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Abstract
Targeting the operating system (OS) kernels, kernel rootkits
pose a formidable threat to computer systems and their users.
Recent efforts have made significant progress in blocking
them from injecting malicious code into the OS kernel for
execution. Unfortunately, they cannot block the emerging
so-calledreturn-oriented rootkits (RORs). Without the need
of injecting their own malicious code, these rootkits can dis-
cover and chain together “return-oriented gadgets” (that con-
sist of only legitimate kernel code) for rootkit computation.

In this paper, we propose a compiler-based approach to
defeat these return-oriented rootkits. Our approach recog-
nizes the hallmark of return-oriented rootkits, i.e., theret
instruction, and accordingly aims to completely remove
them in a running OS kernel. Specifically, one key technique
namedreturn indirection is to replace the return address in a
stack frame into a return index and disallow a ROR from us-
ing their own return addresses to locate and assemble return-
oriented gadgets. Further, to prevent legitimate instructions
that happen to contain return opcodes from being misused,
we also propose two other techniques, register allocation
and peephole optimization, to avoid introducing them in the
first place. We have developed a LLVM-based prototype and
used it to generate areturn-less FreeBSD kernel. Our evalu-
ation results indicate that the proposed approach is generic,
effective, and can be implemented on commodity hardware
with a low performance overhead.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection—Security kernels

General Terms Security

Keywords Return-Oriented Rootkits, Malware Defense,
Return-less Kernel
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1. Introduction
Kernel rootkits pose a formidable threat to computer sys-
tems. Designed to fundamentally subvert the operating sys-
tem (OS) kernels, a kernel rootkit is capable of obtaining
and maintaining an unrestricted control and access within
the compromised system, ranging from stealing sensitive
personal information, escalating privileges of maliciouspro-
cesses, and opening system backdoors for unauthorized ac-
cesses. Worse, all of them can be potentially performed un-
der the radar of running anti-virus software.

To address the rootkit threat, a variety of anti-rootkit
mechanisms have been proposed in two main categories.
The first category [20, 34–36] detects the presence of kernel
rootkits based on certain symptoms exhibited from rootkit
infection. For example, Copilot [35] leverages a separate
trusted PCI card to periodically grab the physical memory
image of a running OS kernel. The memory image will
then be analyzed to examine whether certain properties have
been violated (e.g., the checksum of static kernel text has
been changed). Other systems [34, 36] further extend it by
detecting the violation of kernel data integrity (e.g., by using
semantic specifications of both static and dynamic kernel
data) and/or kernel control-flow integrity (e.g., by comparing
with a statically-computed control-flow graph from kernel
source code). However, by design, these approaches detect a
kernel rootkit’s presenceafter the system is compromised.

The second category [18, 38, 40] instead aims to preserve
the OS kernel integrity and prevent kernel rootkits from in-
fecting the system in the first place. For example, techniques
such as driver signing [1] and other forms of driver verifi-
cation [23] have been proposed to verify the identity or in-
tegrity of the loaded driver. The W⊕X hardware support al-
lows to mark a memory page as writable or executable, but
not both at the same time. In other words, it will prevent
kernel rootkits from injecting rootkit code asdata into the
OS kernel and later executing it ascode. SecVisor [40] is a
hypervisor-based approach that leverages W⊕X to achieve
lifetime guest kernel code integrity. NICKLE [38] makes a
step further by accommodating the presence of mixed kernel
code and data in commodity OS kernels. More specifically,
NICKLE maintains a separate, guest-inaccessible shadow
memory to store authorized kernel code and at runtime, the
kernel instruction fetch will be transparently redirectedto



the shadow memory. Such a guarantee makes an important
step in kernel rootkit prevention by effectively blocking ex-
isting kernel rootkits that require executing their own attack
code.

Unfortunately, such a guarantee is still insufficient as
it cannot block emerging so-called return-oriented rootk-
its. These rootkits are designed to re-use existing (and thus
“good”) kernel code for malicious (or “bad”) computations
without violating kernel code integrity. An example in the
user-space counterpart is the classicreturn-into-libc attacks
where the library functions (e.g.,system()) are misused to
launch or facilitate the attack. This attack has been recently
refined and generalized asreturn-oriented programming [11,
19, 41]. With this programming model, the attacker can
develop kernel rootkits by only misusing legitimate kernel
code (i.e., with chained execution of several pieces of ex-
isting instructions or “gadgets” [11, 19, 41] – an example
gadget will be presented in Section 2). Due to the departure
from previous code-injection based rootkit techniques, a new
termReturn-Oriented Rootkit (ROR) [19] has been coined to
represent them.

By “using” only legitimate kernel instructions, RORs
pose a significant challenge for rootkit defense. Also no-
tice that in certain hardware architecture such asx86, a ROR
would exploit variable-length encoding and unaligned ex-
ecution of machine instructions to uncover “new” instruc-
tions, such as by starting from the middle of an instruction
(Figure 1(a)). These new instructions are not intended when
the original kernel code is generated. In other words, if these
instructions happen to end with aret instruction, they can
be potentially combined to form a gadget – as an organi-
zational unit in return-oriented programming – and perform
some (malicious) primitive operations, such as a comparison
of two register operands or a memory load from a specified
location. With a large codebase such as from a standard C li-
brary or from an OS kernel image, this new attack has shown
to be Turing-complete [11, 19, 41]. In fact, with successful
demonstration, a return-oriented compiler has been designed
and developed to perform a variety of computational tasks by
only utilizing assembled gadgets. Consequently, it becomes
evident that a ROR can intrinsically bypass all existing ker-
nel code integrity protection mechanisms, including W⊕X
[3], SecVisor [40], and NICKLE [38].

In this paper, we propose a compiler-based approach to
defeat return-oriented rootkits by directly attacking theroot
of the return-oriented programming model. In particular,
based on the observation that the gadget is the essential
basic unit in return-oriented programming and each gadget
has to end with aret instruction (so that one gadget can be
chained together with other gadgets), we propose to re-target
the compiler design to generate an OS kernel withoutret.
By doing so, the new OS kernel will be essentially immune
to return-oriented rootkits. Naturally, our approach can be
combined together with existing approaches that guarantee

kernel code integrity to provide a comprehensive rootkit
prevention solution.

However, it is not an easy task to eliminate these return in-
structions. For example, an intuitive approach to removeret
would involve replacing it with apop %eax, jmp *%eax se-
quence. Unfortunately, the fact that it is semantically equiv-
alent to a return instruction means it can still be used to build
return-oriented gadgets.

