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Recent research shows that Monte Carlo diffusion methods are often the most efficient algorithms for
solving certain elliptic boundary value problems. In this paper, we extend this research by providing two
efficient algorithms based on the concept of “last-passage diffusion.” These algorithms are qualitatively com-
pared with each othgand with the best first-passage diffusion algoritimsolving the classical problem of
computing the charge distribution on a conducting disk held at unit voltage. All three algorithms show detailed
agreement with the known analytic solution to this problem.
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I. INTRODUCTION (1) Problems in which the detailed distribution of absorp-
tion sites is important. First-passage methods do provide this

In recent times, there has been very substantial progress ffistribution; however, they provide the distribution of ab-
the development of diffusion Monte Carlo methods for solv-sorption sites according to naive importance sampling. The
ing problems in the domains of materials science and biodistribution is estimated over the entire surface, this does not

physics[1-4]. Both these applications frequently involve Provide efficient solutions for problems in which one re-
other elliptic partial differential equation, in a multiphase patch, or on a 'Ilne Segment,_espeuqlly if the total surface

domain where the phase boundary is extensive, convolute§narge density in the area of interest is small. - _

and singular; i.e., containing corners, cusps, and edges. (2) P_roble_ms such as bmdmg-_sne problems in which the
A recent work has provided the most efficient aIgorithms"’lbsorptlon sites are highly localized and make up a very

yet devised for calculating bulk parameters in such systemss !“a”.”ac“c”? of the interface. Here it IS more efﬂme_nt_ for
the Green's-function first-passage algorithiis2,4,5. In diffusing particles to start at the absorption sites than it is for

. - . LS . h h f i i ing f h ide.
particular, efficient algorithms of this kind now exist for the them to search for absorption sites starting from the outside

Probl in which Itipl i f
calculation of the permeability of packed beds, the conduc (3 Problems in which multiple absorbing surfaces are

< : e placed in close proximity to one another. These problems
tivity of two-phase composites, and the diffusion-limited re- gfectively involve the calculation of a mutual capacitance

action rate for systems involving protein-ligand binding.  matrix. First-passage methods cannot address these prob-
But much remains to be done. A large fraction of the|gms.

advances made in recent decades by theorists of Brownian (4) problems in which the interface involves singularities,
motion have apparently not yet been incorporated into effij.e, folds, cusps, and corners. Absorption points collect at
cient numerical algorithms. In particular, the concepts of lasthese singularities. Last-passage methods locate and map out
passag¢6], local time, and speed measui, which are of  this part of the total absorption surface very efficiently.
central importance in probability, do not yet seem to be in- The present paper addresses the first set of problems de-
corporated into efficient algorithms. scribed above. In particular, we develop and explore a dif-
In this paper, we introduce the first efficient algorithmsferent set of last-passage algorithms for computing the
based on the concept of last passage. These methods involgiearge distribution on a conducting surface. We apply them
Brownian motion “reversed in time,” in a sense which hasto a specific exactly solvable problem, namely, the calcula-
been made precisgg]. In these algorithms, diffusing par- tion of the surface charge density on a circular conducting
ticles leave the sites at which they are absorbed and diffusdisk held at unit potential.
to the places where they are created. Such algorithms have This paper is organized as follows. In Sec. I, we develop
an advantage over first-passage diffusion algorithms for athe first-passage Monte Carlo algorithm for computing the
least four different types of problems: charge density on a conducting surface. In Sec. Ill, we de-
velop a class of last-passage diffusion algorithms for com-
puting electrostatic properties of a conducting surface. In

*Email address: JAGiven137@aol.com Sec. IV, a class of “edge-distribution” algorithms is devel-

"Email address: chwang@itrs.hanyang.ac.kr oped as a general method for making last-passage algorithms

*Email address: mascagni@cs.fsu.edu; more efficient. In Sec. V, these three classes of algorithms for
URL: http://www.cs.fsu.eduf mascagni surface charge density are employed to calculate the electro-
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static properties of a conducting circular disk. This example P
is used to exhibit the relative advantages and disadvantages
of each class of algorithms. Section VI provides our conclu-
sions.

