
Improving WCET by Applying a WC Code

Positioning Optimization

Wankang Zhao, David Whalley

Computer Science Department, Florida State University

Christopher Healy

Computer Science Department, Furman University

Frank Mueller

Computer Science Department, North Carolina State University

Applications in embedded systems often need to meet specified timing constraints. It is ad-
vantageous to not only calculate the Worst-Case Execution Time (WCET) of an application,
but to also perform transformations which reduce the WCET since an application with a lower
WCET will be less likely to violate its timing constraints. Some processors incur a pipeline delay
whenever an instruction transfers control to a target that is not the next sequential instruction.
Code positioning optimizations attempt to reduce these delays by positioning the basic blocks to
minimize the number of unconditional jumps and taken conditional branches that occur. Tradi-
tional code positioning algorithms use profile data to find the frequently executed edges between

basic blocks, then minimize the transfers of control along these edges to reduce the Average Case
Execution Time (ACET). This paper introduces a WCET code positioning optimization, driven
by the worst-case (WC) path information from a timing analyzer, to reduce the WCET instead of
ACET. This WCET optimization changes the layout of the code in memory to reduce the branch
penalties along the WC paths. Unlike the frequency of edges in traditional profile-driven code
positioning, the WC path may change after code positioning decisions are made. Thus, WCET
code positioning is inherently more challenging than ACET code positioning. The experimental
results show that this optimization typically finds the optimal layout of the basic blocks with the
minimal WCET. The results show over a 7% reduction in WCET is achieved after code positioning
is performed.

Categories and Subject Descriptors: B.3.2 [Memory Structure]: Design Style-Pipelining; C.1.0
[Processor Architecture]: General; C.4 [Performance of Systems]: Measurement Techniques-
WCET; D.3.4 [Programming Languages]: Processors-Compilers,optimization

Additional Key Words and Phrases: WCET, Embedded Systems, Code Positioning

1. INTRODUCTION

Generating acceptable code for applications residing on embedded systems is chal-
lenging. Unlike most general-purpose applications, embedded applications often

A preliminary version of this paper entitled “WCET Code Positioning” appeared in the proceed-
ings of the 2004 IEEE Real-Time Systems Symposium.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Architecture and Code Optimization, Pages .

2 · Wankang Zhao et al.

have to meet various stringent constraints, such as time, space, and power. Con-
straints on time are commonly formulated as worst-case (WC) constraints. If these
timing constraints are not met, even only occasionally in a hard real-time system,
then the system may not be considered functional.

The worst-case execution time (WCET) of an application must be calculated
to determine if its timing constraint will always be met. Simply measuring the
execution time is not safe since it is difficult to determine input data that will
cause the executable to produce the WCET. Accurate and safe WCET predictions
can only be obtained by a tool that statically and correctly analyzes an application
to calculate an estimated WCET. Such a tool is called a timing analyzer, and the
process of performing this calculation is called timing analysis.

It is desirable to not only accurately predict the WCET, but to also improve it.
An improvement in the WCET of a task may enable an embedded system to meet
timing constraints that were previously infeasible. WCET constraints can impact
power consumption as well. In order to conserve power, one can determine the WC
number of cycles required for a task and lower the clock rate to still meet the timing
constraint with less slack. Improving the WCET of a task may allow an embedded
system developer to use an even lower clock rate and save additional power, which is
valuable for mobile applications. In contrast, conservative assumptions concerning
WCET may require the processor to be run at a higher clock rate, which consumes
more power.

Many DSP benchmarks represent kernels of common applications where most of
the cycles occur. Such kernels in DSP applications have been historically written
and optimized by hand in assembly code to ensure high performance [Eyre and Bier
1998]. However, assembly code is less portable and is harder to develop, debug,
and maintain. Many DSP applications are now written in high-level programming
languages, such as C, to simplify their development. In order for these applications
to compete with the applications manually written in assembly, aggressive compiler
optimizations are used to ensure high performance.

One type of compiler optimization is to reorder or position the basic blocks within
a function. The benefits of such a transformation include improving instruction
cache locality and reducing misfetch penalties. In recent years instruction cache
performance has become less of a concern as instruction caches have increased in
size. In addition, many embedded processors have no instruction cache and an
embedded application is instead often placed in ROM. However, some processors
still incur a pipeline delay associated with each transfer of control. Such delays are
more common for embedded machines where branch prediction and target buffers
are omitted in order to reduce the complexity of the processor. Compiler writers
attempt to reduce these delays by reordering the basic blocks to minimize the
number of unconditional jumps and taken branches that occur. The optimization
phase that performs this transformation in a compiler is typically referred to as
a code positioning or branch alignment optimization. Existing code positioning
algorithms weight the directed edges (transitions) between the nodes (basic blocks)
of a control-flow graph (CFG) by the number of times the edge was traversed at
run-time. In general, these algorithms order basic blocks by attempting to make
the most frequently traversed edges contiguous in memory. The goal of traditional
code positioning is to improve the average case execution time (ACET), the typical

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 3

execution time for a program.
In contrast, we describe in this paper an approach for improving the WCET

of an application by applying a WCET code positioning algorithm that searches
for the best layout of the code in memory for WCET. Traditional code positioning
algorithms are not guaranteed to reduce the WCET of an application since the most
frequently executed edges in a program may not be contained in the WC paths.
Even if WCET path information were used to drive the code positioning algorithm,
a change in the positioning may result in a different path becoming the WC path
in a loop or a function. A typical CFG for an if-then-else statement is shown in
Figure 1 with two paths, 1 → 2 → 4 and 1 → 3 → 4. Before code positioning

(Figure 1(a)), assume that path 1 → 3 → 4 is the WC path. After blocks 3 and
4 are moved physically in memory next to block 1 to remove the branch penalty
from block 1 to block 3 (Figure 1(b)), path 1 → 2 → 4 may become the WC path
since there is a new transfer-of-control penalty from block 1 to block 2. Therefore,
a change in the positioning may result in a different path becoming the WC path
in a loop or a function. In contrast, the frequency of the edges based on profile
data, which is used in traditional code positioning, does not change regardless of
how the basic blocks are ordered. Thus, WCET code positioning is inherently more
challenging than ACET code positioning.

begin

1

2

3

4

end

begin

1

3

4

end

2

(a) before code positioning (b) after code positioning

Fig. 1. Code Positioning for an if-then-else Statement

In this paper we describe an approach for improving the WCET of an application
by code positioning. The WC path may change after code positioning decisions
are made. Therefore, we integrate a timing analyzer with a compiler where the
WCET path information of both the application and the current function can be
calculated on demand. Thus, the timing analyzer is invoked to determine the
up-to-date WCET path information through a function each time an edge in the

ACM Transactions on Architecture and Code Optimization

4 · Wankang Zhao et al.

CFG is selected for positioning. Calculating WCET using a timing analyzer places
restrictions, such as requiring all loops be structured and bounded, on the kinds
of programs that our compiler can automatically optimize. We describe the full
set of such restrictions in Section 4. Figure 2 shows how the compiler obtains
the WCET after each positioning step. The compiler sends information about the
control flow and the current instructions that have been generated to the timing
analyzer. Predictions regarding the WCET are sent back to the compiler from the
timing analyzer. After positioning all of the edges of the CFG in a function, we also
align the blocks which are targets of transfers of control to further reduce WCET
by minimizing target misalignment penalties. We retargeted both the VPO (very
portable optimizer) compiler [Benitez and Davidson 1988; Benitez 1994; Benitez
and Davidson 1994] and our timing analyzer to the StarCore SC100 processor for
this study.

Compiler
Analyzer

Timing

Control Flow and
Instruction Information

Files

Assembly

Files

Source

WCET Path Information

Fig. 2. The Compiler Interacts with the Timing Analyzer to Obtain the WC Path Information

The major contributions that are presented in this paper are:

(1) The first implementation of a WCET code positioning optimization. All other
code positioning optimizations are designed to improve ACET instead of WCET.
In fact, we show in this paper that our WCET code positioning algorithm ob-
tains optimal results for all of our small test programs.

(2) The first compiler optimization of which we are aware that is designed and
implemented to improve WCET as opposed to ACET. WCET code position-
ing is driven by WCET path information obtained from a timing analyzer, as
opposed to traditional code positioning that uses frequency data obtained from
profiling. Thus, we have demonstrated that timing analysis can be used to
not only measure the WCET, but also as input to a compiler to improve the
WCET.

The remainder of the paper has the following organization. In Section 2, we
outline the work related to this research, including WCET predictions, WCET
reduction techniques, and traditional code positioning algorithms. The underlying
architecture used for this research is the StarCore SC100. In Sections 3 and 4, we
introduce the StarCore SC100 processor and the retargeting of our timing analyzer
to it, respectively. In Section 5, we present how our timing analyzer was integrated
with our compiler to obtain the WC path information. We discuss in Section 6 the
code positioning algorithm to improve the WCET layout of the code in memory.
In Section 7, we describe a related optimization to align blocks which are targets of
transfer of control. We give the experimental results in Section 8. In Section 9 we
describe future work in this research area and in Section 10 present the conclusions.

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 5

2. RELATED WORK

This section summarizes the prior research on WCET predictions, WCET reduction
techniques, and code positioning optimizations.

2.1 Prior Work on WCET Predictions

There has been much work on WCET predictions. Each of the general techniques
for predicting WCET is described in the following subsections. None of these tech-
niques relies on requiring the user to specify restrictions on the input data values.
Note that there are several other timing analysis techniques that are variations on
the ones described in this section. Each of the general techniques has advantages
and disadvantages.

