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Abstract 1. Introduction

Targeting the operating system (OS) kernels, kernel reotki Kernel rootkits pose a formidable threat to computer sys-
pose a formidable threat to computer systems and their.userstems. Designed to fundamentally subvert the operating sys-
Recent efforts have made significant progress in blocking tem (OS) kernels, a kernel rootkit is capable of obtaining
them from injecting malicious code into the OS kernel for and maintaining an unrestricted control and access within
execution. Unfortunately, they cannot block the emerging the compromised system, ranging from stealing sensitive
so-calledreturn-oriented rootkits (RORs). Without the need  personal information, escalating privileges of malicipos-

of injecting their own malicious code, these rootkits castdi  cesses, and opening system backdoors for unauthorized ac-
cover and chain together “return-oriented gadgets” (thatc =~ cesses. Worse, all of them can be potentially performed un-
sist of only legitimate kernel code) for rootkit computatio der the radar of running anti-virus software.

In this paper, we propose a compiler-based approach to To address the rootkit threat, a variety of anti-rootkit
defeat these return-oriented rootkits. Our approach recog mechanisms have been proposed in two main categories.
nizes the hallmark of return-oriented rootkits, i.e., tiee The first category [20, 34—36] detects the presence of kernel
instruction, and accordingly aims to completely remove rootkits based on certain symptoms exhibited from rootkit
them in a running OS kernel. Specifically, one key technique infection. For example, Copilot [35] leverages a separate
namedreturn indirection is to replace the return address ina trusted PCI card to periodically grab the physical memory
stack frame into a return index and disallow a ROR from us- image of a running OS kernel. The memory image will
ing their own return addresses to locate and assemble returnthen be analyzed to examine whether certain properties have
oriented gadgets. Further, to prevent legitimate insioast been violated (e.g., the checksum of static kernel text has
that happen to contain return opcodes from being misused,been changed). Other systems [34, 36] further extend it by
we also propose two other techniques, register allocationdetecting the violation of kernel data integrity (e.g., 3yng
and peephole optimization, to avoid introducing them in the semantic specifications of both static and dynamic kernel
first place. We have developed a LLVM-based prototype and data) and/or kernel control-flow integrity (e.g., by compgr
used it to generateraturn-less FreeBSD kernel. Our evalu-  with a statically-computed control-flow graph from kernel
ation results indicate that the proposed approach is generi source code). However, by design, these approaches detect a
effective, and can be implemented on commodity hardware kernel rootkit’s presencafter the system is compromised.

with a low performance overhead. The second category [18, 38, 40] instead aims to preserve
the OS kernel integrity and prevent kernel rootkits from in-
Categoriesand Subject Descriptors - D.4.6 [Operating Sys- fecting the system in the first place. For example, techrsique
tems]: Security and Protection—Security kernels such as driver signing [1] and other forms of driver verifi-
cation [23] have been proposed to verify the identity or in-
General Terms  Security tegrity of the loaded driver. The WX hardware support al-

lows to mark a memory page as writable or executable, but
not both at the same time. In other words, it will prevent
kernel rootkits from injecting rootkit code alata into the
OS kernel and later executing it esde. SecVisor [40] is a
hypervisor-based approach that leveragesXMo achieve
lifetime guest kernel code integrity. NICKLE [38] makes a
Permission to make digital or hard copies of all or part of thiork for personal or step further by accommodating the presence of mixed kernel
classroom use is granted without fee provided that copesatrmade or distributed . . i
for profit or commercial advantage and that copies bear titiseand the full citation code and data in commodlty OS kernels. More SpeC|f|Ca"yy
on the first page. To copy otherwise, to republish, to posteswess or to redistribute NICKLE maintains a separate guest-inaccessible shadow
to lists, requires prior specific permission and/or a fee. . ' .
memory to store authorized kernel code and at runtime, the
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the shadow memory. Such a guarantee makes an importankernel code integrity to provide a comprehensive rootkit

step in kernel rootkit prevention by effectively blocking e
isting kernel rootkits that require executing their owraekt
code.

Unfortunately, such a guarantee is still insufficient as
it cannot block emerging so-called return-oriented rootk-
its. These rootkits are designed to re-use existing (ansl thu
“good”) kernel code for malicious (or “bad”) computations
without violating kernel code integrity. An example in the
user-space counterpart is the clagstorn-into-libc attacks
where the library functions (e.gsystem()) are misused to
launch or facilitate the attack. This attack has been récent
refined and generalized esturn-oriented programming [11,

19, 41]. With this programming model, the attacker can
develop kernel rootkits by only misusing legitimate kernel
code (i.e., with chained execution of several pieces of ex-
isting instructions or “gadgets” [11, 19, 41] — an example
gadget will be presented in Section 2). Due to the departure
from previous code-injection based rootkit techniqueg\va n
termReturn-Oriented Rootkit (ROR) [19] has been coined to
represent them.

By “using” only legitimate kernel instructions, RORs
pose a significant challenge for rootkit defense. Also no-
tice that in certain hardware architecture suck8g a ROR
would exploit variable-length encoding and unaligned ex-
ecution of machine instructions to uncover “new” instruc-
tions, such as by starting from the middle of an instruction
(Figure 1(a)). These new instructions are not intended when
the original kernel code is generated. In other words, i$¢he
instructions happen to end withrat instruction, they can
be potentially combined to form a gadget — as an organi-

prevention solution.

However, itis not an easy task to eliminate these return in-
structions. For example, an intuitive approach to rentete
would involve replacing it with goop %eax, jmp * %eax se-
guence. Unfortunately, the fact that it is semanticallyiequ
alent to a return instruction means it can still be used ttabui
return-oriented gadgets.

To address that, we propose a key technique calted
turn indirection, which is inspired by the nature of return-
oriented programming: namely it requires the attacker to
supply return addresses of his choice to pinpoint and egecut
various gadgets. In other words, during the attack, these re
turn addresses need to be pre-populated by the attacker (and
thereforenot saved from previous call instructions). The goal
of return indirection is to essentially eliminate this chijpa
ity from return-oriented rootkits. Specifically, insteada-
lowing the convention of using the de-facto return address
in a stack frame, return indirection replaces it with a retur
index. The return index will be automatically pushed onto
the stack by a previous (instrumented)l instruction and
later popped up by an (instrumented)to locate the return
address. Each return index will be corresponding to a par-
ticular entry in a centralized return address table that con
tains all valid return addresses permitted in the OS kernel
image. Since each valid return address must point to an in-
struction that immediately follows a call instruction, tree
turn address table is static and can be generated offline.

