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Abstract

Clusters of workstations employ flexible topologies: regular, irregular, and hierar-
chical topologies have been used in such systems. The flexibility poses challenges for
developing efficient collective communication algorithms since the network topology
can potentially have a strong impact on the communication performance. In this pa-
per, we consider the all-to-all broadcast operation on clusters with cut-through and
store-and-forward switches. We show that near-optimal all-to-all broadcast on a clus-
ter with any topology can be achieved by only using the links in a spanning tree of
the topology when the message size is sufficiently large. The result implies that in-
creasing network connectivity beyond the minimum tree connectivity does not improve
the performance of the all-to-all broadcast operation when the most efficient topology
specific algorithm is used. All-to-all broadcast algorithms that achieve near-optimal
performance are developed for clusters with cut-through and clusters with store-and-
forward switches. We evaluate the algorithms through experiments and simulations.
The empirical results confirm our theoretical finding.
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1 Introduction

Clusters of workstations, which employ a pile of inexpensive commodity workstations and

networking devices, have become a common environment for high performance computing.

In such clusters, computing nodes are connected by commodity switches: high-end clusters

are usually connected by cut-through switches, such as InfiniBand and Myrinet, while low-end
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clusters may still use store-and-forward switches such as Ethernet. We will use the term cut-

through/store-and-forward cluster to refer to a cluster with cut-through/store-and-forward

switches. The switch level topology in a cluster can be very flexible: regular, irregular, and

hierarchical topologies have been used in such systems. Since the topology of a system has a

strong impact on the performance of collective communication operations, it is challenging

to design efficient collective communication algorithms for such systems.

In this paper, we investigate one particular collective communication operation, all-to-

all broadcast, on clusters of workstations. All–to-all broadcast, also known as all-gather

[16], is one of the most common collective communication operations in high performance

computing. In this operation, each process sends the same data to all other processes in the

system. Figure 1 visualizes the all-to-all broadcast operation on four processes.
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Figure 1: An example of the all-to-all broadcast operation

We focus on the all-gather operation with sufficiently large message sizes that the total

communication time is dominated by the bandwidth term. Optimizing the operation with a

large message size is very different from optimizing the operation with a small message size:

optimizations for small messages usually reduce the communication start-up overheads by

minimizing the number of messages while optimizations for large messages usually maximize

the bandwidth usage and avoid network contention by considering the network topology.

The techniques developed in this paper complement existing techniques (e.g. [2]) for small

messages.

We consider clusters where each computing node is equipped with one network interface

card (1-port systems). Let the message size for the operation be msize bytes and the

number of processes be P . Let us assume that each process runs on one node and that the
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bandwidth of the link connecting each node to the network is B. By the definition of the

all-to-all broadcast operation, each node must receive a total of (P − 1)×msize bytes data

from other nodes. Thus, the minimum time to complete this operation is (P−1)×msize

B
. This

is the absolute lower bound of the time to complete the all–to–all broadcast 1. Regardless of

the type of networks, regular, irregular, or hierarchical, no all–to–all broadcast algorithm

can have a shorter communication time.

We show that this absolute lower bound can be approached by only using the links in any

spanning tree embedded in the network. Since a spanning tree topology can be embedded in

most connected networks, it follows that near-optimal all-to-all broadcast can be obtained

for most topologies, regular, irregular, or hierarchical. This also implies that when the best

algorithm is used, upgrading a tree topology to other topologies such as fat-tree, mesh, or

irregular topologies with more connectivity does not improve the performance of the all-to-

all broadcast operation. In other words, the tree topology is as good as any other topologies

for realizing this operation. Note that some routing schemes may prevent a tree from being

formed in a connected network. Our techniques cannot be applied to such systems.

We develop an all-to-all broadcast algorithm that can theoretically achieve the lower bound

completion time on cut-through clusters with arbitrary topologies where a spanning tree can

be embedded. The algorithm has the following two properties: (1) each node communicates

(sends and receives) exactly (P − 1) × msize data; and (2) all communications in the oper-

ations are contention free on the embedded tree topology. These two properties guarantee

the optimality of the algorithm, that is, a theoretical communication time of (P−1)×msize

B
. To

perform all-gather efficiently on a store-and-forward cluster, the communication algorithm

must minimize the communication path lengths in addition to having the two properties for

cut-through clusters. This turns out to be a harder algorithmic problem. While we cannot

1For SMP or multi-core systems, each node can have multiple processors (or cores). Assuming that each
node runs N processes, the processes in each node must receive (P −N)×msize data from outside the node.

Hence, the lower bound is (P−N)×msize

B
, which is close to (P−1)×msize

B
since N is usually a small number.
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prove formally, we suspect this problem to be NP-complete. We identify the conditions for

a store-and-forward cluster with multiple switches to support efficient all-to-all broadcast.

In addition, we develop schemes that give optimal solutions for cases when each switch is

connected to a small number of other switches. Such cases are common for clusters with

irregular topologies for two reasons: (1) a network with an irregular topology is typically

small; and (2) connecting one switch to many other switches without increasing the link

speed creates a hot-spot in the network and is usually not a good practice.

Based on the proposed all-gather algorithms, we develop automatic routine generators that

take the topology information as input and generate topology-aware all-gather routines. We

evaluate the performance of the algorithms using a 32-machine Ethernet switched cluster

with different network topologies. In addition, we also investigate the performance of the

proposed algorithms on large networks through simulation. The performance study confirms

that our algorithms achieve near-optimal performance on clusters with different topologies.

Using our algorithms, the performance of all–to–all broadcast on multiple switches is similar

to that on a single switch. The experiments also demonstrate that the proposed techniques

can be used to improve existing communication libraries even on small clusters with irregular

topologies.

