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Abstract

In our previous study, [8], we described two efficient methods of estimating the fluid per-
meability of a porous medium as a function of the medium’s porosity. These methods use the
statistics of Brownian particles diffusing near a sample of the medium. The Brownian trajecto-
ries are constructed by using the Green’s function first-passage method. These trajectories are
built up as a series of discrete jumps, each jump leaving the center of a first-passage domain and
landing at a point on its first-passage surface. Using transition probabilities that are sampled
from the Laplacian Green’s function for the geometry of the first-passage domain, each landing
position is determined. This is an exact sampling method that is an acceleration of the walk on
spheres method. The first of these two first-passage methods estimates permeability in terms
of the fluid-dynamic penetration depth, identifying the latter with a penetration property of
Brownian paths. The second method computes the effective electrostatic capacitance of the
sample and relates it, via angle-averaging theorems, to the translational hydrodynamic friction,
and then uses a mean-field approximation to equate the latter quantity to the permeability of
the porous medium. For the sampling of porous media, we exploited our “sharp-boundary”
sampling method. We improve on our previous permeability estimates using a refinement of the
sharp-boundary sampling algorithm. In our new algorithm, we decrease the number of jumps
required to simulate a complete Brownian path. This is accomplished by starting the paths
directly on the spherical sharp boundary of the porous medium sample. This is mathematically
equivalent to the old method, but both much faster and more numerically precise. In fact,
our new method is about three times faster, and the new method provides better permeability
estimates at low porosities. The new method produces trajectories with many fewer jumps on
average. Since the computational cost of these methods is roughly proportional to number of
jumps, this explains the speed up. Moreover, our improvements in precision and execution time
are most dramatic when simulating low porosity sample. With our previous method, the low
porosity case was the most demanding. In several of the cases studied here, our permeability
results are identical to those obtained from detailed deterministic solution of the Stokes equa-
tions, to within statistical error. Finally, the reduction in the average number of jumps reduces
the effective dimensionality of the problem. This opens the possibility of further acceleration
though the use of quasirandom numbers, [2].
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1 Introduction

If we have a porous medium with a pressure difference, AP, across a characteristic distance of L,
Darcy’s law states that the volumetric flux, F', of a fluid through this porous medium is proportional
to the pressure gradient. The constant of proportionality is the permeability, k:

AP
F=k—. (1)

Permeability has dimensions of area, and the permeability of a porous medium made up of a union
of impermeable objects is a function of the medium’s porosity. The porosity of a medium is the
volume fraction of void space in the medium. High porosity results in high permeability while low
porosity implies low permeability.

Many theoretical studies of porous media have attempted to estimate or bound fluid perme-
ability, given the medium’s average statistical properties, [19, 3, 13, 9, 1, 11], such as its porosity.
Ideas employed have included the A parameter, [9], and the mean survival time (inverse reaction
rate), [1, 14]. One can calculate the permeability of porous media by solving the Stokes equation
for each statistical sample of the medium, using a deterministic method, and then averaging the
results, [13]. This is computationally very expensive. Employing the lattice Boltzmann method to
the hydrodynamics speeds up these calculations; however, the discretization error imposed causes
inaccuracy in permeability, especially at low porosities, 3, 11].

One basic class of theoretical porous media models allows one to study either packed beds or
consolidated porous media such as sandstone. These models consist of ensembles of equal-sized
impermeable spherical inclusions immersed in a completely permeable medium. When used to
model a packed bed, these spheres are non-overlapping; when used to model a consolidated porous
medium, they are randomly located and freely overlapping.

The “first-passage” (FP) method, [5], which we use to simulate Brownian motion in the con-
tinuum, is a refinement of the “walk on spheres” (WOS) method for the efficient generation of
Brownian trajectories, [15, 18, 12]. The FP method constructs Brownian trajectories by using
FP probabilities obtained from various Green’s functions of the Laplace equation. The Green’s
functions used permit the exact sampling of FP probabilities in complicated geometries involving
the union of spheres and planes. The FP method is substantially more efficient than WOS for
diffusing particles very close to absorbing boundaries, [8], and this makes it ideal for the study of
low-porosity materials.

It was first conjectured that Brownian motion might be used to compute the fluid permeability in
general microstructures, [14], and in our previous study, [7, 8], we explored two efficient algorithms
of this type for estimating the permeability of several classes of porous media models. Both these
algorithms involved simulating average properties of paths traced out by diffusing particles that
initiate outside a spherical sample of the porous medium and are absorbed on contact with the
porous sample. In particular, we explored the unit capacitance (UC) method and the penetration
depth (PD) method.

