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Abstract

Linear congruential generators (LCGs) remain the most popular method of pseudorandom
number generation on digital computers. Ease of implementation has favored implementing LCGs
with power-of-two moduli. However, prime modulus LCGs are superior in quality to power-of-two
modulus LCGs, and the use of a Mersenne prime minimizes the computational cost of generation.
When implemented for parallel computation, quality becomes an even more compelling issue. We
use a full-period exponential sum as the measure of stream independence and present a method for
producing provably independent streams of LCGs in parallel by utilizing an explicit parameteriza-
tion of all of the primitive elements modulo a given prime. The minimization of this measure of
independence further motivates an algorithm required in the explicit parameterization. We
describe and analyze this algorithm and describe its use in a parallel LCG package. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Perhaps the oldest generator still in use for the generation of uniformly distributed
integers is the linear congruential generator (LCG). This generator is sometimes called
the ‘Lehmer’ generator, in honor of its originator, D.H. Lehmer, the father of electronic
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computational number theory [1]. The LCG is based on the following modular integer
recursion for producing pseudorandom integers:

x,=ax,_,+b  (mod m) (1)

n

Eq. (1) defines a sequence of integers modulo m starting with x,, the initial seed. The
constants of the recursion are referred to as the modulus m, multiplier a, and additive
constant b.

Since LCGs are so commonly used as serial pseudorandom generators, we feel that a
useful method for the implementation of LCGs on parallel machines is required. There
has been some work on the splitting of full-period LCG sequences into shorter
subsequences for use in parallel [2,3]. This paper takes an altogether different approach
to parallelizing LCGs. We seek a parameterization of complete and distinct full-period
LCG sequences so that each new parallel process can use an entirely distinct full-period
sequence. To our knowledge this has been examined by only one group [4], where the
parameterization of power-of-two modulus LCGs was studied by varying the additive
constant, b, in the recursion (1). In this paper, we will study the consequences of
parameterizing full-period LCG sequences when the modulus, m, is prime.

The plan of the paper is as follows. In Section 2 we will review some well-known
results from the theory of LCGs. The motivation for this is to set up the mathematics of
LCGs and convince the reader that prime modulus LCGs offer some compelling
advantages over power-of-two modulus LCGs. In Section 3 we decide upon the use of
the multiplier as the means of parameterizing prime modulus LCGs. We then describe
an explicit enumeration of all of the distinct full-period cycles for a prime modulus LCG
based on this parameterization. In Section 4 we present a result from number theory that
gives a qualitative measure of the full-period correlation of different sequences parame-
terized in this way. This result, based on the Riemann hypothesis over finite fields, also
provides a heuristic for choosing the parameters. In Section 5 we study an algorithm that
implements this heuristic based on computing the kth integer relatively prime to a given,
factored, integer. In Section 6 we briefly describe a mapping of parallel processes onto a
binary tree to provide a very versatile parallelization. In addition, we describe the state
of a package we have written that implements these ideas for parallel LCGs. Finally, in
Section 7 we give our conclusions and comment on directions for future work.

2. Linear congruential generators

Eq. (1) yields a perfectly periodic sequence with period defined by the seed and m, a,
and b. We refer to the period of the sequence {x,} as Per(x,). When m is prime,
Per(x,) =m— 1 is the longest period achievable, occurring when a is a primitive
element modulo m [5]. %> With a primitive modulo m, any choice for b gives

! We say that @ is a primitive element modulo m if the powers of a modulo m take on the value of every
positive residue modulo m. More exactly, with m prime, the residue a is primitive if and only if the set
A={xlx=a (mod m), 1<i<m—-1}=Z/(m)Z".
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Per{ x,,) = m — 1. For this reason it is customary to choose b = 0, since the set of m — 1
elements in the full-period of Eq. (1) will contain all the residues in Z /(m)Z except the
x that satisfies the equation x = ax + b (mod m).

