
A Deterministic Particle Method for
One-Dimensional Reaction-Diffusion

Equations

Prof. Dr. Michael Mascagni

Seminar für Angewandte Mathematik, ETH Zürich
Rämistrasse 101, CH-8092 Zürich, Switzerland

AND
Department of Computer Science & School of Computational Science

Florida State University, Tallahassee, FL 32306 USA
E-mail: mascagni@cs.fsu.edu or mascagni@math.ethz.ch

URL: http://www.cs.fsu.edu/∼mascagni
Research supported by ARO, DOE/ASCI, NATO, and NSF

Outline of the Talk

1D Reaction-Diffusion Equations (1DRDEs)
Motivation for studying 1DRDEs
Review of a Monte Carlo particle method for 1DRDE
problems

The Deterministic Particle Method
The ODEs

Time Discretization
Picard iteration
Newton Iteration

Numerical Results
Wave speed
Rates of convergence

Conclusions and Open Problems

1D Reaction-Diffusion Equations (1DRDEs)

I Consider the reaction-diffusion equation:

ut = νuxx + f (u), t > 0, u(x , 0) = u0(x), ν > 0

I Have applications to:
I Combustion problems
I Excitable tissue models (nerve, heart, pancreas)
I Complex chemical reactions

I Various contexts for 1D problems
I Pure initial value problem: mathematical
I Initial boundary value problem: modeling

A Monte Carlo method for 1DRDEs

I Consider the above 1DRDE:

ut = νuxx + f (u), u(x , 0) = u0(x)

I Assume monotonic solution: u(x , t) < u(y , t) when x < y
with u(−∞, t) = 0, u(+∞, t) = 1. Then the gradient,
v = ux , satisfies:

vt = νvxx + f ′(u)v , v(x , 0) = u′0(x)

A Monte Carlo method for 1DRDEs (cont.)

I With v(x , t) =
∑N

j=1 mjδ
(
x − Xj(t)

)
, Xj(t) position and mj

the ‘mass’ of particle j , we recover as:

u(x , t) =

∫ x

−∞
v(x ′, t) dx ′

u(x , t) =
N∑

j=1

mjH
(
x − Xj(t)

)
I This is the basis of the 1D random gradient method (RGM)

due to Sherman and Peskin with mj = 1
N for j = 1, 2, . . . N

A Monte Carlo method for 1DRDEs (cont.)

I The 1D RGM Algorithm (for each time step):
I Gaussian Random Walk Step: Xj(t + ∆t) = Xj(t) + σj

where the σj are independent N(0, 2ν∆t) random variables
I Evaluate uj = u(Xj(t + ∆t)), j = 1, . . . , N using the above

step-function ansatz (equiv. to sorting on Xj(t))
I Kill or Replicate Particles with probability |f ′(uj)|∆t :

1. Kill particle if f ′ ≤ 0
2. Rep. particle at Xj if f ′ > 0

I The Ghoniem/Sherman algorithm is similar except that
Monte Carlo creation/destruction is replaced by
deterministic mass evolution dmj

dt = f ′(uj)

A Deterministic Particle Method for monotonically
increasing solutions

I Mark Kac: “use Monte Carlo until you understand the
problem"

I Use the function representation for a monotonic solution to
the 1DRDE with particle positions defined implicitly by:

u(xi(t), t) =

x0(t) = −∞,
i
N , i = 1, 2, . . . , N − 2, N − 1
xN(t) = +∞

A Deterministic Particle Method (cont.)

I The chain rules gives:
d [u(xi(t), t)]

dt
= 0 = ux(xi(t), t)ẋi(t) + ut(xi(t), t)

thus ẋi(t) =
−1

ux(xi(t), t)
ut(xi(t), t)

=
−1

ux(xi(t), t)

(
νuxx(xi(t), t) + f (u(xi(t), t))

)
I Use formally 2nd order approximations to the various parts

of the above: first derivative:
−1

ux(xi(t), t)
≈ −xi+1(t)− xi−1(t)

ui+1 − ui−1
= −N

2

(
xi+1 − xi−1

)

A Deterministic Particle Method (cont.)

second derivative:

uxx(xi(t), t) ≈
ui+1−ui

xi+1(t)−xi (t)
− ui−ui−1

xi (t)−xi−1(t)(
xi+1(t)+xi (t)

2

)
−

(
xi (t)+xi−1(t)

2

)
=

2
N (xi+1 − xi−1)

[
1

xi+1 − xi
− 1

xi − xi−1

]
=

[
−N

2

(
xi+1 − xi−1

)]−1[1
xi − xi−1

− 1
xi+1 − xi

]
nonlinearity:

f (u(xi(t), t)) = f
(

i
N

)

A Deterministic Particle Method (cont.)

