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Embedded systems with real-time constraints depend on a priori knowledge of worst-case execution
times (WCETs) to determine if tasks meet deadlines. Static timing analysis derives bounds on
WCETs but requires statically known loop bounds.

This work removes the constraint on known loop bounds through parametric analysis express-
ing WCETs as functions. Tighter WCETs are dynamically discovered to exploit slack by dynamic
voltage scaling (DVS) saving 60% to 82% energy over DVS-oblivious techniques and showing sav-
ings close to more costly dynamic-priority DVS algorithms.

Overall, parametric analysis expands the class of real-time applications to programs with loop-
invariant dynamic loop bounds while retaining tight WCET bounds.
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1. INTRODUCTION

Real-time and embedded systems are increasingly deployed in safety-critical
environments. Examples include avionics, power plants, automobiles, and so
on. The software, in general, must be validated, which traditionally amounts to
checking the correctness of the input/output relation. Many embedded systems
also impose timing constraints, which, if violated, may not only render a system
nonfunctional, but may also result in fallouts dangerous to the environment.
Such systems are commonly referred to as real-time systems, and they impose
timing constraints (termed as deadlines) on computational tasks to ensure that
results are provided on time. Often, approximate results supplied on time are
preferred to more precise results that may become available late (i.e., after the
deadlines have passed). One critical piece of information required by designers
of real-time systems to verify that tasks meet their deadlines, is the worst-case
execution time (WCET) of each task. Bounds on WCETs of tasks are automati-
cally determined by static timing analysis tools. The total time in the schedule
and each task’s WCET can subsequently be used to make scheduling decisions.

Static timing analysis [Puschner and Koza 1989; Harmon et al. 1992; Park
1993; Lim et al. 1994; Healy et al. 1995; Chapman et al. 1996; Li et al. 1996;
Malik et al. 1997; Healy et al. 1998; White et al. 1999; Mueller 2000; Hergenhan
and Rosenstiel 2000; Bernat and Burns 2000; Wegener and Mueller 2001; Chen
et al. 2001; Engblom et al. 2001; Engblom 2002; Bernat et al. 2002; Thesing
et al. 2003; Mohan et al. 2005] provides bounds on the WCET. The tighter
these bounds relative to the true worst-case times, the greater the value of
the analysis. Of course, even a tight bound has to be a safe bound in that it
must not underestimate the true WCET; it may only match it or exceed it.
In general, timing analysis is by no means an easy or trivial task. Bounds on
execution times require constraints to be imposed on the tasks (timed code),
the most striking of which is the requirement to statically bound the number
of iterations of loops within the task. These loop bounds address the halting
problem (i.e., without these loop bounds, WCET bounds cannot be derived).
The programmer must provide these upper bounds on loop iterations when
they cannot be inferred by program analysis. Hence, these statically fixed loop
bounds may present an inconvenience. They also restrict the class of programs
that can be used in real-time systems. This type of timing analysis is referred to
as [Harmon et al. 1992; Healy et al. 1995; White et al. 1997; Healy et al. 1998;
White et al. 1999; Mueller 2000], since it results in a single numeric value for
WCET given the upper bounds on loop iterations.
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The constraint on the known maximum number of loop iterations is removed
by parametric timing analysis (PTA) [Vivancos et al. 2001]. PTA permits vari-
able length loops. Loops may be bounded by n iterations as long as n is known
prior to loop entry during execution. Such a relaxation widens the scope of an-
alyzable programs considerably and facilitates code reuse for embedded/real-
time applications.

This article derives parametric expressions to bound WCET values of dynam-
ically bounded loops as polynomial functions. The variables affecting execution
time, such as a loop bound n, constitute the formal parameters of such func-
tions, while the actual value of n at execution time is used to evaluate such a
function. This article further describes the application of static timing analysis
techniques to dynamic scheduling problems and assesses the benefits of PTA
for dynamic voltage scaling (DVS). This work contributes a novel technique
that allows PTA to interact with a dynamic scheduler while discovering ac-
tual loop bounds, during execution, prior to loop entry. At loop entry, a tighter
bound on WCET can be calculated on-the-fly, which may then trigger schedul-
ing decisions synchronous with the execution of the task. The benefits of PTA
resulting from this dynamically discovered slack are analyzed. This slack could
be utilized in two ways: execution of additional tasks as a result of admissions
scheduling and power management.

Recently, numerous approaches have been presented that utilize DVS for
both, general-purpose systems [Weiser et al. 1994; Govil et al. 1995; Pering
et al. 1995; Grunwald et al. 2000] and for real-time systems [Gruian 2001;
Shin et al. 2000; Pillai and Shin 2001; Aydin et al. 2001; Shin et al. 2001; Aydin
et al. 2001; Kang et al. 2002; Zhang and Chanson 2002; Saewong and Rajkumar
2003; Lee and Krishna 2003; Liu and Mok 2003]. Core voltages of contemporary
processors can be reduced while lowering execution frequencies. At these lower
execution rates, power is significantly reduced, as power is proportional to the
frequency and to the square of the voltage: P ∝ V2 × f .

In the past, real-time scheduling algorithms have shown how static and
dynamic slack may be exploited in intertask DVS approaches [Gruian 2001;
Shin et al. 2000; Pillai and Shin 2001; Aydin et al. 2001; Kang et al. 2002; Zhang
and Chanson 2002; Saewong and Rajkumar 2003; Lee and Krishna 2003; Liu
and Mok 2003; Lee and Shin 2004; Zhu and Mueller 2004; 2005; Jejurikar and
Gupta 2005; Zhong and Xu 2005] as well as intratask DVS algorithms [Mosse
et al. 2000; Shin et al. 2001; Aydin et al. 2001; AbouGhazaleh et al. 2001]. Early
task completion and techniques to assess the progress of execution based on
past executions of a task lead to dynamic slack discovery.

We use a novel approach towards dynamic slack discovery. Slack, in our
method, can be safely predicted for future execution by exploiting early knowl-
edge of parametric loop bounds. This allows us to tightly bound the remainder
of execution of a task. The potential for dynamic power conservation via ParaS-
cale, a novel intratask DVS algorithm, is assessed. ParaScale allows tasks to be
slowed down as and when more slack becomes available. This is in sharp con-
trast to past real-time DVS schemes, where tasks are sped up in later stages
as they approach their deadline [Gruian 2001; Lee and Shin 2004; Zhu and
Mueller 2004, 2005; Jejurikar and Gupta 2005; Zhong and Xu 2005].
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We also implemented a novel enhancement to the static DVS scheme and
incorporated it with our intratask slack determination scheme, resulting in
significant energy savings. The energy savings approach those obtained by one
of the most aggressive dynamic DVS algorithms [Pillai and Shin 2001].

The approach is evaluated by implementing PTA in a gcc environment with
a MIPS-like instruction set. Execution is simulated on a customized Sim-
pleScalar [Burger et al. 1996] framework that supports multitasking. We bound
the effect of instruction cache misses but not data cache misses in our exper-
iments. The framework has been modified to support customized schedulers
with and without DVS policies and an enhanced Wattch power model [Brooks
et al. 2000], which aids in assessing power consumption. We also implemented
a more accurate leakage power model similar to Jejurikar et al. [2004] to esti-
mate the amount of leakage and static power consumed by the processor. This
framework is used to study the benefits of PTA in the context of ParaScale as
a means to exploit DVS.

Our results indicate that ParaScale, applied on a modified version of a static
DVS algorithm, provides significant savings by utilizing our parametric ap-
proach to timing analysis. These savings are observed for generated dynamic
slack and potential reduction in overall energy. In fact, the amount of en-
ergy saved is very close to that obtained by the lookahead EDF-DVS scheme
[Pillai and Shin 2001]—a popular, aggressive dynamic DVS algorithm. Thus,
ParaScale makes it possible for static intertask DVS algorithms to be used on
embedded systems. This helps avoid more cumbersome (and difficult to imple-
ment) DVS schemes while still achieving similar energy savings. Our approach
utilizes online intra-task DVS to exploit parametric execution times resulting
in much lower power consumptions (i.e., even without any scheduler-assisted
DVS savings). Hence, even in the absence of dynamic-priority scheduling, sig-
nificant power savings may be achieved (e.g., in the case of cyclic executives
or fixed-priority policies such as rate-monotonic schedulers) [Liu and Layland
1973]. Overall, parametric timing analysis expands the class of applications
for real-time systems to include programs with dynamic loop bounds that are
loop invariant while retaining tight WCET bounds and uncovering additional
slack in the schedule.