When m =2* the question of longest possible period falls into two cases. With
b =0, the largest value of Per(x,) is 272 when either @ =3 or 5 (mod 8) [5]. When
b # 0 the largest value of Per(x,) is 2*. This occurs when b is odd and a = 1 (mod 4)
[5]. Thus we see that the period size of LCGs modulo a power-of-two can be as large as
the number of residues modulo 2% and hence, is comparable to the period of LCGs
modulo a prime. A major shortcoming of LCGs modulo a power-of-two compared with
prime modulus LCGs derives from the following theorem for LCGs [5].

Theorem 2.1. Define the following LCG sequence: x,=ax,_;+b (mod m,). If m,
divides m, then y, = x, (mod m,) satisfies y, = ay,_ ; + b (mod m,).’

To understand the consequences of Theorem 2.1 consider a maximal period LCG
with Per(x,) =m =m, =2F and let m, =2/, 0 <j <k. Forming y, =x, (mod m,) is
just taking the j least-significant bits of the LCG. Theorem 2.1 then implies that the j
least-significant bits of any power-of-two modulus LCG with Per(x,) = 2* has Per(y,)
=2/, 0 <j<k. In this case the least-significant-bit of the LCG has period 2, the two
least-significant-bits have period 4 and so on. Since a long period is often thought of as
a partial remedy for determinism in pseudorandom number generators, when these types
of LCGs are employed in a manner that makes use of only a few least-significant-bits
their quality may be seriously compromised. When s is prime no such problems arise.

The costliest computational task when iterating Eq. (1) is the modular arithmetic.
Modular addition is comparable in cost to integer addition; however, modular multiplica-
tion can be much more expensive than plain integer multiplication. When the modulus is
a power-of-two, i.e., m = 2% with k> 0, the cost of modular and regular multiplication
is comparable. In fact, if k-bit integer multiplication hardware is used, the costs are
identical. We have seen that there are theoretical reasons why using a prime number for
m is optimal. Because of this state of affairs the only moduli that have been used in
practical implementations are m = 2% or m a Mersenne prime, i.e., a prime of the form
27 —1.* With a Mersenne prime, modular multiplication can be implemented by
performing the full integer multiplication with only the inclusion of bitwise shifting and
integer addition required to accomplish the modular reduction (S. Amo, K. Iobst, 1991,
personal communication). The reader will be convinced by considering the relationship
between modular reduction modulo 27 and 2”7 — 1. Thus, in the sequel we will focus on
Mersenne prime modulus LCGs to minimize the cost of modular multiplication for an
efficient implementation.

? Theorem 2.1 actually holds for all linear modular recursions.

*1t is true that Fermat primes, primes of the form 22" 41, have similarly efficient modular multiplication
routines. However, there are substantially fewer Fermat primes than Mersenne primes. Because of this fact, we
only consider Mersenne primes in this paper.
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3. Parameterization via the multiplier

There are many ways to parallelize recursions used in serial pseudorandom number
generators. One method is to split the full-period sequence into subsequences that are
then used on individual parallel processors [3]. Recently, certain pseudorandom number
generators have been parallelized using different seeds to select different full-period
cycles [6,7). This is a form of parameterization of the full-period cycle. Another form of
parameterization has been used on LCGs with power-of-two moduli [4]. Here a different
additive constant was used to produce different LCG sequences. We feel that this
parameterization is an intriguing approach that has yet to be applied to prime modulus
LCGs.

To parameterize a prime modulus LCG one can vary either the modulus, the
multiplier or the additive constant. We feel that it is unacceptable to vary the modulus.
The number theoretic properties of this modulus are used to optimize the modular
multiplication. Thus, using a different modulus on different parallel processes will lead
to pseudorandom number generation codes with very different execution times per
pseudorandom number. Another compelling reason to avoid considering modular param-
eterization is that the theoretical measure of interprocessor correlation we use later in
this paper is analytically intractable with different moduli.