The main contributions of this paper include the following. First, we show that the all-

gather operation can be realized optimally (in theory) on the spanning tree embedding of

any topology, and develop efficient all-gather algorithms that can uniformly apply to clusters

with regular, irregular, and hierarchical topologies. Second, we demonstrate empirically that

the proposed techniques are practical.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section

3 describes the network model and the problem definition. Section 4 details the schemes for

solving the problems. Section 5 reports experimental results. Finally, the conclusions are

presented in Section 6.
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2 Related work

Many all–to–all broadcast algorithms were designed for specific network topologies that are

used in parallel machines, including hypercube [9, 22], mesh [18, 20, 23], torus [23], k-ary n-

cube [22], fat tree [12], and star [17]. Work in [11] optimizes MPI collective communications,

including MPI Allgather, on wide area networks. The study in [6] investigates efficient all-

to-all broadcast on SMP clusters. Work in [24] explores the design of NIC-based all-gather

with different algorithms over Myrinet/GM. Some efforts [19, 21] have focused on developing

algorithms for different message sizes, and some of these algorithms have been incorporated in

the recent MPICH library [15]. In [2], the authors developed an efficient all-gather algorithm

for small messages. This algorithm is theoretically optimal in that it uses the smallest number

of messages to complete the operation. When the communication start-up overhead is the

dominating factor, the algorithm achieves the best results. The algorithm, however, will

not achieve high performance for large messages on irregular topologies since the network

topology is not considered and the link bandwidth is not an optimization objective. Our

technique complements this algorithm. The study in [1] compares a dissemination-based all-

gather with the recursive doubling algorithm [21] on Ethernet and Myrinet. The most related

research to this work is presented in [8] where near-optimal all-to-all broadcast schemes were

developed for clusters connected by one or two cut-through switches. However, the algorithm

in [8] is not always optimal for arbitrary topologies. In this paper, we develop schemes that

allow performing near-optimal all-to-all broadcast on all topologies where a spanning tree

can be embedded. Similar to other architecture specific collective communication algorithms

[5, 14], the techniques developed in this paper can be used in advanced communication

libraries [3, 4, 10, 25].
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3 Network model and problem definition

We consider 1-port homogeneous clusters that consist of a number of workstations connected

by switches. Each workstation is connected to the network through one network interface

card. A cluster can be either a cut-through cluster or a store-and-forward cluster. We

assume that all machines and all links are identical. Each switch may connect to a number of

workstations and to some other switches. The links operate in the duplex mode that supports

simultaneous communications on both directions of the link with the full bandwidth. Each

switch provides a crossbar connectivity for its input and output ports.

The clusters may have arbitrary switch level topologies. We assume that the switch level

topology has a spanning tree embedding. Our techniques realize the all-to-all broadcast only

on the tree embedding. Since there is only a single path between each pair of nodes in the

spanning tree, routing is not an issue. Notice that routing may need to be considered in the

construction of the embedded spanning tree before our algorithms are applied.

The spanning tree topology (embedded in the original network) is modeled as a directed

graph G = (V, E) with nodes V corresponding to switches and machines and edges E

corresponding to unidirectional channels. Let S be the set of switches in the network and M

be the set of machines in the network. V = S ∪M . Let u, v ∈ V , a directed edge (u, v) ∈ E

if and only if there is a link between node u and node v. For a tree topology, we assume that

the switches can only be intermediate nodes while the machines can only be leaves. A switch

as a leaf in the tree will not participate in any communication and, thus, can be removed

from the graph. We assume that there is at least one switch in the tree and the root of the

tree is a switch. The root switch is only used to identify the starting point for the Depth

First Search (DFS) and postorder traversal algorithms. The location of the root switch is

otherwise insignificant in our algorithms.

We focus on the all-gather operation with a sufficiently large message size that the total

communication time is dominated by the bandwidth term. Other communication overheads,
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such as software startup overheads, are relatively insignificant and are ignored. Let the

path length for the message be d. In a cut-through cluster with no network contention, the

communication time for an msize-byte message is roughly msize
B

. Note that this time is inde-

pendent of d. Let pkt be the packet size in a store-and-forward cluster. The communication

time for an msize-byte message in a store-and-forward cluster is roughly msize
B

+(d−1)× pkt

B
.

Depending on the value of msize and pkt, the term (d − 1) × pkt

B
, introduced by the store-

and-forward mechanism, may significantly affect the overall communication time.

Some terminologies used in this paper are defined next. A message, u → v, is a commu-

nication transmitted from node u to node v. A pattern is a set of messages. We will use

the notion u → v → w → ... → x → y to represent the pattern that consists of messages

u → v, v → w, ..., and x → y. The notion path(u, v) or path(u → v) denotes the set of

directed edges in the path from node u to node v. The path length is defined as the number

of switches a message travels through. Two messages, u1 → v1 and u2 → v2, are said to

have contention if they share a common edge. A pattern is contention free if there is no

contention between each pair of the messages in the pattern. |S| denotes the size of set S.

3.1 Logical ring based all-to-all broadcast algorithms

Our schemes are based on the logical ring all-to-all broadcast algorithms, which were pro-

posed for single-switch clusters and two-switch clusters [8, 15]. The algorithm works as

follows. Let the cluster contain P machines, numbered as n0, n1, ..., nP−1. Let F :

{0, ..., P − 1} → {0, ..., P − 1} be a one-to-one mapping function. Thus, nF (0), nF (1), ...,

nF (P−1) is a permutation of n0, n1, ..., nP−1. The algorithm works by repeating the following

logical ring pattern P − 1 times:

nF (0) → nF (1) → ... → nF (P−1) → nF (0).

In the first iteration, each machine nF (i), 0 ≤ i ≤ P − 1, sends its own data to machine

nF ((i+1) mod P ) and receives data from machine nF ((i−1) mod P ). In subsequent iterations, each
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machine nF (i) forwards what it received in the previous iteration to machine nF ((i+1) mod P )

and receives from machine nF ((i−1) mod P ). After P − 1 iterations, all data from all machines

reach all machines in the system. Note that in each iteration, each machine must copy the

data it receives into the right place of the output buffer.

3.2 Problem definition

All logical ring based all-to-all broadcast algorithms operate in the same fashion. The key

for such an algorithm to achieve good performance is to find the logical ring pattern that

can carry out communications as efficiently as possible. This is the problem we consider.

Let the slowest communication time in the logical ring pattern be tslowest. Since the logical

ring pattern is repeated P − 1 times to realize all-to-all broadcast, the total communication

time is (P − 1) × tslowest. In a cut-through cluster, if there exists a mapping such that the

logical ring pattern is contention free, tslowest ≈ msize
B

and the total time for the all-to-all

broadcast operation is T ≈ (P−1)×msize

B
, which is the theoretical lower bound. Hence, for a

cut-through cluster, the challenge is to find a mapping such that the logical ring pattern is

contention free. This problem is stated as follows.

Problem 1 (finding a contention free logical ring): Let G = (S ∪ M, E) be a tree graph.

Let the number of machines in the system be P = |M |, and let the machines in the system

be numbered as n0, n1, ..., nP−1. The problem is to find a one-to-one mapping function

F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} such that the logical ring pattern nF (0) → nF (1) →

... → nF (p−1) → nF (0) is contention free.

