary strings and output as 64-bit binary strings, assuming a given set of 3DES keys (56-bits 
each).  The 3DESBIN component allows the easy creation of truth table formatted output that 
supports canonical circuit creation and minimization.  
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Figure 160: MASCOT-3DESBIN Component 

 
CONCAT.   This component takes two inputs circuits A and B (in ISCAS BENCH format) and 

creates a new circuit C such that ∀x, C(x) = B(A(x)).  This component supports concatentation of 
a target program P with a key-embedded data cipher algorithm EK.  Figure 161 illustrates circuit A 
(5 input/3 output) and circuit B (8 input, 4 ouput) concated together to produce circuit C (5 input/4 
output).  In this example, the output of circuit A (3 bits) must be padded to 8 bits (5 pad bits) in 
order to match the input specification for circuit C.   

 

 
Figure 161: MASCOT-CONCAT Component 

 
MERGE.   This component takes two inputs circuits A and B (in ISCAS BENCH format) and 

creates a new circuit C such that ∀x, C(x) = A(x) X B(x).  The merge functionality indicates that 
the composite circuit (C) takes the input space of both A and B and produces a binary output 
string that is the output of A(x) concatenated with the output of B(x).  Figure 162 illustrates circuit 
A (4 inputs/3 outputs) and circuit B (8 inputs/4 outputs) merged to produce circuit C with 4+8 (12) 
inputs and 3+4 (7) outputs.  Merge operations support circuit obfuscation techniques where we 
introduce multi-function logic in order to confuse or obscure true functionality or logic.  We may 
also use such techniques to provide a smart form of padded input, especially when the merged 
circuit is a randomly selected circuit with fixed input and output.  
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Figure 162: MASCOT-MERGE Component 

 
EMBEDMULTI.   Figure 163 illustrates the EMBEDMULTI component within MASCOT that 

produces a simple, perfect secrecy encryption circuit (A) and appropriate recovery circuit (R) 
based on a given key schedule.  The perfect secrecy cipher provides a useful and simple 
technique to create experimental encryption circuits used to concatenate the output of a target 
circuit or program P.    The cipher circuits provide a customizable input and output interface for 
target programs with specific number of output bits.   

 
 

 
Figure 163: MASCOT-EMBEDMULTI Component 

 
CIRC2PROG.   Figure 164 illustrates the operation of the CIRC2PROG component that takes 

any ISCAS BENCH format file and creates a semantically equivalent C program using a custom 
Boolean component library that we developed in our research.  The C program takes the same 
number of inputs, produces the same number of outputs as the BENCH circuit, and ensures truth 
table equivalence of both.  The custom C library operates on binary string data (in ASCII format) 
and uses C library routines to simulate individual dual Boolean gate operations (AND, OR, XOR, 
NOR, etc).  The CIRC2PROG component provides a seamless method for creating native binary 
programs for various architectures (PC, LINUX, etc.) based on BENCH logic.  The equivalent C 
program takes identicial input and produces identical output as the BENCH circuit. 
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Figure 164: MASCOT-CIRC2PROG Component 

 
CIRCUITGEN.   Figure 165 represents unrealized functionality of a circuit generation library 

that produces BENCH format circuit descriptions for a family of circuits with the same input/output 
size, maximum gate size, and basis.  We currently employ a circuit generation library running 
under UNIX/LINUX that produces binary formatted circuit descriptions in compact notation.  
Figure 166 illustrates the binary specification format for single output functions with small number 
of inputs and gate size.  We generate all circuits with the specified size and I/O footprint and 
categorize them according to signature.  Future work will involve the use of ISCAS/BENCH 
representations instead of binary/logic representations.   CIRCUITGEN directly support sub-
circuit identification and replacement by giving us the ability to elaborate all circuits with a known 
signature and I/O footprint. 