The article is structured as follows. Sections 2 and 3 provide information on
numeric as well as parametric timing analysis. Section 4 explains derivation
of the parametric formulae and their integration into the code of tasks. This
section also shows the steps involved in obtaining accurate WCET analysis for
the new, enhanced code. Section 5 discusses the context in which parametric
timing results are used. Section 6 introduces the simulation framework. Section
7 elaborates on the experiments and results. Section 8 discusses related work,
and Section 9 summarizes the work.

2. NUMERIC TIMING ANALYSIS

Knowledge of WCETs is necessary for most hard real-time systems. The WCET
must be known or safely bounded a priori so that the feasibility of scheduling
task sets in the system may be determined, given a scheduling policy, such as
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Fig. 1. Static timing analysis framework.

rate-monotonic or earliest-deadline-first scheduling [Liu and Layland 1973].
Timing analysis methods typically fall into two categories: static and dynamic.
It has been shown that dynamic timing analysis methods, based on trace-
driven or experimental methods, cannot guarantee the safety of WCET values
obtained [Wegener and Mueller 2001]. Architectural complexities, difficulties in
determining worst-case input sets, and the exponential complexity of perform-
ing exhaustive testing over all possible inputs are also reasons why dynamic
timing analysis methods are infeasible in general.

In contrast, static timing analysis methods guarantee upper bounds on
WCET of tasks. In this work, we constrain ourselves to a toolset developed in
our previous work [Healy et al. 1999; Mueller 2000; White et al. 1999; Mohan
et al. 2005]. Static timing analysis models the traversal of all possible execu-
tion paths in the code. Execution timing is determined independent of program
traces or input data to program variables. The behavior of architectural com-
ponents is captured as execution paths are traversed. Paths are composed to
form functions, loops, and so on until finally the entire application is covered.
Hence, we obtain a bound on the WCET and the worst-case execution cycles
(WCECs).

The organization of this timing analysis framework is presented in Figure 1.
An optimizing compiler is modified to produce control flow and branch con-
straint information, as a side effect of the compilation process. Control flow
graphs and instruction and data references are obtained from assembly code.
One of the prerequisites of traditional static timing analysis is that an upper
bound on the number of loop iterations be provided to the system.

The control flow information is used by a static instruction cache simulator
to construct a control-flow graph of the program and caching categorizations
for each instruction [Mueller 2000 ]. This control-flow graph consists of the call
graph and the control flow for each function. The control-flow graph of the pro-
gram is analyzed, and a caching categorization for each instruction and data
reference in the program is produced using a data-flow equation framework.
Each loop level containing the instruction and data references is analyzed to ob-
tain separate categorizations. These categorizations for instruction references
are described in Table I. Notice that references are conservatively categorized
as always-misses if static cache analysis cannot safely infer hits on one or more
references of a program line.

The control flow, the constraint information, the architecture-specific infor-
mation and caching categorizations are used by the timing analyzer to derive
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Table I. Instruction Categories for WCET

Cache Category Definition

always miss Instruction may not be in cache when referenced.
always hit Instruction will be in cache when referenced.
first miss Instruction may not be in cache on first reference

for each loop execution, but is in cache on subse-
quent references.

first hit Instruction is in cache on first reference for each
loop execution, but may not be in cache on subse-
quent references.

Fig. 2. Numeric loop analysis algorithm.

WCET bounds. Effects of data hazards (load-dependent instruction stalls if a
use immediately follows a load instruction), structural hazards (instruction de-
pendencies due to constraints on functional units), and cache misses (obtained
from the caching categorizations) are considered by a pipeline simulator for
each execution path through a function or loop. We can accommodate static
branch prediction in the WCET analysis by adding the misprediction penalty
to the nonpredicted path.

Path analysis is then performed to select the longest execution path, and
once timing results for alternate paths are available, a fixed-point algorithm
quickly converges to safely bound the time for all iterations of a loop. Figure 2
illustrates an abstraction of the fix-point algorithm used to perform loop anal-
ysis. The algorithm repeatedly selects the longest path through the loop until
a fixed point is reached (i.e., the caching behavior does not change and the cy-
cles for the worst-case path remains constant for subsequent loop iterations).
WCETs for inner loops are predicted before those for outer loops; an inner
loop is treated as a single node for outer loop calculations, and the control flow
is partitioned if the number of paths within a loop exceeds a specified limit
[Al-Yaqoubi 1997]. The correctness of this fixed-point algorithm has been stud-
ied in detail [Arnold et al. 1994].

By composing the WCET bounds for adjacent paths, the WCET of loops,
functions and the entire task is then derived by the timing analyzer by the
traversal of a timing tree, which is processed in a bottom-up manner. WCETs
for outer loop nest/caller functions are not evaluated until the times for inner
loop nests/callees are calculated.
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Fig. 3. Use of parametric timing analysis.

Fig. 4. Parametric loop analysis algorithm.

3. PARAMETRIC TIMING ANALYSIS

In the static timing analysis method presented earlier, upper bounds on loop
iterations must be known. They can be provided by the user or may be inferred
by analysis of the code. This severely restricts the class of applications that can
be analyzed by the timing analyzer. We refer to this class of timing analyzers,
as numeric timing analyzers, since they provide a single, numeric cycle value
provided that upper loop bounds are known.

Parametric timing analysis (PTA) [Vivancos et al. 2001], in contrast, makes
it possible to support timing predictions when the number of iterations for a
loop is not known until runtime.

Consider the example in Figure 3. The for loop denotes application code
traditionally subject to numerical timing analysis for an annotated upper loop
bound of 1,000 iterations. PTA requires that the value of n be known prior to
loop entry. The bold-faced code denotes additional code generated by PTA.

The concept is to calculate a formula (or closed form) for the WCET of a
loop, such that the formula depends on n, the number of iterations of the
loop. The calculation of this formula (102*n in Figure 3) needs to be relatively
inexpensive since it will be used at runtime to make scheduling decisions. These
decisions may entail selection/admission of additional tasks or modulation of
the processor frequency/voltage to conserve power. Hence, instead of passing a
numeric value representing the execution cycles for loops or functions up the
timing tree, a symbolic formula is provided if the number of iterations of a loop
is not known.

The algorithm in Figure 4 is an abstraction of the revised loop analysis al-
gorithm for PTA. This algorithm iterates to a fixed point (i.e., until the caching
behavior does not change). The number of base cycles obtained from this al-
gorithm is then saved. The base cycles denote the extra cycles cumulatively
inflicted by initial loop iterations before the cycles of the worst-case path reach
a fixed point (wcpath → cycles). The base cycles are subsequently used to
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calculate the number of cycles in a loop as follows.

WCETloop = wcpath → cycles ∗ n + base cycles (1)

The correctness of this approach follows from the correctness of numeric
timing analysis [Healy et al. 1999]. When instruction caches are present in the
system, the approach assumes monotonically decreasing WCETs as the cache
behavior of different paths through the loop is considered. This integrates well
with our past techniques on bounding the worst-case behavior of instruction
and data caches [Mueller 2000; White et al. 1999].1

Equation 1 illustrates that the WCET of the loop depends on the base cycles
and the WCET path time (both constants) as well as on the number of loop
iterations, which will only be known at runtime for variable-length loops. The
potentially significant savings from such parametric analysis over the numeric
approach are illustrated and discussed later in Figure 7. The algorithm in
Figure 4 is an enhancement of the algorithm presented in Figure 2. Since the
cycles for the worst-case path for the algorithm in Figure 2 has been shown
to be monotonically decreasing, the worst-case path cycles for the algorithm in
Figure 4 also monotonically decreases.

If the actual number of iterations (say, 100) exceeds the number of iterations
required to reach the fixed point for calculating the base cycles (say, 5), then
the parametric result closely approximates that calculated by the numeric
timing analyzer. If, on the other hand, the actual number of iterations (say, 3)
is lower than the fixed point (say, 5), then there could be an overestimation
due to considering cycles on top of the WCET path cost (for iterations 4 and
5). The formulae could be modified to deal with the special case that has fewer
iterations, for example, by early termination of our algorithm if actual bounds
are lower than the fixed point (future work).