Having eliminated the modulus from consideration we have the choice of parameter-
izing the additive constant or the multiplier. We have chosen to parameterize the
multiplier for a variety of reasons. One of the most compelling is as follows. Let
x,=ax, ;+b, (mod m)and y,=ay,_ +b, (mod m). Equivalently we can write
x,=a"x,+b([a" - 1]/[a—1]) (mod m) and y, =a" Yo+ b ([a —1]1/[a - 1D (mod
m) provided that gcd(a — 1, b,) = ged(a — 1, b,)= 1. Some algebra gives:

a" —1

a—1

X, =Y, =a"(x, = y,) + (b". - b,v)

b,—b,1 b,—b,

=a"|(xg—y,) + ———| + = : 2
@' (xa =) a—1 a—1 (2)

Since x, and y, are arbitrary positive integers modulo m, it is fair to explore all
possible starting values for y, with x, given. Obviously if we choose x, =y, + (b, -
b,)/(a— 1) then this gives x,~y, =(b,—b,)/(a— 1), a constant. Thus, given any
pair of prime modulus LCGs w1th the same multiplier, there is a set of initial conditions
that makes their difference a constant! Obviously, this leads to pseudorandom numbers
that are extremely correlated.

A further consideration in favor of parameterizing the multiplier over the additive
constant is that when parameterizing the multiplier we may choose all the additive
constants to be zero. This further speeds the implementation, as only one modular
multiplication and no modular addition is required per pseudorandom number.

Our desire is to determine an effective parameterization of the full-period prime
modulus LCG sequences. Since we are only parameterizing the multiplier, as mentioned
above, we can set b = 0. Recall that the conditions for an LCG of the form x, =ax,_,
(mod m) to have the maximal period is that x, # 0 and that @ must be primitive modulo
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m. Thus, if we can parameterize all of the primitive elements modulo m, we will also
have parameterization of all of the full-period LCG sequences modulo m. A useful
theorem in this regard is:

Theorem 3.1. If a and « are primitive elements modulo the prime, m, then o= a'
(mod m), where gcdlm—1,1) =1,

This gives us a parameterization as follows. Let ., (k) denote the kth number
relatively prime to m — 1. This notation will be justified later. Then we can define the
kth primitive element as a, = a"»-“ (mod m), where a, =a' =a is known to be
primitive modulo m. This observation reduces the parameterization to an explicit
computation of 7! (k), the kth number relatively prime to m — 1. In cases where
m — 1 has an explicit factorization, i.e., when m = 22" + 1 is Fermat or when m = 2g+1
with g prime is Sophie~Germain, one can write down 7, !, (k) explicitly. Since we are
interested in Mersenne moduli, we have no such luxury and must consider the general
case. We will do this in great detail after we first consider the calculation of a theoretical
measure of interprocessor correlation that also further motivates the need to compute
L, (k).

4. Exponential sum cross-correlations

A very common theoretical measure of the quality of a serial pseudorandom number
generator is a metrical quantity known as the discrepancy [8—11]. The discrepancy of a
sequence measures its equidistribution quantitatively by computing the maximal devia-
tion of the given sequence from the uniform distribution. This equidistribution test is
commonly called the serial test, and can be done in any dimension and with either the
full-period sequence or only a partial-period subsequence. When the pseudorandom
number sequence comes from a recursion, one can often bound the discrepancy in
question above and below with exponential sums.

Exponential sums are of interest in many areas of number theory. We define the
exponential sum for the sequence of residues modulo m, {x,,}";gl, as:

n

k—1 2ari

C(k) = gOeT"" 3)

If the x, are periodic and k = Per(x,), then Eq. (3) is called a full-period exponential
sum. If x, is periodic and k < Per(x,), then Eq. (3) is a partial-period exponential sum.
Examining Eq. (3) shows it to be a sum of k quantities on the unit circle. A trivial upper
bound is thus |C(k)| < k. If the sequence {x,} is indeed uniformly distributed, then we
would expect |C(k)| = O (yk) [8]. Thus, the desire is to show that exponential sums of
interest are neither too big nor too small to reassure us that the sequence in question is
theoretically equidistributed.

