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The slides are loosely based on the book “Computer Security: A hands-on approach” by Kevin Du and material by Prof. Stefano 

Tessaro, University of Washington
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Agenda

1. Multi-user Systems

2. Access Control in UNIX

3. Attacks on SetUID Programs
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Multi-user Systems

Many users share the same resources in the same systems

Access control decides who use what
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Access Control Matrix

File 1 File 2 … File N

Alice read, write read, write, own read

Guest 

…

Admin append read, execute read, write, own

Users

Files
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Mandatory Access Control (MAC)

Security decisions are made by a central policy administrator

Example: Bell-LaPadula Model

• Users are assigned security clearances

• General policy captures who can read a file 
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Bell-LaPadula Model: Clearance Levels

Top secret

Secret

Unclassified



7

Bell-LaPadula Model: Compartmentalization

Need-to-know Principle: One should only have access to data that his job requires

European Nuclear

Top secret

Secret

Unclassified

{Nuclear, European}
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Clearance and Compartmentalization → Partial Order

Top Secret, {Nuclear, European}

Top Secret, Nuclear Top Secret, European

Secret, {Nuclear, European}

Secret, Nuclear Secret, EuropeanUnclassified, {Nuclear, European}

Unclassified, Nuclear Unclassified, European



9

Confidential Policy: No Read Up, No Write Down

European Nuclear

Top secret

Secret

Unclassified

{Nuclear, European}

Read should fail

Write should fail

Write should fail

Read should fail



10

Where To Read, Where To Write

A

B

Read

Simple security condition: User with access A 

can read file of access B only if A is an ancestor of B

B

A

Write

*-property: User with access A can write to 

file of access B only if A is a descendant of B
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Practice

1. Alice, cleared for Top Secret, Nuclear wants to access a document Unclassified, European

      A. Read            B. Write          C. Both Read and Write          D. Not allowed

2.   Bob, cleared for Top Secret, {European, Nuclear}  wants to access a document Secret, European

      A. Read            B. Write          C. Both Read and Write          D. Not allowed
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Clearance and Compartmentalization in OS

Windows (VM OS) Ubuntu (VM OS)

Hypervisor

Kernel mode

User mode
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Discretionary Access Control (DAC)

Users decide access to their own files

Example: In Unix, you can use chmod to change access permission of your files
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Common Ways to Implement DAC

File 1 File 2 … File N

Alice read, write read, write, own read

Guest 

…

Admin append read, execute read, write, own

Access control lists

Column stored with file

Capabilities

Row stored for each user

Tokens given to user

Example: Access permission in Unix Example: Ping has CAP_NET_RAW to use ICMP 
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Agenda

1. Multi-user Systems

2. Access Control in UNIX

3. Attacks on SetUID Programs
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UNIX-style file System ACLs

What are permissions of file index.php? 
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Roles (Groups)

Group is a set of users. 

Simplify assignment of permissions at scale

Alice

Bob

Eve

/etc/passwd

User

Guest

Admin

/usr/local/

/tmp/

User Group File
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Processes

• So far, we have talked about permissions of files.

• Process: Instance of computer program being executed, generally 

associated with an executable file.

• Processes also have permissions

– Which files can a process read from/write to?  
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UNIX Process Permissions

• Process (normally) runs with permissions of user that invoked process

Problem: How would Alice update her password? 

Her passwd process needs to write to /etc/shadow that only root has access

passwd /etc/shadow
Write to
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How Do You Reset Your Password?

What’s the s-flag in the permission? 
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Process Permission, Continued

UID 0 is root

Real user ID (RUID)  -- same as UID of parent (who started process) 

Effective user ID (EUID)  -- from set user ID bit of file being executed
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Executable Files Have Two SetUID bits

So passwd is a setuid program

program runs at permission level of owner (root for passwd), not user that runs it

• Setuid  bit – set EUID of process to owner’s ID

• Setgid  bit – set EGID of process to group’s ID
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seteuid System Call

Idea: raise privileges only when needed within your code

uid = getuid();

eid = geteuid();

seteuid(uid);      // Drop privileges

…

seteuid(eid);      // Raise privileges

file = fopen( “/etc/shadow”, “w” );

…

seteuid(uid);      // drop privileges
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1. Multi-user Systems

2. Access Control in UNIX

3. Attacks on SetUID Programs
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• Source of many privilege escalation vulnerabilities

Example 1: 
Capability Leaking

Example 2: 
Race conditions

Example 3: 
Env variables

Setuid Allows Privilege Escalation But…



26

• In some cases, privileged programs downgrade themselves during execution.  

Example: su 

… // Some privileged code

setuid(getuid()); // Disable privilege 

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0) 

• Issue: Program may not clean up privileged capabilities before downgrading

Capability Leaking
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fd = open(“/etc/shadow”, O_RDWR|O_APPEND)

setuid(getuid()); // Disable privilege 

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0) 

Forget to close the file, so the file descriptor is still valid

Exploit:   Write to /etc/shadow with the content of myfile 
cat myfile >& 3 

File descriptor 3 is usually  allocated for the first opened file

Capability Leaking: An Example
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if( access(“/tmp/myfile”, R_OK) != 0 ) 

{

 exit(-1);

}

file = open( “/tmp/myfile”, “r” );

read( file, buf, 100 );

close( file );

print( “%s\n”, buf );

Say the following is run with EUID = 0

// Ensures that RUID can access file. If not abort

Race Conditions: Time-of-check-to-time-of-use (TOCTTOU)
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access checks RUID, but open only checks EUID

access(“/tmp/myfile”, R_OK) 

open( “/tmp/myfile”, “r” );

ln –s /home/root/.ssh/id_rsa   /tmp/myfile

print( “%s\n”, buf ); Prints out root’s secret key…

Outcome?

SetUID process 

Non-privileged process



30

Environment Variables

SetUID 
Program

(User-controlled) 
env variables

Examples: PATH

Location of commands that will be searched by shell if full path is not provided



31

Example: Attack via PATH

#include <stdlib.h> 

int main()

{ 

system(“cal”); // Run calendar 

} 

Say the following is run with EUID = 0
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How to Attack

#include <stdlib.h> 

int main()

{ 

system(“/bin/bash -p”); // Run shell 

} 

Set up a malicious “calendar” program in the home directory
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How To Attack

$ export PATH = .:PATH

Tell the shell to look up commands  in the home directory first

system(“cal”); 

Run the SetUID program

Malicious “calendar” is run, and attacker gets root shell

Outcome?
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Cause of Environment-Variable Attack: Mixing Code and Data

Untrusted user data

Trusted command name

Mix
Command

Parse
Data

Command

Execute
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