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Summary 

 
 Monte Carlo applications are widely perceived as computationally intensive but naturally parallel. 

Therefore, they can be effectively executed on the grid using the dynamic bag-of-work model. This paper 

concentrates on analyzing the characteristics of large-scale Monte Carlo computation for grid computing. 

Based on these analyses, we improve the efficiency of the subtask-scheduling scheme by implementing and 

analyzing the “N-out-of-M” strategy, and develop a Monte Carlo-specific lightweight checkpoint technique, 

which leads to a performance improvement for Monte Carlo grid computing.  Also, we enhance the 

trustworthiness of Monte Carlo grid-computing applications by utilizing the statistical nature of Monte 

Carlo and by cryptographically validating intermediate results utilizing the random number generator 

already in use in the Monte Carlo application. All these techniques lead to a high-performance grid-

computing infrastructure that is capable of providing trustworthy Monte Carlo computation services. 
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1. Introduction 

 Grid computing is characterized by the large-scale sharing and cooperation of dynamically 

distributed resources, such as CPU cycles, communication bandwidth, and data, to constitute a 

computational environment [1]. In the grid’s dynamic environment, from the application point-of-view, two 

issues are of prime importance: performance – how quickly the grid-computing system can complete the 

submitted tasks, and trustworthiness – that the results obtained are, in fact, due to the computation 

requested. To meet these two requirements, many grid-computing or distributed-computing systems, such 

as Condor [2], HARNESS [3], Javelin [4], Globus [5], and Entropia [7], concentrate on developing high-

performance and trust-computing facilities through system-level approaches. In this paper, we are going to 

analyze the characteristics of Monte Carlo applications, which are a potentially large computational 

category of grid applications, to develop approaches to address the performance and trustworthiness issues 

from the application level. 

 The remainder of this paper is organized as follows. In Section 2, we analyze the characteristics of 

Monte Carlo applications and develop a generic grid-computing paradigm for Monte Carlo computations. 

We discuss how to take advantage of the characteristics of Monte Carlo applications to improve the 

performance and trustworthiness of Monte Carlo grid computing in Section 3 and Section 4, respectively. 

Finally, Section 5 summarizes our conclusions and future research directions.  

2. Grid-based Monte Carlo Applications 

 Among grid applications, those using Monte Carlo methods, which are widely used in scientific 

computing and simulation, have been considered too simplistic for consideration due to their natural 

parallelism. However, below we will show that many aspects of Monte Carlo applications can be exploited 

to provide much higher levels of performance and trustworthiness for computations on the grid. According 

to word of mouth, about 50% of the CPU time used on supercomputers at the U.S. Department of Energy 

National Labs is spent on Monte Carlo computations. Unlike data-intensive applications, Monte Carlo 

applications are usually computation intensive [6] and they tend to work on relatively small data sets while 

often consuming a large number of CPU cycles. Parallelism is a way to accelerate the convergence of a 
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Monte Carlo computation. If N processors execute N independent copies of a Monte Carlo computation, the 

accumulated result will have a variance N time smaller than that of a single copy. In a distributed Monte 

Carlo application, once a distributed task starts, it can usually be executed independently with almost no 

inter-process communication. Therefore, Monte Carlo applications are perceived as naturally parallel, and 

they can usually be programmed via the so-called dynamic bag-of-work model. Here a large task is split 

into smaller independent subtasks and each are then executed separately. Effectively using the dynamic 

bag-of-work model for Monte Carlo requires that the underlying random number streams in each subtask be 

independent in a statistical sense. The SPRNG (Scalable Parallel Random Number Generators) library [11] 

was designed to use parameterized pseudorandom number generators to provide independent random 

number streams to parallel processes. Some generators in SPRNG can generate up to 278000 - 1 independent 

random number streams with sufficiently long period and good quality [13]. These generators meet the 

random number requirements of most Monte Carlo grid applications.  

