

CIS 4360, SPRING 2026

ASYMMETRIC CRYPTO

VIET TUNG HOANG

Some slides are based on material from Prof. Stefano Tessaro, University of Washington

Agenda

1. Motivation: Key Exchange

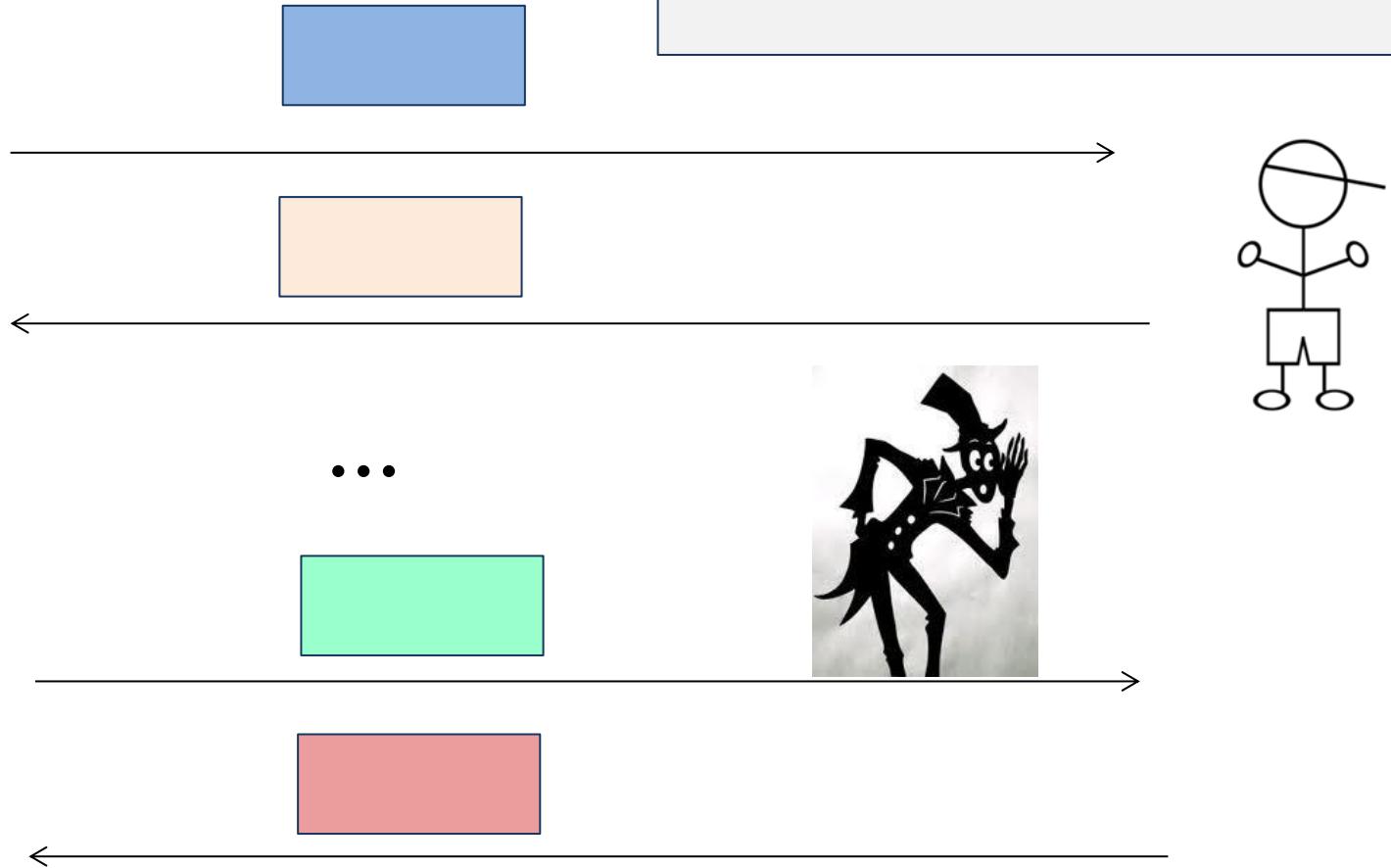
2. Number Theory Basics

3. Diffie-Hellman Assumptions

Secret Key Exchange

Alice and Bob:

- Initially share no information
- Communicate in the presence of Eve



K

Goal: Derive a **common** secret key K that
Eve knows nothing about

K

Secret-Key Exchange

Key exchange is a very important problem

You use it several times every day

Big Question: How to build a key exchange?

A black and white photograph of a man and a woman. The man, on the left, has dark, curly hair and a full, dark beard. He is wearing a light-colored, button-down shirt. The woman, on the right, has blonde hair and is wearing a striped, short-sleeved shirt. They are both smiling and looking towards the camera. The background is slightly out of focus, showing what appears to be an interior room with a window.

1976

Basic Diffie-Hellman Key Exchange

In practice, means 2048-bit

Public param: a large prime p , a number g called **a primitive root mod p** .

Let $S = \{0, 1, \dots, p - 2\}$

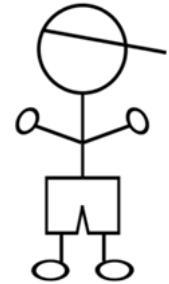
$x \leftarrow \$ S$
 $X \leftarrow g^x \bmod p$

X

$K \leftarrow Y^x \bmod p$

Question: Why do Alice and Bob have the same key?