To address that, we propose a key technique calledre-
turn indirection, which is inspired by the nature of return-
oriented programming: namely it requires the attacker to
supply return addresses of his choice to pinpoint and execute
various gadgets. In other words, during the attack, these re-
turn addresses need to be pre-populated by the attacker (and
thereforenot saved from previous call instructions). The goal
of return indirection is to essentially eliminate this capabil-
ity from return-oriented rootkits. Specifically, instead of fol-
lowing the convention of using the de-facto return address
in a stack frame, return indirection replaces it with a return
index. The return index will be automatically pushed onto
the stack by a previous (instrumented)call instruction and
later popped up by an (instrumented)ret to locate the return
address. Each return index will be corresponding to a par-
ticular entry in a centralized return address table that con-
tains all valid return addresses permitted in the OS kernel
image. Since each valid return address must point to an in-
struction that immediately follows a call instruction, there-
turn address table is static and can be generated offline.

We have developed a proof-of-concept prototype that im-
plements return indirection based on the re-targetable LLVM
compiler [25]. In addition to return indirection, we also ex-
tend and refine two compiler optimization techniques, i.e.,
register allocation and peephole optimization, to conserva-
tively remove machine instructions that happen to contain
the return opcodes. By doing so, we can also prevent these
legitimate instructions from being misused by RORs. Our
system has been used to compile the FreeBSD8.0 kernel
and a few other system programs. Our subsequent examina-
tion shows there areno return instructions in the resulting
programs and kernel images. In summary, our paper makes
the following contributions:

• We perform a thorough return-oriented analysis on the
FreeBSD8.0 kernel. Our analysis covers not only theret
instruction, but also other instructions (e.g.,ret imm16,
lret, lret imm16, and movnti – Section 2) that can be
potentially abused for return purposes. The analysis is
needed to identify all possible sources so that they can
be re-visited tonot introduce return opcodes.

• Based on the return-oriented analysis, we propose corre-
sponding compiling techniques and implement them in
LLVM. We use the modified compiler to re-generate the
FreeBSD OS kernel. The new OS kernel image is free
from return opcodes (not just return instructions!) and is
thus immune to return-oriented attacks.



48 8b  3b                  mov   (%rbx),%rdi

AcpiUtDeleteRwLock:

e8 c3  e0 00 00         callq    <AcpiOsDeleteMutex>

c3                             retq

3b e8                        cmp    %eax,%ebp

(a) A return-oriented gadget starts from the middle of an instruction
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(b) A return-oriented computation consists of three gadgets A,B,C

Figure 1. An example of return-oriented programming

• We evaluate the performance of our system using a num-
ber of standard benchmark programs. The results show
that our prototype incurs low performance overhead.

The rest of the paper is organized as follows: We describe
the return-oriented programming and RORs in more detail
in Section 2. We then present the key techniques in our
approach and the implementation details in Sections 3 and
4, respectively. After that, we show the evaluation results
in Section 5 and discuss possible limitations of our current
prototype in Section 6. Finally, we compare our system with
related work in Section 7 and then conclude in Section 8.

2. Problem Overview: Return-Oriented
Programming and RORs

In the return-oriented programming model, there are two
central pieces: gadgets and a stack. Each gadget ends with
a ret and performs a basic operation (e.g., a memory write to
a specific location). A stack is controlled by the attacker to
specify how these gadgets will be chained together.

To illustrate the return-oriented programming model, we
show in Figure 1(a) an example gadget created by leverag-
ing two existing instructions (mov and callq) in the Acpi-
UtDeleteRwLock function of FreeBSD 8.0/x86-amd64 ker-
nel. Note the x86 architecture has a variable-length instruc-
tion set, which means the same memory content will be
interpreted differently if CPU begins decoding at two dis-
tinct locations. In this example, if we start in the middle of
mov instruction, a “new” instruction sequence is created –
cmp %eax,%ebp; retq. This instruction sequence essentially
compares the contents of two registersebp andeax and then
returns. Theretq instruction in the new sequence is actu-
ally part of the originalcallq’s operand (the relative offset
0x0000e0c3). It may be considered time-consuming or even
infeasible to manually identify these return-oriented gadgets.
However, as shown in [41], an automated process can be
easily constructed to exhaustively list all candidate gadgets.
Also, by examining the standard C library and commod-
ity OS kernel images, several previous studies [11, 19, 41]
report the abundant availability of various gadgets to per-
form basic operations (e.g., memory load/store, unary/binary
arithmetic operation, and conditional jump), which makes
return-oriented programming Turing-complete.

In Figure 1(b), we also show an example return-oriented
computation based on three gadgets:A, B, C. These three
gadgets are chained together to perform a specific compu-
tation. The chaining is made possible with a stack that is
pre-populated with three stack frames. Each of these stack
frames will be pointing to one of these gadgets. The execu-
tion order of these gadgets will be determined by the stack
pointer or ESP. Specifically, the stack pointer will be ad-
vanced by theret instruction of a previous gadget before
other subsequent gadgets can be executed. In essence, the
stack pointer becomes the new instruction pointer in the
return-oriented programming model. From another perspec-
tive, theret instruction is the hallmark of return-oriented pro-
gramming: it needs to be present in every gadget and is also
the key to chain together various gadgets (with a controlled
stack).

Based on the return-oriented programming model, a suc-
cessful ROR attack that compromises a running OS kernel
will require to accomplish two steps. The first step is to con-
trol a stack and pre-load it with addresses of those chosen
return-oriented gadgets. The second step is to hijack the ker-
nel control flow to jump to the starting gadget. Consequently,
we can defeat ROR attacks either by removing the attacker’s
abilities to form and chain gadgets or by preventing con-
trol flow from being hijacked in the first place. Note there
are several research prototypes (e.g., [6, 22]) that can effec-
tively enforce control-flow integrity for user-level applica-
tions. However, their application and portability to enforce
the kernel control-flow integrity still remains to be demon-
strated. In this work, we take the first approach. Specifi-
cally, we aim to eliminate all theret instructions in a way
that will make return-oriented programming infeasible. As
pointed out earlier, in certain hardware architecture suchas
x86, because of the variable-length encoding and unaligned
execution of machine instructions, it is not sufficient to only
consider those return-related instructions. Instead, we also
need to take into account other instructions that happen to
contain the corresponding return opcodes in the generated
machine code. Note that in x86, there are four return-related
instructions:ret (near return – opcodec3), ret imm16 (near
return with stack unwind imm16 bytes – opcodec2), lret (far
return – opcodecb), and lret imm16 (far return with stack
unwind imm16 bytes – opcodeca). For simplicity, we will



# machine code instruction
8328 c3 retq
0 c2 xx xx retqimm16
1 48 cb lretq
0 48 caxx xx lretq imm16

Table 1. Return opcode source I (Total: 8, 329): real ret
instructions

# machine code instruction
1 48 0f c3 04 17 movnti %rax, (%rdi, %rdx, 1)
1 48 0f c3 44 17 08 movnti %rax, 0x8(%rdi, %rdx, 1)
1 48 0f c3 44 17 10 movnti %rax, 0x10(%rdi, %rdx, 1)
1 48 0f c3 44 17 18 movnti %rax, 0x18(%rdi, %rdx, 1)
1 48 0f c3 04 16 movnti %rax, (%rsi, %rdx, 1)
1 48 0f c3 44 16 08 movnti %rax, 0x8(%rsi, %rdx, 1)
1 48 0f c3 44 16 10 movnti %rax, 0x10(%rsi, %rdx, 1)
1 48 0f c3 44 16 18 movnti %rax, 0x18(%rsi, %rdx, 1)

Table 2. Return opcode source II (Total: 8): other machine
instructions’ opcodes that happen to contain the return op-
code value

useret in the rest of this paper to represent all of them and
accordinglyreturn opcode to representc2, c3, ca, or cb.

