
Foundations of Garbled Circuits
By

Viet Tung Hoang
B.S. (National University of Singapore) 2007

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Phillip Rogaway (Chair)

Mihir Bellare

Matthew Franklin

Committee in Charge
2013

i

Contents

1 Introduction 1

1.1 A brief history . 2

1.2 Motivation for our study . 3

1.3 Our contributions . 4

1.4 Organization and history of thesis results . 6

2 Preliminaries 8

2.1 Notation . 8

2.2 Code-based games . 8

2.3 Circuits . 9

3 Foundational Treatment 13

3.1 Introduction . 13

3.2 Garbling schemes and their security . 17

3.3 Syntax . 17

3.3.1 Projective schemes . 18

3.3.2 Side-information functions . 19

3.3.3 Security notions . 20

3.3.4 Remarks . 24

3.4 Relations . 26

3.4.1 Invertibility of side-information functions 27

ii

3.4.2 Equivalence of prv.ind and prv.sim 29

3.4.3 Equivalence of obv.ind and obv.sim 31

3.4.4 Separations . 33

3.5 Achieving privacy: Garble1 . 38

3.5.1 Definition of Garble1 . 39

3.5.2 Security notion for dual-key ciphers 41

3.5.3 Security of Garble1 . 42

3.5.4 Proof of security of Garble1 . 43

3.5.5 Dual-key ciphers from a PRF . 52

3.5.6 Dual-key ciphers from double encryption 54

3.5.7 AES-based instantiations . 58

3.5.8 Dual-key ciphers from an ideal permutation 60

3.6 Achieving privacy, authenticity and obliviousness: Garble2 63

3.7 Applications . 66

3.7.1 Two-party SFE and PFE . 66

3.7.2 KDM-secure encryption . 70

3.8 Related work . 75

3.9 Universal circuits . 79

4 Efficient Garbling 81

4.1 Introduction . 81

4.2 Preliminaries . 86

4.3 Instantiation overview . 86

4.4 Security of Ga, GaX and GaXR . 94

4.5 JustGarble and its performance . 97

4.6 Postponed proofs . 103

4.6.1 Proof of Theorem 4.4.1 . 103

4.6.2 Proof of Theorem 4.4.2 . 107

iii

4.6.3 Proof of Theorem 4.4.3 . 112

4.7 Accounting for parameters in Fig. 4.4.1 . 117

5 Adaptively Secure Garbling 122

5.1 Introduction . 122

5.2 Adaptive privacy and one-time programs . 128

5.2.1 Definitions for adaptive privacy . 128

5.2.2 The OMSS transform . 130

5.2.3 Achieving prv1 security . 134

5.2.4 Achieving prv2 security . 136

5.2.5 Efficient ROM transforms . 136

5.2.6 “Standard” schemes are not prv2 secure 139

5.2.7 One-time programs . 141

5.3 Obliviousness, authenticity and application to secure outsourcing 146

5.3.1 Definitions for adaptive obliviousness and authenticity 146

5.3.2 Achieving adaptive obliviousness and authenticity 148

5.3.3 Efficient ROM transforms . 150

5.3.4 Application to secure outsourcing . 151

5.4 Indistinguishability-based definitions . 155

5.5 Separations . 164

5.6 Postponed proofs . 172

5.6.1 Proof of Theorem 5.2.2 . 172

5.6.2 Proof of Theorem 5.2.3 . 174

5.6.3 Proof of Theorem 5.2.4 . 175

5.6.4 Proof of Theorem 5.2.5 . 177

5.6.5 Proof of Theorem 5.3.1 . 178

5.6.6 Proof of Theorem 5.3.2 . 182

5.6.7 Proof of Theorem 5.3.3 . 182

iv

5.6.8 Proof of Theorem 5.3.4 . 184

References 186

v

Viet Tung Hoang
June 2013

Computer Science

Foundations of Garbled Circuits

Abstract

Garbled circuits, a classical idea rooted in the work of Andrew Yao, have long been

understood as a cryptographic technique, not a cryptographic goal. Here we cull out a

primitive corresponding to this technique. We call it a garbling scheme. We provide a

provable-security treatment for garbling schemes, endowing them with a versatile syntax

and multiple security definitions. The most basic of these, privacy, suffices for two-party

secure function evaluation (SFE) and private function evaluation (PFE). We next consider

obliviousness and authenticity , properties needed for private and verifiable outsourcing of

computation. Starting from a PRF, we give efficient schemes to achieve all security notions

above, and analyze their concrete security. Our treatment of garbling schemes provides

ground for more efficient garbling, more rigorous analyses, and more modularly designed

higher-level protocols.

On the practical side, we provide extremely efficient garbling schemes based on fixed-key

AES. We justify the security of these methods in the random-permutation model, where

parties have access to a public random permutation, and build the JustGarble system to

implement them. JustGarble evaluates moderate-sized garbled-circuits at an amortized cost

of 23.2 cycles per gate (7.25 nsec), far faster than any prior reported results.

Standard constructions of garbling schemes, including ours, provide only static secu-

rity, meaning the input x is not allowed to depend on the garbled circuit F . But some

applications—notably one-time programs (Goldwasser, Kalai, and Rothblum 2008) and se-

cure outsourcing (Gennaro, Gentry, Parno 2010)—need adaptive security, where x may de-

pend on F . We identify gaps in proofs from these papers with regard to adaptive security,

which signifies the absence of a good abstraction boundary. We then investigate adap-

tive security of garbling schemes, giving definitions encompassing privacy, authenticity, and

obliviousness, with either coarse-grained or fine-grained adaptivity. We show how adap-

vi

tively secure garbling schemes support simple solutions for one-time programs and secure

outsourcing, with privacy being the goal in the first case and obliviousness and authenticity

the goal in the second. We give transforms that promote static-secure garbling schemes to

adaptive-secure ones. This gives another compelling evidence that conceptualizing garbling

schemes as a first-class cryptographic primitive can simplify, unify, or improve treatments

for higher-level protocols.

vii

Acknowledgments

First and foremost, I would like to thank my advisor, Phillip Rogaway. Phil is also a close

friend of mine, a role model, and a superb teacher. His obsession with elegance and typog-

raphy, his forceful yet humorous writing style, and his unique eccentricity are all contagious.

During last five years, under Phil’s inspiring guidance, I have improved tremendously, both

as a person and as a scientist.

Mihir Bellare serves as my second advisor, a source of wisdom, and an oracle of knowledge.

I have imbibed a vast amount of his refined taste for research questions and his brilliant

problem-solving skill. Mihir also instills in me the hope and confidence to become a great

researcher.

I wish to thank Sriram Keelveedhi for his excellent work in implementing the JustGarble

system, and Matthew Franklin for serving in my thesis committee. Matt introduced me to

the concept of garbled circuits and strongly influenced my decision to pursue the topic.

Finally, I thank my family for their unconditional love and for filling my life with happi-

ness and joy.

viii

Chapter 1

Introduction

Consider the following motivating examples:

• Private outsourcing: A client wants to outsource a computation on her confidential

data x to a cloud, yet doesn’t want to reveal x to the cloud.

• Electronic voting: A group of people want to vote over the Internet. The election

protocol should ensure that (i) each person votes at most once, (ii) each ballot votes

for at most one candidate, and (iii) everybody, except the voter, knows nothing about

the content of the ballot.

• Privacy-preserving auction: A group of users want to bid for an item, and who bids the

highest price wins the auction. There is no trusted arbitrator, and the winner pays the

second highest price. The protocol should ensure that each user knows if she wins the

auction, and, for the winner, the amount of money she has to pay—but nothing else.

The examples above are special cases of the Multiparty Computation problem (MPC). There

are m players P1, . . . , Pm, and each player Pi has private input xi and public function fi, for

every i ∈ {1, . . . ,m}. The goal is to let Pi compute fi(x1, . . . , xm) without learning anything

else about the other players’ input. Being an important problem in its own right, the case

m = 2 is often referred to as Secure Function Evaluation (SFE). Andrew Yao [96, 97] is

the first to describe and study MPC. In talks [38, p. 27], he even suggested a technique,

1

commonly known as Yao’s garbled circuits (GC), to achieve SFE. GCs eventually become

a central tool in cryptography, enjoying diverse applications [9, 34, 35, 50, 78, 88]. Beyond

this, some GC-based protocols have turned practical. Beginning with Fairplay [72], a bit

of a cottage industry has emerged to improve the efficiency and practicality of GC-based

MPC [49, 51, 64, 66, 84].

In this thesis, we deviate from the ingrained mindset that views GCs as a cryptographic

technique. We instead advocate a different point of view, one that sees garbling schemes as

a stand-alone cryptographic object. This abstraction enables more modular use of garbled

circuits in higher-level protocols, resulting in the discovery of critical bugs subtly hidden in

several well-known papers [6, 37, 45, 64, 84]. Our foundational, practice-oriented treatment

also leads to new and highly efficient schemes, ones which are more than two orders of

magnitude faster than prior work [51, 66].

1.1 A brief history

While Yao’s 1982/1986 papers [96, 97] are often cited for reference to GCs, strangely, there

is no description of GCs in these two papers. From what the text in these papers literally

suggests, the 1982 paper only raises the question of MPC and claims that there exists a

method to achieve SFE based on trapdoor one-way functions, without giving any further

details 1; while the 1986 paper merely hints that the technique is also based on probabilistic

encryptions [43].

The first written account of the method is given by Goldreich, Micali, and Wigderson

(GMW) [41]. The protocol they describe, crediting Yao [96], involves associating two tokens

to each wire of a boolean circuit, these having hidden semantics of 0 and 1. Means are

then provided to propagate tokens across a gate, preserving the hidden semantics. More

1According to Y. Ishai (personal communication), Yao already conceived the idea of GCs in his 1982
paper, but lacked the language to write everything down clearly. Only after the concept of computational
indistinguishability appeared [43] was Yao able to clarify his thoughts and give oral presentations on the
technique.

2

specifically, there’s a four-row table for each gate of the circuit, each row employing public-key

encryption2 to encrypt a pair of random strings whose xor is the token for the outgoing wire.

The term garbled circuit3 is from Beaver, Micali, and Rogaway [11], where the method

was first based on a symmetric primitive. Garbled circuits took on a modern, PRF-based

instantiation in work by Naor, Pinkas, and Sumner on privacy-preserving auctions [78].

Yao’s garbled-circuits technique has been extremely influential, engendering an enormous

number of applications, implementations, and refinements. Still, there has been little def-

initional attention paid to garbled circuits themselves. A 2004/2009 paper by Lindell and

Pinkas [68, 70] provides the first explicit proof of Yao’s protocol—to the extent one can

say that a particular scheme is Yao’s—but, even there, the authors do not formalize gar-

bled circuits or what it means to securely create one. Instead, they prove that a particular

garbled-circuit-using protocol, one based on double encryption,4 is a secure two-party SFE.

Implemented SFE methods [84] do not coincide with what’s in Lindell and Pinkas [70], but

still refer to the proof in [70] to (incorrectly) justify the security of their protocols.

1.2 Motivation for our study

Despite the enormous impact of GCs, there is a crisis of rigor in GC-based applications and

implementations. Given the complexity of GCs, some authors choose to neglect a security

proof, and instead rely on the intuition that their protocols are correct [35, 78]. Some other

authors instead try to single out, definitionally, precisely what they need from GCs for

some intending application, but none of the papers pick up definitions from any other, nor

does any prove that any particular construction satisfies the notion given [1, 9, 23, 59, 63].

2It seems to have been almost forgotten that garbled circuits were originally conceived as a technique
based on public-key techniques. Abadi and Feigenbaum (1990), for example, explain that an advantage of
their approach is that only one composite N = pq is needed for the entire circuit, not a different one for each
gate [1]. Garbled circuits have long since lost their association to public-key encryption, let alone a specific
public-key technique.

3Synonyms in the literature include encrypted circuit and scrambled circuit, while GMW refer to Yao’s
protocol (GCs + oblivious transfers) as combined oblivious transfer. The term garbled circuit however caught
on and now becomes the standard name.

4This approach for making the rows of the garbled gate is first mentioned by Goldreich [38].

3

Other authors choose a concrete instantiation of GC to work with, but the absence of a

good abstraction boundary makes daunting the task of providing a full proof [37, 45, 69, 75].

Sometimes, the needed property is beyond what the standard constructions can deliver, and

this approach may lead to serious and subtle bugs, as in [37, 45].

A line of definitions begins with Ishai and Kushilevitz [54] and continues with [2, 4, 6, 7,

55, 56, 88]. These works define various flavors of randomized encodings. Their authors do see

randomized encodings as a general-purpose primitive, and the definitions elegantly support

a variety of theory-centered work. However, they lack the fine-grained syntax that we shall

need for properties needed for one-time programs [45] and secure outsourcing [37], and precise

measures of efficiency. Indeed, this causes a bug in the secure outsourcing constructed in [6].

On the other hand, it is common for implementations of GC to start from a basic, proven

scheme, and then implement an instantiation, enhancement, or variant that is not itself

proven. For example, there is still no proof for schemes that use both the free xor [84] and

garbled-row reduction [84]. Absence of proof can belie presence of error. Indeed, during the

course of our study, we discover a bug that breaks a few instantiations [64, 84].

Once viewed as a “theoretical” approach for multiparty computation, a long line of

work, beginning with Fairplay [72], has made clear that circuit garbling is now a practical

technique. State-of-the-art implementations by Huang et al. and Kreuter et al. can handle

complex functionalities and hundreds of millions of gates [51, 52, 66]. Still, there are hidden

opportunities to improve the speed that are realized only when GCs are properly formalized.

As an analog, authenticated encryption took off after it was reconceptualized as a primitive,

not a method formed of encryption schemes and MACs.

1.3 Our contributions

In this thesis we aim to instill fresh, practice-oriented foundation in an area where, his-

torically, omitted definitions and proofs have been the norm. Below are our three main

4

contributions.

Formalization. We formalize what we call a garbling scheme. The notion is designed to

support a burgeoning and practical area: the myriad applications of garbled circuits. Our

definitions and results enable easy and widespread applications with modular, simplified,

and yet more rigorous proofs of security. On the other hand, with a protocol’s garbling

scheme delineated, implementations can more reasonably offer proofs for the actual scheme

employed, the “messy” optimizations stripped of surrounding interaction and protocol aims.

In general, an approach where the garbling scheme is conceptually separated from its use

seems essential for managing complexity in this domain.

We define several security notions. The most important one is privacy, implicitly levied

by MPC protocols. Beyond privacy, we consider obliviousness and authenticity ; these are

suitable for private, verifiable outsourcing of computation. We provide efficient schemes

that meet the three notions. The schemes are conveniently described in terms of a dual-key

cipher (DKC), a notion we put forward. We give several efficient instantiations of a DKC

from either a pseudorandom function or a blockcipher.

Efficient garbling. We show how to construct and evaluate garbling schemes at

unprecedented speeds. Our gains come from two main sources. On the cryptographic side,

we describe garbling schemes that need only one AES128 call per gate and all blockcipher

invocations use the same key. More precisely, we design DKCs in the random-permutation

model that are compatible with existing optimization techniques such as free xor or garbled-

row reduction [51, 64, 84]. Each such DKC makes a single call to the ideal permutation that is

instantiated by fixed-key AES. On the systems side, we exploit more efficient representations

of circuits. The combination of faster DKCs and a simple representation of circuits results

in impressive performance gains over previous implementations.

We also point out a critical error in prior work [64, 84]. There, the DKC of Fairplay [72]

is claimed to work [64] with free xor. Other authors have gone so far as to implement MPC

using this DKC [84]; the construction has only been considered undesirable because it is less

5

efficient than alternatives, not because its security was in doubt. We show that this not to

be the case, by completely breaking the resulting schemes.

Adaptive security. Standard constructions of garbling schemes, including ours, provide

only static security, meaning the input x is not allowed to depend on the garbled circuit F .

But some applications—notably one-time programs [45] and secure outsourcing [37]—need

adaptive security, where x may depend on F . We point out gaps in proofs from these

papers with regard to adaptive security, which suggests a missing abstraction boundary.

The applications we point to motivate the study of adaptive security for garbling schemes,

while the gaps indicate that the issues may be more subtle than recognized.

We show how adaptively secure garbling schemes support simple solutions for one-time

programs and secure outsourcing, with privacy being the goal in the first case and oblivi-

ousness and authenticity the goal in the second. We give transforms that promote static-

secure garbling schemes to adaptive-secure ones. The simplicity of these transformations

underscores our tenet that abstracting garbling schemes and treating adaptive security for

them enables modular and rigorous applications of the garbled-circuit technique. Basing the

applications on garbling schemes also allows instantiations to inherit efficiency features of

future schemes.

1.4 Organization and history of thesis results

Organization. In Chapter 2 we provide general notation, and briefly review the game-

based proof method commonly used in cryptography. We also give a formalization of circuits,

as it is not possible to properly specify a circuit-garbling algorithm or a circuit-evaluation

function, nor to carry out code-based game-playing proofs, without circuits being formalized.

Paralleling the three contributions above, the framework of garbling schemes and the static

security notions are given in Chapter 3; the implementation of extremely efficient garbling

schemes in Chapter 4, and the formalization of adaptive security in Chapter 5.

6

Publication history of thesis results. The formalization of circuits in Chapter 2

and the framework of garbling schemes in Chapter 3 were developed by Bellare, Hoang, and

Rogaway [16]. The results in Chapter 4 are the fruits of the collaboration between Bellare,

Hoang, Keelveedhi, and Rogaway [13]. Keelveedhi implemented the JustGarble system and

designed a simple circuit representation based on the definition in Chapter 2. The contents

of Chapter 5 were developed by Bellare, Hoang, and Rogaway [18].

What’s written here is the combination of the full versions [14, 17, 19] of the three papers

above. This thesis also presents new material. In [16] we gave a DKC construction based on

fixed-key AES without justifying its security. To fill this gap, in Section 3.5.8, we show that

this instantiation indeed satisfies the DKC security.

7

Chapter 2

Preliminaries

2.1 Notation

We let N be the set of positive integers. A string is a finite sequence of bits and ⊥ is a formal

symbol that is not a string. If A is a finite set then y�A denotes selecting an element of A

uniformly at random and assigning it to y. If A is an algorithm then A(x1, . . . ; r) denotes the

output of A on inputs x1, . . . and coins r, while y ← A(x1, . . .) means we pick r uniformly at

random and let y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of y that have positive

probability of being output by A(x1, . . .). We write Func(a, b) for {f : {0, 1}a → {0, 1}b}.

Polynomial time (PT) is always measured in the length of all inputs, not just the first. (But

random coins, when singled out as an argument to an algorithm, are never regarded as an

input.) As usual, a function ε : N → R+ is negligible if for every c > 0 there is a K such

that ε(k) < k−c for all k > K.

2.2 Code-based games

Our definitions and proofs are expressed via code-based games [21] so we recall here the

language and specify the particular conventions we use. A code-based game—see Fig. 3.3.1

for an example—consists of an Initialize procedure, procedures that respond to adversary

8

oracle queries, and a Finalize procedure. All procedures are optional. In an execution

of game Gm with an adversary A, the latter is given input 1k where k is the security

parameter, and the security parameter k used in the game is presumed to be the same.

Procedure Initialize, if present, executes first, and its output is input to the adversary,

who may now invoke other procedures. Each time it makes a query, the corresponding game

procedure executes, and what it returns, if anything, is the response to A’s query. The

adversary’s output is the input to Finalize, and the output of the latter, denoted GmA(k),

is called the output of the game. Finalize may be absent in which case it is understood to

be the identity function, so that the output of the game is the output of the adversary. We

let “GmA(k)⇒ c” denote the event that this game output takes value c and let “GmA(k)”

be shorthand for “GmA(k) ⇒ true.” Boolean flags are assumed initialized to false and

BAD(GmA(k)) is the event that the execution of game Gm with A sets flag bad to true.

2.3 Circuits

While our definitions for garbling schemes are representation-independent, the garbling

schemes we specify assume a circuit-based representation. Here we specify the conventions

and definitions that make this formal.

There are several reasons why it is important to cleanly define circuits (which, for many

reasons, are not just DAGs). First, there are many “boundary cases” where only conventions

can decide if something is or is not a valid circuit.1 The boundary cases matter; we have

repeatedly found that degenerate or under-analyzed circuit types materially impact if a

garbling scheme is correct.2 Beyond this, a lack of agreement on what a circuit is makes

even informal discourse problematic.3 Finally, we have found that it is simply not possible

1For example: Can an input wire be an output wire? Can an output wire be an incoming wire to another
gate? Can an output wire be used twice in forming the output? Can a wire twice feed a gate? Can constants
feed a gate? Can gates compute asymmetric functions like G(x, y) = x ∨ y?

2For example, the scheme of Naor, Pinkas, and Sumner [78] cannot handle a wire being used twice as an
input to another gate (as when making a NOT gate from a NAND), a restriction that is nowhere explicitly
said. The scheme of Beaver, Micali, and Rogaway [11] was buggy [91] because of a dependency in gate-labels
associated to fan-out ≥ 2 gates.

3For example, is there a single wire emanating from each gate, that one wire connected to all gates it

9

to properly specify a circuit-garbling algorithm or a circuit-evaluation function, nor to carry

out code-based game-playing proofs, without circuits being formalized. As an added payoff,

if one establishes good conventions for circuits, then these same conventions can be used

when defining a garbled circuit and its evaluation function.

Besides serving the theoretical purpose, our definition of circuits leads to a practical

benefit. The implementation of a garbling scheme by Kreuter, Shelat, and Shen [66] spends

most of its time in running non-cryptographic operations. The root of this problem seems to

be the developers’ choice of a complex data structure to represent circuits. In Chapter 4 we

describe the implementation of a simple representation of circuits to programmatically realize

our mathematical definition. This significantly reduces the non-cryptographic overhead.

Syntax. A (conventional) circuit is a 6-tuple f = (n,m, q, A,B,G). Here n ≥ 2 is the

number of inputs, m ≥ 1 is the number of outputs, and q ≥ 1 is the number of gates. We

let r = n + q be the number of wires. We let Inputs = {1, . . . , n}, Wires = {1, . . . , n + q},

OutputWires = {n + q − m + 1, . . . , n + q}, and Gates = {n + 1, . . . , n + q}. Then A :

Gates → Wires\OutputWires is a function to identify each gate’s first incoming wire and

B : Gates→Wires\OutputWires is a function to identify each gate’s second incoming wire.

Finally G : Gates× {0, 1}2 → {0, 1} is a function that determines the functionality of each

gate. We require A(g) < B(g) < g for all g ∈ Gates. See the left side of Fig. 2.3.1 for an

illustration of a circuit.

The conventions above embody all of the following. Gates have two inputs, arbitrary

functionality, and arbitrary fan-out. The wires are numbered 1 to n + q. Every non-input

wire is the outgoing wire of some gate. The ith bit of input is presented along wire i. The

ith bit of output is collected off wire n + q −m + i. The outgoing wire of each gate serves

as the name of that gate. Output wires may not be input wires and may not be incoming

wires to gates. No output wire may be twice used in the output. Requiring A(g) < B(g) < g

ensures that the directed graph corresponding to f is acyclic, and that no wire twice feeds

feeds, or is there a separate wire from the output of a gate to each gate it feeds? (For us, it’ll be the first.)
These are very different meanings of wire.

10

1

2

3

4

5

1

2

3

4

5

Figure 2.3.1: Left: A conventional circuit f = (n,m, q,A,B,G). It has n= 2 inputs, m= 2
outputs, and q = 3 gates. Gates are numbered 3, 4, 5, according to their outgoing wires. The
diagram encodes A(3)=1, B(3)=2, A(4)=1, B(4)=3, A(5)=3, and B(5)=2. The gate symbols
indicate that G1(·, ·) = XOR and G2(·, ·) = G3(·, ·) = AND. Right: A topological circuit f−

corresponding to the circuit on the left.

a gate; the numbering of gates comprise a topological sort.

We will routinely ignore the distinction between a circuit f = (n,m, q, A,B,G) as a

6-tuple and the encoding of such a 6-tuple as a string; formally, one assumes a fixed and

reasonable encoding, one where |f | is O(r log r) for r = n+ q.

Evaluating a circuit. We define a canonical evaluation function evcirc. It takes a

string f and a string x = x1x2 · · · xn:

01 proc evcirc(f, x)

02 (n,m, q, A,B,G)← f

03 for g ← n+ 1 to n+ q do a← A(g), b← B(g), xg ← Gg(xa, xb)

04 return xn+q−m+1 · · · xn+q

At line 02 we adopt the convention that any string f can be parsed as a circuit. (If f does

not encode a circuit, we view it as some fixed, default circuit.) This ensures that evcirc is

well-defined for all string inputs f . At line 03, values xa and xb will always be well defined

because of A(g) < B(g) < g. Circuit evaluation takes linear time.

Topological circuits. We say f− is a topological circuit if f− = (n,m, q, A,B) for some

circuit f = (n,m, q, A,B,G). Thus a topological circuit is like a conventional circuit except

the functionality of the gates is unspecified. See the right side of Fig. 2.3.1. Let Topo be the

function that expunges the final component of its circuit-valued argument, so f− = Topo(f)

is the topological circuit underlying conventional circuit f .

Discussion. The definition above evolved over a long time. For example, in an earlier

11

version (May 2011), we defined a circuit as a 9-tuple (n,m, q, r, w,A,B,D,G), where r is the

number of wires, D : {1, . . . , q} →Wires\Inputs is a bijective function identifying each gate’s

outgoing wire, and w : {1, . . . ,m} → Wires is a function identifying the output locations

(what output are where). That is, gates are indexed 1, . . . , q; there is no relation between a

gate index and its outgoing wire; an output bit can come from any wire; and two output bits

may come from the same wire. We later simplified this to the current definition because:

• There is no need to keep r, as r = q + n,

• One can reindex each gate as its outgoing wire, and thus D is the identity function and

can be omitted, and

• If we impose the convention that the output bits must come from the last m wires, that

is w(i) = q + n−m+ i, then w can be dropped. This may slightly increase the size of

a circuit, but there are two solid reasons to do so, besides the sake of simplicity. First,

when one hardwires a circuit f = (n,m, q, w,A,B,G) to a universal circuit U and

garbles the resulting circuit U (f, ·), contrary to the folklore belief, not only (n,m, q)

but also w is revealed. Next, if we allow an incoming wire of a gate to be also an output

wire, then the scheme Garble2 in Section 3.6 will be insecure.

Even the 9-tuple definition above represents the result of an evolution process. Only when

one has a blueprint of the intended garbling schemes can one spell out a precise definition

of circuits, as the perception of circuits will loosely determine how garbling schemes are

constructed. For example, consider a wire connecting a gate to another. If you think of it as

two separate wires, one coming out of the first gate, and one feeding the second gate, then

your garbling scheme will probably look more like the LEGO scheme [80] than the scheme

Garble2 in Section 3.6. On the other hand, if you define circuits in a way that there is a

separate wire from the output of a gate to each gate it feeds, then you might well stumble

to Applebaum, Ishai, and Kushilevitz’s scheme [4].

12

Chapter 3

Foundational Treatment

3.1 Introduction

Overview. This chapter is about elevating garbled circuits from a cryptographic technique

to a cryptographic goal. While circuit garbling has traditionally been viewed as a method

for achieving SFE (secure function evaluation) or some other cryptographic goal, we view it

as an end goal in its own right, defining garbling schemes and formalizing several notions of

security for them, these encompassing privacy, authenticity, and obliviousness. This enables

more modular use of garbled circuits in higher-level protocols and grounds follow-on work,

including the development of new and highly efficient schemes.

Contributions. We formalize what we call a garbling scheme. Our definitions and

results enable easy and widespread applications with modular, simplified, and yet more

rigorous proofs of security.

Roughly said, a garbling algorithm Gb is a randomized algorithm that transforms a

function f : {0, 1}n → {0, 1}m into a triple of functions (F, e, d) ← Gb(f). We require that

f = d ◦ F ◦ e. The encoding function e turns an initial input x ∈ {0, 1}n into a garbled

input X = e(x). Evaluating the garbled function F on the garbled input X gives a garbled

output Y = F (X). The decoding function d turns the garbled output Y into the final output

13

G b
f

F

e

d

Ev

Dex

X

ev y

Y

y

x

En

1
k

Figure 3.1.1: Components of a garbling scheme G = (Gb,En,De,Ev, ev). Function Gb maps f
and k to (F, e, d), strings encoding the garbled function, the encoding function, and the decoding
function. Possession of e and x lets one compute the garbled input X = En(e, x); having F and X
lets one calculate the garbled output Y = Ev(F,X); and knowing d and Y lets one recover the final
output y = De(d, Y), which must equal ev(f, x).

y = d(Y), which must coincide with f(x). Informally, one has probabilistically factored f

into d ◦ F ◦ e. Formally, it is problematic to regard Gb as operating on functions. Thus a

garbling scheme G=(Gb,En,De,Ev, ev) is regarded as a five-tuple of algorithms, with strings

d, e, f , and F interpreted as functions under the auspices of functions De, En, ev, and Ev.

See Fig. 3.1.1.

Our syntactic framework is representation-independent. Besides circuits, one can garble

DFAs, RAMs, OBDDs, TMs, whatever. See Section 3.8, “Eclectic representations.”

Of course none of this says anything about the desired security notion. We define several.

The most important is privacy : a party acquiring (F,X, d) shouldn’t learn anything imper-

missible beyond that which is revealed by knowing just the final output y. To formalize that

which it is permissible to reveal, a side-information function, Φ, parameterizes the defini-

tion; an adversary should be able to ascertain from (F,X, d) nothing beyond Φ(f) and y. By

varying Φ one can encompass the customary setting for SFE (let Φ(f)= f ; circuit f is not

concealed) and PFE (private function evaluation) (let Φ(f) be the number of gates of f ; leak

just the circuit’s size). We formalize privacy in multiple ways, giving an indistinguishability

definition, prv.ind, and a simulation-based one, prv.sim. We show that whether or not they

are equivalent depends on the side-information function Φ. For the most important ones the

notions are equivalent (in general, they are not).

We provide a simple garbling scheme, Garble1, for achieving privacy. The scheme is

14

prv.sim

prv.ind

obv.sim

obv.ind

aut

if
 (

φ,
 e

v
)

E
I

if
 φ

 E
I

Figure 3.1.2: Relations among security notions. A solid arrow is an implication; an if-labeled
arrow, a conditional implication; a hatched arrow, a separation. Implications and separations are
in Section 3.4.

conveniently described in terms of a dual-key cipher (DKC), a notion we put forward. We

define a DKC’s security and prove privacy for Garble1 under this assumption. Garble1 is

described with uncustomary precision, including a detailed and precise definition of circuits.

We show how to make a DKC from a pseudorandom function (PRF), and how to realize the

PRF using a conventional blockcipher, say AES128. In this way we obtain a provably secure,

blockcipher-based garbling scheme where circuit evaluation takes two AES calls per gate.

We go on to suggest a still more efficient instantiation for the dual-key cipher, one where

evaluating a garbled circuit needs only one AES128 call per gate and all blockcipher invo-

cations use the same key. This is the fastest approach now known for garbling circuits. In

Chapter 4 we further explore this direction to make it compatible with existing optimization

techniques such as free xor or garbled-row reduction that have proven so effective [51, 64, 84].

Beyond privacy we consider obliviousness : a party acquiring F and X, but not d,

shouldn’t learn anything about f , x, or y. As with privacy, we formalize obliviousness

in different but “usually” equivalent ways. Next we explore authenticity : a party who

learns F and X should be unable to produce a garbled output Y ∗ different from F (X) that

is deemed to be valid: d(Y ∗) ̸= ⊥. Our interest in obliviousness and authenticity was sparked

by Gennaro, Gentry, and Parno [37]; the notions arise in the context of private, verifiable

outsourcing of computation.

We prove implications and separation among all security notions we have mentioned,

painting a complete picture of definitions for this space. See Fig. 3.1.2.

15

Protocol Application Needs Over

Y86 [38] 2-party SFE (sh) prv Φcirc

AF90 [1] PFE (sh) prv Φsize

FKN94 [34] server-aided SFE (sh) prv Φcirc

NPS99 [78] private auctions prv Φcirc

KO04 [63] 2-party SFE (ma) prv Φcirc

FAZ05 [35] private credit checking prv Φsize

FM06 [75] 2-party SFE (ma) prv Φcirc

AL07 [8] 2-party SFE (covert) prv Φcirc

LP07 [69] 2-party SFE (ma) prv Φcirc

GMS08 [47] 2-party SFE (co) prv Φcirc

BFK+09 [10] priv medical diag obv Φcirc

PSS09 [81] private credit checking prv Φtopo

BHHI10 [9] KDM encryption prv Φsize

KM10 [61] secure text processing prv Φtopo

HS10 [50] 2P guaranteed SFE prv Φcirc

SS10 [88] worry-free encryption prv Φsize

A11 [2] KDM encryption prv Φsize

KMR11 [59] server-aided SFE (ma) aut + obv Φcirc

LP11 [71] 2-party SFE (ma) prv Φcirc

Figure 3.1.3: Recasting protocols in more generic terms. sh = semi-honest; co = covert;
ma = malicious. All but [37] need the scheme to be projective.

We define a protocol, Garble2, to simultaneously achieve privacy, obliviousness, and

authenticity. The assumption required is the same as before. The scheme is only a bit more

complex than Garble1, the efficiency, only a little worse.

Discussion. Garble1 and Garble2 are close to numerous other protocols (especially [78])

that incarnate Yao’s idea. Given this, one might assume that, once good definitions are

written down, proving security would be easy, based on prior work [70]. From our experience,

this is not the case; the proofs we provide are not implicit in prior work.

One thing novel about our schemes is that they admit efficient AES-based instantiations

whose quantitative security may be inferred via the concrete security bounds associated

to our theorems. In the past, SFE schemes supported by proofs would use objects less

efficiently realizable in practice [70], or, for practical realizations, would abandon proven-

secure schemes and use hash-based ones, sometimes with an unproven claim that security

16

is maintained in the random-oracle model. Given the increasing ubiquity of AES hardware

support, we believe that optimized, proven, blockcipher-based schemes are a good direction.

A thesis underlying our definitions is that they work—that most (though not all) appli-

cations described as using garbled circuits can be built from an arbitrary garbling scheme,

instead. To date we have surveyed 20 papers containing protocols that can be recast to use

a generic garbling scheme. See Fig. 3.1.3. In all cases we gain in simplicity and modularity.

Applications benefit from the increased efficiency of our garbling schemes. The improvement

is particularly marked in the application to KDM encryption (security with respect to key-

dependent messages), where use of our abstraction leads to substantial efficiency gains over

the use of the abstractions in previous work [2, 9].

3.2 Garbling schemes and their security

We define garbling schemes and security notions for them. See Chapter 2 should any notation

seem non-obvious.

3.3 Syntax

A garbling scheme is a five-tuple of algorithms G = (Gb,En,De,Ev, ev). The first of these is

probabilistic; the remaining algorithms are deterministic. A string f , the original function,

describes the function ev(f, ·) :{0, 1}n → {0, 1}m that we want to garble.1 The values n = f.n

and m = f.m depend on f and must be easily computable from it. Specifically, fix linear-

time algorithms n and m to extract f.n = n(f) and f.m = m(f).2 On input f and a

security parameter k ∈ N, algorithm Gb returns a triple of strings (F, e, d) ← Gb(1k, f).

String e describes an encoding function, En(e, ·), that maps an initial input x ∈ {0, 1}n to a

1By way of example, the string f may encode a circuit that ev(f, ·) can evaluate at input x.
2For concreteness, one can define n(f) and m(f) to be n and m if f is a tuple (n,m, . . .) and define

n(f) = m(f) = 1 otherwise. Of course other encoding conventions are also fine.

17

garbled input X = En(e, x).3 String F describes a garbled function, Ev(F, ·), that maps each

garbled input X to a garbled output Y = Ev(F,X). String d describes a decoding function,

De(d, ·), that maps a garbled output Y to a final output y = De(d, Y).

We levy some simple requirements on garbling schemes. First, |F |, |e|, and |d| may

depend only on k, f.n, f.m, and |f |. Formally, if f.n = f ′.n, f.m = f ′.m, |f | = |f ′|,

(F, e, d) ∈ [Gb(1k, f)], and (F ′, e′, d′) ∈ [Gb(1k, f ′)], then |F | = |F ′|, |e| = |e′|, and |d| = |d′|.

This is the length condition. Second, e and d may depend only on k, f.n, f.m, |f | and

the random coins r of Gb. Formally, if f.n = f ′.n, f.m = f ′.m, |f | = |f ′|, (F, e, d) =

Gb(1k, f ; r), and (F ′, e′, d′) = Gb(1k, f ′; r), then e = e′ and d = d′. This is the nondegeneracy

condition. Finally, if f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n, and (F, e, d) ∈ [Gb(1k, f)], then

De(d,Ev(F,En(e, x))) = ev(f, x). This is the correctness condition.

We say that a garbling scheme G = (Gb,En,De,Ev, ev) is a circuit-garbling scheme if ev

interprets f as a circuit: formally, ev = evcirc for the canonical circuit-evaluation function

that we defined in Section 2.3.

3.3.1 Projective schemes

A common approach in existing garbling schemes is for e to encode a list of tokens, one pair

for each bit in x ∈ {0, 1}n. Encoding function En(e, ·) then uses the bits of x = x1 · · · xn

to select from e = (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) the subvector X = (Xx1

1 , . . . , Xxn
n). Formally, we

say that garbling scheme G = (Gb,En,De,Ev, ev) is projective if for all f , x, x′ ∈ {0, 1}f.n,

k ∈ N, and i ∈ [1..n], when (F, e, d) ∈ [Gb(1k, f)], X = En(e, x) and X ′ = En(e, x′), then

X = (X1, . . . , Xn) and X ′ = (X ′1, . . . , X
′
n) are n vectors, |Xi| = |X ′i|, and Xi = X ′i if x and x′

have the same ith bit.

Our definitions of security do not require schemes be projective. Nevertheless, this prop-

erty is needed for some important applications. For example, SFE can be achieved by

combining a projective garbling scheme and a scheme for oblivious transfer.

3By way of example, the encoding function e might be a sequence of 2n strings, called tokens, a pair for
each bit of x. The garbled input X might then be a sequence of n strings, or tokens, one for each bit of x.

18

3.3.2 Side-information functions

Privacy is rarely absolute; semantically secure encryption, for example, is allowed to reveal

the length of the plaintext. Similarly, a garbled circuit might reveal the size of the circuit

that was garbled, its topology (that is, the graph of how gates are connected up), or even

the original circuit itself. The information that we expect to be revealed is captured by a

side-information function, Φ, which deterministically maps f to a string ϕ = Φ(f). We will

parameterize our advantage notions by Φ, and in this way simultaneously define garbling

schemes that may reveal a circuit’s size, topology, identity, or more. We require that f.n

and f.m be easily determined from ϕ = Φ(f); formally, there must exist linear-time algo-

rithms n′ and m′ that compute f.n= n′(ϕ) = n(f) and f.m=m′(ϕ) =m(f) when ϕ=Φ(f).

We also require that |f | be easily determined from Φ(f).

Specific side-information functions are useful for circuit garbling. Side-information func-

tion Φsize reveals the number of inputs, outputs, and gates of a circuit f ; formally, Φsize(f) =

(n,m, q) for a circuit f = (n,m, q, A,B,G). Side-information function Φtopo reveals the

topological circuit but not the functionality of each gate: Φtopo(f) = (n,m, q, A,B). Side-

information function Φxor reveals the topological circuit and which gates are XOR, but ob-

scures the functionality of the non-XOR gates. Formally, Φxor(f) is circuit (n,m, q, A,B,G′)

where G′g = XOR if Gg = XOR and, arbitrarily, G′g = AND otherwise. Side-information

function Φcirc reveals the entire circuit: Φcirc(f) = f .

Discussion. Side-information functions Φcirc and Φsize are motivated by the classical

applications of garbled circuits: Secure Function Evaluation (SFE) and Private Function

Evaluation (PFE). The “textbook” garbling schemes [70, 78], however, deliver more security

than what it is required, leaking only Φtopo(f) instead of the entire circuit f . Paus, Sadeghi,

and Schneider [81] exploit this property to obtain faster implementation for applications

such as privacy-preserving credit checking or secure data classification. Practical instanti-

ations [51, 66] however leak more than just the topological circuit of f , as they all employ

the free-xor trick [64], and therefore need to reveal which gates are XOR. Side-information

19

proc Garble(f0, f1, x0, x1) Game PrvIndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
if ev(f0, x0) ̸= ev(f1, x1) then return ⊥
(F, e, d)← Gb(1k, fb); X ← En(e, xb)
return (F,X, d)

proc Garble(f, x) Game PrvSimG,Φ,S

if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then
(F, e, d)← Gb(1k, f); X ← En(e, x)

else y ← ev(f, x); (F,X, d)← S(1k, y,Φ(f))
return (F,X, d)

proc Garble(f0, f1, x0, x1) Game ObvIndG,Φ
if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
(F, e, d)← Gb(1k, fb); X ← En(e, xb)
return (F,X)

proc Garble(f, x) Game ObvSimG,Φ,S

if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then
(F, e, d)← Gb(1k, f); X ← En(e, x)

else (F,X)← S(1k,Φ(f))
return (F,X)

proc Garble(f, x)
if x ̸∈ {0, 1}f.n then return ⊥
(F, e, d)← Gb(1k, f); X ← En(e, x)
return (F,X)

proc Finalize(Y) Game AutG
if x ̸∈ {0, 1}f.n then return 0
return (De(d, Y) ̸= ⊥ and Y ̸= Ev(F,X))

Figure 3.3.1: Games for defining the prv.ind, prv.sim, obv.ind, obv.sim, and aut security
of a garbling scheme G = (Gb,En,De,Ev, ev). Here S is a simulator, Φ is an information
function and k is the security parameter input to the adversary. In the first four games, procedure
Initialize() picks a bit b� {0, 1}, and procedure Finalize(b′) returns (b = b′).

function Φxor captures what’s leaked in such garbling schemes.

3.3.3 Security notions

Privacy. Let G = (Gb,En,De,Ev, ev) be a garbling scheme, k ∈ N a security parameter,

and Φ a side-information function. We define an indistinguishability-based notion of privacy

via game PrvIndG,Φ (top-left of Fig. 3.3.1) and a simulation-based notion of privacy via game

PrvSimG,Φ,S (top-right of Fig. 3.3.1, where S is a simulator). Executing either game with an

adversary requires one to specify the garbling scheme, adversary, security parameter, and

side-information function. Executing game PrvSim additionally requires one to specify the

algorithm S. Notation and conventions for games are specified in Chapter 2.

Refer first to game PrvIndG,Φ. Initially, procedure Initialize() samples a bit b at random.

Adversary A gets input 1k and must make exactly one Garble query. That query is

answered as specified in the game, the security parameter used here being the same as the

one provided to the adversary. The adversary must eventually halt, outputting a bit b′, and

20

the game’s Finalize procedure determines if the adversary has won on this run, namely, if

b = b′. The corresponding advantage is defined via

Advprv.ind,Φ
G (A, k) = 2Pr[PrvIndAG,Φ(k)]− 1,

the probability, normalized to [0, 1], that the adversary correctly predicts b. Scheme G is

prv.ind secure over Φ if for every PT adversary A the functionAdvprv.ind,Φ
G (A, ·) is negligible.

Explaining the definition, the game picks challenge bit b and the adversary chooses (f0, x0)

and (f1, x1) such that Φ(f0) = Φ(f1) and, also, ev(f0, x0) = ev(f1, x1). The game then

garbles fb to (F, e, d) and encodes xb as the garbled input X = Ene(xb). The adversary is

given (F,X, d), which determines y = De(d,Ev(F,En(e, xb))) = ev(fb, xb). The adversary

must guess b. In a scheme we deem secure, it should be unable to ascertain which of (f0, x0),

(f1, x1) got garbled.

Next we define prv.sim security via game PrvSimG,Φ,S associated to garbling scheme G, in-

formation function Φ and an algorithm S called a simulator. Initially, procedure Initialize()

samples a bit b at random. The adversary B is run on input 1k and must make exactly one

Garble query. The query is answered as specified in Fig. 3.3.1, with k being the same as

the input to the adversary. The adversary must eventually output a bit, and the game’s

Finalize procedure indicates if the adversary has won—again, if the adversary correctly

predicted b. The adversary’s advantage is

Advprv.sim,Φ,S
G (B, k) = 2Pr[PrvSimBG,Φ,S(k)]− 1 ,

the probability, normalized to [0, 1], that the adversary wins. Protocol G is prv.sim secure

over Φ if for every PT adversary B there is a PT algorithm S such that Advprv.sim,Φ,S
G (B, k)

is negligible.

Let us again explain. For the prv.sim notion we let the adversary choose (f, x). Either

we garble it to (F, e, d) ← Gb(1k, f) and X ← En(e, x), handing the adversary (F,X, d),

or else we ask the simulator to devise a “fake” (F,X, d) based solely on k, ϕ = Φ(f),

and y = ev(f, x). From this limited information the simulator must produce an (F,X, d)

indistinguishable, to the adversary, from the ones produced using the actual garbling scheme.

21

The indistinguishability definition for garbling schemes is simpler due to the absence of

the simulator, but we consider this notion “wrong” when the side-information function is such

that indistinguishability is inequivalent to the simulation-based definition. See Section 3.4.

Obliviousness. Informally, a garbling scheme achieves obliviousness if possession of a

garbled function F and garbled input X lets one compute the garbled output Y , yet (F,X)

leaks nothing about f or x beyond Φ(f). The adversary does not get the decoding function d

and will not learn the output De(d,Ev(F,X)). Contrasting this with privacy, there the agent

evaluating the garbled function does learn the output; here, she learns not even that, as a

needed piece of information, d, is withheld. Privacy and obliviousness are both secrecy

notions, and cut from the same cloth. Yet they will prove incomparable: a private scheme

could divulge the output even without d; an oblivious scheme could reveal too much once d

is shown.

As with privacy, we formalize two notions, obv.ind and obv.sim, via the games of Fig. 3.3.1.

The formalizations consider games ObvIndG,Φ and ObvSimG,Φ,S , run with adversaries A

and B, respectively. As usual the adversary gets input 1k and the security parameter used

in the game is also k. The adversary makes a single call to the game’s Garble procedure

and outputs a bit b′. We define

Advobv.ind,Φ
G (A, k) = 2Pr[ObvIndAG,Φ(k))]− 1 and

Advobv.sim,Φ,S
G (B, k) = 2Pr[ObvSimBG,Φ,S(k)]− 1

as the probability, normalized to [0, 1], that adversary’s output is a correct guess of the

underlying bit b. Protocol G is obv.ind secure over Φ if for every PT adversary A, we have

that Advobv.ind,Φ
G (A, k) is negligible. It is obv.sim secure over Φ if for every PT adversary B

there exists a PT simulator S such that Advobv.sim,Φ,S
G (B, ·) is negligible.

Let us explain the difference between prv.ind and obv.ind. First, we no longer demand

that ev(f, x0) = ev(f, x1): the adversary may now name any (f0, x0) and (f1, x1) as long as

22

the functions have the same side information. Second, the decoding function d is no longer

provided to the adversary. The adversary must guess if (F,X) stems from garbling (f0, x0)

or (f1, x1).

Similarly, the difference between prv.sim and obv.sim is two-fold. First, in the oblivious-

ness notion the simulator is denied y = ev(f, x); it must create a convincing (F,X) without

that. Second, the simulator no longer returns to the adversary the (simulated) decoding

function d; the return value is (F,X) and not (F,X, d).

Authenticity. So far we have dealt exclusively with secrecy notions. One can formalize

an authenticity property as well [37], which we do via game AutG of Fig. 3.3.1. Authenticity

captures an adversary’s inability to create from a garbled function F and its garbled input X

a garbled output Y ̸= F (X) that will be deemed authentic.

Fix a garbling scheme G = (Gb,En,De,Ev, ev), adversary A, and security parameter

k ∈ N. Run adversary A on input 1k, allowing it a single call to the Garble procedure

of the game. The adversary outputs a string Y , and, when it does, the game’s Finalize

procedure is called to decide if the adversary has won. The adversary’s aut-advantage is

defined as Advaut
G (A, k) = Pr[AutAG (k)]. Protocol G is aut-secure if Advaut

G (A, ·) is negligible

for all PT adversaries A.

Sets of garbling schemes. To compactly and precisely express relations between

notions we will write them as containments and non-containments between sets of garbling

schemes. To this end, for xxx ∈ {prv.ind, prv.sim, obv.ind, obv.sim} we let GS(xxx,Φ) be

the set of all garbling schemes that are xxx-secure over Φ. Similarly, we let GS(aut) be the

set of all garbling schemes that are aut-secure.

We also let GS(ev) be the set of all garbling schemes G = (Gb,En,De,Ev, ev) whose

evaluation function is ev. This captures garbling schemes for a particular class of functions.

As per our previous notation, GS(evcirc) now denotes the set of all circuit-garbling schemes.

23

3.3.4 Remarks

We end this section with discussion of our definitions.

Universal circuits. In several applications such as PFE, the circuit f is also private and

we want to leak nothing but its size. Direct constructions of garbled circuits however leak

the topological circuit or even more. To achieve this end, instead of garbling f , we hardwire

it to a universal circuit [93] and garble the resulting one. This idea was first written down

explicitly in a 1990 paper by Abadi and Feigenbaum [1], and now becomes folklore. See

Section 3.9 for details on universal circuits and the overhead they entail.

Non-degeneracy. In garbling f by Gb we intend to partition f into e, F, d where e

describes how to obscure the input x and where d describes how to unobscure the answer Y .

We do not want En(e, ·) or De(d, ·) to actually compute f(x). But this could happen if

we permitted decompositions like e = f , F = d = ε, En(e, x) = ev(f, x), and Ev(F,X) =

De(d,X) = X. The nondegeneracy condition outlaws this, formalizing a sense in which e

and d are independent of f . Note that we do allow e and d to depend on m, n, and even |f |.

Invalid queries. Referring to Fig. 3.3.1, we note that the bit b is well-defined—it is set

in the Initialize procedure—even if the adversary’s query to Garble is invalid (meaning

that it returns ⊥) in games PrvInd or ObvInd. If this were not the case then the semantics

of the Finalize procedure would be unclear: one would be asking if b = b′, but b would be

undefined.

Strict correctness. Our correctness condition is strict : you always get ev(f, x) by

computing De(d,Ev(F,En(e, x))). One can certainly relax this requirement, and you would

have to in order to regard what goes on within Lindell and Pinkas [70], say, as a garbling

scheme. Yet strict correctness is not hard to achieve. Our definition could certainly be

extended to say that a scheme is correct if Pr[(F, e, d)← Gb(1k, f) : De(d,Ev(F,En(e, x))) ̸=

ev(f, x)] is negligible as a function of k for all f .

An undesirable way to do asymptotics. Several prior papers [62, 68, 69] conflate the

24

security parameter k and f ’s input length n. These are conceptually distinct, and it makes

perfect sense to think of f , and therefore n, as fixed, while the security parameter varies.

In our treatment, the security parameter k is provided to the adversary and it selects the

functions to use in its attack and so, as a result, the input length n is polynomially bounded

if the adversary is. The security parameter limits the input length—the input length does

not define the security parameter.

Indistinguishability without side-information. The side-information function Φ

does more than allow one to capture that which may be revealed by F ; our prv.ind def-

inition would be meaningless if we had effectively dialed-in Φ(f) = f , the “traditional”

understanding for 2-party SFE. Suppose here that we wish only to garble SHA-256, so

ev(f, x) = SHA-256(x) for all f, x. Then the adversary can’t find any distinct x0 and x1

such that ev(f, x0) = ev(f, x1)—which means that good prv.ind security will be achieved no

matter what the garbling scheme does. An interpretation of this observation is that prv.ind

is an unacceptable definition when Φ(f) = f—one must ensure that less leaks about f be-

fore the definition starts to say something useful. When the adversary needs only to find

(f0, x0) ̸= (f1, x1) such that ev(f0, x0) = ev(f1, x1), and when Φ is designed to make sure this

is an easy job for her, the definition is more meaningful.4

Idealized models. As in many cryptographic domains, it seems possible to obtain better

efficiency working in idealized models [20]. All of our security definitions easily lift to ideal-

model settings. In the random-oracle model (ROM) [20], we provide any adversary, and

any algorithms among the first four components of G = (Gb,En,De,Ev, ev), with access to

a random oracle Hash. We then distinguish between the PROM (Programmable-ROM)

and the NPROM (Non-Programmable ROM) whose procedures Hash are given in Fig. 3.3.2

(left and right, respectively). In the latter model, the simulator too has oracle access to

the random oracle, but in the former model, it does not have such access and will instead

itself reply to the queries made by the adversary to its random oracle. In the code, ro is

4An asymptotic version of the counterexample is in Proposition 3.4.10.

25

proc Hash(ℓ, w)

if H[ℓ, w] = ⊥ then
if b = 1 then H[ℓ, w]� {0, 1}ℓ
else H[ℓ, w]�S(ℓ, w, ro)

return H[ℓ, w]

proc Hash(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

Figure 3.3.2: Extending garbling-scheme security to ROM. Games of our security notions
may be extended to include either the procedure on the left (the PROM) or the right (the NPROM).
The adversary and scheme algorithms have oracle access to Hash. In the NPROM case, the
simulator also has access to Hash. In the PROM case the simulator does not have access to Hash
and instead, when the challenge bit b is 0, must itself answer queries to Hash as indicated above.

a formal symbol indicating to the simulator that it is being asked to answer a query to

Hash. In the ideal-cipher model we provide, instead, an ideal cipher E : {0, 1}k×{0, 1}ℓ →

{0, 1}ℓ and its inverse D : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ, each key K naming an independent

random permutation E(K, ·), where ℓ may depend on the security parameter. In the ideal-

permutation model we provide, instead, a random permutation π : {0, 1}ℓ → {0, 1}ℓ and its

inverse π−1 : ×{0, 1}ℓ → {0, 1}ℓ. Security results for any of these models would bound the

adversary’s advantage in terms of the number and type of its oracle queries.

3.4 Relations

We show that prv.sim always implies prv.ind, and prv.ind implies prv.sim under certain

added conditions on the side-information function. We show that the same holds for obv.ind

and obv.sim, under a weaker assumption on the side-information function. The conditions

on the side-information function are relatively mild. We will also justify the non-implications

for the security notions compactly summarized in Fig. 3.1.2. As part of this we will show

that prv.ind does not always imply prv.sim and obv.ind does not always imply obv.sim.