The UC method uses Brownian paths to calculate an effective capacitance, C, for a porous
sample, [6]. This is the capacitance of a perfect conductor having its geometry identical to that
of the sample. This capacitance is related, via an angle-averaging relation, to the translational
hydrodynamic friction of the sample when viewed as an object moving through a viscous fluid, [6].
This latter quantity is related to the permeability of the sample by an analytic result, [4].

The latter, PD, method associates the hydrostatic “penetration depth” of the sample with a
specific average property of Brownian paths diffusing near its surface, namely, the average radial
distance, beyond the sample radius, that the diffusing particles have penetrated into the sample



at the time of absorption. The method then uses the standard relation between penetration depth
and permeability to estimate the latter, [17].

For providing a consistent method for sampling a porous medium of a given porosity, a new
sampling method, called the “sharp-boundary” method, was proposed and used with these two
methods, [7, 8].

In this paper, we improve the permeability estimation methods by dispensing with the need for
the launching sphere, where the diffusing particle normally initiates. Instead, we place the diffusing
particles directly on the sampling sphere. Removing the need for the launching sphere reduces the
average length of first-passage jumps and so improves efficiency. This, in effect, reduces the effective
dimension of the problem, making this method more amenable to convergence acceleration via the
use of quasirandom numbers. Also, these changes improve the accuracy of the UC method at low
porosities.

2 Overview of the PD and UC Methods

We now briefly explain the PD and UC methods that we employ to calculate permeabilities. More
detail on these methods can be found in our previous work, [8], and the curious reader is encouraged
to consult this paper.

In the UC method, the translational hydrodynamic friction, f, for a wide variety of bodies is
related to the corresponding electrostatic capacitance, C via an angle-averaging theorem, [6]:

f = 6mnC. 2)

Here 7 is the fluid viscosity, and the above states that the translational hydrodynamic friction felt
by a body moving relative to a viscous fluid is proportional to the electrostatic capacitance of the
body, when viewed as a perfect conductor.

Assuming that a given spherical porous sample is much larger than either the average distance
between spherical inclusions or the correlation length associated with their statistics, the media
can be modeled as a homogeneous porous sphere of radius R with the appropriate porosity. The
translational frictional coefficient is obtained by solving the linear Stokes equation for such a porous
sphere,[4, 17]. The result is:

3 _
f=67T7]RG0(0’){1+FG0(0)} 1, (3)
where the function Gy(o) is given by:

1
Go(o) =1 — —tanho. (4)
g

Here o is the dimensionless quantity defined by:

where R is the porous sample radius and k is the permeability.

For each porosity, there is a range of sample radii which are much larger than the average
distance between spherical inclusions, but for which the ratio C/R will be far enough from unity
to permit us to interpolate of the corresponding ¢ value using Eq. 3.

Eliminating the translational frictional coefficient between Egs. 2 and 3, one finds a relation
between the capacitance and the permeability to be:



% — Go(o){1 4+ ;’700(0)}—1. (6)

Obtaining C// R, the unit capacitance, via simulation, allows us to use Eq. 6 to obtain o, and thus
obtain the desired permeability estimate from Eq. 5. In addition, each estimate for C'/R is obtained
by sampling over an ensemble of different porous media constructed to have the same porosity.
Thus, in this way, we can rapidly compute an ensemble average with a Monte Carlo method that
can deal with geometries of the different elements of the ensemble much more effectively than any
deterministic method known.

C/R in the UC method varies rapidly as a function of R or 0. However, the composition of these
two relations for computing k contains a broad plateau region, i.e., a large range of sample radii
for which the predicted permeability is essentially constant, [8]. This property solves the problem
of surface artifacts, so that we can accurately determine a bulk property, such as permeability.

The PD method is defined as follows. If we solve the Stokes equation for flow near a homogeneous
planar porous interface it can be shown that v/k measures the“penetration depth”, i.e. the distance
that the flow effectively penetrates into the porous medium. We identify the penetration depth with
the difference, £, between the average radial position at which the diffusing particles are absorbed
and the actual sample radius, thus yielding the approximate relation:

k=42 (7)

We thus determine £ by direct simulation using the FP algorithm to produce the required Brownian
paths. It is important to note that the same Brownian paths may be used to obtain permeability
estimates via both the UC and PD methods. Thus, the same Brownian trajectory is used to obtain
both estimates simultaneously.