Since we are interested in studying sequences for use in parallel, we must consider
the cross-correlations among the sequences to be used on different processors. If {x}



928 M. Mascagni / Parallel Computing 24 (1998) 923-936

and {y,} are two sequences of interest then their exponential sum cross-correlation is
given by:

-
k—1 27
(X = V)

C(ij.k) = ge " . (4)

Here the sum has k terms and we start with x, and y,.

In a previous work we only considered full-period exponential sum cross-correlation
for studying these issues for a different recursion [7]. We will take the same approach
here. Thus, we are interested in studying full-period exponential sum cross-correlations
when x,=ax, , (mod m) and y,=ay,, (mod m) with a=a' (mod m),
gcd(p(m),a — 1) = 1. Since there is no additive constant, both {x,} and {y,} omit only
zero in their full period, so there is a positive residue modulo m, z, and an index » such
that x, =y, = z. Without loss of generality, let x, =y, =2z so x, =a"z (mod m) and
y, = a"'z (mod m). This allows us to rewrite the difference in the summand of Eq. (4) as
fla™) =z(a" — (a")") with f(x) =z(x — x'). Thus, we can rewrite Eq. (4) as:

Per(x,)—1 2mi o Per(x,)—1 27 R
C(-Per(x,))= ) e™ e e o (5)
n=1_0 n=0
We are permitted to replace f(a") by f(n) in the full-period sum since the values of a”
run over the same range as n with a primitive modulo m.

Exponential sums that range over all the values of polynomials modulo m were
studied by André Weil, and their bounds constitute some of the consequences of the
Riemann Hypothesis over finite fields. In particular, sums of the form (3) are known to
satisfy

(- Per(x,))| < (1= 1)Vm = O(Vm), (6)
[12]. Suppose we have j full-period LCGs defined by x, = a"x,('H (mod m), O <i<j.
All of the pairwise full-period exponential sum cross-correlations will satisfy

IC(- Per(x,))l < ([mfxlk] - 1)1/2. (7)

This inequality is minimized if {, = m, !, (k) and further motivates the need for an

I

efficient algorithm to compute this function.

5. Computing =, !, (k)

We are interested in computing the kth number relatively prime to a given number.
We have chosen this notation to be similar to that of the number theoretic function
7(x), the number of primes less than or equal to x. The inverse of 7(x) gives us the
kth prime since if 7(x) =k then 7' (k) =x. Similarly, we count the number of
integers less than or equal to x relatively prime to m — 1 with the function m,,_, (x),
and so if o, (x) =k then x= ;! (k) is the kth number relatively prime to m — 1.
In the subsequent discussion on computing ', (k) we take advantage of the previous
algorithmic work for computing 7r( x) for large values of x [13,14].

In our application, computing the kth primitive element modulo the prime m, we
need to compute the kth number relatively prime to ¢(m)=m — 1, when m is prime.
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We will assume that for the particular prime, m, m — 1 has a known factorization. For
example, if m is Mersenne, i.e., m =27 — 1, then m — 1 =227 ' — 1). It is well-known
that p must be prime when m =27 — 1 is prime, and so we can assume that p is odd. If
not, p =2, and in that case m = 3, which is an unsuitably small modulus. Thus, with p
odd we may write 277! — 1 = (27712 4 1)2(P~1/2 — 1), Using a notation consistent
with the factorization tables of the Cunningham Project we write (2(771/2+
DRPH2_1D=Q+N(p—1)/2]x @2 - N(p—1)/2]. Complete factorizations of
the integers (2 + (p — 1) /2] and (2 — )( p — 1) /2] can then be found in the Cunning-
ham Project Tables for all values of p that are reasonable for implementation [15].