We have profiled a stock FreeBSD/x86-amd648.0 kernel
image and calculated the statistics of return opcodes. In our
calculation, we do not follow instruction boundaries and in-
stead mimic the return-oriented programming to identify all
possible return opcodes. The OS kernel image has675, 763

instructions in total and contains18, 330 return opcodes. On
average, there will be one return opcode in every37 machine
instructions.

Among those return opcodes, we further make a break-
down to understand how the return opcodes are introduced.
Our results show that8, 337 of those18, 330 return opcodes
are introduced by normal instructions’ opcodes and the rest
9, 993 are due to normal instructions’ operands. In those
8, 337 opcodes,8, 329 are actually from theret instruction
itself (return opcode source I) and8 are from other machine
instructions, more specificallymovnti (return opcode source
II). We show those related instructions in Tables 1 and 2,
respectively.

Regarding those9, 993 return opcodes introduced by in-
structions’ operands, there are two contributing sources:(1)
2, 923 are due to immediate operands that happen to contain
the same value with return opcodes (return opcode source
III). In Table 3, we show six instructions that contribute
the largest number of return opcodes because of immedi-
ate operands. (2) The other7, 070 are introduced by register
operands in a number of machine instructions (return opcode
source IV). For example,c3 andcb will be introduced when
registersrbx andr11 (including their sub-registersebx, bx,
bl) are being used in variousmov instructions, whereasc2

# machine code instruction
52 eb cb jmp 0xffffffff80144378
44 eb c2 jmp 0xffffffff80150164
40 eb c3 jmp 0xffffffff8014cef0
39 eb ca jmp 0xffffffff801466b4
33 75 cb jne 0xffffffff80146f40
25 0f 84 cb 00 00 00 je 0xffffffff8014af6f

Table 3. Return opcode source III (Total: 2, 923): immedi-
ate operands that happen to contain the return opcode value
(Note that the disassembledjmp/jne/je instructions could de-
pend on relative offsets between the location of jump target
and the current instruction pointer.)

# machine code instruction
832 89 c3 mov %eax, %ebx
445 89 c2 mov %eax, %edx
373 48 89 c2 mov %rax, %rdx
338 48 89 c3 mov %rax, %rbx
333 48 89 cb mov %rcx, %rbx
267 89 ca mov %ecx, %edx

Table 4. Return opcode source IV (Total: 7, 070): certain
register operands that happen to be encoded with the return
opcode value

andca will be introduced due to the usages ofrdx andr10
(including sub-registersedx, dx, dl). Similarly, we list the top
six instructions in Table 4.

To disallow the creation of RORs, we need to revisit these
four contributing sources so that return opcodes will not be
introduced. Each source is considered to have its own unique
challenges and thus likely requires different solutions. For
example, for return opcode source I, it will not work by sim-
ply having ret replaced with other semantically-equivalent
instructions. As mentioned in Section 1, the reason is that
the new semantically-equivalent instruction(s) can be equiv-
alently used asret for ROR purposes. For return opcode
source IV, we need to adjust the register allocation when tar-
get code is being generated so that we can avoid introducing
the return opcodes. Considering the large number of instruc-
tions affected, it becomes a significant challenge to address
these four contributing sources securely and efficiently.

3. System Design
3.1 Design Goals and Assumptions

In order to effectively defeat RORs, we have three main
design goals.First, the proposed techniques aim to enable
proactive prevention of the ROR attacks, instead of reac-
tive detection of their presence after the strike. Specifically,
our goal here is to create a return-less kernel without a sin-
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Figure 2. An overview of return opcode sources and our
defense techniques

gle instance of return-oriented gadgets, thus making return-
oriented programming infeasible.

Second, the proposed techniques should require mini-
mal or ideally no modification to the OS kernel for return-
oriented attack prevention. As such, the proposed techniques
can be generically portable to a range of commodity sys-
tems, thus mitigating the new threats from return-oriented
programming.

Third, with the advent of RORs, there is a pressing need
that the proposed techniques can be efficiently implemented
and readily deployable on commodity hardware, i.e., with-
out the need of sophisticated hardware support for additional
features or acceptable performance. Given this, the chal-
lenge is to ensure that our approach has a small footprint and
remains lightweight with respect to performance impact.

We also point out that oftentimes, it is desirable that the
proposed techniques can be extended to facilitate various
flexible response mechanisms, which can be activated upon
the detection of an ongoing ROR execution attempt. A flex-
ible response, for example, is to cause only the offending at-
tack to fail without stopping the rest of the OS. In this work,
since our primary focus is on the core methodology in de-
feating RORs, we leave these additional desirable features
as future work.

Assumptions and Threat Model: In this work, we as-
sume the system is guaranteed with its kernel code integrity
(e.g., by SecVisor [40], NICKLE [38], and other W⊕X-
based schemes). Similar to the threat model used in SecVi-
sor and NICKLE, we also assume the kernel rootkit has the
highest privilege level inside the system (e.g., the root privi-
lege in a Unix system) and full access to the system memory
space (e.g., through /dev/mem in Linux). However, due to
the guarantee of kernel code integrity by existing tools, the
kernel rootkit is forced to re-use existing kernel code for ma-
licious computation (e.g., hiding its presence or other mali-
cious processes).

Based on this threat model, our system builds upon ex-
isting kernel code integrity guarantees and further blocks
return-oriented rootkits. In the following subsections, for
each potential source (Section 2) that may introduce return
opcodes exploitable by RORs, we will describe the corre-

sponding technique (a summarized view is shown in Figure
2) and examine how it is useful in making RORs infeasible.

