PSEUDORANDOM FUNCTION

VIET TUNG HOANG

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
Agenda

1. Defining PRF Security

2. Birthday Attack
Recall

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security against key recovery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find M given $C \leftarrow E_K(M)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.
An Analogy: Turing Test

What does it mean for a machine to be “intelligent”?

Possible Answers

<table>
<thead>
<tr>
<th>It can be happy</th>
<th>But no such list is satisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td>It recognizes pictures</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
An Analogy: Turing Test

A

interaction

b

Man (0) or Machine (1)?
Real versus Ideal

<table>
<thead>
<tr>
<th>Notion</th>
<th>Real object</th>
<th>Ideal object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF</td>
<td>E_K</td>
<td>Random function</td>
</tr>
</tbody>
</table>
Informal View of PRF Security

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

Sample random \(f : \{0, 1\}^n \rightarrow \{0, 1\}^n \)

\(K \leftarrow \mathcal{K} \)

Adversary doesn’t know \(K \) or \(f \)
Defining Random Function: Lazy Sampling

Want: a random function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \)

Pick a fresh random answer for a new query, and remember the answer
Defining Random Function: Lazy Sampling

Want: a **random** function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \)

Pick a fresh random answer for a new query, and remember the answer.
Defining Random Function: Lazy Sampling

Want: a random function \(f : \{0, 1\}^n \to \{0, 1\}^m \)

Pick a fresh random answer for a new query, and remember the answer.
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer
Want: a **random** function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$
Putting Things in Code

Game \(\text{Real}_E \)

procedure Initialize()

\[K \xleftarrow{\$} \mathcal{K} \]

procedure \(\text{Fn}(M) \)

return \(E_K(M) \)

Game \(\text{Rand}_E \)

string array \(T = \{\} \) // Global variable

procedure \(\text{Fn}(M) \)

If \(T[M] = \perp \) then \(T[M] \xleftarrow{\$} \{0, 1\}^n \)

return \(T[M] \)

\[\text{Adv}_{E}^{\text{prf}}(A) = \Pr[\text{Real}_E^A \Rightarrow 1] - \Pr[\text{Rand}_E^A \Rightarrow 1] \]
Exercise: PRF Attacks

\[E_K(M) = M \oplus K \]

\[E_K(M) = \pi(M \oplus K) \]

\[\pi, \pi^{-1} \text{ are public} \]
Easy to Break PRF Security After Key Recovery

KR attack

K

$E_K(M) \not\equiv C$

Yes

No

1

0

new msg, not used in KR attack
PRF Security

Key Recovery Security
Exercise: PRF Attacks

\[E_K(M) = AES_K(M) || AES_K(M^{\overline{}}) \]
1. Defining PRF Security

2. Birthday Attack
Birthday Problem

\[y_1, \ldots, y_q \rightarrow \{1, \ldots, N\} \]

\[C(N, q) = \Pr[y_1, \ldots, y_q \text{ not distinct}] \]

Fact: For \(q \leq \sqrt{2N} \),

\[\frac{q(q - 1)}{4N} \leq C(N, q) \leq \frac{q(q - 1)}{2N} \]
Birthday Attack on PRF Security

\[
\begin{array}{cc}
\text{distinct } M_1, \ldots, M_q & \text{distinct } M_1, \ldots, M_q \\
\downarrow & \downarrow \\
E_K & f \\
\downarrow & \downarrow \\
\text{distinct } C_1, \ldots, C_q & \text{random } C_1, \ldots, C_q
\end{array}
\]
Birthday Attack on PRF Security

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

distinct \(M_1, \ldots, M_q \)

\[A \rightarrow \text{Fn} \]

Output 1 if \(C_1, \ldots, C_q \) are distinct

\[\text{Adv}_E^{\text{prf}} (A) = C(2^n, q) \approx \frac{q^2}{2^n} \]

Need \(2^{n/2} \) queries to break PRF security

<table>
<thead>
<tr>
<th>Blockcipher</th>
<th>(n)</th>
<th>(2^{n/2})</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES, 2DES, 3DES</td>
<td>64</td>
<td>(2^{32})</td>
<td>Insecure</td>
</tr>
<tr>
<td>AES</td>
<td>128</td>
<td>(2^{64})</td>
<td>Secure</td>
</tr>
</tbody>
</table>
Does It Matter In Practice?

Sweet32: Birthday Attacks on 64-bit Blockciphers in TLS and OpenVPN

[Bhargavan, Leurent 16]

HTTPS encryption via 3DES

Recover cookie after capturing 785GB