 
Figure 165: MASCOT-CIRCUITGEN Component 

 

 
Figure 166: Circuit Library Specification (Binary) 
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CANONICAL.   Figure 167 illustrates one of the key architectural components to support 

perfect white-box encryption operations.  CANONICAL takes as input a textual truth table file and 
realizes a complete sum-of-products circuit expression that reproduces the semantics of the truth 
table.  CANONICAL currently does not perform any minimization on the complete SOP form, but 
we will incorporate such options in future work.  The ISCAS format circuit represents the Boolean 
logic that exactly implements the supplied truth table.   This component is the practical realization 
for perfectly white-box protected circuits created via concatentation using strong data ciphers (P + 
E).  

 

 
Figure 167: MASCOT-CANONICAL Component 
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APPENDIX E 
 

ISCAS CIRCUIT DEFINITIONS AND BENCH FORMAT 

In order to facilitate circuit randomization techniques (described in Section 5.6), we chose a 
standard textual circuit representation language and a well-known set of benchmark circuits that 
provide combination logic to work with.  Davidson and Harlow provide an overview of the process 
involved for benchmark-circuit library development in [380]. As they describe, Franc Brglez and 
Hideo Fujiwara began work in 1984 on initial collection of combinational circuit benchmarks for 
use in automatic test pattern generation (ATPG).  Researchers presented results for using these 
circuits in 1985 at the International Symposium on Circuits and Systems (ISCAS).  The ISCAS ’85 
benchmarks (seen in Table 30), and their successors, are now available in several net list 
formats. The Association for Computing Machinery, Design Automation Special Interest Group 
(ACM/SIGDA) benchmarks as well as the ITC suite provides us with a future body of known logic 
that includes both sequential and combinational testing possibilities.  Hansen et al. [203] provide 
a summary of their reverse engineering work on the ISCAS 85 circuits and Table 30 presents 
several of their high-level functional graphical representation views.  

Figure 168 illustrates the C-17 benchmark in BENCH notation and a sample logic circuit with 5 
inputs and 2 outputs (with 5 logic gates).  BENCH is a circuit description language originally 
utilized for describing ISCAS-85 benchmarks but that still remains widely used in academia and 
industry for testing18.  Figure 169 illustrates the BENCH format in extended BNF notation.  
Circuits based on sequential logic use Boolean gates with feedback, such as flip-flops.  Such 
netlists do map to directed acyclic representations because cycles are inherently present with 
feedback or memory logic.  Several academic and industrial tools are equipped to convert 
BENCH formats to other textual representation forms such as VHDL, Verilog, and library 
exchange format (LEF).  

 

                               
(a) C17-Benchmark Circuit                         (b) 5-input/2 Output/5 Gate Circuit 

 

Figure 168: BENCH Circuit Format 

                                                           
18 See http://www.fm.vslib.cz/~kes/asic/iscas/ 
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Table 30: High Level View of ISCAS-85 Circuit Library 
c432 : 27-channel interrupt controller  
 
36 inputs 
7 outputs 
160 logic gates 
5 major functional blocks 

 
c499/c1355: 32-bit single error correcting 
circuit 
 
41 inputs / 32 outputs 
202 (546) logic gates 
2 major functional blocks 

 
c880: 8-bit ALU 
 
60 inputs 
26 outputs 
383 logic gates 
7 major functional blocks 

 
c1908: 16-bit single error correcting / 
double error detecting circuit 
 
33 inputs / 25 outputs 
880 logic gates 
6 major functional blocks 

 
c2670: 12-bit ALU and controller 233 inputs / 140 outputs 

1,193 logic gates / 7 major functional blocks 
c3540: 8-bit ALU 50 inputs / 22 outputs 

1,699 logic gates / 11 major functional blocks 
c5315: 9-bit ALU 178 inputs / 123 outputs 

2,307 logic gates / 10 major functional blocks 
c6288 : 16x16 multiplier  32 inputs / 32 outputs 

2,406 logic gates / 240 major functional blocks 
c7552 : 32-bit adder/comparator 207 inputs / 108 outputs 

3,512 logic gates / 8 major functional blocks 
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Figure 169: BENCH Grammar in Extended BNF Notation 
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APPENDIX F 
 

