Intro to Asymmetric Crypto

Viet Tung Hoang

Some slides are based on material from Prof. Stefano Tessaro, University of Washington
Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions
Secret Key Exchange

Alice and Bob:
- Initially share no information
- Communicate in the presence of Eve

Goal: Derive a \textbf{common} secret key K that \textbf{Eve knows nothing} about
Secret-Key Exchange

Key exchange is a very important problem
You use it several times every day

Big Question: How to build a key exchange?
Basic Diffie-Hellman Key Exchange

In practice, means 2048-bit

Public param: a large prime \(p \), a number \(g \) called a **primitive root** \(\mod p \).

Let \(S = \{0, 1, \ldots, p - 2\} \)

\[x \leftarrow \$ S \]

\[X \leftarrow g^x \mod p \]

\[y \leftarrow \$ S \]

\[Y \leftarrow g^y \mod p \]

Question: Why do Alice and Bob have the same key?

\[K \leftarrow Y^x \mod p \]

\[K \leftarrow X^y \mod p \]
DH Key Exchange: Questions

What does it mean to be a primitive root mod p?
Why can’t Eve compute the secret key?

...
Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions
Some Notation

For $n \in \{1, 2, 3, \ldots\}$, define

$$\mathbb{Z}_n = \{0, 1, \ldots, n - 1\}$$

$$\mathbb{Z}_n^* = \{t \in \mathbb{Z}_n \mid \gcd(t, n) = 1\} \quad \varphi(n) = |\mathbb{Z}_n^*|$$

Example: $n = 14$

$$\mathbb{Z}_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$$\mathbb{Z}_{14}^* = \{1, 3, 5, 9, 11, 13\} \quad \varphi(14) = 6$$

Example: prime p

$$\mathbb{Z}_p^* = \{1, 2, \ldots, p - 1\} \quad \varphi(p) = p - 1$$
An Observation

Consider a number $g \in \mathbb{Z}_n^*$
Rho Attack In Disguise

\[H(x) = x \cdot g \mod n \]

\[x_1 = H(x_0) \]

\[x_2 = H(x_1) \]

\[x_0 = 1 \]

Question: Find a collision of this hash on domain \(\mathbb{Z}_n^* \)
Collision Doesn’t Exist \implies Rho Shape is a Circle
An Observation

Consider \(n = 14 \)

\[\varphi(14) = 6 \]

Cycle length = 6

\[3^0 \mod 14 = 1 \quad 3^1 \mod 14 = 3 \quad 3^2 \mod 14 = 9 \quad 3^3 \mod 14 = 13 \quad 3^4 \mod 14 = 11 \quad 3^5 \mod 14 = 5 \]
An Observation

Consider $n = 14$

$\varphi(14) = 6$ \hspace{1cm} Cycle length = 3

$9^0 \mod 14 = 1$

$9^1 \mod 14 = 9$

$9^2 \mod 14 = 11$
The Common Trait

Cycle length varies, but is always a divisor of \(\varphi(n) \)

Walking \(\varphi(n) \) steps in the cycle will always lead to the starting point
Restating in Algebraic Form

Euler’s Theorem: For any $g \in \mathbb{Z}_n^*$,

$$g^{\varphi(n)} \equiv 1 \pmod{n}$$

Fermat’s Little Theorem: For any prime p and any $g \in \mathbb{Z}_p^*$,

$$g^{p-1} \equiv 1 \pmod{p}$$
Generators and Cyclic Groups

Define $\langle g \rangle_n = \{g^i \mod n \mid i = 0, 1, 2, \ldots\}$ as the cyclic group mod n generated by g.
Examples

\[n = 12, \ g = 11, \langle g \rangle_n = \{1, 11\} \]
Examples

\[n = 5, g = 2, \langle g \rangle_n = \{1, 2, 3, 4\} \]
Primitive Roots

If the cycle length is \(\varphi(n) \) then we say that \(g \) is a \textbf{primitive root} mod \(n \)

\textbf{Theorem:} For any prime \(p \), there exist primitive roots mod \(p \)

\textbf{Exercise:} Find all primitive roots of 7
Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions
Review of DH Key Exchange

\[\mathbb{G} = \{g^i \mid i \in S\} \]

Public param: a large cyclic group \(\mathbb{G} \) generated by \(g \)

Let \(S = \{0, 1, \ldots, |\mathbb{G}| - 1\} \)

\[
x \leftarrow S \quad X \leftarrow g^x
\]

\[
y \leftarrow S \quad Y \leftarrow g^y
\]

\[
K \leftarrow Y^x
\]

\[
K \leftarrow X^y
\]
Intuition for Security

The Discrete Log Problem

Let \(\mathbb{G} = \{g^i \mid i \in S\} \) be a cyclic group of size \(N \)

Easy: \(O(\log(N)) \) time

Alice’s secret

\(x \in S \)

What adversary sees

\(g^x \)

Naïve: \(O(N) \) time

Optimal for *generic* algo

Rho attack: \(O(\sqrt{N}) \) time

How hard?
Decisional DH Assumption

Discrete Log hardness is **not** enough to justify security of DH key exchange

\[x, y \leftarrow \{0, 1, \ldots, |G| - 1\} \]

<table>
<thead>
<tr>
<th>Rand</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X \leftarrow g^x, Y \leftarrow g^y, K \leftarrow \mathbb{G})</td>
<td>(X \leftarrow g^x, Y \leftarrow g^y, K \leftarrow g^{xy})</td>
</tr>
</tbody>
</table>

Random key \((X, Y, K) \) \rightarrow A

Real key in DH key exchange

The DH key exchange is secure if DDH holds
Caveat

DDH does not hold for \mathbb{Z}_p^*

Can break it with advantage $1/2$
Strengthening DH Key Exchange

Same as before, but use a hash H at the end

Public param: a large cyclic group \mathbb{G} whose generator is g

$x \leftarrow \{0, 1, \ldots, |\mathbb{G}| - 1\}
X \leftarrow g^x
Y \leftarrow g^y
Z \leftarrow Y^x
K \leftarrow H(Z)$

$y \leftarrow \{0, 1, \ldots, |\mathbb{G}| - 1\}
Y \leftarrow g^y
Z \leftarrow X^y
K \leftarrow H(Z)$
The strengthened DH key exchange is secure if CDH holds, and H is modeled as a random oracle.
Caveat

Diffie-Hellman assumes that the adversary is passive

Question: Break Diffie-Hellman if the adversary is active