
CIS5371 – Cryptography Fall 2025

Scribe 3: Rho Attack
Instructor: Viet Tung Hoang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Motivation. Let H : {0, 1}∗ → {0, 1}n be a hash function and let N = 2n. Suppose that we want to find a
collision of H. To speed up the running time, we want to run a collision-finding attack on every processor of
a GPU. However, since those processors have a limited shared memory, it is crucial that the attack must use
very little memory, preferably O(1) memory. This rules out the naive birthday attack, since that requires
Ω(
√
N) memory.

The rho method. Consider the following process. Initially, we start with a random string x0←$ {0, 1}n,
and then iterate x1 ← H(x0), x2 ← H(x1), and so on. Since these strings take value from a finite set {0, 1}n,
eventually there must be i < j such that xi = xj . But then xi+2 = H(xi) and xj+1 = H(xj) must be the
same. In addition, xi+1 = H(xi+1) and xj+2 = H(xj+1) must also be the same, and so on. In other words,
for every k ≥ 0, we must have xi+k = xj+k. See Figure 3.1 for an illustration. Pictorially, the sequence
x0, x1, · · · form a rho shape: it takes us some r steps to enter a cycle of length ℓ, where r = 3 and ℓ = 6 in
the example of Figure 3.1. If r ≥ 1 then xr−1 and xr+ℓ−1 form a collision of H, since xr−1 ̸= xr+ℓ−1, yet
H(xr−1) = xr = H(xr+ℓ−1).

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
	

x



x
��

Figure 3.1: Illustration of the rho shape. Here x3 = x9, and thus x3+k = x9+k for every k ≥ 0.

Note that the rho method above may fail to generate a collision if r = 0, as illustrated in Figure 3.2. In this
case, the rho shape degenerates into a cycle.

Note that if we model H as a random oracle then x0, x1, · · · can be modeled as independent, uniformly
random strings (until repetition happens at step L = r + ℓ). Then with high probability, the repetition will
happen within

√
2N steps—recall the Birthday Paradox—and thus it’s very likely that L = O(

√
N).

Now, we want to use the rho method above to find a collision. However, there are several daunting obstacles.

3-1



3-2 Lecture 3: Rho Attack

x
�

x
�

x
�

x
�x

�

x
�

x
�

x
�

Figure 3.2: A degenerate case where the rho method fails to generate a collision.

First, recall that we have only O(1) memory, so we can only store just a few strings xi in memory at a time.
Moreover, we don’t want to run Θ(

√
N) steps. Since collision happens after L steps, we want to terminate

after O(L) steps, although we don’t know what L is. The attack consists of two steps: (i) detecting the
presence of a cycle, and (ii) finding collision, both using O(1) memory and O(L) time.

Floyd’s cycle detection. Note that for each choice of x0, there is a unique number m ≤ L such that
x2m = m. (For the example in Figure 3.1, m = 6.) To see why, note that x2m = xm if and only if (i) m ≥ r
(meaning that you should at least enter the cycle to have repetition), and (2) m is a multiple of ℓ (meaning
that the gap m between the two positions xm and x2m should be a multiple of the cycle length). However,
there is exactly one number among ℓ consecutive numbers r, r + 1, . . . , L = r + ℓ− 1 that is divisible by ℓ.

Floyd’s algorithm aims to find xm from x0 after O(L) steps, using O(1) memory. To have an intuition of
the algorithm, imagine a running race between a hare and a tortoise along the rho shape, both starting at
the initial point x0. At each iteration the hare can run 2 steps, whereas the tortoise can only run 1 step. So
at the k-th iteration, the tortoise is at position xk, whereas the hare is at position yk = x2k. Hence the next
time the two animals meet, this is at position xm = x2m.

Formally, given x0, the algorithm initializes y0 ← x0 and proceeds as follows. At each step k, the algorithm
will keep track of just two strings (xk, yk), and terminate if xk = yk. To move from step k to step k + 1,
we compute xk+1 ← H(xk) and yk+1 = H(H(yk)). Note that yk = x2k for every k ≥ 0. Hence the memory
usage is just O(1) and the algorithm stops at step m, returning xm.

Collision finding. Now, from (x0, xm), we want to find the collision (xr−1, xℓ+r−1) using O(1) memory
and O(L) time. (In Figure 3.1, it means that we want to find (x2, x8) from (x0, x6).)

To have an intuition of our method, imagine that we have two tortoises at positions x0 and xm, running
along the rho shape. At each iteration, each tortoise can only move one step, so at the first iteration, they
will be at positions x1 and xm+1 respectively, and so on. We claim that when the two tortoises first meet,
they will be at the position xr. (In Figure 3.1, you can see that at the third iteration, the two tortoises will
meet at x3.) To see why, note that at the r-th iteration, the two tortoises will be at positions xr and xm+r

respectively. Since m is a multiple of ℓ, this means that the position xm+r is the same as xr. So intuitively,
to find the collision, we just need to keep track of the tortoises’ current positions, and stop them right before
they hit each other.



Lecture 3: Rho Attack 3-3

Formally, in iteration k, we keep track of (xk, xm+k) and terminate if H(xk) = H(xm+k), and thus the
memory usage is O(1). To move from iteration k to iteration k+1, we update xk+1 ← H(xk) and xm+k+1 ←
H(xm+k). Thus we will terminate after r steps, and the running time is O(L).

Remark. It is instructive to see what happens when we apply the algorithms above in the degenerate
case, where the rho method generates a cycle, instead of a rho shape. In that case, r = 0 and m = ℓ.
(In the example of Figure 3.2, we have m = ℓ = 6.) When we apply the Floyd’s algorithm, we’ll get back
xm = x0. Thus when we try to find a collision, our two tortoises will start from the same position x0, and
we’ll terminate immediately, since they will surely hit each other in the next iteration.