3.2 Return Indirection

One primary source of the return opcode is theret instruction
itself. In a normal run,ret is typically paired up with a
previouscall instruction. Specifically, if a caller wants to
invoke a callee, the caller will execute acall instruction that
will transfer the control flow to the callee (after saving the
return address on the stack). After finishing its execution,
the callee will executeret that will transfer the flow back to
the caller (based on the previously-saved return address).

However, this is not the case in a ROR attack. In order
to better illustrate the difference from the chained execution
of gadgets in a ROR, we show in Figure 3(a) the control
flow transfers of normalcall-ret pairs. When compared with
the chained execution of gadgets (Figure 1(b)), we observe
that in the chained execution of gadgets, the return address
is explicitly pre-loaded by the attacker but later consumed
by ret; while in the normalcall-ret pair the return address
is automatically saved bycall and consumed byret. This
key difference exposes the “flexibility” enjoyed by RORs
in choosing arbitrary return addresses to pinpoint and chain
together gadgets. To eliminate such flexibility, we proposeto
add one level of indirection in accessing the return address,
thus the name “return indirection.”

Specifically, when acall is made, we instrument its exe-
cution to push a return index instead of the de-facto return
address onto the stack. The return index will point to an entry
in a centralized return address table and the entry contains
the same return address, i.e., the location of next instruction
after call. When aret is executed, instead of popping up a
return address from the stack for control flow transfer, we
accordingly instrument its execution to obtain the return in-
dex and use it to look up in the return address table to locate
the return address, which will then be used for control flow
transfer. To simplify the presentation, we call this new instru-
mentedcall-ret pair ascall’-ret’. At a conceptual level,call’
andret’ can be simply implemented aspush $index; jmp dst
and pop %reg; jmp *RetAddrBase(%reg), respectively. To
illustrate the difference from normalcall-ret pairs, we show
in Figure 3(b) the detailed control flow transfer steps when
involving acall’-ret’ pair.

As discussed earlier, the main benefit of return indirection
is the removal of the attacker’s capability in choosing their
own return addresses for gadget identification and chaining.
It also has the nice side-effect in preventing the attacker from
constructing a gadget by starting from the middle of a legit-
imate instruction. However, the downside is the overhead in
initializing and maintaining the return address table and in-
troducing an extra memory access in theret’ execution when
compared toret. Fortunately, each return address table entry
will point to the next instruction after thecall’ instruction.
Given the static nature of OS kernel text, we can populate
offline all entries in the return address table. Accordingly,



(a) Traditional control−flow transfer (b) The new control−flow transfer based on return indirection
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Figure 3. Traditional control flow transfer vs. the proposed return indirection-based control flow transfer

since the return address table will be static, it can be marked
as read-only for protection (as with the static kernel text).
Also, though return indirection introduces one more mem-
ory access inret’, our experimental results (Section 5) show
that the performance overhead is acceptable.

From another perspective, the presence of a return ad-
dress table does provide another potential attack vector,
which resembles the classic return-into-libc attacks. Essen-
tially, the attacker may choose to misuse legitimate return
addresses contained in the return address table. However,
we note that return-oriented programming generalizes and
refines the return-into-libc attacks while our return indi-
rection technique essentiallyde-generalizes return-oriented
programming back to the old style of return-into-libc. Ad-
ditionally, it is known that return-into-libc attacks are re-
stricted in executing only straight-line code, as opposed to
the branching and other arbitrary behavior available with
code injection. This indicates that the Turing-completeness
enjoyed by return-oriented programming will be completely
prevented by our technique. Furthermore, we can also add
additional refinements of return indirection to further restrict
this attack. For example, one possibility is to add function
type-based return validation as a part ofret’. In essence, we
can enforce that the callee will only return back to the caller
if the caller invokes the function call with the same type.
More details about return indirection and this particular re-
finement will be presented in Section 4.

3.3 Register Allocation

Another contributing source of return opcodes is from cer-
tain register usages. In particular, the way registers are allo-
cated and operated is affected by an important compiler op-
timization phase called register allocation. When a program
is converted from the source code into an intermediate rep-
resentation (IR), the IR operates on virtual registers, which
are typically not constrained by their availability. However,
when the IR is eventually translated into machine code, the
virtual registers used by the IR will be mapped to available
physical registers. Since we only have a limited number of

physical registers, this phase may inevitably lead to register
spilling, i.e., saving some variables from registers to mem-
ory. To minimize the associated cost, we prefer the selec-
tion of the least frequently used variables for spilling. Un-
fortunately, such knowledge may not be available at compile
time, which leads to the known property of register alloca-
tion as an NP-complete problem [13, 33].

To remove return opcodes introduced by certain register
usages (Section 2), we are motivated to adjust the compiler’s
register allocation. Based on the operating granularity oref-
fective scope, there are three main types of register alloca-
tion, i.e., local, global, and interprocedural. Local register
allocation typically operates over a basic block to optimize
local variable access; global register allocation considers an
entire function; and interprocedural register allocationfo-
cuses on inter-procedural functional calls (e.g., this is where
a calling convention is designed and enforced). The regis-
ter allocation adjustment for return opcode removal can be
applied in all these three levels.

Specifically, our proposed approach is to modify the reg-
ister allocation algorithm to distinguish how the allocated
register is being used and then adjust the allocation accord-
ingly. For example, when a basic block includes an instruc-
tion mov %rax, %rbx with machine code48 89 c3, we need
to replace therbx register with another register because it
is therbx register that introduces thec3 byte. When a basic
block includes an instructionmov %rbx, %rsi with machine
code48 89 de, there is no need to replacerbx as it will not
introduce a return opcode. Our profiling results in Section 2
indicates that we only need to adjust two sets of registers:
rbx/r11 andrdx/r10 in a small subset of instructions (mostly
mov).

3.4 Peephole Optimization

The remaining two other sources are due to certain machine
instructions which happen to contain the return opcode in
their opcodes or immediate operands. To avoid introducing
return opcodes by these instructions, we introduce a peep-
hole optimization phase [4] when the target machine code



is being generated. Note peephole optimization is another
kind of compiler optimization performed over a small set of
instructions of the generated code. The name comes from
the fact that the set is also called a “peephole” or a “win-
dow.” This technique, though conceptually simple, has been
widely used [27] since it can effectively and quickly identify
and modify inefficient sequences of instructions to improve
performance.

In our case, the specific peephole optimization targets the
removal of return opcodes. In particular, for return opcodes
introduced by non-ret instructions’ opcodes, we simply sub-
stitute these instructions with others that bear the same se-
mantics but do not contain any return opcode value. In fact,
our analysis indicates that there is only one such instruction,
i.e.,movnti mem32/64, reg32/64, whose opcode is0f c3 [7].
Accordingly, we can simply replace it with a regularmov in-
struction with the same semantic meaning but without return
opcode in the generated machine code.