For clusters with store-and-forward switches, assuming that the logical ring pattern is

contention free and that the longest path length in the pattern is d, tslowest ≈ (d−1)pkt

B
+msize

B
,

and the total time is T ≈ (P−1)×msize

B
+ (d − 1) × (P − 1) × pkt

B
. Hence, to minimize the

communication time, the logical ring must (1) be contention free, and (2) have the smallest

d, the longest path length in the ring. This problem is stated as follows.
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Problem 2 (Finding a contention free logical ring with the smallest maximum path length):

Let G = (S ∪ M, E) be a tree graph. Let the number of machines in the system be P =

|M |, and let the machines in the system be numbered as n0, n1, ..., nP−1. The problem

is to find a mapping function F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} such that (1) the

logical ring pattern nF (0) → nF (1) → ... → nF (P−1) → nF (0) is contention free, and (2)

max 0 ≤ i ≤ P−1 {length(nF (i) → nF ((i+1) mod P ))} is minimized.

Clearly, Problem 1 is a sub-problem of Problem 2. Unfortunately, we are only able to

develop a polynomial time solution for Problem 1, but not for Problem 2. We strongly

suspect that Problem 2 is NP-complete although we cannot prove it formally. We establish

the necessary and sufficient conditions for a store-and-forward cluster to have a contention-

free logical ring with a maximum path length of 2. We also consider special cases of Problem

2 where each switch is connected to a small number of switches and develop a polynomial

algorithm that finds the optimal solutions for such cases. Such cases are common for clusters

with irregular topologies for two reasons: (1) a network with an irregular topology is usually

small (consisting of a few switches); and (2) connecting one switch to many other switches

without increasing the link speed creates a hot-spot in the network and is usually not a

good practice. It must be noted that the topologies in most practical clusters have small

diameters. The solution for Problem 1 can be directly applied to such clusters to obtain

near-optimal performance.

4 Constructing contention free logical rings

4.1 Problem 1

Let G = (S ∪M, E) be a tree graph. Let the number of machines in the system be P = |M |

and the machines in the system be numbered as n0, n1, ..., nP−1. We will call this numbering

scheme global numbering. We assume that all switches are intermediate nodes in the tree.

Let G′ = (S, E ′) be a subgraph of G that only contains switches and the links between

switches. The algorithm, which will be called Algorithm 1, determines the mapping for a
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contention free logical ring pattern in two steps.

• Step 1: Number the switches based on the Depth First Search (DFS) of G′. An example

DFS numbering of the switches is shown in Figure 2. We will denote the switches as

s0, s1, ..., s|S|−1, where si is the ith switch arrived in DFS traversal of G′.

• Step 2: Let the Xi machines connecting to switch si, 0 ≤ i ≤ |S| − 1, be numbered

as ni,0, ni,1, ..., ni,Xi−1. We will call this local numbering. A one-to-one mapping

function (and its reverse function) can be established between the global numbering

and local numbering. Xi may be 0 when no machine is connected to si. The logical ring

n0,0 → ... → n0,X0−1 → n1,0 → ... → n1,X1−1 → ...n|S|−1,0 → ... → n|S|−1,X|S|−1−1 → n0,0

is contention free (we will formally prove this). The mapping function F for the

above logical ring pattern can be obtained using the mapping function from the global

numbering to the local numbering.

0

1

2 3

4

5

6 7

Figure 2: DFS numbering

Lemma 1: Let G′ = (S, E ′) be the subgraph of G that contains only switches and links

between switches. Let s0, s1, ..., s|S|−1 be the DFS ordering of the switches, where si is

the ith switch arrived in DFS traversal of G′. Communications in the following pattern are

contention free: s0 → s1 → ... → s|S|−1 → s0.

Proof: Figure 2 shows an example DFS numbering of the switches. One can easily see that

in this example, pattern s0 → s1 → s2 → ... → s7 → s0 is contention free. Next, we will

formally prove this lemma by induction.

Base case: When there is one switch, there is no communication and thus no contention.
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Induction case: Assume that the communication pattern in a k-switch system does not have

contention. Consider a (k + 1)-switch system with switches s0, s1, ..., sk. Removing the

last switch sk from the system, we obtain a k-switch system. The DFS ordering of the

k-switch system is exactly the same as the (k + 1)-switch system with sk removed. Hence,

from the induction hypothesis, the communication pattern in the k-switch system, that is,

s0 → s1 → ... → sk−1 → s0, does not have contention. Now, let us consider the (k + 1)-

switch system where we need to prove that pattern s0 → s1 → ... → sk → s0 does not have

contention. The pattern in the (k + 1)-switch system adds two communications sk−1 → sk

and sk → s0 to and removes one communication sk−1 → s0 from the pattern in the k-switch

system. Thus, to prove that the pattern in the (k + 1)-switch system is contention free, we

only need to show that communications sk−1 → sk and sk → s0 do not introduce contention.

Based on the way DFS operates, switch sk must be the child of one of the switches along

the path from s0 to sk−1. Hence, there are three cases to be considered: sk is a child of sk−1,

sk is a child of a switch s′i along the path from s0 to sk−1 (excluding s0 and sk−1), and sk is

a child of s0, . These three cases are depicted in Figure 3. We use the following facts in the

proof of the three cases.

• Fact (a): The link directly connecting switch sk does not have contention with all

communications in the k-switch system, that is, s0 → s1 → ... → sk−1 → s0. This is

because the link is not part of the k-switch system.

• Fact (b): From the induction hypothesis, communication sk−1 → s0 does not have

contention with communications in pattern s0 → s1 → ... → sk−1.

Now, let us consider the three cases in Figure 3.

• Case (1): Switch sk is a child of sk−1. sk−1 → sk does not have contention with any

other communications (Fact (a)). sk → s0 is the concatenation of two paths: sk → sk−1

and sk−1 → s0. sk → sk−1 does not have contention with all other communications

(Fact (a)) and sk−1 → s0 does not introduce contention (Fact (b)).
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Figure 3: Three cases

• Case (2): Switch sk is a child of some switch s′i along the path from s0 to sk−1. In

this case, sk−1 → sk is the concatenation of two paths: sk−1 → s′i and s′i → sk.

sk−1 → s′i does not have contention with all other communications since it is a sub-

path of sk−1 → s0 (Fact (b)). Path s′i → sk does not cause contention (Fact (a)).

Similar arguments apply to sk → s0.

• Case (3): Switch sk is a child of s0. This follows similar arguments as in Case (1).

Thus, the pattern s0 → s1 → ... → s|S|−1 → s0 is contention free. 2

Theorem 1: The logical ring pattern resulted from Algorithm 1 is contention free.