BOOLEAN EXPRESSION DIAGRAMS 

Solving constraint satisfaction problems and formal verification have been catalyst to a myriad 
of graphical structures that support graph-based Boolean function manipulation: Binary Decision 
Diagrams (BDD), Reduce Ordered Binary Decision Diagrams (ROBDD), FDD, OBDD, ADD, 
MTBDD, BMD, KMDD, and BGD to name a few.  Anderson and Hulgaard [204] develop Boolean 
Expression Diagrams (BEDs) as another extension to BDDs; these forms can represent any 
Boolean function in linear space and provide standard graph-based tools for dealing with 
combinational-level logic problems. BEDs have been useful for efficiently determining circuit 
equivalence.  Although varieties of graphical representation languages exist for combinational 
circuits, we chose BEDs because they come with an available library of functions in C that prove 
useful for implementation.   

Anderson and Hulgaard provide a library for manipulating and creating BEDs. There libraries 
support algorithms that transform a BED into a reduced ordered BDD (ROBDD): one algorithm 
using the BDD apply-operator and the other exploiting information of the Booelan expression.  
Standard BDD techniques present NP-complete problems that are infeasible to solve while BED 
approaches give relatively fast solution possibilities.  In particular, Anderson and Hulgaard define 
a Boolean Expression Diagram in [204] as follows: 

Definition 19. (Boolean Expression Diagram) A BED is a directed acyclic graph G = (V, 
E) with vertex set V and edge set E. The vertex set V contains three types of vertices: 
terminal, variable, and operator.  

A terminal vertex v has as attributes a value value(v) ∈ {0,1} 
A variable vertex v has as attributes a variable var(v), and two sons low(v), high(v) ∈ V. 
An operator vertex v has as attributes a binary Boolean operator op(v), and two sons 
low(v), high(v) ∈ V.  
 
The edge set E is defined by {(v,low(v)), (v,high(v)) | v ∈ V and v is not a terminal vertex}. 0 
and 1 are the two terminal vertices.  Variable vertices correspond to the if-then-else 
operator x→f1, f0 = (x ∧ f1) ∨  (¬x ∧ f0). Operator vertices correspond to their respective 
Boolean connectives, leading to a correspondence between BEDs and Boolean functions.  
 
We utilize the code libraries for BEDs to build DAG representations of various combinational 

circuits in our architecture. We can construct BED nodes in either reduced or unreduced form:  A 
BED program with reductions turned on will produce DAG representations with simplified Boolean 
expressions in reduced form.  BED programs are normally used to define constraint satisfaction 
problems.  In the MASCOT architecture, we utilize the inherent graphical display capabilities of 
the BED libraries to visualize and analyze combinational circuits.  In order to use the BED 
libraries, a C pogram must include the BED C/C++ libraries and make appropriate library calls.  A 
basis BED program allocates space for variables, creates bed nodes, and then performs other 
BDD operations as appropriate.  

Our framework only currently produces a graphical version of the BED in DOT19 notation by 
using the bed_io_graph() library call. DOT is an opensource graphics library that draws directed 
graphs as hierarchies.  It reads attributed files (which we create using BED programs specific to a 
particular circuit) and writes out drawings in other graphical formats (GIF, JPG, PNG, SVG, 
Postscript).  DOT specifies its own language, which we may use in future work to replace the 
BED libraries with our own custom DAG manipulation tools.   Figure 170 illustrates the custom C 

                                                           
19 http://www.graphviz.org/Documentation/dotguide.pdf 
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file we create from a BENCH specification (in this case, the C-17 ISCAS benchmark seen in 
Figure 61 and Figure 62 on p. 92).  Once this program is compiled and executed, it produces a 
DOT file representing the BED graphical representation (either reduced or unreduced) of the 
circuit.  