To remove return opcodes introduced by immediate
operands, we further differentiate two scenarios: (1) In the
first scenario, the return opcode is introduced by the direct
use of immediate constants. For that, peephole optimization
can alternatively use multiple steps to generate the same
constant values. Using the instruction “cmp $0xc3,%ecx”
as an example, though0xc3 is being used as an immediate
operand in this instruction, we can achieve the same effect
by the following instruction sequence, assuming %reg is
available.

cmp $0xc3, %ecx:
mov $0xc4, %reg
dec %reg
cmp %reg, %ecx

(2) The second scenario is due to the use of relative
offsets as immediate operands. A typical example is the set
of jmp/jne/je instructions. Similarly, consider the following
instruction from a running FreeBSD 8.0 kernel image:

0xffffffff801a4f01: e9 c3 00 00 00 jmpq 0xffffffff801a4fc9
It is interesting to note that in the disassembled form, the

immediate operand of the instruction is0xffffffff801a4fc9,
which does not contain any return opcode but the generated
machine code does have the return opcode, i.e.,0xc3. It turns
out that the0xc3 is a relative offset starting from the next in-
struction right afterjmpq. And 0xffffffff801a4fc9 is the jump
target address automatically calculated by the disassembler.
For (near)jmp instructions, the following instruction (rIP),
the relative offset, and the final jump target address will sat-
isfy the following equation:

destination address = %rIP + relative offset
(0xffffffff801a4fc9) (0xffffffff801a4f06) (0xc3)

With that, peephole optimization can simply adjust the
relative offset by adding a NOP instruction right afterjmpq.
Accordingly, the corresponding instruction will be translated
into:

0xffffffff801a4f01: e9 c4 00 00 00 jmpq 0xffffffff801a4fca
0xffffffff801a4f06: 90 nop

Note if the relative offset has ac3 in a higher-order byte
position, we employ two different strategies. When the rel-
ative offset has ac3 in the second byte position, to remove
the c3, we can insert up to256 NOPs. However, padding be-
comes less reasonable when facing a relative jump of greater
size. For example, relative offset0x00c30000 would require
64K of NOPs as padding. For that, we change the link script
to relocate the target function and avoid this problem. In our
prototype with the FreeBSD kernel, we have not encountered
this situation.

4. Implementation
The previous sections have described the overall system de-
sign and three compiler-based key techniques to prevent
return-oriented rootkits. In this section, we discuss specific
implementation details and some additional notes we ob-
served when developing our prototype.

Our prototype is based on the LLVM compiler frame-
work [25], which is designed to support transparent, lifelong
program analysis and transformation for arbitrary programs.
The LLVM framework is extensible and allows us to add
various compiler transformations at different phrases, such
as compiler-, link-, and run-time. Also, for each hardware
target such as x86-32 or x86-64 (amd64), LLVM provides
an abstraction layer that defines a target machine class and
generates machine code based on the abstraction.

In our prototype, the three proposed techniques are all
implemented in the LLVM’s back-end. By doing so, we
can take advantage of the built-in high-quality code gener-
ator [2]. More specifically, by taking a modular design, the
code generator has been divided into several different stages:
instruction selection, scheduling and formation, SSA-based
optimization, register allocation, prologue/epilogue code in-
sertion, late machine code optimization, and code emission.
Our first key technique – return indirection – is implemented
at the end of the prologue/epiloguecode insertion phrase; the
second technique – register allocation – is naturally merged
into the current register allocation phase; while the third
technique – peephole optimization – mainly becomes a part
of the late machine code optimization phrase. In the follow-
ing, we describe in detail these three techniques.

4.1 Return Indirection and Type-based Validation

To enable return indirection, we define a new target machine
class that essentially replaces the normalcall-ret pair with
the new call’-ret’ pair. In a nutshell, the replacement is
achieved by traversing every instruction in the IR tree to
identify and substitute the originalcall andret instructions.
Recall that when replacingcall, the call’ instruction will
push the corresponding return index onto the stack. We skip
those return indexes if they contain return opcodes in their
values.



01 for (each instructionInst in every basic block){
02 switch (Inst) {
03 casecall:
04 gettarget from Inst
05 assign a uniquereturn index
06 addpush $return index
07 addjmp target
08 deleteInst
09 break;
10 caseret:
11 addpop %reg
12 addand $0xfffff, %reg
13† addcmpw $TypeID, TypeAddrBase(%reg)
14† addjne err handler
15 addjmp *RetAddrBase(%reg)
16 deleteInst
17 break;
18 }
19 }

Figure 4. The pseudo code forreturn indirection (†: Note
lines13 and14 are optional and they implement the feature
of using function types to validate returns.)

In Figure 4, we show the pseudo code of replacingcall-ret
with call’-ret’ to implement return indirection. Essentially,
call is replaced withpush return index; jmp while ret is re-
placed with five instructions: theand instruction at the12th

line is to limit the range ofreturn index in case of potential
index overflow attacks by RORs (Section 6); the instructions
at the13th and14th lines (marked by†) implement an op-
tional refinement for function type-based return validation.
Since the function type information can be readily obtained
from LLVM IR, for eachcall, when we assign its uniquere-
turn index, we also obtain the next instruction (as its corre-
sponding return address) and the callee’s function type. They
will be accordingly saved in the return address tableRetAd-
drBase and the function type tableTypeAddrBase, both in-
dexed withreturn index. With that, we can ensure the callee
will only return back to the caller that invokes the callee with
the same function type. In our current prototype, we reserve
1MB memory for the two tables. The two tables are phys-
ically interleaved to better exploit the temporal and spatial
localities when being accessed, which can be beneficial in
reducing the system performance overhead. And unoccupied
entries in the tables are filled in with the address of an er-
ror handling function to trap invalid returns. In Figure 5, we
show a real-world example with the effects before and after
applying return indirection. Overall, we have instrumented
40, 696 call instructions and8, 329 ret instructions for the
FreeBSD8.0 OS kernel image.

4.2 Register Allocation

In LLVM, every machine architecture has a target register
description file, which holds all the available registers for al-

group # examples
jmp 777 jmp, jmpq, je, jne, ja, jbe, jg, . . .
call 1037 callq
mov 808 mov, movb, movw, movzbl, lea, . . .
cmp 203 cmp, cmpq, cmpl, cmpb, cmpxchg
others 98 testb, test, and, incl, incq, decl, . . .

Table 5. Groups of instructions that introduce return op-
codes with immediate operands

location. Based on the register description file, LLVM imple-
ments three different register allocation algorithms:simple,
local, andlinear scan. Note both simple and local register
allocation algorithms use a direct mapping from virtual reg-
isters to physical registers while the linear scan registeral-
location [37] performs more advanced register scanning and
allocation and uses a spiller if necessary in order to place
memory loads and stores, which makes it more efficient than
the other two.