26

3.4.1 Invertibility of side-information functions

Let Φ be a side-information function. An algorithm M is called a Φ-inverter if on input ϕ

in the range of Φ it returns a preimage under Φ of that point, meaning a string f such that

Φ(f) = ϕ. Such an inverter always exists, but it might not be efficient. We say that Φ is

efficiently invertible if there is a polynomial-time Φ-inverter. Similarly, an algorithm M is

called a (Φ, ev)-inverter if on input (ϕ, y), where ϕ = Φ(f ′) and y = ev(f ′, x′) for some f ′ and

x ∈ {0, 1}f ′.n, returns an (f, x) satisfying Φ(f) = ϕ and ev(f, x) = y. We say that (Φ, ev) is

efficiently invertible if there is a polynomial-time (Φ, ev)-inverter.

The following theorem summarizes the invertibility attributes of the circuit-related size-

information functions we defined earlier. It shows that Φcirc,Φxor,Φtopo, and Φsize are effi-

ciently invertible, and (Φsize, evcirc), (Φtopo, evcirc), and (Φxor, evcirc) are efficiently invertible.

Proposition 3.4.1. For Φ ∈ {Φsize,Φtopo,Φxor,Φcirc}, there is a linear-time inverter. For

Φ ∈ {Φsize,Φtopo} there is a linear-time (Φ, evcirc)-inverter. There is a cubic-time (Φxor, evcirc)-

inverter.

In contrast, there is no efficient (Φcirc, evcirc)-inverter (under a computational assumption);

consider the case where f is drawn from a family implementing a one-way function.

Proof. We first specify a linear-time (Φtopo, evcirc)-inverter Mtopo. It gets input a topological

circuit f− and an m-bit binary string y = y1 · · · ym and proceeds as follows:

proc Mtopo(f
−, y)

(n,m, q, A,B)← f−, y1 · · · ym ← y

for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do

if g ≤ n+ q −m then Gg(i, j)← 0 else Gg(i, j)← yg−(n+q−m)

f ← (n,m, q, A,B,G), x← 0n

return (f, x)

We have Topo(f) = f− and evcirc(f, x) = y as desired.

27

proc Mxor(ϕ, y)
(n,m, q,A,B,G′)← ϕ, y1 · · · ym ← y, S ← ∅
for g ∈ {n+ 1, . . . , n+ q} do

a← A(g), b← B(g)
if G′

g = XOR then
if g ≤ n+ q −m then S ← S ∪ {xa ⊕ xb ⊕ xg = 0}
else S ← S ∪ {xa ⊕ xb = yg−(n+q−m)}

(x1, . . . , xn+q−m)← Gauss(S)
for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do

if G′
g = XOR then Gg ← XOR else Gg(i, j)← xg

f ← (n,m, q,A,B,G), x← x1 · · ·xn

return (f, x)

Figure 3.4.1: The inverter Mxor for the proof of Proposition 3.4.1.

Next we specify a linear-time (Φsize, evcirc)-inverter Msize. It gets input (n,m, q) and an

m-bit binary string y = y1 · · · ym and proceeds as follows:

proc Msize((n,m, q), y)

for g ∈ {n+ 1, . . . , n+ q} do Ag ← 1, Bg ← 2

f− ← (n,m, q, A,B), (f, x)←Mtopo(f
−, y)

return (f, x)

We have Φsize(f) = (n,m, q) and evcirc(f, x) = y as desired.

We specify a cubic-time (Φxor, evcirc)-inverter Mxor as follows. Let Gauss(S) be the

algorithm that takes as input a system S of linear equations in GF(2), uses Gaussian elim-

ination to solve it, and then lets each free variable be 0. The inverter Mxor gets as input

ϕ = (n,m, q, A,B,G′) and a string y ∈ {0, 1}m, and proceeds as the code in Fig. 3.4.1. We

then have (f, x) as desired. The system S has q+ n−m variables, and at most q equations.

Hence the running time of Gauss(S) is at most O
(
(q+ n)3

)
, and so is Mxor’s running time.

Now a linear-time Φtopo-inverter, on input f− = (n,m, q, A,B), can let y ← 0m and

return Mtopo(f
−, y). A linear-time Φsize-inverter, on input (n,m, q), can let y ← 0m and re-

turn Msize((n,m, q), y). A linear-time Φxor-inverter, on input f ′ = (n,m, q, A,B,G′), simply

returns f ′. Finally, a linear-time Φcirc-inverter is trivial, returning f on input f .

28

3.4.2 Equivalence of prv.ind and prv.sim

The following says that prv.sim implies prv.ind security, and conversely if (Φ, ev) is efficiently

invertible.

Proposition 3.4.2. [prv.ind≈ prv.sim] For any PT Φ: (1) GS(prv.sim,Φ) ⊆ GS(prv.ind,Φ)

and (2) If (Φ, ev) is efficiently invertible then GS(prv.ind,Φ) ∩ GS(ev) ⊆ GS(prv.sim,Φ) ∩

GS(ev).

The first part says that if garbling scheme G is prv.sim secure over Φ then G is prv.ind

secure over Φ. The second part says that if garbling scheme G = (Gb,En,De,Ev, ev) is

prv.ind secure over Φ and (Φ, ev) is efficiently invertible then G is prv.sim secure over Φ.

Proposition 3.4.10 proves that efficient invertibility of (Φ, ev) is required to prove that prv.ind

implies prv.sim, so the notions are not always equivalent.

The reductions underlying Proposition 3.4.2 are tight. This is evidenced by Eq. (3.4.1)

and Eq. (3.4.2) in the proof and the fact that the running times of the constructed adversaries

or simulators are about the same as that of the starting adversary.

Proof. For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(prv.sim,Φ). We want to show that

G ∈ GS(prv.ind,Φ). Let A be a PT adversary attacking the prv.ind-security of G over Φ.

We construct a PT prv.sim-adversary B as follows. Let B(1k) run A(1k). Without loss of

generality, suppose that A queries (f0, f1, x0, x1) such that Φ(f0) = Φ(f1), x0, x1 ∈ {0, 1}f0.n,

and ev(f0, x0) = ev(f1, x1); otherwiseAdvprv.ind,Φ
G (A, k) = 0 and it will be trivial to construct

adversary B such that Advprv.sim,Φ,S
G (B, k) = 0 for any simulator S. Adversary B picks a

bit c at random and queries fc, xc to its own Garble oracle to get back (F,X, d) and returns

this to A. The latter now returns a bit b′. Adversary B returns 1 if b′ = c, and returns 0

otherwise. The running time of B is about the same as that of A. Let S be any algorithm

29

playing the role of the simulator. Then

Pr
[
PrvSimBG,Φ,S(k) | b = 1

]
=

1

2
+

1

2
Advprv.ind,Φ

G (A, k)

Pr
[
¬PrvSimBG,Φ,S(k) | b = 0

]
=

1

2

where b denotes the challenge bit in game PrvSimG,Φ,S . Subtracting, we see that

Advprv.ind,Φ
G (A, k) ≤ 2 ·Advprv.sim,Φ,S

G (B, k) . (3.4.1)

By assumption there is a PT S such that the RHS is negligible. Hence the LHS is negligible

as well.

For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(prv.ind,Φ) and let M be a (Φ, ev)-

inverter. We want to show that G ∈ GS(prv.sim,Φ). Let B be a PT adversary at-

tacking the prv.sim-security of G over Φ. Without loss of generality, suppose that B

queries (f, x) such that x ∈ {0, 1}f.n. We define a simulator S that on input 1k, y, ϕ, lets

(f, x)←M(ϕ, y) then (F, e, d)← Gb(1k, f). It outputs (F,En(e, x), d). We define adversary

A(1k) to run B(1k). When the latter makes its query f1, x1 to Garble, adversary A lets

(f0, x0) ← M(Φ(f1), ev(f1, x1)) and then queries f0, f1, x0, x1 to its own Garble oracle to

get back (F,X, d), which it returns to B. When the latter outputs a bit b′ and halts, so

does A. The running time of A is about that of B plus the time to run M on B’s query. In

addition,

Pr
[
PrvIndAG,Φ(k) | b = 1

]
= Pr

[
PrvSimBG,Φ,S(k) | c = 1

]
Pr

[
¬PrvIndAG,Φ(k) | b = 0

]
= Pr

[
¬PrvSimBG,Φ,S(k) | c = 0

]
where b and c denote the challenge bits in games PrvIndG,Φ and PrvSimG,Φ,S , respectively.

Subtracting, we get

Advprv.sim,Φ,S
G (B, k) ≤ Advprv.ind,Φ

G (A, k) . (3.4.2)

But the RHS is negligible by assumption, hence the LHS is as well.

30

A corollary of Propositions 3.4.1 and 3.4.2 is that prv.sim and prv.ind are equivalent for

circuit-garbling schemes over side-information functions Φxor,Φtopo, and Φsize, which we sum-

marize as:

Corollary 3.4.3. For any Φ ∈ {Φxor,Φtopo,Φsize}, we have GS(prv.ind,Φ) ∩ GS(evcirc) =

GS(prv.sim,Φ) ∩ GS(evcirc).

Equivalence in idealized models. In idealized models, define prv.nprom as prv.sim

security in which the simulator has oracle access to the ideal primitives, and prv.prom as

prv.sim security in which the simulator doesn’t have access to the ideal primitives and will

instead itself reply to the oracle queries made by the adversary. Proposition 3.4.2 implies that

if (Φ, ev) is efficiently invertible then prv.prom and prv.nprom are equivalent. It suffices to

show that prv.prom security implies prv.nprom, since the latter obviously implies the former.

By part (1) of Proposition 3.4.2, prv.prom security implies prv.ind security. The proof still

holds, even if the simulator S uses the programmability power to collude with the prv.prom

adversary B to fool the prv.ind adversary A, because what (S,B) receives is independent

of A’s challenge bit. Because (Φ, ev) is efficiently invertible, by part (2) of Proposition 3.4.2,

prv.ind security then implies prv.nprom security.

3.4.3 Equivalence of obv.ind and obv.sim

The following says that obv.sim implies obv.ind security, and conversely if Φ is efficiently

invertible. The invertibility condition is thus weaker than in the privacy case. Proposi-

tion 3.4.4 also implies that if Φ is efficiently invertible then obv.prom and obv.nprom are

equivalent, where the latter is defined as obv.sim security in which the simulator has oracle

access to the ideal primitives, and the former as obv.sim security in which the simulator

doesn’t have access to the ideal primitives and will instead itself reply to the oracle queries

made by the adversary.

Proposition 3.4.4. [obv.ind ≈ obv.sim] For any PT Φ, we have (1) GS(obv.sim,Φ) ⊆

31

GS(obv.ind,Φ) and (2) If Φ is efficiently invertible, GS(obv.ind,Φ) ⊆ GS(obv.sim,Φ).

Proposition 3.4.11 shows that Φ being efficiently invertible is required to prove that

obv.ind implies obv.sim. But the side-information function Φ we use is artificial; for any

“reasonable” one we know, obv.ind and obv.sim will be equivalent. The reductions underlying

Proposition 3.4.4 are also tight. This is evidenced by Eq. (3.4.3) and Eq. (3.4.4) in the proof

and the fact that the running times of the constructed adversaries or simulators are about

the same as that of the starting adversary.

Proof. The proof is analogous to that of Proposition 3.4.2; for completeness we provide

details. For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(obv.sim,Φ). We want to show that

G ∈ GS(obv.ind,Φ). Let A be a PT adversary attacking the obv.ind-security of G over Φ.

We construct a PT obv.sim-adversary B as follows. Let B(1k) run A(1k). Without loss

of generality, suppose that A queries (f0, f1, x0, x1) such that Φ(f0) = Φ(f1) and x0, x1 ∈

{0, 1}f0 . Adversary B picks a bit c at random and queries fc, xc to its own Garble oracle

to get back (F,X, d) and returns this to A. The latter now returns a bit b′. Adversary B

returns 1 if b′ = c, and returns 0 otherwise. The running time of B is about the same as that

of A. Let S be any algorithm playing the role of the simulator. Then

Pr
[
ObvSimBG,Φ,S(k) | b = 1

]
=

1

2
+

1

2
Advobv.ind,Φ

G (A)

Pr
[
¬ObvSimBG,Φ,S(k) | b = 0

]
=

1

2

where b denotes the challenge bit in game ObvSimS . Subtracting, we see that

Advobv.ind,Φ
G (A, k) ≤ 2 ·Advobv.sim,Φ,S

G (B, k) . (3.4.3)

By assumption there is a PT S such that the RHS is negligible. Hence the LHS is negligible

as well.

For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(obv.ind,Φ) and let M be a Φ-inverter. We

want to show that G ∈ GS(obv.sim,Φ). Let B be a PT adversary attacking the obv.sim-

security of G over Φ. Without loss of generality, suppose that B queries (f, x) such that x ∈

32

{0, 1}f.n. We define a simulator S that on input 1k, y, ϕ, lets f ← M(ϕ, y) then (F, e, d) ←

Gb(1k, f). It outputs (F,En(e, x), d). We define adversary A(1k) to run B(1k). When the

latter makes its query f1, x1 to Garble, adversary A lets f0 ← M(Φ(f1), ev(f1, x1)) and

x0 ← 0f0.n and then queries (f0, f1, x0, x1) to its own Garble oracle to get back (F,X, d),

which it returns to B. When the latter outputs a bit b′ and halts, so does A. The running

time of A is about that of B plus the time to run M on B’s query. In addition,

Pr
[
ObvIndAG,Φ(k) | b = 1

]
= Pr

[
ObvSimBG,Φ,S(k) | c = 1

]
Pr

[
¬ObvIndAG,Φ(k) | b = 0

]
= Pr

[
¬ObvSimBG,Φ,S(k) | c = 0

]
where b and c denote the challenge bits in games ObvIndG,Φ and ObvSimG,Φ,S , respectively.

Subtracting, we get

Advobv.sim,Φ,S
G (B, k) ≤ Advobv.ind,Φ

G (A, k) . (3.4.4)

But the RHS is negligible by assumption, hence the LHS is as well.

Again a corollary of Propositions 3.4.1 and 3.4.4 is that obv.sim and obv.ind are equivalent

for circuit-garbling schemes over Φcirc,Φxor,Φtopo and Φsize:

Corollary 3.4.5. For every side-information function Φ ∈ {Φxor,Φtopo,Φsize,Φcirc}, we have

GS(obv.ind,Φ) = GS(obv.sim,Φ).

3.4.4 Separations

We justify the non-implications for the security notions compactly summarized in Fig. 3.1.2.

We state these as non-containments A ̸⊆ B between sets of garbling schemes. We always

assume A ̸= ∅, since otherwise the claim trivially fails.

The following says that privacy does not imply obliviousness, even when we take the

strong form of privacy (simulation-style) and the weak form of obliviousness (ind-style):

33

Proposition 3.4.6. For every Φ and for ev = evcirc, we have GS(prv.sim,Φ) ∩ GS(ev) ̸⊆

GS(obv.ind,Φ).

Proof. By assumption GS(prv.sim,Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev, ev) be a

member of this set. We construct a garbling scheme G ′ = (Gb′,En,De,Ev′, ev) such that

G ′ ∈ GS(prv.sim,Φ) ∩ GS(ev) but G ′ ̸∈ GS(obv.ind,Φ). The construction is as follows. Let

Gb′(1k, f) pick (F, e, d)← Gb(1k, f) and return ((F, d), e, d). Let Ev′((F, d), X) = Ev(F,X).

Including d in the description of the garbled function does not harm prv.sim-security because

an adversary is always given the descriptions of the garbled function and the decoding

function simultaneously, so G ′ inherits the prv.sim-security of G. On the other hand, G ′ fails

to achieve obv.ind. An adversary simply makes query (OR,OR, x0, x1) where x0 = 00 and

x1 = 11. On receiving reply ((F, d), X), it outputs 0 if De(d,Ev(F,X)) = ev(OR, x0) and

outputs 1 otherwise. This works because 0 = ev(OR, x0) ̸= ev(OR, x1) = 1 and correctness

guarantees that De(d,Ev(F,X)) = ev(OR, xb) where b is the challenge bit.

The following says that obliviousness does not imply privacy, even when we take the

strong form of obliviousness (simulation-style) and the weak form of privacy (ind-style):

Proposition 3.4.7. Let Φ = Φtopo and ev = evcirc. Then, GS(obv.sim,Φ) ∩ GS(ev) ̸⊆

GS(prv.ind,Φ).

Proof. By assumption GS(obv.sim,Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev, ev) be a

member of this set. We construct a garbling scheme G ′ = (Gb′,En,De′,Ev, ev) such that

G ′ ∈ GS(obv.sim,Φ) ∩ GS(ev) but G ′ ̸∈ GS(prv.ind,Φ). The construction is as follows. Let

Gb′(1k, f) pick (F, e, d) ← Gb(1k, f) and return (F, e, (d, e)). Let De′((d, e), Y) = De(d, Y).

Including e in the description of the decoding function does not harm obv.sim-security be-

cause an adversary is never given the description of the decoding function, so G ′ inherits the

obv.sim-security of G. On the other hand, G ′ fails to achieve prv.ind. An adversary simply

makes query (f0, f1, 11, 11) where f0 = AND and f1 = OR, which is valid because ev(f0, 11) =

ev(f1, 11). On receiving reply (F,X, (d, e)), it outputs 0 if De(d,Ev(F,En(e, 01))) = 0 and 1

34

otherwise. This works because 0 = ev(f0, 01) ̸= ev(f1, 01) = 1 and correctness guarantees

that De(d,Ev(F,En(e, 01))) = ev(fb, 01) where b is the challenge bit.

The following says that privacy and obliviousness, even in conjunction and in their

stronger forms (simulation-style), do not imply authenticity.

Proposition 3.4.8. For all Φ and for ev = evcirc: GS(prv.sim,Φ)∩GS(obv.sim,Φ)∩GS(ev) ̸⊆

GS(aut).

Proof. By assumption GS(prv.sim,Φ) ∩ GS(obv.sim,Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,En,

De,Ev, ev) be a member of this set. We construct a garbling scheme G ′ = (Gb,En,De′,Ev′, ev)

such that G ′ ∈ GS(prv.sim,Φ)∩GS(obv.sim,Φ)∩GS(ev) but G ′ ̸∈ GS(aut). The construction

is as follows. Let Ev′(F,X) = Ev(F,X)∥0 and De′(d, Y ∥b) = De(d, Y) if b = 0 and 1

otherwise, where b ∈ {0, 1}. Appending a constant bit to the garbled output does not

harm prv.sim security or obv.sim-security. On the other hand, G ′ fails to achieve aut. An

adversary simply makes query (OR, 00) and then outputs 1∥1.

The following says that authenticity implies neither privacy nor obliviousness, even when

the latter are in their weaker (ind style) form.

Proposition 3.4.9. Let Φ = Φtopo and ev = evcirc. Then GS(aut)∩GS(ev) ̸⊆ GS(prv.sim,Φ)

∪ GS(obv.sim,Φ).

Proof. By assumption GS(aut)∩GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev, ev) be a member of

this set. We construct a garbling scheme G ′ = (Gb′,En,De,Ev′, ev) such that G ′ ∈ GS(aut)∩

GS(ev) but G ′ ̸∈ GS(prv.sim,Φ) ∪ GS(obv.sim,Φ). The construction is as follows. Let

Gb′(1k, f) pick (F, e, d)← Gb(1k, f) and return ((F, f), e, d). Let Ev′((F, f), X) = Ev(F,X).

Appending f to F does not harm authenticity as the adversary has chosen f , and thus

already knows it, in its attack. On the other hand, the garbled function leaks f so privacy

and obliviousness both fail over Φtopo.

35

We saw in Proposition 3.4.2 that prv.ind implies prv.sim if (Φ, ev) is efficiently invertible.

Now we show that this assumption is necessary by showing that in general prv.ind does not

imply prv.sim. We say that P : {0, 1}∗ → {0, 1}∗ is a permutation if: (1) for every x ∈ {0, 1}∗

we have |P (x)| = |x|; (2) for every distinct x0, x1 ∈ {0, 1}∗ we have P (x0) ̸= P (x1). We say

that P is one-way if for every PT adversary I the function Advow
P (I, ·) is negligible, where

for each k ∈ N we have let

Advow
P (I, k) = Pr[I(P (x)) = x] ,

with the probability over x� {0, 1}k. We associate to P the evaluation function evP (f, x) =

P (x) for all f, x ∈ {0, 1}∗.

Proposition 3.4.10. Let Φ be the identity function. Let P be a one-way permutation and

let ev = evP . Then GS(prv.ind,Φ) ∩ GS(ev) ̸⊆ GS(prv.sim,Φ).

We note that the (Φ, ev) in Proposition 3.4.10 is not efficiently invertible due to the

one-wayness of P , so this separation is consistent with Proposition 3.4.2.

Proof. We build G = (Gb,En,De,Ev, ev) so that G ∈ GS(prv.ind,Φ) ∩ GS(ev) but G ̸∈

GS(prv.sim,Φ). Let Gb(1k, f) = (f, ε, ε) for any f . Let En(ε, x) = x and De(ε, Y) = Y

for all x, Y ∈ {0, 1}n. We claim that Advprv.ind,Φ
G (A) = 0 for any (even computationally-

unbounded) adversaryA. Consider an adversaryA that makesGarble query (f0, f1, x0, x1).

For the response to not be ⊥ it must be that f0 = f1 and ev(f0, x0) = ev(f1, x1), meaning

P (x0) = P (x1). Since P is a permutation, it follows that x0 = x1, and thus the advantage

of the adversary must be 0. However, one can trivially break the prv.sim security of G, with

respect to any PT simulator S as follows. Adversary A(1k) lets f ← ε and x� {0, 1}k. It

then queries (f, x) to the oracleGarble. On receiving (F,X, d), it outputs 1 if X = x, and 0

otherwise. The simulator S gets input f and y = ev(f, x) = P (x) and produces (F,X, d).

The probability that X = x is negligible by the one-wayness of P , so the adversary’s output

is 1 with negligible probability when the challenge bit is 0.

We saw in Proposition 3.4.4 that obv.ind implies obv.sim if Φ is efficiently invertible.

36

Now we show that this assumption is necessary by showing that in general obv.ind does

not imply obv.sim. Let π be a bijection from Func(2, 1) to {0, 1}4. Such a bijection ex-

ists, as |Func(2, 1)| = 16. Let P be a one-way permutation. We associate to P and π

the following side-information function ΦP,π. For each circuit f = (n,m, q, A,B,G), let

ΦP,π(f) = (Topo(f), P (L)), where L = L1 · · ·Lq and Li = π(Gn+i) for each 1 ≤ i ̸= q.

Proposition 3.4.11. Let P be a one-way permutation and π a bijection from Func(2, 1) to

{0, 1}4. Let Φ = ΦP,π and ev = evcirc. Then GS(obv.ind,Φ) ∩ GS(ev) ̸⊆ GS(obv.sim,Φ).

We note that the one-wayness of P means Φ is not efficiently invertible, so this separation

is consistent with Proposition 3.4.4. We also note that although Φ might look strange it is

functionally equivalent to Φcirc in the sense that Φ(f0) = Φ(f1) iff Φcirc(f0) = Φcirc(f1). This

is true because Φ reveals the topology by definition, and since π, P are bijections, P (π(G))

uniquely determines G. This implies GS(xxx,Φ)∩GS(ev) ⊆ GS(xxx,Φcirc)∩GS(ev) for both

xxx ∈ {obv.ind, obv.sim}. (It does not imply the sets are equal because P is one-way.) On

the other hand GS(xxx,Φtopo)∩GS(ev) ⊆ GS(xxx,Φ)∩GS(ev) so the sets in the Proposition

contain interesting and natural schemes even though they might look strange at first glance.

Proof. By assumption GS(obv.ind,Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev, ev) be a

member of this set. We construct a garbling scheme G ′ = (Gb′,En,De,Ev′, ev) such that

G ′ ∈ GS(obv.ind,Φ) ∩ GS(ev) but G ′ ̸∈ GS(obv.sim,Φ). The construction is as follows. Let

Gb′(1k, f) pick (F, e, d)← Gb(1k, f) and return (f∥F, e, d). Let Ev′(f∥F,X) return Ev(F,X).

We claim that G ′ is obv.ind secure over Φ but not obv.sim secure over Φ.

To justify the first claim, consider an adversary A that queries (f0, f1, x0, x1). For the

response to not be ⊥ it must be that Φ(f0) = Φ(f1) and hence, by the functional equivalence

noted above, that Φcirc(f0) = Φcirc(f1). Thus f0 = f1. Prepending f to F therefore does no

harm to the obv.ind security.

We justify the second claim by presenting an adversary B that trivially breaks the obv.sim

security of G ′, with respect to any PT simulator. Adversary B(1k) picks an arbitrary topolog-

37

ical circuit f− of k gates and chooses L� {0, 1}4k. Let L = L1 · · ·Lk, where each Li ∈ {0, 1}4.

Let Gn+i = π−1(Li) for every 1 ≤ i ≤ k, and let f = (f−, G). The adversary then queries

(f, 0f.n) to Garble. When receiving the reply (F ′, X), it returns 1 if the first |f | bits of F ′

equal f , and returns 0 otherwise, so that it always returns 1 when the challenge bit in the

game is 1. A simulator S gets input 1k and ϕ = (f−, P (L)) and produces an output (F ′, X).

Let f− = (n,m, k,A,B). Note that if the simulator can produce G, it also can produce

L = L1 · · ·Lq with each Li = π(Gn+i). The probability that the first |f | bits of F ′ equal

f = (f−, G) is therefore negligible by the one-wayness of P , because L’s sampling is inde-

pendent of f−. So the adversary’s output is 1 with negligible probability when the challenge

bit is 0.

3.5 Achieving privacy: Garble1

We provide a simple, privacy-achieving circuit-garbling scheme, Garble1. It is described

in terms of a new primitive, a dual-key cipher (DKC). We will prove security of Garble1

assuming the security of its DKC. We will then show how to instantiate a DKC using a

PRF. Instantiating this PRF via AES leads to an efficient garbling scheme. Differently

instantiating the DKC directly with AES can give even better efficiency.

Dual key ciphers. Before describing Garble1 we will need to specify the syntax of a

DKC. These objects formalize a two-key lockbox—one where you need both keys to open

the box. This has long been used as a metaphor to explain how garbling schemes work (e.g.,

[70, pp. 163–164]), but Lindell and Pinkas also give a notion of double-encryption security

for two-key probabilistic encryption schemes [70, pp. 170]. Dual-key ciphers provide a very

different way to formalize an object sufficient to construct garbling schemes.

Formally, a dual-key cipher is a function E that associates to any k ∈ N, any keys

A,B ∈ {0, 1}k and any tweak T ∈ {0, 1}τ(k) a permutation ET
A,B : {0, 1}k → {0, 1}k. Let

DT
A,B : {0, 1}k → {0, 1}k denote the inverse of this permutation. It is required that the maps

38

100 proc Gb(1k, f)
101 (n,m, q,A′, B′, G)← f

102 for i ∈ {1, . . . , n+ q −m} do t� {0, 1}, X0
i � {0, 1}k−1t, X1

i � {0, 1}k−1t
103 for i ∈ {n+ q −m+ 1, . . . , n+ q} do X0

i � {0, 1}k−10, X1
i � {0, 1}k−11

104 for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do
105 a← A′(g), b← B′(g)

106 A← Xi
a, a← lsb(A), B ← Xj

b , b← lsb(B), T ← g ∥ a ∥ b, P [g, a, b]← ET
A,B

(
X

Gg(i,j)
g

)
107 F ← (n,m, q,A′, B′, P)
108 e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

109 d← ε
110 return (F, e, d)

120 proc En(e, x)
121 (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e

122 x1 · · ·xn ← x, X ← (Xx1
1 , . . . , Xxn

n)
123 return X

130 proc De(d, Y)
131 (Y1, . . . , Ym)← Y
132 for i ∈ {1, . . . ,m} do yi ← lsb(Yi)
133 return y ← y1 · · · ym

140 proc ev(f, x)
141 (n,m, q,A,B,G)← f , x1 · · ·xn ← x
142 for g ← n+ 1 to n+ q do
143 a← A(g), b← B(g)
144 xg ← Gg(xa, xb)
145 return xn+q−m+1 · · ·xn+q

150 proc Ev(F,X)
151 (n,m, q,A′, B′, P)← F , (X1, . . . , Xn)← X
152 for g ← n+ 1 to n+ q do
153 a← A′(g), b← B′(g)
154 A← Xa, a← lsb(A), B ← Xb, b← lsb(B)
155 T ← g ∥ a ∥ b, Xg ← DT

A,B

(
P [g, a, b]

)
156 return (Xn+q−m+1, . . . , Xn+q)

Figure 3.5.1: Garbling scheme Garble1. Its components are (Gb,En,De,Ev, ev) where ev,
shown for completeness, is the canonical circuit evaluation. We assume a DKC E with tweak
length τ and let D denote its inverse. At line 102, we use {0, 1}k−1t and {0, 1}k−1t to refer to the
sets of k-bit binary strings whose last bit is t and t respectively.

(A,B, T,X) 7→ ET
A,B(X) and (A,B, T, Y) 7→ DT

A,B(Y) be polynomial-time computable. We

refer to τ as the tweak length of E.

The definition above describes syntax alone. We postpone giving a security definition

until we’ve defined Garble1.

3.5.1 Definition of Garble1

Let E be a dual-key cipher with tweak length τ . We associate to E the garbling scheme

Garble1[E] as shown in Fig. 3.5.1 and illustrated in Fig. 3.5.2. Wires carry k-bit tokens.

A token X will encode a one-bit type. Rather arbitrarily, the type is the final bit of the

token, namely its LSB. When we write T ← g ∥ a ∥ b (line 106 and 155) where g ∈ N and

39

A = A1

E (M)

B = B0

C = C0

D = D1

M = M1

N = N0
E (N)

E (N)

E (M)

R = R0

S = S1

V = V0

W = W1

E (S)

E (R)

E (R)

E (V)

E (W)

E (V)

E (V)

E (R)
300

301

310

311

400

401

410

411

500

501

510

511

B,C

B,D

A,C

A,D

B,N

B,M

A,N

B,M

C, N

D, N

C, M

D,M

1

2

3

4

5

Figure 3.5.2: Garbled circuit corresponding to the conventional circuit of Fig. 2.3.1.
For each wire i, the token with semantics 0 (that is, X0

i) is written on top; the token with semantics
1 (that is, X1

i) is written on bottom. Possession of token A and C, for example, lets one decrypt
the third row of the leftmost garbled gate (since A ends in 1 and C ends in 0) to recover token N .
The final output is the concatenation of the LSBs of the output wires.

a, b ∈ {0, 1}, we mean that g mod 2τ(k)−2 is encoded as a (τ(k) − 2)-bit string and a ∥ b is

concatenated, yielding a τ(k)-bit tweak. The ev function (lines 140–145) is precisely evcirc;

the code is repeated for completeness and to make visible the commonality with Ev (lines

150–156).

To garble a circuit, we begin selecting two tokens for each wire, one of each type. One

of these will represent 0—the token is said to have semantics of 0—while the other will

represent 1. The variable Xb
i names the token of wire i with semantics (not type!) of b.

Thus the encoding function e (see lines 120–123) will map x = x1 · · · xn ∈ {0, 1}n to X =

(Xx1
1 , . . . , Xxn

n). For each wire i that is not an output wire, we select, at line 102, random

tokens of opposite type, making the association between a token’s type and its semantics

random. For each wire i that is an output wire, we again select random tokens of opposite

types, but this time the token’s type is the token’s semantics.

Lines 104–106 compute q garbled truth tables, one for each gate g. Table P [g, ·, ·] has

four rows, entry a, b the row to use when the left incoming token is of type a and the right

incoming token is of type b. The token that gets encrypted for this row (line 106) is the

token for the outgoing-wire with the correct semantics. At lines 154–155, given two tokensXa

40

and Xb we use their types to determine which row of the garbled table we need to decrypt.

The description of the decoding function d (line 109) is empty because no information is

needed to map an output token to its semantics, the type being the semantics.

3.5.2 Security notion for dual-key ciphers

We already defined the syntax of a DKC, a permutation ET
A,B : {0, 1}k → {0, 1}k for each

A,B, T . Our definition of security will allow the adversary to select whichever of the two

keys it wants to learn. We will hand it not only that key but, also, the last of the undisclosed

key. (This corresponds to the type bit in runs of Garble1). We consider only nonadaptive,

known-plaintext attacks. These plaintexts will be either the disclosed keys or truly random

strings. We prohibit encryption cycles. During the adversary’s attack, the tweaks used must

be nonces—values used at most once.

More formally, the security of a DKC E : {0, 1}k×{0, 1}k×{0, 1}τ(k)×{0, 1}k → {0, 1}k

is specified using the game of Fig. 3.5.3. The game starts by choosing a bit b� {0, 1} and a

key K� {0, 1}k. It chooses infinitely many random strings K1, K2, . . . such that the last bit

of Ki is i mod 2. It chooses infinitely many random strings R1, R2, Except for the last

bit of K, the key K shall be kept secret. The strings K1, K2, . . . are initially secret, but the

adversary A will eventually learn them through its queries. The random strings R1, R2, . . .,

used only in the “reference game” when b = 0, are secret. We require that the adversary A

be nonadaptive, that is, it prepares all queries before interrogating the DKC oracle. In each

query, adversary A has to specify an integer i indicating that it wants to use {K,Ki} as keys

of the dual-key cipher for this query, and an integer j, indicating that it wants to encrypt the

string Kj. We require that i < j to avoid encryption cycles. It also specifies a boolean pos to

indicate the position, left or right, of the secret key K. Finally, it provides a tweak T , which

must be a nonce. If b = 1 then the oracle returns the encryption of Kj to the adversary. If

b = 0 then the oracle returns the encryption of Rj. When adversary A outputs a bit b′ its

advantage is Advdkc
E (A, k) = 2Pr[DKCA(k)]− 1. We say that E is a secure dual-key cipher

41

proc Initialize()

b� {0, 1}, K� {0, 1}k
R1, R2, . . . � {0, 1}k
for i ∈ {1, 2 . . .} do

K2i � {0, 1}k−1 0
K2i−1 � {0, 1}k−1 1

return lsb(K)

proc Encrypt(i, j, pos, T) Game DKC

if used[T] or i ≥ j then return ⊥
used[T]← true
if pos = 1 then (A,B)← (K,Ki)
else (A,B)← (Ki,K)
if b = 1 then X ← Kj else X ← Rj

return (Ki,Kj ,ET
A,B(X))

Figure 3.5.3: Security of a dual-key cipher. Cipher ET
A,B has a tweak and two keys, only

one of which, K, its position chosen by the adversary, is secret. The final bit of K is disclosed.
Procedure Finalize(b′) returns (b = b′).

if ε(k) = Advdkc
E (A, k) is negligible for every nonadaptive PPT adversary A whose input

is 1k and the bit returned by Initialize.

Discussion. By way of further explanation, ciphertexts ET1
K,K1

(X1),ET2
K2,K

(X2), . . . should

be indistinguishable from random strings as long as K is secret and the tweaks T1, T2, . . .

are nonces—even if random values Ki and Xj are all disclosed. We demand that this hold

even if the last bit of K is released to the adversary and the adversary can actively choose

the last bit of each Ki.

A subtle issue arises when the adversary happens to possess, say ET1
K1,K

(X) and ET2
K2,K

(X).

One may be tempted to require that the two ciphertexts be indistinguishable from two in-

dependent uniformly random strings. This, however, would not allow instantiations like

ET
A,B(X) = EA(EB(X)) for an ideal cipher E. Instead, we choose a secret Y �M, whereM

is the message space, and demand that the strings ET1
K1,K

(X) and ET2
K2,K

(X) be indistinguish-

able from ET1
K1,K

(Y) and ET2
K2,K

(Y).

The definitional intricacies for dual-key ciphers arise from wanting to require of a DKC

little more than what is actually needed to prove Garble1. Too strong a definition for DKC

security and interesting instantiations will be lost.

3.5.3 Security of Garble1

Our definition of DKC security suffices to prove security for Garble1. The result is stated

below and proven in Section 3.5.4.

42

Theorem 3.5.1. If E is a secure dual-key cipher then G = Garble1[E] ∈ GS(prv.ind,Φtopo).

The theorem is underlain by an explicit, blackbox, uniform reduction U such that if A(1k)

outputs circuits of at most r wires and fan-out at most ν, then D = UA achieves advantage

Advdkc
E (D, k) ≥ 1

2r
Advprv.ind,Φtopo

G (A, k) and makes Q ≤ 2ν oracle queries, with E[Q] < 4.

It runs in time about that of A plus the time for 4r computations of E on k-bit keys. The

small overhead implicit in the word “about” is manifest in the proof. The above assumes

that r ≤ 2τ(k)−2. In asymptotic statements, r and ν are understood as polynomials r(k)

and ν(k).

We comment that Garble1 does not satisfy obliviousness or authenticity. To defeat

obliviousness, an adversary can just make the query (AND, OR, 00, 11) to receive (F,X),

and then evaluate Y = Ev(F,X), returning 1 if De(ε, Y) = 1 and 0 otherwise. This adversary

has advantage 1. To defeat authenticity, an adversary can query (OR, 11), and then output

(0k, 0k). Again it has advantage 1. We will soon describe Garble2 that satisfies obliviousness

and authenticity in addition to privacy.

The primitive used by Lindell and Pinkas [70] as a basis for encryption of gate rows is a

randomized, IND-CPA secure symmetric encryption scheme with an elusive and efficiently

verifiable range. Dual-key ciphers, in contrast, are deterministic. Our PRF-based instantia-

tion avoids probabilistic encryption. Besides speed it results in shorter ciphertexts for each

row of each gate. The additional properties of encryption assumed by LP [70] are to allow

the evaluator to know which gate entry is the “correct” one. Our solution via type bits (the

“point-and-permute” technique, which dates to Rogaway [85]) is well known.

3.5.4 Proof of security of Garble1

We adopt the following convention for the code-based games. Any procedure with the

keyword “private” is the local code of the caller, and cannot be invoked by adversary A.

It can be viewed as a function-like macro in C/C++ programming language. That is, it

still has read/write access to the variables of the caller, even if these variables are not its

43

parameters. In addition, any variable created by the callee still persists and is available to

the caller after the callee is terminated. In this proof, the word “correct” means “as specified

in game PrvIndGarble1[E],Φtopo”.

Overview. Without loss of generality, assume that A outputs (f0, f1, x0, x1) that satisfies

Φtopo(f0) = Φtopo(f1) = (n,m, q, A′, B′), x0, x1 ∈ {0, 1}n, and ev(f0, x0) = ev(f1, x1). We

reformulate the game PrvIndGarble1[E],Φtopo as game Real, and specify another game Fake

whose output is independent of its challenge bit; therefore Pr[FakeA(k)] = 1/2. We also

describe hybrid games Hy0, . . . ,Hyn+q−m such that the first and last hybrid games are Real

and Fake respectively. We then design a DKC adversary D that runs A. Informally, D

chooses a bit c� {0, 1} and an index ℓ� {1, . . . , q + n}, and uses the oracle Encrypt to

garble (fc, xc). When A halts with output c′, adversary D returns 1 if c′ = c. If ℓ > q+n−m

then D never queries Encrypt; consequently, whatever A receives is independent of the

challenge bit of game DKC, and thus D’s advantage is 0. Suppose that ℓ ≤ q + n − m.

Then, D aims to simulate game Hyℓ−1 if the challenge bit b of game DKC is 1, and simulate

game Hyℓ if b = 0. Hence, for each fixed topological circuit (n,m, q, A′, B′),

Pr
[
DKCD(k) | b = 1

]
=

1

n+ q

n+q−m∑
ℓ=1

Pr
[
HyAℓ−1(k)

]
Pr

[
¬DKCD(k) | b = 0

]
=

1

n+ q

n+q−m∑
ℓ=1

Pr
[
HyAℓ (k)

]
Subtracting, we bound

Advdkc
E (D, k) = Pr

[
DKCD(k) | b = 1

]
− Pr

[
¬DKCD(k) | b = 0

]
≤ 1

n+ q

(
Pr

[
HyA0 (k)

]
− Pr

[
HyAn+q−m(k)

])
=

Pr
[
RealA(k)

]
− 1/2

n+ q

=
Advprv.ind,Φtopo

G (A, k)
2(n+ q)

.

44

00 proc Garble(f0, f1, x0, x1) Game Real / Game Fake
01 (n,m, q,A′, B′, G)← fc
02 for i ∈ {1, . . . , n+ q} do
03 vi ← ev(fc, xc, i)
04 if i ≤ n+ q −m then ti � {0, 1} else ti ← vi
05 Xvi

i � {0, 1}k−1ti, Xvi
i � {0, 1}k−1ti

06 for g ∈ {n+ 1, . . . , n+ q} do
07 a← A′(g), b← B′(g), Garb(X

vg
g , 0, 0)

08 Garb$(false, 1, 0), Garb$(false, 0, 1), Garb$(false, 1, 1) ←− Use in game Real

09 Garb$(true, 1, 0), Garb$(true, 0, 1), Garb$(true, 1, 1) ←− Use in game Fake

10 F ← (n,m, q,A′, B′, P)
11 return (F, (Xv1

1 , . . . , Xvn
n), ε)

00 proc Garble(f0, f1, x0, x1) Game Hyℓ
01 (n,m, q,A′, B′, G)← fc
10 for i ∈ {1, . . . , n+ q} do
11 vi ← ev(fc, xc, i)
12 if i ≤ n+ q −m then ti � {0, 1} else ti ← vi
13 Xvi

i � {0, 1}k−1ti, Xvi
i � {0, 1}k−1ti

20 for g ∈ {n+ 1, . . . , n+ q} do
21 a← A′(g), b← B′(g), Garb(X

vg
g , 0, 0)

22 Garb$(a ≤ ℓ, 1, 0), Garb$(b ≤ ℓ, 0, 1), Y ← Garb$(a ≤ ℓ, 1, 1)
23 if a ≤ ℓ < b and Gg(va, 0) = Gg(va, 1) then Garb(Y, 1, 0)
24 F ← (n,m, q,A′, B′, P)
25 return (F, (Xv1

1 , . . . , Xvn
n), ε)

30 private proc Garb(Y, α, β)
31 T ← g ∥ (ta ⊕ α) ∥ (tb ⊕ β)

32 A← Xva⊕α
a , B ← Xvb⊕β

b

33 P [g, ta ⊕ α, tb ⊕ β]← ET
A,B(Y)

40 private proc Garb$(rnd, α, β)

41 if rnd then Y � {0, 1}k else Y ← X
Gg(va⊕α,vb⊕β)
g

42 Garb(Y, α, β)
43 return Y

Figure 3.5.4: Games Real, Fake, and Hyℓ (for 0 ≤ ℓ ≤ n + q − m) used in the proof of
Theorem 3.5.1. Each game has a procedure Initialize() that samples a challenge bit c� {0, 1}.
All variables are global. Each game has local procedures Garb and Garb$ to which the adver-
sary A has no access. The procedure Finalize(c′) of each game returns (c = c′). At line 03 we let
ev(f, x, i) return the bit value of wire i in the evaluation of f on input x.

Game Real. Consider game Real in Fig. 3.5.4. We claim that it coincides with game

PrvIndGarble1[E],Φtopo . To justify this, recall that in the Garble1 scheme, each wire i carries

tokens X0
i and X1

i with semantics 0 and 1 respectively. If wire i ends up having value

(semantics) vi in the computation y ← ev(fc, xc), where c is the challenge bit of game

PrvIndGarble1,Φtopo , then token Xvi
i becomes visible to the adversary while Xvi

i stays invisible.

Game Real makes this explicit. It picks for each wire i a “visible” token and an “invisible”

one. It then ensures that the tokens the adversary gets are the visible ones. Procedure

ev(f, x, i) at line 03 returns the bit value of wire i in the evaluation of circuit f on input x.

45

Formally,

proc ev(f, x, i)

(n,m, q, A,B,G)← f

for g ← n+ 1 to n+ q do a← A(g), b← B(g), xg ← Gg(xa, xb)

return xi

Let us give the high-level description of procedures Garb and Garb$. Let ti be the last

bit of the visible token at wire i. If one has all visible tokens then one can open P [g, ta, tb]

for every gate g, where a and b are the first and second incoming wires of g respectively.

Procedure Garb(Y, α, β) writes to row P [g, ta ⊕ α, tb ⊕ β]. (As a “private” procedure, it

inherits variables g, a, b, and t1, . . . , tn+q from its caller.) The written value is the encryption

of Y , instead of the correct token, but with the correct keys and tweak. On the other hand,

procedure Garb$(rnd, α, β) uses the correct keys and tweak to build P [g, ta ⊕ α, tb ⊕ β].

If rnd = false then the plaintext is the correct token as well. Otherwise, it is a uniformly

random string. This plaintext, real or random, will be handed to the caller of Garb$.

Game Fake. Consider game Fake in Fig. 3.5.4. The game is identical to Real at garbled

rows that may be opened by the visible tokens. For other garbled rows, it sets the plaintexts

in those rows to be independent random strings instead of the correct tokens. (In the code,

we always enable the flag rnd of procedure Garb$ whenever we call it.) We claim that

game Fake’s output is independent of its challenge bit c. To justify this, from the topological

circuit f− and the final output y1 · · · ym = y = ev(fc, xc), which are independent of c, we

can rewrite game Fake as in Fig. 3.5.5. There, we refer to the visible token of wire i as Vi,

and its invisible counterpart as Ii, omitting the semantics of these tokens. Plaintexts Y are

random, except for garbled rows that can be opened by visible tokens.

Hybrids. Now consider the hybrid games Hyℓ of Fig. 3.5.4, defined for 0 ≤ ℓ ≤ n+ q−m.

For better readability, we describe them in two equivalent ways. We first give the recursive

approach: game Hy0 coincides with game Real, and we will describe how to go to game Hyℓ

46

for i ∈ {1, . . . , n+ q} do
if i ≤ n+ q −m then ti � {0, 1} else ti ← yi−(n+q−m)

Vi � {0, 1}k−1ti, Ii � {0, 1}k−1ti
for g ∈ {n+ 1, . . . , n+ q} do

a← A′(g), b← B′(g)
for (A,B) ∈ {Va, Ia} × {Vb, Ib} do

if A = Va and B = Vb then Y ← Vg else Y � {0, 1}k
T ← g ∥ lsb(A) ∥ lsb(B), P [g, lsb(A), lsb(B)]← ET

A,B(Y)

F ← (n,m, q,A′, B′, P)
return (F, (V1, . . . , Vn), ε)

Figure 3.5.5: Rewritten game Fake of the proof of Theorem 3.5.1. This game depends
solely on topological circuit f− = (n,m, q,A′, B′) and the output v = ev(f0, x0) = ev(f1, x1).

from game Hyℓ−1, for every ℓ ∈ {1, . . . , n + q −m}. This will help explain the strategy of

our constructed DKC adversary. Alternatively, we describe each hybrid game directly, which

explains how to write the code.

We first give the recursive construction. In each game, every garbled row always has the

correct keys and tweak. Fix ℓ ∈ {1, . . . , n + q − m}. In game Hyℓ, first run the code of

game Hyℓ−1, and then do the following update ∆ℓ. For each token, associate it to a fresh

uniformly random k-bit string. The two games Hyℓ−1 and Hyℓ differ only at garbled rows

that use the invisible token of wire ℓ as a key. Consider such a row. If the current plaintext

is a token then replace it with its associated random string above. Otherwise, sample a fresh

uniformly random k-bit string, and let it be the new plaintext. See Fig. 3.5.6 for illustration.

In other words, for each gate g, if we hop on the chain ∆1, . . . ,∆n+q−m, we’ll visit g exactly

twice, the first time in ∆a, and the second time in ∆b, where a and b are the first and second

incoming wires of g respectively. In the first visit, we modify rows P [g, ta, 0] and P [g, ta, 1],

changing the plaintexts from two tokens to random strings—the latter will be identical if the

former are the same, namely Gg(va, 0) = Gg(va, 1), otherwise they will be independent. In

the second visit, we modify rows P [g, ta, tb] and P [g, ta, tb], changing their plaintexts from a

token and a random string respectively to two fresh, independent random strings.

Let us move on to the direct construction. Fix ℓ ∈ {0, . . . , n+ q −m}. We will describe

game Hyℓ. Each garbled row will be built from the correct keys and tweak. For rows that

47

A = A1

E (Y0)B = B0

C = C0

D = D1

M = M1

N = N0E (Y1)

E (M)

E (Y2)

300

301

310

311

B,C

B,D

A,C

A,D

1

2

3

Y0 Y1 Y2

����

���

����

N N N

P P N

P Q R

Figure 3.5.6: Garbled circuits of hybrid games, assuming that we garble (fc, xc) =
(OR, 00). There are three games: Real(Hy0),Hy1, and Fake(Hy2). On the left, we draw the
common form of the garbled circuit for these games. The keys and tweak for each row are the
same for every game, but the plaintexts Y0, Y1, Y2 will be different. For each wire i, the token with
semantics 0, that is, X0

i is written on top; the token with semantics 1, that is X1
i is written on

bottom; visible tokens are colored. The table on the right tells what Y0, Y1, Y2 are, for each game;
strings P,Q, and R are uniformly random. For example, the cell at the second row and second
column indicates that in game Real, plaintext Y0 is token N of wire 3.

can be opened by visible tokens, their plaintexts are always the correct tokens. For other

rows, consider a gate g with first and second incoming wires a and b respectively. Note that

in ∆1, . . . ,∆n+q−m, the first update to P [g, ta, 0] and P [g, ta, 1] is in ∆a. Hence if a ≤ ℓ then

the plaintexts of these two rows will be the correct tokens. Else they are random strings—

identical if Gg(va, 0) = Gg(va, 1) and ℓ < b, and independent otherwise. Likewise, if b ≤ ℓ

then the plaintext in row P [g, ta, tb] is the correct token, otherwise it is a random string

independent of anything else.

We claim that game Hyn+q−m coincides with game Fake. It is easily verified, as when

ℓ = n+ q −m, at line 22, procedure Garb$ is always invoked with rnd = true, and line 23

is never executed.

DKC adversary. Adversary D, given 1k and a bit τ from procedure Initialize(), runs

A(1k). When the latter makes a Garble(f0, f1, x0, x1) query, it replies via the code of

Fig. 3.5.7. Recall that D chooses c� {0, 1} and an index ℓ� {1, . . . , q + n}, and uses the

oracle Encrypt to garble (fc, xc). When A halts with output c′, adversary D returns 1 if

c′ = c. If ℓ > q + n−m then D never queries Encrypt, as lines 22–23 never get executed.

Consequently, whatever A receives is independent of the challenge bit of game DKC, and

thus D’s advantage is 0. Suppose that ℓ ≤ q+n−m. Then, D aims to simulate game Hyℓ−1

48

if the challenge bit of game DKC is 1, and simulate game Hyℓ otherwise. Below, we will give

a high-level description of the code of D.

Initially, the adversary D picks the types ti for every wire i ̸= ℓ as in game Real. We

want the key K of game DKC to play the role of the invisible token of wire ℓ, so tℓ is the

complement of the bit τ given from procedure Finalize() of game DKC. Adversary D first

walks through gates that ℓ is an incoming wire. It will query the oracle Encrypt (via

procedure Query) to write to garbled rows that are supposed to use the invisible token at

wire ℓ as a key; these rows are determined by τ .

We need make sure that in both games Hyℓ−1 and Hyℓ, there is no garbled row that uses

the invisible token of wire ℓ as its plaintext. This claim is obvious if ℓ ≤ n, namely, wire ℓ

is an input wire. If ℓ > n then due to the topological ordering of gates, both incoming wires

of gate ℓ must stay in the set {1, . . . , ℓ − 1}, and the sequence ∆1, . . . ,∆ℓ−1 therefore must

change the plaintexts in all rows of gate ℓ that can’t be opened by visible tokens to random

strings, expelling the invisible token of wire ℓ.

We now give a high-level description of the “private” procedure Query(rnd, α, β). The

assumption is that ℓ must be one of the incoming wires a and b of gate g. This procedure

will write to the row P [g, ta ⊕ α, tb ⊕ β]; the keys and tweak of this row are always correct;

the flag rnd will indicate if the plaintext, in game Hyℓ−1, is the correct token (rnd = false) or

a random string (rnd = true). The written value Z is obtained from the answer (Ki, Kj, Z)

of Encrypt; we will describe how to choose i and j for querying later. Then Z is the

encryption of either Kj (if the challenge bit of game DKC is 1) or a random string Rj (if

the challenge bit is 0), and the keys will be K and Ki. Let {w} = {a, b}\{ℓ}. Recall that D

did not initialize the tokens except the types. Assign value Ki to the token of wire w that

is a correct key of P [g, ta ⊕ α, tb ⊕ β]; let t be the type of this token. As the type of Ki is

i mod 2, initially, choose i = 2w + t. If rnd is false then we want to assign Kj to the token

of wire g that is the correct plaintext of P [g, ta ⊕ α, tb ⊕ β]; let the type of this token be t′.