We have developed a proof-of-concept prototype that im-
plements return indirection based on the re-targetableMLLV
compiler [25]. In addition to return indirection, we also-ex

zational unit in return-oriented programming — and perform tend and refine two compiler optimization techniques, i.e.,
some (malicious) primitive operations, such as a compariso register allocation and peephole optimization, to coreserv
of two register operands or a memory load from a specified tively remove machine instructions that happen to contain
location. With a large codebase such as from a standard C li-the return opcodes. By doing so, we can also prevent these
brary or from an OS kernel image, this new attack has shown legitimate instructions from being misused by RORs. Our
to be Turing-complete [11, 19, 41]. In fact, with successful system has been used to compile the FreeBSDkernel
demonstration, a return-oriented compiler has been dedign and a few other system programs. Our subsequent examina-
and developed to perform a variety of computational tasks by tion shows there argo return instructions in the resulting
only utilizing assembled gadgets. Consequently, it be@ome programs and kernel images. In summary, our paper makes
evident that a ROR can intrinsically bypass all existing ker the following contributions:
nel code integrity protection mechanisms, includingpW
[3], SecVisor [40], and NICKLE [38].

In this paper, we propose a compiler-based approach to
defeat return-oriented rootkits by directly attacking thet
of the return-oriented programming model. In particular,
based on the observation that the gadget is the essential
basic unit in return-oriented programming and each gadget
has to end with aet instruction (so that one gadget can be
chained together with other gadgets), we propose to retarg
the compiler design to generate an OS kernel withreut
By doing so, the new OS kernel will be essentially immune
to return-oriented rootkits. Naturally, our approach can b
combined together with existing approaches that guarantee

¢ We perform a thorough return-oriented analysis on the
FreeBSDR.0 kernel. Our analysis covers not only thet
instruction, but also other instructions (e.ggt imm16,
Iret, Iret imm16, and movnti — Section 2) that can be
potentially abused for return purposes. The analysis is
needed to identify all possible sources so that they can
be re-visited tanot introduce return opcodes.

¢ Based on the return-oriented analysis, we propose corre-

sponding compiling techniques and implement them in
LLVM. We use the modified compiler to re-generate the
FreeBSD OS kernel. The new OS kernel image is free
from return opcodes (not just return instructions!) and is
thus immune to return-oriented attacks.



AcpiUtDeleteRwLock: ESP gadget A:

48 8b .3b mov (%rbx),%rdi + e
e8 c3 e0 00 00 callg <AcpiOsDeleteMutex: gadgetB: _ === | ret
* . gadget C:
3b e8 cmp  %eax,%ebp ret 1T
c3 retq Stack ret
(a) A return-oriented gadget starts from the middle of atrirsion (b) A return-oriented computation consists of three gasigeB,C

Figure 1. An example of return-oriented programming

¢ \We evaluate the performance of our system using a num- In Figure 1(b), we also show an example return-oriented
ber of standard benchmark programs. The results showcomputation based on three gadgéisB, C. These three
that our prototype incurs low performance overhead. gadgets are chained together to perform a specific compu-
tation. The chaining is made possible with a stack that is

The rest of the paper is organized as follows: We describe pre-populated with three stack frames. Each of these stack
the return-oriented programming and RORs in more detail frames will be pointing to one of these gadgets. The execu-
in Section 2. We then present the key techniques in our tion order of these gadgets will be determined by the stack
approach and the implementation details in Sections 3 andPointer or ESP. Specifically, the stack pointer will be ad-

4, respectively. After that, we show the evaluation results Vanced by theret instruction of a previous gadget before
in Section 5 and discuss possible limitations of our current Other subsequent gadgets can be executed. In essence, the
prototype in Section 6. Finally, we compare our system with stack pointer becomes the new instruction pointer in the

related work in Section 7 and then conclude in Section 8. réturn-oriented programming model. From another perspec-
tive, theret instruction is the hallmark of return-oriented pro-

gramming: it needs to be present in every gadget and is also
2. Problem Overview: Return-Oriented the key to chain together various gadgets (with a controlled

Programming and RORs stack).
J J Based on the return-oriented programming model, a suc-

In the return-oriented programming model, there are o cessful ROR attack that compromises a running OS kernel
central pieces: gadgets and a stack. Each gadget ends withjj| require to accomplish two steps. The first step is to con-
aretand performs a basic operation (€.g., a memory write t0 o 5 stack and pre-load it with addresses of those chosen
a spgcific location). A stack i_s controll_ed by the attacker to yetyrn-oriented gadgets. The second step is to hijack the ke
specify how these gadgets will be chained together. nel control flow to jump to the starting gadget. Consequently
To illustrate the return-oriented programming model, we \ye can defeat ROR attacks either by removing the attacker’s
show in Figure 1(a) an example gadget created by leverag-gpjjities to form and chain gadgets or by preventing con-
ing two existing instructionsnfov and callg) in the Acpi- trol flow from being hijacked in the first place. Note there
UtDeleteRwLock function of FreeBSD 8.0/x86-amd64 ker-  gre several research prototypes (e.g., [6, 22]) that cac-eff
nel. Note the x86 architecture has a variable-length instru tively enforce control-flow integrity for user-level apgdi-
tion set, which means the same memory content will be tions. However, their application and portability to erfer
interpreted differently if CPU begins decoding at two dis- the kernel control-flow integrity still remains to be demon-
tinct locations. In this example, if we start in the middle of grated. In this work, we take the first approach. Specifi-
mov instruction, a “new” instruction sequence is created — cally, we aim to eliminate all theet instructions in a way
cmp Ybeax,%ebp; retq. This instruction sequence essentially {hat will make return-oriented programming infeasible. As
compares the contents of two registep andeax and then  pointed out earlier, in certain hardware architecture sagch
returns. Theretq instruction in the new sequence is actu- g pecause of the variable-length encoding and unaligned
ally part of the originaleallg's operand (the relative offset  execution of machine instructions, it is not sufficient tdyon
0x0000e0c3). It may be considered time-consuming or even ¢onsider those return-related instructions. Instead, lse a
infeasible to manually identify these return-orientedggte. need to take into account other instructions that happen to
However, as shown in [41], an automated process can becontain the corresponding return opcodes in the generated
easily constructed to exhaustively list all candidate @48lg  machine code. Note that in x86, there are four return-relate
Also, by examining the standard C library and commod- jnstructionsret (near return — opcodes), ret imml6 (near
ity OS kernel images, several previous studies [11, 19, 41] return with stack unwind imm16 bytes — opca®, Iret (far
report the abundant availability of various gadgets to per- retyrn — opcodeb), andlret imm16 (far return with stack

form basic operations (e.g., memory load/store, unargfyin - ,nwind imm16 bytes — opcods). For simplicity, we will
arithmetic operation, and conditional jump), which makes

return-oriented programming Turing-complete.



