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1D Reaction-Diffusion Equations (1DRDEs)

I Consider the reaction-diffusion equation:

ut = νuxx + f (u), t > 0, u(x , 0) = u0(x), ν > 0

I Have applications to:
I Combustion problems
I Excitable tissue models (nerve, heart, pancreas)
I Complex chemical reactions

I Various contexts for 1D problems
I Pure initial value problem: mathematical
I Initial boundary value problem: modeling



A Monte Carlo method for 1DRDEs

I Consider the above 1DRDE:

ut = νuxx + f (u), u(x , 0) = u0(x)

I Assume monotonic solution: u(x , t) < u(y , t) when x < y
with u(−∞, t) = 0, u(+∞, t) = 1. Then the gradient,
v = ux , satisfies:

vt = νvxx + f ′(u)v , v(x , 0) = u′0(x)



A Monte Carlo method for 1DRDEs (cont.)

I With v(x , t) =
∑N

j=1 mjδ
(
x − Xj(t)

)
, Xj(t) position and mj

the ‘mass’ of particle j , we recover as:

u(x , t) =

∫ x

−∞
v(x ′, t) dx ′

u(x , t) =
N∑

j=1

mjH
(
x − Xj(t)

)
I This is the basis of the 1D random gradient method (RGM)

due to Sherman and Peskin with mj = 1
N for j = 1, 2, . . . N



A Monte Carlo method for 1DRDEs (cont.)

I The 1D RGM Algorithm (for each time step):
I Gaussian Random Walk Step: Xj(t + ∆t) = Xj(t) + σj

where the σj are independent N(0, 2ν∆t) random variables
I Evaluate uj = u(Xj(t + ∆t)), j = 1, . . . , N using the above

step-function ansatz (equiv. to sorting on Xj(t))
I Kill or Replicate Particles with probability |f ′(uj)|∆t :

1. Kill particle if f ′ ≤ 0
2. Rep. particle at Xj if f ′ > 0

I The Ghoniem/Sherman algorithm is similar except that
Monte Carlo creation/destruction is replaced by
deterministic mass evolution dmj

dt = f ′(uj)



A Deterministic Particle Method for monotonically
increasing solutions

I Mark Kac: “use Monte Carlo until you understand the
problem"

I Use the function representation for a monotonic solution to
the 1DRDE with particle positions defined implicitly by:

u(xi(t), t) =


x0(t) = −∞,
i
N , i = 1, 2, . . . , N − 2, N − 1
xN(t) = +∞



A Deterministic Particle Method (cont.)

I The chain rules gives:
d [u(xi(t), t)]

dt
= 0 = ux(xi(t), t)ẋi(t) + ut(xi(t), t)

thus ẋi(t) =
−1

ux(xi(t), t)
ut(xi(t), t)

=
−1

ux(xi(t), t)

(
νuxx(xi(t), t) + f (u(xi(t), t))

)
I Use formally 2nd order approximations to the various parts

of the above: first derivative:
−1

ux(xi(t), t)
≈ −xi+1(t)− xi−1(t)

ui+1 − ui−1
= −N

2

(
xi+1 − xi−1

)



A Deterministic Particle Method (cont.)

second derivative:

uxx(xi(t), t) ≈
ui+1−ui

xi+1(t)−xi (t)
− ui−ui−1

xi (t)−xi−1(t)(
xi+1(t)+xi (t)

2

)
−

(
xi (t)+xi−1(t)

2

)
=

2
N (xi+1 − xi−1)

[
1

xi+1 − xi
− 1

xi − xi−1

]
=

[
−N

2

(
xi+1 − xi−1

)]−1[ 1
xi − xi−1

− 1
xi+1 − xi

]
nonlinearity:

f (u(xi(t), t)) = f
(

i
N

)



A Deterministic Particle Method (cont.)

I This leads to the following ODEs:

ẋi = ν

[
1

xi − xi−1
− 1

xi+1 − xi

]
−N

2

(
xi+1 − xi−1

)
f
(

i
N

)

I Notice that the PDE diffusion term is nonlinear in the ODE
and the PDE nonlinearity is linear in the ODE

I Now consider how to translate PDE boundary conditions
for this system of ODEs



Boundary Conditions

I Pure initial value problem: x0(t) = −∞, xN(t) = +∞,
ẋ0(t) = ẋN(t) = 0:

ẋ1 =− ν

[
1

x2 − x1

]
− N (x2 − x1) f

(
1
N

)
ẋN−1 =ν

[
1

xN−1 − xN−2

]
− N (xN−1 − xN−2) f

(
N − 1

N

)



Boundary Conditions (cont.)