Then, choose j = 2g + t′. On the other hand, if rnd is true then we just want Kj to be a

49

00 proc Garble(f0, f1, x0, x1) // as defined by adversary D
01 c� {0, 1}, (n,m, q,A′, B′, G)← fc, ℓ� {1, . . . , q + n}
10 for i ∈ {1, . . . , n+ q} do ti ← vi ← ev(fc, xc, i)
11 for i← {1, . . . , n+ q −m} do ti � {0, 1}
12 for g ∈ {n+ 1, . . . , n+ q} do
13 a← A′(g), b← B′(g), tℓ ← τ //τ = lsb(K)
14 if a = ℓ then Query(false, 1, 0), Query(false, 1, 1)
15 if b = ℓ then Query(false, 0, 1), Yg ← Query(true, 1, 1)
20 for i ∈ {1, . . . , n+ q} do
21 if Xvi

i = ⊥ and i ̸= ℓ then Xvi
i � {0, 1}k−1ti

22 if Xvi
i = ⊥ then Xvi

i � {0, 1}k−1ti
30 for g ∈ {n+ 1, . . . , n+ q} do
31 a← A′(g), b← B′(g), Garb(X

vg
g , 0, 0)

32 if a ̸= ℓ and b ̸= ℓ then

33 Garb$(a ≤ ℓ, 1, 0), Garb$(b ≤ ℓ, 0, 1), Y ← Garb$(a ≤ ℓ, 1, 1)
34 if a ≤ ℓ < b and Gg(va, 0) = Gg(va, 1) then Garb(Y, 1, 0)
35 elsif a = ℓ then Garb$(false, 0, 1)
36 else Garb$(true, 1, 0), if Gg(va, 0) = Gg(va, 1) then Garb(Yg, 1, 0)
37 F ← (n,m, q,A′, B′, P)
38 return (F, (Xv1

1 , . . . , Xvn
n), ε)

40 private proc Query(rnd, α, β)
41 T ← g ∥ (ta ⊕ α) ∥ (tb ⊕ β), γ ← vg ⊕Gg(va ⊕ α, vb ⊕ β)
42 if a = ℓ then pos ← 1, i← 2b+ (tb ⊕ β) else pos ← 0, i← 2a+ (ta ⊕ α)
43 if rnd then j� {2(g + n+ q), 2(g + n+ q) + 1} else j ← 2g + (tg ⊕ γ)
44 (Ki,Kj , Z)← Encrypt(i, j,pos, T), P [g, ta ⊕ α, tb ⊕ β]← Z

45 if a = ℓ then Xvb⊕β
b ← Ki else Xva⊕α

a ← Ki

46 if rnd then X
vg⊕γ
g ← Kj

47 return Kj

Figure 3.5.7: Constructed DKC adversary D. Procedure Garble used by adversary D
attacking E, based on the adversary A attacking the prv.ind-security of Garble1. All variables are
global. Adversary D also makes use of procedures Garb and Garb$ in Fig. 3.5.4. Adversary A
has no access to procedure Query that is a local procedure of D. At line 13, the bit τ is the last
bit of the key K of game DKC given to D by Initialize().

fresh random string, so pick j� {2(n+ q + g), 2(n+ q + g) + 1}.

How should D call Query? If ℓ = a then we want to write to rows P [g, ta, 0] and

P [g, ta, 1]. Let rnd = false for both of them. Consequently, if the challenge bit of game DKC

is 1 then the plaintexts of two rows above are the correct tokens, which is what we need for

game Hyℓ−1, since Hyℓ−1 doesn’t modify these rows of gate g. If, on the other hand, the

challenge bit is 0 then from the description of game DKC, the plaintexts of two rows above

are random strings—either independent or identical, depending on whether the two tokens in

game Hyℓ−1 are different or the same. This gives what we need to construct game Hyℓ. Now

50

consider the case ℓ = b. We want to write to rows P [g, ta, tb] and P [g, ta, tb]. For the former,

similarly, let rnd = false. For the latter, note that in both games, the plaintext of this row

is a random string. Moreover, we claim that this string is independent of the plaintext of

P [g, ta, tb]. Our claim is true for game Hyℓ, as ∆b replaces the two plaintexts from a token

and a random string to two fresh, independent random strings. It is also true for game

Hyℓ−1, as the plaintext of row P [g, ta, tb] is a token. Hence let rnd = true. We obtain from

the oracle Encrypt a random string Yg that will be the plaintext of row P [g, ta, tb] if the

challenge bit of game DKC is 1. Save it for a later use.

By calling Query, adversary D creates some tokens. The next step is to sample the

other tokens according to their types, except for the invisible token of wire ℓ. Now manually

construct the still vacant rows as follows. For gates that ℓ is not an incoming wire, as the

two games Hyℓ−1 and Hyℓ agree on rows of this gate, follow the code of game Hyℓ. Consider

another gate g of first and second incoming wires a and b respectively, with ℓ ∈ {a, b}. each

row has correct keys and tweaks. If a row can be opened by visible tokens then its plaintext

is also the correct token. Otherwise, if ℓ = a then the only still vacant row is P [g, ta, tb],

whose plaintext is also the correct token in both games Hyℓ−1 and Hyℓ. If ℓ = b then the

only vacant row is P [g, ta, tb], whose plaintext is random in both games Hyℓ−1 and Hyℓ. But,

is this random string independent of anything else or must it be a prior random string? The

latter happens in game Hyℓ−1 if Gg(va, 0) = Gg(va, 1), as the plaintexts in rows P [g, ta, 0]

and P [g, ta, 1] are identical. If so, recall that previously, we saved a random string Yg. If the

challenge bit of game DKC is 1 then Yg is the plaintext of row P [g, ta, tb]. Otherwise Yg is

independent of anything else. Now, let Yg be the plaintext of row P [g, ta, tb]. This yields the

intended construction for both games.

Having constructed D, we now argue that it is nonadaptive because (i) the only way

that D can query Encrypt is via Query and in the body of Query, we don’t make use

of the prior answers of Encrypt, (ii) the Query calls are deterministic for a fixed ℓ, and

(iii) D creates the types before using Query.

51

Resources accounting. Let Q be the random variable denoting the number of queries

of D to the oracle Encrypt. Fix the topological circuit (n,m, q, A,B). Let νi be the number

of gates that wire i is an incoming wire. Hence νi ≤ ν, and

n+q−m∑
i=1

νi = 2q,

as both sides of this equality count the total number of incoming wires of all gates. Note

that the random variable Q is uniformly distributed over the (q + n)-element multiset

{2ν1, . . . , 2νn+q−m, 0, . . . , 0}. Hence Q ≤ 2ν, and

E[Q] =
1

n+ q

n+q−m∑
i=1

2νi =
4q

q + n
< 4 .

3.5.5 Dual-key ciphers from a PRF

Our primary interest will be in instantiating a dual-key cipher via a PRF. Let F associate to

key K ∈ {0, 1}k−1 a map FK : {0, 1}τ(k) → {0, 1}k. We require that the map K,T 7→ FK(T)

be polynomial-time computable. We refer to τ as the input length.

The prf-advantage of an adversary D against F is defined as

Advprf
F (D, k) = 2Pr[PRFDF (k)]− 1,

where game PRFF is as follows. Initialize picks a random bit b and a random (k − 1)-bit

key K. The adversary has access to procedure Fn that maintains a table Tbl[·] initially

everywhere undefined. Given T ∈ {0, 1}τ(k), the procedure returns F(K,T) if b = 1. Other-

wise, it picks and returns Tbl[T]� {0, 1}k if Tbl[T] = ⊥, or returns Tbl[T] if Tbl[T] ̸= ⊥.

Finalize(b′) returns (b = b′). We say that F is PRF-secure if Advprf
F (D, ·) is negligible for

all polynomial-time adversaries D.

Given a PRF F as above, we define the DKC E via

ET
A,B(P) = FA[1:k−1](T)⊕ FB[1:k−1](T)⊕ P.

This dual-key cipher has tweak length τ and is denoted E[F]. During evaluation, token

52

proc Initialize()

a, b� {0, 1}
return a

proc Encrypt(i, j, pos, T)

if used[T] or i ≥ j then return ⊥
used[T]← true
if Ki = ⊥ then A� {0, 1}k−1, Ki ← A ∥ (i mod 2)

if Kj = ⊥ then B� {0, 1}k−1, Kj ← B ∥ (j mod 2)

if Rj = ⊥ then Rj � {0, 1}k
X1 ← Kj , X0 ← Rj

return (Ki,Kj ,Fn(T)⊕ FA(T)⊕Xb)

Figure 3.5.8: Proof of Theorem 3.5.2. The code is for the adversary B, which has a PRF oracle

Fn.

types are revealed, but the entire key of F remains secret.

The following result establishes that E[F] is a good DKC when F is a good PRF. The

reduction is tight and explicit. More specifically, the proof provides a blackbox reduction

such that for any adversary A(1k) attacking E[F] there is an adversary B(1k) attacking F

for which Advprf
F (B, k) = 0.5Advdkc

E[F](A, k). If A makes Q queries to Encrypt then B also

makes Q queries to the PRF oracle Fn. The running time of B is about that of A, where

the meaning of “about” is manifest in the proof that follows the theorem.

Theorem 3.5.2. Let F be a PRF. Then E[F] is a secure dual-key cipher.

Proof. Fix an adversary A attacking E[F]. Consider the following adversary B attacking F.

Adversary B(1k) runs A(1k), and follows the code of Fig. 3.5.8. In words, initially, B samples

b� {0, 1}. For each query (i, j, pos, T), if one of Ki, Kj, or Rj is not defined, it is sampled

according to the distribution specified in game DKC. Then, B returns Fn(T)⊕ FA(T)⊕Xb

to A, where A = Kj[1 : k − 1], X0 = Rj, and X1 = Kj. Finally, when A outputs a bit b′,

adversary B will output 1 only if b′ = b. Then

Pr[PRFB(k) | c = 1] = Pr[DKCA(k)] and Pr[¬PRFB(k) | c = 0] = 1/2

where c is the challenge bit of game PRF. To justify the second claim, note that if c = 0 then

Fn(T)⊕ FA(T)⊕Xb is a uniformly random string independent of Xb, and thus the answers

to A’s queries are independent of b. Subtracting, we obtain Advprf
F (B, k) = 1

2
Advdkc

E[F](A, k).

53

The instantiation of a DKC E by way of E[F] is by no means the only reasonable instantiation,

nor the only one that can be proven secure. We now investigate further instantiations, going

all the way to a blockcipher.

3.5.6 Dual-key ciphers from double encryption

We also prove the dkc-security of the instantiation E[E] with ET
A,B(X) = EA(EB(X)),

where E is an ideal cipher. In the theorem below, we will show that if an adversary A

makes Q queries to the Encrypt oracle, and qE queries to E and E−1 then Advdkc
E[E](A, k) ≤

(10Q2 + 4Q+ 8qE)/2
k. The above assumes that Q+ qE ≤ 2k−3.

Theorem 3.5.3. Let E be an ideal cipher. Then E[E] is a secure dual-key cipher.

Proof. Consider games G0–G5 in Figures 3.5.9 and 3.5.10. In each game, adversary A has

indirect access to E and E−1 by calling procedures Enc and Dec. Game G0 corresponds to

game DKC, with strings Ki and Ri lazily sampled. Suppose that A(1k) makes qE queries to

Enc and Dec, and Q queries to Encrypt, with qE +Q ≤ 2k−3.

We explain the game chain up until the terminal game. �G0 → G1 : Instead of sampling

keys K and Ki independently, we’ll sample so that they are pairwise distinct. The two games

are identical until either sets bad. Moreover,

Pr[BAD(GA0 (k))] =

2Q∑
ℓ=1

ℓ/2k−1 = 2Q(2Q+ 1)/2k = (4Q2 + 2Q)/2k .

�G1 → G2 : Instead of calling EK(·) and E−1K (·), we lazily implement an ideal permu-

tation π. In addition, we keep track of prior answers by an array H so that we can answer

for “redundant” queries without using π as follows. For each Encrypt query (i, j, 1, T),

we use the array H to store H[(i, j)] ← Y , where Y is the answer to A. Later, if A makes

another query (i, j, 1, T ∗), we immediately return Y without looking up π. Likewise, for each

54

00 proc Initialize()
01 b� {0, 1}, K� {0, 1}k
02 Keys← {K}
03 return lsb(K)

04 proc Enc(A,B)
05 return EA(B)

06 proc Dec(A,B)
07 return E−1

A (B)

10 proc Encrypt(i, j, pos, T) Game G0 G1

11 if used[T] or i ≥ j then return ⊥
12 used[T]← true, s← i mod 2, t← j mod 2
13 if Ki = ⊥ then
14 Ki � {0, 1}k−1s
15 if Ki ∈ Keys then

16 bad ← true, Ki � {0, 1}k−1s \Keys

17 Keys← Keys ∪ {Ki}
18 if Kj = ⊥ then
19 Kj � {0, 1}k−1t
20 if Kj ∈ Keys then

21 bad ← true, Kj � {0, 1}k−1t \Keys

22 Keys← Keys ∪ {Kj}
23 if Rj = ⊥ then Rj � {0, 1}k
24 X1 ← Kj , X0 ← Rj

25 if pos = 1 then X ← EKi(Xb) else X ← Xb

26 Y ← EK(X)
27 if pos = 1 then return (Ki,Kj , Y)
28 else return (Ki,Kj , EKi(Y))

30 proc Initialize()
31 b� {0, 1}k, K� {0, 1}k
32 Keys← {K}
33 return lsb(K)

34 proc Enc(A,B)
35 if A ̸= K then return EA(B)

36 bad ← true, return ⊥
37 if B ̸∈ Dom(π) then
38 Y ← {0, 1}k\Ran(π), π[B]← Y
39 return π[B]

40 proc Dec(A,B)
41 if A ̸= K then return E−1

A (B)

42 bad ← true, return ⊥
43 if B ̸∈ Ran(π) then
44 X ← {0, 1}k\Dom(π), π[X]← B
45 return π−1[B]

50 proc Encrypt(i, j, pos, T) Game G2 G3

51 if used[T] or i ≥ j then return ⊥
52 used[T]← true, s← i mod 2, t← j mod 2
53 if Ki = ⊥ then
54 Ki � {0, 1}k−1s \Keys, Keys← Keys ∪ {Ki}
55 if Kj = ⊥ then
56 Kj � {0, 1}k−1t \Keys, Keys← Keys ∪ {Kj}
57 if Rj = ⊥ then Rj � {0, 1}k
58 X1 ← Kj , X0 ← Rj

59 if pos = 1 and Y ← H[(i, j)] ̸= ⊥ then
60 return (Ki,Kj , Y)
61 if pos = 0 and Y ← H[j] ̸= ⊥ then
62 return (Ki,Kj , EKi(Y))
63 if pos = 1 then X ← Enc(Ki, Xb) else X ← Xb

64 if X ̸∈ Dom(π) then
65 Y � {0, 1}k\Ran(π), π[X]← Y
66 Y ← π[X]
67 if pos = 1 then
68 H[(i, j)]← Y , return (Ki,Kj , Y)
69 else H[j]← Y , return (Ki,Kj , EKi(Y))

Figure 3.5.9: Games for the proof of Theorem 3.5.3. Procedure Finalize(b′) returns (b = b′).
Games G1 and G3 include the corresponding boxed statements, but games G0 and G2 do not.

Encrypt query (i, j, 0, T), we store H[j] ← Y , where EKi
(Y) is the answer to A. Later,

if A makes another query (i∗, j, 0, T ∗), we immediately return EKi∗ (Y) without using π. The

changes are conservative.

�G2 → G3 : we take away from the adversary the power of querying Enc(K, ·) and

55

70 proc Initialize()
71 b� {0, 1}k, K� {0, 1}k
72 Keys← {K}
73 return lsb(K)

74 proc Enc(A,B)
75 if A ̸= K then return EA(B)
76 return ⊥

77 proc Dec(A,B)
78 if A ̸= K then return E−1

A (B)
79 return ⊥

80 proc Encrypt(i, j, pos, T) Game G4 G5

81 if used[T] or i ≥ j then return ⊥
82 used[T]← true, s← i mod 2, t← j mod 2
83 if Ki = ⊥ then
84 Ki � {0, 1}k−1s \Keys, Keys← Keys ∪ {Ki}
85 if Kj = ⊥ then
86 Kj � {0, 1}k−1t \Keys, Keys← Keys ∪ {Kj}
87 if Rj = ⊥ then Rj � {0, 1}k
88 X1 ← Kj , X0 ← Rj

89 if pos = 1 and Y ← H[(i, j)] ̸= ⊥ then
90 return (Ki,Kj , Y)
91 if pos = 0 and Y ← H[j] ̸= ⊥ then
92 return (Ki,Kj , EKi(Y))
93 if pos = 1 then X ← EKi(Xb) else X ← Xb

94 Y � {0, 1}k
95 if X ̸∈ Dom(π) then π[X]← Y

96 else bad ← true, Y ← π[X]

97 if pos = 1 then
98 H[(i, j)]← Y , return (Ki,Kj , Y)
99 else H[j]← Y , return (Ki,Kj , EKi(Y))

Figure 3.5.10: Games for the proof of Theorem 3.5.3. Procedure Finalize(b′) returns
(b = b′). Game G4 includes the corresponding boxed statements, but game G5 does not.

Dec(K, ·). The two games are identical until game G3 sets bad. Consider a query to Enc

or Dec. Since all strings Ki are different from K, the last bit of K is public, and each prior

query to Enc or Dec removes at most a value for K, there are at least 2k−1 − 2Q − qE

equally likely values for K. Hence,

Pr[BAD(GA2 (k))] ≤ qE/(2
k−1 − 2Q− qE) ≤ qE/2

k−2

where the second inequality is due to the assumption that Q+ qE ≤ 2k−3.

�G3 → G4 : Instead of implementing π as an ideal permutation, we implement it as an

ideal function. By PRP/PRF Switching Lemma, Pr[GA3 (k)]− Pr[GA4 (k)] ≤ Q(Q− 1)/2k+1.

�G4 → G5 : Instead of calling Y ← π[X], we sample Y uniformly. The two games are

identical until G4 sets bad. Consider the ℓth Encrypt query (i, j, pos, T), and let X be the

string defined at line 93 on this query. For game G4 to set bad, if pos = 1 then there must

be no prior query (i, j, 1, T ∗), and if pos = 0 then there must be no prior query (i∗, j, 0, T ∗);

otherwise in this query, line 96 is unreachable and bad won’t be set. The flag bad is triggered

56

only if X ∈ Dom(π), where Dom(π) is the set of the points that π[·] is defined prior to this

query. For each P ∈ Dom(π), we claim that the chance that X = P is at most 2−k. Hence

by union bound,

Pr[BAD(GA4 (k))] ≤
Q∑
ℓ=1

(ℓ− 1)/2k = Q(Q− 1)/2k+1 .

We can justify the claim above by the following tedious case analysis. Suppose that P was

added to Dom(π) by A’s querying (i∗, j∗, pos∗, T ∗).

Case 1: X = EKi
(Kj) and P = EKi∗ (Kj∗). If i = i∗ then as mentioned above, j ̸= j∗ so

that we can reach line 96 to set bad, and thus Kj ̸= Kj∗ . Then X ̸= P because EKi
is a

permutation. On the other hand, if i ̸= i∗ then Ki ̸= Ki∗ . Then Pr[X = P] = 2−k, since

EKi
and EKi∗ are independent ideal permutations, and A is nonadaptive.

Case 2: X = EKi
(Rj) and P = EKi∗ (Rj∗). If i = i∗ then as mentioned above, j ̸= j∗

so that we can reach line 96 to set bad. Then X = P only if Rj = Rj∗ , because EKi
is

a permutation. However, Pr[Rj = Rj∗] = 2−k, since we sample Rj and Rj∗ independently,

and A is nonadaptive. On the other hand, if i ̸= i∗ then Ki ̸= Ki∗ . Hence Pr[X = P] = 2−k,

since EKi
and EKi∗ are independent ideal permutations, and A is nonadaptive.

Case 3: X ∈ {EKi
(Kj), EKi

(Rj)} and P ∈ {Kj∗ , Rj∗}. Then Pr[X = P] = 2−k, as EKi
is

an ideal permutation, and A is nonadaptive.

Case 4: X ∈ {Kj, Rj} and P ∈ {EKi∗ (Kj∗), EKi∗ (Rj∗)}. As in Case 3, the chance that

X = P is 2−k.

Case 5: X = Kj and P = Kj∗ . As mentioned above, j ̸= j∗ so that we can reach line 96

to set bad, and thus Kj ̸= Kj∗ .

Case 6: X = Rj and P = Rj∗ . As mentioned above, j ̸= j∗ so that we can reach line 96

to set bad. But Pr[Rj = Rj∗] = 2−k, because we sample Rj and Rj∗ independently, and A

is nonadaptive.

57

Back to our games, note that the outputs of game G5 are independent of the chal-

lenge bit b. (If A asks a redundant query then we give an answer consistent to the prior

ones. Otherwise, we give a random answer.) Hence Pr[GA5 (k)] = 1/2, and consequently,

Advdkc
E[E](A, k) = 2Pr[GA0 (k)]− 1 = 2(Pr[GA0 (k)]− Pr[GA5 (k)]) ≤ (10Q2 + 2Q+ 8qE)/2

k.

Unwinding the results. One needs to be careful in combining Theorems 3.5.1 and 3.5.3

to obtain a good bound on the security of Garble1 when instantiated with a DKC made by

double encryption. Let adversary A attack Gb1[E[E]] and assume A(1k) outputs circuits of

at most r ≤ 2τ(k)−2 wires and fan-out at most ν. Assume further that it makes at most QE

queries to E and E−1. The corresponding DKC adversary D needs to use at most 4r calls

to E for garbling, and thus makes at most qE = 8r +QE queries to E and E−1. Then, from

Theorems 3.5.1 and 3.5.3, there is a random variable 0 < Q ≤ 2ν such that E[Q] < 4 and

Advprv.ind,Φtopo

Garble1[E[E]] (A, k) ≤
r

2k
· (20E[Q2] + 4E[Q] + 16qE)

≤ r

2k
· (20E[2νQ] + 4E[Q] + 16QE + 128r)

< 160rν/2k + 16r/2k + 16rQE/2
k + 128r2/2k .

The bound is quite satisfactory. Above, the expectation E[Q] appears in the first in-

equality as our advantage notion satisfies the following linearity condition: if an adver-

sary A behaves as adversary A1 with probability p, and behaves like A2 otherwise, then

Advprv.ind,Φtopo

G (A, k) = pAdvprv.ind,Φtopo

G (A1, k) + (1− p)Advprv.ind,Φtopo

G (A2, k).

3.5.7 AES-based instantiations

We now consider concrete instantiations. This means we fix a value k of the security param-

eter and suggest ways to realize E on k-bit keys based on blockciphers, specifically AES. Se-

curity for these instantiations can be derived via the concrete security bounds that we stated

above following Theorem 3.5.1. Different choices of instantiation lead to different tradeoffs

58

between assumptions and efficiency. We begin with ways to instantiate F on (k−1)-bit keys:

Let FK(T) be the first k bits of EK(T ∥ 0) ∥EK(T ∥ 1) for a blockcipher E having block

length and key length of (k − 1); to be concrete, E = AES128, k = 129, |K| = 128, and

τ = |T | = 127. This construction is a good PRF under the standard assumption that E is

a good PRP. With this instantiation, evaluating a garbled gate costs four AES operations.

Let FK(T) be EK∥0(T) for a blockcipher having a k-bit key and block size, say E = AES128

and k = τ = |T | = 128 and |K| = 127. Assuming that E is a good PRP is not enough to

prove that F is a good PRF, as zeroing out a bit of the key does not, in general, preserve

PRF security [82]. Still, it seems reasonable to directly assume this F is a good PRF.

Costs are halved compared to the above; now, evaluating a garbled gate requires two AES

operations.

Next we suggest some further ways to make the dual-key cipher E directly, meaning not via

a PRF. The first follows the double-encryption realization of garbled gates attributed to Yao

by Goldreich [38] (which would have been understood that primitive to be probabilistic, not

a blockcipher). The second method is extremely efficient—the most efficient approach now

known.

Let ET
A,B(X) = EA(EB(X)) (the tweak is ignored), where E : {0, 1}k×{0, 1}k → {0, 1}k is

a blockcipher, say AES128. For a proof we would model E as an ideal cipher. Composition

of encryption schemes is understood by many researchers to be Yao’s original approach,

although the earliest expositions make this seem doubtful.

Let ET
A,B(X) = Econst(K) ⊕ K ⊕ X where K = A ⊕ B ⊕ T and E = AES128, say, and

const is a fixed 128-bit string. Here k = τ = 128. With this instantiation evaluating a

gate costs only 1 AES operation. Even more important, all AES operations employ a

single, fixed key. This allows one to take full advantage of AES-NI hardware support to

get extremely high speeds. See Section 3.5.8 for a proof, in which we model Econst(·) as a

random permutation π, giving the adversary access to oracles for π and its inverse.

59

Other one-call, fixed-key schemes are possible, for obliviousness, authenticity, and adjust-

ments to allow the free-xor and row-reduction optimizations [64, 84].

Basing garbled-circuit evaluation on AES and employing AES-NI in an implementation

was also suggested by Kreuter, Shelat, and Shen [66]. They use AES-256, rekeying with gate

evaluation.

3.5.8 Dual-key ciphers from an ideal permutation

We prove the dkc-security of the instantiation E[π] in which ET
A,B(X) = π(K)⊕K⊕X, with

K = A⊕ B ⊕ T and π being an ideal permutation. In the following theorem, we will show

that if an adversary A makes Q queries to the Encrypt oracle, and qπ queries to π and π−1

then Advdkc
E[π](A, k) ≤ 12Qqπ/2

k + 3Q2/2k.

Theorem 3.5.4. Let π be an ideal permutation. Then E[π] is a secure dual-key cipher.

Proof. Consider games G0 − G3 in Fig. 3.5.11. In each game, the adversary A has indirect

access to π and π−1 by calling procedures Π and Π−1. Game G0 corresponds to game DKC.

Suppose that A(1k) makes qπ(k) queries to Π and Π−1, and Q(k) queries to Encrypt, with

qπ ≤ 2k−2.

We explain the game chain up until the terminal game. �G0 → G1 : in these games, we

sample a one-time pad S and set π(P) to S ⊕ P . This may cause inconsistency if π(P) or

π−1(S ⊕P) is defined before. In that case, game G0 resets S to the value consistent with π,

but game G1 does nothing. The two games are identical until game G1 sets bad. We claim

that for the ℓth query to Encrypt, the chance that G1 sets bad in this query is at most

3qπ/2
k + (3ℓ− 3)/2k. Then, by union bound,

Pr[BAD(GA1 (k))] ≤
Q∑
ℓ=1

3qπ/2
k + (3ℓ− 3)/2k ≤ 3Qqπ/2

k + 3Q2/2k+1 .

To justify our claim, since A is nonadaptive, without loss of generality, suppose that during

the period from the first Encrypt query to the last Encrypt query, A makes no query to

60

proc Initialize()
b� {0, 1}, K� {0, 1}k
return lsb(K)

proc Π(X)
if π[X] = ⊥ then
π[X]� {0, 1}k\Ran(π)

return π[X]

proc Π−1(Y)
if π−1[Y] = ⊥ then
π−1[Y]� {0, 1}k\Dom(π)

return π−1[Y]

proc Encrypt(i, j, pos, T) Game G0 / Game G1

if used[T] or i ≥ j then return ⊥
used[T]← true
if Ki = ⊥ then A� {0, 1}k−1, Ki ← A ∥ (i mod 2)
if Kj = ⊥ then B� {0, 1}k−1, Kj ← B ∥ (j mod 2)
if Rj = ⊥ then Rj � {0, 1}k
X1 ← Kj , X0 ← Rj , P ← Ki ⊕K ⊕ T , S� {0, 1}k
if P ∈ Dom(π) or S ⊕ P ∈ Ran(π) then
bad ← true
S ← Π(P)⊕ P ←− Use in game G0

π(P)← S ⊕ P
return (Ki,Kj , S ⊕Xb)

proc Initialize()
b� {0, 1}, K� {0, 1}k
BadDom← ∅, BadRan← ∅
return lsb(K)

proc Π(X)
if X ∈ BadDom then bad ← true
if π[X] = ⊥ then
π[X]� {0, 1}k\Ran(π)

return π[X]

proc Π−1(Y)
if Y ∈ BadRan then bad ← true
if π−1[Y] = ⊥ then
π−1[Y]� {0, 1}k\Dom(π)

return π−1[Y]

proc Encrypt(i, j, pos, T) Game G2 / Game G3

if used[T] or i ≥ j then return ⊥
used[T]← true
if Ki = ⊥ then A� {0, 1}k−1, Ki ← A ∥ (i mod 2)
if Kj = ⊥ then B� {0, 1}k−1, Kj ← B ∥ (j mod 2)
if Rj = ⊥ then Rj � {0, 1}k
X1 ← Kj , X0 ← Rj , P ← Ki ⊕K ⊕ T
S� {0, 1}k, U ← S ⊕Xb ←− Use in game G2

U � {0, 1}k, S ← U ⊕Xb ←− Use in game G3

BadDom← BadDom ∪ {P}
BadRan← BadRan ∪ {S ⊕ P}
return (Ki,Kj , U)

Figure 3.5.11: Games for the proof of Theorem 3.5.4. Procedure Finalize(b′) returns
(b = b′).

Π and Π−1. Consider the ℓth Encrypt query. Since S� {0, 1}k and |Ran(π)| ≤ qπ + ℓ− 1,

the chance that S ⊕ P ∈ Ran(π) is at most (qπ + ℓ− 1)/2k. What remains is to show that

Pr[P ∈ Dom(π)] ≤ (qπ + ℓ− 1)/2k−1 . (3.5.1)

Recall that P = K ⊕Ki ⊕ T . Consider X ∈ Dom(π). If X is added to the domain of π via

a prior Encrypt query, then either X = K ⊕Ki⊕ T ∗ or X = K ⊕Ki∗ ⊕ T ∗. In the former

case, since the tweaks must be unique, T ̸= T ∗, and thus X ̸= P . In the latter case, since

the adversary is nonadaptive, and the first k − 1 bits of Ki and Ki∗ are chosen uniformly

and independently, the chance that X = P is at most 21−k. On the other hand, if X is

61

added to the domain of π via a query to Π or Π−1 then this query is made before the first

Encrypt query. As the first k−1 bits of P are uniformly chosen, the chance that X = P is

at most 21−k. Hence claim (3.5.1) follows from the union bound, as |Dom(π)| ≤ qπ + ℓ− 1.

�G1 → G2 : We do not set π(P) to be S⊕P . In addition, we maintain two sets BadDom

and BadRan that are initialized to the empty sets. For each query Encrypt, the string P

is added to BadDom and S ⊕ P is added to BadRan. If the adversary queries Π with a

message X ∈ BadDom or Π−1 with a message Y ∈ BadRan then bad is set. The two games

are identical until G2 sets bad. Moreover, as the first k − 1 bits of each P ∈ BadDom are

uniformly random,

Pr[BAD(GA2 (k))] ≤ Qqπ/2
k−1 .

�G2 → G3 : we use the technique of “swapping dependent and independent variables”.

Namely, instead of sampling S and then computing U ← S⊕Xb, we sample U and compute

S ← U ⊕Xb. The change is conservative. Then Pr[GA3 (k)] = 1/2, as the outputs of game G3

are independent of b. Hence, Advdkc
E[π](A, k) = 2Pr[GA0 (k)]− 1 ≤ 10Qqπ/2

k + 3Q2/2k.

Unwinding the result. Again, one needs to be careful in combining Theorems 3.5.1

and 3.5.4 to obtain a good bound on the security of Garble1 when instantiated with E[π].

Consider an adversary A attacking Gb1[E[π]] and assume that A(1k) outputs circuits of at

most r ≤ 2τ(k)−2 wires and fan-out at most ν. Suppose it makes at most Qπ(k) queries to π

and π−1. The corresponding DKC adversary D needs to use at most 4r calls to E for garbling,

and thus makes at most qπ = 4r +Qπ queries to π and π−1. Then, from Theorem 3.5.1 and

Theorem 3.5.4, there is a random variable 0 < Q < 2ν such that E[Q] < 4 and

Advprv.ind,Φtopo

Garble1[E[π]] (A, k) ≤
r

2k
· (20qπE[Q] + 6E[Q2])

≤ r

2k
· (20QπE[Q] + 80rE[Q] + 6E[2νQ])

< 80rQπ/2
k + 320r2/2k + 48rν/2k .

The bound is satisfactory.

62

200 proc Gb(1k, f)
201 (n,m, q,A′, B′, G)← f

202 for i ∈ {1, . . . , n+ q} do t� {0, 1}, X0
i � {0, 1}k−1t, X1

i � {0, 1}k−1t
203 for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do
204 a← A′(g), b← B′(g)

205 A← Xi
a, a← lsb(A), B ← Xj

b , b← lsb(B), T ← g ∥ a ∥ b, P [g, a, b]← ET
A,B

(
X

Gg(i,j)
g

)
206 F ← (n,m, q,A′, B′, P)
207 e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

208 d← (X0
n+q−m+1, X

1
n+q−m+1, . . . , X

0
n+q, X

1
n+q)

209 return (F, e, d)

220 proc En(e, x)
221 (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e

222 x1 · · ·xn ← x, X ← (Xx1
1 , . . . , Xxn

n)
223 return X

230 proc De(d, Y)
231 (Y1, . . . , Ym)← Y , (Y 0

1 , Y
1
1 , . . . , Y

0
m, Y 1

m)← d
232 for i ∈ {1, . . . ,m} do
233 if Yi=Y 0

i then yi ← 0
234 else if Yi=Y 1

i then yi ← 1 else return ⊥
235 return y ← y1 · · · ym

240 proc ev(f, x)
241 (n,m, q,A,B,G)← f , x1 · · ·xn ← x
242 for g ← n+ 1 to n+ q do
243 a← A(g), b← B(g)
244 xg ← Gg(xa, xb)
245 return xn+q−m+1 · · ·xn+q

250 proc Ev(F,X)
251 (n,m, q,A′, B′, P)← F , (X1, . . . , Xn)← X
252 for g ← n+ 1 to n+ q do
253 a← A′(g), b← B′(g)
254 A← Xa, a← lsb(A), B ← Xb, b← lsb(B)
255 T ← g ∥ a ∥ b, Xg ← DT

A,B

(
P [g, a, b]

)
256 return (Xn+q−m+1, . . . , Xn+q)

Figure 3.6.1: Garbling scheme Garble2. Its components are (Gb,En,De,Ev, ev) where ev,
shown for completeness, is canonical circuit evaluation. We assume a dual-key cipher E with tweak
length τ and let D denote its inverse.

3.6 Achieving privacy, authenticity and obliviousness:

Garble2

We now describe a scheme Garble2 that satisfies not only privacy but also obliviousness

and authenticity. The scheme is like Garble1 except, first, the last bit of a token is always

uniform, even for output wires. This will give obliviousness. Next, the string encoding the

decoding function is made to list all the tokens for all the output wires, ordered to make

clear which tokens have what semantics. This engenders authenticity. See Fig. 3.6.1.

Talking through some of the pseudocode, line 202 now assigns a token with random

semantics to each and every wire. Lines 203–207 compute the garbled function F and

encoding function e exactly as with Garble1. Line 208 now records the vector of tokens for

63

each of the m output wires. (Recall that, under our conventions, the last m of the r total

wires are the output wires, these providing the m output bits, in order.) At lines 230–235

decoding procedure De, when presented a 2m-vector d and an m-vector Y , verifies that each

component of the latter is in the corresponding set of two allowed values. If so, we determine

the correct semantics for this output bit using our convention that Y b
i has semantics b.

Garble2 simultaneously achieves privacy, obliviousness, and authenticity if instantiated

in the same manner as we instantiated Garble1. This is captured by the following result.

Again, as per Corollary 3.4.5 it does not matter whether we consider ind or sim, and for

simplicity we pick the former.

Theorem 3.6.1. If E is a secure dual-key cipher then G = Garble2[E] ∈ GS(prv.ind,Φtopo)∩

GS(obv.ind,Φtopo) ∩ GS(aut).

As usual this asymptotic claim is underlain by concrete blackbox reductions and concrete

bounds as follows. There are blackbox reductions Uxxx for xxx ∈ {prv.ind, obv.ind, aut} s.t.

if A(1k) outputs circuits of at most r wires and fan-out at most ν, and then D = UA achieves

xxx-advantage of at least ε, then D = UAxxx achieves dkc-advantage at least ε/2r−21−k, makes

Q ≤ 2ν oracle queries, with E[Q] < 4. It runs in time about that of A plus the time for 4r

computations of E on k-bit keys.

Proof. The privacy security can be proved by adapting the proof of Theorem 3.5.1 as follows.

First, for each output wire i, the type ti is chosen uniformly. Next, the games return

(F, (Xx1
1 , . . . , Xxn

n), d) instead of (F, (Xx1
1 , . . . , Xxn

n), ε), where d is defined as in line 208 of

Fig. 3.6.1. In other words, for every output wire i, in addition to the visible token of wire i,

the games also return the invisible tokens of wire i, which are independent of the challenge

bit c . Moreover, since no incoming wire of some gate can be an output wire, these invisible

tokens won’t be used as keys for the dual-key cipher E. Hence the argument in the proof of

Theorem 3.5.1 still applies here.

For obliviousness security, we again adapt the proof of Theorem 3.5.1, with the following

64

differences. First, the games return (F, (Xx1
1 , . . . , Xxn

n)) instead of (F, (Xx1
1 , . . . , Xxn

n), ε).

Next, for every output wire i, the type ti is uniformly random, and thus independent of the

challenge bit c of each game, although we may have ev(f0, x0) ̸= ev(f1, x1).

For authenticity security, we construct an adversary B such that

Advaut
G (A, k) ≤ Advprv.ind,Φtopo

G (B, k) + 21−k

where B’s running time is at most that of A plus an overhead linear to the size of A’s

query. Moreover, B let A do all the queries to the oracle Encrypt; so it has as many

Encrypt queries as A. We then apply the privacy proof to B. The adversary B(1k)

runs A(1k). Suppose that A queries (f, x), with f = (n,m, q, A,B,G). Without loss of

generality, suppose that x ∈ {0, 1}n, otherwise A will have advantage 0, and it’s trivial

to construct B of advantage 0. Let y = y1 · · · ym = f(x). Adversary B then constructs

a circuit f ′ = (n,m, q, A,B,G′) as follows. For every gate g, if its outgoing wire j is an

output wire then G′g is a constant function that always outputs yj−(n+q−m). Otherwise,

G′g = Gg. Adversary B queries its oracle Garble with (f ′, f, x, x). Since f ′(x) = y and

Φtopo(f
′) = Φtopo(f) and the side-information function is Φtopo, the query (f ′, f, x, x) in game

PrvIndG,Φtopo will not result in answer ⊥. Let (F,X, d) denote the answer. Adversary B gives

(F,X) to A as response to its query (f, x). It will output answer 1 if and only if the answer Y

of A satisfies De(d, Y) ̸= ⊥ and Y ̸= F (X). Then

Pr
[
PrvIndBG,Φtopo

(k) | b = 1
]
= Advaut

G (A, k), (3.6.1)

where b is the challenge bit of game PrvIndG,Φtopo . We now show that

Pr
[
¬PrvIndBG,Φtopo

(k) | b = 0
]
≤ 21−k . (3.6.2)

Subtracting Eq. (3.6.1) and Eq. (3.6.2) will give the bound claimed in the theorem. Suppose

that given (F,X), adversary A outputs Y = (Y1, . . . , Ym). Let d = (Y 0
1 , Y

1
1 , . . . , Y

0
m, Y

1
m) and

let i be the smallest integer such that Yi ̸= Y yi
i . This integer i is well-defined if Y ̸= F (X) =

(Y y1
1 , . . . , Y ym

m). Consequently, if De(d, Y) ̸= ⊥ and Y ̸= F (X) then Yi must be Y yi
i . This

uses the fact that Y yi
i ̸= Y yi

i , which is true because the construction makes their type-bits

65

unequal. Thus we have

Pr
[
¬PrvIndBG,Φtopo

(k) | b = 0
]
≤ Pr

[
Yi = Y yi

i | Y ̸= F (X)
]

. (3.6.3)

Let A∥a← Y yi
i , and let j = i+n+ q−m. Since the output bit at wire j is always yi, during

the garbling process of f ′, in line 205 of Fig. 3.6.1, we never encrypt token Y yi
i . Moreover,

the token Y yi
i is not used as a key of E. The string A is therefore independent of (F,X),

and thus the right-hand side of Eq. (3.6.3) is at most 21−k.

3.7 Applications

We believe that most applications that employ garbled circuits can be recast to use an arbi-

trary garbling scheme possessing one or more of the security properties we’ve defined. While

a complete reworking of all existing garbled-circuit-using applications is beyond the scope of

this thesis, we sketch two examples. First we consider the classical use of garbled circuits for

two-party SFE (Secure Function Evaluation) and PFE (Private Function Evaluation). Then

we consider their more recent use for securely encrypting key-dependent messages.

3.7.1 Two-party SFE and PFE

The classic methods for SFE and PFE combine the garbled-circuit technique with oblivious

transfer (OT). The construction and proof are monolithic and complex, incorporating proofs

of the garbled circuit technique. Here we aim to show how use of our formalization can

simplify this process to produce proofs that are modular and thus simpler and more rigorous.

We build SFE and PFE protocols by a modular combination of an arbitrary garbling scheme

and an arbitrary OT protocol, reducing the security of the constructed protocol to the

security of its two constituents. Besides simplicity we gain in flexibility of instantiation, for

we can plug in any garbling scheme meeting our definitions and immediately get new SFE

or PFE protocols that inherit the efficiency of the garbling scheme.

Classically, in SFE, a function f is public and the interaction results in party 1 learning

66

f(x1∥x2) (but no more) while party 2 learns nothing, where xi is the private input of party

i ∈ {1, 2}. In PFE, party 1 has a string x, party 2 has a function f and the outcome of the

protocol is that party 1 learns f(x) (but no more) while party 2 learns nothing. However,

through the use of universal circuits, the two versions of the problem are equivalent. Thus, we

will treat only one. We pick PFE because it is more directly obtained via garbling schemes.

It is part of our thesis that this type of program can and should be carried out rigorously

and fully and that our formalization of garbling schemes enables one to do this. To this

end we provide self-contained definitions of security for PFE (OT as a special case). These

definitions are not the only possible ones, nor necessarily the strongest, but we need to pin

something down to provide a full treatment. The setting here is that of honest but curious

adversaries.

Two-party protocols. We view a two-party protocol as specified by a pair Π = (Π1,Π2)

of PT algorithms. Party i ∈ {1, 2} will run Π1 on its current state and the incoming message

from the other party to produce an outgoing message, a local output, and a decision to halt

or continue. The initial state of party i consists of the unary encoding 1k of the security

parameter k ∈ N and the (private) input Ii of this party, and the interaction continues

until both parties halt. We will not further formalize this process since the details are not

important to what we do. What is important is that we are able to define the PT algorithm

Viewi
Π that on input (1k, I1, I2) returns the view of party i in an execution of Π with security

parameter k and inputs I1, I2 for the two parties, respectively. Specifically, the algorithm

picks at random coins ω1, ω2, executes the interaction between the parties as determined

by Π with the initial state and coins of party j ∈ {1, 2} being (1k, Ij) and ωj respectively,

and returns (conv , ωi) where the conversation conv is the sequence of messages exchanged.

We let OutiΠ(1
k, I1, I2) return the local output of party i at the end of the protocol. This is

a deterministic function of Viewi
Π(1

k, I1, I2).

PFE. Party 1 has a string x and party 2 has a function f . The outcome of the protocol

should be that party 1 learns f(x). Security requires that party 2 learns nothing about x

67

proc GetView(x, f) Game PfeSimF,i,Φ,S

b� {0, 1}
if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then return view ← Viewi

Π(1
k, x, f)

if i = 1 then return view ← S(1k, x, ev(f, x),Φ(f))
if i = 2 then return view ← S(1k, f, |x|)

Figure 3.7.1: Game for defining the pfe.sim security of a PFE scheme F = (Π, ev).
Procedure Finalize(b′) returns (b = b′). The game depends on a security parameter k ∈ N.

(beyond its length) and party 1 learns nothing about f (beyond side information we are

willing to leak, such as the number of gates in the circuit f).

Formally a private function evaluation (PFE) protocol is a tuple F = (Π, ev) where Π is a

2-party protocol as above and ev is just like in a garbling scheme, meaning a PT deterministic

map that associates to any string f a function ev(f, ·) : {0, 1}f.n → {0, 1}f.m. The correctness

requirement is that for all f and all x ∈ {0, 1}f.n we have

Pr[Out1Π(1
k, x, f) = ev(f, x)] = 1 .

The security notion we consider is privacy in the honest-but-curious setting, meaning the

parties follow the protocol and the intent is that their views do not allow the computation

of any undesired information. An adversary B is allowed a single GetView query in game

PfeSimF ,i,Φ,S of Fig. 3.7.1, and its advantage is

Advpfe.sim,Φ,S
F ,i (B, k) = 2Pr[PfeSimBF ,i,Φ,S(k)]− 1 .

We say that F is pfe.sim relative to Φ if for each i ∈ {0, 1} and each PT adversary B there

is a PT simulator S such that the function Advpfe.sim,Φ,S
F ,i (B, ·) is negligible.

Oblivious transfer. The construction will utilize a protocol for 1-out-of-2 oblivi-

ous transfer where party 1 has a selection bit s, party 2 has inputs X0, X1, and the re-

sult is that party 1 gets Xs while party 2 gets nothing. It is convenient to assume an

extension where party 1 has bits x1, . . . , xn, party 2 has inputs X0
1 , X

1
1 , . . . , X

0
n, X

1
n, and

the result is that party 1 gets Xx1
1 , . . . , Xxn

n while party 2 gets nothing. Such an ex-

tended protocol may be produced by sequential repetition of the basic protocol. Formally

an OT protocol is a PFE scheme OT = (Πot, evot) where Πot is a 2-party protocol and

68

evot((X0
1 , X

1
1 , . . . , X

0
n, X

1
n), x) = (Xx1

1 , . . . , Xxn
n). Here, a function is described by a vector

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n), and its evaluation on an n-bit input x is (Xx1

1 , . . . , Xxn
n). We as-

sume a pfe.sim-secure scheme OT = (Πot, evot) relative to the side information function

Φot((X
0
1 , X

1
1 , . . . , X

0
n, X

1
n)) = (|X0

1 |, |X1
1 |, . . . , |X0

n|, |X1
n|).

The protocol. Let G = (Gb,En,De,Ev, ev) be a projective garbling scheme that is

prv.sim-secure over Φ. We define a PFE scheme F = (Π, ev) which allows the secure

computation of exactly the class of functions {ev(f, ·) : f ∈ {0, 1}∗} that G can gar-

ble. Party 2, on inputs 1k, f , begins by letting (F, e, d) ← Gb(1k, f) and parsing e as

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e. It sends F, d to party 1. Now the parties execute the OT proto-

col with party 1 having selection string x and party 2 having inputs (X0
1 , X

1
1 , . . . , X

0
n, X

1
n).

As a result, party 1 obtains X = (Xx1
1 , . . . , Xxn

n). It now outputs y ← De(d,Ev(F,X))

and halts.

Theorem 3.7.1. Assume G = (Gb,En,De,Ev, ev) is a projective garbling scheme that is

prv.sim-secure over Φ. Assume OT = (Πot, evot) is a OT protocol that is pfe.sim-secure

relative to Φot. Let F = (Π, ev) be the pfe scheme constructed above. Then F is pfe.sim-

secure relative to Φ.

Proof. Let i ∈ {1, 2} and let B be a PT adversary attacking F . We build a PT adversary BG

attacking G and a PT adversary BOT attacking OT . By assumption, these have simulators,

respectively SG,SOT . We then use these simulators to build a simulator S for B such that

for every k ∈ N we have

Advpfe.sim,Φ,S
F ,i (B, k) ≤ Adv

prv.sim,Φ,SG
G (BG, k) +Advpfe.sim,Φot,SOT

OT ,i (BOT , k) .

This yields the desired conclusion. We now proceed to the constructions and analyses. We

consider separately the cases i = 1 and i = 2, beginning with the former.

Adversary BG(1k) runs B(1k) to get its GetView query x, f . It will compute and return

a reply view to this query as follows. Adversary BG queries its Garble oracle with f, x to

get back (F,X1, . . . , Xn), d). It records (F, d) as the first message in conv . (This message is

69

from party 2 to party 1.) Now, for i = 1, . . . , n it lets Xxi
i ← Xi and X1−xi

i � {0, 1}|Xi|. It

then lets view ot ← View1
Πot(1k, x, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)). It obtains this by direct execution

of 2-party protocol Πot on inputs (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) for party 2 and x for party 1. Parsing

view ot as (conv ot, ωot
1), it appends conv

ot to conv and then returns view = (conv , ωot
1) as the

answer to B’s query. Adversary B now outputs a bit b′, and B adopts this as its own output

as well.

Adversary BOT (1k) runs B(1k) to get itsGetView query x, f . It will compute and return

a reply view to this query as follows. Adversary BOT lets (F, e, d) ← Gb(1k, f) and parses

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n) ← e. It records (F, d) as the first message in conv . It makes query

view ot ← GetView(x, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)). Parsing view ot as (conv ot, ωot

1), it appends

conv ot to conv and then returns view = (conv , ωot
1) as the answer to B’s query. Adversary B

now outputs a bit b′, and B adopts this as its own output as well.

By assumption, the two adversaries above have simulators, respectively SG,SOT . We

define simulator S for B. On input (1k, x, y, ϕ) it lets (F, (X1, . . . , Xn), d)← SG(1k, y, ϕ) and

records (F, d) as the first message in conv . It then lets

view ot ← SOT (1k, x, (X1, . . . , Xn), (|X1|, |X1|, . . . , |Xn|, |Xn|)).

Parsing view ot as (conv ot, ωot
1), it appends conv

ot to conv and then returns view = (conv , ωot
1).

The case i = 2 is much easier because party 2 obtains nothing from party 1 besides what

it gets from the execution of the OT protocol and thus security follows directly from the

assumption that the OT protocol is secure.

3.7.2 KDM-secure encryption

We re-establish Applebaum’s result that projection-KDM security implies bounded-KDM

security [2]. While our scheme is similar to the scheme of Applebaum or the scheme of of

Barak, Haitner, Hofheniz, and Ishai (BHHI) [9], it actually improves the efficiency by an

order of magnitude. For simplicity, we describe only the symmetric setting; the asymmetric

setting is similar. In this section, ev always denotes the canonical circuit evaluation.

70

proc Initialize()

K1,K2, . . .Kℓ �K(1k), b� {0, 1}
proc KDM(j, f) Game KDM

x← ev(f,K1 ∥ · · · ∥ Kℓ)
if b = 1 then return EKj (x) else return EKj (0

|x|)

Figure 3.7.2: Game for defining the KDM security. Procedure Finalize(b′) returns (b = b′).

KDM security. Let Π = (K, E ,D) be a symmetric encryption scheme of key space {0, 1}p

and message space {0, 1}s. Let k be the security parameter. Consider the game in Fig. 3.7.2.

An adversary A, on 1k, make queries KDM of the form (j, f) where j ∈ {1, . . . , ℓ} for some ℓ

that determines the number of keys, and string f encodes a function ev(f, ·) that maps a p ·ℓ-

bit string to an s-bit string. Finally, the adversary outputs a bit b ′. Define Advkdm
Π,ℓ (A, k) =

2Pr[KDMA(k)]−1. In the asymptotic statements, p, s, and ℓ are understood as polynomials

p(k), s(k), and ℓ(k). We say that Π is KDM secure if ε(k) = Advkdm
Π,ℓ (A, k) is negligible for

any PPT adversary A and for any polynomial ℓ.

Often, the choice of functions f cannot be arbitrary. Below are the types of restrictive

KDM security that we discuss.

• Projection-KDM security. A function h : {0, 1}n → {0, 1}m is a projection if each

of its output bit depends on at most one input bit. Scheme Π is projection-KDM secure

if ε(k) = Advkdm
Π,ℓ (A, k) is negligible for any polynomial ℓ and for any PPT adversary A

that makes queries (j, f) such that ev(f, ·) is a projection.

• Bounded-KDM security. Scheme Π is q-bounded KDM secure, where q is a poly-

nomial, if ε(k) = Advkdm
Π,ℓ (A, k) is negligible for any polynomial ℓ and for any PPT

adversary A that always make queries (j, f) such that f encodes a circuit of at most q

gates, where q is also understood as a polynomial q(k) in the asymptotic statements.

In the symmetric-key setting, the LPN scheme of Applebaum, Cash, Peikert, and Sahai

(ACPS) [3] is a projection-KDM secure encryption scheme. In the asymmetric-key setting,

one can use the scheme of Boneh, Halevi, Hamburg, and Ostrovsky (BHHO) [22] to instan-

tiate a projection-KDM secure encryption scheme 5. See the discussion of Applebaum [2,

5In BHHO’s scheme, the public key is a list of group elements (g1, . . . , gr) and the private key is

71

00 proc E ′(K,x)

01 n← max{p · ℓ, s}, z ← x0n−|x|

02 for i ∈ {n+ 1, . . . , n+ q + 1} do
03 A(i)← 1, B(i)← i− 1, Gi(a, b)← {return a}
04 for i ∈ {n+ q + 2, . . . , q + 2n} do
05 A(i)← 1, B(i)← i− n− q, Gi(a, b)← {return b}
06 ID← (n, n, q + n,A,B,G)
07 (F, e, d)�Gb(1k, ID), X ← En(e, z)
08 return (F, d, EK(X))

10 proc D′(K, y)

11 (F, d, Y)← y
12 X ← DK(Y)
13 z ← De(d,Ev(F,X))
14 return z[1 : s]

Figure 3.7.3: Scheme Π′ = (K, E ′,D′) = S2B[Π,G, q, ℓ] that is q-bounded KDM secure. The
scheme is built based on a projective garbling scheme G = (Gb,En,De,Ev, ev) and a projection-
KDM secure encryption Π = (K, E ,D). In lines 02–06, we construct an (n + q)-gate circuit ID
computing the identity in {0, 1}n.

proc KDM(j, f) Games G0

(F, e, d)�Gb(1k, ID), X ← En
(
e, C(K)

)
return (F, d, EKj (X))

proc KDM(j, f) Games G1

(F, e, d)�Gb(1k, C), X ← En(e,K)
return (F, d, EKj (X))

proc KDM(j, f) Games G2

(F, e, d)�Gb(1k, C), X ← En
(
e, 0n

)
return

(
F, d, EKj

(
0|X|))

proc KDM(j, f) Games G3

(F, e, d)�Gb(1k, ID), X ← En(e, C(0n))
return

(
F, d, EKj

(
0|X|))

Figure 3.7.4: Code for proof of Theorem 3.7.2.

Appendix B] for how to obtain projection-KDM security from known schemes.

The scheme. Suppose that we have a symmetric encryption scheme Π = (K, E ,D) that

is projection-KDM secure, of key space {0, 1}p and message space {0, 1}s. Fix ℓ and q. Let

G = (Gb,En,De,Ev, ev) be a circuit projective garbling scheme that is prv.ind secure relative

to Φsize. We construct Π′ = (K, E ′,D′) = S2B[Π,G, q, ℓ] that is q-bounded KDM secure, as

shown in Fig. 3.7.3. The message space of Π′ is also {0, 1}s.