Before we begin describing our algorithm let us fix some notation. First let us denote
B = { prime p, such that pl(m — 1)} as the set of all prime factors of m — 1. Also we
have b =|B| defined as the number of distinct prime factors of m — 1. In addition we
write the prime factors of m — 1 as p, <p, < -+ <p,. We compute 7, ', (k) by an
iterative search, progressing to a linear search once a certain threshold is reached. Our
algorithm begins with a very educated guess, x*, for a starting value for x = o, !, (k).
We then compute 7, _, (x*)=k*. We then iteratively refine this guess. In the sequel
we will refer to x~ as the current guess for x and k£ as the current guess for k.

5.1. Starting value

Assuming that numbers relatively prime to m — 1 are uniformly distributed, we
expect that 7! (k) = (k(m — 1)) /($(m — 1)). Thus we initialize with the guess:

. k(m—1)
T em—1) ®

Although this value is inexact, it is an excellent first approximation to the correct result.

X *

5.2. Computing w, _ (x")

We next compute 77, (x*), the number of integers less than or equal to x~ and
relatively prime to m — 1, by the method of inclusion/exclusion. There are x ™ integers
less than or equal to x*, and [x*/p;] of them are multiples of p; Thus, we can
approximate 7, (x*) by subtracting these integers from x*. However, we have
overcompensated since we have subtracted off the contributions from integers that are
multiples of more than one of the primes more than necessary. We correct that by
adding back [x* /(p, p;)]. Again we must correct by adding back the contributions of
three prime factors at a time, and so on. Formally, we compute the desired quantity via
the finite sum:

b
Trm—l(x*)=x*+ Z

n=1

x*
D

=Y =

DeD

(-)' L =

DeD,

)

Here D), is the set of all products of n distinct prime factors of m — 1 that appear as the
denominators in the above formula. This is a sum of 2° terms. For computational
reasons it is convenient to also write Eq. (9) as a single sum by introducing the set of all
signed denominators . Note that 1 € D corresponds to the first term in the first sum in
Eq. (9) and the 2° = |D| elements of D are distinct from unique factorization.
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5.3. Computing D

We can compute the set [ via a simple recursive algorithm. Since generally we will
be computing 7, () for several values of the argument it is expeditious to amortize
the cost of computing I over all these evaluations. Thus, we assume that we have an
upper bound on the largest value of m,_ ,(-) to be computed. Call that bound G. The
recursive algorithm proceeds as follows. If there are no prime factors of m — 1, then
clearly ,_,(x*)=x"* and D = {1}. Otherwise, we remove the smallest prime factor of
m—1, call it p, and recursively evaluate D for (m — 1)/p. Call this new set D?.
Obviously D = D” U —p X D?. We can use G in this recursive definition as follows.
Since we compute the elements of I} in increasing absolute value, we may terminate any
recursive step when the next computed absolute value exceeds G. This guarantees the
absolute minimum memory is utilized.

5.4. Iterative search

Since m(-) is an increasing, integer-valued function, we may evaluate m,! () by
using our current guess, x*, as follows. First evaluate k* = #,,_ (x") as described in
step III. If the result is close enough to k, then progress with a linear search (see Section
5.5). Otherwise, update the guess with:

xt=x"4cm, (x) (10)
Here ¢ = ;! (1) can be pre-computed and is exactly equal to the smallest prime not in
B. This iterative search is rather slow because of repeated evaluation of =,_ (-). To
accelerate this procedure we try to minimize these expensive function evaluations by
setting a rather high threshold for progressing to the linear search, i.e., 50,000. In other
words if [k — k™| > 50,000 we iterate, otherwise we proceed to step 5.5, linear search.
This ensures that a,,_ (-) is rarely evaluated more than two or three times in practice.
This fortuitous behavior is due in large part to the accuracy of the initial guess.