Proof: Algorithm 1 basically obtains the logical ring mapping by (1) grouping all machines

connected to a switch together, and (2) ordering the groups of machines based on the DFS

order of the switches. To prove that the mapping is contention free, we must show that

all links between a machine and a switch are contention free and all links between switches

are contention free. Since each machine sends and receives exactly once in the logical ring

pattern, a link between a machine and a switch is used in both direction exactly once, which

indicates that there is no contention on these links. For the links between switches, since the

algorithm orders the group of machines (connected to each switch) based on the DFS order,

it can be easily shown that the usage of the inter-switch links in the logical ring is exactly

the same as the pattern described in Lemma 1. From Lemma 1, there is no contention on

the links between switches. 2
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Using Algorithm 1, the contention free logical ring can be found for a tree topology. In

networks with an arbitrary topology, this contention free logical ring can be found by first

finding a spanning tree and then applying Algorithm 1. The two steps may be combined by

using the DFS tree to realize the logical ring.

4.2 Problem 2

To solve Problem 2, we must find a contention free logical ring with the smallest maximum

path length. We were not able to either design a polynomial algorithm that exactly solves

Problem 2 for all cases or prove this problem to be NP-complete. Thus, we have to leave the

problem open. We make the following two contributions to this problem. First, we identify

the sufficient and necessary conditions for a cluster to support a contention free logical ring

with a maximum path length of 2. Note that logical rings with a maximum path length of

1 only exist for clusters connected by a single switch. For clusters with multiple switches,

the smallest possible maximum path length in the logical ring is 2 since for each switch,

there exists at least one machine that communicates with a machine in another switch.

The path length for this communication is at least 2. Hence, this result can be used by

a network designer to design a store-and-forward cluster with efficient all-to-all broadcast

support. Second, we develop an algorithm that finds optimal solutions for the cases when

each switch in the system is connected to a small number of other switches. Here, the term

optimal solutions means logical rings with the smallest maximum path lengths. A logical

ring with a maximum path length of i will be referred to as an i-hop logical ring.

4.2.1 Clusters with 2-hop logical rings

In this sub-section, we will show the sufficient and necessary conditions for a cluster to have

a 2-hop logical ring. This result is summarized in the following theorem.

Theorem 2: For a tree graph G = (S ∪ M, E), there exists a contention free 2-hop logical
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ring if and only if the number of machines directly connected to each switch is larger than

or equal to the number of switches directly connected to the switch.

Proof: We will first prove the necessary condition. Assume that there exists a switch, A,

that directly connects to more switches than machines. Let us refer to the switches directly

connected to A as A-neighbor switches. Let all nodes connecting to A through an A-neighbor

switch form an A-neighbor subtree. Clearly, the number of A-neighbor subtrees is equal to

the number of A-neighbor switches. Under the assumption that all switches are intermediate

nodes in the tree topology, each A-neighbor subtree contains at least one machine. Since

there are more A-neighbor subtrees than the number of machines attached to A, in the logical

ring, at least one machine in an A-neighbor subtree must send a message to a machine in

another A-neighbor subtree. The path length of this communication is at least 3 (2 A-

neighbor switches plus A). Hence, to have a contention free 2-hop logical ring, each switch

must directly connect to at least the same number of machines as the number of switches.

Before we prove the sufficient condition, let us introduce the concept of a logical array

pattern of a tree (or a subtree), which is rooted at a switch. We also use the term the logical

array of a switch to denote the logical array of the tree rooted at the switch. Let the tree

(subtree) contain Y machines, n0, n1, ..., and nY −1. Let F : {0, ..., Y −1} → {0, ..., Y −1} be

a one-to-one mapping function. The logical array pattern is nF (0) → nF (1) → ... → nF (Y −1).

We distinguish the first machine, nF (0), and the last machine, nF (Y −1), of the logical array

from other machines in the logical array since these two machines must be treated differently.

From the definition, we can see that the logical array differs from the logical ring by excluding

the last communication nF (Y −1) → nF (0).

Now, let us consider the sufficient condition. Assume that the number of machines directly

connected to each switch is equal to or larger than the number of switches directly connected

to the switch. We prove the sufficient condition by developing a constructive algorithm for

finding 2-hop contention free logical ring. The algorithm performs a postorder traversal of
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the switches. For each subtree associated with a non-root switch, the algorithm finds the

logical array pattern that satisfies the following three conditions: 1) the logical array pattern

is contention free, 2) the maximum path length in the pattern is less than or equal to 2, and

3) the first machine, nF (0), and the last machine, nF (Y −1), are directly connected to the root

of the subtree. More specifically, the algorithm processes each non-root switch as follows.

• Case (1): The switch does not directly connect to other switches except to its parent.

Let the switch directly connect to X machines, n0, ..., nX−1. The array pattern for the

switch is n0 → n1 → ... → nX−1 with the first machine n0 and the last machine nX−1.

It can be verified that the three conditions are met.

• Case (2): The switch directly connects to some machines and some switches other

than its parent. We will use the term “sub-switches” to denote the switches directly

connected to the current switch other than its parent. Each sub-switch is the root of a

subtree. Since the switches are processed following the postorder traversal order, the

logical arrays for all sub-switches have been computed. Let the current switch connect

to i sub-switches, denoted as t0, t1, ..., ti−1, and j machines, denoted as m0, m1, ...,

mj−1. We have j ≥ i + 1 since the parent switch does not count in i. For sub-switch

tk, 0 ≤ k ≤ i − 1, we will use tFk , tLk , and tFk → ... → tLk to denote the first machine,

the last machine, and the logical array respectively. The logical array for the current

switch is m0 → tF0 → ... → tL0 → m1 → tF1 → ... → tL1 → m2 → ... → mi−1 → tFi−1 →

... → tLi−1 → mi → mi+1 → ... → mj−1. This case is depicted in Figure 4.

First machine
Last machine

subtrees

Root

Figure 4: Constructing the logical array for an intermediate switch

Now let us examine the three conditions for the logical array of the current switch. It
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is obvious that the logical array of the current switch is contention free if the logical

arrays of the sub-switches are contention free. The path length for messages mk → tFk ,

0 ≤ k ≤ i− 1, and messages tL
k → mk+1, 0 ≤ k ≤ i− 1, is exactly 2 since tF

k and tLk are

attached to the sub-switch tk. Since the logical arrays of sub-switches tF
k → ... → tLk ,

0 ≤ k ≤ i − 1, have a maximum path length of 2, the logical array pattern of the

current switch has a maximum path length of 2. The first machine m0 and the last

machine mj−1 are attached to the current switch. Hence, all three conditions are met.

The processing of root is similar except that we construct the logical ring pattern instead

of the logical array pattern. Let the root directly connect to i top level sub-switches and

j machines. When the root does not connect to sub-switches, i = 0. Let us denote the i

sub-switches as as t0, t1, ..., ti−1 and the j machines as m0, m1, ..., mj−1. We have j ≥ i.