The intrinsically parallel aspect of Monte Carlo applications makes them an ideal fit for the grid-

computing paradigm. In general, grid-based Monte Carlo applications can divide the Monte Carlo task into 

a number of subtasks by the task-split service and utilize the grid’s schedule service to dispatch these 

independent subtasks to different nodes [15]. The connectivity services provide communication facilities 

among nodes providing computational services. The execution of a subtask takes advantage of the storage 

service of the grid to store intermediate results and to store each subtask’s final (partial) result. When the 

subtasks are done, the collection service can be used to gather the results and generate the final result of the 

entire computation. Figure 2.1 shows this generic paradigm for Monte Carlo grid applications. 

 The inherent characteristics of Monte Carlo applications motivate the use of grid computing to 

effectively perform large-scale Monte Carlo computations. Furthermore, within this Monte Carlo grid-

computing paradigm, we can use the statistical nature of Monte Carlo computations and the cryptographic 

aspects of random numbers to reduce the wallclock time and to enforce the trustworthiness of the 

computation. 
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Figure 2.1: Monte Carlo Application on a Grid System 

3. Improving the Performance of Grid-based Monte Carlo Computing 

3.1 The N-out-of-M Strategy 

3.1.1 Subtask-Scheduling using the N-out-of-M Strategy 

 The nodes that provide CPU cycles in a grid system will most likely have computational 

capabilities that vary greatly. A node might be a high-end supercomputer, or a low-end personal computer, 

even just an intelligent widget. In addition, these nodes are geographically widely distributed and not 

centrally manageable. A node may go down or become inaccessible without notice while it is working on 

its task. Therefore, a slow node might become the bottleneck of the whole computation if the assembly of 

the final result must wait for the partial result generated on this slow node. A delayed subtask might delay 
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the accomplishment of the whole task while a halted subtask might prevent the whole task from ever 

finishing. To address this problem, system-level methods are used in many grid or distributed-computing 

systems. For example, Entropia [7] tracks the execution of each subtask to make sure none of the subtasks 

are halted or delayed. However, the statistical nature of Monte Carlo applications provides a shortcut to 

solve this problem at the application level. 

 Suppose we are going to execute a Monte Carlo computation on a grid system. We split it into N 

subtasks, with each subtask based on its unique independent random number stream. We then schedule 

each subtask onto the nodes in the grid system. In this case, the assembly of the final result requires all the 

N partial results generated from the N subtasks. Each subtask is a “key” subtask, since the suspension or 

delay of any one of these subtasks will have a direct effect on the completion time of the whole task.  

When we are running Monte Carlo applications, what we really care about is how many random 

samples (random trajectories) we must obtain to achieve a certain, predetermined, accuracy. We do not 

much care which random sample set is estimated, provided that all the random samples are independent in 

a statistical sense. The statistical nature of Monte Carlo applications allows us to enlarge the actual size of 

the computation by increasing the number of subtasks from N to M, where M > N. Each of these M subtasks 

uses its unique independent random number set, and we submit M instead of N subtasks to the grid system. 

Therefore, M bags of computation will be carried out and M partial results may be eventually generated. 

However, it is not necessary to wait for all M subtasks to finish. When N partial results are ready, we 

consider the whole task for the grid system to be completed. The application then collects the N partial 

results and produces the final result. At this point, the grid-computing system may broadcast abort signals 

to the nodes that are still computing the remaining subtasks. We call this scheduling strategy the N-out-of-

M strategy. In the N-out-of-M strategy more subtasks than are needed are actually scheduled, therefore, 

none of these subtasks will become a “key” subtask and we can tolerate at most M – N delayed or halted 

subtasks. 