In our prototype, we use the linear scan register allocation
as the base algorithm and add additional support to remove
return opcodes due to “unsafe“ register usages that may in-
troduce return opcodes. More specifically, our prototype ex-
tends the register description file for thex86 architecture,
X86RegisterInfo.td, and annotates those registers that may
introduce a return opcode as unsafe. When performing linear
scan register allocation, if an unsafe register leads to return
opcodes when used in the related machine instructions, we
re-run the register allocation algorithm. In this second run,
the unsafe register will not be available for register alloca-
tion.

4.3 Peephole Optimization

Peephole optimization is introduced to adjust the generated
code so that no return opcodes will be accidentally intro-
duced. As mentioned earlier, it mainly addresses those in-
structions whose opcodes or immediate operands happen to
contain return opcodes.

In the FreeBSD8.0 kernel, we observe only one instruc-
tion whose opcode has the return opcode:movnti (opcode
0f c3). Note thatmovnti stores a value in a32-bit or 64-bit
general-purpose register into a memory location and further
indicates to the processor that the data is non-temporal and
is unlikely to be used again soon. Thus the processor may
avoid polluting the cache by not writing the data into the
cache hierarchy. For that, our peephole optimization simply
replaces it with a regularmov instruction, whose opcode is
89 and so does not contain a return opcode. The only dif-
ference between the two is thatmov doesn’t indicate to the
processor to reduce cache pollution. Asmovnti is very rarely
used in the system (only8 of them), the side-effect due to
the replacement can be neglected.



ff d0   callq *%rax

68 50 01 00 00                         push    $0x150
ff  e0                                         jmpq   *%rax

.

.

.
41 5b                                        pop      %r11
49 81 e3  ff  ff  0f  00               and      $0xfffff, %r11

c3       retq

.

.

.

66 41 83 bb c8 65 52 80 20     cmpw   $0x20, 0xffffffff805265c8(%r11) # compare type
# if(!=) error
# jump back

# limit range

# push index
# jmp dst

0f  85 c4 13 00 00                    jne       err_handler

# pop index

41 ff  a3 c0 65 52 80                jmpq   *0xffffffff805265c0(%r11)

Figure 5. An example of replacing acall-ret pair for return indirection

For those instructions that happen to contain the return
opcode value in their immediate operands, we further clas-
sify them into several groups, as shown in Table 5.

• The instructions in the first group all use relative offsets
to transfer control flow to jump targets. Peephole op-
timization simply addsNOP instructions before (when
jumping backward) or after (when jumping forward) the
related instruction to change the relative offset value.

• The instructions in the second group are essentiallycall
instructions that will be replaced withcall’ or essentially
jmp. Therefore, it becomes the same as the first group.

• For the remaining three groups, almost all the return
opcodes are introduced by direct immediate operands.
The peephole optimization handles them one by one with
a similar method used oncmp $0xc3, %ecx, which is
already described in Section 3.4.

An exception is that when the immediate operand acts as
an offset of therIP register. For instance,lea 0x2612c3(%rip),
%rdi will introduce ac3 return opcode by0x2612c3, which
is actually a relative offset between the parameter address
(the parameter will be stored in %rdi) andrIP register. Sim-
ilar to the first group, we simply add aNOP instruction after
lea to change the constant value to0x2612c4, thus removing
c3.

4.4 Additional Prototyping Notes

In the following, we report some additional implementation
notes we observed while developing our prototype.

CPU Context Switch Our return indirection technique
essentially changes the traditional stack frame as the return
address is now replaced with a return index. Such change
inevitably affects other system routines that may implicitly
assume the presence of return address in the stack frame.
One example is the context switch routine inside the OS
kernel.

Specifically, when a context switch occurs, the state of the
previous process must be saved so that when the scheduler
resumes its execution, it can restore the saved state without
disruption. The state of the process includes all the registers
that the process may be using, such as the program counter
(rIP), and any other operating system specific data that may
be necessary. Using the FreeBSD8.0 kernel as an exam-

ple, the function responsible for performing context switch
is cpu switch. When invoked, it stores the context of the pre-
vious process into the process control block (PCB) by a se-
ries ofmovq instructions. Among these instructions, it stores
the return address of the process with two instructions:movq
(%rsp), %rax; movq %rax, PCB RIP(%r8).

With the changed stack frame, it becomes problematic
(because the return address is now a return index). In our
prototype, we therefore add a translation instruction right
before loading the rIP for the next process, which essentially
converts the return index back to the original return address
form.

User Signal Trampoline Like other Unix variants,
FreeBSD defines a set ofsignals for certain software and
hardware conditions that may arise during the normal exe-
cution of a program [28]. An application can register its own
signal handlers that will be invoked when certain signals are
delivered. If not, the default actions may be carried out by
the system.

Notice that a signal handler is a user-mode routine that the
OS kernel will invoke when a running process receives a sig-
nal. In particular, when the signal is received, the kernel first
prepares a signal-handling context stack frame on the pro-
cess’ user stack and executescall *SIGF HANDLER(%rsp)
to invoke the signal trampoline code defined by thesig-
tramp() routine in the kernel, which calls the user’s signal
handler. Once the signal handler completes, it returns back
to sigtramp() and pops the signal-handler context from the
user’s stack. After that, it calls thesigreturn system call to
restore the previous user context and resume the execution.

We point out that return indirection by default will replace
thecall *SIGF HANDLER(%rsp) instruction with the corre-
spondingcall’ instruction, which unfortunately will cause
many processes to exit. The reason is that return index here
should be converted back to a return address as well. In our
current prototype, since this happens when the signal handler
returns from the user space to the kernel space, we choose
not to replace thiscall with call’.

Compiler Optimization for Unreachable Code Elimi-
nation In the initial prototype when our system was not
functioning, we also encountered several situations where
certain machine instructions used to replacecall had been
“mysteriously” removed by the compiler. Consider these two
consecutive instructions:call; jmp , which will be replaced



Item Version Configuration
Apache Compiling 2.2.13 configure & make
Kernel Compiling 7.2 make buildkernel
Apache Server 2.2.13 default configuration
ApacheBench 2.0.40-dev -c 3 -n 1000000<url>
LMbench 3-alpha1 default configuration

Table 6. Software configuration for evaluation

with push; jmp; jmp. Note thepush instruction is used to
save the return index onto the stack and the firstjmp will
jump to the target destination. However, the compiler will
consider the secondjmp as unreachable, thus removing it as
a part of optimization. Our prototype detects that and pre-
vents the code from being “optimized” out.