The general constraints on loops that can be analyzed by our parametric
timing analyzer are.

(1) Loops must be structured. A structured loop is a loop with a single entry
point (also known as reducible loop) [Aho et al. 1986; Unger and Mueller
2002].

(2) The compiler must be able to generate a symbolic expression to represent
the number of loop iterations.

(3) Rectangular loop nests can be handled, as long as the induction variables
of these loops are independent of one other.

(4) The value of the actual loop bound must be known prior to entry into the
loop

Syntactic and semantic specifications that suffice to meet these constraints
are presented in Figure 5. The pragma value is the pessimistic worst-case bound
for the number of loop iterations. Figure 5 is only informative. Actual analysis

1Other cache modeling techniques or consideration of timing anomalies due to caches [Berg 2006]
may require exhaustive enumeration of all paths and cache effects within the loop or an entirely
different algorithm.
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Fig. 5. Syntactic and semantic specifications for constraints on analyzable loops.

Fig. 6. Example of an outer loop with multiple paths.

is performed on the intermediate code representation. Hence, we are able to
handle transformations due to compiler optimizations (e.g., loop unrolling).

The timing analyzer processes inner loops before outer loops, and nested
inner loops are represented as single blocks when processing a path in the
outer loop. We represent loops with symbolic formulae (rather than a constant
number of cycles) when the number of iterations is not statically known. The
WCET for the outer loop is simply the symbolic sum of the cycles associated
with a formula representing the inner loop as well as the cycles associated with
the rest of the path.

The analysis becomes more complicated when paths in a loop contain nested
loops with parametric WCET calculations of their own. Consider the example
depicted in Figure 6, which contains two loops, where an inner loop (block
4) is nested in the outer loop (blocks 2, 3, 4, 5). Assume that the inner loop
is also parametric with a symbolic number of iterations. The loop analysis
algorithm requires that the timing analysis finds the longest path in the outer
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Table II. Examples of Parametric Timing Analysis

Program Formula Iters Observed Cyc. Numeric Analysis Param. Analysis
Est. Cyc. Ratio Est. Cyc. Ratio

Matcnt 160n2 + 267n + 857 100 1,622,034 1,627,533 1.003 1,627,557 1.003
Matmul 33n3 + 310n2 + 530n + 851 100 33,725,782 36,153,837 1.072 36,153,851 1.072

Stats 1049n + 1959 100 106,340 106,859 1.005 106,859 1.005

loop. This obviously depends on the number of iterations of the inner loop. The
minimum number of iterations for a loop is one, assuming that the number of
loop iterations is the number of times that the loop header (loop entry block)
is executed. If the WCET for path A (2→3→5) is less than the WCET for path
B (2→4→5), for a single iteration, then path B is chosen, else a max() function
must be used to represent the parametric WCET of the outer loop. Equation (2)
illustrates this idea of calculating the maximum of the two paths. Note, though,
that the WCET of these paths is obtained after the caching behavior reaches
a steady state, and the base cycles are the extra cycles before either of these
paths reach that steady state. The first value passed to the max() function in
this example would be numeric, while the second value would be symbolic.

WCETloop = max(WCETpath A time, WCETpath B time) ∗ n + base cycles (2)

Similar to numeric timing analysis, certain restrictions still apply. Indirect
calls and unstructured loops (loops with more than one entry point) cannot be
handled. Recursive functions can, in theory, be handled if the recursion depth
is known statically or if the depth can be inferred dynamically prior to the first
function call (via parametric analysis). Upper bounds on the loop iterations,
parametric or not, still need not be known but the bounds can be pessimistic as
the actual bounds are now discovered during runtime. In addition, the timing
analysis framework has to be enhanced to automatically generate symbolic
expressions reflecting the parametric overhead of loops, which will be evaluated
at runtime.

Table II shows the results of predicting execution time using the two types
of techniques. For these programs, we predicted pipeline and instruction cache
performance. Formula is the formula returned by the parametric timing ana-
lyzer and represents the parametrized predicted execution time of the program.
In order to evaluate the accuracy of the parametric timing analysis approach,
we ensure that each loop in these test programs iterates the same number of
times. Thus, it n Iters represents the number of loop iterations for each loop in
the program and n also represents that value in the formulae. The power of n
represents the loop nesting level and the factor represents the cycles spent at
that level. Note that most of the programs had multiple loops at each nesting
level. For example, 160n2 indicates that 160 cycles is the sum of the cycles
that would occur in a single iteration of all the loops at nesting level 2 in the
program. If the number of iterations of two different loops in a loop nest differ,
then the formula would reflect this as a multiplication of these factors. For
instance, if the matrix in Matcnt had m rows and n columns, where m �= n,
then thfashie formula would be (160n + 267)m + 857. Parametric timing anal-
ysis supports any rectangular loop nest of independent bounds known prior to
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Fig. 7. WCET bounds as a function of the number of iterations.

loop entry, obtaining bounds for each loop in an inner-most-out fashion, using
the algorithm in Figure 4. An extension could handle triangular loops with
bounds dependent on outer iterators as well [Healy et al. 2000]. The Observed
Cycles were obtained by using an integrated pipeline and instruction cache
simulator, and represents the cycles of execution given worst-case input data.
The Numeric Analysis represents the results using the previous version of the
timing analyzer, where the number of iterations of each loop is bounded by a
number known to the timing analyzer. Parametric Analysis represents cycles
calculated at runtime when the number of iterations is known and, in this case,
equal to the static bound. Estimated Cycles and Ratio represent the predicted
number of cycles by the timing analyzer and its ratio to the Observed Cycles.
The estimated parametric cycles were obtained by evaluating the number of
iterations with the formula returned by the parametric timing analyzer. These
results indicate that the parametric timing analyzer is almost as accurate as
the numeric analyzer.

PTA enhances this code with a call to the intratask scheduler and provides
a dynamically calculated, tighter bound on the WCET of the loop. The tighter
WCET bound is calculated by an evaluation function generated by the PTA
framework. It performs the bounds calculation based on the dynamically dis-
covered loop bound n. The scheduler has access to the WCET bound of the
loop derived from the annotated, static loop bound by static timing analysis.
It can now anticipate dynamic slack as the difference between the static and
the parametric WCET bounds provided by the evaluation function. Without
parametric timing analysis, the value of n would have been assumed to be the
maximum value (i.e., 100 in this case).

Figure 7 shows the effect of changing the number of iterations on loop bounds
for parametric and numerical WCET analysis. Parametric analysis is able to
adapt bounds to the number of loop iterations, thereby more tightly bounding
the actual number of required cycles for a task (Table II). Hence, it can save
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a significant number of cycles compared to numerical analysis (which must
always assume the worst case, i.e., 1,000 iterations in Figure 7). This effect
becomes more pronounced as the number of actual iterations becomes much
smaller than the static bound. In such situations, parametric timing analysis
is able to provide significantly tighter bounds.

4. CREATION AND TIMING ANALYSIS OF FUNCTIONS THAT EVALUATE
PARAMETRIC EXPRESSIONS

In the previous section, the methodology for deriving WCET bounds from
parametric formulae was introduced. In this section, problems in embedding
such formulae in application code are discussed. An iterative re-evaluation of
WCETs is provided as a solution.

The challenge of embedding evaluation functions for parametric formulae
is as follows. When the code within a task is changed to include parametric
WCET calculations, previous timing estimates and the caching behavior of the
task might be affected. One may either inline the code of the formula or invoke
a function that evaluates the symbolic formula. Since both approaches affect
caching, another pass of cache analysis has to be performed on the modified
code. We made an arbitrary design decision to pursue the latter approach.
Using this modular approach, the cache analysis can reach a fixed point in
fewer iterations as changes are constrained to functional boundaries rather
than embedded within a function affecting the caching of any instructions in
the following text if the inlined code changes in size. The cost of calling an
evaluation function is minimal compared to the benefit, and a subsequent call
to the scheduler is required in any case to benefit from lower bounds.