For each sub-switch tk, 0 ≤ k ≤ i − 1, we use tFk , tLk , and tFk → ... → tLk to denote the first

machine, the last machine, and the logical array respectively. The logical ring pattern for

the tree is m0 → tF0 → ... → tL0 → m1 → tF1 → ... → tL1 → m2 → ... → mi−1 → tFi−1 →

... → tLi−1 → mi → mi+1 → ... → mj−1 → m0. Note that when i = j, tLi−1 sends to m0 in

the logical ring. Following similar arguments as in Case (2), the ring pattern for the root is

contention free with a maximum path length less than or equal to 2. Thus, when each switch

connects to at least the same number of machines as the number of switches, a contention

free 2-hop logical ring can be constructed. 2

0

0

1 2 3

2 3 4 5 6 71

0

0 1 2 3

1

2

3

4

5

6

7

(b) Logical ring from algorithm 2(a) Logical ring from algorithm 1 

Figure 5: Logical rings from Algorithm 1 and Algorithm 2

The constructive algorithm in the proof of the sufficient condition will be called Algorithm

2. Figure 5 shows the results of applying Algorithm 1 and Algorithm 2 to an 8-machine
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cluster. As can be seen from the figure, both mappings are contention free. Algorithm 1

computes a logical ring that has a maximum hop of 4 (from machine 7 to machine 0 in

Figure 5 (a)) while the logical ring computed using Algorithm 2 has a maximum hop of 2 as

shown in Figure 5 (b). For a store-and-forward cluster, using a 2-hop logical ring is expected

to perform better than a 4-hop logical ring.

4.2.2 Finding optimal logical rings

In this sub-section, we describe an algorithm for finding optimal logical rings, that is, log-

ical rings with the smallest maximum path lengths. While this algorithm can apply to all

topologies, it has a polynomial time complexity only when the number of switches directly

connecting to each switch in the system is a small constant. The following lemma provides

the foundation for this algorithm.

Lemma 2: Let the P machines in a tree topology G = (S ∪ M, E) (rooted at switch R) be

numbered as n0, n1, ..., nP−1. Let F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} be a one-to-one

mapping function. The logical ring nF (0) → nF (1) → ... → nF (P−1) → nF (0) is contention free

if and only if for each subtree that contains X machines, there exists a number 0 ≤ i ≤ P −1

such that nF (i), nF (i+1 mod P ), ..., nF (i+X−1 mod P ) are machines in the subtree.

Proof: This lemma states that the necessary and sufficient conditions for a logical ring

to be contention free is that all machines in each subtree occupy consecutive positions (the

consecutive positions can be wrapped around) in the logical ring. Notice that these conditions

apply to all subtrees in the system assuming any arbitrary switch as the root. Since only the

relative positions of the machines in the logical ring will have an impact on the contention

free property of the ring, we can assume that the first machine of a top level tree starts at

nF (0) in a contention free logical ring without losing generality.

We will first prove the necessary condition by contradiction. Assume that the machines

in a subtree are not in consecutive positions in the logical ring, there exist at least two
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numbers i and j such that nF (i) and nF (j) are in the subtree while machines nF (i−1 mod P )

and nF (j−1 mod P ) are not in the subtree. Since a communication from a machine outside a

subtree to a machine inside a subtree must always use the link connecting the subtree to

the rest of the tree, communications nF (i−1 mod P ) → nF (i) and nF (j−1 mod P ) → nF (j) have

contention. This contradicts the assumption that the logical ring is contention free.

To prove the sufficient condition, we will first prove the following claim by induction: Let

the P machines in a tree topology rooted at switch R be numbered as n0, n1, ..., nP−1. Let

F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} be a one-to-one mapping function. If the machines in

each subtree occupy consecutive positions in the logical array nF (0) → nF (1) → ... → nF (P−1),

then communications in nF (0) → nF (1) → ... → nF (P−1), R → nF (0), and nF (P−1) → R are

contention free. In other words, the logical array nF (0) → nF (1) → ... → nF (P−1) is contention

free. In addition, the paths from the root to the first machine in the logical array (nF (0))

and from last machine in the logical array (nF (P−1)) to the root do not have contention with

each other and with communications in the logical array.

Base case: It is trivial to show that when there is only a single machine in the system,

there is no contention.

Induction case: Consider a tree with n top level subtrees t0, t1, ..., tn−1. Since machines

in any subtree occupy consecutive positions in the logical array, machines in each subtree tk,

0 ≤ k ≤ n−1 occupy consecutive positions. Let us denote tF
k , tLk , and Tk = tFk → ... → tLk be

the first machine, the last machine, and the logical array for tk respectively. Let us denote Rk

the root of subtree tk. Follow the induction hypothesis: communications in Tk = tFk → ... →

tLk , Rk → tFk , and tLk → Rk are contention free. Let T0′ , T1′ , ..., T(n−1)′ be a permutation of

T0, T1, ..., Tn−1, where Tk′ = tFk′ → ... → tLk′, 0 ≤ k ≤ n−1. Since machines in each subtree tk

occupy consecutive positions in the array, we can rewrite the logical array nF (0) → nF (1) →

... → nF (P−1) as tF1′ → ... → tL1′ → tF2′ → ... → tL2′ → ... → tF(n−1)′ → ... → tL(n−1)′ . Since

all subtrees are disjoint, the contentions in the logical array can only be caused by inter-
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subtree communications, tLk′ → tF(k+1)′ , 0 ≤ k ≤ n − 2. The inter-subtree communication,

tLk′ → tF(k+1)′ , has three components: tLk′ → Rk′, Rk′ → R → R(k+1)′ , and R(k+1)′ → tF(k+1)′ .

Since subtree Tk′ happens once in the logical array, Rk′ → R → R(k+1)′ will not cause

contention. From the induction hypothesis, tL
k′ → Rk′ cannot cause contention within subtree

tk′. Since communications in other subtrees do not use links in tk′, tLk′ → Rk′ will not cause

contention in the logical array. Similarly, R(k+1)′ → tF(k+1)′ will not cause contention. Hence,

the logical array nF (0) → nF (1) → ... → nF (P−1) (or tF1′ → ... → tL1′ → tF2′ → ... → tL2′ → ... →

tF(n−1)′ → ... → tL(n−1)′) is contention free. Similar arguments can be applied to show that

communications R → tF1′ and tL(n−1)′ → R do not have contention between each other and

do not have contention with tF
1′ → ... → tL1′ → tF2′ → ... → tL2′ → ... → tF(n−1)′ → ... → tL(n−1)′ .