$K \leftarrow X^y \bmod p$



$y \leftarrow \$ S$
 $Y \leftarrow g^y \bmod p$

DH Key Exchange: Questions

What does it mean to be a primitive root mod p ?

Why can't Eve compute the secret key?

...

Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions

Some Notation

For $n \in \{1, 2, 3, \dots\}$, define

$$\mathbb{Z}_n = \{0, 1, \dots, n - 1\}$$

$$\mathbb{Z}_n^* = \{t \in \mathbb{Z}_n \mid \gcd(t, n) = 1\} \quad \varphi(n) = |\mathbb{Z}_n^*|$$

Example: $n = 14$

$$\mathbb{Z}_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

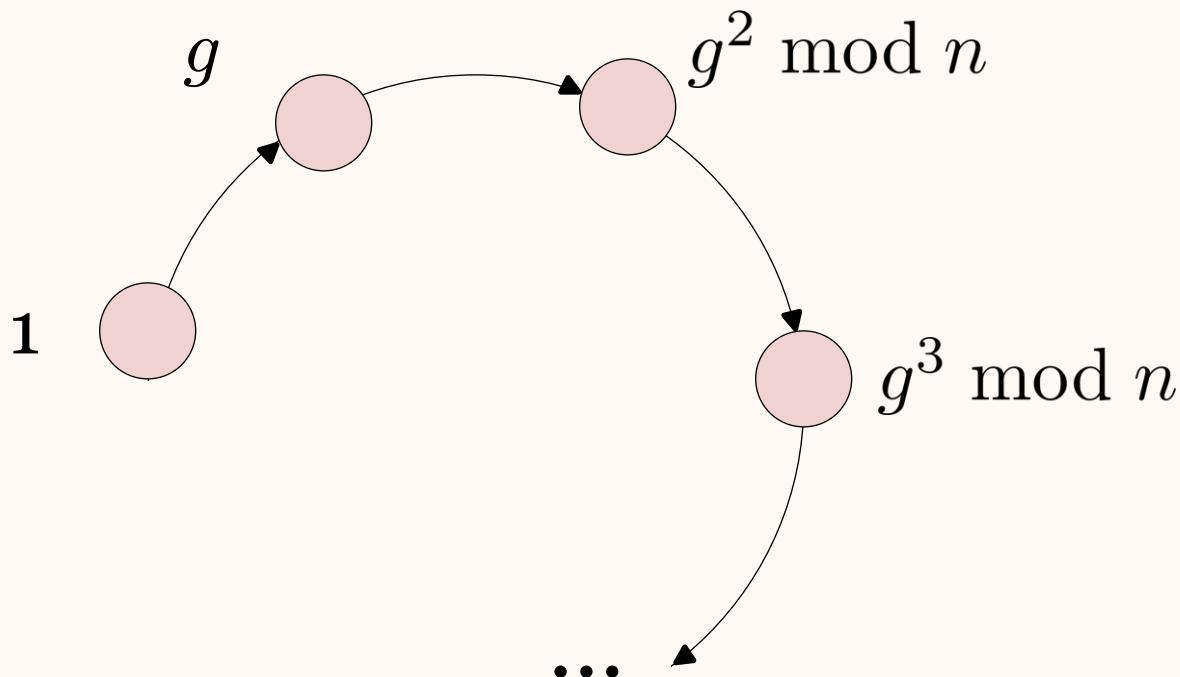
$$\mathbb{Z}_{14}^* = \{1, 3, 5, 9, 11, 13\} \quad \varphi(14) = 6$$