I This leads to the following ODEs:

ẋi = ν

[
1

xi − xi−1
− 1

xi+1 − xi

]
−N

2

(
xi+1 − xi−1

)
f
(

i
N

)

I Notice that the PDE diffusion term is nonlinear in the ODE
and the PDE nonlinearity is linear in the ODE

I Now consider how to translate PDE boundary conditions
for this system of ODEs

Boundary Conditions

I Pure initial value problem: x0(t) = −∞, xN(t) = +∞,
ẋ0(t) = ẋN(t) = 0:

ẋ1 =− ν

[
1

x2 − x1

]
− N (x2 − x1) f

(
1
N

)
ẋN−1 =ν

[
1

xN−1 − xN−2

]
− N (xN−1 − xN−2) f

(
N − 1

N

)

Boundary Conditions (cont.)

I Dirichlet boundary conditions, u(0, t) = U0(t): use particle
creation when U0(t) is decreasing and diminishes by N−1

and particle destruction otherwise
I Neumann boundary conditions, ux(0, t) = U0(t): enforced

by x1(t) = 1
NU0(t)

with x0(t) = 0

Time Discretization

I Forward Euler:

xn+1 − xn

∆t
= F (xn) → xn+1 = xn + ∆tF (xn)

is stable if ∆t
mini [(xi+1−xi)(xi−xi−1)]

≤ 1
2ν

I Backward Euler:

xn+1 − xn

∆t
= F (xn+1) → xn+1 − F (xn+1) = xn

leads to a nonlinear system:

xn+1
i −∆tν

[
1

xn+1
i − xn+1

i−1

− 1
xn+1

i+1 − xn+1
i

]
+

∆t
N
2

(
xn+1

i+1 − xn+1
i−1

)
f
(

i
N

)
= xn

i

Analysis of the Backward Euler Equations

I Define: K n+1
i = ν

(xn+1
i −xn+1

i−1)(xn+1
i+1 −xn+1

i)
so that the backward

Euler equations become:

ln+1
i xn+1

i−1 +dn+1
i xn+1

i + un+1
i xn+1

i+1 = xn
i

ln+1
i = −∆t

[
K n+1

i +
N
2

f
(

i
N

)]
dn+1

i = 1 + 2∆tK n+1
i

un+1
i = −∆t

[
K n+1

i − N
2

f
(

i
N

)]
I These equations are (nonlinear) tridiagonal but not

diagonally dominant; however a rearrangement produces a
diagonally dominant Picard (fixed-point) iteration
that is provably convergent

Picard Iteration

I The rearrangement is:

Ln+1
i xn+1

i−1 + Dn+1
i xn+1

i + Un+1
i xn+1

i+1 =

xn
i +∆t

N
2

f
(

i
N

) (
xn+1

i+1 − xn+1
i−1

)
Ln+1

i = −∆tK n+1
i

Dn+1
i = 1 + 2∆tK n+1

i

Un+1
i = −∆tK n+1

i

I This system is tridiagonal and diagonally dominant and
can be used to define the following Picard iteration (which
is linearly convergent) to solve for the new
positions at each time-step

Picard Iteration (Cont.)

I The Picard iteration is thus:

1. Initialization: xold = xn

2. Iterate until converged:
2.1 Solve the following for xnew :

Lold
i = −∆tK old

i ,

Dold
i = 1 + 2∆tK old

i ,

Uold
i = −∆tK old

i ,

Lold xnew
i−1 + Dold xnew

i + Uold xnew
i+1 =

xn
i + ∆t

N
2

f
�

i
N

��
xold

i+1 − xold
i−1

�

2.2 Set xold = xnew

3. Form the solution as xn+1 = xnew

Newton Iteration

I Newton iteration should be quadratically convergent, and is
based on the solving the nonlinear equation:

Gi(x) = xi − ν∆t
[

1
xi − xi−1

− 1
xi+1 − xi

]
+∆t

N
2

(xi+1 − xi−1) f
(

i
N

)
− xn

i

Newton Iteration (cont.)

I This is solved as J(xold)(xnew − xold) = −G(xold) where
the Jacobian is defined as:

[J]ij =

−ν∆t
(xi+1−xi)2 + N∆t

2 f
(i

N

)
j = i + 1

1 +

[
ν∆t

(xi+1−xi)2 + ν∆t
(xi−xi−1)2

]
j = i

−ν∆t
(xi−xi−1)2 − N∆t

2 f
(i

N

)
j = i − 1

0 otherwise

I [J]ij is tridiagonal but not symmetric and not, in general,
diagonally dominant unless [J]ii+1 < 0

Newton Iteration (cont.)