Theorem 3.7.2. Let G = (Gb,En,De,Ev, ev) be a projective garbling scheme that is prv.ind

secure relative to Φsize. Fix ℓ and q. If Π is a simple-KDM secure symmetric encryption

scheme then scheme Π′ = S2B[Π,G, q, ℓ] is q-bounded KDM secure.

Proof. Let A be an adversary attacking Π′. To simplify the exposition, we first consider the

case A makes only a single query. Then we will sketch how extend it to the general case.

(gs11 , . . . , gsrr), with s1, . . . , sr � {0, 1}. However, if we view s = s1 · · · sr as the private key then BHHO’s
scheme is projection-KDM secure.

72

Single query case. Suppose that A makes a single query (j, f). Let n = max{p · ℓ, s}

and let K = K1 ∥ · · · ∥ Kℓ ∥ 0n−p·ℓ, where p is the length of each key K1, . . . , Kℓ. Let C

be a circuit of n input wires, n output wires, and q + n gates, such that C(x) = ev(f, x[1 :

p · ℓ]) ∥ 0n−s. Note that

C(K) = ev(f,K1 ∥ · · · ∥ Kℓ) ∥ 0n−s .

We construct an adversary B attacking Π and an adversary B′ attacking G such that

Advkdm
Π′ (A, k) ≤ Advkdm

Π (B, k) + 2Advprv,Φsize

G (B′, k). Each adversary’s running time is

about that of A, and B makes n queries.

The adversary B runs A and creates (F, e, d)�Gb(1k, C). Let h be a string such that

ev(h, ·) = En(e, ·). Since G is projective, function ev(h, ·) is a projection. Adversary B

queries (j, h) to its oracle to receive an answer Y , and then returns (F, d, Y) to A. It then

outputs A’s output bit. Then

Advkdm
Π (B, k) = Pr[GA1 (k)⇒ 1]− Pr[GA2 (k)⇒ 1]

where games G0 − G3 are described in Fig. 3.7.4. (In game G2, we make use of the fact

that the length of the garbled input X ← En(e, x) is independent of x. So instead of writing

X ← En(e,K), we let X ← En(e, 0n).)

Next, we construct B′. The adversary B′(1k) first samples K1, K2, . . . , Kℓ �K(1k). It

chooses a bit c� {0, 1} and runs A(1k) as a black box. If c = 0 it queries
(
C, ID,K, C(K)

)
.

Otherwise, it queries (ID, C, C(0n), 0n). On receiving (F,X, d), it returns (F, d, EKj
(U)) to A,

where U = X if c = 0, and U = 0|X| otherwise. It then outputs A’s output bit. If c = 0,

which occurs with probability 1/2, then

Advprv,Φsize

G (B′, k) = Pr[GA0 (k)⇒ 1]− Pr[GA1 (k)⇒ 1]

73

Otherwise, if c = 1 then

Advprv,Φsize

G (B′, k) = Pr[GA2 (k)⇒ 1]− Pr[GA3 (k)⇒ 1]

Summing up, Advkdm
Π (B, k) + 2Advprv,Φsize

G (B′, k) = Pr[GA0 (k) ⇒ 1] − Pr[GA3 (k) ⇒ 1] =

Advkdm
Π′ (A, k).

General case. Suppose that A makes Q queries. We construct an adversary B at-

tacking Π and an adversary B′ attacking G such that Advkdm
Π′ (A, k) ≤ Advkdm

Π (B, k) +

2QAdvprv,Φsize

G (B′, k). The proof is similar to the single-query case, but there is a technical

problem: adversary B′ has only a single oracle query, but it receives Q queries from A. The

idea is to let B′ choose r� {0, 1, . . . , Q−1}. For each of A’s first r queries, instead of query-

ing (f0, f1, x0, x1) to its oracle to get (F,X, d), adversary B′ creates (F, e, d)�Gb(1k, f0)

and lets X = En(e, x0). For the next query, it queries the oracle. Finally, for each of the

subsequent queries, instead of querying (f0, f1, x0, x1) to its oracle to get (F,X, d), it creates

(F, e, d)�Gb(1k, f1) and lets X = En(e, x1). Its running time is about that of A plus the

time to garble the circuits in A’s queries. Adversary B, on the other hand, makes nQ queries

to its oracle, and its running time is about that of A.

Comparison with BHHI. The scheme of BHHI and its proof are complex; see the dis-

cussion in Applebaum [2, Section 1.3.2] for criticism of BHHI’s scheme. They rely on a

targeted encryption, a public-key primitive that can be viewed as oblivious transfers with

an additional KDM security property. BHHI instantiate targeted encryptions from either

the scheme of BHHO [22] or the LWE-based scheme of ACPS [3]. From now on, assume

that both targeted encryption and projection-KDM secure encryption are instantiated from

BHHO’s scheme for easy comparison. At the first glance, our scheme and BHHI’s are almost

the same. However, a closer look at BHHI’s security proof [9, Theorem 5.2] reveals that it

garbles a circuit of size q + max{q · ℓ, s} + ℓN , where N is the size of a circuit that imple-

ments the decryption of BHHO’s scheme. The number N is huge, making BHHI’s scheme

74

extremely inefficient. (Recall that BHHO’s decryption scheme makes O(log2 |G|) modular

exponentiations, where G is the multiplicative group used in BHHO’s scheme.)

The complexity and the inefficiency of BHHI’s scheme are in part due to their security

definition of garbling schemes. This notion is similar to our prv.ind relative to Φsize, but

the adversary must specify (f0, x) and (f1, x), that is, the two functions must have the

same input. The slight change, however, leads to a tremendous difference, because if one

instantiates out scheme from a garbling that satisfies BHHI’s definition, then the proof no

longer works. This might be the reason why BHHI did not propose our scheme, although it

is a close and more natural variant of theirs.

Comparison with Applebaum. Applebaum’s scheme is based on a simulation-based

privacy notion. In his scheme, one runs Sim on x, where Sim is a simulator for the garbling

scheme and x is the message. Both the (simulated) garbled function and the garbled in-

put are encrypted, whereas our scheme encrypts only the latter. This makes Applebaum’s

scheme extremely inefficient because the size of the garbled function is large and all known

encryptions that are projection-KDM secure in the standard model are slow. The ineffi-

ciency of Applebaum’s scheme is due to his security definition of garbling schemes: the

garbled function is lumped with the garbled input. This ignores the fact that the garbled

function and garbled input have different roles and very different size. One can instead use

our prv.sim notion for Applebaum’s scheme and encrypt only the garbled input; this scheme

is also secure. Still, its concrete performance is tied to the running time of Sim, which might

be inefficient. In addition, this approach is less intuitive than ours, as the simulated garbled

function, which might depend on the keys, is sent in the clear.

3.8 Related work

We do not attempt a comprehensive review of the literature (easily a monograph-length

undertaking), but elaborate on some selected prior work.

75

Scheme # of AES calls # bits (BHHO) Ciphertext size

BHHI [9] O((r + ℓN) log(r + ℓN)) k ·max{p · ℓ, s} O(k(r + ℓN) log(r + ℓN))

Applebaum [2] O(r log r) O(kr log r) O(kr log r)

Our scheme O(r log r) k ·max{p · ℓ, s} O(kr log r)

Figure 3.7.5: Comparison among schemes. We base the three schemes on BHHO’s scheme.
Each scheme has message space {0, 1}s and key space {0, 1}p. Here N is the size of a circuit
implementing the decryption of BHHO, r = q + max{p · ℓ, s}, and ℓ is the number of keys. We
assume that the garbling scheme is implemented by Garble1 and Valiant’s universal circuits [93].
The second column shows the number of AES calls to build the garbled function, the third columns
the length of the message encrypted by BHHO’s scheme, and the last column the ciphertext size.

Randomized encodings. Loosely related to garbling schemes, randomized encodings

(initially randomized polynomials) begin with Ishai and Kushilevitz [54] and continue, with

many definitional variants, in work by Applebaum, Ishai, Kushilevitz, and others [2, 4–7, 55,

56, 88]. The authors employ language like the following [4]: function F (·, ·) is a randomized

encoding of f(·) if: (correctness) there’s a PT algorithm De such that De(F (x, r)) = f(x)

for almost all r; and (privacy) there’s a PT algorithm Sim such that ensembles F (x, ·) and

Sim(f(x)) are computationally indistinguishable. To be useful, encodings must have some

extra properties,6 for example, that every bit of F (x, r) depends on at most one bit of x,

a property that has been called decomposability [56]. Proven realizations meeting these

requirements [4, 5] do not closely resemble conventional realizations of garbled circuits [70,

78].

There is a large gap, even syntactically, between the notion just given and a garbling

scheme. Above, no language is provided to speak of the algorithm that transforms f to F ; in

contrast, the thing doing this transformation is at the center of a garbling scheme. Likewise

absent from the syntax of randomized encodings is anything to speak to the representation

of functions; for garbling schemes, representations are explicit and central. Finally, the

syntax, unlike that of a garbling scheme, does not separate the garbling of a function and

the creation of a garbled input, and indeed there is nothing corresponding to the latter, the

same input x being fed to f or F . The minimalist syntax of randomized encodings works

6Otherwise, the definition is trivially met by setting F (x, r) = f(x) and De(y) = Sim(y) = y.

76

well for some theory-centric applications, but does not allow one to speak of obliviousness

and authenticity, to investigate the low-level efficiency of different garbling schemes, and to

architect schemes to useful-in-practice abstraction boundaries.

Given the variety of related definitions, let us sketch another, the decomposable random-

ized encodings defined and used by Sahai and Seyalioglu [88]. (Despite identical names, this

definition is different from that above, and different again from the decomposable random-

ized encodings of [56], say). The object of interest can be regarded as a pair of PT algorithms

(En,De) where En maps the encoding of a boolean circuit f : {0, 1}n → {0, 1}m to a vector of

strings (X0
1 , X

1
1 , . . . , X

0
m, X

1
m) ← En(1k, f) for which decoding algorithm De(Xx1

1 , . . . , Xxm
m)

returns f(x1 · · · xn). The authors demand a PPT algorithm Sim for which the ensemble

of (Xx1
1 , . . . , Xxm

m) tuples induced by En(1k, f) and x is computationally indistinguishable

from Sim(1k, n, |f |, f(x)). Translating to our language, one effectively assumes a projective

scheme, a boolean circuit as input, and prv.sim security over Φsize. The garbled function

itself has been abstracted out of existence (in a realization, it would be dropped in the Xj
i

values). Compared to a garbling scheme, one might note the lack of representation indepen-

dence, granularity inadequate to speak of obliviousness, authenticity, garbled inputs, and

low-level efficiency. The syntax can’t handle the adaptive setting in Chapter 5, where the

adversary receives the garbled circuit before it specifies the input.

Obliviousness and authenticity. Some prior papers exploit obliviousness and authen-

ticity of garbled circuits to achieve desired applications: private medical diagnostics [10],

verifiable computation and private verifiable computation [37], and correctable verifiable

computation [6]. The notions are not seen as properties of a stand-alone primitive corre-

sponding to a garbling scheme.

In the last of the works mentioned, Applebaum, Ishai, Kushilevitz [6] describe the fol-

lowing generic transformations from privacy to obliviousness and to authenticity. (1) Obliv-

iousness: instead of garbling a circuit f , let g be a circuit such that g(x ∥ r) = f(x)⊕ r for

every x ∈ {0, 1}n and r ∈ {0, 1}m, where n = f.n and m = f.m. Then, choose r� {0, 1}m,

77

run (F, e, d) ← Gb(g) and output (F, (e, r), (d, r)). The garbled input corresponding to x

will be X = e(x ∥ r). To decode, output r ⊕ De(d,X). (2) Authenticity: instead of gar-

bling a circuit f , let g be a circuit such that g(x ∥ K) = f(x) ∥ MACK(f(x)) for any

x ∈ {0, 1}n and any key K. Then, choose a random key K, run (F, e, d) ← Gb(g), and

output (F, (e,K), (d,K)). The garbled input corresponding to x will be X = e(x ∥ K). To

decode, compute y ∥ t = De(d,X) and output y if t = MACK(y), and output ⊥ otherwise.

Applied to Garble1, the transformations lead to schemes slightly (for (1)) or substantially

(for (2)) less efficient that Garble2; and (2) requires a cryptographic assumption. More

fundamentally, Applebaum et al. do not formalize any definition for the obliviousness or

authenticity of a garbling scheme.

The only work that explicitly defines obliviousness and authenticity in this domain is

a recent paper of Kamara, Mohassel, and Raykova [59]. Still, their syntax is designed

specifically for their application; for example, a circuit’s input is a pair (x1, x2), a garbled

circuit’s input is (X1, X2), and the encoding function takes an input x and an index i ∈ {1, 2}

and outputs the corresponding Xi. Their notion of obliviousness requires hiding only the

input, while obv.ind and obv.sim require one to hide both the input and the function.

Obscuring topology. We are not the first to observe that conventional means to garble

a circuit obscure each gate’s function but not its topology. A 2002 paper of Pinkas [83,

Section 2.3] already remarks that “In this form the representation reveals nothing but the

wiring of the circuit”. Later, Paus, Sadeghi, and Schneider [81] use the phrase “circuit

topology” to name that which is revealed by conventional garbled circuits. Nevertheless, the

topology of a circuit is never formalized, and nobody ever proves that that some particular

scheme reveals only the topology. We are also the first to explain the equivalence between

the prv.sim and prv.ind notions relative to Φtopo.

Eclectic representations. Scattered through the literature one finds computational

objects other than boolean circuits that are being garbled; examples include arithmetic

circuits [7], branching programs [10], circuits with lookup tables [77], DFAs [92], and ordered

78

binary decision diagrams [67]. The range suggests, to us, that general-purpose definitions

for garbling schemes ought not be tied to circuits.

Concurrent work. Concurrent work by Kamara and Wei (henceforth KW) investigates

the garbling of structured circuits [60], a computational model they put forward resembling

ordinary circuits except that gates perform operations on an arbitrary data structure. As

part of this work, KW define what they too call a garbling scheme. Their syntax is similar

to ours, but without the function ev. Over this syntax KW define Ind1 and Sim1 security.

These notions, unlike ours, ask only for input-hiding, not function hiding. They show these

definitions are equivalent for sampleable circuits. KW go on to give adaptive versions of their

definitions, Ind2 and Sim2, and an unforgeability notion, Unf2. These definitions resemble

the weaker form of the adaptive-security definitions (prv1, obv1, and aut1).

Although KW speak of circuits as finitary objects described by DAGs, they appear to

have in mind families of circuits, indexed by a security parameter (otherwise, we do not

know how to make sense of samplability, or phrases like polynomial size circuits). Unlike

our treatment, circuits are not provided by the adversary; security notions are with respect

to a given circuit. A garbling scheme is provided in KW, but not a “conventional” one: it

garbles a structured circuit and is based on a collection of structured encryption schemes,

a notion from Chase and Kamara [26]. For the protocol to make sense with respect to the

definitions given, the latter should be reinterpreted as applying to structured circuits.

3.9 Universal circuits

Here we follow the description in Wegener’s book [94, pp. 110–115]. An (n, q)-universal

circuit is a circuit U having q distinguished gates g1, . . . gq such that:

• It takes two inputs f and x where |x| = n and f is the encoding of a circuit of input

length n and at most q gates.

• For any input (f, x), when we evaluate U on (f, x), the bit obtained at the outgoing

79

wire of gi is exactly the bit obtained at the outgoing wire of gate i of f when we evaluate

f on x.

A universal circuit must have size Ω(q log q) because, by a counting argument, there are

Ω(q2q) circuits of q gates. Valiant [93] designs an (n, q)-universal circuit of fanout 4 and

size 19(2q +m) lg(2q +m) + 9q, which is asymptotically optimal, where m is the number of

outputs of the original circuit.

Other constructions of universal circuits are known [65, 87, 89], but their asymptotic size

is larger. While these constructions are claimed to have better concrete efficiency than

Valiant’s for circuit size that GCs are still practical, this claim is recently demonstrated to

be false [76] for real circuits of either small size (like AES, about 50K gates) or big size (like

RSA-256, about 266M gates).

It is now folklore that one can hardwire a circuit f = (n,m, q, A,B,G) to a (n, q)-universal

circuit U , and garble the resulting circuit U (f, ·) to leak nothing but the size of f . However,

there is a technical annoyance, as in circuit U above, we do not specify the number of output

wires. The obvious step is to indicate that in U (f, ·), the output wires are the outgoing

wires of gates gq−m+1, . . . , gq. This new circuit however violates the definition in Chapter 2,

as its output wires are also incoming wires of some gates. So we need to add m more gates

to have an equivalent circuit that conforms to the constraint above.

80

Chapter 4

Efficient Garbling

4.1 Introduction

In this chapter, we show how to construct and evaluate garbling schemes at unprecedented

speeds. Our gains come from two main sources. On the cryptographic side, we describe

garbling schemes that evaluate a gate using a single call to a fixed permutation, which can be

instantiated by fixed-key AES. On the systems side, we exploit more efficient representations

of circuits.

Recall that in Section 3.5, the workhorse of garbling schemes is a dual-key cipher (DKC).

Many existing multiparty computation (MPC) protocols construct DKCs from a crypto-

graphic hash. The advent of AES-NI support (AES new instructions) has made it natural

to turn from hash functions to blockciphers for DKCs, and AES256 was the primitive used

by Kreuter, Shelat, and Shen [66]. But we contend that the starting point best suited for

exploiting AES-NI is not a blockcipher but a cryptographic permutation, which can be re-

alized by fixed-key AES: AESc(·) with c a fixed, non-secret key. An encryption key can be

setup and, after, one has a pipeline into which 128-bit blocks can be fed.

To capitalize on this possibility, we construct garbling schemes in the random-permutation

model (RPM) [86], meaning that all parties, adversary included, can access a single, fixed,

81

Eπ(A,B, T,X) =
Ga GaX GaXR

TE TG K TE TG K TE TG K

A1 π(K)⊕K ⊕X, with K = A⊕B ⊕ T 50.3 218 64.0 — — — — — —

A2 π(K)⊕K ⊕X, with K = 2A⊕ 4B ⊕ T 52.1 221 64.0 23.2 55.6 11.5 23.9 56.4 8.64

A3 π(K∥T)[1 : k]⊕K ⊕X, with K = A⊕B 93.7 242 40.0 — — — — — —

A4 π(K∥T)[1 : k]⊕K ⊕X, with K = 2A⊕ 4B 97.9 246 40.0 34.2 62.7 7.20 35.0 63.3 5.40

Figure 4.1.1: Efficiency of permutation-based garbling. Data is from the JustGarble system,
garbling a moderate-size circuit (a 36.5K gate AES circuit; 82% xor gates). Columns labeled TE

and TG give the time to evaluate and garble using the specified protocol, measured in cycles per
gate (cpg). Multiply by 0.3124 to get nanoseconds per gate on our test platform. Columns labeled
K give the size of the garbled tables, measured in bytes per gate (bpg). The permutation π is
always AESc(·). Insecure possibilities are dashed.

random permutation, as well as its inverse. In Section 3.5, suitable DKCs can be built using

a single call to the permutation, but this construction is not compatible with the free-xor

trick. Here we further explore this idea, aiming for high efficiency (a single call to the per-

mutation to evaluate a garbled gate), proven security, and the ability to incorporate existing

optimizations, including free xor [64] and garbled-row reduction [84]. More specifically, we

introduce a notion of a σ-derived DKC and then prove security of various (reasonably stan-

dard) garbling schemes under specified assumptions on the function σ. By instantiating σ

in different RPM-based ways one obtains schemes that meet both our efficiency and security

aims. Let us explain our main contributions in a bit more detail.

1. Garbling in the RPM. We begin by precisely specifying three garbling schemes: Ga,

GaX, and GaXR. The first is based on the Garble1 scheme in Section 3.5. The scheme

include the point-and-permute technique [85], which hijacks one bit of each token so that the

agent evaluating the GC knows which “row” of the garbled gate to decrypt. GaX augments

Ga with the free-xor technique [64], wherein XOR gates can be computed by xoring their

incoming token. The savings can be large, as many circuits are rich in XOR gates, or can be

refactored so. Finally, GaXR augments GaX with garbled row reduction [84], which reduces

the size of a GC by arranging that one of the four rows of each garbled gate need not be

stored: tokens are selected so as to make this ciphertext a constant.

In each of the three schemes the underlying primitive is a dual-key cipher. This is a

82

deterministic function E : {0, 1}k × {0, 1}k × {0, 1}τ × {0, 1}k → {0, 1}k taking keys A,B, a

tweak T , and a plaintext X, returning a ciphertext E(A,B, T,X). All schemes (Ga, GaX,

and GaXR) use at most four calls to E to garble a gate and at most one call to evaluate a

gate. We must efficiently and securely construct the needed DKC.

Our DKC constructions are in the RPM; the DKC has oracle access to a random per-

mutation π : {0, 1}ℓ → {0, 1}ℓ. (An important challenge for security is that the adversary

has access not only to π but also to π−1.) This is the sole source of cryptographic hardness

available. Our implementations set π = AESc(·) for a fixed key c. Fig. 4.1.1 shows four

constructions, with A1/A3 suitable for Ga and A2/A4 suitable for all three schemes. All of

our DKC constructions employ a single call to π. We postpone a description of what 2A

and 4B actually mean except to indicate that these are simple operations, a couple of shifts

or the like, but not integer multiplication.

To validate the security of our schemes instantiated with our DKC constructions, a

natural first thought is to prove security of the schemes in the random-oracle (RO) model

(ROM) [20] and then show that the constructions of Fig. 4.1.1 are indifferentiable from

ROs [31, 33, 73]. However, attacks show that the constructions are not indifferentiable from

ROs. We have preferred them to constructions that are indifferentiable from ROs because

the latter are less efficient. The performance gains we have achieved must accordingly be

backed up by dedicated proofs.

Rather than provide many ad hoc proofs, we provide a unified framework that defines a

class of DKCs we call σ-derived. All our instantiations fall in this class. We give conditions

on σ sufficient to guarantee the security of Ga, GaX, and GaXR, all in the RPM. Our results

use concrete security, giving formulas that bound an adversary’s maximal advantage as a

function of the effort it expends.

2. Vulnerabilities in existing constructions. It is common in this area to start

from a basic, proven scheme, and then implement an instantiation, enhancement, or variant

that is not itself proven. In particular, while there are proofs for some schemes that use the

83

free-xor method [29, 64], ours are the first proofs for schemes that simultaneously use both

free xor and garbled row reduction.

Absence of proof can belie presence of error. We consider the dual-key cipher

EH(A,B,T,X)=H(A[1 :k−1] ∥ T)⊕H(B[1 :k−1] ∥ T)⊕X

for a cryptographic hash function H. This DKC was suggested for Fairplay [72], but claimed

to work [64] with free xor [64]. We will later show that this not to be the case. Note that

other authors have gone so far as to implement MPC using this DKC [84]; the construction

has only been considered undesirable because it is less efficient than alternatives, not because

its security was in doubt. Our view is that it is not possible to look at a DKC and reliably

ascertain if it will work in a complex security protocol; assurance here requires proofs.

3. The JustGarble system. Prior implementation work has viewed MPC as the

goal, with garbling implemented as a component. Our JustGarble system reflects our tenet,

divorcing garbling from MPC to deliver a system whose goal is just optimized garbling.

JustGarble aims to be a general-purpose tool for use not only in MPC, but also beyond.

JustGarble implements Ga, GaX, and GaXR with the DKCs of Fig. 4.1.1 and the DKCs’

permutation instantiated with fixed-key AES. Among the system-level optimizations and

choices in JustGarble, the most prominent is programmatically realizing the mathematical

conventions for representing circuits in Chapter 2. The combination of faster DKCs and

a simple representation of circuits results in impressive performance gains over previous

implementations.

We have carried out a number of timing studies using JustGarble. The main one on

which we report is described in Fig. 4.1.1. We built an AES128 circuit, a standard test case

for this domain, and looked at the time to evaluate the circuit, TE; the time to garble the

circuit, TG; and the size of the garbled tables of the circuit, K. Breaking with tradition for

this domain, we prefer to give running times in cycles per gate (cpg), a measure that’s at

least a little more robust than time per gate or total time. Similarly, we report on circuit

size in units of bytes per gate (bpg).

84

Fig. 4.1.1 highlights the best evaluation time, 23.2 cpg, and the best garbling time,

55.6 cpg. (As our processor runs at 3.201 GHz, this translates to 7.25 nsec/gate for evaluating

the GC and 17.4 nsec/gate for garbling it.) The smallest garbled tables are also highlighted,

5.40 bpg. Garbled circuits themselves, which include more than garbled tables, are always

8 bpg larger.

As a point of reference, Huang, Evans, Katz, and Malka (HEKM) evaluate a similar

AES circuit in around 2 µsec per gate [51, Section 7: 0.06 sec, online, about 30K gates].

They indicate 10 µsec per gate for very large circuits. Kreuter, Shelat, and Shen (KSS) [66],

using a DKC based on AES256 and implemented with AES-NI processor support, report

constructing a 31 Kgate AES-128 circuit in 80 msec, so 2.5 µsec per gate. These times are

more than two orders of magnitude off of what we report. While such a comparison is in some

ways unfair—as we have explained, HKEM and KSS build systems for MPC, not garbling

schemes—the time discrepancy is vast, and prior MPC work has routinely maintained that

circuit garbling and evaluation are key components of the total work done (and have thus

been the locus of prior optimizations). We note that the HEKM and KSS figures are times

spent on garbling and evaluation alone; they don’t include time spent on, say, oblivious

transfer or network overhead.

We obtain performance gains over previous implementations even if we drop into the

JustGarble system one of the previously designed, comparatively slow DKCs. The main

reason for this is our extremely simple representation of garbled circuit. Gates are not

objects that communicate by sending messages, for example; they are indexes into an array.

There is no queue of gates ready to be evaluated; gates are topologically ordered, so one

just evaluates them in numerical order. We call the representation format we use SCD, for

Simple Circuit Description. Its simplicity helps ensure that most of the work in garbling a

circuit or evaluating a GC is actual cryptographic work, not overhead related to procedure

invocation, message passing, bookkeeping, or the like.

We emphasize that JustGarble knows nothing of MPC, oblivious transfer, compiling

85

programs into circuits, or any of the other tasks associated to making a useful higher-level

protocol. JustGarble is a building block. If offers but two services: garble a circuit already

built by other means, and evaluate a GC on a garbled input.

4.2 Preliminaries

Dual-key ciphers. We extend the syntax of dual-key ciphers (DKC) in Section 3.5,

providing these objects with oracles. Letting Ω be a set of functions π from {0, 1}∗ to {0, 1}∗,

an (oracle-) DKC is a function E : Ω × {0, 1}k × {0, 1}k × {0, 1}τ × {0, 1}k → {0, 1}k that

associates to π ∈ Ω and A,B ∈ {0, 1}k and T ∈ {0, 1}τ some permutation Eπ(A,B, T, ·) :

{0, 1}k → {0, 1}k.

Garbling schemes Ga, GaX, GaXR. The scheme we call Ga is based on an oracle

DKC Eπ : {0, 1}k × {0, 1}k × {0, 1}τ × {0, 1}k → {0, 1}k whose inverse is denoted D. We

associate to E the RPM-model garbling scheme Ga[E] of Fig. 4.2.1.

Scheme Ga is essentially scheme Garble1 in Section 3.5. The only difference is that

(i) at output wires, the last bit of each token no longer coincides with its semantics, and

consequently, the description of the decoding function d is a bit vector; the ith component

is the last bit of the token of semantics 0 on the ith output wire, and (ii) each tweak of

the DKC is the gate index, instead of a nonce. Garbling scheme GaX augments what we

have described with the free-xor technique. Scheme GaXR additionally incorporates the

row-reduction technique.

4.3 Instantiation overview

We discuss some of the challenges, and choices we make in response, with regard to garbling

in the RPM.

The DKC EH(A,B, T,X) = H(A∥B∥T) ⊕ X is a natural starting point, where H is a

86

proc Gbπ(1k, f) Ga

(n,m, q,A′, B′, G)← f

for i← 1 to n+ q do
t� {0, 1}
X0

i � {0, 1}k−1t, X1
i � {0, 1}k−1t

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g)
for i← 0 to 1, j ← 0 to 1 do

A← Xi
a, a← lsb(A)

B ← Xj
b , b← lsb(B)

P [g, a, b]← Eπ(A,B, g,X
Gg(i,j)
g)

F ← (n,m, q,A′, B′, P)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d←
(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F, e, d)

proc Gbπ(1k, f) GaX

(n,m, q,A′, B′, G)← f

R� {0, 1}k−11
for i← 1 to n do

t� {0, 1}
X0

i � {0, 1}k−1t, X1
i ← X0

i ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g), G′

g ← XOR
if Gg = XOR then

X0
g ← X0

a ⊕X0
b , X1

g ← X0
g ⊕R

else
G′

g ← AND

X0
g � {0, 1}k, X1

g ← X0
g ⊕R

for i← 0 to 1, j ← 0 to 1 do
A← Xi

a, a← lsb(A)

B ← Xj
b , b← lsb(B)

P [g, a, b]← Eπ(A,B, g,X
Gg(i,j)
g)

F ← (n,m, q,A′, B′, G′, P)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d←
(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F, e, d)

proc Gbπ(1k, f) GaXR

(n,m, q,A′, B′, G)← f

R� {0, 1}k−11
for i← 1 to n do

t� {0, 1}
X0

i � {0, 1}k−1t, X1
i ← X0

i ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g), G′

g ← XOR
if Gg = XOR then

X0
g ← X0

a ⊕X0
b , X1

g ← X0
g ⊕R

else
for a← 0 to 1, b← 0 to 1 do

i← a⊕ lsb(X0
a), A← Xi

a

j ← b⊕ lsb(X0
b), B ← Xj

b
r ← Gg(i, j), G′

g ← AND
if a = 0 and b = 0 then
Xr

g ← Eπ(A,B, T, 0k)

Xr
g ← Xr

g ⊕R
else
P [g,a,b]←Eπ(A,B,g,X

Gg(i,j)
g)

F ← (n,m, q,A′, B′, G′, P)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d←
(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F, e, d)

proc Evπ(F,X) Ga
(n,m, q,A,B, P)← F
(X1, . . . , Xn)← X

for g ← n+ 1 to n+ q do
a← A(g), b← B(g)
a← lsb(Xa), b← lsb(Xb)
Xg ← Dπ(Xa, Xb, g, P [g, a, b])

return (Xn+q−m+1, . . . , Xn+q)

proc Evπ(F,X) GaX
(n,m, q,A′, B′, P)← F
(X1, . . . , Xn)← X

for g ← n+ 1 to n+ q do
a← A(g), b← B(g)
a← lsb(Xa), b← lsb(Xb)
if G′

g = XOR then Xg ← Xa ⊕Xb

else Xg ← Dπ(Xa, Xb, g, P [g, a, b])

return (Xn+q−m+1, . . . , Xn+q)

proc Evπ(F,X) GaXR
(n,m, q,A,B,G′, P)← F
(X1, . . . , Xn)← X

for g ← n+ 1 to n+ q do
a← A(g), b← B(g)
a← lsb(Xa), b← lsb(Xb)
if G′

g = XOR then Xg ← Xa ⊕Xb

elsif a = 0 and b = 0 then
Xg ← Eπ(Xa, Xb, g, 0

k)
else Xg ← Dπ(Xa, Xb, g, P [g, a, b])

return (Xn+q−m+1, . . . , Xn+q)

proc En(e, x) Ga, GaX, GaXR
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e

x1 · · ·xn ← x
X ← (Xx1

1 , . . . , Xxn
n)

return X

proc De(d, Y) Ga, GaX, GaXR
(d1, . . . , dm)← d
(Y1, . . . , Ym)← Y
for i← 1 to m do yi ← lsb(Yi)⊕ di
return y ← y1 · · · ym

proc ev(f, x) Ga, GaX, GaXR
(n,m, q,A,B,G)← f
x1 · · ·xn ← x
for g ← n+ 1 to n+ q do

a← A(g), b← B(g)
xg ← Gg(xa, xb)

return xn+q−m+1 · · ·xn+q

Figure 4.2.1: Three RPM-based garbling schemes. Schemes Ga, GaX, and GaXR have the
same En, De, and ev procedures, but their own Gb and Ev procedures For a bit t, let {0, 1}k−1t
denote the set of k-bit strings whose last bit is t, and t the complement bit of t.

hash function. Our constructions can be seen as realizations of this approach, but based on

a fixed-key blockcipher. Kreuter, Shelat, and Shen [66] had already considered H(A∥B∥T)=

AES256A∥B(T) where |A|= |B|= |T |=128. Fixed-key AES provides a primitive π with only

87

a third the number of input bits as AES256.

One possibility is to build H from π in a manner that will render H indifferentiable

from a RO [33, 73]. However, known constructions with this property will not be as efficient

as we would like. We aim to use a Davies-Meyer type construction [74, 95], which applies

the permutation only once. Such constructions are not indifferentiable from ROs [31, 33],

necessitating considerable caution.

For simplicity we start by ignoring the tweak and considering the garbling of one-gate

circuits. We present several natural constructions and show that they fail. We then present

our constructions, and finally explain how to incorporate tweaks so as to handle circuits with

an arbitrary number of gates.

Instantiating Ga. Consider instantiating the DKC of Ga from a permutation π by

Eπ(A,B, T,X) = π(A⊕B)⊕X. The resulting scheme can be trivially broken, as follows.

Suppose that we garble an AND gate, as illustrated on the top-left corner of Fig. 4.3.1,

and suppose the adversary is given the garbled table and tokens A and C. First, it opens

the third row to obtain token X. Next, let V be the ciphertext in the last row. Then the

adversary can obtain token D = π−1(V ⊕X)⊕A. Likewise, it can obtain token B. Now the

adversary can open every row of the garbled table, and all security is lost.

We can translate the idea to an attack of advantage 1 on prv security. The adversary asks

(f0, f1, 00, 00) to Garble where f0 is an AND gate and f1 is a gate that always outputs 0.

Following the idea above, the adversary open every row of the garbled table. If each row

encrypts the same token then it outputs 1; otherwise, it outputs 0.

The attack arises because the adversary can invert π(A⊕D) to get D. To break this

invertibility we employ the Davies-Meyer construction ρ(K) = π(K) ⊕ K to obtain the

instantiation

Eπ(A,B, T,X) = ρ(A⊕B)⊕X . (4.3.1)

We shall see in Theorem 4.4.1 that instantiation (4.3.1) indeed makes Ga secure, once the

88

A ����

B ����

D ����

C ����

X

Y

π(B ⊕C) ⊕ X

π(B ⊕D) ⊕ Y

π(A ⊕C) ⊕ X

π(A ⊕D)⊕X

�	�

�

��
��

A ����

B ����

Xπ(A ⊕ �B ⊕R)⊕A ⊕ �B ⊕X

π(A ⊕ �B ⊕ �R)⊕A ⊕ �B ⊕X ⊕ �R

π(A ⊕ �B)⊕A ⊕ �B ⊕X

π(A ⊕ �B ⊕ �R)⊕A ⊕ �B ⊕X ⊕ �R

A ⊕R

B ⊕R

X ⊕R

��

�		
���

A ����

B ����

Xρ(A ⊕B ⊕R) ⊕X

ρ(A ⊕B) ⊕X ⊕R

ρ(A ⊕B) ⊕X

ρ(A ⊕B ⊕R) ⊕X

A ⊕R

B ⊕R

X ⊕R

��� �		
���

1

2

3

4

A ����

B ����

C ����

D ����

X

Y

U

V

ρ(B ⊕ C) ⊕X

ρ(B ⊕D) ⊕ Y

ρ(A ⊕D) ⊕X

ρ(A ⊕ C) ⊕X

5

��� ���

ρ(B ⊕ C) ⊕ V

ρ(B ⊕D) ⊕ U

ρ(A ⊕D) ⊕ V

ρ(A ⊕ C) ⊕ U

��������

Figure 4.3.1: Attacks on DKC instantiations. Top-left: Eπ(A,B, T,X) = π(A ⊕ B) ⊕X for
scheme Ga. Bottom-left: Eπ(A,B, T,X) = ρ(A⊕B)⊕X for scheme GaX, with ρ(K) = π(K)⊕K.
Top-right: Eπ(A,B, T,X) = ρ(A ⊕ 2B) ⊕ X for scheme GaX. Bottom-right: Eπ(A,B, T,X) =
ρ(A⊕B)⊕X for scheme Ga. The doubling here is multiplying in GF(2k) by x = 0k−210. In each
wire, the top and bottom tokens have semantics 0 and 1 respectively.

tweaks are appropriately introduced.

Instantiating GaX. Yet instantiation (4.3.1) doesn’t work for scheme GaX, even if the

circuit remains a single gate. Here is an attack. Again we garble an AND gate. The

illustration is given at the bottom-left corner of Fig. 4.3.1. Suppose the adversary is given

the garbled table and tokens A and B. It first xors the ciphertexts in the second and third

rows and obtains the string R. It then can open every row of the garbled table. Now all

security is lost.

We can translate the idea to an attack of advantage 1 on prv security. The adversary

queries (f0, f1, 00, 01) where f0 is an AND gate and f1 is a gate such that f1(a, b) = a for

all a, b ∈ {0, 1}. Following the idea above, the adversary can open every row of the garbled

table, regardless of the challenge bit. If there are three rows that encrypt the same token

then it outputs 0; otherwise, it outputs 1.

The attack above arises because of a “symmetry” between tokens of the first and second

incoming wires, leading to the use of ρ(A⊕B) twice to mask tokens of the output wire. One

possible way to break this symmetry is to apply some simple operation to the token of the

89

second incoming wire before using it. For example, consider the instantiation

Eπ(A,B, T,X) = ρ(A⊕ 2B)⊕X, (4.3.2)

where doubling (B 7→ 2B) is multiplying in GF(2k) by the group element x = 0k−210. The

attack above is thwarted, because the ciphertext in the third row is ρ(A ⊕ 2B) ⊕ X while

that in the second row is now ρ(A⊕ 2B ⊕ 3R)⊕X ⊕R, where 3R means multiplying R by

the group element x+ 1 = 0k−211 in GF(2k).

Still, instantiation (4.3.2) can be broken as follows. See the illustration on the top-right

corner of Fig. 4.3.1. Garble an OR gate. Suppose the adversary is given the garbled table

and tokens A and B. First it opens the third row to obtain token X. Let V be the ciphertext

in the first row. Query V ⊕A⊕2B⊕X to π−1, and let K be the answer. Then, the adversary

can obtain R = K⊕A⊕2B. It can now open every row of the garbled table, and all security

is lost.

We can translate the idea to an attack of advantage 1 on prv security. The adversary

queries (f0, f1, 00, 01) where f0 is an OR gate and f1 is an AND gate. Following the idea

above, the adversary can open every row of the garbled table, regardless of the challenge bit.

Using the decoding function, the adversary can determine the semantics of the tokens on the

output wire. If there are three rows that encrypt the token of semantics 1 then it outputs 1;

otherwise, it outputs 0.

To thwart the attack above one can apply the multiplication in GF(2k) to the first

incoming token as well; for example, we can use the instantiation

Eπ(A,B, T,X) = ρ(2A⊕ 4B)⊕X (4.3.3)

where 4B means applying the doubling operation to B twice, that is, multiplying B by the

group element x2 = 0k−3100 in GF(2k). The ciphertext in the first row will be π(2A⊕ 4B ⊕

2R) ⊕ 2A ⊕ 4B ⊕X ⊕ 3R. Since R� {0, 1}k−11 is secret, the attack fails. We shall see in

90

Theorems 4.4.1 and 4.4.2 that instantiation (4.3.3) indeed makes both Ga and GaX secure,

after the gate-number tweak is appropriately introduced.

The need for the tweak. Suppose now that one uses instantiation (4.3.1) for scheme

Ga, but in a circuit of multiple gates. This leads to a new attack. Garble the circuit f

illustrated at the bottom-right of Fig. 4.3.1. Suppose the adversary is given the garbled

tables and tokens A and D. (In the illustration, only the garbled tables of the first two gates

are shown.) It first opens the last rows in the first two tables to get tokens X and V . Next,

it xors the ciphertexts in the third rows of the two first tables, and then xors the resulting

string with X to get U . Likewise, the adversary can obtain Y . It now can open every row

of the last garbled table, and all security is lost.

We can translate the idea to an attack of advantage 1 on prv security, in which the

adversary queries (f, f, 01, 11) to obtain (F,X, d). Following the idea above, regardless of

the challenge bit, the adversary can open every row of the last garbled table. Using d, the

adversary can determine the semantics of the tokens on the output wire. There is only one

row of the last garbled table that encrypts the token of semantics 0. The token on wire 3

used as a key for this row must have semantics 0. The adversary then can determine the

semantics of tokens on wire 3. Now evaluate F on X. If the token obtained on wire 3 during

the evaluation has semantics 0 then output 0. Otherwise, output 1.

The attack above arises if the circuit contains two gates that have the same pair of

incoming wires. We therefore introduce the tweak-based variants Eπ(A,B, T,X) = ρ(A ⊕

B⊕ T)⊕X and Eπ(A,B, T,X) = ρ(2A⊕ 4B⊕ T)⊕X of instantiations (4.3.1) and (4.3.3),

respectively, with the tweak being the gate index. We shall see in Theorems 4.4.1 and 4.4.2

that these tweak-based instantiations indeed make Ga secure, and the second one makes

GaX secure.

Alternatively, for scheme Ga, one can avoid using tweaks by demanding that no two

gates have the same pair of incoming wires. However, this condition is not sufficient when

the free-xor trick is used, because one can arrange for distinct wires to carry the same pair

91

1

2

3

4

6

5 7

8

A ����

A⊕R

B ����

B⊕R

C ����

C⊕R

A⊕B

A⊕B⊕R

B⊕C

B⊕ C⊕R

A⊕ C

A⊕ C⊕ R

A⊕ C ����

A⊕C⊕R ��	�

Y

Y⊕R

Y⊕R

H(� || T) ⊕H(� || T) ⊕ Y

Y

H(� || T) ⊕H(� || T) ⊕ Y

9

Figure 4.3.2: An attack on GaX with DKC E(A,B, T,X) = H(A[1 : k− 1] ∥ T)⊕H(B[1 : k−
1] ∥ T) ⊕ X. In each wire, the top token has semantics 0, the bottom one has semantics 1. The
table on the right is the garbled table of gate 8. Gate 9 negates the bit on wire 4, then ORs it with
the bit on wire 8.

of tokens. For example, consider the circuit in Fig. 4.3.2. Wires 6 and 7 there have the same

pair of tokens. This kind of subtle degeneracy serves to emphasize the need for proofs.

Other ways to double. Besides the multiplication in GF(2k) (named D1 below)

doubling may have several other interpretations, setting 2A to any of the following:

D1: (A≪ 1)⊕ (A[1] · const) Finite field multiply

D2: A≪ 1 Logical left shift

D3: A≫ 1 Logical right shift

D4: A ≪ 1 Circular left shift

D5: A ≫ 1 Circular right shift

D6: (A[1 :⌊k/2⌋]≪1)∥(A[⌊k/2⌋+1:k]≪1) SIMD left

D7: (A[1 :⌊k/2⌋]≫1)∥(A[⌊k/2⌋+1:k]≫1) SIMD right

We will later show that all of these methods “work” for the schemes in this chapter, although

the security bounds differ by a constant. In particular, we will identify a sufficient condition

for the doubling map and a real number r associated to it, this number showing up in our

bounds. The reason for attending to these different doubling methods is that “true” doubling

has the best security bound, but its implementation is a bit slower than alternatives with

slightly inferior bounds.

92

An insecurity issue in prior works. Besides proposing free-xor, Kolesnikov and

Schneider (KS) [64] propose two instantiations of a DKC, suggesting to set EH(A,B, T,X)

as either

H(A[1 :k−1] ∥ B[1 :k−1] ∥ T)⊕X or (4.3.4)

H(A[1 :k−1] ∥ T)⊕H(B[1 : k − 1] ∥ T)⊕X (4.3.5)

where H : {0, 1}∗ → {0, 1}k is a hash function, to be modeled as a random oracle. KS

effectively show that GaX, built on top of instantiation (4.3.4), leads to a secure two-party

SFE protocol. They claim that one can use instantiation (4.3.5) as well. Pinkas, Schneider,

Smart, and Williams (PSSW) [84] implement both instantiations; their garbling schemes are

variants of Ga/GaX/GaXR, where each DKC’s tweak is a nonce instead of the gate index.

Subsequent works [49, 51, 57] use only (4.3.4) because of efficiency issues, but the authors

apparently continue to believe that (4.3.5) works fine; see, for example, [27, p. 5] and [57,

p. 7].

We now show that an adversary can completely break GaX if the DKC is instantiated

by (4.3.5). Our attack also applies to the GaX/GaXR variants of PSSW based on (4.3.5).

The key idea of the attack is that, as mentioned previously, when one uses free-xor trick,

different wires in the circuit can be forced to share the same pair of tokens. Observe that

if A = B then instantiation (4.3.5) sends the plaintext in the clear, as H(A[1 :k−1] ∥ T)⊕

H(B[1 : k − 1] ∥ T) ⊕X = X. Suppose that we garble the circuit f in Fig. 4.3.2. Wires 6

and 7 have the same pair of tokens. As shown in the garbled table of gate 8, we send both

Y and Y ⊕R in the clear, and there is no security whatsoever.

To translate the above to an attack of advantage 1 on prv security, the adversary queries

(f, f, 000, 100) to obtain (F,X, d). Following the idea above, the adversary obtains all tokens

and opens every row of every garbled table. Using d, it can determine the semantics of

the tokens on the output wire. There is only one row of the garbled table of gate 9 that

93

DKC A1 A2 A3 A4

doubling — D1 D2,D3 D4,D5 D6, D7 — D1 D2,D3 D4,D5 D6, D7

regularity 1 1 4 1 16 1 1 4 1 16

strong regularity — 1 4 4 16 — 1 4 4 16

inject indicator 1 1 0 0

Figure 4.4.1: Parameters for DKC instantiations. The strong regularity of A1 and A3 is
huge (δ = 2k); the corresponding entries are dashed.

encrypts the token of semantics 0. The token on wire 4 used as a key for this row must have

semantics 1. The adversary therefore can determine the semantics of the tokens on wire 4.

Now evaluate F on X. If the token obtained on wire 4 has semantics 0 then output 1,

otherwise output 0.

4.4 Security of Ga, GaX and GaXR

We will justify the security of our schemes in a common framework. We define a class of

DKCs that we call σ-derived. Under various conditions on the map σ, we prove security for

our schemes.

σ-derived DKCs. Let σ : {0, 1}k×{0, 1}k×{0, 1}τ → {0, 1}ℓ be a function. We say that

E is σ-derived DKC if Eπ(A,B, T,X) = (π(K)⊕K)[1 : k]⊕X for K = σ(A,B, T) and the

function σ satisfies the following two conditions:

(i) σ(A⊕A∗, B⊕B∗, T ⊕T ∗) = σ(A,B, T)⊕σ(A∗, B∗, T ∗) for every A,A∗, B,B∗ ∈ {0, 1}k

and T, T ∗ ∈ {0, 1}τ , and

(ii) σ(0k, 0k, T) ̸= 0ℓ unless T = 0τ .

The injectivity indicator of σ is a number δ ∈ {0, 1}; it is 0 if and only if σ is tweak-wise

injective, that is, σ(A,B, T) ̸= σ(A∗, B∗, T ∗) whenever T ̸= T ∗. The regularity of σ is the

smallest r ∈ Z+ such that

(iii) Pr[x� {0, 1}k : σ(x, 0k, 0τ) = s] ≤ r/2k and also Pr[x� {0, 1}k : σ(0k, x, 0τ) = s] ≤

r/2k for every string s ∈ {0, 1}ℓ.

94

The strong regularity of σ is the smallest r ∈ Z+ such that (iii) is satisfied and

(iv) Pr[x� {0, 1}k : σ(a · x, b · x, 0τ)⊕ x0ℓ−k = s] ≤ r/2k and Pr[x� {0, 1}k : σ(x, x, 0τ) =

s] ≤ r/2k for every string s ∈ {0, 1}ℓ and every (a, b) ∈ {0, 1}2, where 0 · x = 0|x| and

1 · x = x.

Each of our DKC instantiations is a σ-derived DKC; the regularity, strong regularity, and

injectivity indicator of its σ are shown in Fig. 4.4.1. This claim can be verified by a simple

but tedious analysis. For example, consider scheme A2 with the doubling method D2. Its

function σ is σ(A,B, T) = 2A ⊕ 4B ⊕ T , satisfying both (i) and (ii), and the injectivity

indicator of this σ is 1. The regularity is 4, as Pr[x� {0, 1}k : x ≪ 1 = s] ≤ 2/2k and

Pr[x� {0, 1}k : x ≪ 2 = s] ≤ 4/2k for every string s ∈ {0, 1}k. To verify that the strong

regularity is also 4, suppose one wants to show that, say Pr[x� {0, 1}k : (x≪ 1)⊕x = s] ≤

4/2k for every string s ∈ {0, 1}k. Let x = x1 · · · xk. Note that function f(x) = (x≪ 1)⊕ x

returns

(x1 ⊕ x2) ∥ (x2 ⊕ x3) ∥ · · · ∥ (xk−1 ⊕ xk) ∥ xk,

and thus it is a permutation on {0, 1}k. Since x� {0, 1}k, it follows that f(x) is also

uniformly distributed over {0, 1}k. Hence the chance that f(x) = s is at most 1/2k. See

Section 4.7 for the complete analysis.

Security of Ga. The following says that if E is σ-derived and its σ has a small regularity,

then Ga[E] is prv-secure over Φtopo.

Theorem 4.4.1. LetA be an adversary that outputs circuits of at most q gates and makes at

mostQ queries to π and π−1. Let E be a σ-derived DKC, where σ : {0, 1}k×{0, 1}k×{0, 1}τ →

{0, 1}ℓ, and let r and δ be the regularity and injectivity indicators of σ, respectively. Then

Advprv.ind,Φtopo

Ga[E] (A, k) ≤ 6qQ+ 15q2

2ℓ
+

30rQ+ 84rq

2k
+

δ(42rQq + 69rq2)

2k

In the advantage formula above, we use the injectivity indicator δ to “safeguard” the term

95

(Qq + q2)/2k. For the DKC instantiation A3, our implementation uses k = 80, and in

practice, q may go up to 232, say, as in recent works [51, 66]. The presence of the term

(Qq + q2)/2k for A3 would result in a poor bound. Fortunately, this term vanishes, because

δ = 0 for A3. The advantage for A3 is about (Qq+ q2)/2ℓ+(Q+ q)/2k, which is satisfactory

for ℓ = 128 and k = 80. In the DKC instantiation A1, for example, δ = 1, but there we’ll

use k = ℓ = 128, and the advantage becomes about (Qq + q2)/2ℓ, which is very good.

To obtain the desirable bound above, the proof for Theorem 4.4.1, given in Section 4.6.1,

is complex. Without care the advantage formula for E = A3, for example, might easily

include the term Qq/2k (without the guard of δ), which results in a poor bound for the

choice k = 80.

Security of GaX. The following says that if E is σ-derived and its σ has a small strong

regularity, then GaX[E] is prv-secure over Φxor. The proof is in Section 4.6.2.

Theorem 4.4.2. LetA be an adversary that outputs circuits of at most q gates and makes at

mostQ queries to π and π−1. Let E be a σ-derived DKC, where σ : {0, 1}k×{0, 1}k×{0, 1}τ →

{0, 1}ℓ, and let r and δ be the strong regularity and injectivity indicators of σ, respectively.

Then

Advprv.ind,Φxor

GaX[E] (A, k) ≤ 6qQ+ 15q2

2ℓ
+

36rQ+ 108rq

2k
+

δ(48rQq + 84rq2)

2k

Security of GaXR. The following says that if E is σ-derived and its σ has a small strong

regularity, then GaXR[E] is prv-secure over Φxor. The proof is in Section 4.6.3.

Theorem 4.4.3. LetA be an adversary that outputs circuits of at most q gates and makes at

mostQ queries to π and π−1. Let E be a σ-derived DKC, where σ : {0, 1}k×{0, 1}k×{0, 1}τ →

{0, 1}ℓ, and let r and δ be the strong regularity and injectivity indicators of σ, respectively.

96

Then

Advprv.ind,Φxor

GaXR[E] (A, k) ≤ 10qQ+ 20q2

2ℓ
+

36rQ+ 123rq

2k
+

δ(48rQq + 94rq2)

2k
.

4.5 JustGarble and its performance

We have built a system, JustGarble, to realize the ideas described so far. The high speeds it

achieves come from use of a fixed-key blockcipher and various implementation optimizations.

We explore these factors here.

Architecture. JustGarble follows our tenet that garbling should be decoupled from

MPC, oblivious transfer, and the compilation of programs into circuits. The separation of

concerns facilitates construction of an efficient tool, but it also necessitates caution when

comparing reported speeds.

To facilitate speed and interoperability, JustGarble uses a circuit representation that is

simple and easy to work with: SCD, for Simple Circuit Description. SCD closely follows

the formulation of circuits in Chapter 2. An SCD file starts with values n,m, q, followed by

arrays A,B, and G. If G is absent the file represents a topological circuit. For cross-language

and cross-platform compatibility, values are encoded with MessagePack [36].

JustGarble consists of modules Build, Garble, and Evaluate for building circuits,

garbling them, and evaluating garbled circuits, respectively. The Build module can be used

to construct circuits, working at the level of individual gates or collections of them. Con-

structed circuits are written to SCD files. The Garble module realizes the Gb algorithm

of Ga, GaX, or GaXR. It can use any of the DKCs specified in this chapter. Garble

takes in an SCD-described circuit f = (n,m, q, A,B,G) and produces the garbled tables P

that comprise the final component of the associated garbled circuit F = (n,m, q, A,B, P).

The Evaluate module takes in a topological circuit f− = (n,m, q, A,B), the garbled ta-

bles P needed to complete this, and a garbled input X. It produces the garbled output Y .

97

JustGarble also includes simple routines to realize De, which maps the garbled output Y to

the corresponding output y with the help of d.

