CIS 5371, FALL 2025

PUBLIC-KEY ENCRYPTION

VIET TUNG HOANG

Agenda

1. High-level PKE

Motivation

Problem: Alice and Bob must be online simultaneously for key exchange

Public-Key Encryption (PKE): Syntax

Key Gen
M & . T C
Encrypt pk
—
M
C D — =<
or |
N
Decrypt sk

PKE Usage

Alice’s public key

Bob’s public key

Carol’s public key

TR

Alice generates a pair of secret key and public key.

She keeps sk to herself, and stores pk in a public, trusted database.

PKE Usage

First retrieve Alice’s public key

pk

Alice’s public key

Bob’s public key

Carol’s public key

Alice can later decrypt

using her secret key
Then email the encrypted message

to Alice under her public key

Exercise: Sharing Encrypted Files

Encrypt a file so that when we place the ciphertext in a shared folder, only
selected people can decrypt, assuming everybody has a public key

Encrypted file
Q/ i V\‘\&O\‘\'\O

Alice Bob Carol Dave

PKE: CPA Security

- Similar to the Left-or-Right security of Symmetric encryption

- Difference: The adversary is given the public key

Left Right
procedure Enc(mg, mq) procedure Enc(mg, m1)
Return &£, (mg) Return &, (mq)
Enc
C (m07 ml)

A
SN

Performance Issue

Standard PKE schemes can only encrypt short messages (say < 2048 bits)

How should we encrypt long ones?

A (not so good) solution:

My

Mo

M3

-Break the message into small chunks

-Encrypt each chunk individually

gpk (Ml)

gpk (M2)

gpk(MS)

gpk(Mél)

Problem: PKE is very expensive, so this solution is several thousands times

slower than AES-CTR

Hybrid Encryption

Epre(K) CTR (M)

-Generate a random key K

-Encrypt the key K by PKE, and use CTR under key K to encrypt the message

-

Can replace CTR by your favorite symmetric encryption

10

Agenda

2.Building PKE

Number Theory Basics

For n € {1,2,3,...}, define

Z7r =4t € Z, | ged(t,n) = 1}

p(n) = |Zy,

Theorem:

- For any s € Z*,s%(™ =1 (mod n)

- ¢ is multiplicative: if ged(a, b) = 1 then ¢(ab) = ¢(a)p(b)

Examples: For distinct primes p and ¢:
p(p)=p—1
p(pg) = (p—1)(¢—1)

12

The RSA Function

Given e,d € Z;,,, suchthated =1 (mod ¢(n))

Define a permutation f and its inverse f—! as follows:

f(x) = 2 mod n

f~H(y) = y* mod n

Practice: Try n =55and e =3

14

A Bad PKE: Plain RSA

Often e = 3 for efficiency

Key generation:

- Pick two large primes p, ¢ and compute n = pq
~- Pick e,d € Z7) suchthat ed =1 (mod ¢(n))
- Return pk < (n,e), sk < (n,d)

Encryption:

- To encrypt message x under pk = (n,e), return ¢ < ¢ mod n

Decrypt:

- To decrypt a ciphertext c under sk = (n,d), return z < ¢ mod n

15

Cracking Plain RSA: First Attempt

ed=1 (mod (p—1)(g—1))
Public e, N=pq

(Require factoring N, which is a hard problem

>A plausible attack:
- Recover(p —1)(¢g—1)

- Compute d such that ed =1 (mod (p —1)(¢ — 1))

O(log(N)) time using (extended) Euclidean algorithm

Question: Given N=pg and (p —1)(¢ — 1), recover p and q

Secret d

16

Cracking Plain RSA: Second Attempt
N

J

\

For e = 3, a very common choice

For small messages = < n'/3:

3

c = x° modn r = cl/3

Practice: Recover message x when one encrypts
r,r+ 1,4+ 2

17

Why Is Plain RSA Bad?

It doesn’t meet the CPA notion

Reason: Plain RSA is deterministic

In 2016, QQ Browser was found to use Plain RSA to encrypt user data.