I This is equivalent to ν∆t
(xi+1−xi)2 > N∆t

2 f
(i

N

)
I Define fmax = maxx∈[0,1] f (x), and divide by ∆tN2 to give

ν
[N(xi+1−xi)]2

> 1
2N fmax

I Now 1
[N(xi+1−xi)]2

≈ ux(xi(·), ·)2 > H−1 > 0 by monotonicity

I Rewriting (heuristically) N > Hfmax
2ν , since the right-hand

side is constant, choosing N larger makes the inequality
true and the system diagonally dominant

Numerical Results

I Consider the concrete 1DRDE, Nagumo’s equation (a
model of nerve conduction):

ut = uxx + u(1− u)(u − a), t > 0,

u(x , 0) = u0(x), 1 ≥ a ≥ 0

I Good for numerical experimentation because:
I Exact solution u(x , t) = 1

1+e−(x−θt)/
√

2

I A traveling wave with wave speed θ =
√

2
(
a− 1

2

)

Numerical Results (cont.)

I With a = 1
2 we have θ = 0 and the solution is a stable

standing wave ideal for studying convergence (in N) of the
method

I Empirical comparison of Picard versus Newton iterations
for the backward Euler equations:

I Usually fewer Picard iterations required
I Often Picard iterations increased and convergence ceased

while Newton settled into a constant number of iterations

Numerical Results (cont.)

Figure: Solution to Nagumo’s equation with a = 0.75, ∆t = 0.1 with
N = 64 particles, printed at t = 0.0, 25.0, 50.0, 75.0, and 100.0.

Numerical Wave Speed Results

I Note that the particles lead the solution (slightly)
I The exact midpoint wave speed is

ẋmid(t) =
−1

ux(xmid(t), t)

[
uxx(xmid(t), t) +

1
2

(
1− 1

2

) (
1
2
− a

)]

I ux(xmid(t), t) = 1
4
√

2
I uxx(xmid(t), t) = 0

I ẋmid(t) = −4
√

2
[

1
4

(1
2 − a

)]
=
√

2
(
a− 1

2

)
= θ

Numerical Wave Speed Results (cont.)

I The numerical wave speed of the midpoint is

ẋmid =ν

[
1

xmid − xmid−1
− 1

xmid+1 − xmid

]
− N

2

(
xmid+1 − xmid−1

)
f
(

i
N

)

I Can prove: (xmid+1 − xmid) = (xmid − xmid−1)

I We use: N
2 (xmid+1 − xmid−1) = N

2 2h ≈ 1
ux (xmid ,t)

Numerical Wave Speed Results (cont.)

I Can prove:

2
N
2h

=
u(xmid + h, t)− u(xmid − h, t)

2h

= ux(xmid , t) +
h2

6
uxxx(xmid , t) + O(h4) →

N
2

2h =
1

ux(xmid , t) + h2

6 uxxx(xmid , t) + O(h4)

=
1

ux(xmid , t)

[
1− h2

6
uxxx(xmid , t)
ux(xmid , t)

+ O(h4)

]

Numerical Wave Speed Results (cont.)

I uxxx(xmid , t) = − 1
16
√

2
I This gives:

ẋmid(t) =
−f

(1
2

)
ux(xmid(t), t)

[
1 +

h2

24
+ O(h4)

]
= θ

[
1 +

h2

24
+ O(h4)

]

I Now we also have a proof using N instead of h

Numerical Wave Speed Results (cont.)

N ↓ a → 0.125 0.25 0.375 0.5

4 -1.71e-01 -1.33e-01 -7.32e-02 0.0e+00

8 -1.04e-01 -7.36e-02 -3.77e-02 0.0e+00

16 -4.70e-02 -2.68e-02 -1.18e-02 0.0e+00

32 -1.91e-02 -8.78e-03 -3.23e-03 0.0e+00

64 -7.62e-03 -2.80e-03 -8.23e-04 0.0e+00

128 -3.06e-03 -9.00e-04 -1.96e-04 0.0e+00

256 -1.25e-03 -2.91e-04 -4.35e-05 0.0e+00

512 -5.14e-04 -9.58e-05 -8.72e-06 0.0e+00

1024 -2.13e-04 -3.19e-05 -1.43e-06 0.0e+00

2048 -8.88e-05 -1.07e-05 -1.15e-07 0.0e+00

4096 -3.71e-05 -3.68e-06 4.73e-08 0.0e+00

The error in the wave speed (θ) in the particle method solution to Nagumo’s
equation: errors for various values of a and N are presented