Example: prime p

$$\mathbb{Z}_p^* = \{1, 2, \dots, p - 1\} \quad \varphi(p) = p - 1$$

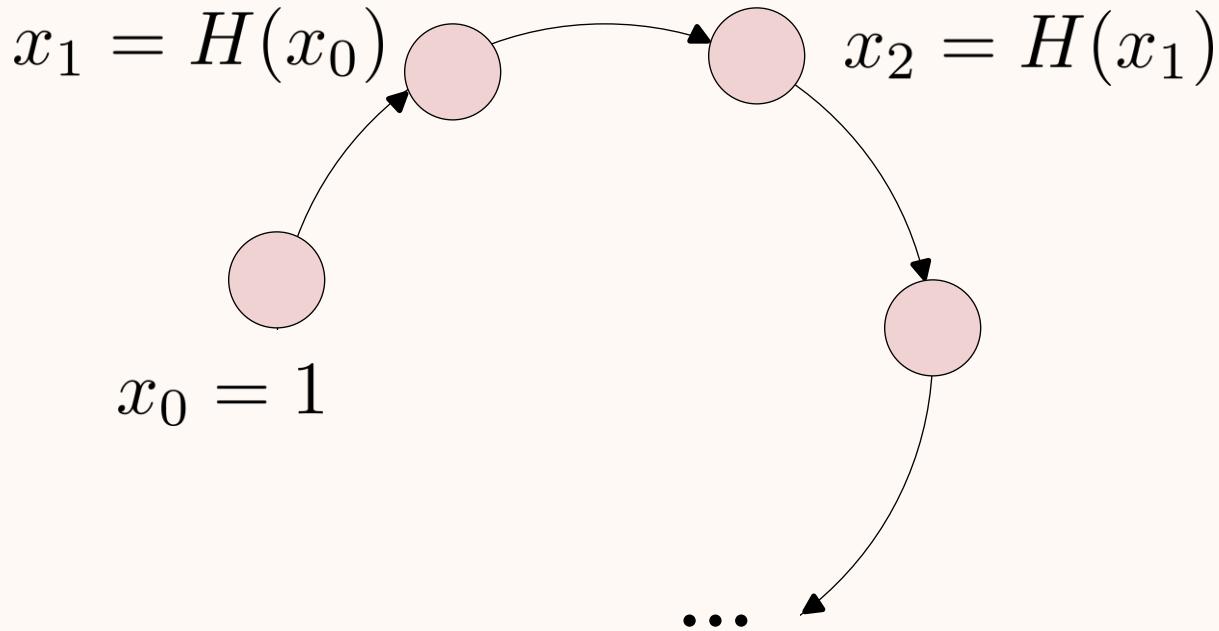
An Observation

Consider a number $g \in \mathbb{Z}_n^*$



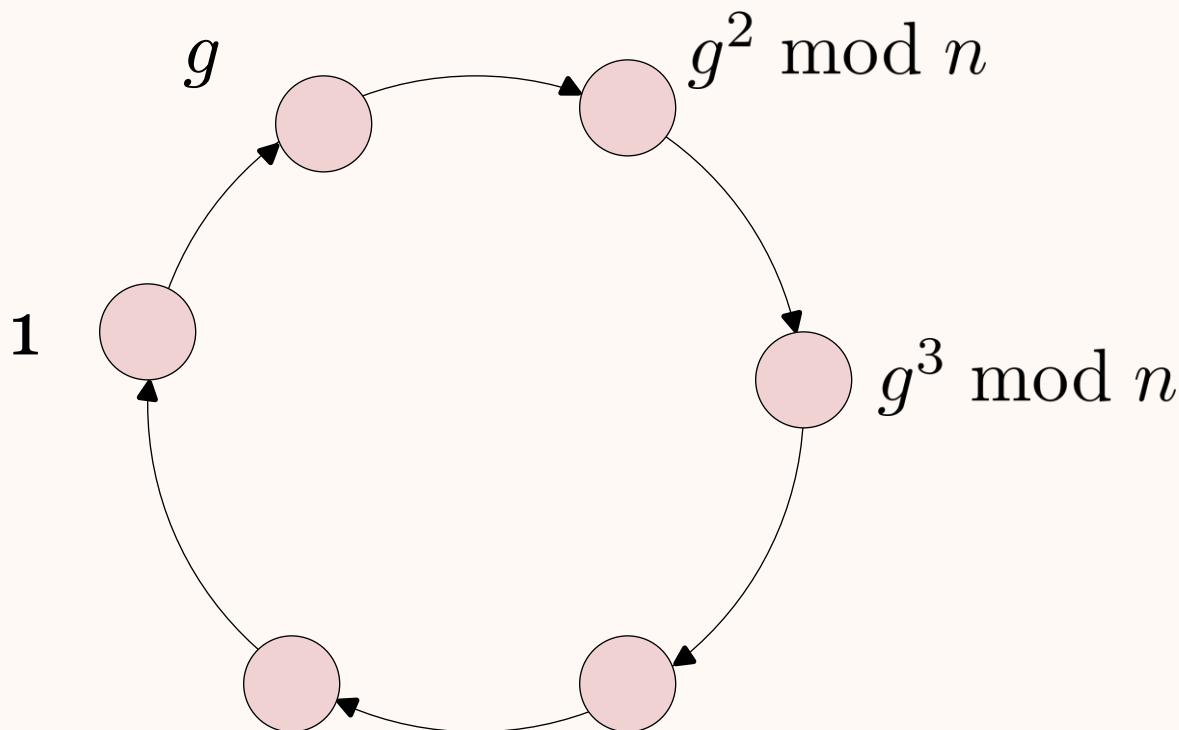
Rho Attack In Disguise

$$H(x) = x \cdot g \bmod n$$



Question: Find a collision of this hash on domain \mathbb{Z}_n^*

Collision Doesn't Exist \Rightarrow Rho Shape is a Circle