China’s Top Web Browsers Leave User
Data Vulnerable, Group Says

Report from Citizen Lab accuses Tencent of weak encryption practices
with its QQ Browser

By Juro Osawa and Eva Dou
March 28,2016 5:00 p.m.ET

18

What Plain RSA Gives: Srapdoor permutation/

Y
A triple of algorithms (Gen, Samp, Inv)

(f,d) <—s Gen, with f : Dom — Range

For z +s Samp, it’s easy to compute ¥y = f(x), but hard to invert

f~ (y) without knowing the trapdoor d

easy via Inv(d, -)

19

Building PKE from Trapdoor Permutation
Plain RSA - Hashed RSA

Given a trapdoor permutation (Gen, Samp, Inv) and a hash function A

Key generation: Run (f,d) <s Gen and return pk + f, sk < d

Encryption: To encrypt message M under pk = f

f Cy

Samp

—$—| r
o/
%

Question: How to decrypt?

20

Careful With Key Generation

ﬁ q
!
Gen RSA generates p before ¢

Implementation issue: If initial randomness is weak (i.e. generated

at boot time), many systems are likely to generate the same p

Question: Given N; = pq1, N2 = pga, recover pP,qi, Q2

21

Careful With Key Generation

Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices

Nadia Heninger"* Zakir Durumeric** Eric Wustrow* J. Alex Halderman*
T University of California, San Diego *The University of Michigan
nadiah@cs.ucsd.edu {zakir, ewust, jhalderm } @umich.edu

0.75% of TLS certificates share keys, and another 1.7%

may be susceptible

22

Agenda

3. Padding-oracle attack on PKCS1

PKCS #1 Encryption

<encrypt byte strings only

SN
Give shorter ciphertexts

than Hashed RSA

Uses encrypt-with-redundancy paradigm:

Decryption will reject if the format is incorrect

non-zero,

2 bytes random bytes 1byte
N

-

~

0002 $$

00 M

_

1024 bits /\ X

X

padded message

|

Plain RSA Enc

l

24

Padding-Oracle Attack

Context: Alice is establishing a TLS session with a server

server’s public key

—
/

g f

48-byte secret

Ci

Adversary uses server as a decryption oracle by observing

server’s accepting/rejecting of its fake ciphertexts

25

Padding-Oracle Attack

Recall C' = X° mod n, with pk = (e, n)
\

P

Padded message

Pick some r

C" +— Cr® mod n
7

Accept only if Xr has

(X7)¢ mod n valid PKCS encoding

By using several r, can fully recover X, and also M

26

Illustrative Toy Problem

1 bit

Plain RSA Enc

l

U

C" +— Cr® mod n

/

Cl

_

Only encrypt M < n/2

Accept only if
(Xr mod n) <n/2

= (X7)¢ mod n since C' = X°¢ mod n

27

Key Idea: Binary Search

Initial search range of X: {0,...,

n—1}

At each step, try to half the range of X by carefully choosing r

X <n

pickr =1

No
Ad n) <mn/2?

X <n/2

S

X <n/4

pickr =2 n/2 <X <n
No
As \
nfd<X <nj2| | n/2<X<3n/4|] 3n/d<X <n

28

A Quick Fix and Its Problem

Want: Change only server side, for backward compatibility

The change in TLS 1.0:

- If format or length of the decrypted message is incorrect, decryption

returns a random 48-byte strings

k Hiding decryption failure

Problem: Might be broken if implementation is not done properly to

ensure that the timing is constant in both decryption success and failure.

29

Agenda

4.CCA Security and OAEP

Resisting Padding-Oracle Attacks: CCA Security

Left

procedure Enc(mg, mq)
Return &,x(mg)

Right

procedure Enc(mg, my)
Return &,x(mq)

A is prohibited from

feeding ctx from Enc to Dec.

Enc
C Q‘ (m07 ml)

A &

)
PR Do ()

31

Achieving CCA Security: OAEP

Use: 1024-bit Plain RSA and two hash functions H and G
N

Modeled as independent random oracles

How to get two hash functions from SHA-256: Domain separation

32

OAEP Design: Feistel Networks

Design paradigm: Two-round (unbalanced) Feistel

Feistel (in decryption) Inverse Feistel (in encryption)

Y
€ s
r

é!’ | ‘

g
=i

33

OAEP Encryption

128 bits 896 bits
r A N r % I
—$— r 0128|| M| 10* Use encrypt-with-redundancy.

Plain RSA Enc

l

34

OAEP Decryption

l

Plain RSA Dec

If X[1:128) =0'*® then
Decode X to get M

Else return L

35

	Slide 1
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Agenda
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Agenda
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Agenda
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