# machine code instruction
8328 c3 retq
0 C2 XX XX retqimmi16
1 48 cb Iretq
0 48 caxx xx Iretqimml16

Table 1. Return opcode source | (Total: 8,329): real ret
instructions

machine code instruction

48 0f c304 17 movnti %rax, (%rdi, %rdx, 1)

48 0f c3 44 17 08 movnti %rax, 0x8(%rdi, %rdx, 1)

48 0f c3 44 17 10| movnti %rax, 0x10(%rdi, %rdx, 1

48 0f ¢3 44 17 18 movnti %rax, 0x18(%rdi, %rdx, 1

48 0f c304 16 movnti %rax, (%rsi, %rdx, 1)

48 0f c3 44 16 08| movnti %rax, 0x8(%rsi, %rdx, 1)

48 0f 3 44 16 10, movnti %rax, 0x10(%rsi, %rdx, 1

R R R S

48 0f c3 44 16 18 movnti %rax, 0x18(%rsi, %rdx, 1

Table 2. Return opcode source Il (Total: 8): other machine
instructions’ opcodes that happen to contain the return op-
code value

useret in the rest of this paper to represent all of them and
accordinglyreturn opcodeto represent2, c3, ca, or cb.

We have profiled a stock FreeBSD/x86-ama@atkernel
image and calculated the statistics of return opcodes.in ou
calculation, we do not follow instruction boundaries and in
stead mimic the return-oriented programming to identify al
possible return opcodes. The OS kernel imagedTas763
instructions in total and contairis, 330 return opcodes. On
average, there will be one return opcode in evrynachine
instructions.

Among those return opcodes, we further make a break-
down to understand how the return opcodes are introduced
Our results show tha, 337 of thosel8&, 330 return opcodes
are introduced by normal instructions’ opcodes and the rest
9,993 are due to normal instructions’ operands. In those
8,337 opcodesg, 329 are actually from theet instruction
itself (return opcode source I) and8 are from other machine
instructions, more specificallyovnti (return opcode source
I1). We show those related instructions in Tables 1 and 2,
respectively.

Regarding thosé, 993 return opcodes introduced by in-
structions’ operands, there are two contributing sour@®s:
2,923 are due to immediate operands that happen to contain
the same value with return opcodestrn opcode source
[11). In Table 3, we show six instructions that contribute
the largest number of return opcodes because of immedi-
ate operands. (2) The other070 are introduced by register
operands in a number of machine instructiaesf n opcode
source 1V). For example¢3 andcb will be introduced when
registersrbx andr11 (including their sub-registersbx, bx,
bl) are being used in variousov instructions, whereas2

# | machine code instruction

52| ebcb jmp Oxffffffff80144378
44 | ebc2 jmp Oxffffffff80150164
40 | ebc3 jmp Oxffffffff8014cefO
39 | ebca jmp Oxffffffff801466b4
33| 75¢cb jne Oxffffffff80146f40
25 | 0f 84 cb 00 00 00| je Oxffffffff8014af6f

Table 3. Return opcode source |11 (Total: 2,923): immedi-

ate operands that happen to contain the return opcode value
(Note that the disassemblgdp/jne/jeinstructions could de-
pend on relative offsets between the location of jump target
and the current instruction pointer.)

# machine codg instruction

832 | 89¢c3 mov %eax, %ebx
445 89 c2 mov %eax, %edx
373 | 4889 c2 mov %rax, %rdx
338 | 4889c3 mov %rax, %rbx
333 | 4889ch mov %rcx, %rbx
267 | 89 ca mov %ecx, %edX|

Table 4. Return opcode source 1V (Total: 7,070): certain
register operands that happen to be encoded with the return
opcode value

andca will be introduced due to the usagesroik andr10
(including sub-registersx, dx, dl). Similarly, we list the top
six instructions in Table 4.

To disallow the creation of RORs, we need to revisit these
four contributing sources so that return opcodes will not be
introduced. Each source is considered to have its own unique

challenges and thus likely requires different solutiors. F

example, for return opcode source |, it will not work by sim-
ply havingret replaced with other semantically-equivalent
instructions. As mentioned in Section 1, the reason is that
the new semantically-equivalent instruction(s) can beévequ
alently used aset for ROR purposes. For return opcode
source IV, we need to adjust the register allocation when tar
get code is being generated so that we can avoid introducing
the return opcodes. Considering the large number of instruc
tions affected, it becomes a significant challenge to addres
these four contributing sources securely and efficiently.

3. System Design
3.1 Design Goals and Assumptions

In order to effectively defeat RORs, we have three main
design goalsFirst, the proposed techniques aim to enable
proactive prevention of the ROR attacks, instead of reac-
tive detection of their presence after the strike. Spedifica

our goal here is to create a return-less kernel without a sin-



sponding technique (a summarized view is shown in Figure

return opcodg R . . . . .
2) and examine how it is useful in making RORs infeasible.

contained in contained in

3.2 Return Indirection

i i instruction operandg . . . .
One primary source of the return opcode istétenstruction
itself. In a normal runyet is typically paired up with a
I: return instructions I1: non-retum instructions  111: immediate operand/: register operands previouscall instruction. Specifically, if a caller wants to

invoke a callee, the caller will executecall instruction that
will transfer the control flow to the callee (after saving the
return address on the stack). After finishing its execution,
the callee will executeet that will transfer the flow back to
the caller (based on the previously-saved return address).
However, this is not the case in a ROR attack. In order
to better illustrate the difference from the chained execut
gle instance of return-oriented gadgets, thus makingmetur of gadgets in a ROR, we show in Figure 3(a) the control
oriented programming infeasible. flow transfers of normadall-ret pairs. When compared with
Second, the proposed techniques should require mini- the chained execution of gadgets (Figure 1(b)), we observe
mal or ideally no modification to the OS kernel for return- that in the chained execution of gadgets, the return address
oriented attack prevention. As such, the proposed tecksiqu is explicitly pre-loaded by the attacker but later consumed
can be generically portable to a range of commodity sys- by ret; while in the normalcall-ret pair the return address
tems, thus mitigating the new threats from return-oriented is automatically saved bgall and consumed byet. This
programming. key difference exposes the “flexibility” enjoyed by RORs
Third, with the advent of RORs, there is a pressing need in choosing arbitrary return addresses to pinpoint andnchai
that the proposed techniques can be efficiently implementedtogether gadgets. To eliminate such flexibility, we progose
and readily deployable on commaodity hardware, i.e., with- add one level of indirection in accessing the return address
out the need of sophisticated hardware support for addition thus the name “return indirection.”
features or acceptable performance. Given this, the chal- Specifically, when &all is made, we instrument its exe-
lenge is to ensure that our approach has a small footprint andcution to push a return index instead of the de-facto return
remains lightweight with respect to performance impact. address onto the stack. The return index will point to anyentr
We also point out that oftentimes, it is desirable that the in a centralized return address table and the entry contains
proposed techniques can be extended to facilitate variousthe same return address, i.e., the location of next ingtmict
flexible response mechanisms, which can be activated uponafter call. When aret is executed, instead of popping up a
the detection of an ongoing ROR execution attempt. A flex- return address from the stack for control flow transfer, we
ible response, for example, is to cause only the offending at accordingly instrument its execution to obtain the retun i
tack to fail without stopping the rest of the OS. In this work, dex and use it to look up in the return address table to locate
since our primary focus is on the core methodology in de- the return address, which will then be used for control flow
feating RORs, we leave these additional desirable featurestransfer. To simplify the presentation, we call this newrias

register‘ allocation
(Sec 3.3)

peepholé\o‘ﬁimization
(Sec 3.4)

return indirection
(Sec 3.2)

