
CIS5371 – Cryptography Fall 2025

Scribe 2: Real Attacks on AE Schemes
Instructor: Viet Tung Hoang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

2.1 ChopChop Attack on WiFi Security

WEP construction. The WEP construction for WiFi security is given in Figure 2.1. It’s based on
the streamcipher RC4. WEP is an instance of the encrypt-with-redundancy paradigm. Specifically, to
encrypt a message M with IV ∈ {0, 1}24, one first appends some CRC32 checking to M to obtain a string
X ←M∥CRC(M), generates a one-time pad P from RC4(K, IV), and then outputs IV∥(X ⊕ P).

M CRC(M)

K RC4

C

IV

Figure 2.1: The WEP construction

Attack model. We now describe a realistic scenario in which WEP is broken. Under our situation, an
adversary observes a ciphertext C that a user sends to an access point, and wishes to recover the underlying
message. The adversary will use the access point as a decryption oracle, querying several fake ciphertexts.
For each query Dec(C∗), the decryption oracle indicates whether the ciphertext C∗ is valid, but nothing
beyond it. That is, if C∗ is valid, the adversary doesn’t get to know the corresponding decrypted message.

ChopChop attack on WEP. Understanding the ChopChop attack for WEP requires some knowledge of
finite-field multiplication. Here we describe how to attack the following variant of WEP: instead of appending
CRC(M) to the message M , we will append the parity bit parity(M), the xor of all the bits of M . For
example, if M = 1011 then parity(M) = 1. For simplicity, assume that this variant allows encrypting the
empty string ε, with parity(ε) = 0. The parity bit is a weak form of redundancy checking: if there’s one bit
flip in M∥parity(M) then one can detect that.

Suppose that the secret M = M1 · · ·Mm, where each |Mi| = 1. Initially, the adversary queries Enc(ε),
where ε is the empty string, to receive a ciphertext C0. Note that now the adversary knows m, by observing
the length of the ciphertext C0. It then chops the last bit of C0 to obtain a string C1, and queries C1

2-1

2-2 Lecture 2

to the decryption oracle. If the answer of the decryption oracle is 1 then Mm = parity(M1 · · ·Mm−1). In
other words, M1 ⊕ · · · ⊕Mm = 0. Otherwise, if the answer of the decryption oracle is 0 then we must have
M1 ⊕ · · · ⊕Mm = 1. In other words, we have obtained M1 ⊕ · · · ⊕Mm. By repeating the process above for
“ciphertext” C1 (instead of C0), we obtain M1⊕ · · · ⊕Mm−1, and so on. At the end, we have a system of m
linear equations of the variables M1, . . . ,Mm, which we can solve to recover M1, . . . ,Mm.

2.2 Pitfalls in Implementing EtM

Suppose that one uses the Encrypt-then-MAC composition, in which the encryption scheme is CBC mode
and the MAC is a good PRF F such as Encrypted CBC-MAC. Suppose that when we first encrypt a one-
block message M via CBC, we obtain a ciphertext IV∥C. A correct implementation should apply the MAC
on the entire IV∥C, meaning that the tag T is FKm(IV∥C), and the ciphertext for the EtM composition
is (IV∥C, T). However, it is very common for people to (incorrectly) apply the MAC on just C, meaning
T ← FKm

(C). This happened on ISO 1972 standard, and also in RNCryptor facility in iOS. This buggy
implementation completely destroys authenticity. For example, given (IV∥C, T) the adversary can create a
new ciphertext ((IV ⊕ ∆)∥C, T) for the EtM composition, where ∆ is an arbitrary string. If we feed this
ciphertext to the EtM decryption then it will say that this is a valid ciphertext, and the decrypted message
is M ⊕∆.