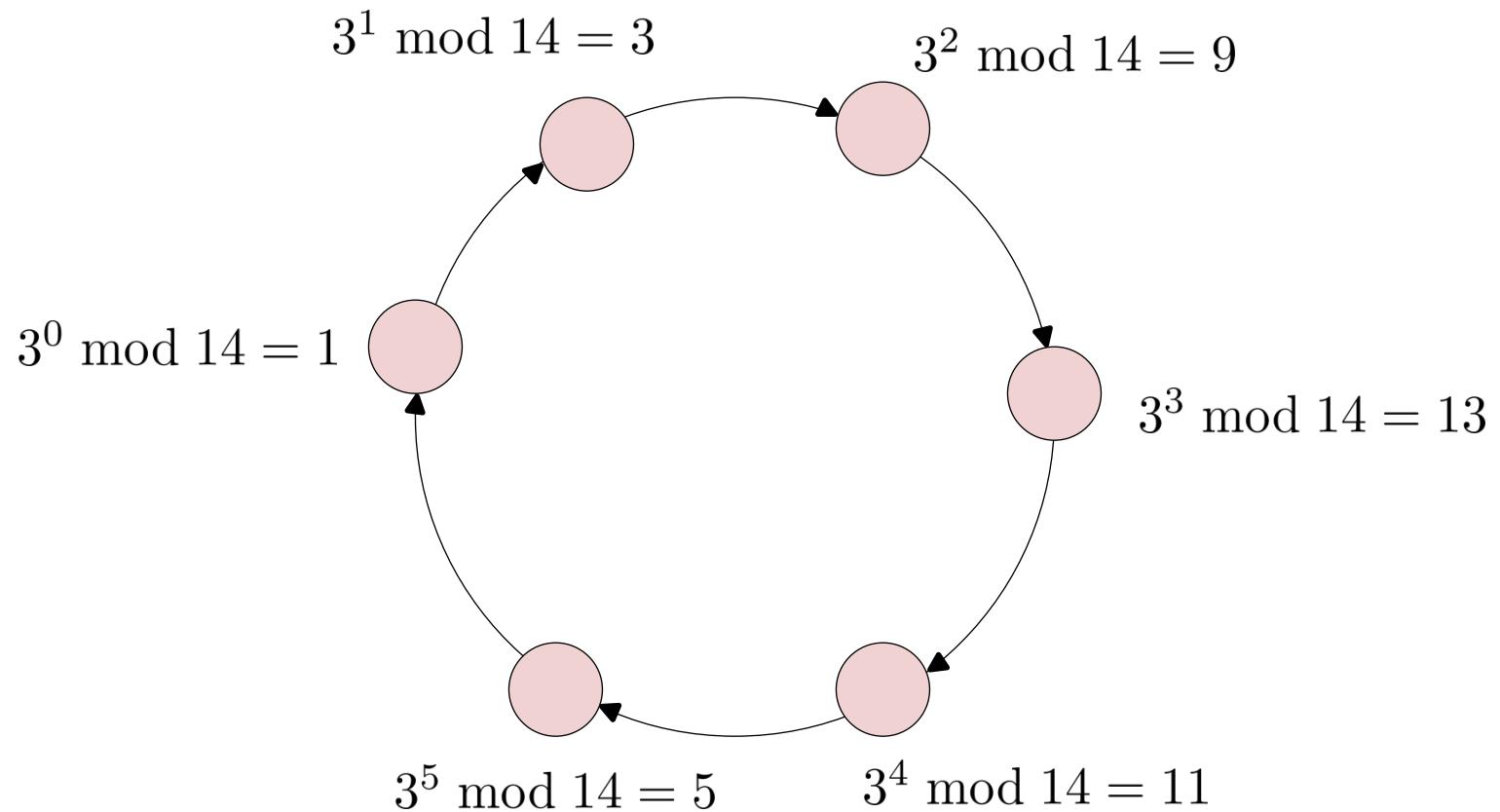


An Observation

Consider $n = 14$

$$\varphi(14) = 6$$

Cycle length = 6

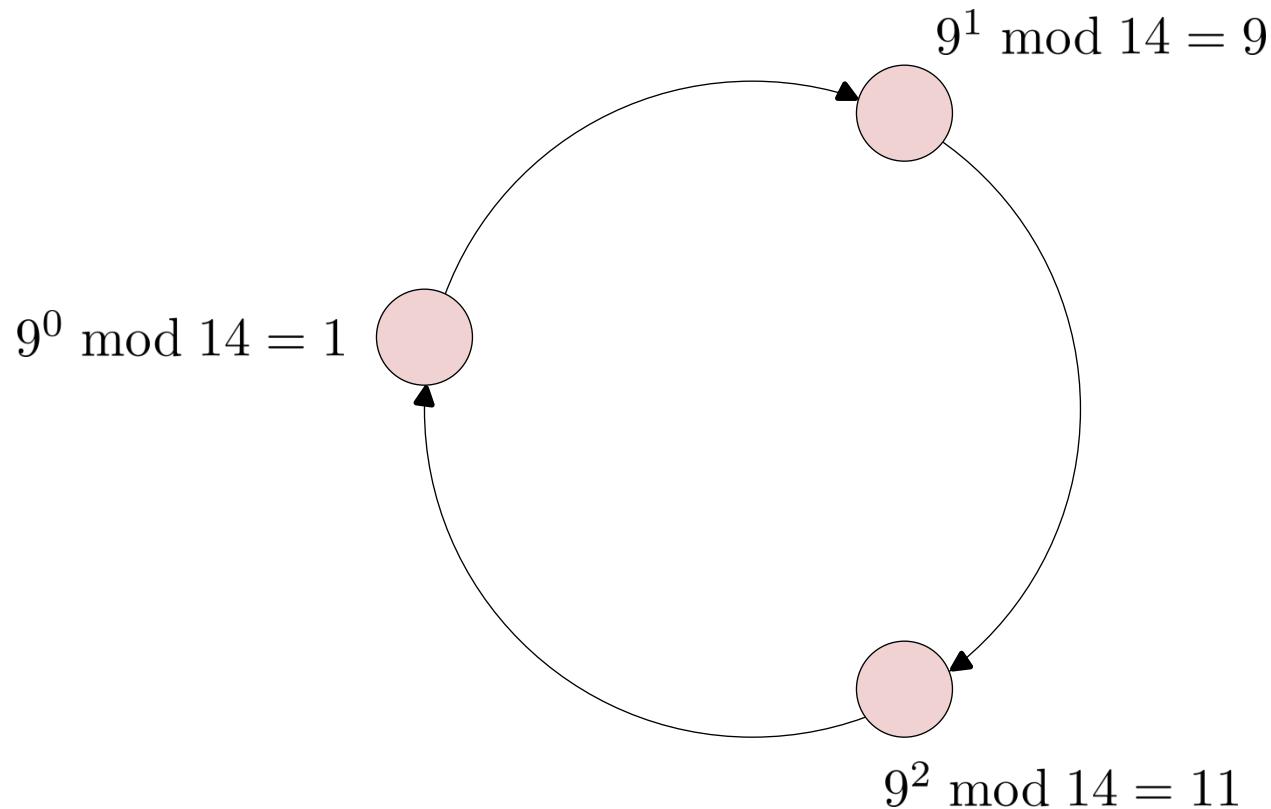


An Observation

Consider $n = 14$

$$\varphi(14) = 6$$

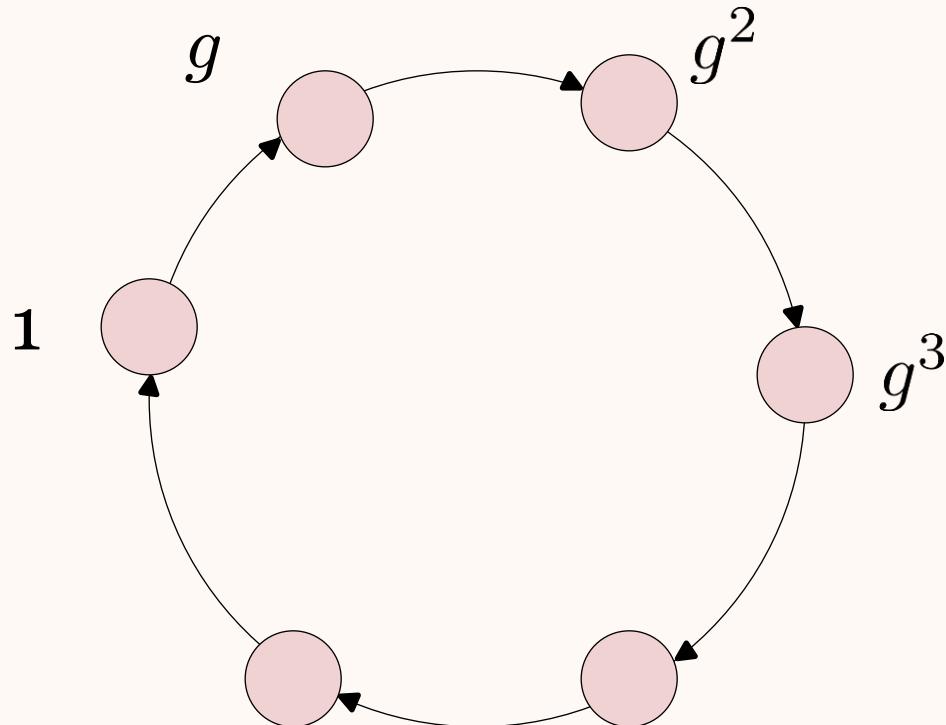
Cycle length = 3



The Common Trait

Cycle length varies, but is always a divisor of $\varphi(n)$