Figure 2. An overview of return opcode sources and our
defense techniques

as future work.
Assumptions and Threat Model: In this work, we as-

mentedcall-ret pair ascall’-ret’. At a conceptual levetall’
andret’ can be simply implemented assh $index; jmp dst

sume the system is guaranteed with its kernel code integrityand pop %reg; jmp * RetAddrBase(%reg), respectively. To

(e.g., by SecVisor [40], NICKLE [38], and other &X-

illustrate the difference from normadll-ret pairs, we show

based schemes). Similar to the threat model used in SecVi-in Figure 3(b) the detailed control flow transfer steps when
sor and NICKLE, we also assume the kernel rootkit has the involving acall’-ret’ pair.

highest privilege level inside the system (e.g., the romipr

As discussed earlier, the main benefit of return indirection

lege in a Unix system) and full access to the system memoryis the removal of the attacker’s capability in choosingthei
space (e.g., through /dev/imem in Linux). However, due to own return addresses for gadget identification and chaining

the guarantee of kernel code integrity by existing tools, th
kernel rootkit is forced to re-use existing kernel code farm
licious computation (e.g., hiding its presence or otherimal
cious processes).

It also has the nice side-effectin preventing the attaaloenf
constructing a gadget by starting from the middle of a legit-
imate instruction. However, the downside is the overhead in
initializing and maintaining the return address table and i

Based on this threat model, our system builds upon ex- troducing an extra memaory access in th& execution when
isting kernel code integrity guarantees and further blocks compared taet. Fortunately, each return address table entry

return-oriented rootkits. In the following subsectionsr f

will point to the next instruction after theall’ instruction.

each potential source (Section 2) that may introduce returnGiven the static nature of OS kernel text, we can populate
opcodes exploitable by RORs, we will describe the corre- offline all entries in the return address table. Accordingly



stack
caller

C1: push

return addr.

call

C2: control flow transfer

called

R2: controNJow transfer *" R1: pop

ret

(a) Traditional control-flow transfer

R3: contrd| flow transfe

stack

caller

return inde:

call’

. R1:pop

C2: control flow transfer

| return addr

calleg

3|qe) Ssalppe uinjal

ret’ " R2: locate return address

(b) The new control-flow transfer based on return indirection

Figure 3. Traditional control flow transfer vs. the proposed retumtiniection-based control flow transfer

since the return address table will be static, it can be noarke
asread-only for protection (as with the static kernel text).
Also, though return indirection introduces one more mem-
ory access imet’, our experimental results (Section 5) show
that the performance overhead is acceptable.

physical registers, this phase may inevitably lead to tegis
spilling, i.e., saving some variables from registers to mem
ory. To minimize the associated cost, we prefer the selec-
tion of the least frequently used variables for spilling.-Un
fortunately, such knowledge may not be available at compile

From another perspective, the presence of a return ad-time, which leads to the known property of register alloca-
dress table does provide another potential attack vector,tion as an NP-complete problem [13, 33].

which resembles the classic return-into-libc attacksekss

To remove return opcodes introduced by certain register

tially, the attacker may choose to misuse legitimate return usages (Section 2), we are motivated to adjust the conpiler’
addresses contained in the return address table. Howevenegister allocation. Based on the operating granularigfor
we note that return-oriented programming generalizes andfective scope, there are three main types of register alloca

refines the return-into-libc attacks while our return indi-
rection technique essentialtie-generalizes return-oriented
programming back to the old style of return-into-libc. Ad-
ditionally, it is known that return-into-libc attacks are-r
stricted in executing only straight-line code, as opposed t
the branching and other arbitrary behavior available with
code injection. This indicates that the Turing-complessne
enjoyed by return-oriented programming will be completely

tion, i.e., local, global, and interprocedural. Local stgr
allocation typically operates over a basic block to opteniz
local variable access; global register allocation conrside
entire function; and interprocedural register allocatfon
cuses on inter-procedural functional calls (e.qg., thisliese

a calling convention is designed and enforced). The regis-
ter allocation adjustment for return opcode removal can be
applied in all these three levels.

prevented by our technique. Furthermore, we can also add Specifically, our proposed approach is to modify the reg-

additional refinements of return indirection to furthertries
this attack. For example, one possibility is to add function
type-based return validation as a parteif. In essence, we
can enforce that the callee will only return back to the calle
if the caller invokes the function call with the same type.
More details about return indirection and this particukar r
finement will be presented in Section 4.

3.3 Register Allocation

Another contributing source of return opcodes is from cer-
tain register usages. In particular, the way registers ltoe a

ister allocation algorithm to distinguish how the allochte
register is being used and then adjust the allocation aecord
ingly. For example, when a basic block includes an instruc-
tion mov %rax, %rbx with machine codd8 89 c3, we need

to replace thebx register with another register because it
is therbx register that introduces the8 byte. When a basic
block includes an instructiomov %rbx, %rsi with machine
code48 89 de, there is no need to replackx as it will not
introduce a return opcode. Our profiling results in Section 2
indicates that we only need to adjust two sets of registers:
rbx/r11 andrdx/r10 in a small subset of instructions (mostly

cated and operated is affected by an important compiler op-mov).

timization phase called register allocation. When a progra

is converted from the source code into an intermediate rep-

resentation (IR), the IR operates on virtual registersctvhi
are typically not constrained by their availability. Hovesy

3.4 Peephole Optimization

The remaining two other sources are due to certain machine
instructions which happen to contain the return opcode in

when the IR is eventually translated into machine code, the their opcodes or immediate operands. To avoid introducing
virtual registers used by the IR will be mapped to available return opcodes by these instructions, we introduce a peep-
physical registers. Since we only have a limited number of hole optimization phase [4] when the target machine code



is being generated. Note peephole optimization is another Oxffffffff801a4f01: €9 c4 00 00 00 jmpq Oxffffffff801ladfca
kind of compiler optimization performed over a small set of  Oxffffffff801a4f06: 90 nop
instructions of the generated code. The name comes from  N\gte if the relative offset hase8 in a higher-order byte
the fact that the set is also called a “peephole” or a *win- hosition, we employ two different strategies. When the rel-
dow.” This technique, though conceptually simple, has been yiive offset has &3 in the second byte position, to remove
widely used [27] since it can effectively and quickly idépti e 3, we can insert up &56 NOPs. However, padding be-
and modify inefficient sequences of instructions to improve ¢omes less reasonable when facing a relative jump of greater
performance. o o size. For example, relative offs@x00c30000 would require