The garbling module does not use the operating system to generate the pseudorandom

bits needed for tokens; such a choice would not be cryptographically secure. Instead, pseu-

dorandom bits are also generated by fixed-key AES, now operating in counter mode. At

present, we use a different AES key than that employed for the random permutation un-

derlying the selected DKC. We have verified that it would also work, cryptographically, to

employ the same key for these conceptually distinct tasks. But there would be a small

quantitative security loss, and the proofs would need to deal with this complication. With

GaX-A2, the measured time savings from using the same permutation is at most 0.3 cpg.

JustGarble utilizes hardware AES support through AES-NI [48]. The system is written

in C and employs compiler intrinsics to access SSE4 [53] instructions and 128-bit registers,

which hold and manipulate the tokens. JustGarble is entirely open-source and freely available

for download [58].

Experimental methodology. We run our experiments on an x86-64 Intel Core i7-

970 processor clocked at 3.201 GHz with a 12MB L3 cache. Tests are compiled with gcc

version 4.6, optimization level -O3, with support for SSE4 and AES-NI instructions through

the -sse4 and -maes flags. The tests are run in isolation, with processor frequency scaling

turned off. We use the rdtsc instruction to count cycles.

We run tests in batches of 1000 runs each, noting the median of the times recorded in

the runs. This process is repeated for 1000 batches, and the final time reported is the mean

of the batch medians. The cache is warm during the tests from initial runs. The standard

deviation of the batch medians does not exceed 0.25 cpg in any of the experiments.

AES-circuit benchmarks. We measure garbling and evaluation speeds on a circuit

computing AES128K(X) (hereafter simply AES) for a particular key K. This corresponds

to a GC-based SFE of AES where the first party holdsK and prepares a circuit for the second

party, who holds X and wants to compute AESK(X). We choose this setting because it has

98

Tool E(A,B, T,X) =
Ga GaX GaXR

TE TG TE TG TE TG

Perm π(K)⊕K ⊕X, with K = 2A⊕ 4B ⊕ T 52.1 221 23.2 55.6 23.9 56.4

Cipher E(K,T)⊕X, with K = A||B 256 991 60.1 172 58.7 171

Hash H(K∥T)[1 : k]⊕X, with K = A||B 875 3460 161 566 160 568

Figure 4.5.1: Permutation-based, blockcipher-based, and hash-based garbling. The TE

(time to evaluate) and TG (time to garble) values are in mean cycles per gate (cpg) using the
subject AES circuit. The first method, A2, is based on a permutation π : {0, 1}k → {0, 1}k. The
permutation chosen is fixed-key AES128. The second method, from KSS [66], uses a blockcipher
E : {0, 1}2k × {0, 1}k → {0, 1}k. The selected blockcipher is AES256. The last method, employed
in [51], builds a DKC from a hash H : {0, 1}∗ → {0, 1}k. The hash function chosen is SHA-1.

been used as a benchmark in prior work [49, 51, 66, 72], and hence helps compare our system

with existing ones.

We build the AES circuit as described in HEKM [51]. The key is first expanded into

1280 bits. Conceptually, this is done locally by the party holding the key. We use a different

S-box circuit [25] than HEKM, which results in a smaller AES circuit. This is not significant;

as we measure speed in cycles per gate, small differences in circuit size are unlikely to have

a noticeable effect on speed as long as the fraction of xor gates is little changed. Overall,

our AES circuit has 36,480 gates, of which 29,820 (82%) are xor.

The evaluation and garbling speeds of A1,A2,A3, and A4 are listed in Fig. 4.1.1. For

A2 we use doubling method D7; for A4, we use D3. These choices will be explained shortly.

The fastest among our constructions, GaX with A2, evaluates the AES circuit at 23.2 cpb

(7.25 ns/gate) and garbles it at 55.6 cpg (17.4 ns/gate). Overall, this comes to 637 µs for

garbling the AES circuit and 264 µs for evaluating.

Schemes A3 and A4 are a little slower than A1 and A2. Part of the speed difference may

be due to JustGarble being better optimized for 128-bit tokens. There may be memory-

alignment overheads in dealing with 10-byte tokens: SSE4 instructions can have higher read

and write latencies when data is not 16-byte aligned [53].

The sizes SP we report in Fig. 4.1.1 measure only the contribution from the garbled

tables: SP = |P |/8q. Focusing on this value is justifiable because, in MPC applications, the

99

Circuit Gates Xor gates TE TG

MEXP-16 0.21M 0.14M 44.1 91.6

MEXP-32 1.75M 1.15M 45.3 96.3

MEXP-64 14.3 M 9.31M 44.6 95.8

EDT-255 15.5 M 9.11M 48.4 101.3

Figure 4.5.2: Performance on larger circuits. Evaluation times (TE) and garbling times (TG)
are in median cycles per gate using GaX-A2. The modular exponentiation (MEXP) and edit
distance (EDT) circuits are described in text. Gate counts are in millions of gates (1M = 1
million gates).

other components of the GC, its topology, will be known and need not be communicated.

Regardless, the size of the GC that JustGarble makes will always be SF = SP + 8 bytes, as

gates are represented as four-byte numbers and we need to record two of these per gate—one

for each of arrays A and B. Here we ignore the space to store n,m, q.

For the DKC A2, we implement doubling in many ways; see the definition for methods

D1–D7 in Section 4.3. We find D6 and D7 the fastest, followed by D2 and D3, then D4 and

D5, and finally D1. The speed of D6 and D7 (SIMD shift) is due to the availability of a

matching SSE4 instruction. The speed difference between the fastest and slowest doubling

methods is ∆TE ≈ 7 cpg and ∆TG ≈ 11 cpg. We find this significant enough to trade a small

quantity in the security bound, which is why we select A2 with D7 doubling. For the DKC

A4, which uses 10-byte tokens, similar experiments lead us to select the doubling scheme D3.

Larger circuits. The size of the garbled table for each non-xor gate ranges from

30 bytes (GaXR with A3,A4) to 64 bytes (GaX with A1,A2). This means that even circuits

with hundreds of thousands of gates can fit in the processor’s L3 cache during evaluation.

However, if the circuit is too big to fit entirely in the cache, per-gate garbling and evaluation

times will increase.

To understand the performance of JustGarble on circuits larger than the cache size,

we measured garbling and evaluation times of the modular exponentiation (MEXP) (“RSA

circuits”) and edit distance (EDT) circuits of KSS with various input sizes. We used GaX

100

with A2 (henceforth GaX-A2); see Fig. 4.5.2. The MEXP-ℓ circuit takes inputs a and b and

returns ab mod c for c = 180ℓ−91. The EDT-m circuit takes as inputs two m-bit strings and

returns their edit distance as a (lgm)-bit integer. We obtained these circuits by patching

the KSS compiler to produce outputs in SCD format. The garbling and evaluation times

(in cycles per gate) are higher than the measured values for the AES circuit due to higher

latencies involved in reading data directly from main memory. However, JustGarble is still

several times faster than what KSS report. Taking RSA-32 as an example, KSS report a

garbling time of 4.53 seconds, which translates to 6546 cpg, while JustGarble uses 91.6 cpg,

a 70x speedup.

We can draw a quick estimate for the threshold beyond which circuits fill out of the

cache, by computing the amount of memory that the evaluation module needs for evaluating

a circuit of a given size. Consider the GaX-A2 evaluation of a circuit with n inputs and q

gates, and λq of these XOR. In the evaluation module, gates and wires are represented

by 32 byte and 16 byte data structures. Evaluating a circuit with q gates will use about

(64+32+16)(1−λ)q+(32+16)qλ = 112(1−λ)q+48qλ, ignoring input and output labels and

other small objects in memory. If the evaluating machine has (lowest level) cache size C

bytes, then circuits with q < C/(112 − 64λ) gates can reside in the cache. This matches

with what we observe experimentally: in our test machine with a 12MB L3 cache, we run

tests with families of circuits composed of a chain of AND gates. We find that the cost per

gate remained fairly constant up until q = 105, followed by a rather sudden jump of 30 cpg

(n was fixed at 1000 and m = 1).

At present, JustGarble cannot handle circuits that are too big to fit in main memory. An

obvious direction for future work is extending JustGarble with a streaming mode of operation

that can garble and evaluate large circuits by keeping only a small portion in memory at

any given point.

Comparisons. JustGarble garbles and evaluates moderately-sized circuits about two

orders of magnitude faster than what recent MPC implementations of HKEM and KSS

101

report [51, 66]. For evaluating an AES circuit, the best previously-reported figure comes

from KSS [66], garbling the circuit in 80 ms. The fastest among our own constructions,

GaX using A2, does the job in 638 µs. We note that both systems use AES-NI and SSE4

instructions and the free-xor optimization, and that, in both cases, the reported times are

for garbling alone, excluding other operations and network overhead. One reason JustGarble

performs better is that it spends less time on non-cryptographic operations, by which we

mean all operations other than the DKC computations. Moreover, using a fixed-key DKC

like A2 results in a sizable gain in performance, in spite of the large percentage of xor gates

(82%) in the AES circuit. We measured the contributions of both of these factors as below.

JustGarble spends about 23% and 43% of its time on non-cryptographic operations when

GaXR-A2 does garbling and garbled-circuit evaluation, respectively. In contrast, KSS mea-

sure AES256 (with AES-NI) overhead at 225 cycles per invocation but report an overall

GaXR garbling time of over 6000 cpg, suggesting that close to 95% of the garbling time is

non-cryptographic overhead. The reduced overhead is likely connected to our simple repre-

sentation of circuits, one consequence of which is the absence of a need to maintain a queue

of ready gates. A downside of this simple circuit representation is that, unlike HEKM and

KSS, JustGarble cannot handle circuits that do not fit in memory.

To measure the contribution of the DKC itself we implemented within JustGarble the

blockcipher-based DKC from KSS and the hash-function based DKC from HEKM; see

Fig. 4.5.1. Let us focus on GaXR, as free-xor and garbled-row reduction are both em-

ployed in the MPC systems of KSS and HEKM. Comparing the first and second rows, the

DKC-attributable speedup we get by using a permutation instead of a blockcipher is 2.5-fold

improvement in evaluation time and 3-fold improvement in garbling time. Comparing the

first and the third rows, the DKC-attributable speedup we get by using a permutation in-

stead of a cryptographic hash function is 6.7-fold improvement in evaluation time and 10-fold

improvement in garbling time. One may conclude that the improved DKCs play a large role

in our performance gains—a factor of about 2.5 to 10—yet more mileage is obtained through

102

other aspects of JustGarble.

4.6 Postponed proofs

4.6.1 Proof of Theorem 4.4.1

In our code, a procedure with the keyword “private” is a local code of the caller, and thus

cannot be invoked by the adversary. It can be viewed as a function-like macro in C/C++

programming language. That is, it still has read/write access to the variables of the caller,

even if these variables are not its parameters. Consider games G0–G2 in Fig. 4.6.1. They

share the same code for procedureGarble, but each has a different implementation of a local

procedure GarbleRow. The adversary A makes queries to procedures Π and Π−1 to access

an ideal permutation π, which is implemented lazily. Wlog, assume that q + Q ≤ 2k−2/r;

otherwise the theorem is trivially true.

We reformulate game PrvIndGa,Φtopo,k as game G0. Recall that in the scheme Ga, each

wire i carries tokens X0
i and X1

i with semantics 0 and 1 respectively. If wire i ends up

having value (semantics) vi in the computation v ← ev(fc, xc), where c is the challenge bit,

then token Xvi
i becomes visible to A while Xvi

i stays invisible. Game G0 makes this explicit.

It picks for each wire i a “visible” token and an “invisible” one. Each garbled row that

can be opened by visible tokens will be built directly in Garble. To construct each other

garbled row, we invoke the “private” procedure GarbleRow, which inherits all variables

of Garble.

We explain the game chain up until the terminal game. �G0 → G1 : the two games are

identical until either game sets bad. In these games, we sample a uniformly random string S

and want to set π(K) to K ⊕ S. This may cause inconsistency if π(K) or π−1(K ⊕ S) is

already defined, triggering bad. In this case, G0 resets S to the consistent value, but game G1

does nothing. Hence in game G1, a point v ∈ Ran(π) may have several preimages, and in

that case π−1[v] means an arbitrary preimage.

103

proc Garble(f0, f1, x0, x1)
(n,m, q,A′, B′, G)← fc
for i← 1 to n+ q do

vi ← ev(fc, xc, i), ti � {0, 1}, Xvi
i � {0, 1}k−1ti, Xvi

i � {0, 1}k−1ti
for g ← n+ 1 to n+ q, i← 0 to 1, j ← 0 to 1 do
a← A′(g), b← B′(g)

A← Xi
a, B ← Xj

b , a← lsb(A), b← lsb(B), K ← σ(A,B, g)
if i = va and j = vb then P [g, a, b]← (Π(K)⊕K)[1 : k]⊕X

vg
g

else P [g, a, b]← GarbleRow()
F ← (n,m, q,A′, B′, P), X ← (Xv1

1 , . . . , Xvn
n)

d←
(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F,X, d)

private proc GarbleRow()
S� {0, 1}ℓ
if K ∈ Dom(π) or S ⊕K ∈ Ran(π) then
bad ← true
S ← Π(K)⊕K ←− Use in game G0

Y ← S[1 : k]⊕X
Gg(i,j)
g , π[K]← S ⊕K

return Y

proc Π(u) Game G0 / Game G1

if u ̸∈ Dom(π) then π[u]� {0, 1}ℓ\Ran(π)
return π[u]

proc Π−1(v)
if v ̸∈ Ran(π) then

u� {0, 1}ℓ\Dom(π), π[u]← v
return π−1[v]

private proc GarbleRow()

S� {0, 1}ℓ, Y ← S[1 : k]⊕X
Gg(i,j)
g

BadDom← BadDom ∪ {K}
BadRan← BadRan ∪ {K ⊕ S}
return Y

proc Π(u) Game G2

if u ∈ BadDom then bad ← true
if u ̸∈ Dom(π) then π[u]� {0, 1}ℓ\Ran(π)
return π[u]

proc Π−1(v)
if v ∈ BadRan then bad ← true
if v ̸∈ Ran(π) then

u� {0, 1}ℓ\Dom(π), π[u]← v
return π−1[v]

Figure 4.6.1: Games for the proof of Theorem 4.4.1. Each set is initialized to be ∅. Initially,
procedure Initialize() samples the challenge bit c� {0, 1}.

We now bound the chance that G1 sets bad. Consider the ith invocation ofGarbleRow.

It triggers bad to true if its string K falls into Dom(π) or S ⊕ K falls into Ran(π), with

S� {0, 1}ℓ. Since |Ran(π)| ≤ (Q + q + i − 1), the latter happens with probability at most

(Q + i + q − 1)/2ℓ. Let K = σ(A,B, g). We claim that the chance that K ∈ Dom(π) is at

most 6r/2k +Nir(2δ + 1)/2k, where Ni is the size of Dom(π) ∩
{
σ(x, y, g) | x, y ∈ {0, 1}k

}
,

which is at most |Dom(π)| ≤ Q + q + i − 1. By union bound, the chance that G1 sets bad

is at most

104

3q∑
i=1

Q+ q + i− 1

2ℓ
+

6r

2k
+

rNi(2δ + 1)

2k

≤ 3qQ+ 7.5q2

2ℓ
+

3rQ+ 30rq

2k
+

δ(9rqQ+ 22.5rq2)

2k
.

The last inequality is obvious if δ = 1, as Ni ≤ Q+q+i−1. To justify it for the case δ = 0,

note that for each string s, there is at most one value g such that s ∈ {σ(x, y, g) | x, y ∈

{0, 1}k}. Hence when we sum up the numbers Ni, because the invocations of GarbleRow

use each tweak value at most 3 times, we count each point in Dom(π) at most 3 times, and

thus the sum is at most 3|Dom(π)| ≤ 3(Q+ 4q).

We now justify the claim above. Consider the moment that procedure Garble makes

the ith call to GarbleRow. Let D1 be the set of points in Dom(π) created by adversarial

queries before its querying Garble, and let D2 be the set of points in Dom(π) created

by procedure Garble so far. Then D1 ∪ D2 = Dom(π). Recall that K = σ(A,B, g) =

σ(A, 0k, 0τ)⊕ σ(0k, B, 0τ)⊕ σ(0k, 0k, g). Because A� {0, 1}k and r is the regularity of σ, it

follows that Pr[σ(A, 0k, 0τ) = s] ≤ r/2k for any string s ∈ {0, 1}ℓ. Since A is independent

of B and all points in D1, the chance that K ∈ D1 is at most rNi/2
k.

What remains is to show that Pr[K ∈ D2] ≤ 6r/2k + 2Nirδ/2
k. Consider an arbitrary

point K∗ ∈ D2. Let K∗ = σ(A∗, B∗, g∗). If A ≡ A∗ and B ≡ B∗ then K and K∗ belong to

different gates, and thus g ̸= g∗. HenceK⊕K∗ = σ(A,B, g)⊕σ(A,B, g∗) = σ(0k, 0k, g⊕g∗) ̸=

0ℓ. Otherwise, wlog, suppose that A[1 : k − 1] is independent of B, A∗, and B∗. For any

string s ∈ {0, 1}ℓ, as r is the regularity of σ, there are at most r strings x such that

σ(x, 0k, 0τ) = s. Given B,A∗, and B∗, because each but the last bit of A is still uniformly

random, the conditional probability that A falls into one of the r strings above is at most

2r/2k, and thus the conditional probability that σ(A, 0k, 0τ) = s is at most 2r/2k. Hence

Pr[K = K∗] ≤ 2r/2k. Moreover, if the injectivity indicator δ = 0 and g ̸= g∗ then K ̸= K∗.

In other words, Pr[K = K∗] ≤ 2r/2k if g = g∗, and Pr[K = K∗] ≤ 2rδ/2k otherwise.

105

Summing up, Pr[K ∈ D2] ≤ 6r/2k + 2Nirδ/2
k, because there are most three elements of D2

using the tweak g.

�G1 → G2 : in game G1 we write π[K] ← S ⊕ K, but game G2 omits this step. In

addition, we maintain two sets BadDom and BadRan that are initialized to the empty sets.

Each call to GarbleRow will add K to BadDom and S ⊕K to BadRan. The two games

are identical until G2 sets bad, that is, when A happens to query Π(u) with u ∈ BadDom,

or Π−1(v) with v ∈ BadRan. Since G2 samples S at random, and doesn’t store it in π, the

output of GarbleRow() is uniformly random, independent of the token that S masks.

We now bound the chance that G2 sets bad. Consider an arbitrary point K ∈ BadDom.

It has a corresponding point K ⊕ S ∈ BadRan. Let K = σ(A,B, g). Either A or B must be

invisible. Wlog, suppose that A is invisible. Condition on the output of Garble. Initially,

as each but the last bit of A is still uniformly random and the regularity of σ is r, the

conditional probability that K = s is at most 2r/2k for any string s ∈ {0, 1}ℓ. Consider a

query u to Π. Each prior adversarial query to Π or Π−1 removes at most a value of K. Hence

since there are at most q+Q queries to Π and Π−1 (procedure Garble only queries Π for q

rows that can be opened by visible tokens), the chance that u hits K is at most

2r/2k

1− 2(Q+ q)r/2k
=

2r

2k − 2r(Q+ q)
≤ 4r/2k,

where the last inequality is due to the assumption Q + q ≤ 2k−2/r. By union bound, the

chance that u ∈ BadDom is at most 12rq/2k. However, if the injectivity indicator δ = 0,

then there is at most one possible value of g such that u ∈ {σ(x, y, g) | x, y ∈ {0, 1}k}, and

consequently, Pr[u ∈ BadDom] ≤ 12r/2k because each tweak value is used at most three

times in BadDom. Hence in general, Pr[u ∈ BadDom] ≤ 12r(qδ + 1)/2k. Likewise, for each

query v to Π−1, the chance that v ∈ BadRan is at most 12r(qδ + 1)/2k. By union bound,

the chance that game G2 sets bad is at most

12r(Q+ q)(qδ + 1)/2k = (12rQ+ 12rq)/2k + δ(12rQq + 12rq2)/2k .

Analysis of game G2. The output of game G2 is independent of the challenge bit c.

106

proc Garble(f0, f1, x0, x1)
(n,m, q,A′, B′)← Φtopo(f0), vq+n−m+1 · · · vq+n ← ev(f0, x0)
for i← 1 to n+ q do

ti� {0, 1}, Vi� {0, 1}k−1ti, Ii� {0, 1}k−1ti
for i← n+ q −m+ 1 to n+ q do

Xvi
i ← Vi, Xvi

i ← Ii
for g ← n+ 1 to n+ q do

a← A′(g), b← B′(g)
for (A,B) ∈ {Va, Ia} × {Vb, Ib} do
a← lsb(A), b← lsb(B), K ← σ(A,B, g)
if A = Va and B = Vb then Y ← (Π(K)⊕K)[1 : k]⊕ Vg else Y � {0, 1}k
P [g, a, b]← Y

F ← (n,m, q,A′, B′, P), X ← (V1, . . . , Vn)
d←

(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F,X, d)

Figure 4.6.2: Rewritten game G2 of the proof of Theorem 4.4.1. This game depends solely
on the topological circuit f− = Φtopo(f0) = Φtopo(f1) and the output v = ev(f0, x0) = ev(f1, x1).
Procedures Π and Π−1 lazily implement a random permutation and its inverse, respectively.

Hence Pr[GA2 (k)] = 1/2. To justify this, from a topological circuit f− and the final output

v = ev(fc, xc), which is independent of c, we can rewrite the code of procedure Garble of

game G2 as shown in Fig. 4.6.2. There, we refer to the visible token of wire i as Vi, and its

invisible counterpart as Ii, omitting the semantics of these tokens. Each garbled row is an

independent, uniformly random string, except for rows that can be opened by visible tokens.

Summing up,

Advprv.ind,Φtopo

Ga[E] (A, k) = 2(Pr[GA0 (k)]− Pr[GA2 (k)])

≤ 6qQ+ 15q2

2ℓ
+

30rQ+ 84rq

2k
+

δ(42rQq + 69rq2)

2k
.

4.6.2 Proof of Theorem 4.4.2

Wlog, assume that Q + q ≤ 2k−2/r; otherwise the theorem is trivially true. The proof is

similar to that of Theorem 4.4.1. Consider games G0–G2 in Fig. 4.6.3. Each game has exactly

the same procedures GarbleRow,Π, and Π−1 as the corresponding game in Fig. 4.6.1 of

the proof of Theorem 4.4.1. The only change is to add free-xor trick to the common procedure

107

proc Garble(f0, f1, x0, x1)
(n,m, q,A′, B′, G)← fc, R� {0, 1}k−11
for i← 1 to n+ q do vi ← ev(fc, xc, i)

for i← 1 to n do Xvi
i � {0, 1}k, Xvi

i �Xvi
i ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g)

if Gg = XOR then G′
g ← XOR, X

vg
g ← Xva

a ⊕Xvb
b , X

vg
g ← X

vg
g ⊕R

else G′
g ← AND, X

vg
g � {0, 1}k, X

vg
g ← X

vg
g ⊕R

for i← 0 to 1, j ← 0 to 1 do

A← Xi
a, B ← Xj

b , a← lsb(A), b← lsb(B), K ← σ(A,B, g)
if i = va and j = vb then P [g, a, b]← (Π(K)⊕K)[1 : k]⊕X

vg
g

else P [g, a, b]← GarbleRow()
F ← (n,m, q,A′, B′, G′, P), X ← (Xv1

1 , . . . , Xvn
n)

d←
(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F,X, d)

private proc GarbleRow()
S� {0, 1}ℓ
if K ∈ Dom(π) or S ⊕K ∈ Ran(π) then
bad ← true
S ← Π(K)⊕K ←− Use in game G0

Y ← S[1 : k]⊕X
Gg(i,j)
g , π[K]← S ⊕K

return Y

proc Π(u) Game G0 / Game G1

if u ̸∈ Dom(π) then π[u]� {0, 1}ℓ\Ran(π)
return π[u]

proc Π−1(v)
if v ̸∈ Ran(π) then

u� {0, 1}ℓ\Dom(π), π[u]← v
return π−1[v]

private proc GarbleRow()

S� {0, 1}ℓ, Y ← S[1 : k]⊕X
Gg(i,j)
g

BadDom← BadDom ∪ {K}
BadRan← BadRan ∪ {K ⊕ S}
return Y

proc Π(u) Game G2

if u ∈ BadDom then bad ← true
if u ̸∈ Dom(π) then π[u]� {0, 1}ℓ\Ran(π)
return π[u]

proc Π−1(v)
if v ∈ BadRan then bad ← true
if v ̸∈ Ran(π) then

u� {0, 1}ℓ\Dom(π), π[u]← v
return π−1[v]

Figure 4.6.3: Games for the proof of Theorem 4.4.2. Each set is initialized to be ∅. Initially,
procedure Initialize() samples the challenge bit c� {0, 1}.

Garble. Let L be the union of {1, . . . , n} and {g | n + 1 ≤ g ≤ n + q and Gg ̸= XOR}.

Visible tokens on wires i ∈ L are chosen at random, and thus are independent. For each

visible token V , there is a unique subset V of L such that V is the checksum of visible tokens

of wires i ∈ V . Then, the string R is independent of all visible tokens. Below, for any random

variable Z ∈ {0, 1}k, if there is Z̃ ∈ {Z,Z ⊕R} such that Z̃ is the checksum of some visible

tokens then we call Z̃ the visible match of Z. Define the flip bit of Z to be the bit z such

that Z̃ = Z ⊕ z ·R. We call each string K that procedure Garble creates a seed.

108

proc Garble(f0, f1, x0, x1)
(n,m, q′, A′, B′, G′)← Φxor(f0)
vq+n−m+1 · · · vq+n ← ev(f0, x0), R� {0, 1}k−11
for i← 1 to n+ q do Vi � {0, 1}k, Ii �Vi ⊕R
for g ← n+ 1 to n+ q do

a← A′(g), b← B′(g)
if G′

g = XOR then Vg ← Va ⊕ Vb, Ig ← Vg ⊕R
else
for (A,B) ∈ {Va, Ia} × {Vb, Ib} do
a← lsb(A), b← lsb(B), K ← σ(A,B, g)
if A = Va and B = Vb then Y ← (Π(K)⊕K)[1 : k]⊕ Vg else Y � {0, 1}k
P [g, a, b]← Y

for i← n+ q −m+ 1 to n+ q do Xvi
i ← Vi, Xvi

i ← Ii
F ← (n,m, q,A′, B′, P), X ← (V1, . . . , Vn)
d←

(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F,X, d)

Figure 4.6.4: Rewritten game G2 of the proof of Theorem 4.4.2. This game depends solely
on f ′ = Φxor(f0) = Φxor(f1) and the output v = ev(f0, x0) = ev(f1, x1). Procedures Π and Π−1

lazily implement a random permutation and its inverse, respectively.

The output of G2 is independent of the challenge bit, and thus Pr[GA2 (k)] = 1/2. To

justify this, from f ′ = Φxor(fc) and the final output v = ev(fc, xc), which is independent of c,

we can rewrite the code of procedure Garble of game G2, as shown in Fig. 4.6.4. There,

we refer to the visible token of wire i as Vi, and its invisible counterpart as Ii, omitting the

semantics of these tokens. Each garbled row is an independent, uniformly random string,

except for rows that can be opened by visible tokens.

Hence by union bound and Lemmas 4.6.1 and 4.6.3 below,

Advprv.ind,Φxor

GaX[E] (A, k) = 2(Pr[GA0 (k)]− Pr[GA2 (k)])

≤ 6qQ+ 15q2

2ℓ
+

36rQ+ 108rq

2k
+

δ(48rQq + 84rq2)

2k
.

Lemma 4.6.1. The chance G1 sets bad is at most (3qQ + 7.5q2)/2ℓ + (6rQ + 42rq)/2k +

δ(12rQq + 30rq2)/2k.

Proof. Consider the ith invocation of GarbleRow. It triggers bad to true if its seed K falls

into Dom(π) or S⊕K falls into Ran(π), with S� {0, 1}ℓ. The chance that K⊕S ∈ Ran(π)

is at most |Ran(π)|/2ℓ ≤ (Q+q+ i−1)/2ℓ. Let D1 be the set of points in Dom(π) created by

109

adversarial queries before its querying to Garble, and let D2 be the set of points in Dom(π)

created by procedure Garble so far. Then D1 ∪ D2 = Dom(π). Let K = σ(A,B, g), and

let Ni be the size of Dom(π) ∩ {σ(x, y, g) | x, y ∈ {0, 1}k}, which is at most Q + q + i − 1.

Below, we’ll show that Pr[K ∈ D1] ≤ 2rNi/2
k and Pr[K ∈ D2] ≤ 6r/2k + 2rNiδ/2

k. By

union bound, the chance that G1 sets bad is at most

3q∑
i=1

Q+ q + i− 1

2ℓ
+

6r

2k
+

2rNi(δ + 1)

2k

≤ 3qQ+ 7.5q2

2ℓ
+

6rQ+ 42rq

2k
+

δ(12rQq + 30rq2)

2k
.

The last inequality is obvious if δ = 1, since Ni ≤ Q+ q+ i− 1. To justify it for the case

δ = 0, note that for each string s, there is at most one value g such that s ∈ {σ(x, y, g) |

x, y ∈ {0, 1}k}. Hence when we sum up the numbers Ni, because the GarbleRow calls use

each tweak value at most 3 times, we count each point in Dom(π) at most 3 times, and thus

the sum is at most 3|Dom(π)| ≤ 3(Q+ 4q).

First, we’ll show that Pr[K ∈ D1] ≤ 2rNi/2
k. Let Ã, B̃ be the visible matches and a, b be

the flip bits of A and B respectively. Since either A or B must be invisible, (a, b) ̸= (0, 0). We

claim that Pr[σ(a ·R, b ·R, 0τ) = s] ≤ 2r/2k for any string s ∈ {0, 1}ℓ. To justify this claim,

note that as the strong regularity of σ is r, there are at most r strings x in {0, 1}k such that

σ(a ·x, b ·x, 0τ) = s. Because every bit of R, except the last, is uniformly random, the chance

that R is one of the r strings above is at most 2r/2k. Since K = σ(Ã⊕ a ·R, B̃ ⊕ b ·R, g) =

σ(Ã, B̃, g)⊕ σ(a ·R, b ·R, 0τ), and R is independent of Ã, B̃ and all points in D1, the chance

that K ∈ D1 is at most 2rNi/2
k. To bound the chance that K ∈ D2, we’ll show that any

two seeds are unlikely to be equal.

Lemma 4.6.2. For any two seeds that procedure Garble creates, the chance that they are

equal is at most 2r/2k.

110

Proof. Consider two seeds K = σ(A,B, g) and K∗ = σ(A∗, B∗, g∗). Then K ⊕K∗ = σ(A⊕

A∗, B ⊕ B∗, g ⊕ g∗). Let C0 and C1 be the visible matches and c0 and c1 be the flip bits of

A⊕ A∗ and B ⊕B∗ respectively. Suppose that (c0, c1) ̸= (0, 0). Then

K ⊕K∗ = σ(C0 ⊕ c0 ·R,C1 ⊕ c1 ·R, g ⊕ g∗)

= σ(C0, C1, g ⊕ g∗)⊕ σ(c0 ·R, c1 ·R, 0τ) .

As the strong regularity of σ is r and every bit of R, except the last, is uniformly random,

the chance that Pr[σ(c0 · R, c1 · R, 0τ) = s] ≤ 2r/2k for any string s ∈ {0, 1}ℓ. Since R is

independent of all visible tokens, the chance that K ⊕ K∗ = 0ℓ is at most 2r/2k. On the

other hand, consider the case that c0 = c1 = 0. Let A be the subset of L such that C0 is the

checksum of visible tokens of wires i ∈ A, and define B for C1 likewise. If A = B = ∅ then

A ≡ A∗ and B ≡ B∗, and thus K and K∗ must belong to different gates. Then g ̸= g∗ and

K ⊕K∗ = σ(0k, 0k, g ⊕ g∗) ̸= 0ℓ. Otherwise, if A∪B ̸= ∅ then let j be an arbitrary element

of A ∪ B. Let a = 1 if j ∈ A, and let a = 0 otherwise. Likewise, let b = 1 if j ∈ B, and let

b = 0 otherwise. Then

K ⊕K∗ = σ(a · Vj, b · Vj, 0
τ)⊕ σ

(⊕
i∈A\{j}

Vi,
⊕

i∈B\{j}

Vi, g ⊕ g∗
)
,

where Vi is the visible token on wire i. As (a, b) ̸= (0, 0), every bit of Vj is uniformly random,

and the strong regularity of σ is r, it follows that Pr[σ(a · Vj, b · Vj, 0
τ) = s] ≤ r/2k for any

string s ∈ {0, 1}ℓ. Hence Pr[K = K∗] ≤ 2r/2k as claimed.

What remains is to show that Pr[K ∈ D2] ≤ 6r/2k + 2rNiδ/2
k. Consider an arbitrary

seed K∗ ∈ D2. Let K∗ = σ(A∗, B∗, g∗). From Lemma 4.6.2, Pr[K = K∗] ≤ 2r/2k. On

the other hand, if the injectivity indicator δ = 0 and g ̸= g∗ then Pr[K = K∗] = 0. Thus

Pr[K = K∗] ≤ 2r/2k if g = g∗, and Pr[K = K∗] ≤ 2rδ/2k otherwise. By union bound,

Pr[K ∈ D2] ≤ 6r/2k + 2rNiδ/2
k, because there are most three elements of D2 using the

111

tweak g.

Lemma 4.6.3. The chance G2 sets bad is at most (12rQ+12rq)/2k + δ(12rQq+12rq2)/2k

Proof. Consider an arbitrary seed K ∈ BadDom. It has a corresponding point K ⊕ S ∈

BadRan. Let K = σ(A,B, g) and S[1 : k] = Y ⊕ Z, where Y is the value of the garbled

row corresponding to K, and Z is the token that S[1 : k] masks. Let Ã, B̃, Z̃ be the visible

matches and a, b, z be flip bits of A,B,Z respectively. Since either A or B is invisible,

(a, b) ̸= (0, 0). Then K = σ(Ã, B̃, g)⊕ σ(a ·R, b ·R, 0τ) and

K ⊕ S = σ(Ã, B̃, g)⊕ σ(a ·R, b ·R, 0τ)⊕ z ·R0ℓ−k ⊕
(
(Y ⊕ Z̃) ∥ S[k + 1: ℓ]

)
.

Since the strong regularity of σ is r, a value of K or K⊕S corresponds to at most r possible

values of R. Initially, there are 2k−1 equally likely values of R. Each query to Π or Π−1

removes at most r values of R. Hence, as there are at most Q + q queries to Π and Π−1,

for each query to Π, the chance that it hits K is at most r/(2k−1 − r(Q + q)) ≤ r/2k−2,

where the last inequality is due to the assumption that Q + q ≤ 2k−2/r. Thus, the chance

that this query hits a point in BadDom is at most 3r(qδ + 1)/2k−2. This claim is obvious

if δ = 1, as |BadDom| ≤ 3q. To justify this for δ = 0, note that there is at most one

tweak whose corresponding seeds K can be hit by the query, and in BadDom, each tweak

is used for at most three points. Likewise, for each query to Π−1, the chance that it hits a

point in BadRan is at most 3r(qδ + 1)/2k−2. Hence, the chance that G2 sets bad is at most

12(Q+ q)r(qδ + 1)/2k.

4.6.3 Proof of Theorem 4.4.3

The proof is similar to that of Theorem 4.4.2. Consider games G0 − G3 in Figures 4.6.5

and 4.6.6. We reformulate game PrvIndGaXR,Φxor,k as game G0, with visible tokens and

invisible ones. Here garbled rows that can be opened by visible tokens require using procedure

EncodeRow.

112

proc Garble(f0, f1, x0, x1)
(n,m, q,A′, B′, G)← fc, R� {0, 1}k−11
for i← 1 to n+ q do vi ← ev(fc, xc, i)

for i← 1 to n do Xvi
i � {0, 1}k, Xvi

i �Xvi
i ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g), G′

g ← AND

if Gg = XOR then G′
g ← XOR, X

vg
g ← Xva

a ⊕Xvb
b , X

vg
g ← X

vg
g ⊕R

else
for a← 0 to 1, b← 0 to 1 do

i← a⊕ lsb(X0
a), j ← b⊕ lsb(X0

b), A← Xi
a, B ← Xj

b , K ← σ(A,B, g)
if i = va and j = vb then S ← EncodeRow()

else S ← GarbleRow()

if a ̸= 0 or b ̸= 0 then P [g, a, b]← S[1 : k]⊕X
Gg(i,j)
g

else X
Gg(i,j)
g ← S[1 : k], X

1−Gg(i,j)
g ← S[1 : k]⊕R

F ← (n,m, q,A′, B′, G′, P), X ← (Xv1
1 , . . . , Xvn

n)
d←

(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F,X, d)

private proc EncodeRow()
S ← Π(K)⊕K

if K ∈ Seeds then bad ← true, S� {0, 1}ℓ
elsif K ∈ Coll then

bad ← true, S ← Map[K]⊕K

π[K]← S ⊕K, Seeds← Seeds ∪ {K}
return S

private proc GarbleRow()
S� {0, 1}ℓ
if K ∈ Dom(π) or S ⊕K ∈ Ran(π) then
bad ← true
S ← Π(K)⊕K ←− Use in game G0

π[K]← S ⊕K, Seeds← Seeds ∪ {K}
return S

proc Π(u) Game G0 / Game G1

if u ̸∈ Dom(π) then
v� {0, 1}ℓ
if v ∈ Ran(π) then
Coll← Coll ∪ {u}, Map[u]← v
v� {0, 1}ℓ\Ran(π)

π[u]← v
return π[u]

proc Π−1(v)
if v ̸∈ Ran(π) then

u� {0, 1}ℓ\Dom(π), π[u]← v
return π−1[v]

Figure 4.6.5: Games for the proof of Theorem 4.4.3. Each set is initialized to be ∅. Ini-
tially, procedure Initialize() samples the challenge bit c� {0, 1}. Games G1 and G2 include the
corresponding boxed statements.

We explain the game chain up until the terminal game. �G0 → G1 : We maintain two

sets Coll and Seeds, which are initialized to be ∅. In procedure Π(u), if π[u] is not previously

defined then we attempt to choose π[u] uniformly, pretending that π is a random function,

instead of a random permutation. Of course it may create inconsistency with prior points

in Dom(π). If this happens, the “failure” point u is added to Coll, and we’ll sample π[u]

again, according to the correct distribution. The set Seeds keeps track of the seeds K that

we write to π[K]. The two games are identical until either game sets bad.

113

private proc EncodeRow()
S ← Π(K)⊕K

if K ∈ Seeds then rnd ← true, S� {0, 1}ℓ
elsif K ∈ Coll then

rnd ← true, S ← Map[K]⊕K

π[K]← S ⊕K, Seeds← Seeds ∪ {K}
return S

private proc GarbleRow()
S� {0, 1}ℓ
BadDom← BadDom ∪ {K}
BadRan← BadRan ∪ {K ⊕ S}
return S

proc Π(u) Game G2 / Game G3

if u ∈ BadDom then bad ← true
if u ̸∈ Dom(π) then

v� {0, 1}ℓ
if v ∈ Ran(π) then
Coll← Coll ∪ {u}, Map[u]← v
v� {0, 1}ℓ\Ran(π)

π[u]← v
return π[u]

proc Π−1(v)
if v ∈ BadRan then bad ← true
if v ̸∈ Ran(π) then

u� {0, 1}ℓ\Dom(π), π[u]← v
return π−1[v]

Figure 4.6.6: Games for the proof of Theorem 4.4.3. Each set is initialized to be ∅. Ini-
tially, procedure Initialize() samples the challenge bit c� {0, 1}. Games G1 and G2 include the
corresponding boxed statements.

We claim that in game G1, the visible token of the outgoing wire of each non-XOR

gate is chosen uniformly, independent of R and other visible token created before. Such

a visible token is either (i) S[1 : k] ⊕ R, with S ← GarbleRow(), (ii) S[1 : k], with

S ← GarbleRow(), or (iii) S[1 : k], with S ← EncodeRow(). Since GarbleRow

always outputs a fresh S� {0, 1}ℓ, it suffices to show that the same holds for EncodeRow.

Let K be a seed created in procedure EncodeRow. If K is equal to some prior seeds then

game G1 explicitly samples S uniformly. Otherwise, we let S ← v⊕K, where v is the value

sampled in Π(K) at the first attempt. Since v is uniformly distributed over {0, 1}ℓ, so is S.

We now bound the chance that G1 sets bad. By using exactly the same arguments

in the proof of Lemma 4.6.1, the chance that GarbleRow sets bad is at most (3qQ +

7.5q2)/2ℓ + (6rQ + 42rq)/2k + δ(12rQq + 30rq2)/2k. What’s left is to bound the chance

that procedure EncodeRow triggers bad to true. Consider the ith call of EncodeRow.

Let K = σ(A,B, g) be the seed of this call, and let K∗ = σ(A∗, B∗, g∗) be an arbitrary

point in Seeds then. By using exactly the same arguments of Lemma 4.6.2, the chance that

K = K∗ is at most 2r/2k. Moreover, if δ = 0 and g ̸= g∗ then Pr[K = K∗] = 0. In other

114

words, if g ̸= g∗ then Pr[K = K∗] ≤ 2rδ/2k. By union bound,

Pr[K ∈ Seeds] ≤ 6r/2k + 2|Seeds| · δr/2k ≤ 6r/2k + δr(8i− 2),

because there are most three elements of Seeds using the tweak g. On the other hand, the

chance that K ∈ Coll is at most |Ran(π)|/2k ≤ (Q + 4i − 1)/2ℓ. Hence the chance that

procedure EncodeRow triggers bad to true is at most
q∑

i=1

Q+ 4i− 1

2ℓ
+

6r

2k
+

δr(8i− 2)

2k
≤ Qq + 2q2 + q

2ℓ
+

6rq

2k
+

δ(4rq2 + 2rq)

2k
.

�G1 → G2 : In procedure GarbleRow of game G1, we write S⊕K to π[K], but game G2

drops this assignment. Since Seeds is used to keep track of seeds K that we write to π[K],

game G2 doesn’t modify Seeds in procedure Garble. In addition, we maintain two sets

BadDom and BadRan that are initialized to the empty sets. Each call to GarbleRow will

add K to BadDom and S ⊕K to BadRan. The two games are identical until G2 sets bad,

that is, when A happens to query Π(u) with u ∈ BadDom, or Π−1(v) with v ∈ BadRan.

We now bound the chance that G2 sets bad. In this game, the visible token of the outgoing

wire of each non-XOR gate is also chosen uniformly, independent of R and other visible

token created before. By using exactly the same arguments of the proof of Lemma 4.6.3, the

chance that G2 sets bad is at most (12rQ+12rq)/2k+ δ(12rQq+12rq2)/2k. (In the proof of

Lemma 4.6.3, we let S[1 : k] = Y ⊕Z, where Y is the value of the garbled row corresponding

to K, and Z is the token that S[1 : k] masks. Here, if a = b = 0 then the row is blank, so

let Y = 0k and Z = S[1 : k], which is also a token.)

�G2 → G3 : game G3 drops the re-sampling of S in procedure EncodeRow, so S is always

Π(K) ⊕ K, and the assignment π[K] ← S ⊕ K is redundant, because it writes Π(K) to

π[K]. The two games are identical until G2 sets rnd.

We now bound the chance that G2 sets rnd. Consider the ith call of EncodeRow.

Let K = σ(A,B, g) be the seed of this call, and let K∗ = σ(A∗, B∗, g∗) be an arbitrary

point in Seeds then. By using exactly the same arguments of Lemma 4.6.2, the chance that

K = K∗ is at most 2r/2k. Moreover, if δ = 0 and g ̸= g∗ then Pr[K = K∗] = 0. In other

115

proc Garble(f0, f1, x0, x1)
(n,m, q′, A′, B′, G′)← Φxor(f0)
vq+n−m+1 · · · vq+n ← ev(f0, x0), R� {0, 1}k−11
for i← 1 to n+ q do Vi � {0, 1}k, Ii �Vi ⊕R
for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g)
if G′

g = XOR then Vg ← Va ⊕ Vb, Ig ← Vg ⊕R
else
P [g, 0, 1]� {0, 1}k, P [g, 1, 0]� {0, 1}k, P [g, 1, 1]� {0, 1}k
a← lsb(Va), b← lsb(Vb)
K ← σ(Va, Vb, g), Y ← (Π(K)⊕K)[1 : k]
if lsb(Va) = 0 and lsb(Vb) = 0 then Vg ← Y , Ig �Vg ⊕R
else Vg � {0, 1}k, Ig ← Vg ⊕R, P [g, a, b]← Y ⊕ Vg

for i← n+ q −m+ 1 to n+ q do Xvi
i ← Vi, Xvi

i ← Ii
F ← (n,m, q,A′, B′, P), X ← (V1, . . . , Vn)
d←

(
lsb(X0

n+q−m+1), . . . , lsb(X
0
n+q)

)
return (F,X, d)

Figure 4.6.7: Rewritten game G3 of the proof of Theorem 4.4.3. This game depends solely
on f ′ = Φxor(f0) = Φxor(f1) and the output v = ev(f0, x0) = ev(f1, x1). Procedures Π and Π−1

lazily implement a random permutation and its inverse, respectively.

words, if g ̸= g∗ then Pr[K = K∗] ≤ 2rδ/2k. By union bound,

Pr[K ∈ Seeds] ≤ 2|Seeds|δr/2k ≤ δr(2i− 2),

because there is no element of Seeds using the tweak g. On the other hand, the chance that

K ∈ Coll is at most |Ran(π)|/2k ≤ (Q+ i− 1)/2ℓ. Hence the chance that G2 sets rnd is at

most
q∑

i=1

Q+ i− 1

2ℓ
+

δr(2i− 2)

2k
≤ Qq + 0.5q2 − 0.5q

2ℓ
+

δ(rq2 − rq)

2k
.

Analysis of game G3. We claim that the output of game G3 is independent of the

challenge bit c. Hence Pr[GA3 (k)] = 1/2. To justify the claim above, from f ′ = Φxor(fc)

and the final output v = ev(fc, xc), which is independent of c, we can rewrite the code of

procedure Garble of G3 as shown in Fig. 4.6.7. There, we refer to the visible token of wire i

as Vi, and its invisible counterpart as Ii, omitting the semantics of these tokens. Consider

an arbitrary non-XOR gate g. Each ciphertext in the rows P [g, 0, 1], P [g, 1, 0], and P [g, 1, 1]

is chosen at random, unless the row can be opened by visible tokens. The visible token on

wire g is chosen uniformly at random, unless both visible tokens of g’s incoming wires end

with 0. The invisible token on wire g is obtained by xoring R to the visible counterpart.

116

Summing up,

Advprv.ind,Φxor

GaXR[E] (A, k)

= 2(Pr[GA0 (k)]− Pr[GA3 (k)])

≤ 10qQ+ 20q2 + q

2ℓ
+

36rQ+ 120rq

2k
+

δ(48rQq + 94rq2 + 2q)

2k

≤ 10qQ+ 20q2

2ℓ
+

36rQ+ 123rq

2k
+

δ(48rQq + 94rq2)

2k
.

4.7 Accounting for parameters in Fig. 4.4.1

For completeness, we give an analysis to justify the parameters used in Fig. 4.4.1.

Scheme A1. The σ function is σ(A,B, T) = A⊕B⊕ T . Since σ(0k, 0k, 0k) = σ(1k, 0k, 1k),

it follows that δ = 1. Next, σ(x, 0k, 0k) = σ(0k, x, 0k) = x. As Pr[x� {0, 1}k : x = s] = 1/2k

for any string s ∈ {0, 1}k, the regularity is 1. On the other hand, since Pr[x� {0, 1}k :

σ(0k, x, 0k)⊕ x = 0k] = 1, the strong regularity is the trivial 2k.

Scheme A3. The σ function is σ(A,B, T) = (A ⊕ B) ∥ T , and thus δ = 0. Next,

σ(x, 0k, 0ℓ−k) = σ(0k, x, 0ℓ−k) = x0ℓ−k. As Pr[x� {0, 1}k : x0ℓ−k = s] ≤ 1/2k for any string

s ∈ {0, 1}ℓ, the regularity is 1. On the other hand, since Pr[x� {0, 1}k : σ(0k, x, 0ℓ−k) ⊕

x0ℓ−k = 0ℓ] = 1, the strong regularity is the trivial 2k.

Scheme A2, with D1. The σ function is σ(A,B, T) = 2A⊕ 4B⊕T . Since σ(0k, 0k, 0k) =

σ(A, 0k, 2A) for any A ∈ {0, 1}k, and there exists A ∈ {0, 1}k such that 2A ̸= 0k, it follows

that δ = 1. Let ∗ denote the multiplication operator in GF(2k). Note that f(x) = c ∗ x

is bijective, for any c ∈ GF(2k)\{0}. Note that σ(x, 0k, 0k) = 2 ∗ x, σ(0k, x, 0k) = 4 ∗ x,

σ(0k, 0k, 0k)⊕ x = x, σ(x, 0k, 0k)⊕ x = 3 ∗ x, σ(0k, x, 0k)⊕ x = 5 ∗ x, σ(x, x, 0k)⊕ x = 7 ∗ x,

and σ(x, x, 0k) = 6 ∗ x. Hence both the regularity and strong regularity are 1.

Scheme A2, with D2/D3. Again, δ = 1. We give an analysis for D2; the case of D3 is

similar.

117

• Note that σ(x, 0k, 0k) = x ≪ 1, and σ(0k, x, 0k) = x ≪ 2, and σ(0k, 0k, 0k) ⊕ x = x.

Hence Pr[x� {0, 1}k : σ(x, 0k, 0k) = s] ≤ 2/2k, and Pr[x� {0, 1}k : σ(0k, x, 0k) = s] ≤

4/2k, and Pr[x� {0, 1}k : σ(0k, 0k, 0k)⊕ x = s] = 1/2k, for any s ∈ {0, 1}k.

• We claim that Pr[x� {0, 1}k : σ(x, 0k, 0k) ⊕ x = s] = 1/2k for any s ∈ {0, 1}k. Let

f0(x) = (x≪ 1)⊕ x. To justify this claim, let x = x1 · · · xk. Then

f0(x) = (x1 ⊕ x2)∥ · · · ∥(xk−1 ⊕ xk)∥xk

is bijective. Indeed, given y = y1 · · · yk, we can compute x = x1 · · · xk = f−10 (y) by way

of xk = yk, and recursively, xi = xi+1⊕ yi, for i = k− 1, k− 2, . . . , 1. As x� {0, 1}k, it

follows that σ(x, 0k, 0k)⊕ x = f0(x) is also uniformly distributed over {0, 1}k, and the

claim follows.

• Note that σ(x, x, 0k) = (x ≪ 1) ⊕ (x ≪ 2) = f0(x) ≪ 1. Since f0(x) is a permutation

on {0, 1}k, it follows that Pr[x� {0, 1}k : σ(x, x, 0k) = s] ≤ 2/2k for any s ∈ {0, 1}k.

• We claim that Pr[x� {0, 1}k : σ(0k, x, 0k) ⊕ x = s] = 1/2k for any s ∈ {0, 1}k. Let

f1(x) = (x≪ 2)⊕ x. To justify this, let x = x1 · · · xk. Then

f1(x) = (x1 ⊕ x3)∥ · · · ∥(xk−2 ⊕ xk)∥xk−1∥xk

is bijective. Given y = y1 · · · yk, we can compute x = x1 · · · xk = f−11 (y) by way of

xk = yk, xk−1 = yk−1, and recursively, xi = xi+2 ⊕ yi, for i = k − 2, k − 3, . . . , 1. As

x� {0, 1}k, it follows that σ(0k, x, 0k)⊕x = f1(x) is uniformly distributed over {0, 1}k,

and the claim follows.

• We claim that Pr[x� {0, 1}k : σ(x, x, 0k)⊕x = s] = 1/2k for any s ∈ {0, 1}k. Consider

f2(x) = (x≪ 2)⊕ (x≪ 1)⊕ x. To justify this claim, let x = x1 · · · xk. Then

f2(x) = (x1 ⊕ x2 ⊕ x3)∥ · · · ∥(xk−2 ⊕ xk−1 ⊕ xk)∥(xk−1 ⊕ xk)∥xk

is bijective. Indeed, given y = y1 · · · yk, we can compute x = x1 · · · xk = f−12 (y)

by way of xk = yk, xk−1 = yk−1 ⊕ xk, and recursively, xi = xi+1 ⊕ xi+2 ⊕ yi, for

i = k − 2, k − 3, . . . , 1. As x� {0, 1}k, it follows that σ(x, x, 0k) ⊕ x = f2(x) is also

uniformly distributed over {0, 1}k, and the claim follows.

118

Hence both the regularity and strong regularity are at most 4. On the other hand, note that

Pr[x� {0, 1}k : σ(0k, x, 0k) = 0k] = 4/2k, and thus both the regularity and strong regularity

are exactly 4.

Scheme A2, with D4/D5. Again, δ = 1. We give an analysis for D4; the case of D5 is

similar.

• Note that σ(x, 0k, 0k) = x ≪ 1, and σ(0k, x, 0k) = x ≪ 2, and σ(0k, 0k, 0k) ⊕ x = x.

Hence Pr[x� {0, 1}k : σ(x, 0k, 0k) = s] = 1/2k, and Pr[x� {0, 1}k : σ(0k, x, 0k) = s] =

1/2k, and Pr[x� {0, 1}k : σ(0k, 0k, 0k)⊕ x = s] = 1/2k, for any s ∈ {0, 1}k.

• We claim that Pr[x� {0, 1}k : σ(x, 0k, 0k) ⊕ x = s] ≤ 2/2k for any s ∈ {0, 1}k. Let

g0(x) = (x ≪ 1)⊕ x. To justify this claim, let x = x1 · · · xk. Then

g0(x) = (x1 ⊕ x2)∥ · · · ∥(xk−1 ⊕ xk)∥(xk ⊕ x1) .

Given y = y1 · · · yk, there are at most two pre-images x = x1 · · · xk, since xi = xi−1 ⊕

yi−1, for i ∈ {2, . . . , k}. Hence for any s ∈ {0, 1}k, there are at most two values x such

that σ(x, 0k, 0k) = g0(x) = s, and the claim follows.

• Note that σ(x, x, 0k) = (x ≪ 1) ⊕ (x ≪ 2) = g0(x) ≪ 1. Then Pr[x� {0, 1}k :

σ(x, x, 0k) = s] ≤ 2/2k for any s ∈ {0, 1}k.