Walking $\varphi(n)$ steps in the cycle will always lead to the starting point



Restating in Algebraic Form

Euler's Theorem: For any $g \in Z_n^*$,

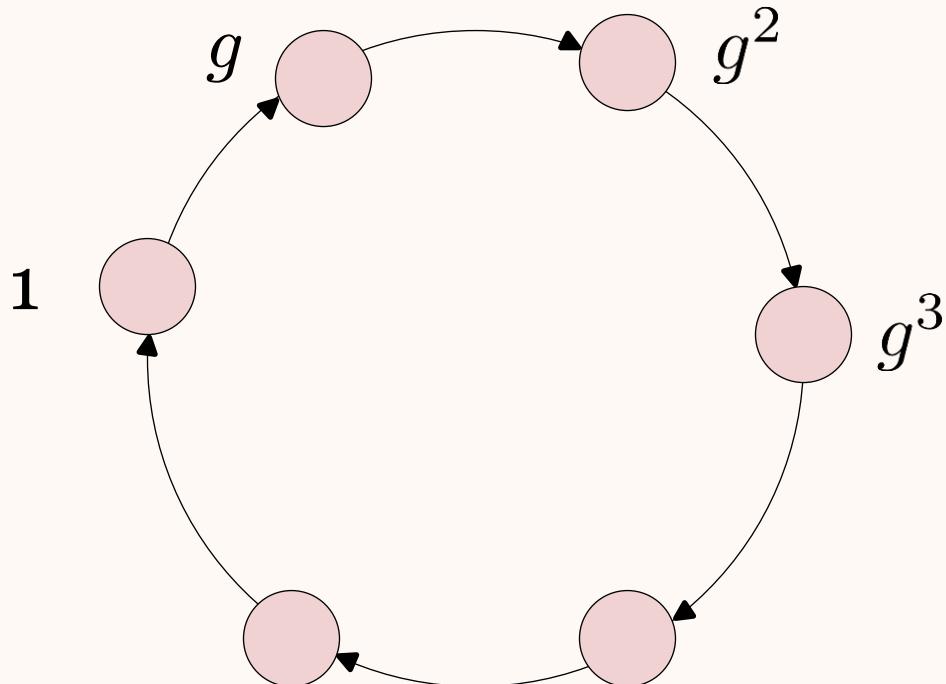
$$g^{\varphi(n)} \equiv 1 \pmod{n}$$

Fermat's Little Theorem: For any prime p and any $g \in Z_p^*$,

$$g^{p-1} \equiv 1 \pmod{p}$$

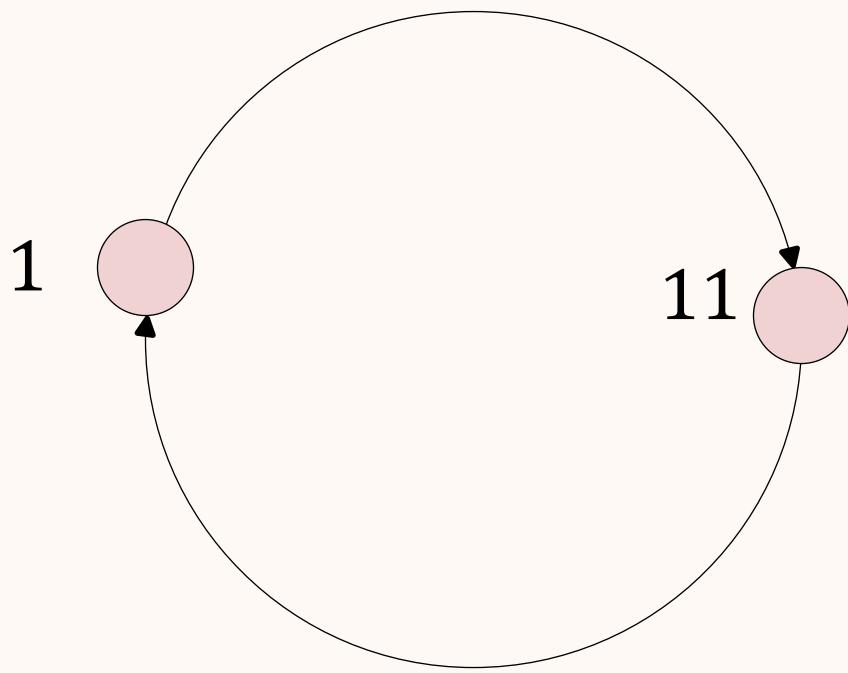
Generators and Cyclic Groups

