CIS5371 - Cryptography

Fall 2025

Scribe 3: Rho Attack

Instructor: Viet Tung Hoang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

MOTIVATION. Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function and let $N=2^n$. Suppose that we want to find a collision of H. To speed up the running time, we want to run a collision-finding attack on every processor of a GPU. However, since those processors have a limited shared memory, it is crucial that the attack must use very little memory, preferably O(1) memory. This rules out the naive birthday attack, since that requires $\Omega(\sqrt{N})$ memory.

The Rho Method. Consider the following process. Initially, we start with a random string $x_0 \leftarrow \{0,1\}^n$, and then iterate $x_1 \leftarrow H(x_0), x_2 \leftarrow H(x_1)$, and so on. Since these strings take value from a finite set $\{0,1\}^n$, eventually there must be i < j such that $x_i = x_j$. But then $x_{i+2} = H(x_i)$ and $x_{j+1} = H(x_j)$ must be the same. In addition, $x_{i+1} = H(x_{i+1})$ and $x_{j+2} = H(x_{j+1})$ must also be the same, and so on. In other words, for every $k \ge 0$, we must have $x_{i+k} = x_{j+k}$. See Figure 3.1 for an illustration. Pictorially, the sequence x_0, x_1, \cdots form a rho shape: it takes us some r steps to enter a cycle of length ℓ , where r = 3 and $\ell = 6$ in the example of Figure 3.1. If $r \ge 1$ then x_{r-1} and $x_{r+\ell-1}$ form a collision of H, since $x_{r-1} \ne x_{r+\ell-1}$, yet $H(x_{r-1}) = x_r = H(x_{r+\ell-1})$.

Figure 3.1: Illustration of the rho shape. Here $x_3 = x_9$, and thus $x_{3+k} = x_{9+k}$ for every $k \ge 0$.

Note that the rho method above may fail to generate a collision if r = 0, as illustrated in Figure 3.2. In this case, the rho shape degenerates into a cycle.

Note that if we model H as a random oracle then x_0, x_1, \cdots can be modeled as independent, uniformly random strings (until repetition happens at step $L = r + \ell$). Then with high probability, the repetition will happen within $\sqrt{2N}$ steps—recall the Birthday Paradox—and thus it's very likely that $L = O(\sqrt{N})$.

Now, we want to use the rho method above to find a collision. However, there are several daunting obstacles.

3-2 Lecture 3: Rho Attack

Figure 3.2: A degenerate case where the rho method fails to generate a collision.

First, recall that we have only O(1) memory, so we can only store just a few strings x_i in memory at a time. Moreover, we don't want to run $\Theta(\sqrt{N})$ steps. Since collision happens after L steps, we want to terminate after O(L) steps, although we don't know what L is. The attack consists of two steps: (i) detecting the presence of a cycle, and (ii) finding collision, both using O(1) memory and O(L) time.

FLOYD'S CYCLE DETECTION. Note that for each choice of x_0 , there is a unique number $m \leq L$ such that $x_{2m} = m$. (For the example in Figure 3.1, m = 6.) To see why, note that $x_{2m} = x_m$ if and only if (i) $m \geq r$ (meaning that you should at least enter the cycle to have repetition), and (2) m is a multiple of ℓ (meaning that the gap m between the two positions x_m and x_{2m} should be a multiple of the cycle length). However, there is exactly one number among ℓ consecutive numbers $r, r + 1, \ldots, L = r + \ell - 1$ that is divisible by ℓ .

Floyd's algorithm aims to find x_m from x_0 after O(L) steps, using O(1) memory. To have an intuition of the algorithm, imagine a running race between a hare and a tortoise along the rho shape, both starting at the initial point x_0 . At each iteration the hare can run 2 steps, whereas the tortoise can only run 1 step. So at the k-th iteration, the tortoise is at position x_k , whereas the hare is at position $y_k = x_{2k}$. Hence the next time the two animals meet, this is at position $x_m = x_{2m}$.

Formally, given x_0 , the algorithm initializes $y_0 \leftarrow x_0$ and proceeds as follows. At each step k, the algorithm will keep track of just two strings (x_k, y_k) , and terminate if $x_k = y_k$. To move from step k to step k + 1, we compute $x_{k+1} \leftarrow H(x_k)$ and $y_{k+1} = H(H(y_k))$. Note that $y_k = x_{2k}$ for every $k \ge 0$. Hence the memory usage is just O(1) and the algorithm stops at step m, returning x_m .

COLLISION FINDING. Now, from (x_0, x_m) , we want to find the collision $(x_{r-1}, x_{\ell+r-1})$ using O(1) memory and O(L) time. (In Figure 3.1, it means that we want to find (x_2, x_8) from (x_0, x_6) .)

To have an intuition of our method, imagine that we have two tortoises at positions x_0 and x_m , running along the rho shape. At each iteration, each tortoise can only move one step, so at the first iteration, they will be at positions x_1 and x_{m+1} respectively, and so on. We claim that when the two tortoises first meet, they will be at the position x_r . (In Figure 3.1, you can see that at the third iteration, the two tortoises will meet at x_3 .) To see why, note that at the r-th iteration, the two tortoises will be at positions x_r and x_{m+r} respectively. Since m is a multiple of ℓ , this means that the position x_{m+r} is the same as x_r . So intuitively, to find the collision, we just need to keep track of the tortoises' current positions, and stop them right before they hit each other.

Lecture 3: Rho Attack 3-3

Formally, in iteration k, we keep track of (x_k, x_{m+k}) and terminate if $H(x_k) = H(x_{m+k})$, and thus the memory usage is O(1). To move from iteration k to iteration k+1, we update $x_{k+1} \leftarrow H(x_k)$ and $x_{m+k+1} \leftarrow H(x_{m+k})$. Thus we will terminate after r steps, and the running time is O(L).

REMARK. It is instructive to see what happens when we apply the algorithms above in the degenerate case, where the rho method generates a cycle, instead of a rho shape. In that case, r=0 and $m=\ell$. (In the example of Figure 3.2, we have $m=\ell=6$.) When we apply the Floyd's algorithm, we'll get back $x_m=x_0$. Thus when we try to find a collision, our two tortoises will start from the same position x_0 , and we'll terminate immediately, since they will surely hit each other in the next iteration.