 
#include <stdio.h> 
#include "bed.h" 
#include "bedio.h" 
 
int main() 
{ 
   FILE *outFile; 
 
   bed_init( 800*1024, 500*1024); 
   bed_node_list *nodes = il_new(); 
 
   bed_var vin = bed_new_variables( 256 ); 
 
   bed_node c1 = bed_mk_var(vin, bed_false, bed_true); 
   il_append (nodes, c1); 
   bed_node c2 = bed_mk_var(vin+1, bed_false, bed_true); 
   il_append (nodes, c2); 
   bed_node c3 = bed_mk_var(vin+2, bed_false, bed_true); 
   il_append (nodes, c3); 
   bed_node c6 = bed_mk_var(vin+3, bed_false, bed_true); 
   il_append (nodes, c6); 
   bed_node c7 = bed_mk_var(vin+4, bed_false, bed_true); 
   il_append (nodes, c7); 
   bed_node c10 = bed_mk_op (BED_NAND, c1, c3); 
   il_append (nodes, c10); 
   bed_node c11 = bed_mk_op (BED_NAND, c3, c6); 
   il_append (nodes, c11); 
   bed_node c16 = bed_mk_op (BED_NAND, c2, c11); 
   il_append (nodes, c16); 
   bed_node c19 = bed_mk_op (BED_NAND, c11, c7); 
   il_append (nodes, c19); 
   bed_node c22 = bed_mk_op (BED_NAND, c10, c16); 
   il_append (nodes, c22); 
   bed_node c23 = bed_mk_op (BED_NAND, c16, c19); 
   il_append (nodes, c23); 
 
   if ( ( outFile = fopen("c17.dot", "w") )  == NULL ) { 
      printf ("File could not be opened\n"); 
     exit(0); 
   } 
 
   bed_io_graph (outFile, nodes); 
   bed_done(); 
 
   close (outFile); 
   return 0; 
} 

 

Figure 170: BED C Program Created from C-17 BENCH Specification 

To illustrate the graphical properties of the same circuit and the variability of circuit 
representation themselves, we consider next an example circuit description (P) 
with 3 inputs and 2 outputs.  We can represent the circuit under different 
bases as well:  Ω = {AND, OR, NAND, NOR, XOR, XNOR} and Ω = {NAND}.   
We show also the truth table view for the larger base circuit.  

 

 

 

 
 

 
P, Ω = {AND, OR, NAND, NOR, XOR, XNOR}           P, Truth Table                                    P,   Ω = {NAND}              

Figure 171: Example Circuit P – Gate Level and Truth Table View 

INPUT(3) 
INPUT(2) 
INPUT(1) 
 
OUTPUT(7) 
OUTPUT(6) 
 
4a = NAND(3, 2) 
4 = NAND(4a, 4a) 
5a = NAND(4, 4) 
5b = NAND(1, 1) 
5 = NAND(5a, 5b) 
6a = NAND(4, 4) 
6b = NAND(3, 3) 
6c = NAND(3, 6a) 
6d = NAND(4, 6b) 
6 = NAND(6c, 6d) 
7 = NAND(5,6) 

INPUT(3) 
INPUT(2) 
INPUT(1) 
 
OUTPUT(7) 
OUTPUT(6) 
 
4 = AND(3,2) 
5 = OR(4,1) 
6 = XOR(4,3) 
7 = NAND(5,6) 
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Using example circuit P, we now illustrate several variations of this circuit with different BED 
manifestations.  Figure 172 shows the original and all-NAND versions of P in BED format—in 
both reduced and unreduced forms.   Figure 173 illustrates the canonical sum-of-products view of 
circuit P (including the all-NAND version) and their corresponding reduced BED views.  Figure 
174 illustrates our framework’s ability to characterize the graphical changes incduced by change 
of base (to all-NAND) and to visualize the reductions inherent in the BED structure.  

 

 
Circuit P (Original) 

 

 
Circuit P (ALL-NAND) 

 

 
Circuit P (Reduced BED) 

 

 

 
 

Circuit P (ALL-NAND, Reduced BED) 

 

Figure 172: Example Circuit P in BED Notational Views 
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Canonical P (Unreduced) 

 

Canonical P (ALL-NAND, Unreduced) 

 

Canonical P (Reduced) 

 

Canonical P (ALL-NAND, Reduced) 

 
 

Figure 173: Example Circuit P (Canonical SOP) in BED Notational Views 
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C432 (Unreduced) 

 
 

C432 (ALL-NAND, Unreduced) 

 

 
 

C432 (Reduced) 

 
 

C432 (ALL-NAND, Reduced) 

 

Figure 174: ISCAS C432 in BED Notational Views 
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