Il. THE FIRST-PASSAGE ALGORITHM FOR THE
CHARGE DENSITY ON A CONDUCTOR

In this section, we review the isomorphism, provided by
probabilistic potential theor}8,9], between the electrostatic
Dirichlet problem on a conducting surface and the corre-
sponding Brownian motion expectation.

Consider the electrostatic Dirichlet problem for the exte-
rior Laplace equation in a volunte, with boundarys(}. Let

¢(X) be the electrostatic potential, satisfying the Laplace L; launching sphere
equation:
Ap(x)=0, xe(, 1
with the boundary conditions, FIG. 1. A schematic view that illustrates an absorbed series of
first-passage jumps in a circular disk of radasising “walk on
d(x)=1, xedQ, 2) spheresWOS) [10,13-16. In WOS, the boundary is thickened by
S, - When a Brownian particle is initiated with uniform probability
and from the launching sphere of radiusb, and enters thig,, absorp-
tion layer, the Brownian trajectory is terminated.
$(X)=0 as x—oo, (3)

) . ) ) .. that this fact is independent of the placement of the launch
For understanding the Brownian motion expectation, it ISsphere; in particular, of the position of its centdthus one

convenient to think in terms of a diffusion problem, as can efficiently simulate the equivalent diffusion problem by
Brownian motion is the microscopic manifestation of diffu- jitiating Brownian particles at uniformly distributed first
sion. Thus the |somorph|cg|ffu5|on problem is described a$)assage positions on the launch sphere. These Brownian par-
follows: define the functionp(x) to be the probability den- ticles will ultimately either make first passage on the absorb-
sity associated with a diffusin@rownian particle initiating  ing object or diffuse to infinity in a way that is well defined.

at pointx and diffusing indefinitely far away without ever The location of the first-passage positions of the Brownian
making contact with the surface). The function Z(x) particles will thus have a distribution identical to that of the
obeys the sphere averaging property; thus it is a harmonigurface charge density in the above electrostatic problem.
function. In addition, it obeys the boundary conditions

Ill. A LAST-PASSAGE ALGORITHM FOR SURFACE

#(x)=0, XxedQ, 4 CHARGE DENSITY
and In this section, we introduce a last-passage algorithm that
_ allows one to efficiently calculate the charge density at a
d(X)=1 as Xx—o». (5 general point on a conducting surface by using the Brownian

(diffusing) paths that initiate at that point.
The uniqueness of solutions to the Laplace equation thus One can utilize the first isomorphism developed in Sec.
implies that VI section between electrostatic problems and diffusion
_ problems to obtain a formula for the electrostatic potential
d(X)=1=¢(x). (6)  V(x+e), very near the poink on the conducting surface

A different isomorphism between an electrostatic problenllo]'
and a diffusion problem provides a practical first-passage
algorithm for the surface charge distribution on a conductor V(x+ E):f d?yg(x+ €,y)p(y,®). (7)
held at a nonzero potential with respect to the point at infin- aQy
ity [3]. The principle of inversion with respect to a sphere in
electrostatic problems shows that such a potential is equivadere,g(x+ €,y) is the Laplacian Green'’s function associated
lent to a large point chargéor equivalently, a source of with Dirichlet boundary conditions on the regiaifl, (see
Brownian or diffusing particlesplaced far away from the Fig. 2). In particular,g(x+¢€,y) is the probability density
conducting object. Brownian particles leaving such a pointassociated with a diffusing particle initiating at the point
source will make first-passage at a set of uniformly spaced- e and making first passage on the surfa€g, at the point
positions on a spher@sually termed a “launch sphere,” see y. Also, p(y,®) is the probability density associated with a
Fig. 1) surrounding the conducting/absorbing obje®ote  diffusing particle initiating at the poing on the upper first-
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a9,

FIG. 2. A conducting surface is shown edge g+ €,y) is the
probability density associated with a Brownian particle initiating at
the pointx+ e and making first-passage on the surfag, at the
pointy.