Once a task has been enhanced with these parametric functions and their
calls prior to loops, the timing analyzer must be reinvoked to analyze the newly
enhanced code. This allows us to capture the WCET of generated functions and
their invocations in the context of a task. Notice that any reinvocation of the
timing analyzer potentially changes the parametric formulae and their corre-
sponding functions such that we have to iterate through the timing analysis
process. This is illustrated in Figure 8, where the process of generating formu-
lae is presented. The iterative process converges to a fixed point when para-
metric formulae reach stable states. Typically, the parametric timing analysis
and calculation of the parametric formulae take less than a second to complete.
Since this is an offline process, it does not add to the overhead of the execution
of the parametrized system.

An example is presented in Figure 9, where timing analysis is accomplished
in stages, as parametric formulae are generated and evaluated later. In the
example shown, a function is generated by the timing analyzer to calculate the
WCET for loop 2, whose number of iterations is only known at runtime.

The following sequence of operations takes place.

(1) A call to a function is inserted that returns the WCET for a specified loop or
function based on a parameter, indicating the number of loop iterations that
is available at runtime. The instructions that are associated with the call
and the ones that use the return value after the call are generated during
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Fig. 8. Flow of parametric timing analysis.

the initial compilation. For instance, in Figure 9(a), a function calls the
yet-to-be generated function to obtain the WCET of loop 2, which contains
a symbolic number of iterations.

(2) The timing analyzer generates the source code for the called function
in a separate file when processing the specified loop or function whose
time needs to be calculated at runtime. For instance, Figure 9(c) shows
that after loop 2 has been parametrically analyzed, the code for the
calculating function has been generated. Note that the timing analysis
tree representing the loops and functions in the program is processed
in a bottom-up fashion. The code in the function invoking the generated
function is not evaluated until after the generated function is produced.
The static cache simulator can initially assume that a call to an unknown
function invalidates the entire cache. Figure 3 shows an example of the
source code for such a generated function.

(3) The generated function is compiled and placed at the end of the executable.
The formula representing the symbolic WCET need not be simplified by
the timing analyzer. Most optimizing compilers perform constant folding,
strength reduction, and other optimizations that will automatically
simplify the symbolic WCET produced by the timing analyzer. By placing
the generated function after the rest of the program, instruction addresses
of the program remain unaffected. While the caching behavior may have
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Fig. 9. Example of using parametric timing predictions.

changed, loops are unaffected, since timing tree is processed in a bottom-up
order.

(4) The timing analyzer is invoked again to complete the analysis of the pro-
gram, which now includes calculating the WCET of the generated function
and the code invoking this function. For instance, Figure 9(c) shows that
the generated function has been numerically analyzed and Figure 9(d)
shows that the original function has been parametrically analyzed, which
now includes the numeric WCET required for executing the new function.

In short, this approach allows for timing analysis to proceed in stages. Para-
metric formulae are produced when needed, and source code functions repre-
senting these formulae are produced, which are also subsequently compiled,
inserted into the task code, and analyzed. This process continues until a for-
mula is obtained for the entire program or task.

5. USING PARAMETRIC EXPRESSIONS

In this section, potential benefits of parametric formulae and their evaluation
functions are discussed. A more accurate knowledge of the remaining execu-
tion time provides a scheduler with information about additional slack in the
schedule. This slack can be utilized in multiple ways.

— A dynamic admission scheduler can accept additional real-time tasks due to
parametric bounds of the WCET of a task, which become tighter as execution
progresses.

— Dynamic slack can also be used for dynamic voltage (and frequency) scaling
(DVS) in order to reduce power.

In the remainder of this article, the latter case will be detailed. Recall
that parametric timing analysis involves the integration of symbolic WCET
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formulae as functions and their respective evaluation calls into a task’s code.
Apart from these inserted function calls, we also insert calls to transfer con-
trol to the DVS component of an optional dynamic scheduler before entering
parametric loops, as shown in Figure 3. The parametric expressions are eval-
uated at runtime (using evaluation functions similar to the one in the figure)
as knowledge of actual loops bounds becomes available. The newly calculated,
tighter bound, on the execution time for the parametric loop is passed along to
the scheduler. The scheduler is able to determine newly found dynamic slack
by comparing WCECs for that particular loop with the parametrically bounded
execution time. The WCECs for each loop and the task as a whole are provided
to the scheduler by the static timing analysis toolset. Static loop bounds for
each loop are provided by hand. Automatic detection of bounds is subject to
future work.

Dynamic slack originating from the evaluation of parametric expressions
at runtime is discovered and can be exploited by the scheduler for admission
scheduling or DVS (see previous discussion). Our work is unique in that we
exploit early knowledge of parametric loop bounds, thus allowing us to tightly
bound the overall execution of the remainder of the task. To this effect, we have
developed an intratask DVS algorithm to lower processor frequency and volt-
age. Another unique aspect of our approach is that every successive parametric
loop that is encountered during the execution of the task potentially provides
more slack and, hence, allows us to further scale down the processor frequency.
This is in sharp contrast to past real-time schemes where DVS-regulated tasks
are sped up as execution progresses, mainly due to approaching deadlines.

6. FRAMEWORK

An overview of our experimental framework is depicted in Figure 10. The
instruction information fed to the timing analyzer is obtained from our P com-
piler, which preprocesses gcc-generated PISA assembly. The C source files are
also fed simultaneously to both the static and the parametric timing analyzers.
Safe (but, due to the parametric nature of loops, not necessarily tight) upper
bounds for loops are provided as inputs to the static timing analyzer (STA). The
WCETs/WCECs, for tasks as well as loops, provided by the STA are provided as
input to a scheduler. The C source files are also provided to the PTA. The PTA
produces source files annotated with parametric evaluation functions as well
as calls to transfer control to the scheduler before entry into a parametric loop.
These annotated source files form the task set for execution by the scheduler.

To simplify the presentation, Figure 10 omits the loop that iterates over
parametric functions till they reach a fixed point (as discussed in Figure 8).
This would create a feedback between the PTA output and the C source files
that provide the input to the toolset. For the sake of this discussion, we also
combine the set of timing analysis tools as one component in Figure 10, that
is, we omit the internal structure of a static cache simulator and the timing
analyzer depicted in Figure 1.

We have implemented an EDF scheduler that creates an initial execution
schedule based on the pessimistic WCET values provided by the STA. This
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Fig. 10. Experimental framework.

scheduler is also capable of lowering the operating frequency (and, hence, the
voltage) of the processor by way of its interaction with two DVS schemes: (i)
an intertask DVS algorithm, which scales down the frequency based on the
execution of whole tasks (we use a static and a dynamic DVS algorithm) and
(ii) ParaScale, an intratask DVS scheme that, on top of the scaled frequency
from (i), which provides further opportunities to reduce the frequency based on
dynamic slack gains due to PTA.

The static DVS scheme is similar to the static EDF policy by Pillai and
Shin [2001]. However, it differs in that the processor frequency and voltage are
reduced to their respective minimum during idle periods. Two dynamic DVS
schemes have been implemented. The first one, named “greedy DVS,” is a modi-
fication of the static DVS scheme and aggressively reduces the frequency below
the statically determined value until the next scheduler invocation. The slack
accrued from early completions of jobs is used to determine lower frequencies
for execution.

The second dynamic DVS algorithm is the “lookahead” EDF-DVS policy
by the same authors—it is a very aggressive dynamic DVS algorithm and
lowers the frequency and voltage to very low levels. Throughout this article,
we use the name ParaScale to refer to the intratask DVS technique that uses
the parametric loop information to accurately gauge the number of remaining
cycles and lower the voltage/frequency. We use “ParaScale-G” and “ParaScale-
L,” to refer to the ParaScale implementations of the greedy and lookahead
intertask DVS algorithms, respectively. ParaScale always starts a task at the
frequency value specified by the intertask DVS algorithm. It then dynamically
reduces the frequency and voltage according to slack gains from the knowledge
on the recalculated bounds on execution times for parametric loops. The effect
of scaling is purely limited to intratask scheduling (i.e., the frequency can only
be scaled down as much as the completion due to the nonparametric WCET
allows). Hence, each call to the scheduler due to entering a parametric loop
potentially results in slack gains and lower frequency/voltage levels.