Loadable Kernel Module Support Loadable Kernel
Module (LKM) support is a very important function in mod-
ern operating systems. Without LKMs, an operating sys-
tem would have to have all possible anticipated functionality
compiled directly into the base kernel; every time new func-
tionality is desired, users would have to rebuild and reboot
the base kernel.

In FreeBSD, LKMs can be dynamically loaded into the
running kernel withkldload, and unloaded from the running
kernel withkldunload. Our system supports LKMs in much
the same way that it supports the base kernel. When a LKM
is compiled, a module-specific return address table will be
initialized. However, instead of being populated with the ab-
solute memory addresses, the module-specific return address
table contains only the offset from the module base address.
At runtime, when the module is being loaded, the module-
specific return address table will be fixed up based on where
the module is loaded. Further, the return index assignment
inside the module will also be adjusted (by a simple shift
operation) to avoid causing any conflict with existing as-
signments in the base kernel. After that, the module-specific
return address table will be added to the centralized return
address table. By doing so, we have a consistent scheme for
return index assignment without the need of differentiating
between base kernel and loaded modules.

5. Evaluation
To generate return-less kernels, our prototype has added ap-
proximately2, 100 lines ofC++ code to LLVM’s back-end.
To successfully load and run the FreeBSD8.0 kernel, there is
a need to modify the FreeBSD source code. Fortunately, the
changes are minor: all the modifications focus on the assem-
bly files (more precisely,5 of them) and there is no single C
source file that needs to be modified. Within these assembly
files, we replaced53 assembly instructions (with232 other
instructions). These changes are necessary since return indi-
rection replaces each return address in the stack with a return
index.

We also performed a return-oriented analysis on the gen-
erated kernel image. When compared to the original kernel
image, the image file size is increased from4, 370, 704 bytes
to 4, 782, 952 bytes (∼ 9.4%) and the number of instructions
is increased from675, 763 to 749, 227 (∼ 10.9%). Most
importantly,all previous return opcodes (in total 18, 330)
have been removed in the new OS kernel image! The absence
of return opcodes indicates that RORs, or the more general
return-oriented programming model, areprevented from lo-
cating and building the return-oriented gadgets in the first
place, which meets our first design goal (Section 2).

We point out that although our discussion so far focuses
on the support of the FreeBSD kernel, we have reason to
believe the technique presented here is generic and can be
applied to other commodity OSes as well. In fact, we have
successfully used our prototype to compile and run Xinu
(an instructional OS [5]) and BitVisor (a research hypervi-
sor [42]) with similar minor modifications in their assembly
files. When the future releases of LLVM successfully com-
pile other commodity OSes (e.g., OpenBSD and Linux), it
is expected that our scheme and implementation presented
in this paper is generic and can be naturally applied, thus
satisfying our second design goal.

5.1 Performance

To evaluate the impact on system performance, we have
performed benchmark-based measurements. In particular,
we use three application-level benchmarks and one micro-
benchmark to evaluate the system. They are (1) Task I: a
normal compilation of the Apache server package [9], (2)
Task II: a normal compilation of the FreeBSD kernel, (3)
Task III: a network throughput test on the Apache web server
using the ApacheBench [10], and (4) Task IV: a standard
system benchmark toolkit called LMbench [26].

Our tests were performed on a Dell Optiplex740 PC
which has an AMD64 X2 5200+ CPU and2GB memory. For
each benchmark experiment, we load the FreeBSD8.0 sys-
tem with three different kernels: the original FreeBSD ker-
nel and the new return-less FreeBSD kernelwith andwith-
out the type-based return validation (Section 4.1). In Table 6,
we show the configurations of the software used in our mea-
surements. In the network throughput test on Apache, we
executed ApacheBench program on a Linux client, which is
connected to our system with a gigabit Ethernet card. We did
all the tests ten times, then calculated the average. The 95%
confidence interval results show that the deviations among
these runs are small (< 2%).

Figure 6 shows the measurement results of two compi-
lation tasks (Tasks I and II) and ApacheBench (Task III),
which are three application-level benchmarks. The results
indicate that the overall overheads of two compiling tasks
– shown by the first and third columns from left in the figure
– are less than3.5%. The overall overhead of ApacheBench
is 5.78% when the type-based return validation is enabled.
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Figure 6. Application-level benchmark results
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Figure 7. Micro-benchmark results with LMbench

To further measure the kernel-side impact of our system,
we calculated (with thetime command) the actual kernel-
side overheads of these three tasks. The results are shown
in the same figure by the second and fourth columns from
left. For Task I, the kernel-side slowdown is6.00% when we
run the return-less kernel without type-based validation.If
we enable the type-based validation, the overhead becomes
13.00%. For Task II, when the return-less kernel does not
have the type-based validation, the kernel-side slowdown is
11.26%. With the type-based validation turned on, it changes
to 17.32%. Finally, for Task III, the kernel slowdown be-
comes11.86% and 15.13% accordingly when under the
return-less kernel without and with type-based validation.

Figure 7 shows the performance overhead of ten differ-
ent tasks in the LMbench, which is a micro-benchmark for
OS kernel performance. The tasks include process creation,
basic arithmetic operation, context switching, file systemop-
eration, local communication, and memory latency. Among
these results, we can see the maximum overhead of our sys-
tem is5.70% when doing context switching. The overhead
comes from the return indirection operation as well as an
extra instruction in converting the return index back to the
return address. The task of performing basic arithmetic op-
erations incurs the lowest overhead, which is nearly zero.

In summary, the benchmark results show that our system
incurs low performance overhead, which satisfies our third
design goal (Section 2).

6. Discussion
To defeat return-oriented rootkits, we have taken a compiler-
based approach, which naturally requires access to the ker-
nel source code. Although an ideal approach would avoid
such a requirement, we consider a compiler-based approach
appropriate given the large number of return opcodes in the
final OS kernel image and the resulting Turing completeness
with all return-oriented gadgets. In the following, we exam-
ine possible limitations of our system and suggest future im-
provements.

First, as mentioned earlier, return indirection attacks the
root of return-oriented programming by removing potentially-
abusable return opcodes and thus de-generalizes it back to
the old style of return-into-libc attacks. In the meantime,
we point out our technique itself does not address return-
into-libc, even though this attack is limited in executing only
straight-line code and can be further limited by the proposed
type-based return validation mechanism. In the meantime,
another proactive approach is to call for a complete kernel
control-flow integrity (K-CFI) enforcement, which should
protect not only return addresses, but also various function
pointers. Encouragingly, there are some existing solutions
[6] that have been proposed in the user space. However, with
additional unique challenges and complexities in the kernel
space (e.g., memory safety regarding low-level software-
hardware interactions[15], preemptive scheduling for multi-
tasking, asynchronous interrupt handling, and the dynamic
kernel module support), their application for complete K-
CFI still remains to be demonstrated.

