CIS 5371, FALL 2025

PSEUDORANDOM FUNCTION

VIET TUNG HOANG

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.

Agenda

1. Defining PRF Security

2. Birthday Attack

Recall

Possible Properties	Necessary	Sufficient
Security against key recovery	Yes	No
Hard to find M given $C \leftarrow E_K(M)$	Yes	No
•••		

Want: a single "master" property that is sufficient to ensure security of common usage of blockcipher.

An Analogy: Turing Test

What does it mean for a machine to be "intelligent"?

Possible Answers

It can be happy

It recognizes pictures

• • •

But no such list is satisfactory

An Analogy: Turing Test

Man (o) or Machine (1)?

Real versus Ideal

Notion	Real object	Ideal object	
Intelligence			
PRF	E_K	Random function	

Informal View of PRF Security

$$E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$$

Adversary doesn't know K or f

Want: a random function $f: \{0,1\}^n \to \{0,1\}^m$

Reuse Prior Answer for Old Query

Want: a random function $f: \{0,1\}^n \rightarrow \{0,1\}^m$

Putting Things in Code

Game $Real_E$

procedure Initialize()

$$K \leftrightarrow \mathcal{K}$$

procedure Fn(M)

return $E_K(M)$

Game Rand $_E$

string array $T = \{\}$ // Global variable

procedure Fn(M)

If
$$T[M] = \bot$$
 then $T[M] \Leftrightarrow \{0,1\}^n$

return T[M]

$$\mathbf{Adv}_E^{\mathrm{prf}}(A) = \Pr[\mathrm{Real}_E^A \Rightarrow 1] - \Pr[\mathrm{Rand}_E^A \Rightarrow 1]$$

Practice: PRF Attacks

$$E_K(M) = M \oplus K$$

 π, π^{-1} are public

Easy to Break PRF Security After Key Recovery

PRF Security

Key Recovery Security

Practice: PRF Attacks

$$E_K(M) = \mathbf{AES}_K(M) || \mathbf{AES}_K(\overline{M})$$

Two-round Feistel

Agenda

1. Defining PRF Security

2. Birthday Attack

Birthday Problem

$$C(N,q) = \Pr[y_1, \dots, y_q \text{ not distinct}]$$

Fact: For $q \leq \sqrt{2N}$,

$$\frac{q(q-1)}{4N} \le C(N,q) \le \frac{q(q-1)}{2N}$$

Birthday Attack on PRF Security

Birthday Attack on PRF Security

$$E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$$

Output 1 if C_1, \ldots, C_q are distinct

$$\boxed{ \mathbf{Adv}_E^{\mathrm{prf}}(A) = C(2^n,q) \approx \frac{q^2}{2^n} } \quad \text{Need } 2^{n/2} \text{ queries to break PRF security}$$

Blockcipher	n	$2^{n/2}$	Status
DES, 2DES, 3DES	64	2^{32}	Insecure
AES	128	2^{64}	Secure

Does It Matter In Practice?

Sweet32: Birthday Attacks on 64-bit Blockciphers in TLS and OpenVPN [Bhargavan, Leurent 16]

HTTPS encryption via 3DES

Recover cookie after capturing 785GB