2.3 Pitfalls in Implementing MtE: Padding-oracle Attacks

Recall that the MAC-then-Encrypt composition is not generally secure. One can come up with a simple
but artificial counter-example: the encryption scheme adds some redundant bits to the ciphertexts, and
decryption ignores those. But this says nothing about the security of MAC-then-Encrypt if you use some
specific MAC and encryption schemes. We now study a well known attack on the authenticated encryption
scheme in TLS 1.0, where the encryption scheme is CBC. The specific MAC doesn’t matter here; we can
treat it as a good PRF F : K × {0, 1}∗ → {0, 1}128.

The scheme. In TLS, people only deal with byte strings, so the message space is ({0, 1}8)∗. Still, raw CBC
can only handle strings whose byte lengths are multiple of 16. We therefore need a padding mechanism. The
simplest way is to add 10∗, but TLS chooses a different method. If you want to add p bytes to the message,
the last byte must encode the number p − 1, and the remaining p − 1 bytes are arbitrary. For example, if
your message has byte length 30, then you need to pad two bytes, the last one encoding 1. If your message
has byte length 32, then you need to pad 16 bytes, the last one encoding 15. Given a message M , we write
pad(M) to denote the padding string.

Given a message M and key (K,K ′), one can MAC-then-Encrypt as follows. First, use the MAC to create
a tag T ← FK′(M). Recall that the tag T has byte length 16. Then use CBC with key K to encrypt
M∥T∥pad(M).

Given a ciphertext C and key (K,K ′), one first use CBC with key K to decrypt C to get a string X. Check
the last byte of X to know how many more bytes we have to remove. Let the truncated string be M∥T . If
T ̸= FK′(M) then return ⊥; otherwise return M .

Attack model. We now define a security notion, called Chosen Prefix Secret Suffix (CPSS). Let Π =
(K, E ,D) be an authenticated encryption scheme. Under this attack, the game picks a secret message
M ←$ {0, 1}ℓ and key K←$K. The adversary is given two oracles Enc and Dec, and its goal is to guess
the message M . The adversary can choose a prefix P and query Enc(P) to get back EK(P∥M). On query

Lecture 2 2-3

Dec(C), if the ciphertext C is valid then the game returns 1 to the advesary, but the adversary doesn’t get
to see the decrypted message. Otherwise the game returns 0. Define

Advcpss
Π (A) = Pr[CPSSA

Π ⇒ 1],

where game CPSS is defined in Figure 2.2.

Game CPSSA
Π

M ←$ {0, 1}ℓ; K←$K
M ′ ← AEnc(·),Dec(·)

return (M ′ = M)

procedure Enc(P)

return EK(P∥M)

procedure Dec(C)

if DK(C) ̸= ⊥ then return 1 else return 0

Figure 2.2: Game defining CPSS security.

The CPSS notion captures the following real-world scenario. In this setting, Alice first visits a legitimate
website bank.com. Her browser then shares a secret cookie M with this website, and embeds this in ev-
ery request it sends to bank.com. Suppose that later Alice is tricked into visiting a malicious website
attacker.com. This site sends a Javascript program to the broswer, requesting some resource from bank.com.
The browser will correspondingly send an encrypted HTTP GET request to bank.com. In other words, it
sends C←$ EK(P∥M) with a prefix P that the adversary can partially control. The adversary then can
intercept this request, replace the ciphertext with another C ′ of its choice, and observe the error message
from bank.com.

Attacking CPSS security of TLS encryption. For simplicity, suppose that the byte length of M is
a multiple of 16. Let M = M1M2 . . .Mm, where each |Mi| = 16. We now recover the first block M1 of M ;
the same method can be used to recover any block of M .

We first recover the last byte ofM1. Let ε denote the empty string. The adversary first queries Enc(ε), asking
for an encryption of M . It then gets a CBC ciphertext C = C0C1 · · ·Cm+2 for M1 · · ·Mm∥T∥pad(M), where
T ← FK′(M) and C0 is a random IV. Now modify the last block of C, replacing Cm+2 by C1. Let C

′ be the
resulting ciphertext, and query C ′ to Dec. Recall that in the implementation of Dec, the first step is to use
CBC on keyK to decrypt C ′, resulting inM1∥ · · · ∥Mm∥T∥V , where V = Cm+1⊕E−1

K (C1) = Cm+1⊕M1⊕C0.
See Figure 2.3 for an illustration.