The porous media sample, which is a union of impermeable inclusion spheres of radius a, is
constructed as follows. We first place the centers of inclusion spheres into a large sphere of radius
(R+ a) by random sequential addition, [16], for a given porosity, which places overlapping spherical
inclusions sequentially and randomly until the desired porosity is reached. We then define the
boundary of the actual sample by drawing a sphere of radius R, and allowing this sphere to freely
intersect inclusions already placed. The sample is then defined to be all of the void phase, all
inclusions, and all fragments of inclusions, that are contained in this sample sphere of radius R.
With this sharp boundary, the porosity in the actual sample boundary is maintained uniformly up
to the boundary. We call this new sampling method the “sharp-boundary” method.

3 Comparison of The New and Old Algorithms

In this section, we introduce a new and simpler FP algorithm for the calculation of permeability,
and compare its efficiency with our old FP algorithm. With the previous FP method with “sharp-
boundary” sampling, a Brownian particle initiates on a “launching sphere” which encloses the
spherical porous media sample. We then use the WOS algorithm at the first stage to decide
whether the diffusing particle is absorbed in the sampling sphere within a §-thick layer around the
sample, called the § absorption layer, or whether the particle goes to infinity. However, since the
porous medium itself is encased in a spherical sharp boundary, it is computationally more efficient
to start our walks on the sample boundary. The reason is that we compute only the first-passage
probability of each walk, and the cumulative first hitting location of walks with simulated starting
locations at infinity. By starting our walks directly on the spherical sample boundary, we can
drastically reduce the number of steps in the Brownian paths and remove the error associated
with the J-absorption layer. Even though the error associated with the absorption layer is small,



it becomes more important at lower porosities. The reason is that the unit capacitance at low
porosities is very close to unity, and so often the value of the unit capacitance exceeds unity at
extreme low porosities due to statistical fluctuation. The errors associated with the absorption
points in the §-absorption layer affect the PL estimate, even more so at low porosities. In addition,
since the computational cost of each first-passage jump is roughly proportional to the number of
steps in the walk, we also speed up the computation as well.

As an example of the computational improvement provided by our new method, we compare
CPU times for porous media composed of overlapping spheres, and polydispersed overlapping
spheres. The results given in Table 1 show that our new algorithm achieves a consistent speed
up of about a factor of three over the old algorithm using identical convergence criteria. This table
shows that we reduce the average number of first-passage jumps by at least a factor of five, and
that we reduce the computational time at least by a factor of two. The reduction in the number
of first-passage jumps is much greater than the overall CPU time because in the new method each
step has a higher probability of striking the porous medium and therefore terminating. A first-
passage jump that strikes the medium is more costly as we must use complicated boundary Green’s
functions to choose the hitting location, [8].

Another effect of starting our walks directly on the sample sphere is that now there is a nontrivial
probability that the walk will terminate with its initial placement. Since we now choose a walker’s
starting location uniformly on the sample sphere, the probability of termination on the first step
will be equal to the fraction of the sample sphere’s area that intersects the media inclusions. This
fraction clearly goes to one as porosity decreases. Thus, one would expect that as porosity decreases
the average number of first-passage jumps would decrease, and hence the new method would not
only be more accurate but also more efficient at low porosities. Figure 1 plots the average number
of first-passage jumps as a function of porosity. This plot confirms our conjecture on the increasing
behavior of this average with increasing porosity. It is somewhat paradoxical that our new algorithm
gets more efficient for more difficult, low porosity, problems.

4 Computational Results

Finally, we present some computational results that confirm that our new method works at least
as well as our old method in accurately computing permeabilities of the samples of porous media.
The computational results for randomly overlapping monosized spherical inclusions are shown in
Figures 2 and 4. Our estimates using the new method agree well with the Stokes solution for all
porosities compared, [11]. It is noteworthy that we can use bigger sampling radius (R=>50) at low
porosities because we solved the problem that the unit capacitance exceeds unity at low porosities
due to statistical fluctuation. We reduced the error due to the §-absorption layer by removing the
layer on the sampling sphere.