5.5. Linear search

A linear search can be implemented quickly and effectively by divisibility testing.
Starting with x* and k”, we add or subtract one from x* (depending on whether k*
larger or smaller than k) and then test the new x* for divisibility by the prime factors of
m— 1. If it is divisible by one or more, continue the search. If not, increment or
decrement k* and decide whether to continue. The search stops when k* =k and
m,_ (x* — 1) < k. While it is convenient to check divisibility of x* with each factor, it
is conceptually nicer to compute gcd(x*, m — 1). While theoretically less costly than
trial division, we found little difference in our implementation, and so we have
continued to use trial division.

5.5.1. Optimizations

The denominators, D, can consume large amounts of memory when m — 1 has many
large factors. In order to reduce the memory requirements of this algorithm, we apply
the recursive formula:

Wm— l(‘x) = 7T(m---— l)/p(x) - W(nt—l)/p( x/p)
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This allows us to reduce the number of denominators stored. We remove the smallest

primes first, for the most efficient memory reduction when computing with the upper
bound, G.

6. Parallelization and implementation

In Section 5 we described an algorithm for computing ! (k). Given this capability
we have a parameterization of the full — period LCG sequences modulo m by associat-
ing the Ith parallel process with the LCG x, = a,x,_, (mod m). Here a, = a*' (mod m)
with k, = 7,! (!) and a is primitive modulo m. With m prime, there are at most
¢(m — 1) distinct primitive elements that can serve as multipliers, so this method
provides at most this number of full-period LCGs. Given m — 1 and its factorization one
can compute ¢(m — 1) explicitly [16]. However, it is more generally known that
¢(m~ 1) = m/log, log, (m). We have implemented this algorithm as part of a parallel
linear congruential generation package in a portable manner using the GNU project’s
multiprecision package gmp. We have taken special care to optimize this code to take
advantage of the division free modular reduction for Mersenne primes.

In our research on parallel pseudorandom number generation, we have set four
criteria which we require of any parallel pseudorandom number generator as our point of
departure for investigations. These four criteria are:

(i) The generator must be able to provide a totally reproducible stream of parallel
pseudorandom numbers. (This reproducibility must hold independent of the number
of processors used in the computation and of the loading produced by sharing of
the parallel computer.)

(ii) The generator must allow for the creation of unique pseudorandom number streams
on a parallel machine without any interprocessor communication.

(ii)) The generator must be portable between serial and parallel platforms and available
on the most commonly used workstations and supercomputers.

(iv) The generator must provide ‘high quality’ pseudorandom numbers in a computa-
tionally inexpensive and scalable manner.

The difficulty of this problem can be seen by considering the example of Monte
Carlo applied to a problem in neutronics [17]. Here, independent neutron paths are
generated based on the outcome of many events whose probabilities are understood.
Statistics are collected along the paths, and computation produces estimates for quanti-
ties of interest that have a standard error that decreases as N~'/%. (Here N is the
number of ‘independent neutron paths.”) The computational catch is that during flight a
neutron may collide with a heavy nucleus, thereby producing new neutrons. These new
neutrons, along with their initial conditions, are put into a computational queue for later
processing. An efficient parallel implementation demands this queue be distributed. This
complicates criterion (i) by implying that each neutron in the queue must also have
information so that a unique and deterministic stream of pseudorandom numbers will be
used regardless of which processors it eventually executes on. In addition, we wish the
pseudorandom number streams that are allocated for one neutron to be distinct from
those used for another neutron. Criterion (ii), which forbids interprocessor communica-
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tion in the course of assigning unique pseudorandom number streams, requires that the
generator be flexible enough to assign distinct streams independent of the streams
assigned elsewhere in the computation on any processor. Thus, criteria (i) and (ii) and
the demands of neutronics lead to very substantial and specific demands on any
generator we would consider acceptable.

Criterion (iii) along with (i) imply that one can use a generator with these properties
to obtain identical streams of pseudorandom numbers on different serial and parallel
machines, including networks of workstations. This is essential to check codes ported to
new platforms and to check the consistency of calculations when a hardware error may
have been detected during a long run. Finally, criterion (iv) asks that the pseudorandom
numbers be effective at the desired variance reduction, which is, of course, the point of
large Monte Carlo calculations.