We performed (numeric) timing analysis on the two schedulers in our system.
The WCECs for the schedulers (Table III) were then included in the utiliza-
tion calculations. The WCEC for the intertask DVS algorithm was used as a
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Table III. WCECs for Intertask and Intratask Schedulers
for Various DVS Algorithms

Scheduler Type DVS Algorithm
no dvs static dvs lookahead dvs

Inter-task 6874 7751 8627
Intra-task 1625 2502 3378

preemption overhead for all lower priority tasks. We assumed the worst-case
behavior while dealing with preemptions, that is, the upper bound on the num-
ber of preemptions of a job j is given by the number of higher-priority jobs
released before job j’s deadline.

The execution time for the intratask DVS algorithm (ParaScale) was added
once to the WCEC of each task in our system. The intratask scheduler is called
exactly once for each invocation of a task—prior to entry into the outermost
parametric loop.

The simulation environment (used in a prior study [Anantaraman et al.
2003]) is a customized version of the SimpleScalar processor simulator that
executes so-called PISA instructions (MIPS-like) [Burger et al. 1996]. PISA
assembly, generated by gcc, also forms the input to the timing analyzers. The
framework supports multitasking and the use of schedulers that operate with
or without DVS policies. Our enhanced SimpleScalar is configured to model a
static, in-order pipeline, with universal, unpipelined function units. We use a
64K instruction cache and no data cache. A static instruction cache simula-
tor accurately models all accesses and produces categorizations, such as those
illustrated in Table I. The data cache module has not been implemented yet,
as our priority was to accurately gauge the benefits and energy savings of
using parametric timing analysis. For the time being, we assume a constant
memory access latency for each data reference and leave static data cache
analysis for future work. Also, pipeline-related and cache-related preemption
delays (CRPD) [Lee et al. 1996; Schneider 2000; Staschulat and Ernst 2004;
Staschulat et al. 2005; Ramaprasad and Mueller 2006] are currently not mod-
eled but, given accurate and safe CRPD bounds, could easily be integrated. The
Wattch model [Brooks et al. 2000], along with the following enhancements, also
forms part of the framework, in that it closely interacts with the simulator to
assess the amount of power consumed. The original Wattch model provides
power estimates assuming perfect clock gating for the units of the processor.
An enhancement to the Wattch model provides more realistic results in that
apart from perfect clock gating for the processor units, a certain amount of
fixed leakage is also consumed by units of the processor that are not in use.
Closer examination of the leakage model of Wattch revealed that this estima-
tion of static power may resemble but does not accurately model the leakage
in practice. Static power is modeled by assuming that unused processor com-
ponents leak approximately 10% of the dynamic power of the processor. This is
inaccurate, since static power is proportional to supply voltage while dynamic
power is proportional to the square of the voltage. We discuss the effect of us-
ing the Wattch model in the following section. To reduce the inaccuracies of the
Wattch model in determining the amount of leakage/static power consumed, we
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Table IV. Task Sets of C-Lab Benchmarks and WCETs (at 1GHz)

C Benchmark Function WCET
Cycles Time [ms]

adpcm Adaptive Differential Pulse Code Modulation 121,386,894 121.39
cnt Sum and count of positive and negative

numbers in an array
6,728,956 6.73

lms An LMS adaptive signal enhancement 1,098,612 10.9
mm Matrix Multiplication 67,198,069 67.2

Table V. Periods for Task Sets

Utilization Period = Deadline [ms]
adpcm cnt lms mm

20% 1,200 240 600 1,200
50% 1,200 75 60 600
80% 1,200 50 40 240

implemented a more accurate leakage model similar to prior work [Jejurikar
et al. 2004]. The implementation is configurable so that we cannot only study
current trends for silicon technology (in terms of leakage), but we are also able
to extrapolate on future trends (where leakage may dominate the total energy
consumption of processors).

The minimum and maximum processor frequencies under DVS are 100MHz
and 1GHz, respectively. Voltage/frequency pairs are loosely derived from the
XScale architecture by extrapolating 37 pairs (five reported pairs between
1.8V/1GHz and 0.76V/150MHz) starting from 0.7V/100MHz in 0.03V/25MHz
increments. Idle overhead is equivalent to execution at 100MHz, regardless of
the scheduling scheme.

7. EXPERIMENTS AND RESULTS

We created several task sets using a mixture of floating-point and integer
benchmarks from the C-Lab benchmark suite [C-Lab]. The actual tasks used
are shown in Table IV. For each task, the main control loop was parametrized.
We had initially parametrized loops at all nesting levels, but we observed
diminishing returns as the levels of nesting increased. In fact, the large number
of calls to the parametric scheduler due to nesting had adverse effects on the
power consumption relative to the base case. Hence, we limit parametric calls
to outer loops only.

Table V depicts the period (equal to deadline) of each task. All task sets
have the same hyperperiod of 1,200ms. All experiments executed for exactly
one hyperperiod. This facilitates a direct comparison of energy values across
all variations of factors mentioned in Table VI.

The parameters for the experiments are depicted in Table VI. We vary uti-
lization, the ratio of worst-case to parametric execution times (PETs), and DVS
support as follows:

Base: Executes tasks at maximum processor frequency and up to n, the
actual number of loop iterations for parametric loops(not necessarily the

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 2, Article 25, Publication date: December 2010.



Parametric Timing Analysis and Its Application to Dynamic Voltage Scaling • 25:19

Table VI. Parameters Varied in Experiments

Parameter Range of Values

Utilization 20%, 50%, 80%
Ratio WCET/PET 1×, 2×, 5×, 10×, 15×, 20×

Leakage Ratio 0.1, 1.0
Base
Parametric

DVS Static DVS
algorithms Greedy DVS

ParaScale-G
Lookahead
ParaScale-L

maximum number of statically bounded iterations). The frequency is changed
to the minimum available frequency during idle periods.

Parametric: Same as Base except that calls to the parametric scheduler are
issued prior to parametric loops without taking any scheduling action. This
assesses the overhead for scheduling of the parametric approach over the base
case.

Static DVS: Lowers the execution frequency to the lowest valid frequency
based on system utilization. For example, at 80% utilization, the frequency
chosen would be 80% of the maximum frequency. Idle periods, due to early task
completion, are handled at the minimum frequency.

Greedy DVS: This scheme is similar to static DVS in that it starts with the
statically fixed frequency but then aggressively lowers the frequency for the
current time period based on accrued slack from previous task invocations.
Every time a job completes early, the slack gained is passed on to the job which
follows immediately. Let job i be the job that completes early and generates
slack and let job j be the job which follows (consumer). The greedy DVS algo-
rithm calculates the frequency of execution, α′, for j as follows:

α′ =
[

α ∗ Cj

α ∗ Cj + slacki

]
α, (3)

where α is the frequency determined by the static DVS scheme. Notice that (i)
this slack is “lost” or rather reset to zero when the next scheduling decision
takes place and (ii) Equation (3) ensures that the new frequency scales down
job j so that it attempts to completely utilize the slack from the previous job,
but it does not stretch beyond the time originally budgeted for its execution
based on the higher, statically determined, frequency. From (i) and (ii), we see
that the new DVS scheme will never miss a deadline, if the original static DVS
scheme never misses a deadline, since greedy DVS accomplishes at least the
same amount of work as before, that is, it never utilizes processor time that
lies beyond the original completion time of task j. The processor switches to
the lowest possible frequency/voltage during idle time.

ParaScale-G: Combines the greedy and intratask DVS schemes so that
jobs start their execution at the lowest valid frequency based on system
utilization. Before a parametric loop is entered, the frequency is scaled down
further according to the difference between the WCET bound of the loop and
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the parametric bound of the loop calculated dynamically. ParaScale-G also
exploits savings due to already completed execution relative to the WCET
for frequency scaling. (These savings are small compared to the savings of
parametric loops, since parametric loops generally occur early in the code).
It also utilizes job slack accrued from previous task invocations to further
reduce the frequency. As in the case of the static and greedy DVS schemes,
the processor switches to the lowest possible frequency/voltage during idle time.

Lookahead: Implements an enhanced version [Zhu and Mueller 2005] of
Pillai and Shin’s [2001] lookahead EDF-DVS algorithm—a very aggressive
dynamic DVS algorithm.

ParaScale-L: Combines the lookahead and intratask DVS which utilizes
parametric loop information. It is similar in operation to ParaScale-G. While
ParaScale-G uses static values for initial frequencies, ParaScale-L uses fre-
quencies calculated by the aggressive, dynamic EDF-DVS algorithm (looka-
head).