2.1.1 Timing Schema. In the 1980s, Shaw started using timing schema to pre-
dict the maximum execution time of real-time programs [Shaw 1989]. A WCET
prediction tool has been developed based on a timing schema, which is associated
with each source-level program language construct [Lim et al. 1994]. In order to
consider the effect of pipelining and caches on the execution time, the timing schema
for each language construct contains WC pipeline and cache information. The tim-
ing bound for the whole program can be obtained by concatenation and union

of the timing schema based on the source-level language constructs.
One limitation of this approach is that the prediction is associated with the source

code instead of only the assembly. Compiler optimizations that change the control
flow would invalidate the one-to-one correspondence between the source code and
machine code. This limitation prevents the analysis of optimized code. Thus,
the WCET from the timing schema cannot easily be used to guide the compiler
optimizations to reduce the WCET.

2.1.2 Path Analysis. Another WCET prediction tool has been developed that
is based on path analysis [Harmon et al. 1994; Arnold et al. 1994; Healy et al.
1995; Ko et al. 1996; Mueller 1997; White et al. 1997; Ko et al. 1999; Healy et al.
1999; Healy and Whalley 1999; White et al. 1999; Mueller 2000; Healy et al. 2000;
Healy et al. 2000; Healy and Whalley 2000]. The compiler provides the instruction
and the control-flow information. The path analysis is performed by the timing
analyzer at the machine code level to calculate the execution time for each path in
order to find the WC path.

This timing analyzer examines all the paths at each loop level to find the WC
path. The analysis time is proportional to the number of paths at each loop level [Ko
et al. 1999]. Since the path analysis technique to predict the WCET is performed at
the machine instruction level, it is accurate and provides WCET path information
that is useful for applying WCET compiler optimizations, such as WCET code
positioning.

2.1.3 Integer Linear Programming. The Integer Linear Programming (ILP) tim-
ing analysis method converts the problem of estimating WCET into a set of ILP
constraints [Li et al. 1995] [Engblom and Ermedahl 2000]. After the ILP formu-
lation, existing ILP solvers are used to determine the maximum total execution
time. These ILP solvers can potentially determine a tight bound on a program’s
execution time.

ACM Transactions on Architecture and Code Optimization

6 · Wankang Zhao et al.

The ILP approach is appealing since it is elegant and simple. However, it is com-
mon to have a large number of variables in the ILP constraints for even relatively
small programs. It can be time-consuming to calculate the WCET using existing
ILP solvers to deal with such a large number of variables. Furthermore, even if
the WCET is obtained, only a single value representing the WCET is produced.
This WCET prediction does not provide detailed information that can be used by
compiler optimizations to improve the WCET.

2.1.4 Symbolic Execution. The symbolic execution method extends the instruc-
tion level architecture simulation technology with the capability of handling un-
known input data values. Since the WC input data is unknown, it will appear that
this approach would have to simulate all paths throughout the program to find
the WCET. However, by using a path-merging strategy, this simulation technique
can reduce the number of paths to be simulated [Lundqvist and Stenstrom 1998].
Many paths are not simulated when the method finds that a branch must have
a specific result. Symbolic execution can provide very accurate WCET prediction
since it implicitly handles most functional constraints. But it can be very inefficient
since it must simulate all loop iterations. Thus, the analysis time is proportional to
the WCET of the program being analyzed. Such slow analysis would significantly
increase compilation time if used in a compiler.

2.2 Prior Work on Reducing WCET

While there has been much work on developing compiler optimizations to reduce ex-
ecution time and, to a lesser extent, to reduce space and power consumption, there
has been very little work on compiler optimizations to reduce WC performance.
Marlowe and Masticola outlined a variety of standard compiler optimizations that
could potentially affect timing constraints of critical portions in a task [T. Marlowe
1992]. They proposed that some conventional transformations may even lengthen
the execution time for some sets of inputs. These optimizations should be used with
caution for real time programs with timing constraints. However, no implementa-
tion was described in their paper. Hong and Gerber developed a programming
language with timing constructs to specify the timing constraints and used a trace
scheduling approach to improve code in critical sections of a program [Hong and
Gerber 1993]. Based on these code-based timing constraints, they attempt to meet
the WCET requirement for each critical section when performing code transfor-
mations. However, no empirical results were given since the implementation did
not interface with a timing analyzer to serve as a guide for the optimizations or to
evaluate the impact on reducing WCET. Both of these papers outlined strategies
that attempt to move code outside of critical portions within an application that
have been designated by a user to contain timing constraints. In contrast, most
real-time systems use the WCET of an entire task to determine if a schedule can
be met. Lee et al. used WCET information to choose how to generate code on
a dual instruction set processor for the ARM and the Thumb [Lee et al. 2004].
ARM code is generated for a selected subset of basic blocks that can impact the
WCET. Thumb code is generated for the remaining blocks to minimize code size.
In this way, they can reduce WCET while minimizing code size. Thus, they are
using WCET information to choose the instruction set to select when generating

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 7

code. In contrast, we attempt to improve the WCET on a single instruction set
processor.

2.3 Prior Work on Code Positioning

Several code positioning (basic block reordering) approaches have been developed.
Pettis and Hansen [Pettis and Hansen 1990] used execution profile data to posi-
tion the code in memory. Profile data is used to count the execution frequency
for each edge in the CFG. The nodes in the CFG linked by the edges (transitions)
with the highest frequency are identified as chains and were positioned contiguously
to improve instruction cache performance. Other algorithms have been developed
with the primary goal of reducing the number of dynamic transfers of control (e.g.
unconditional jumps and taken branches) and the associated pipeline penalty on
specific processors. McFarling and Hennessy [McFarling and Hennessy 1986] de-
scribed a number of code positioning methods to reduce branch misprediction and
instruction fetch penalties. Calder and Grunwald [Calder and Grunwald 1994] pro-
posed an improved code positioning algorithm using a cost model to evaluate the
cost of different basic block orderings. They assign different cost values for dif-
ferent types of transfer-of-control penalties so that they can attempt to select the
ordering of basic blocks with the minimal cost. All of these approaches use profile
information to obtain a weight for each directed edge between nodes of a CFG by
counting the number of times the edge was traversed at run-time. Typical input
data instead of WC input data is used in profiling. Thus, these approaches attempt
to improve the ACET. In contrast, we describe a code positioning algorithm in this
paper to improve the WCET based on the WCET path information from the tim-
ing analyzer. WCET code positioning is inherently more complicated than ACET
code positioning since the WC path may change after positioning code in memory.

3. SC100 ARCHITECTURE

The StarCore SC100, a digital signal processor (DSP), is the architecture that
is used in this research. The StarCore SC100 is a collaborative effort between
Motorola and Agere and has been used in embedded system applications, such
as DSL modems, wireless handsets, IP telephony, motor control, and consumer
electronics. This low-to-middle performance DSP has the properties of compact
code density, low power consumption and low cost [Star Core 2001b]. There are
no caches and no operating system in a SC100 system, which facilitates accurate
WCET predictions.

In the StarCore SC100, there are three main functional units: the Program
Sequencer Unit (PSEQ), the Data Arithmetic and Logic Unit (DALU), and the
Address Generation Unit (AGU). The PSEQ performs instruction fetch, instruction
dispatch, and exception processing. The DALU has one Arithmetic Logic Unit
(ALU) to perform the arithmetic and logical operations, and the AGU has two
Address Arithmetic Units (AAU) to perform address calculations. There are 16
data registers and 16 address registers in the register file. Data registers are used
to store data and address registers are used to store addresses. Each data register
is 40 bits long and each address register is 32 bits long. The size of instructions can
vary from one word (two bytes) to five words (ten bytes) depending upon the type
of instruction, addressing modes used, and register numbers that are referenced.

ACM Transactions on Architecture and Code Optimization

8 · Wankang Zhao et al.

The SC100 machine has DSP addressing modes which are register indirect (Rn),
post-increment (Rn)+, post-decrement (Rn)-, post-increment by offset (Rn)+Ni,
index by offset (Rn+N0), indexed (Rn+Rm), and displacement (Rn+x).

The SC100 has a 5-stage pipeline machine. The five stages are:

—Prefetch: Generate the address for the fetch set and update the Program Counter
(PC).

—Fetch: Read the fetch set from memory.

—Dispatch: Dispatch an instruction to the appropriate unit (AGU or DALU).
Decode AGU instructions.

—Address Generation: Decode DALU instructions. Generate addresses for loads
/stores. Generate target addresses for transfer of controls. Perform AGU arith-
metic instructions.

—Execution: Perform DALU calculations. Update results.

The prefetch stage in the pipeline always fetches the next sequential instruction.
Therefore, the SC100 processor incurs a pipeline delay whenever an instruction
transfers control to a target that is not the next sequential instruction since the
pipeline has to be flushed to fetch the target instruction and no branch prediction
or target buffers are used. A transfer of control (taken branches, unconditional
jumps, calls, and returns) results in a one to three cycle penalty depending on the
type of the instruction, the addressing mode used, and if the transfer of control
uses a delay slot. In this machine, if a conditional branch instruction is taken,
then there is a delay of three cycles. If it is not taken, then no delay is incurred.
Unconditional jump instructions take two extra cycles if they use absolute addresses
and take three extra cycles if they are PC-relative instructions. There are delayed
change-of-flow instructions to allow filling-delay-slots optimizations. These delayed
change-of-flow instructions require one less cycle of delay than the corresponding
regular change-of-flow instructions.

