
1

CIS4360, SPRING 2026

SOFTWARE SECURITY

VIET TUNG HOANG

The slides are loosely based on the book “Computer Security: A hands-on approach” by Kevin Du and material by Prof. Stefano

Tessaro, University of Washington

2

Agenda

1. Multi-user Systems

2. Access Control in UNIX

3. Attacks on SetUID Programs

3

Multi-user Systems

Many users share the same resources in the same systems

Access control decides who use what

4

Access Control Matrix

File 1 File 2 … File N

Alice read, write read, write, own read

Guest

…

Admin append read, execute read, write, own

Users

Files

5

Mandatory Access Control (MAC)

Security decisions are made by a central policy administrator

Example: Bell-LaPadula Model

• Users are assigned security clearances

• General policy captures who can read a file

6

Bell-LaPadula Model: Clearance Levels

Top secret

Secret

Unclassified

7

Bell-LaPadula Model: Compartmentalization

Need-to-know Principle: One should only have access to data that his job requires

European Nuclear

Top secret

Secret

Unclassified

{Nuclear, European}

8

Clearance and Compartmentalization → Partial Order

Top Secret, {Nuclear, European}

Top Secret, Nuclear Top Secret, European

Secret, {Nuclear, European}

Secret, Nuclear Secret, EuropeanUnclassified, {Nuclear, European}

Unclassified, Nuclear Unclassified, European

9

Confidential Policy: No Read Up, No Write Down

European Nuclear

Top secret

Secret

Unclassified

{Nuclear, European}

Read should fail

Write should fail

Write should fail

Read should fail

10

Where To Read, Where To Write

A

B

Read

Simple security condition: User with access A

can read file of access B only if A is an ancestor of B

B

A

Write

*-property: User with access A can write to

file of access B only if A is a descendant of B

11

Practice

1. Alice, cleared for Top Secret, Nuclear wants to access a document Unclassified, European

 A. Read B. Write C. Both Read and Write D. Not allowed

2. Bob, cleared for Top Secret, {European, Nuclear} wants to access a document Secret, European

 A. Read B. Write C. Both Read and Write D. Not allowed

12

Clearance and Compartmentalization in OS

Windows (VM OS) Ubuntu (VM OS)

Hypervisor

Kernel mode

User mode

13

Discretionary Access Control (DAC)

Users decide access to their own files

Example: In Unix, you can use chmod to change access permission of your files

14

Common Ways to Implement DAC

File 1 File 2 … File N

Alice read, write read, write, own read

Guest

…

Admin append read, execute read, write, own

Access control lists

Column stored with file

Capabilities

Row stored for each user

Tokens given to user

Example: Access permission in Unix Example: Ping has CAP_NET_RAW to use ICMP

15

Agenda

1. Multi-user Systems

2. Access Control in UNIX

3. Attacks on SetUID Programs

16

UNIX-style file System ACLs

What are permissions of file index.php?

17

Roles (Groups)

Group is a set of users.

Simplify assignment of permissions at scale

Alice

Bob

Eve

/etc/passwd

User

Guest

Admin

/usr/local/

/tmp/

User Group File

18

Processes

• So far, we have talked about permissions of files.

• Process: Instance of computer program being executed, generally

associated with an executable file.

• Processes also have permissions

– Which files can a process read from/write to?

19

UNIX Process Permissions

• Process (normally) runs with permissions of user that invoked process

Problem: How would Alice update her password?

Her passwd process needs to write to /etc/shadow that only root has access

passwd /etc/shadow
Write to

20

How Do You Reset Your Password?

What’s the s-flag in the permission?

21

Process Permission, Continued

UID 0 is root

Real user ID (RUID) -- same as UID of parent (who started process)

Effective user ID (EUID) -- from set user ID bit of file being executed

22

Executable Files Have Two SetUID bits

So passwd is a setuid program

program runs at permission level of owner (root for passwd), not user that runs it

• Setuid bit – set EUID of process to owner’s ID

• Setgid bit – set EGID of process to group’s ID

23

seteuid System Call

Idea: raise privileges only when needed within your code

uid = getuid();

eid = geteuid();

seteuid(uid); // Drop privileges

…

seteuid(eid); // Raise privileges

file = fopen(“/etc/shadow”, “w”);

…

seteuid(uid); // drop privileges

24

Agenda

1. Multi-user Systems

2. Access Control in UNIX

3. Attacks on SetUID Programs

25

• Source of many privilege escalation vulnerabilities

Example 1:
Capability Leaking

Example 2:
Race conditions

Example 3:
Env variables

Setuid Allows Privilege Escalation But…

26

• In some cases, privileged programs downgrade themselves during execution.

Example: su

… // Some privileged code

setuid(getuid()); // Disable privilege

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0)

• Issue: Program may not clean up privileged capabilities before downgrading

Capability Leaking

27

fd = open(“/etc/shadow”, O_RDWR|O_APPEND)

setuid(getuid()); // Disable privilege

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0)

Forget to close the file, so the file descriptor is still valid

Exploit: Write to /etc/shadow with the content of myfile
cat myfile >& 3

File descriptor 3 is usually allocated for the first opened file

Capability Leaking: An Example

28

if(access(“/tmp/myfile”, R_OK) != 0)

{

 exit(-1);

}

file = open(“/tmp/myfile”, “r”);

read(file, buf, 100);

close(file);

print(“%s\n”, buf);

Say the following is run with EUID = 0

// Ensures that RUID can access file. If not abort

Race Conditions: Time-of-check-to-time-of-use (TOCTTOU)

29

access checks RUID, but open only checks EUID

access(“/tmp/myfile”, R_OK)

open(“/tmp/myfile”, “r”);

ln –s /home/root/.ssh/id_rsa /tmp/myfile

print(“%s\n”, buf); Prints out root’s secret key…

Outcome?

SetUID process

Non-privileged process

30

Environment Variables

SetUID
Program

(User-controlled)
env variables

Examples: PATH

Location of commands that will be searched by shell if full path is not provided

31

Example: Attack via PATH

#include <stdlib.h>

int main()

{

system(“cal”); // Run calendar

}

Say the following is run with EUID = 0

32

How to Attack

#include <stdlib.h>

int main()

{

system(“/bin/bash -p”); // Run shell

}

Set up a malicious “calendar” program in the home directory

33

How To Attack

$ export PATH = .:PATH

Tell the shell to look up commands in the home directory first

system(“cal”);

Run the SetUID program

Malicious “calendar” is run, and attacker gets root shell

Outcome?

34

Cause of Environment-Variable Attack: Mixing Code and Data

Untrusted user data

Trusted command name

Mix
Command

Parse
Data

Command

Execute

	Slide 1
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Agenda
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Agenda
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