. . o . FIG. 3. The Green’s function for a point dipole oriented nor-
passage surface and diffusing to infinity without ever returniyay to an absorbing surface is a generating function for Brownian
ing to the lower first-passage surface. trajectories that leave the absorbing surface and never return. The

Thus, Eq.(7) represents the electrostatic potenfiédlx  effect of trajectories that leave and do return is zero; they cancel out
+¢€) as the probability density associated with a diffusingin pairs.
particle initiating at the point+ € near a conducting surface,
and diffusing without ever contacting the conducting surfaceare initiated at points selected randomly with density
This is consistent with the first isomorphism presented incosd dS on the surface of a hemisphere surrounding the
Sec. IIl. We note an essential fact about the integrand in Eyointx. They diffuse until they either hit the conducting disk
(7); the first factor is analytically simple, but it depends onor diffuse far away. The surface charge density at the point
the quantitye; the second factor is very complicated, but it is is then given by
independent ot.

Gauss’ law gives the surface charge densix) on a 3N
conductor in terms of the formuld 1] X=T@m N (13

1d whereN, is the number of diffusing particles that diffuse to
o0=" 17 &‘ Yok, ® infinity.
Inserting Eq.(7) for V(x+ ¢€), this becomes IV. ON THE USE OF EDGE DISTRIBUTIONS IN THE
1 IMPLEMENTATION OF LAST-PASSAGE ALGORITHMS
a(x)= EJ o d?yG(x,y)p(y,®), €) In this section, we provide an introduction to the concept
Hy of “edge distribution.” We explain the use of this concept in
where the context of last-passage distributions.
The benefits of last-passage distribution have already
d been explained in the Introduction. Nonetheless, algorithms
Cxy)=ge| 9xtey). (100 based on the first-passage distribution have one natural ad-
e=0

vantage; they incorporate importance sampling, i.e., they
take into account the fact that corners and edges accumulate
point dipole centered on the conducting surface at pint charge. Indeed, they support charge smgu_lanhes. For a large
and normal to the surfadsee Fig. 3 class of important problems, one can divide the surface of
For a flat conducting surface, this dipole Green’s functionthe(sbﬁﬁébé%?n%?f;g]fd;ﬁz subsets:
's readily shown to be given by (b) The remainder of the surface, assumed smooth and
3 cosh singularity free. The edge distribution method provides a
G(X,y)==— , (11 Metropolis-like method, i.e., an approximate importance
2m a3 sampling method with correction, for this class of problems.

) . In particular, problems in which the absorbing surface con-
whered is the angle between the vectorandy, andais the  gists of a number of polygonal faces, either flat or curved,
radius of the absorbing sphere. Substituting @) into EQ.  joined together at their corners and edges, can be treated in

The functionG(x,y) is the Laplacian Green'’s function for a

(9) gives the formula this manner.
3 p First, points are chosen according to an approximate prob-
cos bility density defined as follows: Each polygonal face is
=— S— . 12 a .
o(x) 87 de ad p(y:2) (12 assumed to have constant and equal charge density on the

portion of it that is away from all edges. The charge density
The last-passage method obtains the charge density on tiea strip adjoining each edge is taken to have a form con-
circular plate at the point as follows.N diffusing particles taining an(integrable singularity[11]
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FIG. 4. Athree-quarter cylinder of radigsand lengthL on the
edge of a cube is shown. Hef€), is a chopped cylindrical surface ]
that intersects the pair of absorbing surfaces meeting at angle 0 ™ o1 02 05 04 05 06 07 08 05
r
S 1-7la
o=C _} . (14 FIG. 5. Cumulative charge density afrom the center of a unit
o two-dimensional disk in three dimensions.