When one has a parameterization of the full-period cycles of a pseudorandom number
generator that satisfies criterion (iv), there is a canonical technique for achieving the
other criteria. The Weil bound, Eq. (6), shows that this parameterization of LCGs
satisfies criterion (iv), so what remains is a description of the canonical technique. In a
previous article [7], the author describes a canonical technique for mapping a large
number of parameterized parallel pseudorandom number generators onto a binary tree to
permit an efficient, portable, and reproducible MIMD implementation. The point of
using a binary tree to map the parallel processes is that one defines an entire subtree
with each assignment and ensures that processes elsewhere in the computation cannot
accidentally assign the same process. In addition, the computation of what node and
subtree follow can be done with only local information.

More details of this enumeration can be found in Ref. [7). However, many of these
details can be understood by working through a small example. In Fig. 1 we show the
canonical enumeration of nodes with integers designating nodes on the binary tree. We
will refer to the parameterized generators by these same indices. A simple data structure
is required to manage the algorithm. This date structure contains both the node of the
binary tree corresponding to the processor as well as the node where the first child
process is to be assigned. We denote this as the tuple (n, ¢(n)) where generator n is
pointing to ¢(n) as the location of its first child. Suppose it is determined that the
process pointing to generator g needs to spawn r new processes, each with its own
generator. Each new generator must be different from the other new ones and different
from any that some other existing generator may spawn. The new tree nodes assigned in
this operation are:

q.292q+14g4q+149+2,....q,..

until » new tree nodes have been determined. The index g, is the rth index in this
sequence. In words, we are spawning generators on the nodes of the numerically
smallest r-node subtree below, and including, node ¢. Having been assigned node
numbers on the tree, the r new generators are initialized by assigning each new node
with a primitive element in our enumeration. Finally, the child pointer, c(-), for the
original generator and each of the new generators is replaced by successive doublings,
until the new values are greater than g¢,,,; in this way any new child generators
spawned will be different from all previously created generators.
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0

2k 2k+1

4k 4k+1 4k+2  4k+3

Fig. 1. Enumeration of a binary tree.

A small example will help to illustrate the spawning process just described. Suppose
that five generators are needed at the start of a job. These would be placed at nodes 0, 1,
2, 3, and 4 of the tree. Their child pointers are initially set as:

c(0)=8,¢(1) =6, c(2)=5,c(3) =7, c(4)=9.

Now assume that, sometime later, generator 0 spawns 4 more children and that generator
3 spawns 6 more. The new children spawned by generator 0 will have tree node
numbers 8, 16, 17, and 32, and we would have

c(8) =34, ¢(16) =33, ¢(17) =35, ¢(32) = 65.

In addition, the value ¢(0) would be updated to 64. The new children spawned by
generator 3 will have tree node numbers 7, 14, 15, 28, 29, and 30, with child pointer
values

c(7) = 60, ¢(14) =58, c(15) =31, ¢(28) =57, ¢(29) =59, ¢(30) =61.

The value of ¢(3) would then be updated to 56.

In Ref. [7] we implemented a library for parallel pseudorandom number generation
based on a parameterization of additive lagged-Fibonacci recursions. There, the parame-
terization was achieved through the seed, and the parallelization was accomplished via
the same mapping of the parallel pseudorandom number generators onto the binary tree.
It is our desire to model the software design for the new parallel LCG pseudorandom
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number generation package on this other parallel additive lagged-Fibonacci package. We
have, in fact, implemented the same library routines for our LCG package with the
algorithms discussed in this paper using the subroutine definitions given in Ref. [7]. ° At
present the various Mersenne moduli we have specifically implemented are m = 27 — 1
for p = 31, 61, 127, 521, and 607.

7. Conclusions and future directions

In this paper we have described our approach to parallelizing Mersenne prime
modulus LCGs via the parameterization of the multiplier. We have presented an efficient
algorithm for the computation of the kth number relatively prime to a given, factored
integer and have discussed the use of this algorithm in an implementation of a package
for parallel LCGs. This package is designed using the same mapping onto the binary tree
as a previous package for parallel pseudorandom number generation based on additive
lagged-Fibonacci sequences.