After CBC-decrypting C ′ to get X ←M1 · · ·Mm∥T∥V , one would need to look at the last byte of V to know
how many bytes we need to truncate from X, before doing a tag comparison to check for validity. Note that
(1) if the last byte of V encodes 15 then the ciphertext C ′ will be deemed valid, and (2) if the last byte of V
is not 15 then it’s unlikely that C ′ is valid. Hence by observing the output of the decryption oracle, the
adversary can tell if the last byte of M1 ⊕ C0 ⊕ Cm+1 is the encoding of 15. Hence with probability about
1/256, one can find the value of the last byte of M1.

By repeating the whole process above, the adversary can check if the last byte of M1 is the same as the last
byte of another randomly chosen IV. If the adversary iterates t times then it can find the exact value of the
last byte of M1 with probability around 1− (1− 1/256)t ≥ 1− e−t/256.

So far we’ve learned just the last byte of M1. To learn the second last byte of M1, instead of querying
Enc(ε), we would query Enc(08), asking for encryption of 08∥M . Let the answer be C ′

0 · · ·C ′
m+2. Then,

send C0 · · ·Cm+1C
′
1 to the decryption oracle. (Note that the all blocks except the last one are from the old

ciphertext of M , not 08∥M .) In this process, we’ll learn the last byte of the first block of 08∥M , which is
exactly the second last byte of M1. We can do the same trick to learn any other byte in M1.

A fix and its new problem. After the security disaster of TLS encryption, here’s what people actually
tried to fix it. Now if you need to pad p bytes, every single byte must encode p − 1. In decryption, after

2-4 Lecture 2

E
K

��

M


C


C


E
K

��

T

C


E
K

��

���

C


E

M


C


K

��
E
K

��

M


C


C


E
K

��

T

C


E
K

��

V

C


E

M


C


K

��

Figure 2.3: Illustration for the case m = 2 when we first make an encryption query on message
M = M1 · · ·Mm to get ciphertext C = C0C1 · · ·Cm+2, and then make a decryption query on C ′ =
C0C1 · · ·Cm+1C1. On the right is the CBC-decryption of C ′ for Dec(C ′). For comparison, on the left
is what would happen for the CBC-decryption of C.

CBC-decryption, you need to check if the padding is well-formed. If yes, then we’ll do the tag checking.

Now there are two possible reasons that we might reject a ciphertext as invalid: (1) bad padding, and (2)
bad tag. Some implementations actually explicitly tell users if their ciphertexts fall into (1) or (2). While
this might be a good software engineering practice elsewhere, here it’s a security issue.

Now suppose that for the CPSS attack, M = M1 · · ·Mm with m ≥ 2. Let’s try to recover the last byte of,
say M2. The adversary first queries Enc(ε) to get a ciphertext C0C1 · · ·Cm+2 of M . Let B be an arbitrary
16-byte string, and query Dec(C ′), with C ′ ← C0∥(C1 ⊕ B)∥C2. After the CBC-decryption of C ′, the last
block of the decrypted string will be (C1 ⊕ B)⊕ E−1

K (C2) = M2 ⊕ B. If the last byte of M2 ⊕ B encodes 0
then we would receive an error for bad tag. Otherwise, it’s likely that we would receive an error for bad
padding. By trying this for many different B’s, eventually we’ll recover the last byte of M2.

You might think that to fix the bug above, one should simply return the same error signal for both (1) and (2),
but even then the problem still remains. For a naive implementation, if you have a bad padding then you’ll
immediately reject the ciphertext without checking the tag, and if you have a well-formed padding, you’ll do
a MAC for tag comparison. But then there’s quite a difference in the running time between the two types
of error, and thus an adversary can still tell what kind of error it has. It requires some expertise to do a
constant-time implementation to ensure that for both types of error, the running time is the same, especially
when one also runs some compiler optimizations.