Figure 3.1 shows an example of a distributed Monte Carlo computation using the “6-out-of-10” 

strategy. In this example, 6 partial results are needed and 10 subtasks are actually scheduled. During the 

computation, one subtask is suspended for some unknown reason. In addition, some subtasks have very 

short completion time while others execute very slowly. However, when 6 of the subtasks are complete, the 
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whole computation is complete. The suspended subtask and the slow subtasks do not affect the completion 

of the whole computational task.  
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Figure 3.1 Example of the “6-out-of-10” Strategy with 1 Suspended and 3 “Slow” Subtasks 

Also notice that the Monte Carlo computation using the N-out-of-M strategy is reproducible, 

because we know exactly which N out of M subtasks are actually involved and which random numbers 

were used. Thus each of these N subtasks can be reproduced later. However, if we want to reproduce all of 

these N subtasks at a later time on the grid system, the N-out-of-N strategy must be used! 

One drawback of the N-out-of-M strategy is we must execute more subtasks than actually needed 

and will therefore increase the computational workload on the grid system. However, our experience with 

distributed computing systems such as Condor and Javelin shows that most of the time there are more 

nodes providing computing services available in the grid system than subtasks. Therefore, properly 

increasing the computational workload to achieve a shorter completion time for a computational task 

should be an acceptable tradeoff in a grid system. 

3.1.2 Analysis of the N-out-of-M Strategy 

In Monte Carlo applications, N is determined by the application and it depends on the number of 

random samples or random trajectories needed to obtain a predetermined accuracy. The problem is thus 
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how to choose the value M properly. A good choice of M can prevent a few subtasks from delaying or even 

halting the whole computation. However, if M is chosen too large, there may be little benefit to the 

computation at the cost of significantly increasing the workload of the grid system. In order to determine a 

proper value of M to achieve a specific performance requirement, we study the grid behavior and consider 

some system parameters. In the N-out-of-M strategy, the completion time of a Monte Carlo computational 

task depends on the performance of each individual node that is assigned a subtask, the node failure rate, 

and also the interconnection network failure rate. We make the following assumptions to set up our model: 

1) The execution of a task completely occupies a node on the grid, and no other jobs can be executed 

on the same node concurrently. 

2) Compared to the execution time, the tasks’ scheduling time and result collection time is short 

enough to be ignored. 

3) Each node works on its task independently. 

4) Each node has an equal probability of obtaining a task from the schedule service. The tasks are 

scheduled without noticing the performance of each node. 

Figure 3.2 shows the Petri Net (PN) model of the N-out-of-M strategy. This PN model has M 

nodes in total. A node, i, alternates between an up state (place pi
up) and a down state (place pi

down). 

Transition ti
down represents node unavailability (with unavailability rate λ) and transition ti

up node back to 

service (with availability rate µ). Transition ti
complete is assigned the task progress threshold W (usually 

100%) so that the subtask completion condition (token in psubtask) is reached when W is hit. When psubtask 

gathers N tokens, transition tN-out-of-M enables to fire and a token in place pcomplete indicates the completion of 

the Monte Carlo task.  
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Figure 3.2 Petri Net Modeling of N-out-of-M Strategy 

  We establish a binomial model for the subtask-scheduling scheme using the N-out-of-M strategy 

based on the above PN model. Assume that the probability of a subtask completing by time t is given by 

p(t). p(t) describes the aggregate probability over the pool of nodes in the grid. In a real-life grid system, 

p(t) could be measured by computing the empirical frequencies of completion times over the pool. In this 

paper, we model p(t) based on an analytic probability distribution function.  

Let S  be the total number of nodes available in the grid system,  

  pi
sys   be the probability of node i participating in the computations is up, where , )/( λµµ +=sys

ip

  θi′ be the service rate of node i, which can be measured as the number of tasks that can be finished 

within a specific period of time without interruption. Considering node availability, the actual 

service rate, θi, in node i is sys
i

ii p*′= θθ . 