In our case, the specific peephole optimization targets the g4 ;¢ of NOPs as padding. For that, we change the link script
removal of return opcodes. In particular, for return opeode 4 rejocate the target function and avoid this problem. In ou

introduced by norret instructions’ opcodes, we simply sub-  5t6type with the FreeBSD kernel, we have not encountered
stitute these instructions with others that bear the same se this situation.

mantics but do not contain any return opcode value. In fact,
our analysis indicates that there is only one such instogti 4

i.e., movnti mem32/64, reg32/64, whose opcode i6f c3 [7]. Implementation

Accordingly, we can simply replace it with a regufaov in- The previous sections have described the overall system de-
struction with the same semantic meaning but without return Sign and three compiler-based key techniques to prevent
opcode in the generated machine code. return-oriented rootkits. In this section, we discuss Hjmec

operands, we further differentiate two scenarios: (1) i th Served when developing our prototype. _

first scenario, the return opcode is introduced by the direct ~Our prototype is based on the LLVM compiler frame-
use of immediate constants. For that, peephole optimizatio WOrk [25], which is designed to support transparent, lifiglo
can alternatively use multiple steps to generate the sameProgram analysis and transformation for arbitrary program
constant values. Using the instructioontip $0xc3,%ecx” The LLVM framework is extensible and allows us to add
as an example, thoughee3 is being used as an immediate  various compiler transformations at different phraseshsu

operand in this instruction, we can achieve the same effectdS compiler-, link-, and run-time. Also, for each hardware
by the following instruction sequence, assuming %reg is arget such as x86-32 or x86-64 (amd64), LLVM provides
available. an abstraction layer that defines a target machine class and

generates machine code based on the abstraction.
In our prototype, the three proposed techniques are all
dec Yreg implemented in the LLVM’s l:_)a(_:k—e_nd. By QOing S0, we
0 0 can take advantage of the built-in high-quality code gener-
cmp Y%reg, Y6ecx ator [2]. More specifically, by taking a modular design, the
(2) The second scenario is due to the use of relative code generator has been divided into several differengstag
offsets as immediate operands. A typical example is the setinstruction selection, scheduling and formation, SSAeblas
of jmp/jne/je instructions. Similarly, consider the following  optimization, register allocation, prologue/epilogudedn-
instruction from a running FreeBSD 8.0 kernel image: sertion, late machine code optimization, and code emission

Oxffffffff801a4f01: €9 c300 00 00 jmpq Oxffffffff801a4fco Our first key technique — return indirection — is implemented
It is interesting to note that in the disassembled form, the atthe end of the prologue/epilogue code insertion phraee; t
immediate operand of the instruction @sffffffff801a4fc9, second technique — register allocation — is naturally merge
which does not contain any return opcode but the generatednto the current register allocation phase; while the third
machine code does have the return opcodexe3. Itturns ~ technique — peephole optimization — mainly becomes a part
out that thedxc3 is a relative offset starting from the nextin-  Of the late machine code optimization phrase. In the follow-
struction right aftejmpq. And Oxffffffffé01a4fc9is the jump  ing, we describe in detail these three techniques.
target address automatically calculated by the disassmbl
For (near)imp instructions, the following instruction (rIP),
the relative offset, and the final jump target address wil sa  To enable return indirection, we define a new target machine
isfy the following equation: class that essentially replaces the norcadl-ret pair with
destinationaddress = 9%rlP + relative offset the newcall’-ret’ pair. In a nutshell, the replacement is

(Oxfffffff801a4fc9)  (OXfffffff801a4f06) (0xc3) achieved by traversing every instruction in the IR tree to
identify and substitute the originahll andret instructions.

With that, peephole optimization can simply adjust the Recall that when replacingall, the call’ instruction will

relative offset by adding a NOP instruction right affempq. push the corresponding return index onto the stack. We skip
Accordingly, the corresponding instruction willbe treatsld 1,056 retumn indexes if they contain return opcodes in their

Into: values.

cmp $OxC3, Yoecx:
mov $0xc4, Yoreg

4.1 Return Indirection and Type-based Validation



01 for (each instructiominst in every basic block] group | # examples

02 switch(Inst) { jmp | 777 | jmp, jmpaq, je, jne, ja, jbe, jg, ...

03 casecall: call 1037 callq

04 gettarget fromInst mov | 808 | mov, movb, movw, movzbl, lea, ..

05 assign a uniqueeturn_index cmp | 203 | cmp, cmpg, cmpl, cmpb, cmpxchd

06 addpush $return_index others| 98 | testb, test, and, incl, incq, decl, ..

07 addjmp target

88 greé:? nst Table 5. Groups of instructions that introduce return op-
> codes with immediate operands

10 caseret:

11 addpop %reg

12 addand $Oxfffff, %ereg

13 addcmpw $Typel D, TypeAddrBase(%reg) location. Based on the register description file, LLVM imple

141 addjneerr_handler ments three different register allocation algorithsisple,

15 addjmp * RetAddrBase(%oreg) local, andlinear scan. Note both simple and local register

16 deletenst allocation algorithms use a direct mapping from virtuaktreg

17 break; isters to physical registers while the linear scan regisker

18 } location [37] performs more advanced register scanning and

19 } allocation and uses a spiller if necessary in order to place

memory loads and stores, which makes it more efficient than
the other two.

In our prototype, we use the linear scan register allocation
as the base algorithm and add additional support to remove
return opcodes due to “unsafe” register usages that may in-

Figure 4. The pseudo code faeturn indirection (*: Note
lines13 and14 are optional and they implement the feature
of using function types to validate returns.)

_InFigure 4, we show the pseudo code of replacaigret troduce return opcodes. More specifically, our prototype ex
with call’-ret” to implement return indirection. Essentially,  tends the register description file for th®6 architecture,
call is replaced witfpush return.index; jmp while retis re- xggRegisterinfo.td, and annotates those registers that may
placed with five instructions: thand instruction at thd 2th introduce a return opcode as unsafe. When performing linear

line is to limit the range ofeturn.index in case of potential  scan register allocation, if an unsafe register leads tamet
index overflow attacks by RORs (Section 6); the instructions opcodes when used in the related machine instructions, we
at thel3th and14th lines (marked by) implement an op-  re_run the register allocation algorithm. In this second, ru

tiqnal refinement for function type-based return validatio e unsafe register will not be available for register atloc
Since the function type information can be readily obtained jon.

from LLVM IR, for eachcall, when we assign its unique-
turn_index, we also obtain the next instruction (as its corre-
sponding return address) and the callee’s function typey Th
will be accordingly saved in the return address tdaReeAd- Peephole optimization is introduced to adjust the gendrate
drBase and the function type tabl&peAddrBase, both in- code so that no return opcodes will be accidentally intro-
dexed withreturn_index. With that, we can ensure the callee duced. As mentioned earlier, it mainly addresses those in-
will only return back to the caller that invokes the calle¢twi  structions whose opcodes or immediate operands happen to
the same function type. In our current prototype, we reserve contain return opcodes.