Define $\langle g \rangle_n = \{g^i \bmod n \mid i = 0, 1, 2, \dots\}$ as the **cyclic group** mod n generated by g



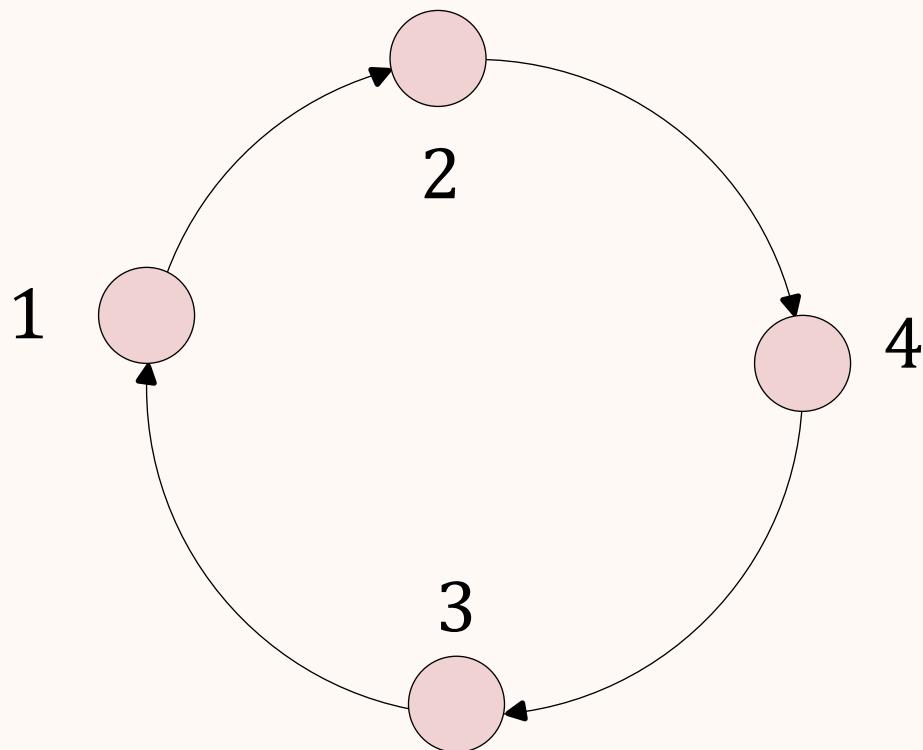
Examples

$$n = 12, g = 11, \langle g \rangle_n = \{1, 11\}$$



Examples

$$n = 5, g = 2, \langle g \rangle_n = \{1, 2, 3, 4\}$$



Primitive Roots

If the cycle length is $\varphi(n)$ then we say that g is a **primitive root** mod n