I Dirichlet boundary conditions, u(0, t) = U0(t): use particle
creation when U0(t) is decreasing and diminishes by N−1

and particle destruction otherwise
I Neumann boundary conditions, ux(0, t) = U0(t): enforced

by x1(t) = 1
NU0(t)

with x0(t) = 0



Time Discretization

I Forward Euler:

xn+1 − xn

∆t
= F (xn) → xn+1 = xn + ∆tF (xn)

is stable if ∆t
mini [(xi+1−xi )(xi−xi−1)]

≤ 1
2ν

I Backward Euler:

xn+1 − xn

∆t
= F (xn+1) → xn+1 − F (xn+1) = xn

leads to a nonlinear system:

xn+1
i −∆tν

[
1

xn+1
i − xn+1

i−1

− 1
xn+1

i+1 − xn+1
i

]
+

∆t
N
2

(
xn+1

i+1 − xn+1
i−1

)
f
(

i
N

)
= xn

i



Analysis of the Backward Euler Equations

I Define: K n+1
i = ν

(xn+1
i −xn+1

i−1 )(xn+1
i+1 −xn+1

i )
so that the backward

Euler equations become:

ln+1
i xn+1

i−1 +dn+1
i xn+1

i + un+1
i xn+1

i+1 = xn
i

ln+1
i = −∆t

[
K n+1

i +
N
2

f
(

i
N

)]
dn+1

i = 1 + 2∆tK n+1
i

un+1
i = −∆t

[
K n+1

i − N
2

f
(

i
N

)]
I These equations are (nonlinear) tridiagonal but not

diagonally dominant; however a rearrangement produces a
diagonally dominant Picard (fixed-point) iteration
that is provably convergent



Picard Iteration

I The rearrangement is:

Ln+1
i xn+1

i−1 + Dn+1
i xn+1

i + Un+1
i xn+1

i+1 =

xn
i +∆t

N
2

f
(

i
N

) (
xn+1

i+1 − xn+1
i−1

)
Ln+1

i = −∆tK n+1
i

Dn+1
i = 1 + 2∆tK n+1

i

Un+1
i = −∆tK n+1

i

I This system is tridiagonal and diagonally dominant and
can be used to define the following Picard iteration (which
is linearly convergent) to solve for the new
positions at each time-step



Picard Iteration (Cont.)

I The Picard iteration is thus:

1. Initialization: xold = xn

2. Iterate until converged:
2.1 Solve the following for xnew :

Lold
i = −∆tK old

i ,

Dold
i = 1 + 2∆tK old

i ,

Uold
i = −∆tK old

i ,

Lold xnew
i−1 + Dold xnew

i + Uold xnew
i+1 =

xn
i + ∆t

N
2

f
�

i
N

��
xold

i+1 − xold
i−1

�

2.2 Set xold = xnew

3. Form the solution as xn+1 = xnew



Newton Iteration

I Newton iteration should be quadratically convergent, and is
based on the solving the nonlinear equation:

Gi(x) = xi − ν∆t
[

1
xi − xi−1

− 1
xi+1 − xi

]
+∆t

N
2

(xi+1 − xi−1) f
(

i
N

)
− xn

i



Newton Iteration (cont.)

I This is solved as J(xold)(xnew − xold) = −G(xold) where
the Jacobian is defined as:

[J]ij =



−ν∆t
(xi+1−xi )2 + N∆t

2 f
( i

N

)
j = i + 1

1 +

[
ν∆t

(xi+1−xi )2 + ν∆t
(xi−xi−1)2

]
j = i

−ν∆t
(xi−xi−1)2 − N∆t

2 f
( i

N

)
j = i − 1

0 otherwise

I [J]ij is tridiagonal but not symmetric and not, in general,
diagonally dominant unless [J]ii+1 < 0



Newton Iteration (cont.)

I This is equivalent to ν∆t
(xi+1−xi )2 > N∆t

2 f
( i

N

)
I Define fmax = maxx∈[0,1] f (x), and divide by ∆tN2 to give

ν
[N(xi+1−xi )]2

> 1
2N fmax

I Now 1
[N(xi+1−xi )]2

≈ ux(xi(·), ·)2 > H−1 > 0 by monotonicity

I Rewriting (heuristically) N > Hfmax
2ν , since the right-hand

side is constant, choosing N larger makes the inequality
true and the system diagonally dominant



Numerical Results

I Consider the concrete 1DRDE, Nagumo’s equation (a
model of nerve conduction):

ut = uxx + u(1− u)(u − a), t > 0,

u(x , 0) = u0(x), 1 ≥ a ≥ 0

I Good for numerical experimentation because:
I Exact solution u(x , t) = 1

1+e−(x−θt)/
√

2

I A traveling wave with wave speed θ =
√

2
(
a− 1

2

)



Numerical Results (cont.)

I With a = 1
2 we have θ = 0 and the solution is a stable

standing wave ideal for studying convergence (in N) of the
method

I Empirical comparison of Picard versus Newton iterations
for the backward Euler equations:

I Usually fewer Picard iterations required
I Often Picard iterations increased and convergence ceased

while Newton settled into a constant number of iterations



Numerical Results (cont.)