• We claim that Pr[x� {0, 1}k : σ(0k, x, 0k) ⊕ x = s] ≤ 4/2k for any s ∈ {0, 1}k. Let

g1(x) = (x ≪ 2)⊕ x. To justify this claim, let x = x1 · · · xk. Then

g1(x) = (x1 ⊕ x3)∥ · · · ∥(xk−2 ⊕ xk)∥(xk−1 ⊕ x1)∥(xk ⊕ x2) .

Given y = y1 · · · yk, there are at most 4 pre-images x = x1 · · · xk, since xi = xi−2⊕ yi−2

for any i ∈ {3, . . . , k}. Hence for any s ∈ {0, 1}k, there are at most four values x such

that σ(x, 0k, 0k) = g1(x) = s, and the claim follows.

• We claim that Pr[x� {0, 1}k : σ(x, x, 0k)⊕x = s] ≤ 4/2k for any s ∈ {0, 1}k. Consider

g2(x) = (x ≪ 2)⊕ (x ≪ 1)⊕ x. Let x = x1 · · · xk. Then

g2(x) = (x1 ⊕ x2 ⊕ x3)∥ · · · ∥(xk−2 ⊕ xk−1 ⊕ xk)∥(xk−1 ⊕ xk ⊕ x1)∥(xk ⊕ x1 ⊕ x2).

Given y = y1 · · · yk, there are at most four pre-images x = x1 · · · xk, as xi = yi−2 ⊕

119

xi−1⊕xi−2, for any i ∈ {3, . . . , k}. So for any s ∈ {0, 1}k, there are at most four values x

such that σ(x, 0k, 0k) = g2(x) = s, and the claim follows.

Hence the regularity is exactly 1 and strong regularity is at most 4.

Scheme A2, with D6/D7. Again, δ = 1. We give an analysis for D6; the case of D7 is

similar. Let x = x1 · · · xk and n = ⌊k/2⌋.

• Note that σ(x, 0k, 0k) = x2 · · · xn0 ∥ xn+2 · · · xk0, and σ(0k, 0k, 0k) ⊕ x = x, and

σ(0k, x, 0k) = x3 · · · xn00 ∥ xn+3 · · · xk00. Hence Pr[x� {0, 1}k : σ(x, 0k, 0k) = s] ≤

4/2k, and Pr[x� {0, 1}k : σ(0k, x, 0k) = s] ≤ 16/2k, and Pr[x� {0, 1}k : σ(0k, 0k, 0k)⊕

x = s] = 1/2k, for any s ∈ {0, 1}k.

• We claim that Pr[x� {0, 1}k : σ(x, 0k, 0k)⊕ x = s] ≤ 1/2k for any s ∈ {0, 1}k. Let

h0(x) = (x1 ⊕ x2)∥ · · · ∥(xn−1 ⊕ xn)∥xn ∥ (xn+1 ⊕ xn+2)∥ · · · ∥(xk−1 ⊕ xk)∥xk .

Given y = y1 · · · yk ∈ S, there is at most one pre-image x = x1 · · · xk, as xi = yi if

i ∈ {n, k}, and xi = xi+1 ⊕ yi otherwise. So for any s ∈ {0, 1}k, there is at most one

value x such that σ(x, 0k, 0k) = h0(x) = s, and the claim follows.

• We claim that Pr[x� {0, 1}k : σ(0k, x, 0k)⊕ x = s] ≤ 1/2k for any s ∈ {0, 1}k. Let

h1(x) = (x1 ⊕ x3)∥ · · · ∥(xn−2 ⊕ xn)∥xn−1∥xn

∥ (xn+1 ⊕ xn+3)∥ · · · ∥(xk−2 ⊕ xk)∥xk−1∥xk .

Given y = y1 · · · yk, there is at most one pre-image x = x1 · · · xk, as xi = yi if i ∈

{n− 1, n, k− 1, k} and xi = xi+2+ yi otherwise. So for any s ∈ {0, 1}k, there is at most

one value x such that σ(x, 0k, 0k) = h1(x) = s, and the claim follows.

• We claim that Pr[x� {0, 1}k : σ(x, x, 0k)⊕ x = s] ≤ 1/2k for any s ∈ {0, 1}k. Let

h2(x) = (x1 ⊕ x2 ⊕ x3)∥ · · · ∥(xn−2 ⊕ xn−1 ⊕ xn)∥(xn−1 ⊕ xn)∥xn

∥ (xn+1 ⊕ xn+2 ⊕ xn+3)∥ · · · ∥(xk−2 ⊕ xk−1 ⊕ xk)∥(xk−1 ⊕ xk)∥xk .

120

Given y = y1 · · · yk, there is at most one pre-image x = x1 · · · xk, since xi = yi if

i ∈ {n, k}, xi = yi⊕xi+1 if i ∈ {n−1, k−1}, and xi = yi⊕xi+1⊕xi+2 otherwise. Hence

for any s ∈ {0, 1}k, there is at most one value x such that σ(x, 0k, 0k) = h2(x) = s, and

the claim follows.

• We claim that Pr[x� {0, 1}k : σ(x, x, 0k) = s] ≤ 4/2k for any s ∈ {0, 1}k. Let

h3(x) = (x2 ⊕ x3)∥ · · · ∥(xn−1 ⊕ xn)∥xn0 ∥ (xn+2 ⊕ xn+3)∥ · · · ∥(xk−1 ⊕ xk)∥xk0 .

Given y = y1 · · · yk, there are at most four pre-images x = x1 · · · xk, since xi = yi−1

if i ∈ {n, k}, xi = yi−1 ⊕ xi+1 if i ∈ {2, . . . , n − 1, n + 1, . . . , k − 1}. Hence for any

s ∈ {0, 1}k, there are at most four values x such that σ(x, 0k, 0k) = h2(x) = s, and the

claim follows.

Hence both the regularity and strong regularity are at most 16.

Scheme A4. The σ function is σ(A,B, T) = (2A⊕ 4B) ∥ T , and thus δ = 0. The analysis

for the regularity and strong regularity is similar to that of scheme A2.

121

Chapter 5

Adaptively Secure Garbling

5.1 Introduction

Overview. The notions we have formalized so far, while still suitable for a variety of

applications, provide only static security, meaning the input x is not allowed to depend on

the garbled circuit F . But some applications, notably one-time programs [45] and secure

outsourcing [37], require adaptive security, where x may depend on F . In such cases Yao’s

technique can be enhanced in ad hoc ways, the resulting protocol then incorporated into the

higher-level application.

In this chapter, we provide a different approach, by investigating the adaptive security

of garbling schemes. We show how adaptively secure garbling schemes support simple so-

lutions for one-time programs and secure outsourcing, with privacy being the goal in the

first case and obliviousness and authenticity the goal in the second. Let’s look at two of the

applications that motivate our work.

Two applications. One-time programs are due to Goldwasser, Kalai, and Rothblum

(GKR) [45]. The authors aim to compile a program into one that can be executed just once,

on an input of the user’s choice. Unachievable in any “standard” model of computation, GKR

assume a model providing what they call one-time memory. Their solution makes crucial use

122

of Yao’s garbled-circuit technique. Recognizing that this does not support adaptive queries,

GKR embellish the method by a technique involving output-masking and n-out-of-n secret

sharing.

In a different direction, secure outsourcing was formalized and investigated by Gennaro,

Gentry, and Parno (GGP) [37]. Here a client transforms a function f into a function F that

is handed to a worker. When, later, the client would like to evaluate f at x (and various such

inputs may arise), he should be able to quickly map x to a garbled input X and give this

to the worker, who will compute and return Y = F (X). The client must be able to quickly

reconstruct from this y = f(x). He should be sure that the correct value was computed—

the computation is verifiable—while the server shouldn’t learn anything significant about x,

including f(x).1 GGP again make use of circuit garbling, and they again realize that they

need something from it—its authenticity—that is a novum for this domain.

Issues. Assuming the existence of a one-way function, GKR [45] claim that their construc-

tion turns a (statically-secure) garbled circuit into a secure one-time program. We point to

a gap in their proof, namely, the absence of a reduction showing that their simulator works

based on the one-way function assumption. By presenting an example of a statically-secure

garbled circuit that, under their transform, yields a program that is not one-time, we also

show that the gap cannot be filled without changing either the construction or the assump-

tion. The problem is that the GKR transform fails to ensure adaptive security of garbled

circuits under the stated assumption.

Lindell and Pinkas (LP) [70] prove static security of a version of Yao’s protocol assuming

a semantically secure encryption scheme satisfying some extra properties (an elusive and

efficiently verifiable range). GGP [37] build a one-time outsourcing scheme from the LP

protocol, claiming to prove its security based on the same assumption as used in LP. Again,

there is a gap in this proof arising from an implicit assumption of adaptive security of the

LP construction.

1This is input privacy. One could go further and ask that the server not learn anything it shouldn’t
about f itself. Our definitions and constructions will encompass this stronger goal.

123

We do not believe these are major problems for either work. In both cases, alternative

ways to establish the the authors’ main results already existed. Goyal, Ishai, Sahai, Venkate-

san and Wadia [46] present an unconditional one-time compiler (no complexity-theoretic

assumption is used at all), while Chung, Kalai and Vadhan [30] present secure outsourcing

schemes based solely on FHE (garbled circuits are not employed). Our interpretation of the

stated gaps is that they are symptoms of something else—a missing abstraction boundary.

The applications we point to motivate the study of adaptive security for garbling schemes,

while the gaps indicate that the issues may be more subtle than recognized.

Definitions. We now discuss our contributions in more depth. We extend the our security

notions for garbling schemes to adaptive ones, considering two flavors of adaptive security.

With coarse-grained adaptive security the input x can depend on the garbled function F

but x itself is atomic, provided all at once. With fine-grained adaptive security not only

may x depend on the garbled function F , but individual bits of x can depend on the “tokens”

the adversary has so-far learned. We will see that coarse-grained adaptive security is what’s

needed for GGP’s approach to secure outsourcing, while fine-grained adaptive security is

what’s needed for GKR’s approach to one-time programs.

Orthogonal to adaptive security’s granularity are the security aims themselves. We again

consider three different notions: privacy, obliviousness, and authenticity. This gives rise to

six new security notions: {prv, obv, aut}× {coarse, fine}. We compactly denote these prv1,

prv2, obv1, obv2, aut1, aut2. Our primary definitions for adaptive secrecy (prv1, prv2, obv1,

obv2) are simulation-based. In Section 5.4 we give indistinguishability-based counterparts

as well. For simplicity, we write prv for prv.sim and obv for obv.sim.

Relations. We explore the provable-security relationships among our definitions. As

expected, the simulation-based definitions imply indistinguishability-based ones (namely,

prv1 ⇒ prv1.ind, prv2 ⇒ prv2.ind, obv1 ⇒ obv1.ind, and obv2 ⇒ obv2.ind). But none of

the converse statements hold. For the static setting, the converse statements do hold as long

as the associated side-information function is efficiently invertible. In contrast, we show that,

124

for adaptive privacy, this condition still won’t guarantee equivalence of simulation-based and

indistinguishability-based notions. (For obliviousness, it is true that obv1.ind ⇒ obv1 and

obv2.ind ⇒ obv2 if Φ is efficiently invertible.) The results are our main reason to focus on

simulation-based definitions for adaptive privacy. Section 5.5 paints a complete picture of the

relations among our basic definitions. Apart from the trivial relations (prv2⇒ prv1⇒ prv,

obv2⇒ obv1⇒ obv, and aut2⇒ aut1 ⇒ aut) nothing implies anything else.

Achieving adaptive security. Basic garbling-scheme constructions [39, 42, 78] either

do not achieve adaptive security or present difficulties in proving adaptive security that we

do not know how to overcome. One could give new constructions and directly prove them

xxx1 or xxx2 secure, for xxx ∈ {prv, obv, aut}. An alternative is to provide generic ways to

transform statically secure garbling schemes to adaptively secure ones. Combined with the

results in Section 3.6, this would yield adaptively-secure garbling schemes.

The aim of the GKR construction was to add adaptive security to statically-secure garbled

circuit constructions. We reformulate it as a transform, OMSS (Output Masking and Secret

Sharing), aiming to turn a prv secure garbling scheme to a prv2 secure one. We show, by

counterexample, that OMSS does not achieve this goal.

To give transforms that work we make two steps, first passing from static security to

coarse-grained adaptive security, and thence to fine-grained adaptive security. We design

these transformations first for privacy (prv-to-prv1, prv1-to-prv2) and then for simultane-

ously achieving all three goals (all-to-all1 and all1-to-all2). Our prv-to-prv1 transform uses

a one-time-padding technique from [46], while our prv1-to-prv2 transform uses the secret-

sharing component of OMSS.

Applications. We treat the two applications above, one-time programs and secure out-

sourcing. We show that adaptive garbling schemes yield these applications easily and directly.

Specifically, we show that a prv2 projective garbling scheme can be turned into a secure one-

time program by simply putting the garbled inputs into the one-time memory. We also show

how to easily turn an obv1+aut1 secure garbling scheme into a secure one-time outsourc-

125

ing scheme. (GGP [37] show how to lift one-time outsourcing schemes to many-time ones

using FHE.) The simplicity of these transformations underscores our tenet that abstracting

garbling schemes and treating adaptive security for them enables modular and rigorous ap-

plications of the garbled-circuit technique. Basing the applications on garbling schemes also

allows instantiations to inherit efficiency features of future schemes.

Applying our prv-to-prv1 and then prv1-to-prv2 transforms to scheme Garble1 in Sec-

tion 3.5 yields a prv2-secure scheme based on any one-way function. Combining this with

the above yields one-time programs based on one-way functions, recovering the claim of

GKR [45]. Similarly, applying our all-to-all1 transform to scheme Garble2 in Section 3.6

yields an obv1+aut1 secure garbling scheme based on a one-way function, and combining

this with the above yields a secure one-time outsourcing scheme based on one-way functions.

Efficiency. Let us say a garbling scheme has short garbled inputs if their length depends

only on the security parameter k, the length n of f ’s input, and the length m of f ’s output.

It does not depend on the length of f . The schemes Garble1 and Garble2, as with all classical

garbled-circuit constructions, have short garbled inputs. But our prv-to-prv1 and all-to-all1

transforms result in long garbled inputs. In the ROM (random-oracle model) we are able to

provide schemes producing short garbled inputs, as illustrated in Fig. 5.1.1. Constructing

an adaptively secure garbling scheme with short garbled inputs under standard assumptions

remains open.2

Short garbled inputs are particularly important for the application to secure outsourcing,

for in their absence the outsourcing scheme may fail to be non-trivial. (Non-trivial means

that the client effort is less than the effort needed to directly compute the function [37].) In

particular, the one-time outsourcing scheme we noted above, derived by applying all-to-all1

to Garble2, fails to be non-trivial. ROM schemes do not fill the gap because of the use

of FHE in upgrading one-time schemes to many-time ones [37]. Thus, a secure and non-

2Intuitively, the underlying encryption appears to need some kind of security against selective-opening
attacks that reveal decryption keys (SOA-K), and this is hard without long keys [12]. However, there is some
hope because full-fledged SOA-K security does not seem to be needed.

126

Transform Model Cost See

prv-to-prv1 standard model |F |+ |d|+ |X| Theorem 5.2.2

prv1-to-prv2 standard model (n+ 1) |X| Theorem 5.2.3

all-to-all1 standard model |F |+|d|+|X|+k Theorem 5.3.1

all1-to-all2 standard model (n+ 1) |X| Theorem 5.3.2

rom-prv-to-prv1 random-oracle model |X|+ k Theorem 5.2.4

rom-prv1-to-prv2 random-oracle model |X|+ nk Theorem 5.2.5

rom-all-to-all1 random-oracle model |X|+ 2k Theorem 5.3.3

rom-all1-to-all2 random-oracle model |X|+ nk Theorem 5.3.4

Figure 5.1.1: Achieving adaptive security. The name of each transform specifies its relevant
property. The word all means that prv, obv, and aut are all upgraded. Column “Cost” specifies the
length of the garbled input in the constructed scheme in terms of the lengths of the input scheme’s
garbled function F , decoding function d, garbled input X, the number of input bits n, and security
parameter k.

trivial instantiation of the GGP method is still lacking. (However, as we have noted before,

non-trivial secure outsourcing may be achieved by entirely different means [30].)

Further related work. Applebaum, Ishai, and Kushilevitz [6] investigate ideas similar

to obliviousness and authenticity. Their approach to obtaining these ends from privacy

can be lifted and formalized in our settings; one could specify transforms prv1-to-all1 and

prv2-to-all2, effectively handling the constructive story “horizontally” instead of “vertically.”

The line of work on randomized encodings that the same authors have been at the center

of provides an alternative to garbling schemes [54] but lacks the granularity to speak of

adaptive security.

Concurrent work by Kamara and Wei (KW) investigates the garbling what they call

structured circuits [60] and, in the process, give definitions somewhat resembling prv1, obv1,

and aut1, although circuit-based, not function-hiding, and not allowing the adversary to

specify the initial function. KW likewise draw motivation from GKR and GGP, indicating

that, in these two settings, the adversary can choose the inputs to the computation as a

function of the garbled circuit, motivating adaptive notions of privacy and unforgeability.

127

proc Garble(f)
b� {0, 1}
if b = 1 then (F, e, d)← Gb(1k, f)
else (F, d)← S(1k,Φ(f), 0)
return (F, d)

proc Input(x) Prv1G,Φ,S
if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else y ← ev(f, x), X ← S(y, 1)
return X

proc Garble(f)
b� {0, 1}; n← f.n; Q← ∅; τ ← ε
if b = 1 then
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else
(F, d)← S(1k,Φ(f), 0)

return (F, d)

proc Input(i, c) Prv2G,Φ,S
if i ̸∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if |Q|=n then
x← x1 · · ·xn; y←ev(f, x); τ ← y

if b = 1 then Xi ← Xxi
i else Xi ← S(τ, i, |Q|)

return Xi

Figure 5.2.1: Adaptive privacy: prv1 and prv2. Games to define the coarse-grained and
fine-grained privacy of G = (Gb,En,De,Ev, ev). Each game starts with Initialize() that samples
a bit b� {0, 1}, and its Finalize(b′) returns the predicate (b = b′).

5.2 Adaptive privacy and one-time programs

In this section we define coarse and fine-grained adaptive privacy for garbling schemes. We

show that some natural approaches to achieve these aims fail. We provide alternatives that

work, and more efficient ones in the ROM. We apply this to get secure one-time programs.

5.2.1 Definitions for adaptive privacy

In the privacy notion from Section 3.2, the adversary is static, in the sense it must commit

to its initial function f and its input x at the same time. Thus the latter is independent

of the garbled function F (and the decoding function d) derived from f . It is natural to

consider stronger privacy notions, ones where the adversary obtains F and then selects x.

Two formulations for this are specified in Fig. 5.2.1. We call these adaptive security. The

notion in the top panel, denoted by prv1, is coarse-grained adaptive security. The notion

in the bottom panel denoted by prv2, is fine-grained adaptive security. This notion is only

applicable for projective garbling schemes.

In detail, let G = (Gb,En,De,Ev, ev) be a garbling scheme and let Φ be a side-information

function. We define two simulation-based notions of privacy via the games Prv1G,Φ,S and

Prv2G,Φ,S of Fig. 5.2.1. Here S, the simulator, is an always-terminating algorithm that

128

maintains state across invocations. An adversary A interacting with any of these games

must make exactly one Garble query. For game Prv1 it is followed by a single Input

query. For game Prv2 it is followed by multiple Input queries. There, the garbling scheme

must be projective. The advantage the adversary gets is defined by

Advprv1,Φ,S
G (A, k) = 2Pr[Prv1AG,Φ,S(k)]− 1

Advprv2,Φ,S
G (A, k) = 2Pr[Prv2AG,Φ,S(k)]− 1 .

For xxx ∈ {prv1, prv2} we say that G is xxx secure with respect to (or over) Φ if for every

PT adversary A there exists a PT simulator S such that Advxxx,Φ,S
G (A, ·) is negligible. We

let GS(xxx,Φ) be the set of all garbling schemes that are xxx secure over Φ.

Let us now explain the two games. For coarse-grained adaptive privacy, we begin by

letting the adversary pick f . Either we garble it to (F, e, d) ← Gb(1k, f) and give the

adversary (F, d); or else we ask the simulator to devise a fake (F, d) based solely on k

and the partial information Φ(f) about f . Only after the adversary has received (F, d) do

we ask it to provide an input x. Corresponding to the two choices we either encode x to

X = En(e, x) or ask the simulator to produce a fake X, assisting it only by providing ev(f, x).

The adversary has to guess if the garbling was real or fake.

Coarse-grained adaptive privacy is arguably not all that adaptive, as the adversary speci-

fies its input x all in one shot. This is unavoidable as long as the encoding function e operates

on x atomically, using (all of) x to generate (all of) X. But if the encoding function e is

projective, then we can dole out the garbled input component-by-component. In a garbling

scheme that enjoys fine-grained adaptive privacy, the adversary may, for example, specify

the second bit x2 of the input x, receive the corresponding token Xx2
2 , then specify the first

bit x1 of x, and so on. Only after the adversary specifies all n bits, one by one, is the

input fully determined. At that point the simulator is handed y, which might be needed for

constructing the final token Xxi
i .

129

5.2.2 The OMSS transform

In the process of constructing one-time programs from garbled circuits, GKR [45] recognize

the need for adaptive privacy of the garbled circuits. Their construction incorporates a

technique to provide it. This technique is easily abstracted to provide, in our terminology,

a transform that aims to convert a projective, prv garbling scheme into a projective, prv2

garbling scheme. Instead of garbling f we pick r� {0, 1}m and garble the circuit g defined

by g(x) = f(x)⊕r for every x ∈ {0, 1}n where n = f.n and m = f.m. Then we secret share r

as r = r1⊕ · · · ⊕ rn and include ri in the i-th token, so that evaluation reconstructs r and it

can be xored back at decoding time to recover ev(f, x) as ev(g, x)⊕r. Intuitively, this should

work because the simulator can garble a dummy constant function with random output s

and does not have to commit to r until it gets the target output value y of f and needs to

provide the last token, at which point it can pick r = s ⊕ y so that the final output is y as

desired [45]. Just the same, we show by counterexample that the OMSS does not work, in

general, to convert a prv secure scheme to a prv2 secure one: we present a prv secure G such

that OMSS[G] is not prv2 secure.3

Now proceeding formally, we associate to circuit-garbling scheme G = (Gb,En,De,Ev,

ev) ∈ GS(proj) the circuit-garbling scheme OMSS[G] = (Gb2,En2,De2,Ev2, ev) ∈ GS(proj)

defined at the top of Fig. 5.2.2. For simplicity we are assuming that the decoding rule d

in G is always vacuous, meaning d = ε. (Recall that we do not need non-trivial d to achieve

privacy, and this lets us stay closer to GKR [45], whose garbled circuits have no analogue of

our decoding rule.) In the code, g(·)← f(·)⊕r means that we construct from f, r a circuit g

such that ev(g, x) = ev(f, x) ⊕ r for all x ∈ {0, 1}f.n. (Note we can do this in such a way

that Φtopo(g) = Φtopo(f).)

The claim under consideration is that if G is prv secure relative to Φ = Φtopo then G2 is

prv2 secure relative to Φ = Φtopo. To prove this, we would need to let A2 be an arbitrary

3 In Section 5.2.7 we extend this to show that the OMSS-based one-time compiler of GKR [45] is not
secure. The underlying technical issues, are, however in our view easier understood in terms of garbling,
divorced from the application to one-time programs.

130

proc Gb2(1
k, f)

n← f.n, r1, . . . , rn � {0, 1}f.m
r ← r1 ⊕ · · · ⊕ rn, g(·)← f(·)⊕ r
(G, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, g)

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i , ri), T
1
i ← (X1

i , ri)
return (G, (T 0

1 , T
1
1 , . . . , T

0
n , T

1
n), ε)

proc En2((T
0
1 , T

1
1 , . . . , T

0
n , T

1
n), x)

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n)

proc Ev2(G, (T1, . . . , Tn))
for i ∈ {1, . . . , n} do (Xi, ri)← Ti

Y ← Ev(G, (X1, . . . , Xn))
r ← r1 ⊕ · · · ⊕ rn
return (Y, r)

proc De2(ε, (Y, r))
return De(ε, Y)⊕ r

proc Gb(1k, g)

(n,m)← (g.n, g.m)
(G′, (Z0

1 , Z
1
1 , . . . , Z

0
n, Z

1
n), ε)�Gb′(1k, g)

for i ∈ {1, . . . , n} do V 0
i , V

1
i � {0, 1}m

v1 · · · vn ← v� {0, 1}n, V � {0, 1}m
if n ≥ k then
V ← ev(g, v)⊕ V v1

1 ⊕ · · · ⊕ V vn
n

for i ∈ {1, . . . , n} do
X0

i ← (Z0
i , V

0
i), X1

i ← (Z1
i , V

1
i)

G← (G′, v, V)
return (G, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), ε)

proc Ev(G, (X1, . . . , Xn))

for i ∈ {1, . . . , n} do (Zi, Vi)← Xi

(G′, v, V)← G
return Ev′(G′, (Z1, . . . , Zn))

proc En((X0
1 , X

1
1 , . . . , X

0
n, X

1
n), x)

x1 · · ·xn ← x
return (Xx1

1 , . . . , Xxn
n)

Figure 5.2.2: OMSS definition (top). Scheme OMSS[G] = (Gb2,En2,De2,Ev2, ev) where G =
(Gb,En,De,Ev, ev). OMSS counterexample (bottom). The garbling scheme G = (Gb,En,De,
Ev, ev) obtained from G ′ = (Gb′,En′,De,Ev′, ev) is prv secure when G ′ is, but OMSS[G] is not prv2
secure. We assume the decoding rule of G ′ is vacuous, a feature inherited by G. We are letting v
denote the bitwise complement of a string v.

PT adversary and build a PT simulator S2 such that Advprv2,Φ,S2
G2 (A2, ·) is negligible. GKR

suggest a plausible strategy for the simulator that, in particular, explains the intuition for

the transform. We present here our understanding of this strategy adapted to our setting.

In its first phase the simulator S2 has input 1k, ϕ, 0 where ϕ = Φ(f), with f being the

query made by the adversary to Garble. Simulator S2 picks s� {0, 1}n and lets fs be the

circuit that has output s on all inputs and Φtopo(fs) = ϕ. It also picks random m-bit strings

s1, . . . , sn and a random input w� {0, 1}n. It lets (G, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, fs)

and returns G to the adversary. In the second phase, when given input τ, i, j, for j ≤ n− 1,

the simulator lets Ti ← (Xwi
i , si) and returns Ti to the adversary as the token for bit i of the

input. In the case that j = n, the simulator obtains (from τ as per our game) the output

131

y = ev(f, x) of the function on input x, the latter defined by the adversary’s queries to

Input. It now resets si = y⊕ s⊕ si⊕ s1⊕ · · · ⊕ sn and returns (Xwi
i , si), so that evaluation

of the garbled function indeed results in output y.

This simulation strategy is intuitive, but trying to prove it correct runs into problems.

We have to show that Advprv2,Φ,S2
G2 (A2, ·) is negligible. We must utilize the assumption of

prv security to do this, which means we must perform a reduction. The only plausible path

towards this is to construct from A2 an adversary A against the prv security of G and then

exploit the existence of a simulator S such that Advprv,Φ,S
G (A, ·) is negligible. However, it

is not clear how to construct A, let alone how its simulator comes into play.

The problem turns out to be more than technical, for we will see that the transform itself

does not work in general. By this we mean that we can exhibit a (projective) circuit-garbling

scheme G = (Gb,En,De,Ev, ev) that is prv secure relative to Φ = Φtopo but the transformed

scheme G2 = OMSS[G] is subject to an attack showing that it is not prv2 secure. This means,

in particular, that the above simulation strategy does not in general work.

To carry this out, we start with an arbitrary projective circuit-garbling scheme G ′ = (Gb′,

En′,De,Ev′, ev) assumed to be prv secure relative to Φ = Φtopo. We then transform it into the

projective circuit-garbling scheme G = (Gb,En,De,Ev, ev) shown at the bottom of Fig. 5.2.2.

The idea is as follows. We choose m-bit random shares V 0
i , V

1
i for every i ≤ n, and distribute

them to the tokens. Next, choose a “poisoned” point v = v1 · · · vn at random, and append it

to the garbled function, making it trivial for an adaptive adversary to query x = v. Since v

is random, a static adversary can guess v with probability only 2−n. To make sure this

probability is negligible in terms of k, we only do the following trick if n ≥ k. Let V be the

encryption of ev(g, v) by using the one-time pad constructed from the shares corresponding

to v, namely, the pad is the checksum of V v1
1 , . . . , V vn

n . Append V to the garble function as

well. So if the adversary queries x = v then it will learn ev(g, v) in addition to ev(g, v); while

if x ̸= v then the shares the adversary receives won’t allow it to decrypt V . The following

proposition says that G continues to be prv secure but an attack shows that OMSS[G] is not

132

prv2 secure. (The proof shows it is in fact not even prv1 secure.)

Proposition 5.2.1. Let ev be the canonical circuit-evaluation function. Assume G ′ = (Gb′,

En′,De,Ev′, ev) ∈ GS(prv,Φtopo)∩GS(proj) and let G = (Gb,En,De,Ev, ev) ∈ GS(proj) be the

garbling scheme shown at the bottom of Fig. 5.2.2. Then (1) G ∈ GS(prv,Φtopo)∩GS(proj),

but (2) OMSS[G] ̸∈ GS(prv2,Φtopo).

Proof. First let us justify (1). Consider an adversary A that attacks G. Assume that the

circuit f in A’s query satisfies f.n ≥ k; otherwise G will inherit the prv security from G ′, as

it only appends to garbled function and each token a random string independent of anything

else. Let the garbled function be (G′, v, V). Unless A manages to query x = v, the same

argument applies and G will again inherit the prv security of G ′. Since v� {0, 1}n, the

chance that x = v is 2−n ≤ 2−k.

Now, we justify (2) via the following attack. Adversary A2(1
k) picks bits R0, R1 � {0, 1},

and lets fR0,R1 be a circuit such that fR0,R1 .n = k, fR0,R1 .m = 1 and ev(fR0,R1 , x) = Rx1

where x1 is the first bit of x. (We note that we construct the circuit in such a way that

the topology is independent of R0, R1 and depends only on k.) It queries fR0,R1 to Garble

to get back (G, ε). It parses (G′, v, V) ← G and v1 · · · vn ← v. Next for i = 1, . . . , n it

queries (i, vi) to Input to get back Ti and lets (Xi, ri) ← Ti and (Zi, Vi) ← Xi. It lets

y ← De2
(
ε,Ev2(G, (T1, . . . , Tn))

)
and y′ ← V ⊕ V1 ⊕ · · · ⊕ Vn and r ← r1 ⊕ · · · ⊕ rn. If

y ⊕ y′ ⊕ r = R0 ⊕R1 then it returns 1 else it returns 0.

Let S2 be any PT simulator and consider game Prv2G2,Φ,S2 . We claim that A2(1
k)

returns 1 with probability 1 if the challenge bit b in the game is 1. This is because in this

case we have y = ev(fR0,R1 , v) and y′ = r ⊕ ev(fR0,R1 , v) so by definition of fR0,R1 we have

y ⊕ y′ ⊕ r = R0 ⊕ R1. Next we claim that A2(1
k) returns 1 with probability at most 1/2 if

the challenge bit b is 0. (We emphasize that this claim is made regardless of the strategy

of the simulator, showing that no simulator could possibly do well.) In the first phase, the

simulator S2 is given 1k,Φtopo(f), 0 as input and can obtain no information on R0 or R1

beyond their length because the topology of fR0,R1 is by construction independent of R0, R1.

133

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f)
ZF� {0, 1}|F |, Zd� {0, 1}|d|
F1 ← F ⊕ ZF, d1 ← d⊕ Zd

e1 ← (e, Zd, ZF)
return (F1, e1, d1)

proc En1(e1, x)
(e, Zd, ZF)← e1, X ← En(e, x)
return (X,Zd, ZF)

proc Ev1(F1, X1)
(X,Zd, ZF)← X1, F ← F1 ⊕ ZF

Y ← Ev(F,X)
return (Y,Zd)

proc De1(d1, Y1)
(Y,Zd)← Y1, d← d1 ⊕ Zd

return De(d, Y)

proc Gb2(1
k, f)

(F, e, d)← Gb1(1
k, f)

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

N ← |En1(e, 0n)|
for i ∈ {1, . . . , n} do
Zi � {0, 1}|X

0
i |, Si � {0, 1}N

Z ← (Z1, . . . , Zn)
Sn ← Z ⊕ S1 ⊕ · · · ⊕ Sn−1

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i ⊕ Zi, Si), T 1
i ← (X1

i ⊕ Zi, Si)

return (F, (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), d)

proc Ev2(F,X2)(
(U1, S1), . . . , (Un, Sn)

)
← X2

Z ← S1 ⊕ · · · ⊕ Sn

(Z1, . . . , Zn)← Z
X ← (U1 ⊕ Z1, . . . , Un ⊕ Zn)
return Ev1(F,X)

proc En2(e2, x)

(T 0
1 , X

1
1 , . . . , T

0
n , X

1
n)← e2

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n)

Figure 5.2.3: Transform prv-to-prv1 (top): Scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1,Φ)
obtained by applying the prv-to-prv1 transform to G = (Gb,En,De,Ev, ev) ∈ GS(prv,Φ). Trans-
form prv1-to-prv2 (bottom): Projective garbling scheme G2 = (Gb2,En2,De1,Ev2, ev) ∈
GS(prv2,Φ) obtained by applying the prv1-to-prv2 transform to projective garbling scheme G1 =
(Gb1,En1,De1,Ev1, ev) ∈ GS(prv1,Φ).

In the second phase, the only useful information that the sender gets is y = ev(fR0,R1 , v).

It thus learns Rv1 but it has no information about R1−v1 and thus the probability that the

y′ ⊕ r computed by the adversary equals y ⊕R0 ⊕R1 is at most 1/2.

GKR had stated their transform only for circuits with boolean output, meaning f.m = 1.

We have accordingly presented our counter-example above for this case.

5.2.3 Achieving prv1 security

We now describe a transform prv-to-prv1 that successfully turns a prv secure circuit garbling

scheme into a prv1 secure one. Combined with established results in Section 3.5, this yields

prv1 secure schemes based on standard assumptions. The idea (cf. [46]) is to use one-time

134

pads to mask F and d, and then append the pads to X. This will ensure that the adversary

learns nothing about F and d until it fully specifies function f and x. Given a (not necessarily

projective) garbling scheme G = (Gb,En,De,Ev, ev), the prv-to-prv1 transform returns the

garbling scheme prv-to-prv1[G] = (Gb1,En1,De1,Ev1, ev) at the top of Fig. 5.2.3. We claim:

Theorem 5.2.2. For any Φ, if G ∈ GS(prv,Φ) then prv-to-prv1[G] ∈ GS(prv1,Φ).

The proof sketch is as follows. Given any PT adversaryA1 against the prv1 security of G1,

we build a PT adversary A against the prv security of G. Now the assumption of prv security

yields a PT simulator S for A such that Advprv,Φ,S
G (A, ·) is negligible. Now we build from S

a PT simulator S1 such that for all k ∈ N we have Advprv1,Φ,S1
G1 (A1, k) ≤ Advprv,Φ,S

G (A, k).

This yields the theorem. In Section 5.6.1 we provide a full proof that shows how to build A

and S1. The idea for the latter is that in its first stage, S1, given (1k, ϕ, 0), returns random

F1 and d1. In the second phase, given y, it lets (F,X, d)�S(1k, ϕ, y), ZF ← F1 ⊕ F, and

Zd ← d1 ⊕ d. It returns (X,Zd, ZF). The formal proof must attend to some pesky issues

connected with the need for the simulator to know what length it must pick for F1 and d1.

Transform prv-to-prv1 does not require the starting scheme G to be projective. However,

it is important that if G is projective, so is prv-to-prv1[G]. Seeing this requires a slight re-

interpretation of certain quantities in the algorithms at the top of Fig. 5.2.3. Specifically, e

will now have the form (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) and Gb1 will let

e1 = ((X0
1 , Zd, ZF), (X

1
1 , Zd, ZF), X

0
2 , X

1
2 , . . . , X

0
n, X

1
n).

Also X in En1 will have the form (X1, . . . , Xn) and En1 will return ((X1, Zd, ZF), X2, . . . , Xn).

A potentially simpler transform of a prv secure garbling scheme G = (Gb,En,De,Ev,

ev) into a prv1 secure garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) is as follows. Algo-

rithm Gb1(1
k, f) lets (F, e, d)�Gb(1k, f) and returns (ε, (e, F, d), ε). Let En1((e, F, d), x) =

(En(e, x), F, d). Let Ev1(ε, (X,F, d)) = (Ev(F,X), d). Let De1(ε, (Y, d)) = De(d, Y). This

works, but the scheme does not meet the non-degeneracy requirement. The prv-to-prv1

transform can be seen as a way to effectively implement this trivial transform while avoiding

degeneracy.

135

5.2.4 Achieving prv2 security

Next we show how to transform a prv1 scheme into a prv2 one. Formally, given a projec-

tive garbling scheme G = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1,Φ), the prv1-to-prv2 transform

returns the projective garbling scheme prv1-to-prv2[G] = (Gb2,En2,De1,Ev2, ev) shown at the

bottom of Fig. 5.2.3. The idea is to mask the garbled input and then use the second part of

GKR’s idea as represented by OMSS, namely secret-share the mask, putting a piece in each

token, so that unless one has all tokens, one learns nothing about the garbled input. The

formal proof of the following is in Section 5.6.2.

Theorem 5.2.3. For any side-information function Φ, if G1 ∈ GS(prv1,Φ) ∩ GS(proj) then

prv1-to-prv2[G1] ∈ GS(prv2,Φ) ∩ GS(proj).

The proof sketch is as follows. We first build, from a given prv2 adversary A2, a prv1

adversary A1, and then, from the simulator S1 for the latter, a simulator S2 for A2. The

prv2 simulator S2 can return random tokens for the first n− 1 bits of the input. Just before

it must provide a token for the very last input bit, it gets the final output y. Now, it can run

the prv1 simulator on y to get the real tokens and create the last piece of the secret mask

and thence its last token so that the shares unmask the real tokens.

5.2.5 Efficient ROM transforms

We say that garbling scheme G = (Gb,En,De,Ev, ev) has short garbled inputs if there is a

polynomial s such that |En(e, x)| ≤ s(k, f.n, f.m) for all k ∈ N, f ∈ {0, 1}∗, (F, e, d) ∈

[Gb(1k, f)], and x ∈ {0, 1}f.n. Let T be a transform that maps a garbling scheme G to a

garbling scheme T[G]. We say that T preserves short garbled inputs if T[G] has short garbled

inputs when G does.

The prv-to-prv1 transform does not preserve short garbled inputs, meaning even if G has

short garbled inputs, prv-to-prv1[G] may not. The prv1-to-prv2 transform preserves short

garbled inputs, but we usually want to apply the two transforms in sequence. We do not

136

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f), R� {0, 1}k
F1 ← F ⊕Hash(|F |, 0 ∥ R)
d1 ← d⊕Hash(|d|, 1 ∥ R)
return (F1, (e,R), d1)

proc En1(e1, x)
(e,R)← e1
return (En(e, x), R)

proc Ev1(F1, X1)
(X,R)← X1, F ← F1 ⊕Hash(|F1|, 0 ∥ R)
Y ← Ev(F,X)
return (Y,R)

proc De1(d1, Y1)
(Y,R)← Y1

d← d1 ⊕Hash(|d1|, 1 ∥ R)
return De(d, Y)

proc Gb2(1
k, f)

(F, e, d)← Gb1(1
k, f)

for i ∈ {1, . . . , n} do Si � {0, 1}k
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e, S ← S1 ⊕ · · · ⊕ Sn

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i ⊕Hash(|X0
i |, 1 ∥ i ∥ S), Si)

T 1
i ← (X1

i ⊕Hash(|X1
i |, 1 ∥ i ∥ S), Si)

return (F, (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), d)

proc Ev2(F, T)

((U1, S1), . . . , (Un, Sn))← T
S ← S1 ⊕ · · · ⊕ Sn

for i ∈ {1, . . . , n} do
Xi ← Ui ⊕Hash(|Ui|, 1 ∥ i ∥ S)

return Ev1(F, (X1, . . . , Xn))

proc En2(e2, x)

(T 0
1 , T

1
1 , . . . , T

0
n , T

1
n)← e2

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n)

Figure 5.2.4: Transform rom-prv-to-prv1 (top): Garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈
GSrom(prv1,Φ) obtained by applying the ROM rom-prv-to-prv1 transform to garbling scheme
G = (Gb,En,De,Ev, ev) ∈ GS(prv,Φ). Transform rom-prv1-to-prv2 (bottom): Projec-
tive garbling scheme G2 = (Gb2,En2,De1,Ev2, ev) ∈ GSrom(prv2,Φ) obtained by applying the
ROM rom-prv1-to-prv2 transform to projective garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈
GS(prv1,Φ). The advantage of these transforms over the ones of Fig. 5.2.3 is that they preserve
short garbled inputs.

know how to fill this gap in the standard model under standard assumptions. We will now

provide a simple way to do it in the ROM (random-oracle model). Recall Section 3.3.4 for

the extension of garbling-scheme privacy in the ROM. For xxx ∈ {prv, prv1, prv2} we let

GSrom(xxx,Φ) be the set of all garbling schemes that are xxx secure over Φ in the ROM.

The rom-prv-to-prv1 transform at the top of Fig. 5.2.4 generates the mask of the prv-to-prv1

transform by applying the RO to a random k-bit seed R, and includes R in the encoding

function and garbled input and output in place of the full mask, thereby saving space. As a

consequence, it preserves short garbled inputs. We claim:

Theorem 5.2.4. If G ∈ GS(prv,Φ) then rom-prv-to-prv1[G] ∈ GSrom(prv1,Φ), for any side-

information function Φ.

The proof is in Section 5.6.3. The idea is standard. The simulator can pick F1, d1 at

137

random just as in the proof of Theorem 5.2.2. Then, once it has F, d, it will pick R at random

and program the RO so that F1 = F⊕Hash(|F |, 0∥R) and d1 = d⊕Hash(|d|, 1∥R). Security

relies on the fact that the probability that the adversary queries (ℓ, w) to Hash, with R being

the suffix of w, prior to receiving R in the garbled input, is negligible.

As with prv-to-prv1, we note that the starting scheme is not assumed projective, but a

suitable re-interpretation of the notation is enough to ensure that if the starting scheme is

projective, so is the constructed one.

Our prv1-to-prv2 already preserves short garbled inputs, but the size of a token in the

constructed scheme is n times the size of a token in the original scheme. The rom-prv-to-prv1

transform at the bottom of Fig. 5.2.4 does a little better, increasing the size of each token by

an additive nk bits regardless of the length of the tokens of the starting scheme. The idea

is again to generate the masks of the prv1-to-prv2 transform by applying the RO to a seed

and then secret-sharing the latter instead of the entire mask. The proof of the following, in

Section 5.6.4, is again standard:

Theorem 5.2.5. For any side-information function Φ, if G1 ∈ GS(prv1,Φ) ∩ GS(proj) then

rom-prv1-to-prv2[G1] ∈ GSrom(prv2,Φ) ∩ GS(proj).

As the statements of Theorems 5.2.4 and 5.2.5 indicate, we are assuming in both cases

that the starting scheme is a standard-model one. This is for simplicity. One can apply

the transform to a ROM scheme. (And, in the case of rom-prv1-to-prv2, are likely to, since

the starting scheme is likely an output of rom-prv-to-prv1.) This can be handled by suitable

“domain separation” of all ROs involved.

For conceptual simplicity we have presented two separate transforms but we note that

one can gain efficiency by going directly from prv to prv2. We would not pick S as in

rom-prv1-to-prv2 but instead apply the secret-sharing directly to the R chosen by the trans-

form rom-prv-to-prv1.

138

5.2.6 “Standard” schemes are not prv2 secure

It is easy to see that prv security does not in general imply prv1 or prv2 security, meaning

that there exist prv secure schemes that are not prv1 (and thus not prv2) secure (cf. Propo-

sition 5.5.1). A more interesting question concerns the adaptive security of “standard”

constructions of garbled circuits, meaning garbling schemes in the Yao style such as the Gar-

ble1 and Garble2 schemes in Sections 3.5 and 3.6 or the scheme of Lindell and Pinkas [70].

These are prv secure. But are they prv1 or prv2 secure? Here we show that they are not

prv2 secure. This is for a fundamental reason, namely that they permit what we call partial

evaluation: if certain output bits depend only on certain input bits, having the tokens for

these input bits (and having the decoding rule, but not the tokens, for other input bits) al-

lows one to compute the corresponding output bits. We will show that any scheme with this

property is prv2 insecure. But the partial-evaluation property is possessed by all schemes

that use the token-based, gate-encryption paradigm of Yao, in particular the ones mentioned

above, and thus our results will imply that these schemes are not prv2 secure. We now pro-

ceed to formalize and prove this claim, defining what it means for a garbling scheme to

permit partial evaluation and then showing that any scheme with this property fails to be

prv2 secure.

Let G = (Gb,En,De,Ev, ev) be a projective circuit-garbling scheme, so that ev is the

canonical circuit-evaluation algorithm, taking as input a circuit f and x ∈ {0, 1}f.n to return

ev(f, x) ∈ {0, 1}f.m. We extend ev to a partial circuit evaluation algorithm ev that takes f

and x ∈ {0, 1,⊥}f.n and returns ev(f, x) ∈ {0, 1,⊥}f.m as follows:

proc ev(f, x)

(n,m, q,A,B,G)← f

for g ← n+ 1 to n+ q do

a← A(g), b← B(g)

if (xa = ⊥ or xb = ⊥) then xg ← ⊥ else xg ← Gg(xa, xb)

return xn+q−m+1 · · ·xn+q

139

Note that ev(f, x) = ev(f, x) if x ∈ {0, 1}f.n. Partial evaluation captures an inherent property

of circuit evaluation, namely the ability to compute a part of the output given only the inputs

on which it depends. For example if the first bit of ev(f, x) depends only on the first two

bits of x, then this first output bit can be computed as the first bit of ev(f, x1x2⊥ · · ·⊥).

We say that G permits partial evaluation of the garbled function if the above prop-

erty is inherited by the garbled-evaluation process. Thus if, as in the above example, the

first bit of ev(f, x) depends only on the first two bits of x, then this first output bit can

be computed given the garbled function F , the tokens Xx1
1 , Xx2

2 and the decoding rule d,

meaning tokens corresponding to the other bits of the input are not necessary. Formally

we say that Ev is a partial garbled-evaluation algorithm for G if for any f ∈ {0, 1}∗, any

(F, (X0
1 , X

1
1 , . . . , X

0
f.n, X

1
f.n), d) ∈ [Gb(1k, f)], and any x ∈ {0, 1,⊥}f.n, if we let X⊥i = ⊥ for

1 ≤ i ≤ f.n, then

De
(
d,Ev(F, (Xx1

1 , . . . , Xxn
n))

)
= ev(f, x) .

In other words, tokens may now take value ⊥, and evaluation of the garbled circuit is still

possible, the result being the corresponding partial evaluation of the circuit. We say that G

permits partial evaluation if it has a PT partial garbled-evaluation algorithm. The following

says this condition implies that G is not prv2 secure:

Proposition 5.2.6. Let G = (Gb,En,De,Ev, ev) be a projective circuit-garbling scheme that

permits partial evaluation. Then G ̸∈ GS(prv2,Φ) for all Φ.

The result is quite strong with regard to side-information, saying the scheme is insecure

for all side-information functions. As we indicated above, standard garbling schemes based

on the Yao paradigm of encrypted gate entries and token propagation do permit partial

evaluation, so this result rules out their prv2 security.

Proof. For k ∈ N let IDk : {0, 1}k+1 → {0, 1}k+1 denote the identity function and let idk

denote a circuit such that idk.n = k + 1, ev(idk, ·) = IDk(·), and ev(idk, x1 · · · xk⊥) =

x1 · · · xk⊥ for every x1, . . . , xk ∈ {0, 1}. Let Ev be the partial garbled-evaluation algorithm

140

associated to G. Consider the following adversary:

adversary A2(1
k), (F, d)← Garble(idk)

x� {0, 1}k+1, x1 · · ·xk+1 ← x

for i ∈ {1, . . . , k} do Xi ← Input(i, xi)

z ← De(d,Ev(F, (X1, . . . , Xk,⊥)))

if z=x1 · · ·xk⊥ then return 1 else return 0

Let S2 be any (even computationally unbounded) simulator. Then for every k ∈ N, letting b

be the challenge bit in game Prv2G2,Φ,S2 , we have

Pr
[
Prv2A2

G,Φ,S2(k) | b = 1
]
= 1 and Pr

[
¬Prv2A2

G,Φ,S2(k) | b = 0
]
≤ 2−k .

The first equation uses the assumption that Ev is a partial garbled-evaluation algorithm.

The second equation is true because S has no information about the input x until the very

last token is requested, and the adversary stops just short of that. Subtracting we have

Advprv2,Φ,S2
G (A2, k) ≥ 1− 2−k ,

which proves the theorem.

5.2.7 One-time programs

Security definition for a one-time compiler. The notion of a one-time program was

put forward by Goldwasser, Kalai, and Rothblum (GKR [45]). The intent is that possession

of a one-time program P for a function f should enable one to evaluate f at any single

value x; but, beyond that, the one-time program should be useless. Unachievable in any

standard model of computation (where possession of P would enable its repeated evaluation

at multiple point), GKR suggest achieving one-time programs in a model of computation

that provides one-time memory—tamper-resistant hardware whose read-once i-th location

returns, on query (i, b) ∈ N×{0, 1}, the string T b
i , immediately thereafter expunging T 1−b

i . A

one-time compiler probabilistically transforms the description of a function f into a one-time

program P and its associated one-time memory T .

For a formal treatment, we begin by specifying two stateful oracles; see Fig. 5.2.5. The

141

proc OTPf (x) proc OTMT (i, b)
if x ̸∈ {0, 1}f.n then return ⊥ (T 0

1 , T
1
1 , . . . , T

0
ℓ , T

1
ℓ)← T

if called then return ⊥ if i ̸∈ [1..ℓ] or usedi or b ̸∈ {0, 1} then return ⊥
called ← true usedi ← true
return evcirc(f, x) return T b

i

Figure 5.2.5: Oracles model one-time programs and one-time memory. Oracle OTP
depends on a string f representing a boolean circuit. Oracle OTM depends on a list of strings T .

first, OTPf , formalizes the desired behavior of a one-time program for f . Here f will now

be regarded as a string, not a function, but this string represents a circuit computing a

function evcirc(f) : {0, 1}f.n → {0, 1}f.m; we write evcirc for the canonical circuit-evaluation

function. The agent calling out to OTPf provides x and, on the first query, it gets evcirc(f, x).

Subsequent queries return nothing. On the right-hand side of Fig. 5.2.5 we similarly define

an oracle OTMT , this to model possession of a one-time-memory system. Given a list of ℓ

pairs of strings (establish some convention so that every string T is regarded as denoting a

list of ℓ pairs of strings, for some ℓ ∈ N), the oracle returns at most one string from each

pair satisfying each request.

Elaborating on GKR, we now define a one-time compiler as a pair of probabilistic algo-

rithms Π = (Co,Ex) (for compile and execute). Algorithm Co, on input 1k and a string f ,

produces a pair (P, T) ← Co(1k, f) where P (the one-time program) is a string and T (the

one-time-memory) encodes a list of 2ℓ strings, for some ℓ. Algorithm Ex, on input of strings P

and x, and given access to an oracle O, returns a string y ← ExO(P, x). We require the fol-

lowing correctness condition of Π = (Co,Ex): if (P, T) ← Co(1k, f) and x ∈ {0, 1}f.n then

ExOTMT (·,·)(P, x) = evcirc(f, x).

The security of Π = (Co,Ex) will be relative to a side-information function Φ; the value

ϕ = Φ(f) captures the information about f that P is allowed to reveal.4 So fix a one-time

compiler Π = (Co,Ex), an adversary A, a security parameter k, and a string f . (1) Consider

the distribution RealΠ,A,f (k) determined by the following experiment: first, sample (P, T)←
4For example, we might have Φ(f) = Φsize(f) = (f.n, f.m, f.q), the number of inputs, outputs, and

gates; or Φ(f) = Φtopo(f) = f−, the topology of f ; or Φ(f) = (f.n, f.m, u(f.q)) for some monotonic u like
u(q) = 106⌈10−6q⌉.

142

Co(1k, f); then, run AOTMT (·)(1k, P) and output whatever A outputs. (2) Alternatively, fix

a one-time compiler Π = (Co,Ex), a side-information function Φ, a simulator S, a security

parameter k, and a string f . Consider the distribution FakeΠ,Φ,S,f (k) determined by the

following experiment: run SOTPf (·)(1k,Φ(f)) and output whatever S outputs. For D an

algorithm and Π, Φ, A, S, and k as above, let

Advotc
Π,Φ,A,S,D(k) = Pr[(f, σ)← D(1k); v ← RealΠ,A,f (k) : D(σ, v)⇒ 1]−

Pr[(f, σ)← D(1k); v ← FakeΠ,Φ,S,f (k) : D(σ, v)⇒ 1]

One-time compiler Π is said to be (OTC-) secure with respect to side-information function Φ

if for any PPT adversaryA there is a PPT simulator S such that for all PPT distinguishersD,

function Advotc
Π,Φ,A,S,D(k) is negligible.

Discussion. Let us briefly talk through the definition. The distinguisher D selects f and is

presented with a string drawn from one of two worlds. In the first world, the distinguisher is

given the output (equivalently, the view) of an adversary A who has the garbled program P

for f and its associated one-time memory. Using the execution procedure Ex the adversary

could compute evcirc(f, x), if it so wishes, but it is not compelled to do so. In the second

world, the distinguisher is given output produced by a simulator S. That simulator has

no one-time memory; it has only the side-information Φ(f) about f and an ideal one-time

program for f . In a protocol we deem secure, no matter what the adversary does, there will

be a simulator such that the two views described will be computationally close.

