Blockciphers

Viet Tung Hoang

Some slides are based on material from Prof. Mihir Bellare (UCSD) and Prof. Stefano Tessaro (UW)
Agenda

1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol
Blockcipher

efficiently invertible given the key

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

Key space Domain

\[K \rightarrow E \rightarrow C \]

\[C \rightarrow E^{-1} \rightarrow M \]
Blockcipher Usage

$C_1 \leftarrow E_K(M_1)$...

$C_q \leftarrow E_K(M_q)$

Random key K is known to both parties, but not given to adversary A
Real-world Blockciphers

NIST Special Publication 800-67
Version 1.1

Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher
Revised 19 May 2008
William C. Barker

3DES, deprecated since 2017 but still in legacy software
\(k = 168 \), \(n = 64 \)

FIPS 197
Federal Information Processing Standards Publication

Advanced Encryption Standard (AES)

Category: Computer Security

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

AES, national standard
\(k \in \{128, 192, 256\} \), \(n = 128 \)
Defining Security for Blockcipher

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard to recover the key</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find M given $C \leftarrow E_K(M)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.
An Analogy: Turing Test

What does it mean for a machine to be “intelligent”?

Possible Answers

<table>
<thead>
<tr>
<th>It can be happy</th>
<th>But no such list is satisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td>It recognizes pictures</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
An Analogy: Turing Test

Man (0) or Machine (1)?
Real versus Ideal

<table>
<thead>
<tr>
<th>Notion</th>
<th>Real object</th>
<th>Ideal object</th>
</tr>
</thead>
</table>
| Intelligence| ![Robot](image1.png)
E_K | ![Man](image2.png)
Random function |
| PRF | ![PRF Image](image3.png) | ![Random Function](image4.png) |
Informal View of PRF Security

\[E : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n \]

Sample random \(f : \{0,1\}^n \rightarrow \{0,1\}^n \)
\(K \leftarrow \mathcal{K} \)

\(A \)

- \(M \)
- \(E_K(M) \) or \(f(M) \)
- \(b \)

Adversary doesn’t know \(K \) or \(f \)
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer.
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer.
Defining Random Function: Lazy Sampling

Want: a random function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \)

Pick a fresh random answer for a new query, and remember the answer.
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer...
Want: a **random** function $f : \{0, 1\}^n \to \{0, 1\}^m$
Putting Things in Code

\textbf{Game} \ Real_E

\textbf{procedure} \ Initialize()

\hspace{1em} K \leftarrow \mathcal{K}

\textbf{procedure} \ Fn(M)

\hspace{1em} \text{return} \ E_K(M)

\textbf{Game} \ Rand_E

string array \ T = \{\} \quad \text{// Global variable}

\textbf{procedure} \ Fn(M)

\hspace{1em} \text{If} \ T[M] = \bot \ \text{then} \ T[M] \leftarrow \{0, 1\}^n

\hspace{1em} \text{return} \ T[M]

\text{Adv}^\text{prf}_E(A) = \Pr[\text{Real}_E^A \Rightarrow 1] - \Pr[\text{Rand}_E^A \Rightarrow 1]
Exercise: PRF Attacks

\[E_K(M) = M \oplus K \]

\[E_K(M) = \text{AES}_K(M) || \text{AES}_K(\overline{M}) \]
1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol
Birthday Problem

\[y_1, \ldots, y_q \to \{1, \ldots, N\} \]

\[C(N, q) = \Pr[y_1, \ldots, y_q \text{ not distinct}] \]

Fact: For \(q \leq \sqrt{2N} \),

\[\frac{q(q-1)}{4N} \leq C(N,q) \leq \frac{q(q-1)}{2N} \]
Birthday Attack on PRF Security

distinct M_1, \ldots, M_q

E_K

distinct C_1, \ldots, C_q

distinct M_1, \ldots, M_q

f

random C_1, \ldots, C_q
Birthday Attack on PRF Security

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

Output 1 if \(C_1, \ldots, C_q \) are distinct

\[\text{Adv}^\text{prf}_E (A) = C(2^n, q) \approx \frac{q^2}{2^n} \]

Need \(2^{n/2} \) queries to break PRF security

<table>
<thead>
<tr>
<th>Blockcipher</th>
<th>(n)</th>
<th>(2^{n/2})</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DES</td>
<td>64</td>
<td>2^{32}</td>
<td>Insecure</td>
</tr>
<tr>
<td>AES</td>
<td>128</td>
<td>2^{64}</td>
<td>Secure</td>
</tr>
</tbody>
</table>
Does It Matter In Practice?

Sweet32: Birthday Attacks on 64-bit Blockciphers in TLS and OpenVPN

[Recover cookie after capturing 785GB HTTPS encryption via 3DES]

[Bhargavan, Leurent 16]
Agenda

1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol
TCP Recap

Handshake

Session data

Termination
TCP Handshake

SYN: Alice’s Seq # is X

ACK: Your Seq # is X

SYN: Server’s Seq # is Y

SYN: Your Seq # is Y
The Use of Sequence Numbers

Set up Seq # as 3001

Seq # 3002

Seq # 3003

Can still reorder out-of-order packets
Security Issue: Denial-of-Service Attack

Session data

Need to guess seq #, but it’s easy in early TCP implementations

Reset, source=Alice
Security Issue: Connection Spoofing

SYN: Alice’s Seq # is X,
source IP = Alice

ACK: Your Seq # is X

SYN: Server’s Seq # is Y

SYN: Your Seq # is Y

Now execute command on Alice’s behalf
First Attempt: Random Sequence Number
Backward Compatibility Issue

End with seq # X

Start with seq # Y

Requirement: If two connections of same IP addresses and ports are within a small window, must have $X < Y$ to avoid interference from delayed packets
Generating TCP Sequence Numbers with PRF

Port 1234, IP A

Port 80, IP S

Server’s Seq # = T + F_K(A∥1234∥S∥80)

(timer)

T

K

Not shared with Alice
Agenda

1. Blockciphers
2. Birthday Attack
3. App: TCP Sequence Number
4. App: One-time Password
5. App: Challenge-Response Protocol
Motivation

Goal: An eavesdropper cannot later open the car
A Wrong Solution

“Open the door”

Question: Why is it bad?
One-Time Password Via PRF

Should allow time drift, and accept for slightly outdated time

(Stateful) alternative: Run the PRF on a synchronized counter

A Real-world Example: RSA’s SecureID

But it’s disastrous if the key is stolen

SecurID breach cost RSA $66m

In 2nd quarter alone

Dan Goodin

Wed 27 Jul 2011 // 17:17 UTC
Agenda

1. Blockciphers
2. Birthday Attack
3. App: TCP Sequence Number
4. App: One-time Password
5. App: Challenge-Response Protocol
Motivation: Man-In-The-Middle Attack

Question: Does one-time password work here?
Solution: Challenge-Response

Nonce: a string that should never repeat

\(N \)

\(F_K(N) \)