1MB memory for the two tables. The two tables are phys-  In the FreeBSI3.0 kernel, we observe only one instruc-
ically interleaved to better exploit the temporal and sgati  tion whose opcode has the return opcomhevnti (opcode
localities when being accessed, which can be beneficial inOf ¢3). Note thatmovnti stores a value in 82-bit or 64-bit
reducing the system performance overhead. And unoccupiedyeneral-purpose register into a memory location and furthe
entries in the tables are filled in with the address of an er- indicates to the processor that the data is non-temporal and
ror handling function to trap invalid returns. In Figure 2w is unlikely to be used again soon. Thus the processor may
show a real-world example with the effects before and after avoid polluting the cache by not writing the data into the
applying return indirection. Overall, we have instrumehte cache hierarchy. For that, our peephole optimization simpl
40,696 call instructions and, 329 ret instructions for the replaces it with a regulanov instruction, whose opcode is
FreeBSDR.0 OS kernel image. 89 and so does not contain a return opcode. The only dif-
ference between the two is thabv doesn’t indicate to the
processor to reduce cache pollution.rAgvnti is very rarely

In LLVM, every machine architecture has a target register used in the system (only of them), the side-effect due to
description file, which holds all the available registensgb the replacement can be neglected.

4.3 Peephole Optimization

4.2 Register Allocation



68 50 01 00 00

ffdo callg *%rax ff e0

41 5b

49 81 e3 ff ff Of 00

66 41 83 bb c8 65 52 80 20
Of 85 c4 13 00 00

41 ff a3 c0 65 52 80

—>

c3 retq

push $0x150 # push index
jmpqg  *%rax # jmp dst

pop  %rill # pop index
and  $Oxfffff, %rl1l # limit range
cmpw  $0x20, Oxffffffff805265c8(%rll)  # compar
jne err_handler # if('=) error
jmpqg *Oxffffffff805265c0(%rl1l) # jump back

Figure 5. An example of replacing eall-ret pair for return indirection

For those instructions that happen to contain the return ple, the function responsible for performing context stvitc

opcode value in their immediate operands, we further clas-

sify them into several groups, as shown in Table 5.

¢ The instructions in the first group all use relative offsets
to transfer control flow to jump targets. Peephole op-
timization simply addsNOP instructions before (when
jumping backward) or after (when jumping forward) the
related instruction to change the relative offset value.

¢ The instructions in the second group are essentaally
instructions that will be replaced wittall’ or essentially
jmp. Therefore, it becomes the same as the first group.

¢ For the remaining three groups, almost all the return

is cpu_switch. When invoked, it stores the context of the pre-
vious process into the process control block (PCB) by a se-
ries ofmovq instructions. Among these instructions, it stores
the return address of the process with two instructiowsn
(%rsp), %orax; movq %rax, PCB_RIP(%r8).

With the changed stack frame, it becomes problematic
(because the return address is now a return index). In our
prototype, we therefore add a translation instructiontrigh
before loading the rIP for the next process, which esséntial
converts the return index back to the original return adsires
form.

User Signal Trampoline Like other Unix variants,

opcodes are introduced by direct immediate operands.FreeBSD defines a set sfgnals for certain software and
The peephole optimization handles them one by one with hardware conditions that may arise during the normal exe-

a similar method used oomp $0xc3, %ecx, which is
already described in Section 3.4.

cution of a program [28]. An application can register its own
signal handlers that will be invoked when certain signaés ar
delivered. If not, the default actions may be carried out by

An exception is that when the immediate operand acts asthe system.

an offset of thel P register. For instancéga 0x2612¢c3(%rip),
%rdi will introduce ac3 return opcode byx2612¢3, which

Notice that a signal handler is a user-mode routine that the
OS kernel will invoke when a running process receives a sig-

is actually a relative offset between the parameter addressnal. In particular, when the signal is received, the kerms fi

(the parameter will be stored in %rdi) anid® register. Sim-
ilar to the first group, we simply addNOP instruction after
leato change the constant valuelte2612c¢4, thus removing
c3.

4.4 Additional Prototyping Notes

In the following, we report some additional implementation
notes we observed while developing our prototype.

CPU Context Switch Our return indirection technique
essentially changes the traditional stack frame as therretu

prepares a signal-handling context stack frame on the pro-
cess’ user stack and executadl *SIGF_HANDLER(%rsp)
to invoke the signal trampoline code defined by tig-
tramp() routine in the kernel, which calls the user’s signal
handler. Once the signal handler completes, it returns back
to sigtramp() and pops the signal-handler context from the
user’s stack. After that, it calls thegreturn system call to
restore the previous user context and resume the execution.
We point out that return indirection by default will replace
thecall * S GF_HANDLER(%rsp) instruction with the corre-

address is now replaced with a return index. Such ChangespondingcalI’ instruction, which unfortunately will cause

inevitably affects other system routines that may imgiicit

many processes to exit. The reason is that return index here

assume the presence of return address in the stack frameShould be converted back to a return address as well. In our
One example is the context switch routine inside the OS currentprototype, since this happens when the signal kand|

kernel.

returns from the user space to the kernel space, we choose

Specifically, when a context switch occurs, the state of the Not to replace thisall with call’.
previous process must be saved so that when the scheduler Compiler Optimization for Unreachable Code Elimi-

resumes its execution, it can restore the saved state withounation

disruption. The state of the process includes all the reggst

In the initial prototype when our system was not

functioning, we also encountered several situations where

that the process may be using, such as the program countecertain machine instructions used to replaad had been
(rIP), and any other operating system specific data that may“mysteriously” removed by the compiler. Consider these two

be necessary. Using the FreeB8D kernel as an exam-

consecutive instructionsall; jmp , which will be replaced



ltem Version Configuration
Apache Compiling| 2.2.13 configure & make
Kernel Compiling | 7.2 make buildkernel
Apache Server 2.2.13 default configuration
ApacheBench 2.0.40-dev | -c 3 -n 1000000<url>
LMbench 3-alpha default configuration

Table 6. Software configuration for evaluation

with push; jmp; jmp. Note thepush instruction is used to
save the return index onto the stack and the firgt will
jump to the target destination. However, the compiler will
consider the secorjdp as unreachable, thus removing it as
a part of optimization. Our prototype detects that and pre-
vents the code from being “optimized” out.

Loadable Kernel Module Support Loadable Kernel
Module (LKM) supportis a very important function in mod-
ern operating systems. Without LKMs, an operating sys-
tem would have to have all possible anticipated functidypali
compiled directly into the base kernel; every time new func-
tionality is desired, users would have to rebuild and reboot
the base kernel.