Thus, communications in tF1′ → ... → tL1′ → tF2′ → ... → tL2′ → ... → tF(n−1)′ → ... → tL(n−1)′ ,

R → tF1′ , and tL(n−1)′ → R are contention free. This finishes the proof of the claim.

The path nF (P−1) → nF (0) is either equal to or a sub-path of nF (P−1) → R → nF (0). Hence,

nF (P−1) → nF (0) does not have contention with nF (0) → nF (1) → ... → nF (P−1) and logical

ring nF (0) → nF (1) → ... → nF (P−1) → nF (0) is contention free. 2

Lemma 2 generalizes the results in Algorithm 1 and Algorithm 2, which find two special

cases that satisfy the conditions in this lemma. We can see that the optimal logical ring

is the concatenation of logical arrays for top-level subtrees. The logical arrays for top-level

subtrees are the concatenations of the logical arrays for second level subtrees, and so on.

The relation between the optimal logical ring and the logical arrays for subtrees is shown

in Figure 6. This relation motivates solving this problem by reducing the optimal logical

ring problem into an optimal logical array problem (optimal logical arrays are the arrays

with the smallest maximum path length), which has the optimal substructure property: the

optimal logical array for a tree contains the optimal logical arrays for its subtrees. Lemma

2 also indicates that we only need to consider logical arrays where machines in each subtree

occupy consecutive positions in order to obtain the optimal logical ring. Hence, the dynamic
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programming technique can be applied to compute optimal logical arrays for each subtree

in a bottom-up fashion.

Second Level subtree Second Level subtree Second Level subtree

Optimal logical ring

Top Level subtree Top Level subtree Top Level subtree

Figure 6: The relationship between the optimal logical ring and logical arrays for subtrees

Let us consider how to reduce the optimal logical ring problem into optimal logical array

problems. Let Opt : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} be a one-to-one mapping function

such that nOpt(0) → nOpt(1) → ... → nOpt(P−1) → nOpt(0) is an optimal logical ring for a tree

topology G = (S ∪ M, E) rooted at switch R. Without loss of generality, let us assume

that nOpt(0) is the first machine in a top-level subtree. Under the assumption that a switch

cannot be a leaf, the root at least has two top-level subtrees. Thus, nOpt(P−1) must be in

another top-level subtree and the path nOpt(P−1) → nOpt(0) = nOpt(P−1) → R → nOpt(0).

Hence, the optimal logical ring can be considered to have two components: the logical array

nOpt(0) → nOpt(1) → ... → nOpt(P−1) and the wrap around link nOpt(P−1) → nOpt(0). For a

node m, let us use the notation h(m) to denote the height of m, which is defined as the

path length from root to m (counting the root as one switch). The height of a node is with

respect to a particular subtree (root of the subtree). We have length(nOpt(P−1) → nOpt(0)) =

length(nOpt(P−1) → R → nOpt(0)) = h(nOpt(P−1)) + h(nOpt(0)) − 1. The length of the wrap

around link is a function of the heights of the first machine and the last machine (with

respect to the whole tree). Hence, if we can find an optimal logical array nF ′(0) → nF ′(1) →

... → nF ′(P−1) such that h(nF ′(0)) = h(nOpt(0)) and h(nF ′(P−1)) = h(nOpt(P−1)), then the

maximum path length of logical ring nF ′(0) → nF ′(1) → ... → nF ′(P−1) → nF ′(0) is less than or

equal to the maximum path length of nOpt(0) → nOpt(1) → ... → nOpt(P−1) → nOpt(0), and the
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logical ring nF ′(0) → nF ′(1) → ... → nF ′(P−1) → nF ′(0) is also an optimal logical ring. Hence,

finding an optimal logical ring can be done by first finding an optimal logical array for each

of the possible combinations of h(nOpt(0)) and h(nOpt(P−1)) and then choosing one that forms

a logical ring with the smallest maximum path length. Let the tree height of G be H, the

potential values for h(nOpt(0)) and h(nOpt(P−1)) are in the range of 0..H.

Next, we will describe the algorithm to determine the maximum path length of the opti-

mal logical ring. By associating each intermediate result in the algorithm with the logical

ring/array that yields the result, the algorithm can be modified to obtain the actual opti-

mal logical ring. For each node A (a machine or a switch), we use a two-dimensional table

A.optimal to store the maximum path length of the optimal logical arrays for the subtree

rooted at A. The entry A.optimal[i][j] stores the maximum path length of the optimal logical

array with the height of the first machine being i and the height of the last machine being

j. Note that the height is with respect to the subtree rooted at A (the distance from the

node to A). Thus, once the optimal data structure at the root R, R.optimal, is computed,

the optimal maximum path length of the logical ring is

mini,j(max(R.optimal[i][j], i + j − 1)).

The R.optimal[i][j] is the optimal logical array with the first machine at height i and the

last machine at height j, and i + j − 1 is the path length of the wrap around link. The term

max(R.optimal[i][j], i + j − 1) is the best maximum path length when the ring is formed by

having a logical array starting at height i and ending at height j.

Now let us consider how to compute the A.optimal data structure at each node A. As in

Algorithm 2, this data structure is computed in a bottom-up fashion (postorder traversal).

For each machine A, A.optimal[0][0] = 0 and A.optimal[i][j] = ∞, i 6= 0 or j 6= 0. If A is a

switch, all subtrees of A have been processed. Let A have n subtrees t0, t2, ..., tn−1. Let us

assume that among the n subtrees, k are rooted at switches (each of the subtrees is rooted

at a switch). The rest n − k are single-machine subtrees (each of the subtrees contains only
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a single machine). The algorithm first enumerates all possible different sequences of the n

subtrees. Since all machines are the same, switching their positions in the sequence yields

the same sequence. Hence, there are at most k-permutation of an n-set (selecting k positions

for the k subtrees rooted at switches from the n possible positions in the sequence), that is,

n(n− 1)...(n− k + 1) = n!
(n−k)!

= O(nk), different sequences. Here, n! = n× (n− 1)× ...× 1.

For each sequence seq = t0′t1′ ... t(n−1)′ , we compute the seq.optimal data structure

for the case when the subtrees are concatenated in the particular order t0′ → t1′ → ... →

t(n−1)′ . There are three cases. First, if seq only has one subtree t0′ , then seq.optimal[i][j] =

t0′ .optimal[i][j]. Second, if seq contains two subtrees t0′ and t1′ , the optimal data structure

for the sequence is computed as follows:

seq.optimal[i][j] = mink,l{max(t0′ .optimal[i][k], t1′ .optimal[l][j], k + l + 1)}.