Notice that all scheduling cases result in the same amount of work being
executed during the hyperperiod (or any integer multiple thereof) due to the
periodic nature of the real-time workload. Hence, to assess the benefits in terms
of power awareness, we can measure the energy consumed over such a fixed
period of time and compare this amount between scheduling modes.

The scheduler overhead for the greedy DVS scheme differs from those of the
static DVS scheme by only a few cycles, as the only additional overhead is the
calculation to determine α′ (Equation (3)). This calculation is performed only
once per scheduler invocation because we only calculate the new frequency for
the next scheduled task instance. Three types of energy measurements are
carried out during the course of our experiments.

PCG: Energy used with perfect clock gating (PCG)—only processor units
that are used during execution contribute to the energy measurements. This
isolates the effect of the parametric approach on dynamic power.

PCGL: Energy consumed by leakage, only, based on prior methods [Jejurikar
et al. 2004]. This attempts to capture the amount of energy exclusively used
due to leakage.

PCGL-W: Energy used with perfect clock gating for the processor units in-
cluding leakage. Leakage power is modeled by Wattch as 10% of dynamic
power, which is not completely correct, as discussed before.

We also vary the ratio of worst-case to actual (parametric) execution times
to study the effect of variations in execution times and make the experimental
results more realistic. More often than not, the worst-case analysis of systems
results in overestimations of WCET. ParaScale can take advantage of this to
obtain additional energy savings.

As part of the set-up for the experiments we initialized the PCGL leakage
model’s operating parameters with the ratio of leakage to dynamic power for
one particular experimental point. The ratio of dynamic and leakage energies
for the WCET overestimation of 1× and utilization of 50% was chosen for this
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Fig. 11. Energy consumption for PCG Wattch Model—dynamic energy consumption.

purpose. This ratio was used to set up appropriate operating parameters (num-
ber of transistors, body bias voltage, etc.), after which the experiments were
allowed to execute freely to completion. This gave us a unique opportunity to
study the effects of leakage for (i) current processor technologies, where the ra-
tio of leakage to dynamic may be 1:10; and (ii) future trends, where the leakage
may increase significantly as the previously mentioned ratio approaches 1:1.
The “leakage ratios” mentioned in Table VI refer to these two settings.

7.1 Overall Analysis

Figure 11 depicts the dynamic energy consumption for two sets of experiments:
(i) Figure 11(a) shows the dynamic energy values for the case where the WCET
overestimation is assumed to be twice that of the PET, and (ii) Figure 11(b)
shows the results for the instance where the WCET overestimation is assumed
to be ten times that of the PET. Both graphs depict results for different utiliza-
tion factors for each of the DVS schemes. From these graphs, we see that the
energy consumption by the ParaScale implementations outperform their corre-
sponding non-ParaScale implementations. Note that the greedy DVS scheme is
able to achieve some savings relative to the static DVS scheme. These savings
are fairly small, as the slack from the early completion of a job is passed on
to the next scheduled job, if at all. ParaScale-G, on the other hand, is able to
achieve significant savings over both the aggressive greedy algorithm and the
static DVS algorithm. This shows that most of the savings of ParaScale-G is due
to the early discovery of dynamic slack by the intratask ParaScale algorithm.

ParaScale-L also shows much lower energy consumptions than the static
DVS, greedy DVS, and the base case, always consuming the least amount of
energy for all utilizations among the three DVS schemes. Note that higher
relative savings are obtained for the higher utilization tasksets. This is true
for all DVS schemes.

Also, ParaScale-L outperforms the lookahead DVS algorithm, albeit by a
small margin. The reason for this small difference is that lookahead is a very
aggressive dynamic scheme, which tries to lower the frequency and voltage as
much as possible and often executes at the lowest frequencies. ParaScale-L is
able to outperform the lookahead algorithm due to the early discovery of future
slack for parametric loops, which basic lookahead is unable to exploit fully.
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Fig. 12. PCGL-W—leakage consumption from the Wattch Model.

One very interesting result is the relatively small difference between the
ParaScale-G and the lookahead energy consumption results (for dynamic en-
ergy consumption). Thus, ParaScale-G, an intratask DVS scheme that enhances
a static intertask DVS scheme, results in energy savings that are close to those
of the most aggressive dynamic DVS schemes, albeit at lower scheduling over-
head of the static scheme.

7.2 Leakage/Static Power

The results presented in Figure 11 are for energy values assuming perfect
clock gating (PCG) within the processor, that is, they reflect the dynamic
power consumption of the processor. These results isolate the actual gains due
to the parametric approach. However, dynamic power is not the only source of
power consumption on contemporary processors, which also have to account for
an increasing amount of leakage/static power for inactive processor units.

In Figures 12 and 13, we present the energy consumed due to leakage.
Figure 12 presents energy consumption with perfect clock gating and a con-
stant leakage for function units that are not being utilized, as gathered by
the Wattch power model. In reality, Wattch estimates the leakage to be 10%
of the dynamic energy consumption at maximum frequency. This might not be
entirely accurate. Even with this simplistic model, we see that the ParaScale
implementations outperform all other DVS algorithms, as far as leakage is
concerned. Notice that the absolute energy levels are very similar for 2× and
10× for the corresponding schemes. This is due to the dominating leakage in
this case.

Figure 13 depicts leakage results for a more realistic and accurate leakage
model similar to prior work [Jejurikar et al. 2004]. As mentioned earlier, we
performed two sets of experiments with two ratios of leakage to dynamic energy
consumptions—0.1 and 1.0. While the former models current processor and
silicon technologies, the latter extrapolates future trends for leakage. The top
portions of the graphs in Figure 13 indicate the dynamic energy consumed
while the lower portions indicate leakage. Figures 13(a) and 13(b) show the
results for a leakage ratio of 0.1 for the 2× and 10× WCET overestimations
respectively, and Figures 13(c) and 13(d) show similar results for a leakage
ratio of 1.0.
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Fig. 13. PCGL—leakage consumption from the Wattch Model.

From these graphs, we see that even when the leakage ratio is small, the
leakage consumed might be a significant part of the total energy consumption
of the processor. In fact, as Figure 13(b) shows, with a higher amount of slack in
the system, the leakage could become dominant eventually accounting for more
than half of the total energy consumption of the processor. Of course, Figures
13(c) and 13(d) show that even when the amount of slack in the system is low
(2× WCET overestimation case), leakage might dominate energy consumption
for future processors.

The ParaScale algorithms either outperform or are very close to their re-
spective DVS algorithms (greedy DVS and lookahead) in all cases. The energy
consumption of ParaScale-G often results in energy consumption similar to
that of the dynamic lookahead DVS algorithm. This holds true for leakage as
well as the total energy consumption (dynamic + leakage). Also, the combina-
tion of lookahead and the intertask ParaScale (ParaScale-L) outperforms all
other implementations.

The graphs in Figure 13 indicate identical static energy consumptions for all
utilizations for the base and parametric experiments. The DVS algorithms, on
the other hand, leak different amounts of static power for each of the utiliza-
tions. This effect is due to the fact that leakage depends on the actual voltage in
the system. The static DVS algorithm consumes more leakage with increasing
systems utilizations, since it executes at higher, statically determined frequen-
cies (and, hence, voltages) for higher utilizations. The greedy scheme performs
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slightly better as it is able to lower the frequency of execution due to slack
passing between consecutive jobs. The lookahead and all ParaScale algorithms
are able to aggressively lower their frequencies and voltage. Thus, they have a
different leakage pattern compared to the constant values seen for the non-DVS
cases or the increasing pattern for static DVS.

7.3 WCET/PET Ratio, Utilization Changes and Other Trends

We now consider the effects of changing the WCET overestimation factor and
utilization on energy consumption. We shall use the ParaScale-G algorithm as
a case study and compare it to static DVS and the base cases as depicted in
Figures 11.

We observe slightly smaller relative energy savings for higher WCET factors
(10×) compared to lower ones (2×). This is due to the fact that more slack
is available in the system for the static algorithm to reduce frequency and
voltage. Irrespective of the overestimation factor, ParaScale-L performs best
for all utilizations, as discussed further in this section. The absolute energy
level of 2× overestimation is about 3.5 times that of the 10× case without
considering leakage for the highest utilization.