Here,dis the distance from the center of the polygonal faCe‘fact that this is where surface charge collects. The charge

Bistribution at these points can be calculated from @&)
vﬂthout any additional Monte Carlo simulation.

CN 15 this paper, we only study a single problem; one in
which the edge distribution reduces to a constant. But even
this problem will serve to demonstrate the computational ad-
a(x,8)= 6™ 1o (x). (15) vantages of this method.

edge nearest to the sample point. The const@raed 5, are
chosen to make the charge densities at the center of ea
polygon equal. Specifically, this strip is sampled with a local
density given by

The edge distributior¢(x) for an edge of the conductor can V. THE CHARGE DISTRIBUTION ON A CONDUCTING

be determined by calculating the charge distribution for a CIRCULAR PLATE

single curve parallel to the edge, but near to it, by using the , ) ,

last-passage method, and then using the above scaling law. In this section, we use a classical prpblem of electrostqt—
Once the edge distribution for a given edge is determined, ¢S the problem of the circular conducting plate held at unit
allows rapid estimation of the surface charge density at anfOtential, as a laboratory to explore the relative efficiencies
point close to that edge, again, by using the scaling law. N f the three algorithms discussed in this paper. We explore

additional Monte Carlo simulation is needed for such estimas oth.the F’ro'?'em of calculating the charge dis_tribution in a
tions. localized region and t.he proble.m of calculatl'ng the total
The edge distribution has a natural probabilistic interprecnarge on the conducting plate, i.e., the capacitance.
tation. It is the(rescaledl probability density that a diffusing 1 he conductor we consider is a thin two-dimensional cir-
particle makes last passage on the edge pairthis distri- cular disk .Iylng n thgx-y_plang in t.hree dlmen3|9n§. .When
bution can be calculated either by simulation or by applica-the potentlallof 'the'dlsk is un|§y with respect to infinity, the
tion of the general formula from Eq15). The point is that Charge density is given analyticallg2] by

this one-dimensional distribution needs to be calculated only

once for each edge on each absorbing object in a problem. (r)= 1 1 17
Qn e_>t<)ter_1$ion of Eq(9) for o(x) gives a formula for the edge 7 4ma? J1—r%/a?’
istribution:

wherea is the radius of the disk andis the radial distance
oo(X)= i”m 51—w/af d2yG(x,y)p(y,=). (16) from the center of the disk. . o
4ms o ye oy One can assess the quality of the charge density distribu-
tion obtained by using the first-passage algorithm by study-
Here 9}, is a cylindrical surface that intersects the pair ofing the radial cumulative charge density distribution. In Fig.
absorbing surfaces meeting at angléas an example, for a 5, the cumulative charge densityrdrom the center of a unit
cube, see Fig. ¥4 two-dimensional disk in three dimensions is shown. For the
The power of the edge distribution method is twofold. convergence of the cumulative charge density, Fig. 6 shows
First, it provides an(approximatg¢ importance sampling the relative error of cumulative charge density arom the
technique that is free of the singularities associated witlcenter of a unit two-dimensional disk in three dimensions.
edges and corners. Second, the edge distribution method wifllso, Fig. 7 shows the averaged relative errors of the cumu-
place most of its sample points very near the edges due to tHative charge density along the radial direction with respect
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] ) . FIG. 8. The relative error of cumulative charge density filom
FIG. 6. Relative error of the cumulative charge density f0m  the center of a unit two-dimensional disk in three dimensions. This
the center of a unit two-dimensional disk in three dimensions. Thisshows that the smaller launch sphere size, the better it is. Here,

shows the convergence of the cumulative charge density. Hgfe, s the number of Brownian trajectories abds the radius of the
is the number of Brownian trajectories amdthe radius of the |aunch sphere.

launch sphere.