At time t, the probability that a Monte Carlo subtask will be done on node i is 1 . Since each node has 

equal probability to be scheduled a subtask, p(t) can be represented as 

tieθ−

 10



Analysis of Large-scale Grid-based Monte Carlo Applications 

∑ ∑
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If the service rates, θ1, θ2, …, θS, conform to a distribution with probability density function φ(θ), p(t) can 

thus be written as 

∫−=
L t de

L
tp

0

)(11)( θθφ . 
(2) 

Here L is the maximum value of θi in the computation. 

Typically, if all of the nodes have the same service rate θ, p(t) can be simplified to 

tetp θ−=1)( . (3) 

Then, the probability that exactly N out of M subtasks are complete at time t is given by 

NMN
MofoutNExactly tptp

N
M

tP −
−−−− −×








= ))(1()()( . 

(4) 

We can approximate PN-out-of-M(t) using a Poisson distribution with λ=N*p(t). Then, Pexactly-N-out-of-M(t) can be 

approximated as 

λλ −
−−−− ≈ e

M
tP

M

MofoutNExactly !
)( . 

(5) 

The probability that at least N subtasks are complete is thus given by 

∑
=

−
−−− −×








=

M

Ni

iMi
MofoutN tptp

i
M

tP ))(1()()( . 
(6) 

The old strategy can be thought of as “N-out-of-N” which has probability given by 

)()( tptP N
NofoutN =−−− . (7) 

Now the question is to decide on a reasonable value for M to satisfy a required task completion 

probability α (when N subtasks are complete on the grid). Unfortunately, it is hard to explicitly represent M 

in analytic form. However, we use a numerical method, which gradually increases M by 1 to evaluate PN-out-

of-M(t) until the value of PN-out-of-M(t) is greater than α. This empirically gives us the minimum value of M. 

An alternative approach to estimate the M/N is using a normal distribution to approximate the underlying 

binomial. When M*(1-p(t)) ≥ 5 and M*p(t) ≥ 5, the binomial distribution can be approximated by a normal 
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curve with mean m = M*p(t) and standard deviation ))(1)(( tptMp −=σ . Then, we can find the 

minimum value M that satisfies 

α
σσ

≥
−

Φ−
−

Φ )()( mNmM . 
(8) 

where Φ is the normal cumulative distribution function. 

 In a grid system, nodes providing computational services join and leave dynamically. There are 

some nodes are considered “transient” nodes, which provide computational services temporarily and may 

depart from the system permanently. A subtask submitted to a “transient” node may have no chance of 

being finished. Suppose the fraction of “transient” nodes in a grid is β, then, we need to enlarge M to 

 )1/( β−M  to tolerate these never-finished subtasks. 

3.1.3 Simulation of the N-out-of-M Strategy 

In our simulation program of the N-out-of-M strategy, we simulated a 1,000-node computational 

grid. Nodes join and leave the system with a specified probability. Also, nodes have a variety of 

computational capabilities. Each simulation is run for 1,000 time steps. (A task running on a node with 

service rate θ will take 1/θ time steps, e.g., a fast node with service rate 0.01 will take 100 time steps to 

complete the task while a slow one with service rate 0.001 will take 1,000) At each time step, a certain 

number of nodes go down while a certain number of nodes become available for computation. We built our 

simulations in order to 

1) evaluate the validity of our model, and to 

2) compare the performance of the N-out-of-M strategy in grid systems with different configurations.  

Figure 3.3 shows our simulation results and model prediction of the N-out-of-M strategy for grid 

Monte Carlo applications. Our analytical model matches the simulation results quite well. Also, we can 

find that with a proper choice of M (20 in the graph), the Monte Carlo task completion time can be 

improved significantly over the N-out-of-N strategy. However, if we enlarge M too much, the workload of 

the system increases without significantly reducing the Monte Carlo task completion time. Also, we notice 

that, as time goes on, the N-out-of-M strategy always has a higher probability of completion than the N-out-

of-N strategy, although they all converge to probability one at large times. 
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Figure 3.3 Simulations and Model Prediction of the N-out-of-M Scheduling Strategy for Grid Monte Carlo 

Applications 

 Figure 3.4 and 3.5 show the simulation results of the N-out-of-M strategy in different grid systems. 