The reader might be tempted to ask why two such similar packages for parallel
pseudorandom number generation are needed by the Monte Carlo community. The
scientific answer is that with more than one type of generator one can perform the same
parallel calculation with each generator and compare the results statistically. If the mean
and variance of both computations are similar, then one can be reassured that this
particular computation is insensitive to the type of pseudorandom numbers used. It is
often the case that subtle correlations in pseudorandom number generators can cause
sensitive calculations to fail. More than one generator is essential to empirically rule out
this problem in totally new calculations. Another reason why a parallel LCG package is
desirable is less scientific than sociological. Many computational scientists that perform
Monte Carlo computations have a distinct preference for their own pseudorandom
number generator. This ‘native’ generator is often an LCG. Thus it is important to offer
a parallel LCG to accommodate these preferences.

Another question that the reader may ask is why we have chosen to implement such a
wide range of moduli, up to 2%7—1! The period of such an LCG is 2572, which seems
enormous, even for the fastest and most massively parallel system. Recall that not only
is the period of the LCG a function of the modulus, but so is the total number of
full-period LCGs. The period of a full-period LCG with prime modulus m is O(m),
while the total number of full-period LCGs is O(m/log, log, (m)). Since many
branching Monte Carlo computations require many available generators when using the
binary tree mapping, we require large moduli in these situations to give us deep binary
trees. One drawback of this fact is that we are forced to consider large moduli for
reasons other than the total number pseudorandom numbers needed in a particular
computation. This is a clear weakness for parallel LCGs since the computational cost per

* The subroutines in the LCG library are identical to that in the lagged-Fibonacci sequence except that
different data structures are needed in each case. Because of this identity, we refer the reader to the appendix
of Ref. [7] for a description of the library. These packages are both part of the SPRNG package available at
www.ncsa.edu/Apps /SPRNG.
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pseudorandom number of O(log, (m)) binary operations means that this cost scales up
with more processes.

With moduli on the order of hundreds of bits, it is reasonable to ask if the reduced
cost of modular multiplication obtained when using a Mersenne prime is balanced by the
increased cost required in computing ! (k) during initialization. Obviously if the
number of pseudorandom numbers required per process is large, this is an acceptable
trade-off of a stiff initialization cost for a reduced cost per pseudorandom number.
However, in highly branched Monte Carlo computations one often uses only a few
hundred to a few thousand pseudorandom numbers before branching. Thus one should
consider other schemes that have a different balance between the cost per pseudorandom
number and the initialization cost. Two possible approaches that are possible future
research topics are to consider using Sophie—Germain primes instead of Mersenne
primes as moduli and to consider splitting the sequences several times before computing
a new multiplier.

Recall that a Sophie~Germain prime is a prime of the form m =2g + 1, where g
itself is prime. In this case m — 1 = 24, so the integers modulo m — 1 that are relatively
prime to m — 1 are all the odds except g. In this very special case we get an explicit
enumeration of the primitive elements modulo m. The price we must pay for this
explicit enumeration is having to use standard modular multiplication. In practice, when
the m approaches a few hundred bits in size, the cost of the shift and add modular
reduction for a Mersenne prime is comparable to standard modular reduction. Thus, it
makes sense to consider using Sophie—Germain primes when large moduli are needed.

The second possible improvement is to increase the number of parallel processes
available by using several subsequences from each full period cycle. This improvement
would allow the same number of parallel processes to be fumished with a smaller
modulus, and thus it would also speed up the cost of computing individual LCG
pseudorandom numbers. One drawback to this approach is that very little research into
the quality consequences of splitting full-period cycles for parallel pseudorandom
generation has been done [18,19,3,20]. Much less research has been done into these
results when both splitting and parameterization are used together.
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