CIS 4406, SPRING 2024

HASH FUNCTIONS

VIET TUNG HOANG

Agenda

1. Security Modeling for Hash Functions

2. Building Hash Function: MD Transform

3. Application: Password Storage

Motivating Application: Data Deduplication

Dropbox's goals:

- If many users store the same file, keep only a **single** copy
- Minimize bandwidth usage

Motivating Application: Data Deduplication

What property

do we need for the hash?

Collision-Resistance

 $f: \text{Domain} \to \text{Range}$

By Pigeonhole Principle, if |Domain| > |Range| then collision exists

Want: collisions are hard to find, although they exist

Defining Collision-Resistance

$$A - \underbrace{\hspace{1cm} Must \ be \ distinct}_{(X_1,X_2)}$$

$$\mathbf{Adv}_H^{\mathrm{cr}}(A) = \Pr[H(X_1) = H(X_2)]$$

Exercise: Break Collision Resistance

 π, π^{-1} are public

Public permutation

CR Is Not Enough: Bitcoin Mining

Length determined by bitcoin community

Want: Can't mine faster than brute-force

Modeling Security of Hash Functions

The Random Oracle Model

Everybody, including the adversary, has access to RO

Agenda

1. Security Modeling for Hash Functions

2. Building Hash Function: MD Transform

3. Application: Password Storage

Compression Functions

$$h: \{0,1\}^{b+n} \to \{0,1\}^n$$

For SHA-2, b = 512 and n = 256

First Attempt

Question: Suppose that $h(0^b||0^n) = 0^n$

Break the collision resistance of *H*

Second Attempt: Plain Merkle-Damgard

This is the structure of SHA-256

Theorem: If h is CR then $H = \mathbf{MD}(h)$ is also CR

Can't attack H if h has no weakness

Plain MD Is Not Enough for All Applications

Length-Extension Attack

Question: Consider the following MAC F

$$F_K(x) = H(K||x)$$

Break the MAC security of F using a single Tag query

The Damage of Length Extension Attack

Hacking Trick: Bypass Authentication

bank.com/api?token=ad6613c382&user=alice&cmd=NoOp

H(K|| "user=alice&cmd=NoOp")

Adversary tricks Alice to perform a harmless command to learn an authentication token

The Damage of Length Extension Attack

Hacking Trick: Bypass Authentication

bank.com

bank.com/api?token=<mark>dbb78b593f</mark>&user=alice&cmd=NoOp&cmd=OpenSafe

H(K|| "user=alice&cmd=NoOp&cmd=OpenSafe")

Adversary can compute the authentication token for a damaging command

The (Strengthened) MD Transform

The output needs to be truncated

How To Have Large Output: HMAC

On large input, HMAC is only a bit more expensive than SHA-256

Agenda

1. Security Modeling for Hash Functions

2. Building Hash Function: MD Transform

3. Application: Password Storage

Password Storage

MOTHERBOARD

TECH BY VICE

T-Mobile Stores Part of Customers' Passwords In Plaintext, Says It Has 'Amazingly Good' Security

A T-Mobile Austria customer represe admission in a Twitter thread.

BIZ & IT —

How an epic blunder by Adobe could strengthen hand of password crackers

Engineers flout universal taboo by encrypting 130 million pilfered passwords.

NEWS

Hackers crack more than 60% of breached LinkedIn passwords

Speed of hackers to crack passwords shows weakness of security scheme used by LinkedIn, researchers say

How Should Servers Store Users' Passwords?

Rule 1: Only store hash outputs of passwords

Even server can't recover the passwords

Rule 2: Use a random salt for each user

Why Salts: Dictionary Attacks

Data from LinkedIn breach

Cost of Dictionary Attacks on Salting

Need $\Theta(Mq)$ calls to H to recover q passwords

Password hash with salting

Make It Even More Expensive

Deliberately Slow Hashing

- Makes no difference for human users.
- Increase the cos of attackers for 10,000 times

Password-Based Encryption