Transfers of control on this machine also incur an extra delay if the target is
misaligned. The SC100 fetches instructions in sets of four words that are aligned on
eight byte boundaries. The target of a transfer of control is considered misaligned
when the target instruction is both in a different fetch set from the transfer of
control and spans more than one fetch set, as shown in Figure 3. In this situation,
the processor stalls for an additional cycle after the transfer of control [Star Core
2001b].

instruction

target

control

transfer of

fetch set n+2fetch set n+1fetch set n

Fig. 3. Example of a Misaligned Target Instruction

The transfer of control and branch target alignment penalties for the SC100
can lead to nonintuitive WCET results. For instance, consider the flow graph in

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 9

Figure 4. A superficial inspection would lead one to believe that the path 1 → 2 → 3
is the WCET path through the graph. However, if the taken branch penalty in the
path 1 → 3 outweighs the cost of executing the instructions in block 2, then 1 → 3
would be the WCET path. Simply measuring the execution time is not safe since it
is very difficult to manually determine the WC paths and the input data that will
cause the execution of these paths. This simple example illustrates the importance
of using a timing analyzer to calculate the WCET. Measurements indicating the
accuracy of the WCET predictions produced by our timing analyzer will be shown
later. In general, we could produce fairly accurate WCET predictions since some of
the more problematic issues, which include a memory hierarchy and an operating
system, are not present on this processor.

block 2 insts

block 3 insts

block 1 insts

Fig. 4. Example: Branch Penalty Affects the Worst-Case Path

In addition, there are no pipeline interlocks in this machine. It is the compiler’s
responsibility to insert no-op instructions to delay a subsequent instruction that uses
the result of a preceding instruction when the result is not available in the pipeline.
Finally, the SC100 architecture does not provide hardware support for floating-
point data types, nor does it provide divide functionality for integer types [Star Core
2001b].

4. SC100 TIMING ANALYZER

In this section we describe the timing analyzer that is used in this study [Harmon
et al. 1994; Arnold et al. 1994; Healy et al. 1995; Ko et al. 1996; Mueller 1997;
White et al. 1997; Ko et al. 1999; Healy et al. 1999; Healy and Whalley 1999;
White et al. 1999; Mueller 2000; Healy et al. 2000; Healy et al. 2000; Healy and
Whalley 2000] and how we retargeted it to the SC100 machine. Like other timing
analyzers, we enforce several restrictions to an application in order to accurately
predict its WCET. The call graph must be explicit, so no calls through pointers are
allowed. All loops must be bounded where the maximum number of iterations can
be statically determined by the compiler. Furthermore, all loops or cycles of code
in the application must be recognized. Thus, we do not allow unstructured loops
or recursion. Finally, we do not allow system calls. For the SC100 this means that
no floating-point or integer divide operations are allowed since there is no direct
support for these operations in the SC100 processor.

Figure 5 depicts the organization of the framework that was used by the authors
in the past to make WCET predictions. The compiler provides the instruction and
the control-flow information. The path analysis is performed by the timing analyzer
at the machine code level to calculate the execution time for each path in order to
find the WC path.

This path analysis approach for predicting WCET involves the following issues:

ACM Transactions on Architecture and Code Optimization

10 · Wankang Zhao et al.

Dependent
Machine

Information

Timing

Predictions

Configuration

Cache

Simulator

Cache

Static

Source
Files

C

Interface

User

Analyzer
Timing

and Constraint
Control Flow

Information

Compiler Timing
User

Requests

Caching
Categorizations

Instruction

Fig. 5. An Overview of the Existing Process to Obtain WCET Predictions

—architecture modeling (pipeline and cache)

—detecting the maximum number of iterations of each loop

—detecting all possible paths and identifying infeasible paths

—inspecting each path to predict the WCET for each loop or function

—predicting the WCET for the whole program bottom-up based on a timing tree

An instruction’s execution time can vary greatly depending on whether that
instruction causes a cache hit or cache miss. The timing analyzer starts by per-
forming WC cache analysis [Arnold et al. 1994]. A static cache simulator uses the
control-flow information to give a caching categorization for each instruction and
data memory reference in the program. The timing analyzer then integrates the
cache analysis with pipeline analysis [Healy et al. 1995]. Structural and data hazard
pipeline information for each instruction is needed to calculate the execution time
for a sequence of instructions. Cache misses and pipeline stalls are detected when
inspecting each path. Note that WCET prediction for many embedded machines is
simpler since they often have a simple pipeline structure and a memory hierarchy
consisting of ROM and RAM (no caches).

Besides addressing architectural features, the timing analyzer also automatically
calculates control-flow constraints to tighten the WCET [Healy et al. 1999]. One
type of constraint is determining the maximum number of iterations associated
with each loop, including nonrectangular loops where the number of iterations of
an inner loop depends on the value of an outer loop variable [Healy and Whalley
1999]. Another type of constraint is branch constraints [Healy and Whalley 2000].
The timing analyzer uses these constraints to detect infeasible paths through the
code and the frequency that a given path can be executed. The timing analyzer uses
the control-flow and constraint information, caching categorizations, and machine-
dependent information (e.g. characteristics of the pipeline) to make its timing
predictions. The WCET for a loop is calculated by repeatedly detecting the WCET
path until a fixed point is reached where the caching behavior remains the same.
The WCET of the whole program is calculated in a bottom up fashion by following
a timing tree, where the WCET for an inner loop (or called function) is calculated
before determining the WCET for an outer loop (or calling function). Each function
is treated as a loop with a single iteration. The WCET information for an inner
loop (or called function) is used when it is encountered in an outer-level path.

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 11

Sometimes the control flow within a loop has too many paths. For example,
if there are 20 if statements inside a loop, there are up to 220 paths, which is
not practical for path analysis. The timing analyzer was modified to partition
the control flow of complex loops and functions into sections that are limited to a
predefined number of paths. The timing tree is also updated to include each section
as a direct descendant of the loop [Ko et al. 1999].

We retargeted the timing analyzer to the SC100 processor to demonstrate that
we could predict the WCET for an embedded machine. It is difficult to produce
cycle-accurate simulations for a general-purpose processor due to the complexity of
its memory hierarchy and its interaction with an operating system that can cause
execution times to vary. Fortunately, unlike most general-purpose processors, the
SC100 has neither a memory hierarchy (no caches or virtual memory system) nor
an OS. This simplifies the timing analysis for the SC100 since each instruction could
be fetched in a single cycle if it is within one fetch set.

The pipeline information of the instructions in the timing analyzer had to be up-
dated for the SC100 processor. There are several modifications to support timing
analysis of applications compiled for the SC100. First, the machine-dependent in-
formation (see Figure 5) was modified to indicate how instructions proceed through
the SC100 pipeline. Most SC100 instructions take one cycle to execute. However,
some instructions require extra cycles in the pipeline. For instance, if an instruc-
tion uses an indexed or displacement memory addressing mode, it requires one
additional cycle since the address has to be calculated from an arithmetic expres-
sion. Second, the timing analyzer was updated to treat all cache accesses as hits

since instructions and data on the SC100 can in general be accessed in a single
cycle from both ROM and RAM. Thus, the static cache simulation step shown in
Figure 5 is now bypassed for the SC100. Third, the timing analyzer was modified
to address the penalty for transfers of control. When calculating the WCET of a
path, it has to be determined if each conditional branch in the path is taken or not
since non-taken branches are not assessed this penalty. When there is a transfer-
of-control penalty, the timing analyzer calculates the number of clock cycles of the
delay, which depends on the instruction type and whether there is a one-extra-cycle
target misalignment penalty. Therefore, the size of each instruction is needed to
detect when the target misalignment penalty will occur.

In addition, we were able to obtain a simulator for the SC100 from StarCore
[Star Core 2001a]. Many embedded processor simulators, in contrast to general-
purpose processor simulators, can very closely estimate the actual number of cycles
required for an application’s execution. The SC100 simulator can simulate SC100
executables and report an estimated number of execution cycles for a program.
We used this simulator to verify the accuracy of the WCET timing analyzer. This
simulator can report the size of each instruction as well, so we also used it to verify
the instruction sizes obtained from the compiler.

5. INTEGRATING THE TIMING ANALYZER WITH THE COMPILER

We use an interactive compilation system called VISTA (VPO Interactive System
for Tuning Applications) [Zhao et al. 2002; Kulkarni et al. 2003] to experiment with
our WCET code positioning optimization. We retargeted VISTA to the SC100 ar-
chitecture and integrated it with the SC100 timing analyzer, which provides the

ACM Transactions on Architecture and Code Optimization

12 · Wankang Zhao et al.

WCET path information to the compiler to perform the code positioning optimiza-
tion. Figure 6 shows an overview of the infrastructure used for this research. Note
that Figure 5 only shows a portion of the framework shown in Figure 6, namely the
timing analysis and compiler components. The SC100 compiler takes the source
code and generates the assembly and the timing information. The timing informa-
tion is fed into the timing analyzer to get the WC path information. The compiler
performs the code positioning optimization and the user can see transformations
to the program at the machine code level graphically. At each step of the code
positioning, the compiler automatically invokes the timing analyzer to update the
WC path information, which is used to guide the next step. The graphical user
interface in the viewer helped us to debug the problems when we implemented our
WCET code positioning algorithm.

Display

Selections

Transformation Info.