We next apply our new versions of the UC and PD methods with sharp-boundary sampling
to permeability models of packed beds composed of polydispersed overlapping, randomly placed,
impenetrable spherical inclusions. The inclusion sphere radii are chosen at random from the values
1.5, 3.5, 5.5, and 7.5. We compare our results with the available deterministic numerical solutions of
the Stokes equation, [11]. Figures 3 and 5 show that our methods agree well with these non-Monte
Carlo methods.

Our methods give very good results for all models of porous media tested. New estimates are
better at low porosities in random media than the old method. The new method removes the error
due to the absorption layer on sampling sphere when we eliminate the launching sphere. It is very
unfortunate that so few high quality estimates exists even for the simple models studied here for us
to use for our comparisons. We note; however, that these porosity models have been standards for



theoretical study for decades. Our methods predict permeabilities for a large class of homogeneous
and isotropic porous media, in the medium and high porosity regimes from a porosity of 0.1 up to
0.9.

An important point to note about both the new and old FP methods is that they both are very
fast compared with other methods. Our computations were written in FORTRAN to be run on parallel
computers using MPI. Using 10 233MHz Pentium IT processor nodes, with one porous sample per
node, one million diffusing particles for each porous sample and porosity, and 10 porosities, it
takes about 2 to 3 hours per set of calculations to generate one published figure’s data. Using the
boundary-element or finite-element methods to solve the Stokes equation in a sample of porous
media can require the same amount of time to do this set of calculations for a single value of
porosity. However, while our Monte Carlo method becomes more efficient with decreasing porosity,
we believe that there is no such dependence in deterministic methods for this problem. In fairness,
it should be noted that if one uses one of the deterministic methods one can obtain other physical
quantities such as the local velocity and pressure field, yet if only permeability is required our
Monte Carlo methods are much more efficient.

5 Conclusions and Future Work

We have shown improvements in our new FP algorithms for computing permeabilities in both speed
and in permeability estimates at low porosities. These improvements make a very good method
even better. In fact, in some of the cases studied here, our results are statistically equivalent to
those obtained via the extremely time-consuming deterministic solution of the Stokes equations for
the permeability. And, because of the reduction in first-passage jumps, the new method reduces
the effective dimension of this problem. In the near future we plan to exploit this dimensional
reduction by using quasirandom numbers to generate the diffusion trajectories. We hope that this,
like other successful quasi-Monte Carlo methods, will accelerate the convergence of our method,
thus providing yet another significant efficiency improvement.

In related work, we have been using these FP algorithms and their variations to compute both
the effective conductivity and effective diffusivity of composite materials. In addition, we have been
expanding the types of problems and the types of geometries which we can solve exactly by related
methods by expanding the families of Green’s functions that we use to build up our Brownian
paths. We feel that these more powerful variants of the described methods will be powerful tools
in solving problems in a wide variety of application areas.
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Table 1: Running time and average # of FP jumps

CPU time (secs) | average # of FP jumps

0Old New Old | New
Overlapping 116.78 | 46.48 93 12

Polydispersed Overlapping | 158.98 | 77.54 119 | 20
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Figure 1: The average number of first-passage jumps versus porosity for randomly overlapping
spheres of radius a = 1.0. As porosity decreases, the average number of first-passage jumps de-
creases.
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Figure 2: The dimensionless permeability k/a? versus porosity for randomly overlapping spheres of
radius a = 1.0. The crosses are our old PD estimates with the sharp-boundary sampling method, the
circles are our new PD estimates with the sharp-boundary sampling method, and the left triangles
are the overlapping sphere bed data points from a finite-difference solution of the Stokes equation.
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Figure 3: Permeability k versus porosity for a matrix constituted by a polydispersed mixture of
randomly overlapping impermeable spheres with the sharp-boundary sampling method; the sphere
radii are chosen to have the four values a = {1.5,3.5,5.5,7.5} with equal probability. Here the
sample radius R = 50.0.
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Figure 4: The dimensionless permeability k/a? versus porosity for randomly overlapping spheres of
radius a = 1.0. The circles are our new UC estimates with the sharp-boundary sampling method,
the crosses are our old UC estimates with the sharp-boundary sampling method, and the left
triangles are the overlapping sphere bed data points from a finite-difference solution of the Stokes
equation.
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Figure 5: Permeability k versus porosity for a matrix constituted by a polydispersed mixture of
randomly overlapping impermeable spheres with the sharp-boundary sampling method; the sphere
radii are chosen to have the four values a = {1.5,3.5,5.5,7.5} with equal probability. Here the
sample radius R = 50.0.
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