In FreeBSD, LKMs can be dynamically loaded into the
running kernel wittkldload, and unloaded from the running
kernel withkldunload. Our system supports LKMs in much
the same way that it supports the base kernel. When a LKM
is compiled, a module-specific return address table will be
initialized. However, instead of being populated with the a

solute memory addresses, the module-specific return axldres

table contains only the offset from the module base address
At runtime, when the module is being loaded, the module-
specific return address table will be fixed up based on where

the module is loaded. Further, the return index assignment

inside the module will also be adjusted (by a simple shift
operation) to avoid causing any conflict with existing as-
signments in the base kernel. After that, the module-specifi
return address table will be added to the centralized return
address table. By doing so, we have a consistent scheme fo
return index assignment without the need of differentgtin
between base kernel and loaded modules.

5. Evaluation

We also performed a return-oriented analysis on the gen-
erated kernel image. When compared to the original kernel
image, the image file size is increased fréyi70, 704 bytes
to4, 782,952 bytes ¢ 9.4%) and the number of instructions
is increased fron675, 763 to 749,227 (~ 10.9%). Most
importantly, all previous return opcodes (in total 18, 330)
have been removed in the new OSkernel image! The absence
of return opcodes indicates that RORs, or the more general
return-oriented programming model, gmevented from lo-
cating and building the return-oriented gadgets in the first
place, which meets our first design goal (Section 2).

We point out that although our discussion so far focuses
on the support of the FreeBSD kernel, we have reason to
believe the technique presented here is generic and can be
applied to other commodity OSes as well. In fact, we have
successfully used our prototype to compile and run Xinu
(an instructional OS [5]) and BitVisor (a research hypervi-
sor [42]) with similar minor modifications in their assembly
files. When the future releases of LLVM successfully com-
pile other commodity OSes (e.g., OpenBSD and Linux), it
is expected that our scheme and implementation presented
in this paper is generic and can be naturally applied, thus
satisfying our second design goal.

5.1 Performance

To evaluate the impact on system performance, we have
performed benchmark-based measurements. In particular,
we use three application-level benchmarks and one micro-
benchmark to evaluate the system. They are (1) Task I: a
normal compilation of the Apache server package [9], (2)

Task II: a normal compilation of the FreeBSD kernel, (3)

Task IlI: a network throughput test on the Apache web server
using the ApacheBench [10], and (4) Task IV: a standard
system benchmark toolkit called LMbench [26].

Our tests were performed on a Dell Optipléx0 PC
which has an AMB4 X2 5200+ CPU and2GB memory. For
each benchmark experiment, we load the FreeB33ys-
Fem with three different kernels: the original FreeBSD ker-
nel and the new return-less FreeBSD kenmnigh andwith-
out the type-based return validation (Section 4.1). In Table 6,
we show the configurations of the software used in our mea-
surements. In the network throughput test on Apache, we
executed ApacheBench program on a Linux client, which is

To generate return-less kernels, our prototype has added apconnected to our system with a gigabit Ethernet card. We did

proximately2, 100 lines of C++ code to LLVM'’s back-end.
To successfully load and run the FreeB&Dkernel, there is

all the tests ten times, then calculated the average. The 95%
confidence interval results show that the deviations among

a need to modify the FreeBSD source code. Fortunately, thethese runs are smak(2%).

changes are minor: all the modifications focus on the assem-

bly files (more precisely; of them) and there is no single C

Figure 6 shows the measurement results of two compi-
lation tasks (Tasks | and Il) and ApacheBench (Task IIl),

source file that needs to be modified. Within these assemblywhich are three application-level benchmarks. The results

files, we replaced@3 assembly instructions (with32 other
instructions). These changes are necessary since retlirn in
rection replaces each return address in the stack with eretu
index.

indicate that the overall overheads of two compiling tasks
— shown by the first and third columns from left in the figure
— are less thaf.5%. The overall overhead of ApacheBench
is 5.78% when the type-based return validation is enabled.



30% ‘ ‘ ‘ In summary, the benchmark results show that our system
Il Return-less Kernel without Type-based Validation

S Bl Return-less Kernel without Type-based Validation (kemel) | | incurs low performance overhead, which satisfies our third
° [l Return-less Kernel with Type-based Validation

[0 Return-less Kernel with Type-based Validation (Kernel) deslgn goal (SeCthn 2) .
D00 - .

15%

6. Discussion

To defeat return-oriented rootkits, we have taken a compile
based approach, which naturally requires access to the ker-
nel source code. Although an ideal approach would avoid
such a requirement, we consider a compiler-based approach
appropriate given the large number of return opcodes in the
final OS kernel image and the resulting Turing completeness

Performance Overhead

10%

5%

0%

Figure 6. Application-level benchmark results with all return-oriented gadgets. In the following, we exam
ine possible limitations of our system and suggest future im
provements.

oo - First, as mentioned earlier, return indirection attacles th

W Retum-less Kemel without Type—based Validation root of return-oriented programming by removing potehtial

T% [J Return-less Kernel with Type-based Validation

abusable return opcodes and thus de-generalizes it back to
the old style of return-into-libc attacks. In the meantime,
we point out our technique itself does not address return-
into-libc, even though this attack is limited in executingy
straight-line code and can be further limited by the prodose
type-based return validation mechanism. In the meantime,
another proactive approach is to call for a complete kernel
control-flow integrity (K-CFI) enforcement, which should
protect not only return addresses, but also various functio
pointers. Encouragingly, there are some existing solstion
[6] that have been proposed in the user space. However, with
additional unique challenges and complexities in the Kerne
space (e.g., memory safety regarding low-level software-
hardware interactions[15], preemptive scheduling fortmul
To further measure the kernel-side impact of our system, tasking, asynchronous interrupt handling, and the dynamic
we calculated (with théime command) the actual kernel-  kernel module support), their application for complete K-
side overheads of these three tasks. The results are showFI still remains to be demonstrated.
in the same figure by the second and fourth columns from  Second, closely related to return-oriented rootkits, one
left. For Task I, the kernel-side slowdownG$0% when we may wonder about the possibility of jump-oriented rootkits
run the return-less kernel without type-based validatlbn.  (JORS). Instead of leveragimgt, a JOR rootkit could lever-
we enable the type-based validation, the overhead becomesigejmp to chain the execution of available machine code
13.00%. For Task Il, when the return-less kernel does not snippets (or “jump-oriented gadgets”). Considering tret fa
have the type-based validation, the kernel-side slowdewn i thatjmp itself will not allow the attacker to regain control
11.26%. With the type-based validation turned on, it changes (since there is noet), it is hard, if not impossible, to de-
to 17.32%. Finally, for Task lll, the kernel slowdown be-  velop such rootkits. From another perspective, this aftack
comes11.86% and 15.13% accordingly when under the sembles the return-into-libc attacks. However, withow th
return-less kernel without and with type-based validation  leverage ofet, the attacker’s capability will be significantly
Figure 7 shows the performance overhead of ten differ- restricted.
ent tasks in the LMbench, which is a micro-benchmark for ~ Third, in our current prototype, we do not address another
OS kernel performance. The tasks include process creationyeturn-related instruction, i.aret. Compared toet, iret will
basic arithmetic operation, context switching, file systgm restore all eflags, CS, and rIP from stack. However, the
eration, local communication, and memory latency. Among fact that there are onl§ iret instructions in our OS kernel
these results, we can see the maximum overhead of our sysindicates the attacker may still need to use other retusedha
tem is5.70% when doing context switching. The overhead gadgets to build meaningful attacks.
comes from the return indirection operation as well as an  Fourth, in our current prototype, we detect possible re-
extra instruction in converting the return index back to the turn index overflow attempts with aand $0zf f f f f, %oreg
return address. The task of performing basic arithmetic op- instruction (Figure 4), which essentially limits the rargfe
erations incurs the lowest overhead, which is nearly zero.  return_index values. As a future refinement, we can choose