To arrive at an achievable notion of security, one must allow that information beyond the

function’s value at x to be leaked; minimally, information on the size of the circuit will be

revealed. Indeed the construction of GKR leaks more—it divulges the topology of a circuit

computing f . Again a side-information function Φ comes into play, acting as a “knob”

controlling just what may be learned of f .

Constructing an OTC from a garbling scheme. A projective circuit-garbling

143

scheme G = (Gb,En,De,Ev, ev) can be turned into a one-time compiler Π = (Co,Ex) in a nat-

ural way: let OTC[G] = (Co,Ex) be defined as follows. (1) Co(1k, f): let (F, e, d) ← Gb(f)

and return (P, T) where P = (F, d) and T = e. (2) ExO(P, x): Let (F, d) ← P , let

x1 · · · xn ← x, query oracle O on (1, x1), . . . , (n, xn) to obtain X1, . . . , Xn, respectively, and

return De(d,Ev(F,X)) with X = (X1, . . . , Xn). The straightforwardness of the construction

and its trivial proof are, we believe, points in our favor, evidence of our claim that the

garbling-scheme abstraction and appropriate security notions for it engender applications

in direct, simple and less error-prone ways. A concrete one-time compiler may be obtained

from any prv-secure (projective) garbling scheme by (1) using our prv-to-prv1 transform to

go from the prv garbling scheme to a prv1 one (2) using our prv1-to-prv2 transform to go

from the prv1 scheme to a prv2 one, and (3) applying Theorem 5.2.7.

Theorem 5.2.7. If G is a prv2-secure projective scheme over Φ then OTC[G] is OTC-secure

over Φ.

Proof. Let S ′ be a simulator to which G is prv2 secure. Fix an adversary A and dis-

tinguisher D. Consider the following simulator S. On input 1k and ϕ = Φ(f), it gets

(F, d)← S ′(1k, ϕ, 0), initializes Q = ∅ and τ = ⊥, and then runs A(1k, (F, d)). Let n = f.n.

Whenever A queries (i, b), the simulator S proceeds as follows:

if i ̸∈ {1, . . . , n}\Q then return ⊥

Q← Q ∪ {i}, xi ← b

if |Q| = n then x← x1 · · ·xn, τ ← y ← OTPf (x)

Xi ← S ′(τ, i, |Q|)

and then returns Xi to A. Finally, S outputs whatever A outputs. Consider the follow-

ing adversary B(1k) attacking G. It runs D(1k). When the latter queries f , the former

queries f to its oracle Garble to get (F, d). It then runs A(1k, (F, d)). For each query

(i, b) of A, the adversary B queries (i, b) to its oracle Input, and gives the answer to A.

Finally, B returns A’s output to D. If the challenge bit c of game Prv2G,Φ,S′ is 1 then B is giv-

ing D the distribution RealOTC[G],A,f (k). Otherwise, if c = 0 then B gives D the distribution

144

FakeOTC[G],Φ,S,f (k). Hence Advprv2,Φ,S′
G (B, k) = Advotc

OTC[G],Φ,A,S,D(k).

Analysis of OTC[OMSS[G]]. The claim of GKR [45], in our language, is that if G is a prv-

secure (projective) garbling scheme then OTC[OMSS[G]] is otc-secure. Proposition 5.2.1,

showing that OMSS[G] need not be prv2-secure, does not refute this claim, for the prv2

security of OMSS[G], while sufficient to establish the claim, may not be necessary. Here we

accordingly refute the claim by extending the counter-example of Proposition 5.2.1 to give

a projective, prv-secure garbling scheme G for which OTC[OMSS[G]] is shown by attack to

not be otc-secure. (That is, we show that this transform will yield programs that are not

one-time.)

This example does not contradict the updated claim of [44], made in response to our work,

of a OTC based on exponentially-hard one-way functions. The latter would correspond, in

our language, to the claim that OTC[OMSS[G]] is a secure OTC if G has exponential prv-

security.

Proceeding to the counter-example, recall that in the proof of Proposition 5.2.1, we

gave a garbling scheme G = (Gb,En,De,Ev, ev) such that G ∈ GS(prv,Φtopo) but G2 =

OMSS[G] ̸∈ GS(prv2,Φtopo). Now we show that OTC[G2] is otc-insecure, by demonstrating

an attack. Distinguisher D(1k) picks R0, R1 � {0, 1}, and lets fR0,R1 denote a circuit such

that fR0,R1 .n = k, fR0,R1 .m = 1 and ev(fR0,R1 , x) = Rx1 where x1 is the first bit of x. (We

construct the circuit in such a way that the topology is independent of R0, R1 and depends

only on k.) It queries fR0,R1 , and then outputs 1 only if the oracle’s answer is R0 ⊕R1.

The adversaryA(1k) is given (G, ε), and parses (G′, v, V)← G and v1 · · · vn ← v. Next for

every i ≤ n, it queries (i, vi) to Input to get back Ti and lets (Xi, ri)← Ti and (Zi, Vi)← Xi.

It lets y ← De2(ε,Ev2(G, (T1, . . . , Tn))) and y′ ← V ⊕ V1⊕ · · · ⊕ Vn and r ← r1⊕ · · · ⊕ rn. It

then returns y⊕ y′⊕ r. Note that y = ev(fR0,R1 , v) and y′ = r⊕ ev(fR0,R1 , v) so by definition

of fR0,R1 we have y ⊕ y′ ⊕ r = R0 ⊕ R1. Hence given RealΠ,A,f (k), the distinguisher always

outputs 1.

Let S be any (even computationally unbounded) simulator. It is given only 1k,Φtopo(f)

145

as input and can obtain no information on R0 or R1 beyond their length because the topology

of fR0,R1 is by construction independent of R0, R1. The simulator is given oracle access to

OTPfR0,R1
and can obtain either R0 or R1 but not both. Since R0 is independent of R0⊕R1,

and so is R1, the probability that the simulator can output R0 ⊕ R1 is 1/2. Hence, given

FakeΠ,Φ,S,f (k), the distinguisher outputs 1 with probability 1/2.

5.3 Obliviousness, authenticity and application to se-

cure outsourcing

We define obliviousness and authenticity, both with either the coarse-grained or fine-grained

adaptivity. We show how to achieve these goals, in combination with adaptive privacy, via

generic transforms and in the standard model. We then give more efficient transforms for

the ROM model. Finally we apply this to obtain extremely simple and modular designs,

and security proofs, for verifiable outsourcing schemes based on the paradigm of GGP [37].

5.3.1 Definitions for adaptive obliviousness and authenticity

Obliviousness. We add two new definitions, to incorporate either coarse-grained or

fine-grained adaptive security. See the two top panels of Fig. 5.3.1. Fine-grained adaptive

security continues to require that G be projective. The games used for defining obliviousness

closely mirror their privacy counterparts. The first important difference is that the adversary

does not get the decoding function d. The second important difference is that the simulator

must do without y = ev(f, x). For a garbling scheme G, side-information Φ, simulator S,

adversary A, and security parameter k ∈ N, let Advobv1,Φ,S
G (A, k) = 2Pr[Obv1AG,Φ,S(k)]− 1,

and Advobv2,Φ,S
G (A, k) = 2Pr[Obv2AG,Φ,S(k)] − 1. Garbling scheme G is obv1 secure with

respect to Φ if for every PPT A there exists a simulator S such that Advobv1,Φ,S
G (A, k) is

negligible. We similarly define obv2 security. For xxx ∈ {obv1, obv2} we let GS(xxx,Φ)

146

proc Garble(f)

b� {0, 1}
if b = 1 then (F, e, d)← Gb(1k, f)
else F ← S(1k,Φ(f), 0)
return F

proc Input(x) Obv1G,Φ,S

if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else X ← S(1)
return X

proc Garble(f)

b� {0, 1}; n← f.n; Q← ∅; σ ← ε
if b = 1 then
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else F ← S(1k,Φ(f), 0)
return F

proc Input(i, c) Obv2G,Φ,S

if i ̸∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if b = 1 then Xi ← Xxi

i

else Xi ← S(i, |Q|)
return Xi

proc Garble(f)

(F, e, d)← Gb(1k, f)
return F

proc Input(x) Aut1G

if x ̸∈ {0, 1}f.n then return ⊥
X ← En(e, x)
return X

proc Garble(f)

n← f.n; Q← ∅; σ ← ε
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

return F

proc Input(i, c) Aut2G

if i ̸∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}, Xi ← Xxi

i

if |Q| = n then X ← (X1, . . . , Xn)
return Xi

Figure 5.3.1: Obliviousness (top). Games for defining obv1 and obv2 security of G = (Gb,
En,De,Ev, ev). For each game, Initialize() samples b� {0, 1} and Finalize(b′) returns (b = b′).
Authenticity (bottom). Games for defining aut1 and aut2 security of G = (Gb,En,De,Ev, ev).
Procedure Finalize(Y) of each game returns 0 if x ̸∈ {0, 1}f.n, otherwise it returns (De(d, Y) ̸= ⊥
and Y ̸= Ev(F,X)).

denote the set of all garbling schemes that are xxx secure over Φ.

Authenticity. Fig. 5.3.1 also formalizes the games underlying two definitions of authentic-

ity, capturing an adversary’s inability to create from F and X a garbled output Y ̸= F (X)

that will be deemed authentic. The static definition is strengthened either to allow the

adversary to specify x subsequent to obtaining F , or, stronger, the bits of x are provided

one-by-one, each corresponding token then issued. For the second case, game Aut2, the

garbling scheme must once again be projective. For a garbling scheme G, adversary A,

and security parameter k ∈ N, we let Advaut1
G (A, k) = Pr[Aut1AG (k)], and Advaut2

G (A, k) =

Pr[Aut2AG (k)]. Garbling scheme G is aut1 secure if Advaut1
G (A, k) is negligible for every

PPT A. We similarly define aut2 security. For xxx ∈ {aut1, aut2} we let GS(xxx) denote

147

the set of all garbling schemes that are xxx secure.

5.3.2 Achieving adaptive obliviousness and authenticity

Achieving obv1 and aut1. It is tempting to think that the prv-to-prv1 operator in

Fig. 5.2.3 will also promote xxx security, with xxx ∈ {obv, aut}, to xxx1 security. However, a

second glance reveals that prv-to-prv1 does not promote aut to aut1, as the following counter-

example illustrates. Let G = (Gb,En,De,Ev, ev) be a garbling scheme that is aut secure.

Consider G ′ = (Gb′,En,De′,Ev, ev) defined as follows. On input (1k, f), the algorithm Gb′ cre-

ates (F, e, d)← Gb(1k, f), and then returns (F, e, 1 ∥ d). On input (d ′, Y), the algorithm De′

parses d ′ = b ∥ d, and outputs De(d, Y) if b = 1, and outputs 1 otherwise. The scheme G ′

inherits aut security from G. The scheme G1 = prv-to-prv1[G ′] = (Gb1,En1,De1,Ev1, ev) is

not even aut secure. An adversary can attack G1 as follows. First, query an arbitrary cir-

cuit f and input x ∈ {0, 1}f.n to receive (F1, X1). Let X1 = (X,Zd, ZF). Then, output

Y = (1, Zd). Let d1 be the decoding function used to authenticate Y . Then d1⊕Zd = 1 ∥ d,

and d1 ⊕ Zd = 0 ∥ d. Hence De1(d1, Y) = 1, and the adversary wins with advantage 1.

We now show how to change prv-to-prv1 to an operator all-to-all1 that promotes any

xxx ∈ {prv, obv, aut} to being xxx1 secure. The insecurity of the prv-to-prv1 operator

arises because the adversary can forge a fake Zd, where Zd is the one-time pad masking

the decoding function d. To prevent this, we choose K� {0, 1}k, and append FK(Zd) to the

garbled input X, where F : {0, 1}k × {0, 1}∗ → {0, 1}k is a PRF. The decoding function will

be (Zd ⊕ d,K). See Fig. 5.3.2. The proof of the following is in Section 5.6.5.

Theorem 5.3.1. (1) For any side-information function Φ and any xxx ∈ {prv, obv}, if G ∈

GS(xxx,Φ) then all-to-all1[G] ∈ GS(xxx1,Φ) (2) If G ∈ GS(aut) then all-to-all1[G] ∈ GS(aut1)

(3) If G ∈ GS(proj) then all-to-all1[G] ∈ GS(proj).

Achieving obv2 and aut2. The transform to promote coarse-grained to fine-grained

security is unchanged; we let all1-to-all2 = prv1-to-prv2 be the transform at the bottom of

148

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f)
ZF� {0, 1}|F |, Zd� {0, 1}|d|
F1 ← F ⊕ ZF, K� {0, 1}k, d1 ← (d⊕ Zd,K)
tag← FK(Zd), e1 ← (e, Zd, ZF, tag)
return (F1, e1, d1)

proc En1(e1, x)
(e, Zd, ZF, tag)← e1
return (En(e, x), Zd, ZF, tag)

proc Ev1(F1, X1)
(X,Zd, ZF, tag)← X1, F ← F1 ⊕ ZF

Y ← Ev(F,X)
return (Y,Zd, tag)

proc De1(d1, Y1)
(Y,Zd, tag)← Y1

(D,K)← d1, d← D ⊕ Zd

if tag ̸= FK(Zd) then return ⊥
return De(d, Y)

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f)
R� {0, 1}k, K� {0, 1}k
F1 ← F ⊕Hash(|F |, 0 ∥ R)
D ← d⊕Hash(|d|, 1 ∥ R)
tag← Hash(k,K ∥ R), d1 ← (D,K)
return (F1, (e,R, tag), d1)

proc En1(e1, x)
(e,R, tag)← e1
return (En(e, x), R, tag)

proc Ev1(F1, X1)
(X,R, tag)← X1

F ← F1 ⊕Hash(|F1|, 0 ∥ R)
Y ← Ev(F,X)
return (Y,R, tag)

proc De1(d1, Y1)
(Y,R, tag)← Y1, (D,K)← d1
d← D ⊕Hash(|D|, 1 ∥ R)
if Hash(|K|,K ∥ R) ̸= tag then
return ⊥

return De(d, Y)

Figure 5.3.2: Transform all-to-all1 (top): Scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1,Φ) ∩
GS(obv1,Φ)∩GS(aut1) obtained from scheme G = (Gb,En,De,Ev, ev) ∈ GS(prv,Φ)∩GS(obv,Φ)∩
GS(aut). The transform uses a PRF F : {0, 1}k × {0, 1}∗ → {0, 1}k. Transform rom-all-to-all1
(bottom): Garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1,Φ) ∩ GS(obv1,Φ) ∩ GS(aut1)
obtained by applying the ROM rom-all-to-all1 transform to garbling scheme G = (Gb,En,De,Ev,
ev) ∈ GS(prv,Φ)∩GS(obv,Φ)∩GS(aut). It makes use of an RO-modeled Hash. The advantage of
the bottom transform over the top one is that it preserves short garbled inputs.

Fig. 5.2.3. We claim it has additional features captured by the following, whose proof is in

Section 5.6.6.

Theorem 5.3.2. (1) For any side-information function Φ and any xxx ∈ {prv, obv}, if

G1 ∈ GS(xxx1,Φ) ∩ GS(proj) then all1-to-all2[G1] ∈ GS(xxx2,Φ) ∩ GS(proj) (2) If G1 ∈

GS(aut1) ∩ GS(proj) then all1-to-all2[G1] ∈ GS(aut2) ∩ GS(proj).

149

5.3.3 Efficient ROM transforms

Again, the all-to-all1 transform does not preserve short garbled inputs. We give the transform

rom-all-to-all1 in the ROM to fill the gap. The same attack to break the aut1 security of

all-to-all1 can be used to show that rom-prv-to-prv1 is inadequate to handle authenticity as

well. The rom-all-to-all1 transform at the bottom of Fig. 5.3.2 generates the mask of the

all-to-all1 transform by applying the RO to a random k-bit seed R, and includes R in the

encoding rule and garbled input and output in place of the full mask, thereby saving space.

As a consequence, it preserves short garbled inputs. Instead of using a PRF FK : {0, 1}∗ →

{0, 1}k, we call Hash(k,K ∥ ·). For each xxx ∈ {obv, obv1, obv2}, let GSrom(xxx,Φ) be

the set of all garbling schemes that are xxx secure over Φ in the ROM. Likewise, for each

xxx ∈ {aut, aut1, aut2}, let GSrom(xxx) be the set of all garbling schemes that are xxx secure

in the ROM. We claim:

Theorem 5.3.3. (1) For any side-information function Φ and any xxx ∈ {prv, obv}, if

G ∈ GS(xxx,Φ) then rom-all-to-all1[G] ∈ GSrom(xxx1,Φ), and (2) If G ∈ GS(aut) then

rom-all-to-all1[G] ∈ GSrom(aut).

The proof is in Section 5.6.7. We note that the starting scheme is not assumed projective,

but a suitable re-interpretation of the notation is enough to ensure that if the starting scheme

is projective, so is the constructed one.

The ROM transform to promote coarse-grained to to fine-grained security is unchanged;

we let rom-all1-to-all2 = rom-prv1-to-prv2 be the transform at the bottom of Fig. 5.2.4. We

claim the following theorem; the proof is in Section 5.6.8

Theorem 5.3.4. (1) For any Φ and any xxx ∈ {prv, obv}: If G1 ∈ GS(xxx1,Φ) ∩ GS(proj)

then scheme rom-all1-to-all2[G1] ∈ GSrom(xxx2,Φ) ∩ GS(proj), and (2) If G1 ∈ GSrom(aut1) ∩

GS(proj) then scheme rom-all1-to-all2[G1] ∈ GSrom(aut2) ∩ GS(proj).

150

5.3.4 Application to secure outsourcing

Definitions. An outsourcing scheme Π = (Gen, Inp,Out,Comp, ev) is a tuple of PT

algorithms that, intuitively, will be run partly on a client and partly on a server. Generation

algorithm Gen is run by the client on input of the unary encoding 1k and a string f describing

the function ev(f, ·) : {0, 1}f.n → {0, 1}f.m to be evaluated (so that ev, like in a garbling

scheme, is a deterministic evaluation algorithm) to get back a public key pk that is sent to

the server and a secret key sk that is kept by the client. Algorithm Inp is run by the client

on input pk , sk and x ∈ {0, 1}f.n to return a garbled input X that is sent to the server.

Associated state information St is preserved by the client. Algorithm Comp is run by the

server on input pk , X to get a garbled output Y that is returned to the client. The latter

runs deterministic algorithm Out on pk , sk , Y, St to get back y ∈ {0, 1}f.n∪{⊥}. Correctness

requires that for all k ∈ N, all f ∈ {0, 1}∗, and all x ∈ {0, 1}f.n, if (pk , sk) ← Gen(1k, f),

(X, St) ← Inp(pk , sk , x), Y ← Comp(pk , X), and y ← Out(pk , sk , Y, St), then y = ev(f, x).

Our syntax is the same as that of GGP [37] except for distinguishing between functions and

their descriptions, as represented the addition of ev to the list.

The games OSVFΠ and OSPRΠ,Φ,Sos of Fig. 5.3.3 are used to define verifiability and pri-

vacy of an outsourcing scheme Π = (Gen, Inp,Out,Comp, ev), where Φ is a side-information

function and Sos is a simulator. In both games, the adversary is allowed only one GetPK

query, and this must be its first oracle query. For adversaries Aos and Bos, we define

Advosvf
Π (Aos, k) = Pr[OSVFAos

Π (k)] and Advospr,Φ,Sos
Π (Bos, k) = 2Pr[OSPRBosΠ,Φ,Sos(k)]− 1. We

say that Π is verifiable if Advosvf
Π (Aos, ·) is negligible for all PT adversaries Aos. We say

that Π is private over Φ if for all PT adversaries Bos there is a PT simulator Sos (that main-

tains state across invocations) such that Advospr,Φ,Sos
Π (Aos, ·) is negligible. An adversary is

said to be one-time if it makes only one Input query. We say that Π is one-time verifiable if

Advosvf
Π (Aos, ·) is negligible for all PT one-time adversaries Aos. We say that Π is one-time

private over Φ if for all PT one-time adversaries Bos there is a PT simulator Sos such that

Advospr,Φ,Sos
Π (Aos, ·) is negligible.

151

proc GetPK(f) OSVFΠ

(pk , sk)← Gen(1k, f), i← 0
return pk

proc Input(x)
if x ̸∈ {0, 1}f.n then return ⊥
i← i+ 1, xi ← x
(Xi,St i)← Inp(pk , sk , x)
return Xi

proc Finalize(Y, j)
if j ̸∈ {1, . . . , i} then return false
y ← Out(pk , sk , Y,Stj)
return (y ̸∈ {ev(f, xj),⊥})

proc GetPK(f) OSPRΠ,Φ,Sos

c� {0, 1}
if c = 1 then (pk , sk)← Gen(1k, f)
else pk ← Sos(1k,Φ(f), 0)
return pk

proc Input(x)
if x ̸∈ {0, 1}f.n then return ⊥
if c = 1 then (X,St)← Inp(pk , sk , x)
else X ← Sos(1)
return X

proc Finalize(c′)
return (c = c′)

Gen(1k, f)
(F, e, d)← Gb(1k, f)
return (F, (e, d))

Inp(F, (e, d), x)
X ← En(e, x)
return (X, ε)

Comp(F,X)
Y ← Ev(F,X)
return Y

Out(F, (e, d), Y,St)
y ← De(d, Y)
return y

Figure 5.3.3: Games to define the verifiability (OSVF) (top left) and privacy (OSPR) (top right)
of outsourcing scheme Π = (Gen, Inp,Out,Comp, ev), and the outsourcing scheme Π[G] = (Gen, Inp,
Out,Comp, ev) (bottom) constructed from garbling scheme G = (Gb,En,De,Ev, ev) .

Our verifiability definition coincides with that of GGP [37] but our privacy definition is

stronger: it requires not just “input privacy” (concealing each input x) but, also, privacy

of the function f (relative to Φ). (As in our garbling definitions this is subject to Φ(f)

being revealed). Also, while GGP use an indistinguishability-style formalization, we use a

simulation-style one, as this is stronger for some side-information functions.

To be “interesting” the work of the client in an outsourcing scheme should be less than

the work required to compute the function directly, for otherwise outsourcing is not buying

anything. An outsourcing scheme is said to be non-trivial if this condition is met.

Achieving one-time security. GGP show how to use FHE to turn any one-time ver-

ifiable and private outsourcing scheme into a fully verifiable and private one. This allows

us to focus on designing the former. We show how a garbling scheme that is both aut1

and obv1 secure immediately implies a one-time verifiable and private outsourcing scheme.

The construction, given in Fig. 5.3.3, is very direct, and the proof is trivial. These points

reinforce our claim that the garbling scheme abstraction and adaptive security may be easily

used in applications.

152

Theorem 5.3.5. If G ∈ GS(obv1,Φ) ∩ GS(aut1) then outsourcing scheme Π[G] is one-time

verifiable and also one-time private over Φ.

Proof. Let Aos be a PT one-time adversary attacking the verifiability of Π[G]. We construct

another PT adversary Ags such that Advosvf
Π[G](Aos, k) ≤ Advaut1

G (Ags, k) for all k ∈ N, which

proves the first claim in the theorem. AdversaryAgs(1
k) runsAos(1

k), answering theGetPK

query via Garble and the (single) Input query via Input. When Aos halts with output

Y, j, adversary Ags outputs Y .

Let Bos be a PT one-time adversary attacking the privacy of Π[G]. We construct another

PT adversary Bgs as follows. Adversary Bgs(1k) runs Bos(1k), answering the GetPK query

via Garble and the (single) Input query via Input. When Bos halts with output c′,

adversary Bgs outputs c′. By the assumption that G ∈ GS(obv1,Φ) there is PT simulator

Sgs such that Adv
obv1,Φ,Sgs
G (Bgs, ·) is negligible. Let Sos ≡ Sgs. Then Advospr,Φ,Sos

Π[G] (Bos, k) ≤

Adv
obv1,Φ,Sgs
G (Bgs, k) for all k ∈ N, which proves the second claim in the theorem.

A benefit of our modular approach is that we may use any obv1 + aut1 garbling scheme

as a starting point while GGP were tied to the scheme of [70]. However, the latter scheme

is not adaptively secure, which brings us to our next point.

Discussion. GGP give a proof that their outsourcing scheme is one-time verifiable as-

suming the encryption scheme underlying the garbled-circuit construction of Lindell and

Pinkas (LP) [70] has semantic security, and elusive and verifiable range. However, their

proof has a gap. Quoting [37, p. 12 of Aug 2010 ePrint version]: “For any two values x, x′

with f(x) = f(x′), the security of Yao’s protocol implies that no efficient player P2 can dis-

tinguish if x or x′ was used.” This claim is correct if both x and x′ are chosen independently

of the randomness in the garbled circuit. But in their setting, the string x is chosen after

the adversary sees the garbled circuit, and the security proof given by LP no longer applies.

GGP’s proof effectively only shows that the garbled circuit construction of LP is (in

our language, if cast as a garbling scheme) aut secure. But we show in Proposition 5.5.5

153

that aut security does not always imply aut1 security. One may try to give a new proof

that the LP garbling scheme satisfies aut1 security. However, this seems to be difficult.

Intuitively, an adaptive attack on the garbling scheme allows the adversary to mount a

key-revealing selective-opening (SOA-K) attack on the underlying encryption scheme. But

SOA-K secure encryption is notoriously hard to achieve [12] and not achieved by standard

encryption schemes. The only known way to achieve it is via non-committing encryption [24,

28, 32], which is only possible with keys as long as the total number of bits of message ever

encrypted [79], making the outsourcing scheme fail to be non-trivial.

This brings us to another discussion of non-triviality. The obv1 + aut1 secure scheme

obtained via our all-to-all1 transform has long garbled inputs, so the one-time verifiable

outsourcing scheme yielded by Theorem 5.3.5, while secure, is not non-trivial. Our ROM

transforms yield an ROM obv1 + aut1 secure scheme with short garbled inputs and thence

a non-trivial one-time outsourcing scheme but the FHE-based method of GGP of lifting it

to a many-time scheme does not work in the ROM. Finding a obv1 + aut1 secure garbling

scheme with short garbled inputs in the standard model under standard assumptions is an

open problem. This means that right now we know of no correct way to instantiate GPP’s

construction to get a non-trivial and proven secure outsourcing scheme in the standard model,

based on standard assumptions. We think Theorem 5.3.5 is still useful because it can be

used at any point such a scheme emerges. (Indeed, an ongoing work of Bellare, Hoang, and

Keelveedhi [15] gives an obv2/aut2-secure garbling scheme by defining a new assumption on

keyed hash functions.) All this again is an indication of the subtleties and hidden challenges

underlying adaptive security of garbled circuits that seem to have been overlooked in the

literature.

154

proc Garble(f0, f1) Prv1IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
(F, e, d)← Gb(1k, fb)
return (F, d)

proc Input(x0, x1)
if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
if ev(f0, x0) ̸= ev(f1, x1) then return ⊥
return En(e, xb)

proc Garble(f0, f1) Prv2IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
n← f0.n, Q← ∅
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, fb)

return (F, d)

proc Input(i, c0, c1)
if Φ(f0) ̸= Φ(f1) then return ⊥
if i ̸∈ {1, . . . , n} \Q then return ⊥
x0,i ← c0, x1,i ← c1, Q← Q ∪ {i}
if |Q|=n then
x0 ← x0,1 · · ·x0,n, x1 ← x1,1 · · ·x1,n

return X
xb,i

i

proc Finalize(b′)

if Φ(f0) = Φ(f1) and |Q| = n then
return

(
(b = b′) ∧ (ev(f0, x0) = ev(f1, x1))

)
else return (b = b′)

proc Garble(f0, f1) Obv1IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
(F, e, d)← Gb(1k, fb)
return F

proc Input(x0, x1)
if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
return En(e, xb)

proc Garble(f0, f1) Obv2IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
n← f0.n, Q← ∅
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, fb)

return F

proc Input(i, c0, c1)
if Φ(f0) ̸= Φ(f1) then return ⊥
if i ̸∈ {1, . . . , n} \Q then return ⊥
x0,i ← c0, x1,i ← c1, Q← Q ∪ {i}
return X

xb,i

i

Figure 5.4.1: Indistinguishability-based privacy notions. Games to define the ind-based
coarse-grained and fine-grained adaptive security of G = (Gb,En,De,Ev, ev). In each game,
Initialize() samples b� {0, 1}, and when Finalize(b′) is unspecified, it returns (b = b′).

5.4 Indistinguishability-based definitions

We define the indistinguishability-based counterparts of our prv1, prv2, obv1, and obv2 def-

initions in Fig. 5.4.1; the prv2.ind and obv2.ind again require garbling schemes to be pro-

jective. Let G = (Gb,En,De,Ev, ev) be a garbling scheme and let Φ be a side-information

function. The prv1.ind advantage of an adversary A is defined by Advprv1.ind,Φ
G (A, k) =

2Pr[Prv1IndAG,Φ(k)]−1. For any xxx ∈ {prv2.ind, obv1.ind, obv2.ind}, define Advxxx,Φ
G (A, k)

similarly. We say that G is xxx secure over Φ if Advxxx,Φ
G (A, k) is negligible, for every

PT adversary A. Let GS(xxx,Φ) be the set of all garbling schemes that are xxx se-

155

cure over Φ. Below, we will explore the relations between ind-based and sim-based no-

tions, as illustrated in Fig. 5.4.2. It is obvious that prv2.ind ⇒ prv1.ind ⇒ prv.ind and

obv2.ind⇒ obv1.ind⇒ obv.ind.

Discussion. Defining prv2.ind requires care, and merits some discussion. Consider a

natural variant prv2.ind.bad in which procedure Finalize(b′) of game Prv2IndG,Φ returns

(b = b′) ∧ (Φ(f0) = Φ(f1)) ∧ (|Q| = n) ∧ ((ev(f0, x0) = ev(f1, x1)),

requiring the adversary to fully specify its input strings x0 and x1 and get no credit if it only

gives, say, the first bits of x0 and x1, and makes its guess. Doing so would severely limit the

adversary’s choice of querying (i, c0, c1) to the Input oracle, because it needs to make sure

that the bits c0 and c1 can end up making strings x0 and x1 satisfying ev(f0, x0) = ev(f1, x1).

In contrast, for prv2.ind security, if the adversary does not fully specify x0 and x1 then the

bits c0 and c1 can be arbitrary, and the adversary will not be “giving up” on the game.

We now show that in fact, prv2.ind.bad is “wrong”, insofar as it doesn’t imply prv1.ind.

Fix a length-preserving permutation P : {0, 1}∗ → {0, 1}∗ that is one-way : for every PT

adversary A, the advantage

Advow
P (A, k) = Pr[x← {0, 1}k; x′ ← A(P (x)) : x′ = x]

is negligible. For every f, x ∈ {0, 1}∗, let Φ(f) = (f.n, f.m, |f |), and let evP (f, x) =

P (b ∥ x), where b is the last bit of f . Consider the following projective garbling scheme

G = (Gb,En,De,Ev, evP). Let Gb(1k, f) = (b, e, ε), where b is the last bit of f , n = f.n,

and e is the 2n-bit vector (0, 1, . . . , 0, 1). Let En(e, x) = x, Ev(b, x) = P (b ∥ x), and

De(ε, y) = y. Let an (even computationally-unbounded) adversaryA attack the prv2.ind.bad

security of G. Assume that A eventually produces (f0, f1, x0, x1) satisfying Φ(f0) = Φ(f1)

and evP (f0, x0) = evP (f1, x1); otherwise A’s advantage is 0. Since P is a permutation,

evP (f0, x0) = evP (f1, x1) implies that x0 = x1 and the last bits of f0 and f1 are equal, and

156

prv
prv.indif (φ, ev) EI

prv2

prv1
prv1.ind

prv2.ind

obv
obv.indif φ EI

obv2

obv1
obv1.ind

obv2.ind

if φ EI

if φ EI

aut

aut2

aut1

Figure 5.4.2: Relations among security notions. A solid arrow is an implication; an if-labeled
arrow, a conditional implication. Besides the implications given by the arrows and those inferred
from them, any two notions are separated.

consequently, A’s advantage is still 0. On the other hand, consider the following adversary B

attacking the prv1.ind security of G. It queries (0, 1) to the Garble oracle to receive the

answer b. It then outputs b without querying the Input oracle, and wins with advantage 1.

Relations among privacy notions. The following says that, as expected, prv1 security

always implies prv1.ind security.

Proposition 5.4.1. GS(prv1,Φ) ⊆ GS(prv1.ind,Φ) for any PT Φ.

Proof. Consider a scheme G = (Gb,En,De,Ev, ev) ∈ GS(prv1,Φ). We want to show that

G ∈ GS(prv1.ind,Φ). Let A be an adversary attacking the prv1.ind security of G over Φ.

We construct a PT prv1-adversary B as follows. Let B(1k) runs A(1k). When the latter

makes its query f0, f1 to Garble, adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1). Else it picks

a bit a at random and queries fa to its own Garble oracle to get back (F, d) and returns

this to A. For the next query (x0, x1) of A, the adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1)

or {x0, x1} ̸⊆ {0, 1}f0.n or ev(f0, x0) ̸= ev(f1, x1). Else it queries xa to its own Input oracle

to get X and returns this to A. The latter now returns a bit b′. Adversary B returns 1 only

if b′ = a. Then for any S we have

Pr
[
Prv1BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advprv1.ind,Φ

G (A, k)

Pr
[
¬Prv1BG,Φ,S | b = 0

]
=

1

2

157

where b denotes the challenge bit in game Prv1G,Φ,S . The second claim is true since S has the

same input regardless of a, and thus whatever A receives is independent of a. Subtracting,

we obtain

Advprv1.ind,Φ
G (A, k) ≤ 2 ·Advprv1,Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is

negligible as well.

The following says that prv2 security always implies prv2.ind security.

Proposition 5.4.2. GS(prv2,Φ) ⊆ GS(prv2.ind,Φ) for any PT Φ.

Proof. Consider a scheme G = (Gb,En,De,Ev, ev) ∈ GS(prv2,Φ). We want to show that

G ∈ GS(prv2.ind,Φ). Let A be an adversary attacking the prv2.ind security of G over Φ.

We construct a PT prv2-adversary B as follows. Let B(1k) runs A(1k). When the latter

makes its query f0, f1 to Garble, adversary B returns ⊥ to A, and also returns ⊥ to A’s

subsequent Input queries, if Φ(f0) ̸= Φ(f1). Else it picks a bit a at random and queries fa

to its own Garble oracle to get back (F, d) and returns this to A. Then, for each query

(i, c0, c1) of A, the adversary B queries (i, ca) to its own Input oracle and returns the

resulting token Xi to A. The latter now returns a bit b′. Let x0 and x1 be the input strings

resulting from the Input queries of A. If Φ(f0) = Φ(f1) and A makes its guess without fully

specifying x0 and x1, then B returns 1 only if b′ = a. Otherwise, B returns 1 only if b′ = a

and ev(f0, x0) = ev(f1, x1). Then for any S we have

Pr
[
Prv2BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advprv2.ind,Φ

G (A, k)

Pr
[
¬Prv2BG,Φ,S | b = 0

]
=

1

2

where b denotes the challenge bit in game Prv2G,Φ,S . The second claim is true since S has the

same input regardless of a, and thus whatever A receives is independent of a. Subtracting,

158

we see that

Advprv2.ind,Φ
G (A, k) ≤ 2 ·Advprv2,Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is

negligible as well.

Recall that for garbling schemes (Gb,En,De,Ev, ev) with (Φ, ev) efficiently invertible,

prv.ind security over Φ implies prv security over Φ. But analogous claims do not hold for

adaptive privacy. Below, we will show that, prv2.ind security does not imply prv1 security

even when (Φ, ev) is efficiently invertible.

Let P : {0, 1}∗ → {0, 1}∗ be a length-preserving permutation. Recall that P has a

hard-core predicate h : {0, 1}∗ → {0, 1} if advantage

2Pr[x� {0, 1}k; b← A(P (x)) : b = h(x)]− 1

is negligible for every PPT adversary A. Starting from any one-way permutation, one can

construct another one-way permutation with a hard-core predicate, by the Goldreich-Levin

construction [40].

In Proposition 5.4.3, for any string f ∈ {0, 1}∗, we let f.n = f.m = |f |, and let

ev∗(f, x) = f , for any x ∈ {0, 1}|f |. Define Φ∗(f) = |f | for all f ∈ {0, 1}∗. We note that

(Φ∗, ev∗) is efficiently invertible.

Proposition 5.4.3. GS(prv2.ind,Φ∗) ∩ GS(ev∗) ̸⊆ GS(prv1,Φ∗), assuming the existence of

a one-way, length-preserving permutation P : {0, 1}∗ → {0, 1}∗.

Proof. We build a projective scheme G = (Gb,En,De,Ev, ev∗) so that G ∈ GS(prv2.ind,Φ∗)∩

GS(ev∗) but G ̸∈ GS(prv1,Φ∗). Let h : {0, 1}∗ → {0, 1} be a hard-core predicate of P . On

input (1k, f), algorithm Gb samples r1, . . . , rn � {0, 1}k and creates

F = (P (r1), P (r2), . . . , P (rn), S ⊕ f),

where n = |f | and S = h(r1)∥ · · · ∥h(rn). It then picks S1, . . . , Sn � {0, 1}kn, lets e =

159

(S1, S1, . . . , Sn, Sn) and d = (r1∥ · · · ∥rn)⊕S1⊕ · · · ⊕Sn, and returns (F, e, d). Algorithm En

is defined, as the scheme G is projective. Let Ev be the identity. Finally, on input d and

Y = (F,X), algorithm De parsesX = (S1, . . . , Sn) and F = (s1, . . . , sn, U). It then computes

r1∥ · · · ∥rn = d⊕ S1 ⊕ · · · ⊕ Sn, where k = |s1| and each string ri has length k. If P (ri) = si

for all i ≤ n then it returns f = U ⊕ S, where S = h(r1)∥ · · · ∥h(rn), otherwise it returns ⊥.

Consider an adversary A attacking the prv2.ind security of G. Without loss of generality,

assume that A queries (f0, f1) such that Φ∗(f0) = Φ∗(f1). If f0 = f1 then the advantage of A

will be 0, no matter how it queries oracle Input, so assume that f0 ̸= f1. If A fully specifies

its input strings x0 and x1 then ev∗(f0, x0) ̸= ev∗(f1, x1), and A’s advantage is again 0.

Otherwise, if A does not fully specify its input strings, then the strings Si it obtains from

oracle Input are independent random strings, so A gains nothing from querying Input.

Then, A’s advantage is negligible, since h is a hard-core predicate of P .

Next, consider the following adversary B(1k) attacking the prv1 security of G. It chooses

f � {0, 1} and queries f to its Garble oracle to get answer (F, d). It then queries 0 to

oracle Input to receive answer X. It returns 1 only if De(d,Ev(F,X)) = f and F = (s, U),

with |s| = k and |U | = 1. If the challenge bit is 1 then B’s guess is always correct. Suppose

that the challenge bit is 0. Fix a computationally unbounded simulator S. The simulator

does not know if f is 0 or 1 until the last query, and thus f is independent of F and d. Let

F = (s, U). Since P is permutation, r = P−1(s) is uniquely defined, and thus h(r) is also

independent of f . Then f ̸= De(d,Ev(F,X)) = U ⊕ h(r) with probability 1/2, no matter

how the simulator chooses X. Thus, B’s guess is correct with probability at least 1/2. Hence

Advprv1,Φ∗,S
G (B, k) ≥ 1/2.

Relations among obliviousness notions. Next we consider relations for oblivious-

ness notions. The following says that obv1 security always implies obv1.ind security, and

conversely if Φ is efficiently invertible.

Proposition 5.4.4. For any PT Φ: (1) GS(obv1,Φ) ⊆ GS(obv1.ind,Φ), and (2) If Φ is

160

efficiently invertible then GS(obv1.ind,Φ) ⊆ GS(obv1,Φ).

Proof. For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(obv1,Φ). We want to show that

G ∈ GS(obv1.ind,Φ). Let A be an adversary attacking the obv1.ind security of G over Φ.

We construct a PT obv1-adversary B as follows. Let B(1k) runs A(1k). When the latter

makes its query f0, f1 to Garble, adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1). Else it

picks a bit a at random and queries fa to its own Garble oracle to get back F and returns

this to A. For the next query (x0, x1) of A, the adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1)

or {x0, x1} ̸⊆ {0, 1}f0.n. Else it queries xa to its own Input oracle to get X and returns this

to A. The latter now returns a bit b′. Adversary B returns 1 only if b′ = a. Then for any S

we have

Pr
[
Obv1BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advobv1.ind,Φ

G (A, k)

Pr
[
Obv1BG,Φ,S | b = 0

]
=

1

2

where b denotes the challenge bit in game Obv1G,Φ,S . Subtracting, we see that

Advobv1.ind,Φ
G (A, k) ≤ 2 ·Advobv1,Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is

negligible as well.

For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(obv1.ind,Φ) and let M be a Φ-inverter.

We want to show that G ∈ GS(obv1,Φ). Let B be a PT adversary attacking the obv1-

security of G over Φ. We define a simulator S that on input (1k, ϕ, 0), lets f ←M(ϕ) then

(F, e, d)← Gb(1k, f), and returns F . For the next query, the simulator chooses x� {0, 1}f.n

and then answers X = En(e, x). We define adversary A(1k) to run B(1k). When the latter

makes its query f1 to Garble, adversary A lets f0 ← M(Φ(f1)) and then queries f0, f1 to

its own Garble oracle to get back F , which it returns to B. When receiving x1 on the

161

next query, if x1 ̸∈ {0, 1}f1.n then A returns ⊥ to B. Else it chooses x0� {0, 1}f0.n, queries

(x0, x1) to its Input oracle, and returns the answer X to B. When the latter outputs a bit b′

and halts, so does A. Then

Pr
[
Obv1IndAG,Φ | b = 1

]
= Pr

[
Obv1BG,Φ,S | c = 1

]
Pr

[
¬Obv1IndAG,Φ | b = 0

]
= Pr

[
¬Obv1BG,Φ,S | c = 0

]
where b and c denote the challenge bit in game ObvIndG,Φ and Obv1G,Φ,S respectively. Sub-

tracting, we get

Advobv1,Φ,S
G (B, k) ≤ Advobv1.ind,Φ

G (A, k) .

But the RHS is negligible by assumption, hence the LHS is as well.

The following says that obv2 security always implies obv2.ind security, and conversely if Φ

is efficiently invertible.

Proposition 5.4.5. For any PT Φ: (1) GS(obv2,Φ) ⊆ GS(obv2.ind,Φ), and (2) If Φ is

efficiently invertible then GS(obv2.ind,Φ) ⊆ GS(obv2,Φ).

Proof. For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(obv2,Φ). We want to show that

G ∈ GS(obv2.ind,Φ). Let A be an adversary attacking the obv2.ind security of G over Φ.

We construct a PT obv2-adversary B as follows. Let B(1k) runs A(1k). When the latter

makes its query f0, f1 to Garble, adversary B returns ⊥ to A, and also returns ⊥ to A’s

subsequent Input queries, if Φ(f0) ̸= Φ(f1). Else it picks a bit a at random and queries fa to

its own Garble oracle to get back F and returns this to A. Then, for each query (i, c0, c1)

of A, the adversary B queries (i, ca) to its own Input oracle and returns the resulting

token Xi to A. The latter now returns a bit b′. Adversary B returns 1 only if b′ = a. Then

162

for any S we have

Pr
[
Obv2BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advobv2.ind,Φ

G (A, k)

Pr
[
¬Obv2BG,Φ,S | b = 0

]
=

1

2

where b denotes the challenge bit in game Obv2G,Φ,S . Subtracting, we get

Advobv2.ind,Φ
G (A, k) ≤ 2 ·Advobv2,Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is

negligible as well.

For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(obv2.ind,Φ) and let M be a Φ-inverter.

We want to show that G ∈ GS(obv2,Φ). Let B be a PT adversary attacking the obv2

security of G over Φ. We define a simulator S that, on input (1k, ϕ, 0), lets f ←M(ϕ) then

(F, e, d) ← Gb(1k, f), where M is a Φ-inverter, and returns F . For each subsequent query

(i, j), the simulator lets e = (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), chooses xi� {0, 1}, and answers Xxi

i .

We define adversary A(1k) to run B(1k). When the latter makes its query f1 to Garble,

adversary A lets f0 ← M(Φ(f1)) and then queries f0, f1 to its own Garble oracle to get

back F , which it returns to B. Then, for each query (i, c1) of B, the adversary A chooses

c0� {0, 1} and queries (i, c0, c1) to its Input oracle, and returns the resulting token Xi to B.

When the latter outputs a bit b′ and halts, so does A. Then

Pr
[
Obv2IndAG,Φ | b = 1

]
= Pr

[
Obv2BG,Φ,S | c = 1

]
Pr

[
¬Obv2IndAG,Φ | b = 0

]
= Pr

[
¬Obv2BG,Φ,S | c = 0

]
where b and c denote the challenge bit in game Obv2IndG,Φ and Obv2G,Φ,S respectively.

Subtracting, we get

Advobv2,Φ,S
G (B, k) ≤ Advobv2.ind,Φ

G (A, k) .

163

But the RHS is negligible by assumption, hence the LHS is as well.

Equivalence in idealized models. In idealized models, define obv1.prom as obv1

security in which the simulator too has oracle access to the ideal primitives, and obv1.nprom

as obv1 security in which the simulator doesn’t have oracle access to the ideal primitives,

and will itself reply to the oracle queries made by the adversary. Define obv2.prom and

obv2.nprom likewise. Then, if Φ is efficiently invertible then (1) obv1.prom and obv1.nprom

are equivalent, and (2) obv2.prom and obv2.nprom are equivalent.

For part (1), it suffices to show that obv1.prom security implies obv1.nprom security, since

the latter obviously implies the former. By part (1) of Proposition 5.4.4, obv1.prom security

implies obv1 security. The proof still holds, even if the simulator S uses the programmability

power to collude with the obv1.prom adversary B to fool the obv1.ind adversary A, because

what (S,B) receives is independent of A’s challenge bit. Because Φ is efficiently invertible,

by part (2) of Proposition 5.4.4, obv1.ind security then implies obv1.nprom security.

For part (2), it suffices to show that obv2.prom security implies obv2.nprom security, since

the latter obviously implies the former. By part (1) of Proposition 5.4.5, obv2.prom security

implies obv2 security. The proof still holds, even if the simulator S uses the programmability

power to collude with the obv2.prom adversary B to fool the obv2.ind adversary A, because

what (S,B) receives is independent of A’s challenge bit. Because Φ is efficiently invertible,

by part (2) of Proposition 5.4.5, obv2.ind security then implies obv2.nprom security.

5.5 Separations

For each xxx ∈ {prv, obv, aut}, it is obvious that xxx2 security implies xxx1 security and

that xxx1 security implies xxx security. We want to prove that the converse directions are

not true, even for projective schemes. Moreover, there are separations among our notions

of privacy, obliviousness, and authenticity. The relations among notions are illustrated in

Fig. 5.4.2. Recall that evcirc names the canonical circuit-evaluation procedure.

164

We will use the scheme described by the top box of Fig. 5.5.1 to separate xxx and xxx1

notions. The idea is as follows. We append 0k to the garbled input (which is harmless),

except for the case that x is a “poisoned” point s. There, we instead append a k-bit random

string t (which is unlikely to be 0k). We choose s at random so that a static adversary is

unlikely to query x = s, but then include s to the garbled function, making it is trivial for

an adaptive adversary to choose x = s. To make sure that the probability to query x = s

(that is 2−n) is negligible in terms of k, we only perform this trick if n ≥ k. To deal with

authenticity, we append the same string t above to d. Procedure De′(d′, Y ′) parses d′ as

(d, t) and Y ′ as (Y, u); it returns 1 if u = t, and returns De(d, Y) otherwise. This creates a

loophole for an adversary to win, if it can query (Y, t) for some string Y . However, an aut

adversary is unlikely to know t, because t is disclosed only if it queries the poisoned point

x = s.

To separate xxx1 and xxx2 notions, we will use the scheme described by the bottom box

of Fig. 5.5.1. The idea is as follows. We choose a random (n− 1)-bit string V = v1 · · · vn−1,

and want to “poison” points x ∈ {V ∥ 0, V ∥ 1}. In order to do this, we choose (n− 1)-bit

strings V 0
i , V

1
i for every i ≤ n, and append V b

i to token Xb
i . We let V 0

n = V , making it

trivial for a projective adaptive adversary to choose a poisoned point, by querying (n, 0) to

its Input oracle. Since V is random, an xxx1 adversary on the other hand may know V

only after it already specifies its x, which is too late to query x ∈ {V ∥0, V ∥1}. Of course

it can try to guess V , but then its chance of success is only 21−n. To make sure that the

probability above is negligible in terms of k, we only perform this trick if n > k. The other

strings V b
i are independently random (so it’s harmless to append to the tokens), except that

the checksum of V v1
1 , . . . , V

vn−1

n−1 (the shares corresponding to a poisoned point) is a random

string t whose last bit is 0. To deal with authenticity, we append the same string t above

to d. Procedure De′(d′, Y ′) parses d′ as (d, t) and Y ′ as (Y, u); it returns 1 if u = t, and

returns De(d, Y) otherwise. This creates a loophole for an adversary to win, if it can query

(Y, t) for some string Y . However, an aut1 adversary is unlikely to know t, because t is

165

disclosed only if it queries a poisoned point x ∈ {V ∥0, V ∥1}.

Separations among privacy notions. The following says that prv security does not

imply prv1 security, even for circuit-garbling schemes.

Proposition 5.5.1. GS(prv,Φtopo) ∩ GS(evcirc) ̸⊆ GS(prv1,Φtopo), assuming that LHS is

nonempty.

Proof. By assumption, GS(prv,Φtopo) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev, evcirc)

be a member of this set. Consider the scheme G ′ = (Gb′,En′,De′,Ev′, evcirc) described by the

top box of Fig. 5.5.1. We claim that G ′ ∈ GS(prv,Φtopo)∩GS(evcirc) but G ′ ̸∈ GS(prv1,Φtopo).

Let us justify the first claim. Consider an adversary A that attacks G ′. Assume that the

circuit f in A’s query satisfies n = f.n ≥ k; otherwise G ′ will inherit the prv security from G,

as it only appends the garbled function and decoding function with independent random

strings, and the garbled input with 0k. Unless A can query x = s, where s is the random

string appended to the garbled function, the same argument applies and G ′ will again inherit

the prv security from G. However, since s� {0, 1}n, the chance that x = s is 2−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the prv1 security

of G ′. Choose two circuits f0, f1 of the same topology such that f0.n = k and f0(x) = f1(x)

for every x ∈ {0, 1}k. Pick b� {0, 1} and query f = fb to the oracle Garble. When

receiving answer (F, s), query x = xb to Input to receive (X, u), where x0 = s and x1 = s.

Return 1 only if the last bit of u coincides with b. If the challenge bit is 1 then the adversary

answers 0 only if b = 1 and the last bit of t is 0, which happens with probability 1/4.

Otherwise, since the simulator’s inputs are independent of b, the chance that the last bit

of u is b is exactly 1/2. Hence the adversary wins with advantage 1/4.

Similarly, the following proposition says that, even for projective circuit-garbling schemes,

prv1 security doesn’t imply prv2 security.

Proposition 5.5.2. GS(prv1,Φtopo)∩GS(proj)∩GS(evcirc) ̸⊆ GS(prv2,Φtopo), assuming that

LHS is nonempty.

166

proc Gb′(1k, f)
(F, e, d)← Gb(1k, f)
t� {0, 1}k, s� {0, 1}f.n
return

(
(F, s), (e, s, t), (d, t)

)
proc Ev′(F ′, X ′)
(F, s)← F ′, (X,u)← X ′

return
(
Ev(F,X), ε

) proc En′(e′, x)
(e, s, t)← e′, n← |s|
k ← |t|, X ← En(e, x)
if x = s and n ≥ k then
return (X, t)

return (X, 0k)

proc Gb′(1k, f)
n← f.n, (F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)← Gb(1k, f)

for i ∈ {1, . . . , n} do V 0
i , V

1
i � {0, 1}n−1

v1 · · · vn−1 ← V 0
n , t� {0, 1}n−20

if n > k then V v1
1 ← t⊕ V v2

2 ⊕ · · · ⊕ V
vn−1

n−1

else t� {0, 1}k−1

e′ ←
(
(X0

1 , V
0
1), (X

1
1 , V

1
1), . . . , (X

0
n, V

0
n), (X

1
n, V

1
n)

)
return (F, e′, (d, t))

proc En′(e′, x)

(T 1
0 , T

1
1 , . . . , T

0
n , T

1
n)← e′

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n)

proc Ev′(F,X ′)(
(X1, V1), . . . , (Xn, Vn)

)
← X ′

(X1, . . . , Xn)← X
return

(
Ev(F,X), ε

)
Figure 5.5.1: In both schemes (top and bottom), procedure De′(d′, Y ′) parses d′ as (d, t) and Y ′

as (Y, u). It returns 1 if u = t, and returns De(d, Y) otherwise. Separation between xxx and
xxx1 notions (top): Garbling scheme G ′ = (Gb′,En′,De′,Ev′, evcirc) that separates prv and prv1
(and, later, separates obv from obv1 , and aut from aut1). It is built from a circuit-garbling scheme
G = (Gb,En,De,Ev, evcirc). Separation between xxx1 and xxx2 notions (bottom): Garbling
scheme G ′ = (Gb′,En′,De′,Ev′, evcirc) that separates prv1 from prv2 (and later separates obv1 from
obv2, and aut1 from aut2 too). It is built from a projective circuit-garbling scheme G = (Gb,En,
De,Ev, evcirc).

Proof. By assumption, GS(prv1,Φtopo)∩GS(proj)∩GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,

Ev, evcirc) be a member of this set. Consider the garbling scheme G ′ = (Gb′,En′,De′,Ev′, evcirc)

described by the bottom box of Fig. 5.5.1. We claim that G ′ ∈ GS(prv1,Φtopo) ∩ GS(proj) ∩

GS(evcirc) but G ′ ̸∈ GS(prv2,Φtopo).

Let us justify the first claim. Consider an adversary A that attacks G ′. Assume that

the circuit f in A’s query satisfies n = f.n > k; otherwise G ′ will inherit the prv1 security

from G, as it only appends tokens and decoding function with independent random strings.