Timing
Analysis

Requests

SC100

File
Source

User Viewer
Saved
State

Assembly
File

SC100
Compiler

WCET Path Information Timing Information

Program Representation & WCET

Fig. 6. An Overview of the Research Framework

The timing analyzer needs information as input to predict the WCET. This
information is generated by the compiler as a side effect of producing the assembly.
Each instruction in the assembly has a counterpart in the timing information where
the instruction type and the registers set and used are presented. Besides the
instruction data, this information contains the control-flow data, such as branches
and loops, for the program. Many modifications to the SC100 VPO compiler were
required to produce this information for timing analysis. For instance, the SC100
information contains the size for each instruction, which is needed by the timing
analyzer to detect the branch target mis-alignment penalties.

In order to measure the WCET, VPO generates the timing information for the
benchmark, invokes the timing analyzer, saves the output of the timing analyzer
to get the WCET and the path information, which is used to guide the code po-
sitioning. The output from the timing analyzer includes all the information about
the timing tree. The information contains:

(1) all the timing nodes (loops or functions)

(2) parents/children relationship information for these nodes

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 13

(3) function where each node is located

(4) all paths in each node and their WCETs

(5) all blocks in each path

Our timing analyzer calculates the WCET for all paths within each loop and
the outer level of a function. A loop path consists of basic blocks and each loop
path starts with the entry block (header) in the loop and is terminated by a block
that has a transition back to the entry block (back edge) or transition outside the
loop. A function path starts with the entry block to the function and is terminated
by a block containing a return. If a path enters a nested loop, then the entire
nested loop is considered a single node along that path. The WCET for each path
is calculated by the timing analyzer. This WC path information is used by the
compiler to position the blocks in each function.

The WCET for the whole program is calculated bottom-up based on a timing
analysis tree, where each node is a loop or a function (ref. Section 2.1.2). This
code positioning algorithm is also performed bottom up for each node in the timing
analysis tree. The timing analyzer provides the WCET and the lists of the basic
blocks along all paths. Therefore, the compiler can perform code positioning one
edge at a time to minimize the transfer-of-control penalties along the WC paths.

Code positioning is performed after all other optimizations that can affect the in-
structions generated for a function. This includes inserting instructions to manage
the activation record on the run-time stack and instruction scheduling. The com-
piler can invoke the timing analyzer at each step of the code positioning process
since all required transformations have been performed on the code. After code
positioning, the branch target misalignment optimization is performed.

6. WCET CODE POSITIONING

In this section, we discuss the WCET code positioning algorithm and present an
example to illustrate the algorithm. Traditional code positioning algorithms reduce
the ACET by contiguously positioning the basic blocks within the frequent flow of
control in memory. This code positioning might increase the execution time along
the infrequent paths. However, it does not often adversely affect the ACET since
infrequent paths do not contribute as much to the overall execution time.

WCET code positioning needs to be driven by WCET path information instead
of just the frequencies of the transitions between blocks obtained by profile data.
Unfortunately the WC path may change each time the basic blocks are reordered.
Increasing the execution time along any path may make that path the new WC path.
The goal of WCET code positioning is to minimize the maximum execution time
along all the paths. Thus, WCET code positioning is inherently a more complicated
problem than ACET code positioning.

Code positioning is essentially an attempt to find the most efficient permutation
of the basic blocks in a function. Exhaustive approaches are not typically feasible
except when the number of blocks is small since there are n! possible permutations,
where n is the number of basic blocks in the function. Thus, most approaches use
a greedy algorithm to avoid excessive increases in compilation time.

Our WCET code positioning algorithm selects edges between blocks to be con-
tiguous in an attempt to minimize the WCET. A directed edge connecting two

ACM Transactions on Architecture and Code Optimization

14 · Wankang Zhao et al.

basic blocks is contiguous if the source block is immediately followed by the target
block in memory. However, not all edges can be contiguous. Consider the portion
of a control-flow graph shown in Figure 7. If edge b (shown as a solid line) is se-
lected to be contiguous, then no other edges to the same target can be contiguous.
For example, edge a can no longer be contiguous since its source block 4 cannot
be positioned immediately before its target block 2. Likewise, only a single edge
among the set that share the same source block can be contiguous. For instance,
selecting edge b to be contiguous will make edge c noncontiguous since the target
block 3 cannot be positioned immediately after source block 1.

cba

2 3

14

Fig. 7. Selecting an Edge to Be Contiguous

If the timing analyzer calculates the WCET path information on the original
positioned code, then changing the order of the basic blocks may result in unan-
ticipated increases in the WCET for other paths since previously contiguous edges
may become noncontiguous. We decided instead to treat the basic blocks as being
initially unpositioned so that the location of a basic block does not affect the WCET
of the paths containing it. Thus, we actually modify the code so that all transitions
between blocks are accomplished using a transfer of control and will result in a
transfer of control penalty. This means an unconditional jump is added after each
basic block that does not already end with an unconditional transfer of control.
Note that when WCET code positioning is applied, the unnecessary unconditional
jumps are deleted.

The basic idea of our WCET code positioning algorithm is to find the edge in
the CFG that contributes the most to the WCET, which we call the WC edge, and
make the two basic blocks linked by that edge contiguous to reduce the execution
time along the WC path. This operation may result in a new WC path, so the
algorithm positions one edge at a time and re-calculates the new WCET of each
path to guide the selection of the next edge to reduce the WCET. At each step,
the algorithm attempts to choose the WC edge among all the edges along the
WC paths. Eliminating the transition penalty at the chosen edge will reduce the
execution time along the WC path and will reduce the execution times along other
paths containing this edge as well. However, making one edge contiguous will make
other edges noncontiguous.

There are a few terms that need to be defined before our WCET code positioning
algorithm can be presented. Edges are denoted as being contiguous, noncontiguous,
or unpositioned. A contiguous edge has its source block immediately positioned be-
fore its target block in memory. In contrast, a noncontiguous edge does not. An
unpositioned edge means that it has not yet been determined if it will be contigu-
ous or noncontiguous. The upper bound WCET (UB-WCET) of a path indicates
the WCET when all current unpositioned edges are assumed to be noncontiguous.
In other words, the inserted unconditional jumps are included in the WCET of a

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 15

path. The lower bound WCET (LB-WCET) of a path indicates the WCET when
all current unpositioned edges are assumed to be contiguous. Thus, the inserted
unconditional jumps are not included in the WCET of a path. Note that the dele-
tion of unconditional jumps may result in additional no-ops being inserted for the
SC100 since these hazards may have previously been overlapped with the execu-
tion of an unconditional jump. The weighted WCET for a path is the WCET for
a single iteration of a path times the possible number of iterations that path will
be executed. Paths are also classified as contributing or noncontributing to the
WCET. A path is considered noncontributing when its UB-WCET is less than the
LB-WCET of another path within the same loop (or outermost level of a function).
Noncontributing paths cannot affect the WCET. The WCET code positioning al-
gorithm is described in Figure 8. Note that the algorithm is implemented in the
compiler, which gets the WCET path information from the timing analyzer, as
shown in Figure 6.

WHILE (all the edges in current function have not been positioned) {

FOR (all the paths in the current function) {

Calculate weighted Upper-Bound WCET (UB_WCET), and weighted

Lower-Bound WCET (LB_WCET) for each path;

}

Sort the paths (p1, p2, ..., pi) in descending order based on

first if it is contributing, second its weighted Upper-Bound

WCET (UB_WCET), and third its weighted Lower-Bound WCET (LB_WCET).

/* choose the best_edge in the path that is also used in the

next highest ranked path */

max = -1;

FOR (each unpositioned edge e in path p) {

n = 0;

FOR (each path p in the sorted path list (p2, ..., pi)) {

IF (edge e is in path p)

n++;

ELSE

BREAK;

}

IF (n > max) {

max = n;

best_edge = e;

}

}

Mark best_edge as contiguous;

Mark the edges that become non-contiguous;

Remove a path from the path list if all its edges have been positioned;

}

Fig. 8. The Pseudocode for the WCET Code Positioning Algorithm

At this point target misalignment penalties are not assessed by the timing an-
alyzer since WCET target alignment, described in Section 3, is performed after

ACM Transactions on Architecture and Code Optimization

16 · Wankang Zhao et al.

WCET code positioning. The algorithm selects one unpositioned edge at a time to
make contiguous. An edge is selected by first examining the paths that most affect
the WCET. Thus, paths are weighted by the maximum number of times that they
can be executed in the function to ensure its effect on the WCET is accurately
represented. In fact, the number of iterations in which a path may be executed can
be restricted due to constraints on branches.

After selecting an edge to be contiguous (and possibly making one or more other
edges noncontiguous), the UB-WCET and LB-WCET of each path are recalculated.
By making two blocks contiguous, a useless jump inserted at the beginning of the
algorithm will be removed or a taken branch may become a non-taken branch
between the two contiguous blocks. At the same time, the branch condition may
be reversed to reflect the change. The UB-WCET will decrease step by step since
more and more edges are made contiguous while the LB-WCET will increase since
more and more unpositioned edges become noncontiguous. The algorithm continues
until all edges have been positioned. At the end of the algorithm, the LB-WCET
and UB-WCET should be the same for every path. This greedy algorithm attempts
to choose the worst-case edge at each point in the positioning.