Numerical Error Results

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Number of Particles (N)

M
ea

n
S

qu
ar

e
E

rr
or

Mean Square Error vs. Number of Particles

slope = 1.49897

Figure: Mean square error of the particle method solution for various
number of particles; the solution was computed with a = 1

2 giving a
wave speed of θ = 0

Numerical Error Results (cont.)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

or
 X

(i)
-X

ex
(i)

 N
=

60
,t=

5

i/Grid Node

Error vs. Gridnode

’n60.out’

Figure: Error as a function grid point; the solution was computed with
a = 1

2 giving a wavespeed of θ = 0

Numerical Error Results (cont.)

0.0001

0.001

0.01

0.1

1

10 100 1000

l^
2

E
rr

or
 (

t=
5,

 a
=

0.
75

)

Grid Node

l^2 Error vs. Gridnode

’L2.out’
’L2.out’

’l2end.out’
’l2end.out’

Figure: Mean square error omitting the boundary points; the solution
was computed with a = 1

2 giving a wavespeed of θ = 0

Getting Second Order Accuracy

I The problem is clearly at the end-points, so how can we fix
them up?

I With x(u, t), have singularities at u = 0 and u = 1
I Can consider approximating x = a/u + b near the

singularities, so that xi = a/ui + b, i = 1, 2
I Need to compute ∂x

∂u at u1 to compute the correction, this is
2N(x2 − x1)

I Leads to the following “corrected" boundary terms:

ẋ1 = −ν

[
1

x2 − x1

]
− 2N (x2 − x1) f

(
1
N

)
ẋN−1 = ν

[
1

xN−1 − xN−2

]
− 2N (xN−1 − xN−2) f

(
N − 1

N

)
I When using this, one obtains an empirical N−1.92

convergence behavior!

Conclusions

I Have a deterministic particle method for reaction diffusion
equations

I Discretization of the solution
I Naturally adaptive
I Good for steep gradients

I Analyzed forward and backward Euler methods
I Forward Euler has usual stability requirement
I Backward Euler has Picard and Newton

I Have proof that particles cannot cross
I Have computed solutions to Nagumo’s equation:

I Wave speed discrepancy understood
I Have computed O(N−2) convergence far from the

endpoints

Open Problems

I How do we improve the boundary conditions to uniformly
get O(N−2) convergence? (Solved!)

I Better boundary conditions?
I More refinement near points at infinity?

I The infamous Sign Problem for nonmonotonic solutions
I Using positive and negative particles leads to cancelation
I Can make policies for Monte Carlo and deterministic

I Systems, branching geometry
I Higher spatial dimensions

References I

A. F. Ghoniem and F. Sherman (1985)
Grid-free simulation of diffusion using random walk methods
Journal of Computational Physics, 61: 1–37.

A. L. Hodgkin and A. F. Huxley (1952)
A quantitative description of membrane current and its application to conduction
in the giant axon of Loligo
Journal of Physiology, 117: 500–544.

M. Mascagni (1990)
The backward Euler method for the numerical solution of the Hodgkin-Huxley
equations of nerve conduction
SIAM Journal on Numerical Analysis, 27: 941–962.

M. Mascagni (1995)
A deterministic particle method for one-dimensional reaction-diffusion equations
Research Institute for Advanced Computer Science (RIACS) Technical Report:
95.23, Institute for Defense Analyses/Center for Computing Sciences (IDA/CCS)
Technical Report: CCS-TR-95-144.

J. Nagumo, S. Arimoto and S. Yoshizawa (1962)
An active pulse transmission line simulating nerve axon
Proceedings of the Institute of Radio Engineers, 50: 2061–2070.

References II

G. Russo (1990)
Deterministic diffusion of particles
Communications on Pure and Applied Mathematics, 63: 697–733.

A. S. Sherman and C. S. Peskin (1986)
A Monte-Carlo method for scalar reaction diffusion equations
SIAM Journal on Scientific and Statistical Computing, 7: 1360–1372.

A. S. Sherman and M. Mascagni (1994)
A gradient random walk method for two-dimensional reaction-diffusion equations
SIAM Journal on Scientific Computing, 15: 1280–1293.

	1D Reaction-Diffusion Equations (1DRDEs)
	Motivation for studying 1DRDEs
	Review of a Monte Carlo particle method for 1DRDE problems

	The Deterministic Particle Method
	The ODEs

	Time Discretization
	Picard iteration
	Newton Iteration

	Numerical Results
	Wave speed
	Rates of convergence

	Conclusions and Open Problems
	Appendix
	Appendix
	