Theorem: For any prime p , there **exist** primitive roots mod p

Exercise: Find all primitive roots of 7

Agenda

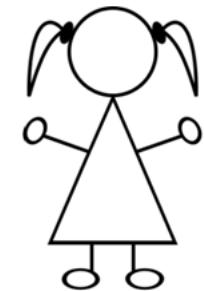
1. Motivation: Key Exchange
2. Number Theory Basics
3. **Diffie-Hellman Assumptions**

Review of DH Key Exchange

$$\mathbb{G} = \{g^i \mid i \in S\}$$

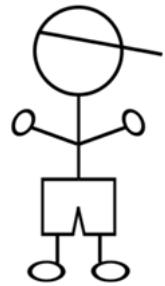
Public param: a large cyclic group \mathbb{G} generated by g

Let $S = \{0, 1, \dots, |\mathbb{G}| - 1\}$



$$X$$

$$\begin{aligned} x &\leftarrow_{\$} S \\ X &\leftarrow g^x \end{aligned}$$



$$Y$$

$$\begin{aligned} y &\leftarrow_{\$} S \\ Y &\leftarrow g^y \end{aligned}$$

$$K \leftarrow Y^x$$

$$K \leftarrow X^y$$

Intuition for Security

The Discrete Log Problem

Let $\mathbb{G} = \{g^i \mid i \in S\}$ be a cyclic group of size N

Easy: $O(\log(N))$ time

Alice's secret

$$x \in S$$

What adversary sees

$$g^x$$

How hard?

Optimal for **generic** algo

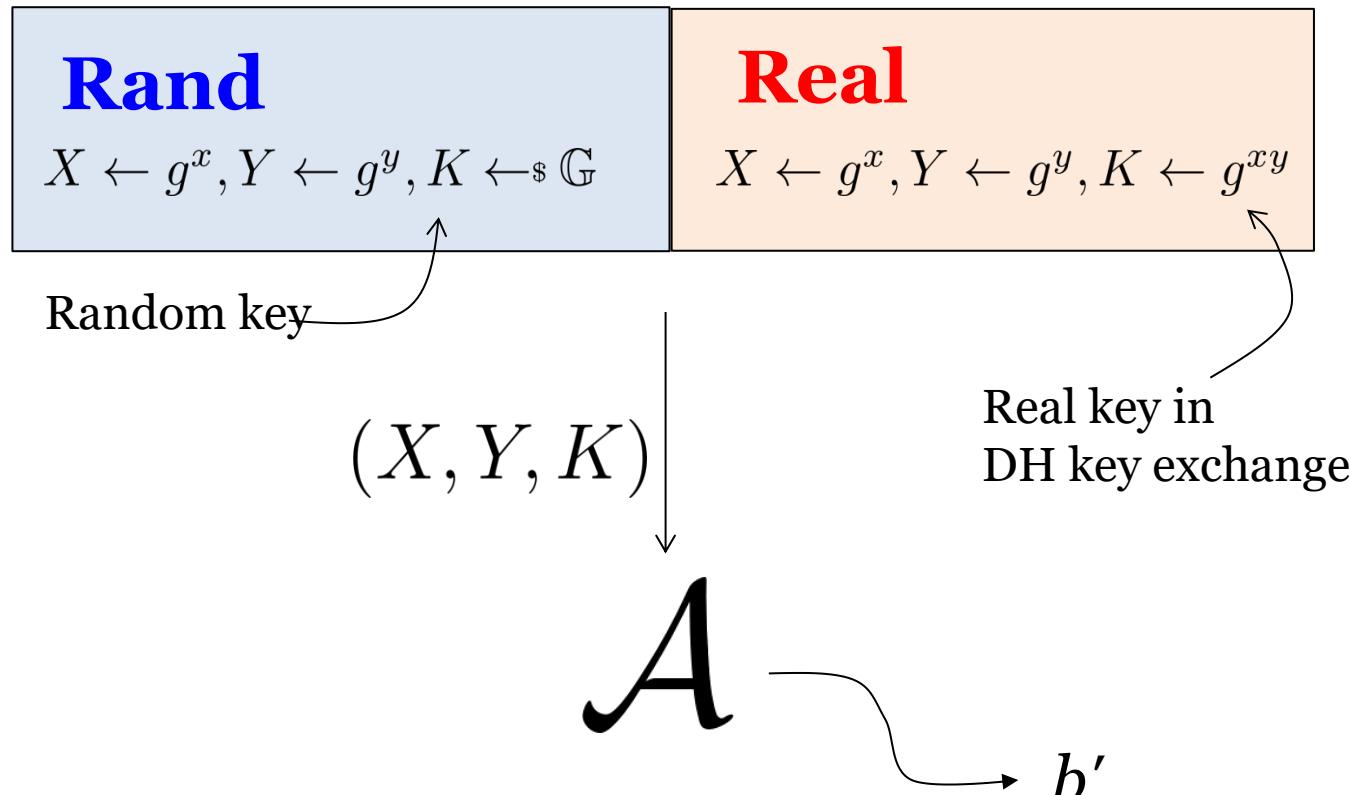
Naïve: $O(N)$ time

Rho attack: $O(\sqrt{N})$ time

Decisional DH Assumption

Discrete Log hardness is **not** enough to justify security of DH key exchange, so we need a stronger assumption

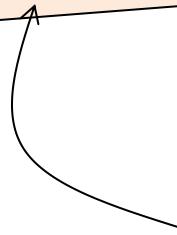
$$x, y \leftarrow_{\$} \{0, 1, \dots, |\mathbb{G}| - 1\}$$