Furthermore, our technique performs better for higher utilizations, as seen
for experiments with 80% utilization in Figure 11(a). As the ParaScale tech-
nique is able to take advantage of intra-task scheduling based on knowledge
about past as well as future execution for a task, it is able to lower the fre-
quency more aggressively than other DVS algorithms. This is more noticeable
for higher utilization tasksets because less static slack is available to static
algorithms for frequency scaling.

Figure 14 shows the trends in energy consumption across WCET/PET ra-
tios ranging from 1× (no overestimation) to 20×. Energy values for both DVS
algorithms—static DVS and ParaScale-G—are presented. In Figure 14(a), we
see that energy consumption drops as the over-estimation factor is increased,
since less work has to be done during the same time frame. We also see that the
ParaScale-G algorithm is able to obtain more dynamic energy savings relative
to the static DVS algorithm.

Similar trends exist in the results for PCGL-W (Figure 14(b)), except that
the leakage, which permeates all experiments, results in lower relative sav-
ings compared to the PCG measurements. When contrasting Figure 14(a) to
Figure 14(b), we observe that the overall energy consumption is higher in the
latter. This is due to additional static power that is modeled by Wattch as 10%
of dynamic power.

From the graphs for leakage (PCGL) shown in Figures 14(c) and 14(d), we
see a more accurate modeling of leakage prevalent in the system. As the WCET
overestimation factor is increased from 1× to 20×, the leakage consumption
trends appear similar, across the board, for both—ParaScale-G as well as static
DVS. We observe that more and more the time is spent in idling(executing at
the lowest frequency and operating voltage) and less in execution. The leakage
energy increases slightly from 2× to 5×, but from there on remains nearly
constant until 20×.
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Fig. 14. Energy consumption trends for increasing WCET factors for ParaScale-G.

7.4 Comparison of ParaScale-G with Static DVS and Lookahead

We now present a comparison of ParaScale with greedy DVS and lookahead,
since the latter are two very effective DVS algorithms. Both algorithms have
been implemented as stand-alone versions as well as hybrids integrated with
ParaScale.

We already compared ParaScale-G to static DVS based on results provided
in Figure 14. The energy consumption for ParaScale-G is significantly lower
than that of static DVS across all experiments in Figure 14(a). This is because
ParaScale-G can lower frequencies more aggressively over static DVS algo-
rithms. Static DVS can only lower frequencies to statically determined values.
We infer from Figure 14 that the relative savings drop in lower utilization sys-
tems and in systems with a high overestimation value. Due to the amount of
static slack prevalent in such systems, the static DVS scheme is able to lower
the frequency/voltage to a higher degree. For higher utilizations and for sys-
tems where the PETs match WCETs more closely, ParaScale-G is able to show
the largest gain. This underlines one advantage of the ParaScale technique,
that is, its ability to predict dynamic slack just before loops. This is particu-
larly pronounced for higher utilization experiments resulting in lower energy
consumption.

Consider the leakage results from Figure 14(b). We observe that the differ-
ences between the energy values for static DVS and ParaScale are much larger,
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especially for the lower utilization and higher WCET ratios. There exist two
reasons for this result: (i) Static power depends on the voltage. When running at
higher frequencies/voltages, as necessitated by higher utilizations, both static
and dynamic power increases. (ii) Static power is estimated to be 10% of the
dynamic power by Wattch. Hence, higher utilizations with higher voltage and
power values result in larger static power as well. This is compounded by the
inaccurate modeling of leakage by the Wattch model. Dynamic power is pro-
portional to the square of the supply voltage, whereas static power is directly
proportional to the supply voltage. By assuming that static power accounts for
10% of power, Wattch makes the simplifying assumption that static power also
scales quadratically with supply voltage.

Results from the more accurate leakage model are presented in Figures
14(c) and 14(d). We see that for the highest utilization (80%) ParaScale-G is
able to lower the frequency and voltage enough so that the leakage energy
dissipation is lower than that for static DVS. For the 50% and 20% utilizations,
ParaScale-G shows a slightly worse performance. The leakage model that we
used [Jejurikar et al. 2004] biases the per-cycle energy calculation with the
inverse of the frequency ( f −1), which is the delay per cycle. Hence, aggressively
lowering the frequency to the lowest possible levels may actually be coun-
terproductive as far as leakage is concerned. The static DVS scheme lowers
the frequency of execution to a lowest possible value of 200MHz (for the 20%
utilization experiments), while the ParaScale schedulers often hit the lowest
frequency value (100MHz). It is possible that the quadratic savings in energy
due to a lower voltage are overcome by the increased delay per cycle at the
lowest frequencies. Hence, if the number of execution cycles is large enough,
ParaScale experiments “leak” more energy than the static DVS scheme. Figure
13, though, shows that the total energy savings for the system is still lower
for the ParaScale experiments compared to their equivalent non-ParaScale
implementations, and ParaScale-L still consumes the least amount of energy.

Figure 15 depicts ParaScale-G, our intertask DVS enhancement to the static
DVS algorithm. It shows an energy signature that comes close to that of looka-
head, one of the best dynamic DVS algorithms. At times, ParaScale-G equals
the performance of lookahead. This is particularly true for lower WCET fac-
tors where lookahead has less static and dynamic slack to play with. Here,
ParaScale-G’s performance is just as good, because it detects future slack on
entry into parametric loops. This implies that we can achieve energy savings
similar to those obtained by lookahead with a potentially lower algorithmic and
implementation complexity. In fact, ParaScale-G is an O(1) algorithm evalu-
ating the parameters for only the current task whereas lookahead, an O(n)
algorithm traversing through all tasks in the system. This becomes more rele-
vant as the number of tasks in the system is increased.

7.5 Overheads

The overheads imposed by the scheduler (especially the parametric sched-
uler, due to multiple calls made to it during task execution) and the fre-
quency/voltage switching overheads are side effects of the ParaScale technique.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 2, Article 25, Publication date: December 2010.



Parametric Timing Analysis and Its Application to Dynamic Voltage Scaling • 25:27

Fig. 15. Comparison of dynamic energy consumption for ParaScale-G and lookahead.

These scheduler overheads impose additional execution time on the system.
The scheduler overheads were modeled using our timing analysis framework
and are enumerated in Table III. When compared to the execution cycles for
the tasks (Table IV) in the system, we see that the scheduler overheads are
almost negligible when compared with task execution times. For example, the
largest number of cycles used during a scheduler invocation is for the intertask
lookahead scheduler (8,627 cycles). This value is less than 0.8% of the WCEC
for the smallest task in the system, that is, LMS. Hence, the scheduler over-
heads have no significant impact on the execution of the tasks or the amount
of energy savings.

7.5.1 Frequency Switch Overheads. To study the overheads imposed by
the switching of frequencies and voltages, we imposed the overhead for a syn-
chronous switch observed on an IBM PowerPC 405LP [Zhu and Mueller 2005].
The actual value used was 162μs for the overhead. We collected data on the
number of frequency/voltage transitions for each experiment. The exact value
of switching overhead varies depending on the actual difference between the
voltages and whether it is being increased or decreased. We use this pessimistic,
worst-case value to measure the worst possible switching overhead for the sys-
tem. The highest overhead is incurred for the 20× overestimation case with
utilization of 80% for ParaScale-G. The cumulative value for the overhead in
this case was 42ms. To put this in perspective, let us assume that the entire
simulation had executed at the maximum frequency of 1GHz. (thus completing
in the shortest possible duration). The hyperperiod for each experiment was 1.2
seconds. All experiments were designed to execute for one hyperperiod. Since
the tasksets execute at lower frequencies than the maximum, they will take
longer to complete but still finish within their deadlines. Also, the frequency
switch overhead is typically lower than 162μs (depending on the exact differ-
ence between the voltage/frequency levels). Hence, we can safely assume that
the frequency switch overheads would be much less than the worst-case value
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of 42ms. Typically, the overheads would be close to, or even less than, 1% of the
total execution time of all tasks.

We also measured the energy consumption for the time period when the
switching is taking place (162μs), for all three energy schemes—PCG, PCGL
and PCGL-W. The respective values were 0.493mJ, 0.007mJ, and 0.732mJ,
respectively, at 1GHz. Considering the energy signature of the entire task set
and the experiments, we can conclude that the energy overheads for frequency
switching will be negligible.