6%
5%
4%

3% -

Performance Overhead

2% -

1% -

0%

Figure 7. Micro-benchmark results with LMbench



to leverage the processor's segmentation-based pratectio oriented, “good” kernel code snippets as gadgets. Our ap-
mechanism. Specifically, we can fit the entire return addressproach complements existing ones by replacing potentially
table in a separate segmérBy properly initializing its base  abusable return instructions and making them infeasible fo
and size, we can take advantage of hardware-based boundamnalicious gadget construction and assembling.
checking for improved performance and save one instruction
when performing theet'.

Kernel Rootkit Detection and Profiling The third area of
7. Related Work related work includes recent efforts [20, 24, 34-36, 44, 48]
that aim to detect and/or analyze kernel rootkit behavior. |

srittuar?eaAg(fj:lez;eljjmtgrcl?%Zlaggszinsr;oggzﬁ:‘oen 'st'-[\hesoft- particular, the detection can be achieved by monitoring cer
: work inciu u XIsting tain symptoms from rootkit infection. For example, Petroni

ware defense mechanisms that are proposed to protect returnt al. [35] uses an external hardware PCI card to grab the run-

addresses on the stack and prevent them from being misused; . : .
For example, StackGuard [14] detects attacks that overwrit Ime OS memory image and detect possible rootkit presence
Pie, [14] by spotting certain kernel code integrity violations. &

rgggg:"; sgt(\j/\rz:] ct)ag?reai:aeCkoprz[t:aan:r:gnt%:rrgfrrlfqe;((j%?gige hostBuster [44] and VMwatcher [20] target the self-hiding

Bef y functi t th pol i check L:j ¢ d hature of rootkits and infer rootkit presence by detectiisg d

Before a funclion returns, the canary 1S checked for mod- crepancies between the views of the same system from dif-

ification. A similar scheme is also implemented in ProPo- .

lice 1171, StackShield 1431 i h h that ch ferent perspectives. Other approaches such as K-Trader [24

tlc():fng'nlé'n ? Co seleara[te gtfcl?: ?or?(;tsfn ngdereszeg vgtzstis PoKeR [39], HookFinder [48], and Panorama [47] are pro-
ntain w P u posed to analyze kernel malware so that we can extract their

goal of making ?t significantly hard for the attgcker to gimul behavioral profiles and better understand rootkit-inheren
taneously modify both return addresses without being de- characteristics. Our approach has a different goal by focus

tected. SmashGuard [31] implements a similar idea but takes. . L
ot . ing on preventing a new breed of rootkits, instead of detect-
the approach of revising the microcode of bothl andret : : e :
ing or analyzing a kernel rootkit infection. Therefore, apr

Ins'trrﬁgggnssc.hemes are certainly helpful in protecting return proach is complementary to the above systems and interest-
y help P 9 ing opportunities still remain to seamlessly integraterthe

addresses in existing stacks but still not sufficient. Tlee re
son is that a return-oriented rootkit, as demonstratedin [1

19, 41], can simply create its own stack — without corrupting Compiler-based Memory Safety The fourth area of re-

existing ones — and misuse other innocent PEINASITUC- |44 work includes a number of compiler-based systems to

tions th_at are not (or cannolt be) ephance_d for_ return addressenforce memory safety for user-level applications. Byrimst
protection. Our transformation ot instructions is also sim- menting the control flow transfer instructions, CFI [6] de-

ilar to that of Yang et al. [46], which mainly targets to save mands the run-time control flow to follow the statically de-

RAM by eliminating the call stack. However, our system has o mined CFG (control flow graph). On the other hand, DFI
a d|ﬁe_zrent goal that further demands two other compiling [12] imposes the data flow integrity to defend against non-
technlques to pompletely remove return opcodes, not merelycontrol—data attacks. CCured [30] and Cyclone [21] propose
return instructions. memory safe dialects of C to prevent memory corruption.
Kernel Rootkit Prevention The second area of related Both Systems require non-trivial efforts to port the exist-
work covers recent systems that directly aim at preventing ing C source code to these dialects. Another related work is
kernel rootkit infection. Livewire [18] proposes the natio  seftware-based bound checking that intends to provide spa-
of virtual machine introspection and applies it to prot®éett  tjal or temporal memory safety by preventing out-of-bound
guest OS kernel code and critical data structures from be-memory access. Among bound checking systems, many of
ing modified. SecVisor [40] and NICKLE [38] both aim to  them [8, 16] are object-based. They track all allocated mem-
guarantee that onIy verified kernel code will be running in ory regions to map and limit pointers to individual memory
the kernel space. Lares [32] makes a step further in pro-region at runtime. Others (e.g., [21, 29, 30]) are based on
tecting not only the kernel code, but also a subset of func- fat-pointer. In addition to the actual pointer, each fatrper
tion pointers that are used for reliable active monitoring. carries with it the pointer’s base and bound.
HookSafe [45] further extends it to enable a scalable but  As mentioned earlier, these systems can provide effective
lightweight kernel hook protection. protection on memory safety and prevent the normal control-
However, as pointed out earlier, these approaches areflow from being hijacked. However, it still remains to show
still vulnerable to return-oriented attacks where malisio  how they can be applied to OS kernel protection due to
computations are performed by leveraging existing return- additional complexities and challenges in the kernel space
1we notice that the segmentation-based support may not llatdeain From another perspective, our approach complements them

64-bit architectures. However, it remains enabled in itsjeatibility mode by eliminating possible retu_m'oriente(_j gadgets in the OS
with 32-bit. kernel images and thus making RORs infeasible.
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. : : Good Instructions Go Bad: Generalizing Return-Oriented
In this paper, we have presented the design, implementa Programming to RISC. IRroceedings of the 15th ACM Con-

tion and eval_uauon of a_compller—based approach to de- ference on Computer and Communications Security, October
feat return-oriented rootkits (RORs). Our approach recog- 2008.

nizes the necessity of return instructions in these return-
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