The DH key exchange is secure if DDH holds

Caveat

DDH does **not** hold for \mathbb{Z}_p^*

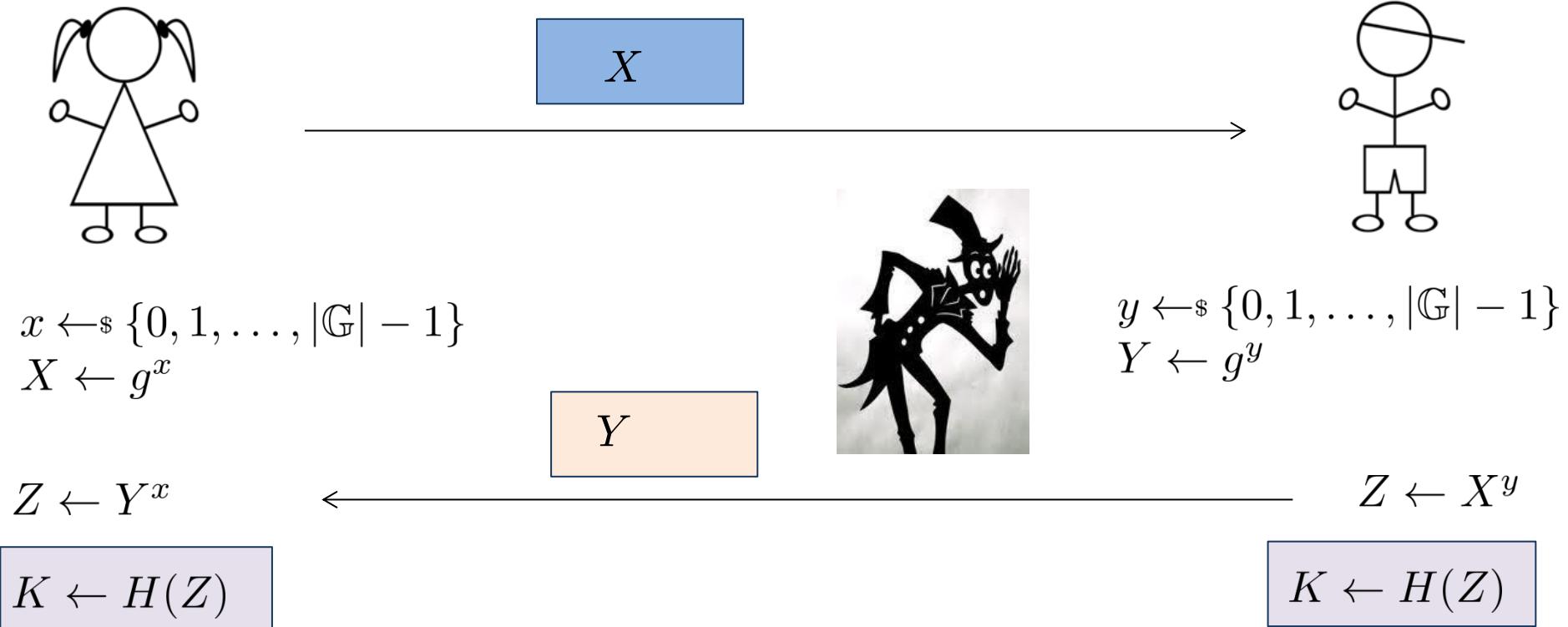


Can break it with advantage $1/2$

Strengthening DH Key Exchange

Same as before, but use a hash H at the end

Public param: a large cyclic group \mathbb{G} whose generator is g

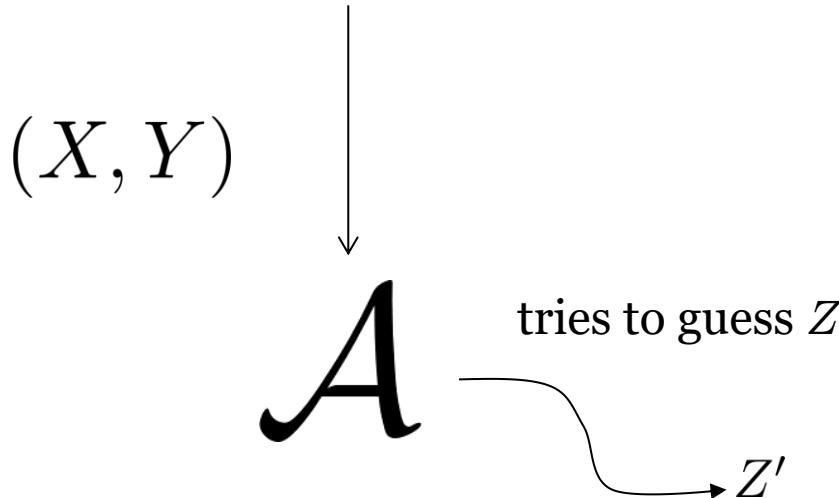


Computational DH Assumption

is believed to hold for \mathbb{Z}_p^*

Real

$x, y \leftarrow \mathbb{S} \{0, 1, \dots, |\mathbb{G}| - 1\}; X \leftarrow g^x, Y \leftarrow g^y, Z \leftarrow g^{xy}$



The strengthened DH key exchange is secure if CDH holds, and H is modeled as a random oracle.