CIS 5371, Fall 2023

Pseudorandom Function

Viet Tung Hoang

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
1. Defining PRF Security

2. Birthday Attack
Recall

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security against key recovery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find M given $C \leftarrow E_K(M)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.
An Analogy: Turing Test

What does it mean for a machine to be “intelligent”?

Possible Answers

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>It can be happy</td>
<td></td>
</tr>
<tr>
<td>It recognizes pictures</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

But no such list is satisfactory
An Analogy: Turing Test

A

Man (0) or Machine (1)?
Real versus Ideal

<table>
<thead>
<tr>
<th>Notion</th>
<th>Real object</th>
<th>Ideal object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF</td>
<td>E_K</td>
<td>Random function</td>
</tr>
</tbody>
</table>

Intelligence and PRF are compared between real and ideal objects.
Informal View of PRF Security

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

Adversary doesn’t know \(K \) or \(f \)
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer.
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer
Want: a \textit{random} function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \)
Putting Things in Code

Game Real_E

procedure Initialize()

\[K \leftarrow K \]

procedure $\text{Fn}(M)$

return $E_K(M)$

Game Rand_E

string array $T = \{\}$ // Global variable

procedure $\text{Fn}(M)$

If $T[M] = \perp$ then $T[M] \leftarrow \{0, 1\}^n$

return $T[M]$}

\[\text{Adv}^{\text{prf}}_E(A) = \Pr[\text{Real}_E^A \Rightarrow 1] - \Pr[\text{Rand}_E^A \Rightarrow 1] \]
Exercise: PRF Attacks

\[E_K(M) = M \oplus K \]

Public permutation

\[E_K(M) = \pi(M \oplus K) \]

\(\pi, \pi^{-1}\) are public
Easy to Break PRF Security After Key Recovery

KR attack

\[K \]

\[M \]

\[\text{Fn} \]

\[C \]

\[E_K(M) \overset{?}{=} C \]

new msg, not used in KR attack

Yes

1

No

0
PRF Security

↓

Key Recovery Security
Exercise: PRF Attacks

\[E_K(M) = \text{AES}_K(M) \parallel \text{AES}_K(M) \]

Two-round Feistel

\[F_{K_1} \]

\[F_{K_2} \]
Agenda

1. Defining PRF Security

2. Birthday Attack
Birthday Problem

$y_1, \ldots, y_q \rightarrow \{1, \ldots, N\}$

$C(N, q) = \Pr[y_1, \ldots, y_q \text{ not distinct}]$

Fact: For $q \leq \sqrt{2N}$,

\[
\frac{q(q - 1)}{4N} \leq C(N, q) \leq \frac{q(q - 1)}{2N}
\]
Birthday Attack on PRF Security

\[\text{distinct } M_1, \ldots, M_q \]

\[E_K \]

\[\text{distinct } C_1, \ldots, C_q \]

\[\text{distinct } M_1, \ldots, M_q \]

\[f \]

\[\text{random } C_1, \ldots, C_q \]
Birthday Attack on PRF Security

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

Output 1 if \(C_1, \ldots, C_q \) are distinct

\[\text{Adv}_E^{\text{prf}}(A) = C(2^n, q) \approx \frac{q^2}{2^n} \]

Need \(2^{n/2} \) queries to break PRF security

<table>
<thead>
<tr>
<th>Blockcipher</th>
<th>(n)</th>
<th>(2^{n/2})</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES, 2DES, 3DES</td>
<td>64</td>
<td>(2^{32})</td>
<td>Insecure</td>
</tr>
<tr>
<td>AES</td>
<td>128</td>
<td>(2^{64})</td>
<td>Secure</td>
</tr>
</tbody>
</table>
Does It Matter In Practice?

Sweet32: Birthday Attacks on 64-bit Blockciphers in TLS and OpenVPN

[甜歌, Leurent 16]

HTTPS encryption via 3DES

Recover cookie after capturing 785GB