Consider the source code in Figure 9, which is a contrived example to illustrate
the algorithm. Figure 10 shows the corresponding control flow that is generated by
the compiler. While the control flow in the figure is represented at the source code
level to simplify its presentation, the analysis is performed by the compiler at the
assembly instruction level after compiler optimizations are applied to allow more
accurate timing predictions. Note that some branches in Figure 10 have conditions
that are reversed from the source code to depict the branch conditions that are
represented at the assembly instruction level. Several unconditional jumps, repre-
sented in Figure 10 as goto statements underneath dashed lines, have been inserted
to make all transitions between basic blocks result in a transfer of control penalty.
The unconditional jumps in blocks 3 and 6 were already present. Conditional
branches are represented as if statements in Figure 10. The transitions (directed
edges) between nodes are labeled so they can be referenced later. Figure 11 shows
the paths through the control-flow graph. Paths A-D represent paths within the

for (i = 0; i < 1000; ++i) {

if (a[i] < 0)

a[i] = 0 ;

else{

a[i] = a[i]+1;

sumalla += a[i];

}

if (b[i] < 0)

b[i] = 0 ;

else{

b[i] = b[i]+1;

sumallb += b[i];

b[i] = a[i]-1;

}

}

Fig. 9. An Example Used to Illustrate the Algorithm

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 17

loop. Path E represents the outer level path, where the loop is considered a single
node within that path. We consider backedges (directed edges back to the entry
point of the loop) to be part of the paths within the loop since these edges can be
traversed on all loop iterations, except for the last one. Likewise, the exit edges
(directed edges leaving the loop) are considered part of the outer paths containing
the loop since an exit edge is executed at most once each time the loop is entered.

goto 6;

goto 8;

goto 9;

... i=0;

a[i] = 0;

goto 5;

a[i] += 1;

sumalla += a[i];

b[i] = 0;

goto 8;

b[i] += 1;

sumallb += b[i];

b[i] = a[i] − 1;

i++;

if (i < 1000) goto 2;

... return;

goto 5;

c

j

g

9

8

7

6

5

4

3

2

1

if (a[i]>=0) goto 4;

if (b[i]>=0) goto 7;

goto 2;

goto 3;

k

i

h

f

e

d

b

a

Fig. 10. Control-Flow Graph of Code of an Example

Table I shows how WCET code positioning is accomplished for the example
shown in Figures 10 and 11. At each step the status for each edge and the current
UB-WCET and LB-WCET for each path calculated from the timing analyzer are
shown. Initially all edges are unpositioned, as shown in step 0. For each step an
edge is selected to be contiguous and one or more edges become noncontiguous.
Thus, after each step one or more paths have their UB-WCET reduced and one or
more paths have their LB-WCET increased.

—In the first step, the algorithm selects edge j to be contiguous since it reduces
the UB-WCET of all four paths in the loop. This selection also causes edges a

ACM Transactions on Architecture and Code Optimization

18 · Wankang Zhao et al.

Path C:
jhfec

86542

Path D:
jigec

87542

Path E:

2

9loop

Path A:
jhfdb

86532

Path B:
jigdb

8753

ka
1

Fig. 11. Paths of the Example in Figure 10

Table I. Benchmarks Used in the Experiments

S WCETs of Paths Shown in Figure 11
t Status of Edges Shown in Figure 10 UB-WCET LB-WCET
p a b c d e f g h i j k A B C D E A B C D E

0 u u u u u u u u u u u 36 40 37 41 37,020 21 25 22 26 22,018

1 n u u u u u u u u c n 33 37 34 38 34,024 21 25 22 26 22,024

2 n u u u u u u n c c n 33 34 34 35 31,024 24 25 25 26 22,024

3 n u u u u n c n c c n 33 31 34 32 30,024 27 25 28 26 24,024

4 n u u n c n c n c c n 33 31 31 29 29,024 30 28 28 26 26,024

5 n c n n c n c n c c n 30 28 31 29 27,024 30 28 31 29 27,024

u = unpositioned, c = contiguous, n = noncontiguous

and k to become noncontiguous, which results in only a small increase for the
LB-WCET of the entire function (path E) since these edges are outside the loop.

—In the second step, edge i is selected since it is part of path D, which contains
the greatest current UB-WCET. The algorithm chooses edge i instead of another
edge in path D since edge i is also part of path B, which contains the second
greatest WCET at that point. Note that edge g could have also been chosen
at this point. Since path B and path D share edge i, the UB-WCET of the
two paths decreases by 3 cycles. By making edge i contiguous, edge h becomes
noncontiguous. Both Path A and Path C contain the noncontiguous edge h, so
the LB-WCET of both paths increases by 3 cycles.

—Edge g is selected to be contiguous in the third step since that is also part of path
D, which still contains the greatest UB-WCET. The UB-WCET of path B and
path D decreases because edge g is a part of path B and Path D. The LB-WCET
of path A and path C increases because edge f becomes noncontiguous while
path A and path contain edge f.

—Edge e becomes contiguous in the fourth step since it is part of path C, which
currently contains the greatest UB-WCET. And edge c is the only unpositioned

edge along path C. At this point path D ’s UB-WCET becomes 29, which is less
than the LB-WCET of 30 for path A. Thus, path D is now noncontributing.

—During the fifth step edge b is selected since it is part of path A, which contains
the current greatest UB-WCET.

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 19

At this point all of the edges have been positioned and the UB-WCET and LB-
WCET for each path are now identical. The original positioning shown in Figure
10, but without the extra jumps inserted to make all transitions noncontiguous,
has a WCET of 31,018 or about 14.8% greater than after WCET code positioning.

While the edges have been positioned according to the selections shown in Table I,
the final positioning of the basic blocks still has to be performed. The list of
contiguous edges in the order in which they were selected are 8 → 2, 7 → 8, 5 →
7, 4 → 5, and 2 → 3. Connecting these edges by their common nodes, we are
able to determine that six of the nine blocks should be positioned in the order
4 → 5 → 7 → 8 → 2 → 3. The remaining blocks, which are 1, 6, and 9, can be
placed either before or after this contiguous set of blocks. In general, there may be
several contiguous sets of blocks in a function and these sets can be placed in an
arbitrary order. We always designate the entry block of the function as the first
block in the final positioning to simplify the generation of the assembly code by
our compiler and the processing by our timing analyzer. Note that the entry block
can never be the target of an edge in the control flow due to prologue code for
the function being generated in this block. The process of the code positioning for
this example is summarized in Figure 12, where the contiguous edges have thicker
transitions and the steps are identified in which the edges are positioned.

1

2

3 4

5

6

9

7

Step 1

Step 2

Step 3

Step 4

Step 5

b c

d e

f g

h i

k

j

8

a

Step 2

Step 4

Step 5

Step 1

Step 1

Step 3

Fig. 12. Steps in Which Edges in Figure 10 Are Positioned

ACM Transactions on Architecture and Code Optimization

20 · Wankang Zhao et al.

Figure 13 shows the final positioning of the code after applying the WCET
code positioning algorithm. By contrasting the code in Figure 10 with the final
positioning in Figure 13, one can observe that performing the final positioning
sometimes requires reversing branch conditions, changing target labels of branches,
labeling blocks that are now targets of branches or jumps, inserting new uncondi-
tional jumps, and deleting other jumps. All of the loop paths A-D required three
transfers of control prior to WCET code positioning. After WCET code position-
ing paths A and C each require three transfers of control and paths B and D each
require only one. Note that paths B and D had higher UB-WCETs before the edges
were positioned.

goto 8;

b[i] = 0;

if (i >= 1000) goto 9;

i++;

b[i] = a[i] − 1;

sumallb += b[i];

b[i] += 1;

sumalla += a[i];

a[i] += 1;

goto 2;

... i=0;

goto 5;

a[i] = 0;

1

4

5

7

if (b[i]<0) goto 6;

8

2if (a[i]>=0) goto 4;

3

6

9

h

d

c

... return;

f

a

k

b

j

i

g

e

Fig. 13. Control Flow Graph of Code of the Example in Figure 10 after WCET Positioning

The portion of our greedy algorithm (shown in Figure 8) that most affects the
analysis time is the computation performed by the timing analyzer, which is invoked
each time an edge is selected to become contiguous. Given that there are n basic
blocks in a function, there can be at most n-1 contiguous edges and sometimes there
are fewer. For instance, only five edges were selected to be contiguous instead of n-1
or eight edges for the example shown in Table I and Figure 13. Thus, the timing
analyzer is invoked at most n-1 times for each function, which is much less than
the n! invocations that would be required if every possible basic block ordering
permutation was checked.

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 21

7. WCET TARGET ALIGNMENT

After the basic blocks have been positioned within a function, WCET target align-
ment is performed to further reduce the extra transfer of control penalties due to
misaligned targets, as illustrated in Figure 3. We attempt to add no-ops before the
target instruction to make the target instruction fit into one fetch set. Figure 14
shows an example where the target instruction is in a single fetch set after we add
a no-op instruction to force this misaligned target instruction to not span the fetch
set boundary.

transfer of

control

target

instruction

fetch set n fetch set n+1 fetch set n+2
no−op

Fig. 14. Aligned Target Instruction

WCET target alignment attempts to minimize the number of target misalignment
penalties in the following manner. In order to find the right place to add no-op
instructions, the function is partitioned into relocatable sets of basic blocks. The
first block in a relocatable set is not fallen into from a predecessor block and the
last block ends with an unconditional transfer of control, such as an unconditional
jump or a return. A relocatable set of blocks can be moved without requiring
the insertion of additional instructions. For instance, the code in Figure 13 after
WCET positioning has four relocatable sets of blocks, which are {1}, {4,5,7,8,2,3},
{6}, and {9}. In contrast, the original flow graph of blocks in Figure 10 has three
relocatable sets, which are {1,2,3}, {4,5,6}, and {7,8,9}.