Both simulated grid systems assume that the service rates θ of nodes are normally distributed with the same 

means (0.005) but different variances (0.001 in Figure 3.4 and 0.003 in Figure 3.5). Figure 3.4 simulates a 

grid comprised of nodes with similar performance characteristics. This can be a grid constructed from 

computers in a computer lab that have similar performance parameters. On the other hand, Figure 3.5 is the 

simulation of a grid whose nodes have computational capabilities in a wide range. In practice, this grid can 

be a system with geographically widely distributed nodes like SETI@home [9], where a node might be a 

high-end supercomputer, or a low-end personal computer. From the graphs, we see that the N-out-of-M 

scheduling strategy improves the Monte Carlo task completion time in both grid systems; however, we gain 

more significant improvement in the system comprised of nodes with service rates having a large variance. 

This experimental result indicates that the N-out-of-M strategy is more effective in a grid system where an 

individual node’s performance varies greatly. More interestingly, the simulation results also show that, in 

both grid systems, with a sufficiently large value of M, the time values after which the Monte Carlo task is 

complete with a high probability is close to 200 time steps, which is exactly the subtask completion time 

for a single node with mean (0.005) service rate. Therefore, we can expect that, with a proper number of 

subtasks scheduled using the N-out-of-M strategy, the Monte Carlo task completion time on a grid can be 

made to be almost the same as the subtask completion time in a node with average computational capability! 
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Figure 3.4 Simulations of the N-out-of-M Strategy on a Grid System with Nodes Service Rates Normally 

Distributed (Mean=0.005, Variance=0.001) 
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Figure 3.5 Simulations of the N-out-of-M Strategy on a Grid System with Nodes Service Rates Normally 

Distributed (Mean=0.005, Variance=0.003) 

3.2 Lightweight Checkpointing 

 A subtask running on a node of a grid system may take a very long time to finish. The N-out-of-M 

strategy is an attempt to mitigate the effect of this on the overall running time. However, if checkpointing is 

incorporated, one can directly attack reducing the completion time of the subtasks. Some grid computing 

systems implement a process-level checkpoint. Condor, for example, takes a snapshot of the process’s 

current state, including stack and data segments, shared library code, process address space, all CPU states, 
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states of all open files, all signal handlers, and pending signals [12]. On recovery, the process reads the 

checkpoint file and then restores its state. Since the process state contains a large amount of data, 

processing such a checkpoint is quite costly. Also, process-level checkpointing is very platform-dependent, 

which limits the possibility of migrating the process-level checkpoint to another node in a heterogeneous 

grid-computing environment. 

Initialization

Main Monte Carlo
Computation

Mean and Standard Error
Estimation

Main
Loop

Random
Number

Generation
Library

 

Figure 3.6 A Typical Programming Structure for a Monte Carlo Application 

 Fortunately, Monte Carlo applications have a structure highly amenable to application-based 

checkpointing. Typically, a Monte Carlo application starts in an initial configuration, evaluates a random 

sample or a random trajectory, estimates a result, accumulates means and variances with previous results, 

and repeats this process until some termination condition is met. Although different Monte Carlo 

applications may have very different implementations, many of them can be developed or adjusted in a 

typical programming structure shown in Figure 3.6. 