Second, closely related to return-oriented rootkits, one
may wonder about the possibility of jump-oriented rootkits
(JORs). Instead of leveragingret, a JOR rootkit could lever-
age jmp to chain the execution of available machine code
snippets (or “jump-oriented gadgets”). Considering the fact
that jmp itself will not allow the attacker to regain control
(since there is noret), it is hard, if not impossible, to de-
velop such rootkits. From another perspective, this attackre-
sembles the return-into-libc attacks. However, without the
leverage ofret, the attacker’s capability will be significantly
restricted.

Third, in our current prototype, we do not address another
return-related instruction, i.e.,iret. Compared toret, iret will
restore all eflags, CS, and rIP from stack. However, the
fact that there are only3 iret instructions in our OS kernel
indicates the attacker may still need to use other return-based
gadgets to build meaningful attacks.

Fourth, in our current prototype, we detect possible re-
turn index overflow attempts with anand $0xfffff , %reg
instruction (Figure 4), which essentially limits the rangeof
return index values. As a future refinement, we can choose



to leverage the processor’s segmentation-based protection
mechanism. Specifically, we can fit the entire return address
table in a separate segment.1 By properly initializing its base
and size, we can take advantage of hardware-based boundary
checking for improved performance and save one instruction
when performing theret’.

7. Related Work

Return Address Protection and Transformation The
first area of related work includes a number of existing soft-
ware defense mechanisms that are proposed to protect return
addresses on the stack and prevent them from being misused.
For example, StackGuard [14] detects attacks that overwrite
the return address on the stack by inserting a marker (called
a canary) between the frame pointer and the return address.
Before a function returns, the canary is checked for mod-
ification. A similar scheme is also implemented in ProPo-
lice [17]. StackShield [43] is another scheme that chooses
to maintain two separate stacks for return addresses with the
goal of making it significantly hard for the attacker to simul-
taneously modify both return addresses without being de-
tected. SmashGuard [31] implements a similar idea but takes
the approach of revising the microcode of bothcall andret
instructions.

These schemes are certainly helpful in protecting return
addresses in existing stacks but still not sufficient. The rea-
son is that a return-oriented rootkit, as demonstrated in [11,
19, 41], can simply create its own stack – without corrupting
existing ones – and misuse other innocent non-ret instruc-
tions that are not (or cannot be) enhanced for return address
protection. Our transformation ofret instructions is also sim-
ilar to that of Yang et al. [46], which mainly targets to save
RAM by eliminating the call stack. However, our system has
a different goal that further demands two other compiling
techniques to completely remove return opcodes, not merely
return instructions.

Kernel Rootkit Prevention The second area of related
work covers recent systems that directly aim at preventing
kernel rootkit infection. Livewire [18] proposes the notion
of virtual machine introspection and applies it to protect the
guest OS kernel code and critical data structures from be-
ing modified. SecVisor [40] and NICKLE [38] both aim to
guarantee that only verified kernel code will be running in
the kernel space. Lares [32] makes a step further in pro-
tecting not only the kernel code, but also a subset of func-
tion pointers that are used for reliable active monitoring.
HookSafe [45] further extends it to enable a scalable but
lightweight kernel hook protection.

However, as pointed out earlier, these approaches are
still vulnerable to return-oriented attacks where malicious
computations are performed by leveraging existing return-

1 We notice that the segmentation-based support may not be available in
64-bit architectures. However, it remains enabled in its compatibility mode
with 32-bit.

oriented, “good” kernel code snippets as gadgets. Our ap-
proach complements existing ones by replacing potentially
abusable return instructions and making them infeasible for
malicious gadget construction and assembling.

Kernel Rootkit Detection and Profiling The third area of
related work includes recent efforts [20, 24, 34–36, 44, 48]
that aim to detect and/or analyze kernel rootkit behavior. In
particular, the detection can be achieved by monitoring cer-
tain symptoms from rootkit infection. For example, Petroni
et al. [35] uses an external hardware PCI card to grab the run-
time OS memory image and detect possible rootkit presence
by spotting certain kernel code integrity violations. Strider
GhostBuster [44] and VMwatcher [20] target the self-hiding
nature of rootkits and infer rootkit presence by detecting dis-
crepancies between the views of the same system from dif-
ferent perspectives. Other approaches such as K-Tracer [24],
PoKeR [39], HookFinder [48], and Panorama [47] are pro-
posed to analyze kernel malware so that we can extract their
behavioral profiles and better understand rootkit-inherent
characteristics. Our approach has a different goal by focus-
ing on preventing a new breed of rootkits, instead of detect-
ing or analyzing a kernel rootkit infection. Therefore, ourap-
proach is complementary to the above systems and interest-
ing opportunities still remain to seamlessly integrate them.

Compiler-based Memory Safety The fourth area of re-
lated work includes a number of compiler-based systems to
enforce memory safety for user-level applications. By instru-
menting the control flow transfer instructions, CFI [6] de-
mands the run-time control flow to follow the statically de-
termined CFG (control flow graph). On the other hand, DFI
[12] imposes the data flow integrity to defend against non-
control-data attacks. CCured [30] and Cyclone [21] propose
memory safe dialects of C to prevent memory corruption.
Both systems require non-trivial efforts to port the exist-
ing C source code to these dialects. Another related work is
software-based bound checking that intends to provide spa-
tial or temporal memory safety by preventing out-of-bound
memory access. Among bound checking systems, many of
them [8, 16] are object-based. They track all allocated mem-
ory regions to map and limit pointers to individual memory
region at runtime. Others (e.g., [21, 29, 30]) are based on
fat-pointer. In addition to the actual pointer, each fat-pointer
carries with it the pointer’s base and bound.

As mentioned earlier, these systems can provide effective
protection on memory safety and prevent the normal control-
flow from being hijacked. However, it still remains to show
how they can be applied to OS kernel protection due to
additional complexities and challenges in the kernel space.
From another perspective, our approach complements them
by eliminating possible return-oriented gadgets in the OS
kernel images and thus making RORs infeasible.



8. Conclusion
In this paper, we have presented the design, implementa-
tion and evaluation of a compiler-based approach to de-
feat return-oriented rootkits (RORs). Our approach recog-
nizes the necessity of return instructions in these return-
oriented attacks and accordingly proposes three key tech-
niques (i.e., return indirection, register allocation, and peep-
hole optimization) to completely remove them, thus mak-
ing return-oriented attacks infeasible. We have developeda
prototype system to generate a return-less FreeBSD kernel
and the evaluation results show that our approach is generic,
effective, and can be implemented on commodity hardware
with a low performance overhead.
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