. - based on Eq(12). To calculate the charge density at a point
to the number of random walks. In Fig. 8, it is shown that ther’ starting points are chosen at random positionson a

smaller launch sphere size is the better. The reason is thPEmisphere centered at the pointsee Fig. 10 Each point

when the launch sphere radius is smaller, the probability o ; . :
. O s weighted by the quantité(r,y). The path of a Brownian
making contact of the disk is higher, so that we have mor article is simulated until it either touches the sphere again

samplings. Figure 9 shows that the launch sphere center lg- .. P : . .
cation does not matter, provided that the launch sphere e%—r diffuses to infinity. The charge density at pofir(r), is

. . iven the aver f th ntdy(r ver th t of
closes the conducting object completely. These results su en as the average of the quant(r.y) over the set o

t the derivati f the first lqorith ted i yaths thatdo notreturn to the disk.
gzrc ”e ervation ot the first-passage algonthm presented in ., ;g jjustrative circular disk problem, we know the

. . analytic potential at a distance from the disk so that we can
The last-passage algorithm is used to calculate the char yue p

: . . ) ) . e this analytic potential function as the probability of going
density on the conducting disk by performing a SImUIatlonback to the disk. In a simulation with $@rownian trajec-

1072 . . . . tories of Fig. 11, we use the analytic potential function to
10’ . . . . . . . . .
* =—a cantered, n,= 10", b=4
] 10 " — 7 plf—centered, = 10°, b= 4
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FIG. 7. The averaged relative error of the cumulative charge

density along the radial direction with respect to the number of FIG. 9. The relative error of cumulative charge density fiom
random walks. This shows the convergence of the cumulativéhe center of a unit two-dimensional disk in three dimensions. This
charge density. The slodeonvergence rajeshows the usual con- shows that the launch sphere center location does not matter. The
vergence rate of Monte Carlo simulations, about 0.5. Heyg,is center of the disk is (1,0.5,0.75). Herey; is the number of

the number of Brownian trajectories. Brownian trajectories and the radius of the launch sphere.
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FIG. 12. The charge density afrom the center of a unit two-
dimensional disk in three dimensionsg is the charge density at
.. 7 the center of the disk. We use a WOS simulation to decide whether
T - the Brownian particle goes back to the disk or not.

FIG. 10. A schematic top view and side view of a two- ON spheres{WOS) simulation[10,13-1§ to decide whether
dimensional circular disk of radius in three dimensions. This il- the Brownian particle goes back to the disk or not. In gen-
lustrates the charge density calculationm;ador a last passage point €ral, there will be no known analytic potential so that we will
y, a hemisphere of radiusis drawn. rely on WOS(see Fig. L In Table I, we show that it is

possible to estimate the charge density accurately at points
decide whether the Brownian particle goes back to the diskery close to the edge singularity.
or not. o is the charge density at the center of the disk. We use a Monte Carlo integration method for computing
Second, in Fig. 12 we use another simulation to get thehe total charge on the disk, with the importance sampling
charge density at distancerom the center. We use a “walk

1
charge density on a circular disk fo 2J(1=nH(nd(=1-n). (18
10 : : . : : : : : : To remove the singularity at the edddd], we introduce the
term+/(1—r). Here,f(r) is the radial charge distribution on
oF analytic the unit circular disk including the charge singularity term
st o simulation 1/\/1.—r, andr the radlgl distance from |t§ center. Random
positions are chosen via the random variabte 7#, where
s [ 7 is uniform in[0,1).
\E 6 F This method gives the result 0.500 94 for the total charge
i st on one side of the disk, when 4@ampling positions are
[}
§, 4k TABLE I. The charge density at points very close to the edge of
g the circular disk. The values of=0.99, 1¢ Brownian trajectories,
°© 3F and a 107 unit-wide absorption layer are used with®1Bajecto-
o F ries, and a 10%? unit-wide absorption layer is used for=0.999.
Here, r is the radial distance from the center of a unit two-
1 dimensional disk in three dimensions. This is how one can estimate
P A the charge density at points very close to a singularity using last-
0 01 02 03 04 05 06 07 08 09 1 passage methods.
r
. ) Position () Analytic Simulation
FIG. 11. The charge density atfrom the center of a unit two-
dimensional disk in three dimensionsy is the charge density at 0.99 0.5641 0.5638
the center of the disk. We use the analytic potential function to 0.999 1.7799 1.7820