After WCET code positioning, the relocatable sets of blocks are aligned one set at
a time from the top of the function to the bottom of the function by inserting no-ops
before relocatable sets. Since each instruction has to be aligned on a word boundary
(2 bytes) and each fetch set consists of 4 words, there are four different possible
positionings for each relocatable set. The different alignments are accomplished
by inserting 0, 1, 2, or 3 no-ops before the beginning of the relocatable set, where
each no-op is one word in size. The locations where no-ops can be inserted before
each relocatable set of blocks is illustrated in Figure 15. Note that these no-ops
instructions are not reachable in the control flow and are never executed.

The timing analyzer is invoked four times to determine the best number of in-
serted no-ops (from 0 to 3) for each relocatable set of blocks based upon the WCET
of the function. Thus, the timing analyzer is invoked 4(m-1) times for each func-
tion, where m is the number of relocatable sets of blocks to be aligned. The number
of no-ops with the lowest WCET for the function is chosen for each relocatable set.
In the case that the WCET is the same for two or more options, the option with
the fewest no-ops is selected.

To help support this analysis, we added an option to the timing analyzer to only
assess misalignment penalties within a range of blocks. Therefore, when the best
number of no-ops is determined for a relocatable set at the top of the function,

ACM Transactions on Architecture and Code Optimization

22 · Wankang Zhao et al.

... jump

... jump

second relocatable set

third relocatable set... return

first relocatable set

no−ops?

no−ops?

Fig. 15. Example of Inserting No-op Instructions before Each Relocatable Set of Blocks

the effect of these no-ops on the remaining relocatable sets not yet aligned is not
considered since these relocatable sets at the bottom of the function will be aligned
later anyway.

We could attempt a more aggressive approach by trying all permutations of
ordering relocatable sets of blocks in addition to inserting no-ops. This approach
could potentially reduce the number of no-ops inserted. However, we have found
that the code size increase is small and our current approach is quite efficient.

8. RESULTS

This section describes the results of a set of experiments to illustrate the accuracy
of the SC100 timing analyzer and the effectiveness of improving the WCET by
using WCET code positioning and WCET target alignment. Table II shows the
benchmarks and applications used to test the effectiveness of these optimizations.
These include benchmarks or programs used in previous studies by various groups
(FSU, SNU, Uppsala) working on WCET timing analysis. These benchmarks in
Table II were selected since they do have conditional constructs, which means the
WCET and ACET input data may not be the same.

Traditionally, WCET benchmarks are quite small to make them amenable to
timing analysis. First, it is often difficult to manually determine the WC input
data to verify the accuracy of the timing analysis. Second, most timing analyzers,
including ours, cannot make WCET predictions for programs containing unbounded
loops, recursion, indirect calls, or calls to perform dynamic allocation or I/O. Thus,
standard benchmark suites, such as SPEC or MiBench, are not used in timing
analysis.

All input and output were accomplished by reading from and writing to global
variables, respectively, to avoid having to estimate the WCET of performing actual

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 23

Table II. Benchmarks Used in the Experiments

Program Description

bubblesort performs a bubble sort on 500 elements

findmax finds the maximum element in a 1000 element array

keysearch performs a linear search involving 4 nested loops for 625

elements

summidall sums the middle half and all elements of a 1000 integer vector

summinmax sums the minimum and maximum of the corresponding

elements of two 1000 integer vectors

Small sumnegpos sums the negative, positive, and all elements of a 1000 integer

vector

sumoddeven sums the odd and even elements of a 1000 integer vector

sumposclr sums positive values from two 1000 element arrays and sets

negative values to zero

sym tests if a 50x50 matrix is symmetric

unweight converts an adjacency 100x100 matrix of a weighted graph

to an unweighted graph

bitcnt five different methods to do bit-count

diskrep train communication network to control low-level hardware

equipments

fft 128 point complex FFT

Larger fire fire encoder

sha secure hash algorithm

stringsearch Pratt-Boyer-Moore string search

I/O. If the input data for the original benchmark was from a file, then we modified
the benchmark so that a global array is initialized with constants. Likewise, output
is written to a global array.

In order to verify the accuracy of the WC timing analyzer, the SC100 simulator
from StarCore is used to obtain the execution time driven by the WC input data.
The WC input data is meticulously determined by hand through testing since
the WC paths are often difficult to detect manually due to transfer of control
penalties. Therefore, these benchmarks are classified into two categories: Small

and Larger benchmarks (shown in Table II). The Small benchmarks have simple
enough control flow where the WC input data can be manually detected. Therefore,
the WCET from the timing analyzer is close to the execution time obtained from
the simulator. However, the WC input data is more difficult to manually detect for
the Larger benchmarks. Therefore, the WCET from the timing analyzer may be
much larger than the execution time obtained from the simulator for these larger
benchmarks since the observed cycles may not represent the execution of the WC
paths. Table III shows the instruction code size and the lines of source code for
these benchmarks. The instruction code size of the Larger benchmarks is no less
than 250 bytes while the code size is under 200 bytes for Small benchmarks.

In Table III, the base compilation time is the wall-clock time without performing
code positioning, while the position compilation time is the wall-clock time with
WCET code positioning and WCET target alignment. The time ratio indicates the

ACM Transactions on Architecture and Code Optimization

24 · Wankang Zhao et al.

Table III. The Code Size and the Compilation Time of the Benchmarks
Code Size Lines of Compilation Time time

Category Benchmarks (bytes) Source base(min) position(min) Ratio

bubblesort 145 93 0.23 0.37 1.609
findmax 58 21 0.97 0.97 1.000
keysearch 186 537 0.18 0.22 1.222
summidall 56 23 0.13 0.13 1.000

Small summinmax 60 47 0.13 0.17 1.308
sumnegpos 45 20 0.13 0.13 1.000
sumoddeven 78 51 0.15 0.17 1.133
sumposclr 81 35 0.15 0.20 1.333
sym 97 40 0.18 0.18 1.000
unweight 79 23 0.13 0.13 1.000

small
average 89 89 0.24 0.27 1.161

bitcnt 354 170 0.32 0.37 1.156
diskrep 388 500 0.22 0.50 2.273

Larger fft 631 220 0.28 0.70 2.500
fire 247 109 0.17 0.22 1.294
sha 907 253 0.42 0.87 2.071
stringsearch 333 237 0.40 0.97 1.425

larger
average 477 248 0.30 0.61 1.953

overall
average 234 149 0.26 0.39 1.458

compilation overhead of performing WCET code positioning and target alignment.
Most of this overhead is due to repeated calls to the timing analyzer. While this
overhead is reasonable, it could be significantly reduced if the timing analyzer and
the compiler were in the same executable and passed information via arguments
instead of files. Note that base compilation time in the table is slightly longer
than the regular VPO compilation time since our compiler has to invoke the timing
analyzer at the end of the compilation to obtain the baseline WCET.

Table IV shows the accuracy of our timing analyzer and the effect on WCET
after code positioning and target alignment. The results before positioning indi-
cate the measurements taken after all optimizations have been applied except for
WCET code positioning and WCET target alignment. The observed cycles were
obtained from running the compiled programs with WC input data through the
SC100 simulator. The WCET cycles are the WCET predictions obtained from our
timing analyzer. The WCET cycles should be larger than or equal to the observed

cycles since the WCET is the upper bound for the execution time and it should
never be underestimated. The ratios show that these predictions are reasonably
close for Small programs since it was not too difficult to determine the WC input
data for small programs or programs with few paths. For some Larger programs, it
is harder to manually determine the WC input data, so the WCET from the timing
analyzer is much larger than the observed cycles obtained from the simulator. This
does not necessarily imply that the timing analyzer is inaccurate, but rather that
the input data may be not executing the WC paths. We did not obtain the observed

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 25

Table IV. Results after WCET Code Positioning and Target Alignment

Before Positioning After Positioning After Alignment
Program Observed WCET WCET WCET Positioning WCET Alignment

Cycles Cycles Ratio Cycles Ratio Cycles ratio

bubblesort 7,372,782 7,623,795 1.034 7,622,295 1.000 7,497,546 0.983

findmax 19,997 20,002 1.000 19,009 0.950 19,009 0.950

keysearch 30,667 31,142 1.015 29,267 0.940 29,267 0.940

summidall 19,513 19,520 1.000 16,726 0.857 16,726 0.857

summinmax 23,009 23,015 1.000 21,021 0.913 20,021 0.870

sumnegpos 20,010 20,015 1.000 18,021 0.900 18,021 0.900

sumoddeven 22,025 23,032 1.046 18,035 0.783 16,546 0.718

sumposclrneg 31,013 31,018 1.000 27,024 0.871 27,024 0.871

sym 55,343 55,497 1.003 51,822 0.934 51,822 0.934

unweight 350,507 350,814 1.001 321,020 0.915 321,020 0.915

Small
average 794,487 819,785 1.010 814,424 0.906 801,700 0.894

bitcnt 39,616 55,620 1.404 52,420 0.942 52,321 0.941

diskrep 9,957, 12,494 1.255 11,921 0.954 11,907 0.953

fft 73,766, 73,834 1.001 73,776 0.999 73,778 0.999

fire 8,813 10,210 1.159 10,210 1.000 10,210 1.000

sha 691,045 769,493 1.114 769,461 1.000 759,179 0.987

stringsearch 147,508 194,509 1.319 186,358 0.958 186,304 0.958

larger

average 161,784 186,027 1.208 184,024 0.976 182,283 0.973

overall
average 557,223 582,126 1.084 578,024 0.932 569,419 0.924

cycles after WCET positioning or WCET alignment since this would require new
WCET input data due to changes in the WCET paths.