Thus, to recover an interrupted computation, a Monte Carlo application needs to save only a 

relatively small amount of information. The necessary information to reconstruct a Monte Carlo 

computation image at checkpoint time will be the current results based on the estimates obtained so far, the 

current status and parameters of the random number generators, and other relevant program information 
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like the current iteration number. This allows one to make a smart and quick application checkpoint in most 

Monte Carlo applications. Using XML [8] to record the checkpointing information, we can make this 

checkpoint platform-independent. More importantly, compared to a process checkpoint, the application-

level checkpoint is much smaller in size and much quicker to generate. Therefore, it should be relatively 

easy to migrate a Monte Carlo computation from one node to another in a grid system. With the 

application-level checkpointing and recovery facilities, the typical Monte Carlo application’s programming 

structure can be amended to the one shown in Figure 3.7. However, the implementation of application level 

checkpointing will somewhat increase the complexity of developing new Monte Carlo grid applications.  
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Figure 3.7 A Monte Carlo Application with Checkpoint and Recovery Facilities 

4. Enhancing the Trustworthiness of Grid-based Monte Carlo Computing 

4.1 Distributed Monte Carlo Partial Result Validation 

 The correctness and accuracy of grid-based computations are vitally important to an application. 

In a grid-computing environment, the service providers of the grid are often geographically separated with 
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no central management. Faults may hurt the integrity of a computation. These might include faults arising 

from the network, system software or node hardware. A node providing CPU cycles might not be 

trustworthy. A user might provide a system to the grid without the intent of faithfully executing the 

applications obtained. Experience with SETI@home has shown that users often fake computations and 

return wrong or inaccurate results. The resources in a grid system are so widely distributed that it appears 

difficult for a grid-computing system to completely prevent all “bad” nodes from participating in a grid 

computation. Unfortunately, Monte Carlo applications are very sensitive to each partial result generated 

from each subtask. An erroneous partial result will most likely lead to the corruption of the whole grid 

computation and thus render it useless. 

The following example, example 4.1, illustrates how an erroneous computational partial result 

effects the whole computation. Let us consider the following hypothetical Monte Carlo computation. 

Suppose we wish to evaluate integral  

∫ ∫ ++

++
1

0

1

0 251252221
...

2
42

22
31 ......

)1(
4... 205

31

dxdxxxxe
xx

exx xx
xx

. 
(9) 

The exact solution to 8-digits of this integral is 103.81372. In the experiment, we plan to use crude Monte 

Carlo on a grid system with 1,000 nodes. Table 4.1 tabulates the partial results from volunteer computers. 

Subtask # Partial Results 

1 103.8999347 
2 104.0002782 
3 103.7795764 
4 103.6894540 

… 
561 89782.048998 

… 
997 103.9235347 
998 103.8727823 
999 103.8557640 

1000 103.7891408 
Table 4.1 Hypothetical Partial Results of Example 4.1 

Due to an error, the partial result returned from the node running subtask #561 is clearly bad. The fault may 

have been due to an error in the computation, a network communication error, or malicious activity, but 

that is not important. The effect is that the whole computational result ends as 193.280805, considerably off 

the exact answer. From this example, we see that, in Monte Carlo grid computing, the final computational 
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result may be sensitive to each of the partial results obtained from nodes in the grid system. An error in a 

computation may seriously hurt the whole computation. 

 To enforce the correctness of the computation, many distributed computing or grid systems adapt 

fault-tolerant methods, like duplicate checking [10] and majority vote [16]. In these approaches, subtasks 

are duplicated and carried out on different nodes. Erroneous partial results can be found by comparing the 

partial results of the same subtask executed on different nodes. Duplicated checking requires doubling 

computations to discover an erroneous partial result. Majority vote requires at least three times more 

computation to identify an erroneous partial result. Using duplicate checking or majority vote will 

significantly increase the workload of a grid system. 