8. RELATED WORK

Timing analysis has become an increasingly popular research topic. This can be
attributed in part to the problem of increasing architectural complexity, which
makes applications less predictable in terms of their timing behavior, but it
may also be due to the abundance of embedded systems that we have recently
seen. Often, application areas of embedded systems impose stringent timing
constraints, and system developers are becoming aware of a need for verified
bounds on execution times. While dynamic timing methods cannot provide safe
bounds on the WCET, static timing analysis can [Wegener and Mueller 2001].
Nonetheless, dynamic bounds can complement static ones by providing a means
to assess their tightness.

These developments are reflected in the research community where numer-
ous methods for static timing analysis have been devised, ranging from unop-
timized programs executing on simple CISC processors to optimized programs
on pipelined RISC processors and even uncached architectures to instruction
and data caches as well as branch prediction and locking caches [Park 1993;
Puschner and Koza 1989; Harmon et al. 1992; Lim et al. 1994; Healy et al. 1995;
Mueller 2000; White et al. 1999; Ferdinand and Wilhelm 1999; Lundqvist and
Wall 1996; Li et al. 1996; Colin and Puaut 2001; Mitra and Roychoudhury 2002;
Vera et al. 2003; Thesing et al. 2003].

In the past, path expressions were used to combine a source-oriented para-
metric approach of WCET analysis with timing annotations, verifying the lat-
ter with the former, particularly by Chapman et al. [1996]. Bernat and Burns
[2000] proposed algebraic expressions to represent the WCET of programs.
Bernat et al. [2002] used probabilistic approaches to express execution bounds
down to the granularity of basic blocks that could be composed to form larger
program segments. Yet, the combiner functions are not without problems, and
timing of basic blocks requires architectural knowledge similar to static timing
analysis tools.

Parametric timing analysis by Vivancos et al. [2001] first introduced tech-
niques to handle variable loop bounds as an extension to static timing analysis.
That work focuses on the use of static analysis methods to derive parametric
formulae to bound variable-length loops. Our work, in contrast, assesses the
benefits of this work, particularly in the realm of power-awareness.

The effects of DVS on WCET have been studied in the FAST framework
[Seth et al. 2003]. Here, parametrization was used to model the effect of mem-
ory latencies on pipeline stalls as processor frequency is varied. In our timing
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analyzer, we currently do not model these effects. This does not affect the cor-
rectness of our approach, since WCET bounds are safe without such modeling,
but they may not be tight, as shown in the FAST framework. Hence, the benefits
of parametric DVS may even be better than what we report here.

The VISA framework suggested architectural enhancements to gauge
progress of execution by subtask partitioning and exploits intratask slack
with DVS techniques [Anantaraman et al. 2003; Anantaraman et al. 2004].
Their technique did not exploit parametric loops. Our work, in contrast, takes
advantage of dynamically discovered loop bounds and does not require any
modifications at the microarchitecture level.

Lisper used polyhedral flow analysis to specify the iteration space of loop
nests and express them as parametric integer programming problems to sub-
sequently derive a parametric WCET formula suitable for timing analysis using
the implicit path enumeration technique (IPET) [Lisper 2003]. Recent work by
Byhlin et al. [2005] underlines the importance of using parametric expressions
to support WCET analysis in the presence of different modes of execution. They
parametrize their WCET predictions for automotive software based on certain
parameters, such as frame size. Their work focuses on studying the relation-
ship between parameters unique to modes of execution and their effect on the
WCET. Other work by Gheorghita et al. [2005] also promotes a parametric ap-
proach but at the level of basic blocks to distinguish different worst-case paths.
Our parametric expressions, predating any of this work, accurately bound the
WCET values for loops. This extends the applicability of static analysis to a
new class of programs. We take advantage of these accurate predictions at
runtime for benefits such as power savings and admission of additional tasks.
Tighter bounds on the WCET in the presence of DVS can also be achieved
through a parametric model representing the latency in cycles to access main
memory [Seth et al. 2003]. Due to DVS and constant memory access times, a
lower processor frequency results in fewer cycles to access memory, which is
reflected in WCET bounds in their FAST framework. This work is orthogonal
to our method of PTA. In fact, our results could still be improved by employing
FAST in the ParaScale context.

The most closely related work in terms of intratask DVS is the idea of power
management points (PMPs) [AbouGhazaleh et al. 2001; AbouGhazaleh et al.
2003a, 2003b]. In this work, path-dependent power management hints (PMHs)
were used to aggregate knowledge about “saved” execution time compared to
the worst-case execution that would have been imposed along different paths.
This work differs in that it exploits knowledge about past execution while we
discover loop bounds that let us provide tighter bounds on past and future exe-
cution within the same task. The work is also evaluated with SimpleScalar, al-
beit with a more simplistic power model (E = CV2) while we assess power at the
microarchitecture level using enhancements of Wattch [Brooks et al. 2000] as
well as a more accurate leakage model [Jejurikar et al. 2004]. Again, our results
could potentially be improved by benefiting from knowledge about past execu-
tion, which may lead to additional power savings. This is subject to future work.

An intratasks DVS algorithm that “discovers” the amount of execution left
in the system and appropriately modifies the frequency and voltage of the
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system is presented in Shin et al. [2001]. Their work depends on inserting
various instrumentation points at compile time into various paths in the code.
Evaluation of these instrumentation points at runtime provides information
about the paths taken during execution and the possible amount of execution
time left along that path similar to PMPs. They insert instrumentation points
in every basic block to determine the exact execution path, which would incur
a significant overhead during runtime. This may also affect the caching and,
hence, timing behavior of the task code. Our work differs significantly in that
we only assess the amount of execution time remaining once (prior to entry into
a parametric loop), thus incurring an overhead only once. We are, thus, able
to accurately gauge the amount of execution remaining with a single overhead
per loop and per task instance. We also estimate the new caching and timing
behavior of the code after the call to the intratask scheduler by invoking our
timing analysis framework on the modified code until the parametric WCET
formulae stabilize. Another technique presented in their article is that of “L-
type voltage scaling edges.” They utilize the idea that loops are often executed
for a smaller number of iterations than the worst-case scenario. During run-
time, they discover the actual number of loop iterations at loop exit and then
gauge the number of cycles saved. In contrast, parametric timing analysis de-
termines loop savings prior to loop entry and exploits savings early (e.g., using
DVS, such as in ParaScale). This difference is a significant advantage for the
parametric approach, particularly for tasks where a single loop nest accounts
for most of the execution time.

9. CONCLUSION

In this article, we (i) develop the novel technique of parametric timing anal-
ysis that obtains a formula to express WCET bounds, which is subsequently
integrated into the code of tasks, and (ii) derive techniques to exploit paramet-
ric formulae via online scheduling and power-aware scheduling. We show how
parametric formulae are integrated into the timing analysis process without
sacrificing the tightness of WCET bounds. A fixed-point approach to embed
parametric formulae into application code is derived, which bounds the WCET
of not only the application code but also the embedded parametric functions
and their calls once integrated into the application. Prior to entering paramet-
ric loops, the actual loop bounds are discovered and then used to provide WCET
bounds for the remainder of execution of the tasks that are tighter than their
static counterpart.

The benefit from parametric analysis is quantified in terms of power sav-
ings for sole intratask DVS as well as ParaScale-G, our combined intratask
and greedy inter task DVS. Processor frequency and voltage are scaled down
as loop bounds of parametric loops are discovered. Power savings ranging
between 66% to 80% compared to DVS-oblivious techniques are observed,
depending on system utilization and the amount of overestimation for loop
bounds. These energy savings are comparable to other DVS algorithms based
on dynamic-priority scheduling. Yet, our intratask scheme lowers time com-
plexity and can be implemented as an extension to static-priority scheduling or
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such as cyclic executives. Conventional timing analysis methods will be unable
to achieve these benefits due to the lack of knowledge about remaining execu-
tion times of tasks in conventional static timing analysis. This illustrates the
potential impact of PTA on the filed of timing analysis and real-time systems
practitioners.

Overall, parametric timing analysis expands the class of applications for
real-time systems to programs with dynamic loop bounds that are loop invari-
ant while retaining tight WCET bounds and uncovering additional slack in the
schedule.
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