The results after positioning indicate the measurements taken after the WCET
code positioning algorithm described in Section 6 is applied immediately following
the preceding optimization phases. The WCET cycles represent the new predicted
WCET by the timing analyzer. The positioning ratio indicates the ratio of the
WCET cycles after positioning divided by the WCET cycles before positioning.
There was over a 9% average reduction in WCET for small benchmarks by apply-
ing the WCET code positioning algorithm, while there was 6.8% average reduction
in WCET for all benchmarks. The results after alignment indicate the measure-
ments that were obtained after the WCET target alignment algorithm in Section 7
is applied following WCET code positioning. There was often no benefit from tar-
get alignment since the misaligned targets, as depicted in Figure 3, do not occur
that frequently. The WCET cycles again represent the new predicted WCET by
the timing analyzer. The alignment ratio indicates the ratio of the WCET cycles

after alignment as compared to the WCET cycles before positioning. Three of the
ten small benchmarks improved due to WCET target alignment, while three out
of six Larger benchmarks improved, which resulted in over an additional 0.8% av-
erage reduction in WCET. Figure 16 shows in a chart the effect that WCET code
positioning and alignment have on the WCET.

While the results in Table IV show a significant improvement in the predicted

ACM Transactions on Architecture and Code Optimization

26 · Wankang Zhao et al.

Fig. 16. Effect of WCET Code Positioning and Alignment on WCET

WCET, it would be informative to know if better positionings than those obtained
by our greedy WCET code positioning algorithm are possible. Like most bench-
marks used for WCET prediction studies, the size of each Small benchmark is fairly
small so that the WCET input data can be manually determined and the WCET
observed cycles can be measured. The functions in these Small benchmarks were
small enough so that the WCET for every possible permutation of the basic block
ordering could be estimated. The number of possible orderings for each function
is n!, where n is the number of basic blocks, since each block can be represented
at most once in the ordering. Table V shows the results of performing an exhaus-
tive search for the best WCET code positioning for Small benchmarks, where the
WCET is calculated for each possible permutation. The number of permutations

varies depending upon the number of routines in the benchmark and the number
of basic blocks in each function.

Table V. Possible WCET Code Positioning Results for the Small Benchmarks
Program Permuta- Minimum Greedy Default Maximum

tions WCET WCET Ratio WCET Ratio WCET Ratio

bubblesort 40,328 7,622,295 7,622,295 1.000 7,623,795 1.000 8,990,017 1.179
findmax 120 19,009 19,009 1.000 20,002 1.052 24,999 1.315
keysearch 39,916,801 29,237 29,237 1.000 31,112 1.064 59,574 2.038
summidall 5,040 16,726 16,726 1.000 18,520 1.107 28,722 1.717
summinmax 362,880 20,021 20,021 1.000 23,015 1.150 29,017 1.449

sumnegpos 5,040 18,021 18,021 1.000 20,015 1.111 28,017 1.555
sumoddeven 3,628,800 16,034 16,034 1.000 22,049 1.375 31,054 1.937
sumposclrn 362,880 27,024 27,024 1.000 31,018 1.148 37,020 1.370
sym 5041 51,822 51,822 1.000 55,497 1.071 62,979 1.215
unweight 40,320 321,020 321,020 1.000 350,714 1.092 471,316 1.468

average 4,925,214 814,121 814,121 1.000 819,574 1.117 976,272 1.524

Unlike the measurements shown in Table IV, these WCET results exclude target
misprediction penalties. Our WCET positioning algorithm does not take target
misprediction penalties into account when making positioning decisions since the

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 27

WCET target alignment optimization occurs after positioning. Thus, the WCETs
are in general slightly lower than the WCETs shown in Table IV.

The minimum WCET represents the lowest WCET found by performing the
exhaustive search. There are typically multiple code positionings that result in
an equal minimum WCET. We found that the greedy WCET obtained by our
algorithm was always identical to the minimum WCET for each function in each
benchmark for the Small test suite. It appears that our greedy algorithm is very
effective at finding an efficient WCET code positioning and we anticipate that it
would also work well on larger benchmarks.

The default WCET and maximum WCET are also given in Table V. The default

WCET represents the WCET of the default code layout without code positioning.
On average the default WCET is 11.6% worse than the minimum WCET. The max-

imum WCET represents the highest WCET found during the exhaustive search.
The results show that the maximum WCET is 50.2% higher on average than the
minimum WCET. While the default WCET is relatively efficient compared to the
maximum WCET, the greedy WCET still is a significant improvement over just
using the default code positioning.

Invoking the timing analyzer n! times when performing an exhaustive search
for each function would require an excessive amount of time. Instead, we initially
invoked the timing analyzer once without assessing transfer of control penalties
to obtain a base WCET time for each path. For each permutation we adjusted
each path’s WCET by adding the appropriate transfer of control penalty to each
noncontiguous edge. After finding the minimum WCET permutation, we invoked
the timing analyzer again for this permutation to verify that our preliminary WCET
prediction without using the timing analyzer was accurate. While this approach is
potentially less accurate, we were able to obtain results in a few hours. Invoking
the timing analyzer for each permutation would have taken significantly longer.

The effect on ACET after WCET code positioning and target alignment is shown
in Table VI. The ACET cycles are obtained from the simulator when random num-
bers are used as the input data. The baseline ACET cycles are obtained before
code positioning. The average ACET for these benchmarks after code positioning
is reduced by 7.4%. Although the goal of the target alignment is for WCET, it also
reduces ACET by 0.1%. While some benchmarks get similar ACET benefits as
WCET benefits, such as benchmarks keysearch and summidall, some other bench-
marks have ACET benefits that are greater or less than the WCET benefits. Since
the code positioning algorithm reduces the execution time of the WC paths while
increasing the execution time of other paths, the ACET benefit after code posi-
tioning depends on how frequently the WC paths are driven by the ACET input
data. Furthermore, if the blocks comprising the frequent path are a subset of the
blocks comprising the WC path, WCET code positioning may reduce the WCET
while not increasing the execution time of other paths. For instance, the difference
in the execution time of the two paths in the benchmark findmax is only 1 cycle.
After code positioning, the execution time of the original WC path is reduced by
3 cycles while the execution time of the other path stays the same. Therefore, the
other path becomes the new WC path. The WCET is reduced by only 1 cycle
each iteration since the WC path changes. However, the ACET is obtained by
using random input data, which drives both paths. Since the execution time of one

ACM Transactions on Architecture and Code Optimization

28 · Wankang Zhao et al.

Table VI. ACET Results after WCET Code Positioning and Target Alignment
Baseline After Positioning After Alignment

Program ACET ACET Positioning ACET Alignment
Cycles Cycles Ratio Cycles Ratio

bubblesort 5,086,177 5,084,809 1.000 5,024,547 0.988
findmax 19,991 17,020 0.851 17,020 0.851
keysearch 11,067 10,399 0.940 10,399 0.940
summidall 19,511 16,721 0.857 16,721 0.857
summinmax 23,009 20,532 0.892 20,018 0.870
sumnegpos 18,032 15,042 0.834 15,042 0.834
sumoddeven 14,783 10,764 0.728 11,097 0.751
sumposclrneg 28,469 25,561 0.898 25,561 0.898
sym 107 107 1.000 107 1.000
unweight 340,577 311,088 0.913 311,088 0.913

Small
average 556,172 551,204 0.891 545,160 0.890

bitcnt 39,616 37,516 0.947 37,417 0.944
diskrep 9,957 9,486 0.953 9,568 0.961
fft 73,766 73,714 0.999 73,714 0.999
fire 8,813 8,813 1.000 8,813 1.000
sha 691,045 691,048 1.000 683,051 0.988
stringsearch 147,508 147,510 1.000 147,455 1.000

larger
average 161,784 161,348 0.983 160,003 0.982

overall
average 409,277 405,008 0.926 400,726 0.925

path is reduced by 3 cycles and the baseline in cycles for ACET is smaller than
the WCET baseline, the ACET benefit is larger than the WCET benefit after code
positioning for this benchmark.

9. FUTURE WORK

We have performed code positioning and target alignment optimizations based on
the WC path information from the timing analysis. There is much future research
that can be accomplished to enhance this code positioning algorithm.

(1) The WCET code positioning algorithm could be used to improve the WCET
for applications on other processors. Besides improving WC performance by
reducing the transfers of control along the WC paths, this algorithm may be
adapted to improve instruction cache performance along the WC path for pro-
cessors with caches. Data cache performance may also be improved by this
effort although it may be more subtle.

(2) We can attempt to reduce the compilation time. Longer compilation times may
be acceptable for embedded systems since developers may be willing to wait
longer for more efficient executables. However, people working in industry still
want to reduce the compilation time so they have more time to try more options
while developing software for embedded systems. Now the compiler and the
timing analyzer are separate processes and they exchange data via files. If we

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 29

could merge the compiler and the timing analyzer into one process, it would
speed up the algorithm.

(3) Currently, the algorithm is automatic for benchmarks with bounded loops since
the timing analyzer can give exact clock cycles for the WCET of this kinds of
programs. If the timing analyzer can produce WCET with a symbolic number
of loop iterations as the parameters, then this algorithm can be modified to
reduce the WCET for programs whose number of iterations cannot be statically
determined by the compiler [Vivancos et al. 2001]. While the algorithm may
not be able to determine which loop nests require the most cycles, the algorithm
could be used to minimize the WCET within a loop nest.