 In the dynamic bag-of-work model as applied to Monte Carlo applications, each subtask works on 

the same description of the problem but estimates based on different random samples. Since the mean in a 

Monte Carlo computation is accumulated from many samples, its distribution will be approximately normal, 

according to the Central Limit Theorem. Suppose f1, …, fi, …, fn are the n partial results generated from 

individual nodes on a grid system. The mean of these partial results is 

∑
=

=
n

i
if

n
f

1

1ˆ , (10) 

 and we can estimate its standard error, s, via the following formula 

∑
=

−
−

=
n

i
i ff

n
s

1

2)ˆ(
1

1 . (11) 

Specifically, the Central Limit Theorem states that  should be distributed approximately as a student-t 

random variable with mean , standard deviation 

f̂

f̂ ns /

f̂

, and n degrees-of-freedom. However, since we 

usually have n, the number of subtasks, chosen to be large, we may instead approximate the student-t 

distribution with the normal. Standard normal confidence interval theory states that with 68% confidence 

that the exact mean is within 1 standard deviation of , with 95% confidence within 2 standard deviations, 

and 99% confidence within 3 standard deviations. This statistical property of Monte Carlo computation can 

be used to develop an approach for validating the partial results of a large grid-based Monte Carlo 

computation. 
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Here is the proposed method for distributed Monte Carlo partial result validation. Suppose we are 

running n Monte Carlo subtasks on the grid, the ith subtask will eventually return a partial result, fi. We 

anticipate that the fi are approximately normally distributed with mean, , and standard deviation, σ = f̂

ns /

% =

. We expect that about one of the fi in this group of n to lie outside a normal confidence interval 

with confidence 1 – 1/n. In order to choose a confidence level that permits events we expect to see, 

statistically, yet flags events as outliers requires us to choose a multiplier, c, so that we flag events that 

should only occur once in a group of size cn. The choice of c is rather subjective, but c = 10 implies that in 

only 1 in 10 runs of size n we should expect to find an outlier with confidence 1 - 1/10n. With a given 

choice of c, one computes the symmetric normal confidence interval based on a confidence of 

cn/11−α . Thus the confidence interval is [ - σ, + σ], where Z  is unit normal 

value such that 

f̂ 2/αZ f̂ 2/αZ 2/α

∫
/

0

α

=
−2

2

2

22
1 α
π

x

dxe
Z

. If fi is in this confidence interval, we can consider this partial result as 

trustworthy. However, if fi falls out of the interval, which may happen merely by chance with a very small 

probability, this particular partial result is suspected.  

There are two possibilities for a partial result fi to fall out of the confidence interval. These are 

1) errors occur during the computation of this subtask, or  

2) a rare event with very low probability is captured.  

In former case, this partial result is erroneous and should be discarded, whereas in the latter case, we need 

to take it into consideration. To identify these two cases, we can rerun the particular subtask that generated 

the suspicious partial result on a trusted node for further validation.  

Let us now come back to the previous example, 4.1. We performed an experiment by running 

1,000 subtasks for evaluating the integral described in example 4.1 on a Condor pool [14]. Figure 4.1 

shows the distribution of all the generated partial results: 677 partial results are located within 1 standard 

deviation of the mean, 961 partial results within 2 standard deviations, and 999 of the 1,000 partial results 

within 3 standard deviations. If a hypothetical partial result happens as the one (#561) in example 4.1, the 

outlier lies 30 standard deviations to the right of the mean. As we know from calculating the confidence 

interval, we have α = 99.9999999999% within 7 standard deviations. A outlier falling outside of 7 standard 
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deviations of the mean will be expected to happen by chance only once in 109 experiments. Therefore, the 

erroneous partial result of #561 in example 4.1 will easily be captured and flagged as abhorrent. 

677

961

999

f̂ f̂ +σ f̂ +2σf̂ +3σ
f̂ -σ f̂ -2σ f̂ -3σ 

 

Figure 4.1 Partial Result Distribution in Example 4.1 

This Monte Carlo partial result validation method supplies us with a way to identify suspicious 

results without running more subtasks. This method assumes that the majority of the nodes in grid system 

are “good” service providers, which can correctly and faithfully execute their assigned task and transfer the 

result. If most of the nodes are malicious, this validation method may not be effective. However, 

experience has shown that the fraction of “bad” nodes in volunteered computation is very small. 