Let V = V 0
n be the random string appended into token X0

n. Unless the adversary queries

x ∈ {V ∥0, V ∥1}, the same argument applies and G ′ will again inherit the prv1 security

from G. However, as V � {0, 1}n−1, the chance that x ∈ {V ∥0, V ∥1} is 21−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the prv2 security

of G ′. Choose two circuits f0, f1 of the same topology such that f0.n = k + 1 and f0(x) =

f1(x⊕ 1k0) for every x ∈ {0, 1}k+1. Pick b� {0, 1} and query f = fb to the oracle Garble.

167

Then query (k + 1, 0) to Input to get answer (Xk+1, Vk+1). Let Vk+1 = v1 · · · vk. If b = 1

then query (1, v1), . . . , (k, vk) to Input. Else query (1, v1), . . . , (k, vk). Let the answers be

(X1, V1), . . . , (Xk, Vk), and let t = V1⊕ · · · ⊕ Vk. Answer 1 only if the last bit of t is b. If the

challenge bit is 1 then the chance that A answers 1 is 3/4. If the challenge bit is 0, since

the simulator’s inputs are independent of b, the chance that the adversary answers 1 is 1/2.

Hence A wins with advantage 1/4.

Separations among obliviousness notions. The following says that obv security

does not imply obv1 security, even for circuit-garbling schemes.

Proposition 5.5.3. GS(obv,Φtopo) ∩ GS(evcirc) ̸⊆ GS(obv1,Φtopo), assuming that LHS is

nonempty.

Proof. By assumption, GS(obv,Φtopo) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev, evcirc)

be a member of this set. Consider the scheme G ′ = (Gb′,En′,De′,Ev′, evcirc) described by the

top box of Fig. 5.5.1. Following exactly the same security proof and attack in the proof of

Proposition 5.5.1, we have G ′ ∈ GS(obv,Φtopo) ∩ GS(evcirc) but G ′ ̸∈ GS(obv1,Φtopo).

Similarly, the following proposition says that, for projective circuit-garbling schemes, obv1

security doesn’t imply obv2 security.

Proposition 5.5.4. GS(obv1,Φtopo)∩GS(proj)∩GS(evcirc) ̸⊆ GS(obv2,Φtopo), assuming that

LHS is nonempty.

Proof. By assumption, GS(obv1,Φtopo)∩GS(proj)∩GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,

Ev, evcirc) be a member of this set. Consider the garbling scheme G ′ = (Gb′,En′,De′,Ev′, evcirc)

described by the bottom box of Fig. 5.5.1. Following exactly the same security proof and

attack in the proof of Proposition 5.5.2, we have G ′ ∈ GS(obv1,Φtopo)∩GS(proj)∩GS(evcirc)

but G ′ ̸∈ GS(obv2,Φtopo).

Separations among authenticity notions. The following says that aut security does

not imply aut1 security, even for circuit-garbling schemes.

168

Proposition 5.5.5. GS(aut) ∩ GS(evcirc) ̸⊆ GS(aut1), assuming that the LHS is nonempty.

Proof. By assumption, GS(aut) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev, evcirc) be a

member of this set. Consider the garbling scheme G ′ = (Gb′,En′,De′,Ev′, evcirc) described by

the top box of Fig. 5.5.1. We claim that G ′ ∈ GS(aut) ∩ GS(evcirc) but G ′ ̸∈ GS(aut1).

Let us justify the first claim. Consider an adversary A that attacks G ′. Let t be the

random string that is appended to the decoding function. Assume that the circuit f in A’s

query satisfies n = f.n ≥ k; otherwise G ′ will inherit the aut security from G, as it only

appends the garbled function with an independent random string, and the garbled input

with 0k, and the chance that adversary can output Y ′ = (Y, t) is at most 2−k. Unless A

can query x = s, where s is the random string appended to the garbled function, the

same argument applies and G ′ will again inherit the aut security from G. However, since

s� {0, 1}n, the chance that x = s is 2−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the aut1 security

of G ′. Query an arbitrary circuit f , such that f.n = k, to Garble to receive (F, s). Then,

query x = s to Input to receive (X, t). Then, output (1, t) and win with advantage 1.

Similarly, the following proposition says that, for projective circuit-garbling schemes, aut1

security does not imply aut2 security.

Proposition 5.5.6. GS(aut1) ∩ GS(proj) ∩ GS(evcirc) ̸⊆ GS(aut2), assuming that LHS is

nonempty.

Proof. By assumption, GS(aut1) ∩ GS(proj) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev,

evcirc) be a member of this set. Consider the scheme G ′ = (Gb′,En′,De′,Ev′, evcirc) described

by the bottom box of Fig. 5.5.1. We claim that G ′ ∈ GS(aut1) ∩ GS(proj) ∩ GS(evcirc) but

G ′ ̸∈ GS(aut2).

Let us justify the first claim. Consider an adversary A that attacks G ′. Let t be the

random string that is appended to the decoding function. Assume that the circuit f in A’s

query satisfies n = f.n > k; otherwise G ′ will inherit the aut1 security from G, as it only

169

appends each token with an independent random string, and the chance that the adversary

can output Y ′ = (Y, t) is 21−k. Let V = V 0
n be the random string appended into token X0

n.

Unless the adversary queries x ∈ {V ∥0, V ∥1}, the same argument applies and G ′ will again

inherit the aut1 security from G. However, as V � {0, 1}n−1, the chance that x ∈ {V ∥0, V ∥1}

is 21−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the aut2 security

of G ′. Query an arbitrary circuit f , such that f.n = k+1, to Garble. Then, query (k+1, 0)

to Input to receive (Xk+1, Vk+1). Let Vk+1 = v1 · · · vk. Then, query (1, v1), . . . , (k, vk) to

Input to receive (X1, V1), . . . , (Xk, Vk) respectively. Let t = V1 ⊕ · · · ⊕ Vk. Then, output

(1, t) and win with advantage 1.

Separations among privacy, obliviousness, and authenticity. The following

says that privacy does not imply obliviousness, even when we take the strongest form of

privacy (projective adaptive) and the weakest form of obliviousness (static).

Proposition 5.5.7. GS(prv2,Φ) ∩ GS(evcirc) ̸⊆ GS(obv,Φ) for all Φ, assuming that LHS is

nonempty.

Proof. By assumption, GS(prv2,Φ) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev, evcirc)

be a member of this set. We construct a scheme G ′ = (Gb′,En,De,Ev′, evcirc) such that

G ′ ∈ GS(prv2,Φ) ∩ GS(evcirc) but G ′ ̸∈ GS(obv,Φ). The construction is as follows. Let

Gb′(1k, f) create (F, e, d)← Gb(1k, f) and return ((F, d), e, d). Let Ev′((F, d), X) = Ev(F,X).

Including d in the description of the garbled function does not harm prv2 security because an

adversary is always given the descriptions of the garbled function and the decoding function

simultaneously, so G ′ inherits the prv2 security of G. On the other hand, scheme G ′ fails to

achieve obv. Let f0 = f1 = OR, x0 = 00 and x1 = 11. An adversary simply picks b� {0, 1}

and queries (fb, xb). On receiving reply ((F, d), X, d), it outputs 1 if De(d,Ev(F,X)) = b and

outputs 0 otherwise. If the challenge bit is 1 then the adversary always answer 1. Otherwise,

since the simulator’s input is independent of b, the chance that the adversary answers 1

170

is 1/2. Hence the adversary wins with advantage 1/2.

The following says that obliviousness does not imply privacy, even when we take the strongest

form of obliviousness (projective adaptive) and the weakest form of privacy (static).

Proposition 5.5.8. GS(obv2,Φtopo) ∩ GS(evcirc) ̸⊆ GS(prv,Φtopo), assuming that LHS is

nonempty.

Proof. By assumption, GS(obv2,Φtopo) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev, evcirc)

be a member of this set. We construct a scheme G ′ = (Gb′,En,De′,Ev, evcirc) such that

G ′ ∈ GS(obv2,Φtopo)∩GS(evcirc) but G ′ ̸∈ GS(prv,Φtopo). The construction is as follows. Let

Gb′(1k, f) create (F, e, d)← Gb(1k, f) and return (F, e, (d, e)). Let De′((d, e), Y) = De(d, Y).

Including e in the description of the decoding function does not harm obv2 security because

an adversary is never given the description of the decoding function, so G ′ inherits the obv2

security of G. On the other hand, G ′ fails to achieve prv. Let f0 = AND, f1 = OR, and

x0 = x1 = 11. An adversary simply chooses b� {0, 1} and queries (fb, xb). On receiving

reply (F,X, (d, e)), it outputs 0 if De(d,Ev(F,En(e, 01))) = 0 and outputs 1 otherwise. If the

challenge bit is 1 then the adversary always answer 1. Otherwise, since the simulator’s input

is independent of b, the chance that the adversary answers 1 is 1/2. Hence the adversary

wins with advantage 1/2.

The following says that privacy and obliviousness, even in conjunction and in their strongest

forms (projective adaptive), do not imply authenticity, even in its weakest form (static).

Proposition 5.5.9. GS(prv2,Φ) ∩ GS(obv2,Φ) ∩ GS(evcirc) ̸⊆ GS(aut), for all Φ, assuming

that LHS is nonempty.

Proof. By assumption, GS(prv2,Φ) ∩ GS(obv2,Φ) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,

De,Ev, evcirc) be a member of this set. We construct G ′ = (Gb,En,De′,Ev′, evcirc) such that

G ′ ∈ GS(prv2,Φ)∩GS(obv2,Φ)∩GS(evcirc) but G ′ ̸∈ GS(aut). The construction is as follows.

Let Ev′(F,X) = Ev(F,X)∥0, and let De′(d, Y ∥b) be De(d, Y) if b = 0, and be 1 otherwise,

171

where b ∈ {0, 1}. Appending a constant bit to the garbled output does not harm prv2

security or obv2 security. On the other hand, G ′ fails to achieve aut. An adversary simply

makes query (OR, 00) and outputs 1∥1 to have advantage 1.

The following says that authenticity, even in its strongest forms (projective adaptive), implies

neither privacy nor obliviousness, even in their weakest form (static).

Proposition 5.5.10. GS(aut2)∩GS(evcirc) ̸⊆ GS(prv,Φtopo)∪GS(obv,Φtopo), assuming that

LHS is nonempty.

Proof. By assumption, GS(aut2) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev, evcirc) be a

member of this set. We construct G = (Gb′,En,De,Ev′, evcirc) such that G ′ ∈ GS(aut2) ∩

GS(evcirc) but G ′ ̸∈ GS(prv,Φtopo) ∪ GS(obv,Φtopo). The construction is as follows. On

input (1k, f), algorithm Gb′ creates (F, e, d) ← Gb(1k, f), and then outputs ((F, f), e, d).

On input ((F, f), X), algorithm Ev′ returns Ev(F,X). Appending f to F does no harm to

authenticity of G ′, as the adversary always knows f in its attack. On the other hand, the

garbled function leaks f , so both privacy and obliviousness fail over Φtopo.

5.6 Postponed proofs

The variables specified in simulator code in these proofs are global ones, part of the state

that it maintains and updates across its different invocations.

5.6.1 Proof of Theorem 5.2.2

Given any PT adversary A1 against the prv1 security of G1 we build a PT adversary A

against the prv security of G. The assumption of prv security yields a PT simulator S for A

such that Advprv,Φ,S
G (A, ·) is negligible. Now we build from S a PT simulator S1 such that

for all k ∈ N,

Advprv1,Φ,S1
G1 (A1, k) ≤ Advprv,Φ,S

G (A, k) . (5.6.1)

172

adversary A(1k)
b′ ← AGarbleSim,InputSim

1 (1k)
return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), d1 � {0, 1}L2(1

k,Φ(f))

return (F1, d1)

proc InputSim(x)
if x ̸∈ {0, 1}f.n then return ⊥
(F,X, d)← Garble(f, x)
ZF ← F1 ⊕ F , Zd ← d1 ⊕ d
return (X,Zd, ZF)

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ), d1 � {0, 1}L2(1
k,ϕ)

return (F1, d1)

simulator S1(y, 1)
(F,X, d)← S(1k, y, ϕ)
ZF ← F1 ⊕ F , Zd ← d1 ⊕ d
return (X,Zd, ZF)

adversary A1(1
k)

b′ ← AGarbleSim,InputSim
2 (1k)

return b′

proc GarbleSim(f)
n← f.n, j ← 0
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f)), S ← 0ℓ

for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
(F, d)← Garble(f)
return (F, d)

proc InputSim(i, c)
xi ← c, j ← j + 1
if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else
x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)
(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)
Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)
return Ti

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f)), S ← 0ℓ

(F, d)← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return (F, d)

simulator S2(τ2, i, j)
if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else
y ← τ2, (X1, . . . , Xn)← S1(y, 1)
(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)
Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)
return Ti

Figure 5.6.1: Top: constructed adversary and simulator for proof of Theorem 5.2.2. For
the first query, return random F1 and d1. For the second query, given y = ev(f, x), produce the real
triple (F,X, d), and return X with the one-time pads F1 ⊕ F and d1 ⊕ d. Bottom: constructed
adversary and simulator for proof of Theorem 5.2.3. Except for the last query, return
random tokens. For the last query, given y = ev(f, x), produce the real tokens and create the last
piece of secret masks so that the shares unmask the real tokens.

This yields the theorem.

The constructions have to deal with some pesky issues related to the fact that the sim-

ulator needs to know the lengths of the pads, so let us settle these first. We know that

algorithm Gb runs in polynomial time. This means there are polynomials L′1, L
′
2 such that

if (F, e, d) ∈ [Gb(1k, f)] then |F | is at most L′1(k, |f |) and |d| is at most L′2(k, |f |). By suit-

able padding, we assume wlog these lengths are exactly, rather than at most, L′1(k, |f |) and

173

L′2(k, |f |), respectively. (Formally, G would have to be first transformed to ensure this condi-

tion via the suitable padding.) Recall that the side-information Φ(f) always reveals f.n, f.m

and |f |. This means there are PT functions L1, L2 such that L1(1
k,Φ(f)) = L′1(k, |f |) and

L2(1
k,Φ(f)) = L′2(k, |f |).

Proceeding now to the constructions, we defineA and S1 as in the top of Fig. 5.6.1. There,

adversary A runs A1, simulating the latter’s Garble and Input oracles via procedures

GarbleSim and InputSim, respectively. The last of these invokes the Garble oracle from

A’s own PrvSimG,Φ,S game. (The f in the Garble call is the one that was earlier queried

to GarbleSim.) The two phases of the simulator are specified separately. Letting b, b1 be

the challenge bits in games PrvSimG,Φ,S and Prv1G1,Φ,S1 , respectively, we observe that

Pr
[
PrvSimBG,Φ,S(k) | b = 1

]
= Pr

[
Prv1A1

G1,Φ,S1(k) | b1 = 1
]

Pr
[
¬PrvSimBG,Φ,S(k) | b = 0

]
= Pr

[
¬Prv1A1

G1,Φ,S1(k) | b1 = 0
]
.

Subtracting yields Eq. (5.6.1).

5.6.2 Proof of Theorem 5.2.3

Given any PT adversary A2 against the prv2 security of G2 we build a PT adversary A1

against the prv1 security of G1. Now the assumption of prv1 security yields a PT simulator S1

for A1 such that Advprv1,Φ,S1
G1 (A1, ·) is negligible. Now we build from S1 a PT simulator S2

such that for all k ∈ N we have

Advprv2,Φ,S2
G2 (A2, k) ≤ Advprv1,Φ,S1

G1 (A1, k) . (5.6.2)

This yields the theorem.

We may assume wlog (again, formally, by first transforming the algorithms of G1 via suit-

able padding if necessary) that there is a PT function L′ such that if (F, e, d) ∈ [Gb1(1
k, f)]

and e = (X0
1 , X

1
1 , . . . , X

0
f.n, X

1
f.n) and x ∈ {0, 1}f.n and X = (X1, . . . , Xf.n) = En(e, x) and

(ℓ, ℓ1, . . . , ℓf.n)← L′(1k, |f |, f.n) then |X| = ℓ and |X0
i | = |X1

i | = ℓi for all 1 ≤ i ≤ f.n. Now,

174

since Φ(f) is assumed to always reveal f.n, f.m and |f |, there is a PT function L such that

L(1k,Φ(f)) = L′(1k, |f |, f.n).

Proceeding now to the constructions, we define A1 and S2 as in the bottom of Fig. 5.6.1.

There, adversary A1 runs A2, simulating the latter’s Garble and Input oracles via proce-

dures GarbleSim and InputSim, respectively. These invoke Garble and Input oracles

from A1’s own Prv1G1,Φ,S1 game. The first phase of the simulator is specified first, and in

the second piece of code, j ∈ {1, . . . , n}. The simulator gets n from ϕ. Letting b1, b2 be the

challenge bits in games Prv1G1,Φ,S1 and Prv2G2,Φ,S2 , respectively, we observe that

Pr
[
Prv1A1

G1,Φ,S1(k) | b1 = 1
]

= Pr
[
Prv2A2

G2,Φ,S2(k) | b2 = 1
]

Pr
[
¬Prv1A1

G1,Φ,S1(k) | b1 = 0
]

= Pr
[
¬Prv2A2

G2,Φ,S2(k) | b2 = 0
]
.

Subtracting yields Eq. (5.6.2).

5.6.3 Proof of Theorem 5.2.4

Given any PT adversary A1 against the prv1 security of G1 we build a PT adversary A

against the prv security of G. The assumption of prv security yields a PT simulator S for A

such that Advprv,Φ,S
G (A, ·) is negligible. Now we build from S a PT simulator S1 such that

for all k ∈ N,

Advprv1,Φ,S1
G1 (A1, k) ≤ Advprv,Φ,S

G (A, k) +Q(k)/2k

where Q is a polynomial such that Q(k) upper bounds the total number of queries to Hash

(made either directly by A1 or by scheme algorithms) in the execution of game Prv1G1,Φ,S1

with A1 on input 1k. This yields the theorem.

Let L1, L2 be as in the proof of Theorem 5.2.2, that is, L1 and L2 are PT functions

that give the length of the pads masking the garbled function F and decoding function d

respectively. The constructions of A and S1 are then provided at the top of Fig. 5.6.2,

and H is a global variable maintained by the simulator, representing the current state of the

175

adversary A(1k)
b′ ← AGarbleSim,InputSim,HashSim

1 (1k)
return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), d1 � {0, 1}L2(1

k,Φ(f))

return (F1, d1)

proc InputSim(x)
if x ̸∈ {0, 1}f.n then return ⊥
(F,X, d)← Garble(f, x), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F , H[|d|, 1∥R]← d1 ⊕ d
return (X,R)

proc HashSim(ℓ, w)
if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ), d1 � {0, 1}L2(1
k,ϕ)

return (F1, d1)

simulator S1(y, 1)
(F,X, d)← S(1k, y, ϕ), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F
H[|d|, 1∥R]← d1 ⊕ d
return (X,R)

simulator S1(ℓ, w, ro)
if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

adversary A1(1
k)

b′ ← AGarbleSim,InputSim,HashSim
2 (1k)

return b′

proc GarbleSim(f)
n← f.n, j ← 0
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f))
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
(F, d)← Garble(f)
return (F, d)

proc InputSim(i, c)
xi ← c, j ← j + 1, Si � {0, 1}k
if j=n then
x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)
S ← S1 ⊕ · · · ⊕ Sn

for t ∈ {1, . . . , n} do H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)
return Ti

proc HashSim(r, w)
if H[r, w] = ⊥ then H[r, w]� {0, 1}r
return H[r, w]

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f))
(F, d)← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return (F, d)

simulator S2(τ2, i, j)
Si � {0, 1}k
if j=n then
y ← τ2, (X1, . . . , Xn)← S1(y, 1)
S ← S1 ⊕ · · · ⊕ Sn

for t ∈ {1, . . . , n} do
H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)
return Ti

simulator S2(r, w, ro)
if H[r, w] = ⊥ then H[r, w]� {0, 1}r
return H[r, w]

Figure 5.6.2: Top: constructed adversary and simulator for proof of Theorem 5.2.4.
For the first query, return random F1 and d1. For the second query, given y = ev(f, x), produce the
real triple (F,X, d), choose a random seed R� {0, 1}k, and program the RO so that the pads F1⊕F
and d1 ⊕ d are indeed Hash(|F |, 0∥R) and Hash(|d|, 1∥R) respectively. Bottom: constructed
adversary and simulator for proof of Theorem 5.2.5. Except for the last query, return
random tokens. For the last query, given y = ev(f, x), produce the real tokens, choose a random
seed S� {0, 1}k, and program the RO so that the shares unmask the real tokens.

simulated RO. Let game Hy be identical to Prv1A1
G1,Φ,S1(k) with challenge bit b = 0, but set

a flag bad if A1 can query (ℓ, w) to the random oracle such that R is the suffix of w, prior

to receiving R from the garbled input, where R is the seed generating the pads. If game Hy

176

doesn’t set bad then it is identical to game PrvAG,Φ,S(k) with challenge bit c = 0. Then

Pr[PrvAG,Φ,S(k) | c = 0]− Pr[Prv1A1
G1,Φ,S1(k) | b = 0] ≤ Pr[HyA1(k) sets bad]

≤ Q(k)/2k .

On the other hand, Pr[PrvAG,Φ,S(k) | c = 1] = Pr[Prv1A1
G1,Φ,S1(k) | b = 1]. Subtracting, we get

the claimed bound.

5.6.4 Proof of Theorem 5.2.5

Given any PT adversary A2 against the prv2 security of G2 we build a PT adversary A1

against the prv1 security of G1. Now the assumption of prv1 security yields a PT simulator S1

for A1 such that Advprv1,Φ,S1
G1 (A1, ·) is negligible. Now we build from S1 a PT simulator S2

such that for all k ∈ N we have

Advprv2,Φ,S2
G2 (A2, k) ≤ Advprv1,Φ,S1

G1 (A1, k) +Q(k)/2k .

where Q is a polynomial such that Q(k) upper bounds the total number of queries to Hash

(made either directly by A2 or by scheme algorithms) in the execution of game Prv2G2,Φ,S2

with A2 on input 1k. This yields the theorem.

Let L be as in the proof of Theorem 5.2.3, that is, L is a PT function that gives the

lengths of the pads masking the tokens. The constructions of A1 and S2 are then provided

at the bottom of Fig. 5.6.2. Let game Hy be identical to game Prv2A2
G2,Φ,S2(k) with challenge

bit b = 0, but sets bad if A2 can query (r, w) to the random oracle such that S is the suffix

of w, prior to receiving the entire garbled input, where S is the seed generating the pads. If

Hy doesn’t set bad then it is identical to game Prv1A1
G1,Φ,S1(k) with challenge bit c = 0. Then

Pr[Prv1A1
G1,Φ,S(k) | c = 0]− Pr[Prv2A2

G2,Φ,S2(k) | b = 0] ≤ Pr[HyA2(k) sets bad]

≤ Q(k)/2k .

177

adversary A(1k)
b′ ← AGarbleSim,InputSim

1 (1k)
return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f))

return F1

proc InputSim(x)
if x ̸∈ {0, 1}f.n then return ⊥
(F,X)← Garble(f, x), ZF ← F1 ⊕ F
return (X,ZF)

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ)

return F1

simulator S1(1)
(F,X)← S(1k, ϕ), ZF ← F1 ⊕ F
return (X,ZF)

adversary A1(1
k)

b′ ← AGarbleSim,InputSim
2 (1k)

return b′

proc GarbleSim(f)
n← f.n, j ← 0
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f)), S ← 0ℓ

for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
F ← Garble(f)
return F

proc InputSim(i, c)
xi ← c, j ← j + 1
if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else
x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)
(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)
Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)
return Ti

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f)), S ← 0ℓ

F ← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return F

simulator S2(i, j)
if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else
(X1, . . . , Xn)← S1(1)
(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)
Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)
return Ti

Figure 5.6.3: Top: constructed adversary and simulator from part (1) of the proof of
Theorem 5.3.1. For the first query, return random F1. For the second query, produce the real
pair (F,X), and return X with the one-time pad F1⊕F . Bottom: constructed adversary and
simulator from part (1) of the proof of Theorem 5.3.2. Except for the last query, return
random tokens. For the last query, produce the real tokens and create the last piece of secret masks
so that the shares unmask the real tokens.

On the other hand, Pr[Prv1A1
G1,Φ,S(k) | c = 1] = Pr[Prv2A2

G2,Φ,S2(k) | b = 1]. Subtracting, we

get the claimed bound.

5.6.5 Proof of Theorem 5.3.1

For part (1), by adapting the proof of Theorem 5.2.2, we can show that if G is obv secure then

scheme G ′ = prv-to-prv1[G] is obv1 secure. Concretely, given any PT adversary A1 against

178

adversary A(1k)
Y1 ← AGarbleSim,InputSim

1 (1k)
(Y, tag, V)← Y1

if tag ̸= FK(V) then return ⊥
return Y

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), Zd� {0, 1}L2(1

k,Φ(f))

return F1

proc InputSim(x)

if x ̸∈ {0, 1}f.n then return ⊥
(F,X)← Garble(f, x)
K� {0, 1}k, ZF ← F ⊕ F1

return (X,Zd, ZF,FK(Zd))

adversary B(1k)
Y1 ← AGarbleSim,InputSim

1 (1k)
(Y, tag, V)← Y1

if V ̸= Zd and Fn(V) = tag then return 1
return 0

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), Zd� {0, 1}L2(1

k,Φ(f))

return F1

proc InputSim(x)

if x ̸∈ {0, 1}f.n then return ⊥
(F, e, d)← Gb(1k, f)
X ← En(e, x), ZF ← F ⊕ F1

return (X,Zd, ZF,Fn(Zd))

Figure 5.6.4: Top: constructed adversary A for part (2) of the proof of Theorem 5.3.1.
Its aut advantage is Advaut1

G1 (A1, k) if A1 decides to output V = d′, as their outputs will be
authenticated by the same d. Otherwise, A1 must forge (V, tag) that bypasses the test tag = FK(V).
Bottom: constructed PRF adversary B for part (2) of the proof of Theorem 5.3.1. It
feeds A1 with correct F1 and X1. When A1 outputs Y1 = (Y, tag, V), if V ̸= d′ then B queries V
to its Fn oracle to test if tag = Fn(V).

the obv1 security of G ′ we build a PT adversary A against the obv security of G. Now the

assumption of obv1 security yields a PT simulator S for A such that Advobv,Φ,S
G (A, ·) is

negligible. We build from S a PT simulator S1 such that for all k ∈ N we have

Advobv1,Φ,S1
G′ (A1, k) ≤ Advobv,Φ,S

G (A, k) .

The code of A and S1 is shown in the top box of Fig. 5.6.3, with L1 as in the proof of

Theorem 5.2.2, that is, L1 is a PT function that gives the length of the pad masking the

garbled function F . The analysis is analogous to the proof of Theorem 5.2.2.

Now for each xxx ∈ {prv, obv}, if G is xxx secure then G ′ is xxx1 secure. In scheme G ′,

the decoding function is d ⊕ Zd, and the garble input is (X,Zd, ZF), whereas in scheme

G1 = all-to-all1[G], the former is (d ⊕ Zd, K), and the latter is (X,Zd, ZF, FK(Zd)), with

K� {0, 1}k. Scheme G1 thus can be re-interpreted as scheme G ′, with a different encoding

of the garbled input and decoding function. Hence G1 is also xxx1 secure.

179

proc GarbleSim(f)

(F, e, d)← Gb(1k, f), K� {0, 1}k
ZF� {0, 1}L1(1

k,Φ(f))

Zd� {0, 1}L2(1
k,Φ(f))

F1 ← F ⊕ ZF, d1 ← (d⊕ Zd,K)
return F1

proc InputSim(x) Game G0

if x ̸∈ {0, 1}f.n then return ⊥
X ← En(e, x)
return (X,Zd, ZF,FK(Zd))

proc Finalize(d1, Y1)
if x ̸∈ {0, 1}f.n then return 0
(D,K)← d1, (Y, tag, V)← Y1

if tag ̸= FK(V) then return false
d← D ⊕ V
return (De(d, Y) ̸= ⊥ ∧ Y ̸= Ev(F,X))

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f))

Zd� {0, 1}L2(1
k,Φ(f))

return F1

proc Input(x) Games G1/G2

if x ̸∈ {0, 1}f.n then return ⊥
(F, e, d)← Gb(1k, f), X ← En(e, x)
ZF ← F ⊕ F1, K� {0, 1}k, d1 ← (d⊕ Zd,K)
return (X,Zd, ZF,FK(Zd))

proc Finalize(d1, Y1)
if x ̸∈ {0, 1}f.n then return 0
(D,K)← d1, (Y, tag, V)← Y1

if tag ̸= FK(V) then return false
if Zd ̸= V then bad ← true, V ← d′ ←− Use in G2

d← D ⊕ V
return (De(d, Y) ̸= ⊥ ∧ Y ̸= Ev(F,X))

Figure 5.6.5: Games used in part (2) of the proof of Theorem 5.3.1. In procedure Finalize
of game G2, we make sure that V must be d′ = d ⊕D before we do the assignment d ← D ⊕ V ,
and thus keep d unchanged.

For part (2), fix an adversary A1. We claim that there are adversaries A and B such that

Advaut1
G1 (A1, k) ≤ 2−k +Advaut

G (A) +Advprf
F (B, k) .

Moreover, the running time of A is at most that of A1 plus the time to garble A1’s queries,

and so is the running time of B. Let L1 and L2 be as in the proof of Theorem 5.2.2,

that is, L1 and L2 are PT functions that give the length of the pads masking the garbled

function F and decoding function d respectively. Consider the games G0 −G2 in Fig. 5.6.5.

In each game, A1 has oracle access to procedure GarbleSim to get the garbled function

and decoding function, and to procedure InputSim to get the garbled input. Game G0

corresponds to game Aut1G1 .

We explain the game chain up until the terminal game. � G0 → G1 : we use the technique

of “swapping dependent and independent variables”. Namely, instead of sampling ZF and

180

then computing F1 ← F ⊕ZF, we sample F1 and then let ZF ← F ⊕F1. Then, we can move

the garbling of f and the construction of K, d1 to procedure Input, as the outputs of those

commands are not used until then. The transition is conservative. Hence Advaut1
G1 (A1, k) =

Pr[GA1
0 (k)] = Pr[GA1

1 (k)]. � G1 → G2 : in game G1 we use A1’s output to recover the

decoding function d, but in game G2 we retrieve the correct d from memory. The two games

are identical until G2 sets bad.

Adversary A(1k) runs A1(1
k). When the latter makes queries, the former replies via the

code of the top box of Fig. 5.6.4. Then, Advaut
G (A, k) = Pr[GA1

2 (k)], since the decoding

function to authenticate A’s output is the correct one instead of the one recovered from A1’s

output. Adversary B(1k) has an oracle Fn that implements either FK(·) or a truly random

function. It runs A1(1
k), and follows the code of the bottom box of Fig. 5.6.4. If the

challenge bit b of the PRF game is 0, that is, the oracle Fn implements a truly random

function, then B will answer 1 with probability 2−k. On the other hand, if b = 1 then B

answers correctly if only if A1 can forge a pair (V, tag) that bypasses the test FK(V) = tag.

This, in other words, means that A can set the flag bad in game G2 to be true. Then,

Pr[PRFBF (k) | b = 1] = Pr[BAD(GA1
2 (k))]

≥ Pr[GA1
2 (k)]− Pr[GA1

1 (k)] = Advaut1
G1 (A1, k)−Advaut

G (A, k) .

Hence Advprf
F (B, k) ≥ Advaut1

G1 (A1, k)−Advaut
G (A, k)− 2−k, as claimed.

For part (3), if the encoding function e of G encodes (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) then the

encoding function e1 of G1 can be re-interpreted as T b
i = Xb

i if i < n, and (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n),

where T b
i = (Xb

i , Zd, ZF,FK(Zd)) if i = n, for b ∈ {0, 1}. Then, for x = x1 · · · xn, the garbled

input of G1 is (
(Xx1

1 , . . . , Xxn
n), Zd, ZF,FK(Zd)

)
= (T x1

1 , . . . , T xn
n),

and the scheme G1 is therefore projective.

181

5.6.6 Proof of Theorem 5.3.2

Let G2 = all1-to-all2[G1]. For part (1), it suffices to give the proof for the obliviousness case.

The proof is similar to that of Theorem 5.2.3. Given any PT adversary A2 against the

obv2 security of G2 we build a PT adversary A1 against the obv1 security of G1. Now the

assumption of obv1 security yields a PT simulator S1 for A1 such that Advobv1,Φ,S1
G1 (A1, ·)

is negligible. We build from S1 a PT simulator S2 such that for all k ∈ N we have

Advobv2,Φ,S2
G2 (A2, k) ≤ Advobv1,Φ,S1

G1 (A1, k) . (5.6.3)

The code of A1 and S2 is given in the bottom box of Fig. 5.6.3, with L as in the proof of

Theorem 5.2.3 (that is, L is a PT function that gives the length of the pads masking the

tokens).

For part (2), we reuse the procedures GarbleSim and InputSim in part (1). Let A2 at-

tack the aut2 security of G2. Adversary A1(1
k) runs A2(1

k), simulating the latter’s Garble

and Input oracles via procedures GarbleSim and InputSim respectively. When A2 out-

puts Y , adversary A1 also outputs Y . Let X and T be the garbled input given to A1 and A2

respectively. Then

Advaut2
G2 (A2, k) = Pr[Y ̸= Ev2(F, T) ∧ De1(d, Y) ̸= ⊥]

= Pr[Y ̸= Ev1(F,X) ∧ De1(d, Y) ̸= ⊥] = Advaut1
G1 (A1, k);

the second equality holds because Ev2(F, T) = Ev1(F,X).

5.6.7 Proof of Theorem 5.3.3

For part (1), by adapting the proof of Theorem 5.2.4, we can show that if G is obv secure

then scheme G ′ = rom-all-to-all1[G] is obv1 secure. Concretely, given any PT adversary A1

against the obv1 security of G ′ we build a PT adversary A against the obv security of G. Now

the assumption of obv1 security yields a PT simulator S for A such that Advobv,Φ,S
G (A, ·)

182

adversary A(1k)
b′ ← AGarbleSim,InputSim,HashSim

1 (1k)
return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f))

return F1

proc InputSim(x)
if x ̸∈ {0, 1}f.n then return ⊥
(F,X)← Garble(f, x), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F
return (X,R)

proc HashSim(ℓ, w)
if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ)

return F1

simulator S1(1)
(F,X)← S(1k, ϕ), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F
return (X,R)

simulator S1(ℓ, w, ro)
if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

adversary A(1k)
Y1 ← AGarbleSim,InputSim,HashSim

1 (1k)
(Y,R′, tag)← Y1

if tag ̸= HashSim(k,K ∥ R′) then
return ⊥

return Y

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f))

return F1

proc InputSim(x)

if x ̸∈ {0, 1}f.n then return ⊥
(F,X)← Garble(f, x), R� {0, 1}k, K� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F , tag← HashSim[k,K ∥ R]
return (X,R, tag)

proc HashSim(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

Figure 5.6.6: Top: constructed adversary and simulator used in part (1) of the proof
of Theorem 5.3.3. For the first query, return random F1. For the second query, produce the
real pair (F,X), choose a random seed R� {0, 1}k, and program the RO so that the pad F1 ⊕ F
is indeed Hash(|F |, 0∥R). Bottom: constructed adversary for part (2) of the proof of
Theorem 5.3.3. When A1 outputs Y1 = (Y,R′, tag), perform the test tag ̸= HashSim(k,K ∥ R′)
as in algorithm De1 of G1, and output Y if this test is passed.

is negligible. We build from S a PT simulator S1 such that for all k ∈ N we have

Advobv1,Φ,S1
G′ (A1, k) ≤ Advobv,Φ,S

G (A, k) +Q(k)/2k, (5.6.4)

where Q is a polynomial such that Q(k) bounds the total number of queries to Hash (made

either directly by A1 or by the scheme algorithms) in the execution of game Obv1G′,Φ,S1

with A1 on input 1k. The code of A and S1 is shown in the top box of Fig. 5.6.6, with L1 as

in the proof of Theorem 5.2.2 (that is, L1 is a PT function that gives the length of the pad

masking the garbled function F). The analysis is analogous to the proof of Theorem 5.2.4.

Now for each xxx ∈ {prv, obv}, if G is xxx secure then G ′ is xxx1 secure. In scheme G ′,

the decoding function is d1, and the garble input is (X,R), whereas in scheme G1 =

183

rom-all-to-all1[G], the former is (d1, K), and the latter is (X,R,Hash(k,K ∥ R)), with

K� {0, 1}k. Scheme G1 thus can be re-interpreted as scheme G ′, with a different encoding

of the garbled input and decoding function. Hence G1 is also xxx1 secure.

For part (2), given any PT adversary A1 against the aut1 security of G1, we build a PT

adversary A against the aut security of G such that for all k ∈ N we have

Advaut1
G1 (A1, k) ≤ Advaut

G (A, k) + (2Q(k) + 1)/2k,

where Q is a polynomial such that Q(k) bounds the total number of queries to Hash (made

either directly by A1 or by the scheme algorithms) in the execution of game Aut1G1 with A1

on input 1k. The code of the adversary A is given in the bottom of Fig. 5.6.6. Let Bad

be the even that A can query (ℓ, w) to the random oracle such that either (i) R is a suffix

of w, and this query is made prior to receiving R from the garbled input, or (ii) K is a prefix

of w. Then Pr[Bad] ≤ 2Q(k)/2k. Suppose than Bad does not happen. Let Y1 = (Y,R′, tag)

be the output of A1. If R′ ̸= R then the chance that tag = HashSim(k,K ∥ R′) is at

most 2−k. If R = R′ then Advaut1
G1 (A1, k) = Advaut

G (A, k). Hence, totally, Advaut1
G1 (A1, k) ≤

Advaut
G (A, k) + Pr[Bad] + 2−k ≤ Advaut

G (A, k) + (2Q(k) + 1)/2k.

5.6.8 Proof of Theorem 5.3.4

Let G2 = rom-all1-to-all2[G1]. For part (1), it suffices to give the proof for the obliviousness

case. The proof is similar to that of Theorem 5.2.5. Given any PT adversary A2 against the

obv2 security of G2 we build a PT adversary A1 against the obv1 security of G1. Now the

assumption of obv1 security yields a PT simulator S1 for A1 such that Advobv1,Φ,S1
G1 (A1, ·)

is negligible. We then build from S1 a PT simulator S2 such that for all k ∈ N we have

Advobv2,Φ,S2
G2 (A2, k) ≤ Advobv1,Φ,S1

G1 (A1, k) +Q(k)/2k,

where Q is a polynomial such that Q(k) bounds the total number of queries to Hash (made

either directly by A2 or by the scheme algorithms) in the execution of game Obv2G2,Φ,S2

with A2 on input 1k. The code of A1 and S2 is given in the bottom box of Fig. 5.6.6, with L

184

adversary A1(1
k)

b′ ← AGarbleSim,InputSim,HashSim
2 (1k)

return b′

proc GarbleSim(f)
n← f.n, j ← 0
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f))
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
F ← Garble(f)
return F

proc InputSim(i, c)
xi ← c, j ← j + 1, Si � {0, 1}k
if j=n then

x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)
S ← S1 ⊕ · · · ⊕ Sn

for t ∈ {1, . . . , n} do H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)
return Ti

proc HashSim(r, w)
if H[r, w] = ⊥ then H[r, w]� {0, 1}r
return H[r, w]

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k,Φ(f))
F ← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return F

simulator S2(i, j)
Si � {0, 1}k
if j=n then

(X1, . . . , Xn)← S1(1)
S ← S1 ⊕ · · · ⊕ Sn

for t ∈ {1, . . . , n} do
H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)
return Ti

simulator S2(r, w, ro)
if H[r, w] = ⊥ then H[r, w]� {0, 1}r
return H[r, w]

Figure 5.6.7: Constructed adversary and simulator used in part (1) of the proof of
Theorem 5.3.4. Except for the last query, return random tokens. For the last query, produce the
real tokens, choose a random seed S� {0, 1}k, and program the RO so that the shares unmask the
real tokens,

as in the proof of Theorem 5.2.5 (that is, L is a PT function that gives the length of the

pads masking the tokens).

For part (2), we reuse the procedures GarbleSim and InputSim in part (1). Let A2 at-

tack the aut2 security of G2. Adversary A1(1
k) runs A2(1

k), simulating the latter’s Garble

and Input oracles via procedures GarbleSim and InputSim respectively. When A2 out-

puts Y , adversary A1 also outputs Y . Let Bad be the event that A2 queries (r, w) to the

random oracle such that S is the suffix of w, prior to receiving the entire garbled input,

where S is the seed generating the pads. Then Pr[Bad] ≤ Q(k)/2k, where Q is a polynomial

such that Q(k) bounds the total number of queries to Hash (made either directly by A2

or by the scheme algorithms) in the execution of game Aut2G2 with A2 on input 1k. Let X

185

and T be the garbled input given to A1 and A2 respectively. If Bad does not happen then

Advaut2
G2 (A2, k) = Pr[Y ̸= Ev2(F, T) ∧ De1(d, Y) ̸= ⊥]

= Pr[Y ̸= Ev1(F,X) ∧ De1(d, Y) ̸= ⊥] = Advaut1
G1 (A1, k),

the second equality holds because Ev2(F, T) = Ev1(F,X). Totally, by union bound, we

obtain Advaut2
G2 (A2, k) ≤ Advaut1

G1 (A1, k) + Pr[Bad] ≤ Advaut1
G1 (A1, k) +Q(k)/2k.

186

References

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology, 2(1):1–

12, 1990.

[2] B. Applebaum. Key-dependent message security: Generic amplification and complete-

ness. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages

527–546. Springer, May 2011.

[3] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives

and circular-secure encryption based on hard learning problems. In S. Halevi, editor,

CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer, Aug. 2009.

[4] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing

polynomials and their applications. Computational Complexity, 15(2):115–162, 2006.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J. Comput.,

36(4):845–888, 2006.

[6] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient

verification via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer

auf der Heide, and P. G. Spirakis, editors, ICALP 2010, Part I, volume 6198 of LNCS,

pages 152–163. Springer, July 2010.

187

[7] B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. In

R. Ostrovsky, editor, 52nd FOCS, pages 120–129. IEEE Computer Society Press, Oct.

2011.

[8] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for

realistic adversaries. In S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages

137–156. Springer, Feb. 2007.

[9] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message

security. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 423–

444. Springer, May 2010.

[10] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider.

Secure evaluation of private linear branching programs with medical applications. In

M. Backes and P. Ning, editors, ESORICS 2009, volume 5789 of LNCS, pages 424–439.

Springer, Sept. 2009.

[11] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.

In Proceedings of the twenty-second annual ACM symposium on Theory of computing,

pages 503–513. ACM, 1990.

[12] M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply

security against selective-opening. In D. Pointcheval and T. Johansson, editors, EURO-

CRYPT 2012, volume 7237 of LNCS, pages 645–662. Springer, Apr. 2012.

[13] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-

key blockcipher, to appear in IEEE Symposium of Security and Privacy (Oakland’ 13),

2013.

[14] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key

blockcipher. Cryptology ePrint Archive, 2013.

188

[15] M. Bellare, V. Hoang, and S. Keelveedhi. Instantiating Random Oracles via UCEs.

Manuscript, April 2013.

[16] M. Bellare, V. Hoang, and P. Rogaway. Foundations of garbled circuits. In ACM

Computer and Communications Security (CCS’12). ACM, pages 784–796, 2012.

[17] M. Bellare, V. Hoang, and P. Rogaway. Foundations of garbled circuits. Cryptology

ePrint Archive, Report 2012/265, Oct 2012.

[18] M. Bellare, V. Hoang, and P. Rogaway. Adaptively secure garbling with applications

to one-time programs and secure outsourcing. In ASIACRYPT 20122, pages 134–153,

2012.

[19] M. Bellare, V. Hoang, and P. Rogaway. Adaptively secure garbling with applica-

tions to one-time programs and secure outsourcing. Cryptology ePrint Archive, Report

2012/564, Oct 2012.

[20] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov.

1993.

[21] M. Bellare and P. Rogaway. The security of triple encryption and a framework for

code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume

4004 of LNCS, pages 409–426. Springer, May / June 2006.

[22] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from

decision diffie-hellman. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,

pages 108–125. Springer, Aug. 2008.

[23] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and

secure autonomous mobile agents. In 27th Intl. Colloquium on Automata, Languages,

and Programming — ICALP 2000, pages 512–523. Springer, 2000.

189

[24] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party com-

putation. In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

[25] D. Canright. A very compact s-box for aes. Cryptographic Hardware and Embedded

Systems–CHES 2005, pages 441–455, 2005.

[26] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In M. Abe,

editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 577–594. Springer, Dec. 2010.

[27] S. Choi, J. Katz, R. Kumaresan, and H. Zhou. On the security of the free-xor technique.

Cryptology ePrint Archive, Report 2011/510, Sep 2011.

[28] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing

encryption with applications to adaptively secure protocols. In M. Matsui, editor, ASI-

ACRYPT 2009, volume 5912 of LNCS, pages 287–302. Springer, Dec. 2009.

[29] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou. On the security of the “free-

XOR” technique. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 39–53.

Springer, Mar. 2012.

[30] K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation using

fully homomorphic encryption. In T. Rabin, editor, CRYPTO 2010, volume 6223 of

LNCS, pages 483–501. Springer, Aug. 2010.

[31] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to

construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,

pages 430–448. Springer, Aug. 2005.

[32] I. Damg̊ard and J. B. Nielsen. Improved non-committing encryption schemes based on

a general complexity assumption. In M. Bellare, editor, CRYPTO 2000, volume 1880

of LNCS, pages 432–450. Springer, Aug. 2000.

190

[33] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for practical

applications. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages

371–388. Springer, Apr. 2009.

[34] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation (extended

abstract). In 26th ACM STOC, pages 554–563. ACM Press, May 1994.

[35] K. Frikken, M. Atallah, and C. Zhang. Privacy-preserving credit checking. In Proceed-

ings of the 6th ACM conference on Electronic commerce, pages 147–154. ACM, 2005.

[36] S. Furuhashi. The messagepack format. http://msgpack.org.

[37] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourc-

ing computation to untrusted workers. In T. Rabin, editor, CRYPTO 2010, volume

6223 of LNCS, pages 465–482. Springer, Aug. 2010.

[38] O. Goldreich. Cryptography and cryptographic protocols. Manuscript, June 9 2001.

[39] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge

University Press, Cambridge, UK, 2004.

[40] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st

ACM STOC, pages 25–32. ACM Press, May 1989.

[41] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a com-

pleteness theorem for protocols with honest majority. In A. Aho, editor, 19th ACM

STOC, pages 218–229. ACM Press, May 1987.

[42] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a com-

pleteness theorem for protocols with honest majority. In A. V. Aho, editor, STOC,

pages 218–229. ACM, 1987.

[43] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and system

sciences, 28(2), pp. 270–299, 1984.

191

[44] S. Goldwasser, Y. Kalai, and G. Rothblum. One-time programs. Manuscript, full version

of [45], July 2012.

[45] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In D. Wagner,

editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, Aug. 2008.

[46] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography

on tamper-proof hardware tokens. In D. Micciancio, editor, TCC 2010, volume 5978 of

LNCS, pages 308–326. Springer, Feb. 2010.

[47] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party computation

against covert adversaries. In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of

LNCS, pages 289–306. Springer, Apr. 2008.

[48] S. Gueron. Advanced encryption standard (AES) instructions set. Intel Corporation,

25, 2008.

[49] W. Henecka, A. Sadeghi, T. Schneider, I. Wehrenberg, et al. Tasty: tool for automating

secure two-party computations. In Proceedings of the 17th ACM conference on Computer

and communications security, pages 451–462. ACM, 2010.

[50] A. Herzberg and H. Shulman. Secure guaranteed computation. Cryptology ePrint

Archive, Report 2010/449, 2010.

[51] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using

garbled circuits. In USENIX Security Symposium, 2011.

[52] Y. Huang, C. Shen, D. Evans, J. Katz, and A. Shelat. Efficient secure computation

with garbled circuits. In S. Jajodia and C. Mazumdar, editors, ICISS, volume 7093 of

Lecture Notes in Computer Science, pages 28–48. Springer, 2011.

[53] Intel. Intel SSE4 programmer’s manual. software.intel.com/file/17971/.

192

[54] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with

applications to round-efficient secure computation. In 41st FOCS, pages 294–304. IEEE

Computer Society Press, Nov. 2000.

[55] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect

randomizing polynomials. In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy,

S. Eidenbenz, and R. Conejo, editors, ICALP, volume 2380 of Lecture Notes in Com-

puter Science, pages 244–256. Springer, 2002.

[56] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant

computational overhead. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC,

pages 433–442. ACM Press, May 2008.

[57] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Embedded SFE: Offload-

ing server and network using hardware tokens. In R. Sion, editor, FC 2010, volume

6052 of LNCS, pages 207–221. Springer, Jan. 2010.

[58] JustGarble source. http://cseweb.ucsd.edu/groups/justgarble

[59] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. Cryp-

tology ePrint Archive, report 2011/272, October 25 2011.

[60] S. Kamara and L. Wei. Special-purpose garbled circuits. Manuscript, 2012.

[61] J. Katz and L. Malka. Secure text processing with applications to private DNA match-

ing. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM CCS 10, pages

485–492. ACM Press, Oct. 2010.

[62] J. Katz and L. Malka. Constant-round private function evaluation with linear complex-

ity. In D. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages

556–571. Springer, Dec 2011.

193

[63] J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In

M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354. Springer,

Aug. 2004.

[64] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applica-

tions. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and

I. Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498.

Springer, July 2008.

[65] V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure

evaluation of private functions. In G. Tsudik, editor, FC 2008, volume 5143 of LNCS,

pages 83–97. Springer, Jan. 2008.

[66] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with malicious

adversaries. In Proceedings of the 21th USENIX Security Symposium (USENIX 2012),

2012. Full version as Cryptology ePrint Archive, Report 2012/179.

[67] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function evaluation with ordered

binary decision diagrams. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM

CCS 06, pages 410–420. ACM Press, Oct. / Nov. 2006.

[68] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party computation.

Electronic Colloquium on Computational Complexity (ECCC), TR04-063, 2004.

[69] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the

presence of malicious adversaries. In M. Naor, editor, EUROCRYPT 2007, volume 4515

of LNCS, pages 52–78. Springer, May 2007.

[70] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computa-

tion. Journal of Cryptology, 22(2):161–188, Apr. 2009.

194

[71] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious

transfer. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 329–346. Springer,

Mar. 2011.

[72] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party compu-

tation system. In Proceedings of the 13th conference on USENIX Security Symposium-

Volume 13, pages 20–20. USENIX Association, 2004.

[73] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results

on reductions, and applications to the random oracle methodology. In M. Naor, editor,

TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Feb. 2004.

[74] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC

Press, 1996.

[75] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computation.

In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC 2006, volume 3958 of

LNCS, pages 458–473. Springer, Apr. 2006.

[76] P. Mohassel and S. Sadeghian. How to hide circuits in MPC: An efficient framework for

Private Function Evaluation, to appear in EUROCRYPT 2013. Springer, May 2013.

[77] M. Naor and K. Nissim. Communication preserving protocols for secure function eval-

uation. In 33rd ACM STOC, pages 590–599. ACM Press, July 2001.

[78] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design.

In Proceedings of the 1st ACM conference on Electronic commerce, pages 129–139. ACM,

1999.

[79] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The

non-committing encryption case. In M. Yung, editor, CRYPTO 2002, volume 2442 of

LNCS, pages 111–126. Springer, Aug. 2002.

195

[80] J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation. In O. Reingold,

editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer, Mar 2009.

[81] A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private

functions. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors,

ACNS 09, volume 5536 of LNCS, pages 89–106. Springer, June 2009.

[82] K. Pietrzak. A leakage-resilient mode of operation. In A. Joux, editor, EURO-

CRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer, Apr. 2009.

[83] B. Pinkas. Cryptographic techniques for privacy-preserving data mining. ACM SIGKDD

Explorations Newsletter, 4(2):12–19, 2002.

[84] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation

is practical. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 250–

267. Springer, Dec. 2009.

[85] P. Rogaway. The round complexity of secure protocols. MIT Ph.D. Thesis, 1991.

[86] P. Rogaway and J. P. Steinberger. Constructing cryptographic hash functions from

fixed-key blockciphers. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,

pages 433–450. Springer, Aug. 2008.

[87] A.-R. Sadeghi and T. Schneider. Generalized universal circuits for secure evaluation of

private functions with application to data classification. In International Conference on

Information Security and Cryptology (ICISC’08), volume 5461 of LNCS, pages 336–353.

Springer, 2008.

[88] A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with public

keys. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM CCS 10, pages

463–472. ACM Press, Oct. 2010.

196

[89] T. Schneider. Practical secure function evaluation. Master’s thesis, University of

Erlangen-Nuremberg, 2008.

[90] T. Schneider. Engineering Secure Two-Party Computation Protocols – Advances

in Design, Optimization, and Applications of Efficient Secure Function Eval-

uation. PhD thesis, Ruhr-University Bochum, Germany, February 9, 2011.

http://thomaschneider.de/papers/S11Thesis.pdf.

[91] S. Tate and K. Xu. On garbled circuits and constant round secure function evalua-

tion. Technical report, Computer Privacy and Security Lab, Department of Computer

Science, University of North Texas, 2003.

[92] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error

resilient dna searching through oblivious automata. In P. Ning, S. D. C. di Vimercati,

and P. F. Syverson, editors, ACM CCS 07, pages 519–528. ACM Press, Oct. 2007.

[93] L. Valiant. Universal circuits (preliminary report). In Proceedings of the eighth annual

ACM symposium on Theory of computing, pages 196–203. ACM, 1976.

[94] I. Wegener. The complexity of Boolean functions. John Wiley & Son, NY, USA, 1987.

[95] R. Winternitz. A secure one-way hash function built from DES. Proceedings of the IEEE

Symposium on Information Security and Privacy, pages 88–90. IEEE Press, 1984.

[96] A. Yao. How to generate and exchange secrets. In Foundations of Computer Science,

1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[97] A. C. Yao. Protocols for secure computations. In 23rd FOCS, pages 160–164. IEEE

Computer Society Press, Nov. 1982.

197