10. CONCLUSIONS

In this paper, we have described a code positioning algorithm that is driven by
WCET path information from timing analysis, as opposed to ACET frequency
data from profiling. WCET code positioning is more challenging than ACET code
positioning since the WC paths may change after changing the order of basic blocks.
A WCET code positioning optimization should attempt to minimize the maximum
execution time among all the paths. Our algorithm addresses this issue by initially
assuming that all edges are unpositioned. At each step the algorithm conservatively
estimates the WC paths in the function based on the currently unpositioned edges
and uses this information to select the next edge to make contiguous. The edges
along the WC paths have highest priority to become contiguous to reduce the
branch penalties. The paths that cannot contribute to the WCET are determined
by calculating when their UB-WCET is less than the LB-WCET of another path
in the same loop or outermost level of a function. Edges that appear in only
noncontributing paths have the lowest priority for being made contiguous. We have
implemented the algorithm and have demonstrated that it can improve the WCET
of applications on a machine with transfer of control penalties. In fact, our greedy
WCET code positioning algorithm obtains optimal results on the SC100 for tested
programs with a small number of basic blocks. A related compiler optimization
called WCET target alignment has also been implemented and evaluated. The
target alignment optimization reduces WCET due to target misalignment penalties.
Thus, we have shown that it is feasible to develop specific compiler optimizations
that are designed to improve WCET using WCET path information as opposed
to improving ACET using frequency data. Code positioning determines the order
of the basic blocks, but, in general, it does not change the code size. Therefore,
code positioning is an appropriate compiler optimization to reduce the WCET for
embedded systems since the space for the code in embedded systems is also a limited
resource.

11. ACKNOWLEDGMENTS

We thank StarCore for providing the necessary software and documentation that
were used in this project. This research was supported in part by NSF grants
EIA-0072043, CCR-0208581, CCR-0208892, CCR-0310860, CCR-0312493, CCR-
0312531, and CCR-0312695.

ACM Transactions on Architecture and Code Optimization

30 · Wankang Zhao et al.

REFERENCES

Arnold, R., Mueller, F., and Whalley, D. 1994. Bounding worst-case instruction cache perfor-
mance. In Proceedings of the Fifteenth IEEE Real-time Systems Symposium. IEEE Computer
Society Press, San Juan, Puerto Rico, 172–181.

Benitez, M. 1994. Retargetable register allocation. Ph.D. thesis, University of Virginia, Char-
lottesville, VA.

Benitez, M. E. and Davidson, J. W. 1988. A portable global optimizer and linker. In Proceedings
of the SIGPLAN’88 conference on Programming Language design and Implementation. ACM
Press, Atlanta, Georgia, United States, 329–338.

Benitez, M. E. and Davidson, J. W. 1994. The advantages of machine-dependent global op-
timization. In Proceedings of the 1994 International Conference on Programming Languages
and Architectures. 105–124.

Calder, B. and Grunwald, D. 1994. Reducing branch costs via branch alignment. In Proceeding
of ASPLOS’94. ACM Press, San Jose, California, United States, 242–251.

Engblom, J. and Ermedahl, A. 2000. Modeling complex flows for worst-case execution time
analysis. In Proceedings of the 21st IEEE Real-time System Symposium. IEEE Computer
Society Press, Orlando, Florida, Unitied States, 875–889.

Eyre, J. and Bier, J. 1998. Dsp processors hit the mainsteam. IEEE Computer 31, 8 (Aug.),
51–59.

Harmon, M., Baker, T., and Whalley, D. 1994. A retargetable technique for prediction exe-
cution time of code segments. Real-Time Systems, 159–182.

Healy, C., Arnold, R., Mueller, F., Whalley, D., and Harmon, M. 1999. Bounding pipeline
and instruction cache performance. IEEE Transactions on Computers 48, 1 (Jan.), 53–70.

Healy, C., Sjodin, M., Rustagi, V., Whalley, D., and van Engelen, R. 2000. Supporting
timing analysis by automatic bounding of loop iterations. Real-Time Systems 18, 2 (May),
121–148.

Healy, C. and Whalley, D. 1999. Tighter timing predictions by automatic detection and ex-
ploitation of value-dependent constraints. In Proceedings of the IEEE Real-Time Technology
and Applications Symposium. IEEE Computer Society Press, Vancouver, Canada, 79–99.

Healy, C. and Whalley, D. 2000. Automatic detection and exploitation of branch constraints
for timing analysis. IEEE Transaction on Software Engineering 28, 8 (August), 763–781.

Healy, C., Whalley, D., and Harmon, M. 1995. Integrating the timing analysis of pipelining
and instruction caching. In Proceedings of the Sixteenth IEEE Real-time Systems Symposium.
IEEE Computer Society Press, Pisa, Italy, 288–297.

Healy, C., Whalley, D., and van Engelen, R. 2000. A general approach for tight timing
predictions of non-rectangular loops. In WIP Proceedings of the IEEE Real-Time Technology
and Applications Symposium. IEEE Computer Society Press, Washington, DC, 11–14.

Hong, S. and Gerber, R. 1993. Compiling real-time programs into schedulable code. In Pro-
ceedings of the SIGPLAN’93. ACM Press, Albuquerque, New Mexico, United States, 166–176.

Ko, L., Al-Yaqoubi, N., Healy, C., Ratliff, E., Arnold, R., Whalley, D., and Harmon,

M. 1999. Timing constraint specification and analysis. Software Practice & Experience 29, 1
(Jan.), 77–98.

Ko, L., Healy, C., Ratliff, E., Arnold, R., Whalley, D., and Harmon, M. 1996. Supporting
the specification and analysis of timing constraints. In Proceeding of the IEEE Real-Time
Technology and Application Symposium. IEEE Computer Society Press, Boston, Massachusetts,
United States, 170–178.

Kulkarni, P., Zhao, W., Moon, H., Cho, K., Whalley, D., Davidson, J., Bailey, M., Paek,

Y., and Gallivan, K. 2003. Finding effective optimization phase sequences. In ACM SIGPLAN
Conference on Languages, Compilers, and Tools for Embedded Systems. ACM Press, San Diego,
California, United States, 12–23.

Lee, S., Lee, J., Park, C., and Min, S. 2004. A flexible tradeoff between code size and wcet
using a dual instruction set processor. In International Workshop on Software and Compilers
for Embedded Systems. Springer, Amsterdam, Netherlands, 244–258.

ACM Transactions on Architecture and Code Optimization

WCET Code Positioning Algorithm · 31

Li, Y., Malik, S., and Wolfe, A. 1995. Efficient microarchitecture modeling and path analysis

for real-time software. In Proceedings of the Sixteenth IEEE Real-time Systems Symposium.
IEEE Computer Society Press, Pisa, Italy, 298–307.

Lim, S., Bae, Y., Jang, G., Rhee, B., Min, S., Park, C., Shin, H., Park, K., and Kim, C.

1994. An accurate worst case timing analysis technique for risc processors. In Proceedings of
the Fifteenth IEEE Real-time Systems Symposium. IEEE Computer Society Press, San Juan,
Puerto Rico, 875–889.

Lundqvist, T. and Stenstrom, P. 1998. Integrating path and timing analysis using instruction-
level simulation techniques. In Proceedings of SIGPLAN Workshop on Languages, Compil-
ers and Tools for Embedded Systems(LCTES’98). IEEE Computer Society Press, Montreal,
Canada, 1–15.

McFarling, S. and Hennessy, J. 1986. Reducing the cost of branches. In 13th Annual Interna-
tional Symposium of Computer Architecture. Tokyo, Japan, 396–403.

Mueller, F. 1997. Timing predictions for multi-level caches. In ACM SIGPLAN Workshop on
Language, Compiler and Tool Support for Real-time Systems. ACM Press, Las Vegas, Nevada,
United States, 29–36.

Mueller, F. 2000. Timing analysis for instruction caches. Real-Time Systems 18, 2 (May),
209–239.

Pettis, K. and Hansen, R. 1990. Profile guided code position. In Proceeding of the ACM
SIGPLAN’90 Conference on Programming Language Design and Implementation. ACM Press,
White Plain, New York, United States, 16–27.

Shaw, A. C. 1989. Reasoning about time in higher- level language software. IEEE Transactions
on Software Engineering 15, 7, 875–889.

Star Core, I. 2001a. Sc100 simulator reference manual.

Star Core, I. 2001b. Sc110 dsp core reference manual.

T. Marlowe, S. M. 1992. Safe optimization for hard real-time programming. In Special Session
on Real-Time Programming, Second International Conference on Systems Integration. 438–
446.

Vivancos, E., Healy, C., Mueller, F., and Whalley, D. 2001. Parametric timing analysis. In
proceedings of the ACM SIGPLAN Workshop on Language, Compilers, and Tools for Embedded
Systems. ACM Press, Snowbird, Utah, United States, 83–93.

White, R., Mueller, F., Healy, C., Whalley, D., and Harmon, M. 1999. Timing analysis for
data caches and wrap-around-fill caches. Real-Time Systems 17, 1 (Nov.), 209–233.

White, R. T., Mueller, F., Healy, C., Whalley, D., and Harmon, M. 1997. Timing analysis
for data caches and set-associative caches. In Proceedings of the IEEE Real-Time Technology
and Application Symposium. IEEE Computer Society Press, Montreal, Canada, 192–202.

Zhao, W., Cai, B., Whalley, D., Bailey, M., van Engelen, R., Yuan, X., Hiser, J., Davidson,

J., Gallivan, K., and Jones, D. 2002. Vista: A system for interactive code improvement,. In
ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems. ACM
Press, Berlin, Germany, 155–164.

ACM Transactions on Architecture and Code Optimization