4.2 Intermediate value checking 

Usually, a grid-computing system compensates the service providers to encourage computer 

owners to supply resources. Many Internet-wide grid-computing projects, such as SETI@home [9], have 

the experience that some service providers don’t faithfully execute their assigned subtasks. Instead they 

attempt to provide bogus partial results at a much lower personal computational cost in order to obtain 

more benefits. Checking whether the assigned subtask from a service provider is faithfully carried out and 

accurately executed is a critical issue that must be addressed by a grid-computing system. 

One approach to check the validity of a subtask computation is to validate intermediate values 

within the computation. Intermediate values are quantities generated within the execution of the subtask. 

To the node that runs the subtask, these values will be unknown until the subtask is actually executed and 

reaches a specific point within the program. On the other hand, to the clever application owner, certain 

intermediate values are either pre-known and secret or are very easy to generate.  Therefore, by comparing 
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the intermediate values and the pre-known values, we can control whether the subtask is actually faithfully 

carried out or not. Monte Carlo applications consume pseudorandom numbers, which are generated 

deterministically from a pseudorandom number generator. If this pseudorandom number generator has a 

cheap algorithm for computing arbitrarily within the period, the random numbers are perfect candidates to 

be these cleverly chosen intermediate values. Thus, we have a very simple strategy to validate a result from 

subtasks by tracing certain predetermined random numbers in Monte Carlo applications.  

For example, in a grid Monte Carlo application, we might force each subtask to save the value of 

the current pseudorandom number after every N (e.g., N = 100,000) pseudorandom numbers are generated. 

Therefore, we can keep a record of the Nth, 2Nth, …, kNth random numbers used in the subtask. To 

validate the actual execution of a subtask on the server side, we can just re-compute the Nth, 2Nth, …, kNth 

random numbers applying the specific generator with the same seed and parameters as used in this subtask. 

We then simply match them. A mismatch indicates problems during the execution of the task. Also, we can 

use intermediate values of the computation along with random numbers to create a cryptographic digest of 

the computation in order to make it even harder to fake a computational result.  Given our list of random 

numbers, or a deterministic way to produce such a list, when those random numbers are computed, we can 

save some piece of program data current at that time into an array.  At the same time we can use that 

random number to encrypt the saved data and incorporate these encrypted values in a cryptographic digest 

of the entire computation.  At the end of the computation the digest and the saved values are then both 

returned to the server.  The server, through cryptographic exchange, can recover the list of encrypted 

program data and quickly compute the random numbers used to encrypt them.  Thus, the server can decrypt 

the list and compare it to the "plaintext" versions of the same transmitted from the application.  Any 

discrepancies would flag either an erroneous or faked result.  While this technique is certainly not a perfect 

way to ensure correctness and trustworthiness, a user determined on faking results would have to 

scrupulously analyze the code to determine the technique being used, and would have to know enough 

about the mathematics of the random number generator to leap ahead as required.  In our estimation, 

surmounting these difficulties would far surpass the amount of work saved by gaining the ability to pass off 

faked results as genuine. 
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5. Conclusions 

Monte Carlo applications generically exhibit naturally parallel and computationally intensive 

characteristics. Moreover, we can easily fit the dynamic bag-of-work model, which works so well for 

Monte Carlo applications, onto a grid system to implement large-scale grid-based Monte Carlo computing. 

Furthermore, based on the analysis of grid-based Monte Carlo applications, we may take advantage of the 

statistical nature of Monte Carlo calculations and the cryptographic nature of random numbers to enhance 

the performance and trustworthiness of this Monte Carlo grid-computing infrastructure at the application 

level. 

The next phase of our research will be to develop a Monte Carlo grid toolkit, using the techniques 

described in this paper, to facilitate the development of grid-based Monte Carlo applications. At the same 

time, we will also try to execute more real-life Monte Carlo applications on our developing grid system. 
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