To find the optimal logical array t0′ → t1′ that starts at at height i and ends at height j,

the array in t0′ must start at height i and the array in t1′ must end at height j. However,

the array in t0′ can end at any position and the array in t1′ can start at any position. For a

logical array that is composed of the array in t0′ that starts at height i and ends at height

k and the array in t1′ that starts at height l and ends at height j, the maximum path

length is the maximum of three elements: the maximum path length of the array in t0′

(t0′ .optimal[i][k]), the maximum path length of the array in t1′ (t1′ .optimal[l][j]), and the

length of tL0′ → tF1′ = tL0′ → A → tF1′ , which is equal to k+l+1. This formula takes into account

all possible combinations to concatenate the two subtrees. Third, if seq contains more than

two subtrees, the seq.optimal data structure can be obtained by repeatedly applying the

concatenation of two logical arrays (the second case).

The optimal data structure for A can be obtained from the optimal data structures for all

possible sequences using the following formula:

A.optimal[i][j] = min
seq is a sequence

{seq.optimal[i − 1][j − 1]}.
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This formula examines all possible sequences to determine the optimal logical array for a

given i and j. Notice that, for a node m, when h(m) = i in subtree rooted at A, h(m) = i−1

in the subtrees of A. Intuitively, this algorithm examines all possible cases when all machines

in each subtree must be placed in consecutive positions in the logical ring and stores the

optimal results at the root of the subtree. By induction, it can be formally shown that this

algorithm finds the maximum path length of the optimal logical ring for the tree.

This algorithm, which will be called Algorithm 3, operates in a similar fashion to Algorithm

2. The difference is that only one optimal logical array for each subtree must be considered

under the assumptions for Algorithm 2 to obtain the optimal logical ring for the whole tree.

Without those assumptions, we must compute and store many optimal logical arrays for

different heights of the first and last machines. In addition, the process to determine the

optimal logical arrays becomes more complex.

Let us now examine the complexity of this algorithm. Let the number of nodes be |V |,

the maximum nodal degree be n (n usually equals to the maximum number of ports in a

switch), the maximum number of switches directly connecting to one switch be k, the tree

height be H. The size of the table to store the optimal logical arrays is O(H 2). The time to

concatenate two logical arrays is O(H4). Since a node can have at most a sequence of size

n, computing the optimal data structure for one sequence is O(nH4). Given that each node

can have at most O(nk) sequences, the time to process each node is then O(nknH4). Thus,

the complexity of the whole algorithm is O(|V |nk+1H4). When k is a small constant, this

algorithm has a polynomial time complexity. In practice, while |V | can be a large number

(e.g. a cluster of a few thousand nodes), the values of n, k, H are usually small.

5 Experiments

We used two approaches to evaluate the proposed algorithms. First, we develop an automatic

routine generator that takes the topology information as input and generates, based on
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the algorithms presented, customized topology-aware all–gather routines. The performance

of the generated routines on multiple topologies is compared with that of the all–gather

routines in LAM/MPI 7.1.1 [13] and the recently improved MPICH 2-1.0.1 [15]. LAM/MPI

and MPICH contain well known and efficient topology unaware all-gather algorithms. The

experiments are performed on a 32-machine Ethernet switched cluster. Second, we study the

performance of the algorithms on large networks through simulation. Note that although

we evaluate our schemes with an Ethernet switched cluster, the proposed algorithms can be

applied to other types of networks such as InfiniBand and Myrinet. In particular, for clusters

with irregular topologies, the topology specific algorithms should be much more efficient than

existing topology unaware algorithms since network contention has a larger impact when the

network speed is faster.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Allgather(...);
}
elapsed time = MPI Wtime() - start;

Figure 7: Code segment for measuring MPI Allgather performance.

Our generated all–gather routines use LAM/MPI 7.1.1 point-to-point primitives and run

over LAM/MPI 7.1.1. We use LR1, LR2, and LR3 to denote the routines obtained from

Algorithm 1 (finding a contention free logical ring), Algorithm 2 (finding a contention free

2-hop logical ring), and Algorithm 3 (finding an optimal contention free logical ring) respec-

tively. Note that in cases when LR2 can find 2-hop rings, LR3 can also find 2-hop rings.

To report a fair performance comparison, we port the MPICH all–gather implementation to

LAM/MPI. We use MPICH-LAM to represent the ported all–gather routine. In the recent

versions of MPICH, the performance of the all–gather operation using native MPICH and

MPICH-LAM is very close. In the performance evaluation, LR1, LR2, and LR3 are com-

pared with LAM and MPICH-LAM. We use the approach similar to Mpptest [7] to measure
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the performance of the MPI Allgather routines. Figure 7 shows the example code segment

for measuring the performance. The number of iterations is varied according to the message

size: more iterations are used for small message sizes to offset the clock inaccuracy. For the

message ranges 4KB-12KB, 16KB-96KB, and 128KB, we use 50, 20, and 10 iterations re-

spectively. The results are the averages of three executions. We use the average time among

all machines as the performance metric.
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Figure 8: Topologies used in the experiments

The experiments are performed on a 32-machine Ethernet switched cluster. The machines

of the cluster are Dell Dimension 2400 with a 2.8GHz P4 processor, 128MB of memory,

and 40GB of disk space. All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The

Ethernet card in each machine is Broadcom BCM 5705 with the driver from Broadcom.

These machines are connected to Dell PowerConnect 2224 and Dell PowerConnect 2324

100Mbps Ethernet switches. Figure 8 shows the topologies we used in the experiments.

Parts (a) to (d) of the figure represent clusters of 16 machines connected by 1, 2, and 4

switches with different topologies. Parts (e) and (f) show 32-machine clusters of 4 switches,

each having 8 machines attached. These two clusters have exactly the same physical topology,
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but different node assignments. We will refer to the topologies in the figure as topology (a),

topology (b), topology (c), topology (d), topology (e), and topology (f).
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Figure 9: Performance of LR1, LAM, and MPICH-LAM on topologies (a) to (d)

Figure 9 shows the performance of LAM, MPICH-LAM, and LR1 on topologies (a) to (d).