Figure: Solution to Nagumo’s equation with a = 0.75, ∆t = 0.1 with
N = 64 particles, printed at t = 0.0, 25.0, 50.0, 75.0, and 100.0.



Numerical Wave Speed Results

I Note that the particles lead the solution (slightly)
I The exact midpoint wave speed is

ẋmid(t) =
−1

ux(xmid(t), t)

[
uxx(xmid(t), t) +

1
2

(
1− 1

2

) (
1
2
− a

)]

I ux(xmid(t), t) = 1
4
√

2
I uxx(xmid(t), t) = 0

I ẋmid(t) = −4
√

2
[

1
4

(1
2 − a

)]
=
√

2
(
a− 1

2

)
= θ



Numerical Wave Speed Results (cont.)

I The numerical wave speed of the midpoint is

ẋmid =ν

[
1

xmid − xmid−1
− 1

xmid+1 − xmid

]
− N

2

(
xmid+1 − xmid−1

)
f
(

i
N

)

I Can prove: (xmid+1 − xmid) = (xmid − xmid−1)

I We use: N
2 (xmid+1 − xmid−1) = N

2 2h ≈ 1
ux (xmid ,t)



Numerical Wave Speed Results (cont.)

I Can prove:

2
N
2h

=
u(xmid + h, t)− u(xmid − h, t)

2h

= ux(xmid , t) +
h2

6
uxxx(xmid , t) + O(h4) →

N
2

2h =
1

ux(xmid , t) + h2

6 uxxx(xmid , t) + O(h4)

=
1

ux(xmid , t)

[
1− h2

6
uxxx(xmid , t)
ux(xmid , t)

+ O(h4)

]



Numerical Wave Speed Results (cont.)

I uxxx(xmid , t) = − 1
16
√

2
I This gives:

ẋmid(t) =
−f

(1
2

)
ux(xmid(t), t)

[
1 +

h2

24
+ O(h4)

]
= θ

[
1 +

h2

24
+ O(h4)

]

I Now we also have a proof using N instead of h



Numerical Wave Speed Results (cont.)

N ↓ a → 0.125 0.25 0.375 0.5

4 -1.71e-01 -1.33e-01 -7.32e-02 0.0e+00

8 -1.04e-01 -7.36e-02 -3.77e-02 0.0e+00

16 -4.70e-02 -2.68e-02 -1.18e-02 0.0e+00

32 -1.91e-02 -8.78e-03 -3.23e-03 0.0e+00

64 -7.62e-03 -2.80e-03 -8.23e-04 0.0e+00

128 -3.06e-03 -9.00e-04 -1.96e-04 0.0e+00

256 -1.25e-03 -2.91e-04 -4.35e-05 0.0e+00

512 -5.14e-04 -9.58e-05 -8.72e-06 0.0e+00

1024 -2.13e-04 -3.19e-05 -1.43e-06 0.0e+00

2048 -8.88e-05 -1.07e-05 -1.15e-07 0.0e+00

4096 -3.71e-05 -3.68e-06 4.73e-08 0.0e+00

The error in the wave speed (θ) in the particle method solution to Nagumo’s
equation: errors for various values of a and N are presented



Numerical Error Results
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Numerical Error Results (cont.)
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Numerical Error Results (cont.)
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Getting Second Order Accuracy

I The problem is clearly at the end-points, so how can we fix
them up?

I With x(u, t), have singularities at u = 0 and u = 1
I Can consider approximating x = a/u + b near the

singularities, so that xi = a/ui + b, i = 1, 2
I Need to compute ∂x

∂u at u1 to compute the correction, this is
2N(x2 − x1)

I Leads to the following “corrected" boundary terms:

ẋ1 = −ν

[
1

x2 − x1

]
− 2N (x2 − x1) f

(
1
N

)
ẋN−1 = ν

[
1

xN−1 − xN−2

]
− 2N (xN−1 − xN−2) f

(
N − 1

N

)
I When using this, one obtains an empirical N−1.92

convergence behavior!



Conclusions

I Have a deterministic particle method for reaction diffusion
equations

I Discretization of the solution
I Naturally adaptive
I Good for steep gradients

I Analyzed forward and backward Euler methods
I Forward Euler has usual stability requirement
I Backward Euler has Picard and Newton

I Have proof that particles cannot cross
I Have computed solutions to Nagumo’s equation:

I Wave speed discrepancy understood
I Have computed O(N−2) convergence far from the

endpoints



Open Problems

I How do we improve the boundary conditions to uniformly
get O(N−2) convergence? (Solved!)

I Better boundary conditions?
I More refinement near points at infinity?

I The infamous Sign Problem for nonmonotonic solutions
I Using positive and negative particles leads to cancelation
I Can make policies for Monte Carlo and deterministic

I Systems, branching geometry
I Higher spatial dimensions
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