decide whether the Brownian particle goes back to the disk or not
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TABLE Il. The charge density at points very close to the edge ofwith the first correction term. In general, the edge distribu-
the circular disk using the edge distribution. Herds the radial  tion will not be constant; however, using the natural proba-
distance from the center of a unit two-dimensional disk in threepijlistic interpretation, we can obtain the edge distribution

dimensions. The third column shows charge density computed usglong finite-sized edges. We intend to publish these results in
ing edge distribution, and the fourth column shows this with they follow-on paper.

first correction term.

Edge distribution VI. DISCUSSION AND CONCLUSIONS

» _ ~ Edge with first In this paper, we have presented three Monte Carlo meth-
Position {)  Analytic  distribution correction ods for computing the charge density on a conductor when
0.9 0.18256324 0.177940636 0.182389152 the conductor is held at a potentia) with respect to infinity.
0.99 0.564109739 0.562697698 0.564104442 The first method has extended the first-passage algorithm for
0.999 177985138  1.77940636 177985121 the capacitance calculation of an arbitrarily shaped conduct-
0.9999 562711766  5.62697698 562711765 NG object. It turns out that the probability distribution of the
0.99999 177941081  17.7940636 17.7941081 absorption locations of the first-passage capacitance calcula-
0.999999 56.2697833 562607608 562607838 O O thef fhhargetd'smb‘é“o.n on FTﬁ ﬁond”f‘“”gh"b’eﬂh
regardless of the centers and sizes of the launch sphere if the
8'22332229 é;;'?ggggg éggggggg é:;;?;ggggg launch sphere encloses the conducting object completely.
0'999999999 177'9 40638 177'9 40638 177‘9 40638 The second Monte Carlo method utilizes the last-passage

used, with 16 Brownian trajectories for each sampling po-

concept. The last-passage method stems from the isomor-
phism between the electrostatic potential and the probability
of a Brownian path going to infinity without returning to the

sition. Here the first-passage method is much faster an(aonductor. The third method also uses the last-passage con-
easier to implement than this last-passage algorithm.

For the circular plate, the edge distribution(x) is con- .
stant because the edge singularity is the same at each pOI?ltt charge density near the edges of a conductor.

near the edge of the disk, by symmetry. Is is known that the

cept, enhanced by using the edge distribution to provide ap-
proximate importance sampling. This allows fast calculation

Each method has advantages and disadvantages. The first-

charge density on a circular disk is given analytically by Eq_passage method is good for calculating the capacitance of the
(17). Lettingr=a—x andz=r/a,

conducting object, for obtaining the global charge density
distribution on a conducting object, or for the total charge
density on a surface region of a conducting object. Using the

B 1 1 first-passage algorithm to estimate the charge density at a
o(z)= Ara2 E(l_ﬂz) ' (19) specific point, we need postprocessing. We must calculate
the derivative of the charge distribution at the point. This
after Taylor expansion, postprocessing is rapid for symmetric objects such as the flat
disk, but for objects of general shape, it is more problematic.
Therefore, to estimate the charge density at a specific point
o= 1 (20 not too close to the edges or corners of a conducting object,
¢ a2ma?’ the basic last-passage method is more suitable. For points
very close to edges or corners of a conducting object, the
and the first correction term will be edge distribution method will provide the most accurate es-
timates.
1
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