Note that the time scales are different in different figures. Figure 9 (a) shows the performance

of LAM. The LAM algorithm has almost the same performance for topologies (a)-(d). The

tree-based algorithms used in the LAM all–gather implementation do not exploit all network

links and do not create bottleneck links in all four topologies. However, the network is under-

utilized. As can be seen in Figure 9 (d), the LAM/MPI routine performs much worse than

MPICH and LR1. The results for MPICH are shown in Figure 9 (b). MPICH changes the

algorithm when msize = 32KB. When msize < 32KB, MPICH uses the recursive doubling
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Figure 10: Performance of LR1, LAM, and MPICH-LAM on topologies (e) and (f).

algorithm, which has similar performance for all topologies. Using a topology-unaware logical

ring algorithm when msize ≥ 32KB, MPICH provides very different performance for the

four topologies. It performs best on topology (a), where the cluster is connected by a single

switch, but significantly worse on topologies (b), (c), and (d), which indicates that the

network topology can significantly affect MPICH performance. From Figure 9 (c), we can

see that LR1 achieves very similar performance for all four topologies, which is attributed

to the ability of LR1 in finding the contention free logical ring on different topologies. The

performance of LR1 on all topologies is similar to the performance of LR1 on the single switch

topology (topology (a)). This demonstrates the optimality of LR1 in terms of achieving near-

optimal all-to-all broadcast performance on different topologies. Figure 9 (d) compares LR1

with LAM and MPICH on topology (d). It is shown that LR1 performs substantially better

than LAM and MPICH.

Figures 10 (a) and (b) show the performance results for LAM, MPICH-LAM, and LR1 on

topologies (e) and (f) respectively. We can see the extreme poor performance of LAM on both

topologies. As shown in Figure 10 (a), the topology-unaware ring algorithm used in MPICH,

when msize ≥ 16KB, achieves near-optimal performance (same as LR1) for this topology.

In this case, the topology-unaware ring algorithm operates exactly the same as LR1. How-

ever, with the same physical topology and a different node assignment in topology (f), the
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msize LR1 Topo.(d) LR2 Topo.(d) LR1 Topo.(a)
(4-hop) (2-hop) (1-hop)

32KB 50.9ms 48.0ms 47.0ms
48KB 72.9ms 68.4ms 67.2ms
64KB 116.9ms 95.7ms 90.8ms
96KB 180.0ms 172.7ms 162.6ms
128KB 236.8ms 233.7ms 220.6ms

Table 1: LR1 .vs. LR2 on topology (d)

topology-unaware algorithm performs much worse than LR1 as shown in Figure 10 (b). This

again shows that the performance of MPICH depends heavily on the network configuration.

Unlike LAM and MPICH, LR1 consistently achieves high performance for different topolo-

gies. To illustrate, when the message size is 128KB, the completion times for LR1, LAM, and

MPICH-LAM on topology (f) are 473.7ms, 5346ms, and 3595ms respectively. This means

that LR1 achieves a performance that is more than 11 times better than LAM and almost

8 times better than MPICH.

Table 1 shows the impact of selecting a logical ring with a shorter path length. For

topology (d), LR1 results in a logical ring with a maximum path length of 4 hops, and LR2

results in a logical ring with a maximum path length of 2 hops. In addition to the results of

LR1 and LR2, the table also includes results for topology (a), which is essentially a 1-hop

ring. The results for topology (a) is provided for references since no logical ring algorithm

can out-perform 1-hop ring. There are two observations from the table. First, the impact

of path length on the performance is noticeable, but not very large in comparison to the

impact of contention. Second, by minimizing the maximum path length of the ring on the

Ethernet switched cluster, some performance improvement can be obtained. In general, the

2-hop ring performs better than the 4-hop ring, but worse than the 1-hop ring. Note that

the theoretical lower bound time for all-to-all broadcast with a message size of 64KB on a

16-machine 100Mbps cluster is 15×64×1024×8
100×106 = 78.6ms. Considering the protocol overheads

in MPI and TCP/IP layers as well as the software/hardware delays, the performance of LR2
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(95.7ms) is very close to optimal.

Next, we will study how these algorithms perform on large store-and-forward clusters. This

study is performed through simulation. In the simulation, we assume that the networks have

arbitrary topologies. This allows us to evaluate the impacts of tree construction methods

and to compare the results of different methods in computing logical rings. Since the logical

rings found by all of our algorithms are contention free, we use the maximum path length

as the performance metric.

In the simulation, we first generate each random cluster. After the random cluster is

generated, a tree construction method is used to build a spanning tree for the random

cluster. Finally, the proposed algorithms are applied to compute logical rings. A random

cluster is generated as follows. First, we decide the number of machines and the number

of switches for the cluster. In the experiments, we fix the ratio between the number of

machines and the number of switches to be 5:1 (on average, each switch has five machines).

The random connectivity among switches is generated using the Georgia Tech Internetwork

Topology Models (GT-ITM) [26] with an average nodal degree of 4. Once the topology for

the switches is generated, each machine is randomly distributed to any switch with an equal

probability. We consider three tree construction methods: Breadth First Search (BFS),

Depth First Search (DFS), and random. The BFS tree is created by first randomly selecting

a root and then performing BFS on the graph. The DFS tree is created by first randomly

selecting a root and then performing DFS. The random tree is created by repeatedly adding

a random link to form a tree (if adding a link forms a loop, the link is not added).

Figure 11 shows the maximum path lengths in the logical rings computed using LR1 and

LR3 with the three tree construction methods. Each point in the figure is the average of 50

random topologies. Figure 11 (a) shows that (1) the maximum path lengths of the logical

rings computed by LR1 is much larger than those computed by LR3, and (2) the performance

of LR1 depends heavily on the method used to construct the spanning tree. Using BFS trees
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Figure 11: Performance of LR1 and LR3 with different tree construction methods

yields much better results than using random trees, which in turn has much better results

than DFS trees. This is because BFS trees usually have small tree heights while DFS trees

are usually tall. Figure 11 (b) shows that LR3 produces much smaller maximum path lengths

in its rings. In all experiments that we performed on different kinds of random graphs, there

is a very high probability that the maximum path length of each ring produced by LR3 is 3.

This is reflected in Figure 11 (b): the average maximum path length is around 3, regardless

of the cluster sizes. Furthermore, LR3 is not sensitive to the tree construction methods.

BFS trees, DFS trees, and random trees yield very similar results. This indicates that LR3

is a robust algorithm for large networks.

6 Conclusion

In this paper, we develop bandwidth efficient all-to-all broadcast schemes that can be applied

uniformly to systems with regular, irregular, and hierarchical topologies. Using the proposed

schemes, a cut-through cluster with any topology that has a spanning tree embedding can

support all-to-all broadcast as efficiently as a single switch connecting all machines. We

also develop techniques that can achieve good all-to-all broadcast performance on store-and-
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forward clusters that are common in practice. Performance evaluation results indicate that

these algorithms are robust for both large and small networks, and that they can provide

much better performance than traditional topology unaware all-to-all broadcast algorithms

on switched clusters.
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