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A GRADIENT RANDOM WALK METHOD FOR TWO-DIMENSIONAL
REACTION-DIFFUSION EQUATIONS*

ARTHUR SHERMANT anp MICHAEL MASCAGNIt!

Abstract. An extension to two space dimensions of the gradient random walk algorithm for reaction-diffusion
equations is presented. This family of algorithms is related closely to the random vortex method of computational
fluid dynamics. Although the computational cost is high. the method has the desirable features of being grid free
and of automatically adapting to the solution by concentrating elements where the gradient is large. In addition. the
method can be extended easily to more than two space dimensions. A key feature of the method is discretization
in terms of the dependent, rather than independent.. variable, giving it features in common with Lagrangian particle
methods. The method is derived here and its application to some simple reaction-diffusion wave propagation problems
is illustrated.
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1. Introduction. We are interested in numerical methods for solving reaction-diffusion
equations:

(1.1) u = Au+ f(u),

u=uxt), x € R
We will focus mostly on the initial-value problem,
u(x, 0) = up(x),

in two space dimensions. Our goal is a method that will work well on problems that are
difficult for finite-difference methods, such as cases where the solution has sharp gradients.
For this reason, we consider a particle method in which computational elements representing
the gradient of the solution move by diffusion and are modeled by random walks. The method
is grid free and automatically adapts to the solution. We derive the method as the natural
extension of a one-dimensional (1-D) Monte Carlo method [27]. Here we report preliminary
computational studies on some simple model problems in order to outline the main features
of the method and gain computational experience to guide future work.

An early time-dependent Monte Carlo method was proposed for the heat equation and was
based on a stochastic interpretation of the explicit finite-difference equations [8]. This method
used random walks on spatial grids, but the extension to grid-free walks was easy because
the fundamental solution of the heat equation is Gaussian. These ideas remained mostly
of theoretical interest due to the large variance of the methods. A step toward improving
the accuracy was to have the density of diffusing elements represent the gradient of the
solution, rather than the solution itself. Integrating to obtain the solution reduces the variance
considerably. This lead to the coining of the term “gradient random walk” (GRW) [11].

The first of the GRW methods was Chorin’s random vortex method (RVM) for incom-
pressible two-dimensional (2-D) fluid flow [5]. Subsequently, Chorin proposed the “random
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element method” [7] for 1-D reaction-diffusion equations, which models diffusion via random
walk and reaction via deterministic particle growth and decay. This method was studied fur-
ther by Ghoniem and colleagues [21], [11], both in its own right and as a model for the vortex
sheet algorithm [6]. Hald [14], [15] proved convergence for several simplified versions of the
Chorin—-Ghoniem algorithm, and Puckett [22] proved convergence of the full method for the
Fisher/Kolmogorov—Petrovskii-Piskunov equation. Whereas Puckett’s estimate of the error
due to the Monte Carlo particle-based discretization was O(N~!/4), where N is the number of
particles, he presented numerical evidence that the error is actually O(N~!/2). Sherman and
Peskin [27] developed a variant of the Chorin—Ghoniem method, which was purely stochastic,
and applied it to a simplification of the Hodgkin—Huxley nerve conduction equations [28].
Chauvin and Rouault [4] have proved the convergence of this variant.

The extension of the GRW method to higher dimensions began when Anderson [1 ] showed
how to recover a scalar field in two dimensions from a 8-function representation of its gradient
in a pure convection problem. Anderson’s method relied on representing the solution as the
Laplacian of the solution convolved with the Green function. Integration by parts gave an algo-
rithm for the recovery of the solution at discrete points from this poini-gradient representation.
Sherman and Peskin [28] sketched how to apply Anderson’s approach to reaction-diffusion
equations. Fogelson [10] used ideas similar to Anderson’s on a convection-diffusion problem,
but instead of point recovery he used a fast Poisson solver to recover the function values.

In related work, Russo [24]-[26], Raviart [23], and others [16], [9] proposed particle
methods for collisional equations. Their methods are deterministic, but share the Lagrangian
feature of the GRW discretization.

Although the problem of large variance for the Monte Carlo method has not yet been
solved, and these methods have not displaced finite-difference methods, they have stimulated
much theoretical work.

A major motivation for studying Monte Carlo methods in this context is the deep con-
nection between reaction-diffusion equations and stochastic processes. It is well known that
certain functionals of Brownian motion have expected values that solve reaction-diffusion
equations [18]. Moreover, the microscopic phenomenology of the chemical processes de-
scribed by reaction-diffusion equations are based on the Brownian motion of the reacting
species. Thus, it is intellectually appealing to search for numerical methods that share fea-
tures in common with these fundamental viewpoints.

In addition to the connection between probability theory and partial differential equa-
tions (PDEs), the possibility of grid-free methods, especially for multidimensional problems,
remains alluring. In this spirit we present the extension of the GRW algorithm for reaction-
diffusion equations to two (or more) space dimensions and describe some of its computational
properties.

In §2 we briefly review the 1-D GRW methods and derive their extension to two dimen-
sions. In §3 we apply the method to track a traveling wavefront generated by Nagumo’s
equation without recovery. We illustrate two initial-value problems in the plane and an initial-
boundary-value problem in a half-space. In §4 we summarize the results and discuss open
problems and possible directions for future work.

2. Derivation. We first review the GRW method [71, [11], [27] for (1.1) withd = 1:
Q. Uy = Uy, + fu), u(x,0) = up(x).

We assume u(—00,t) = 0, u(+00,¢) = 1. The strategy is to represent v = u, by diffusing
particles. Differentiating (2.1) with respect to x,

2.2) U = U + (W), v(x, 0) = up(x),
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and discretizing v as a sum of 3-functions with strength m, we have

N
(2.3) v(x, 1) = > m;8(x — X;(1)),

Jj=1

where X;(7), j = 1,.... N represent the location of N particles. We use capital X to indicate
that the positions are random variables. The density of the particles determines the value of
v, and heuristically one thinks of ; as the “mass” of the jth particle.

We recover u from v by u(x, 1) = [7_ v(x".1) dx":

JV
2.4) u(x, )=y m;H(x — X;(1)).
Jj=I

Thus u is represented as a step function with jumps of size m; at X;. If all the particles have
the same mass, m, the value of u at x is m times the number of particles that lie to the left
of x. The boundary condition at —co is automatically satisfied, and the condition at +00 is
satisfied on average with fluctuations [27]. This corresponds to conservation of mass.

As described in [11], there is much less noise in the computed value of « than of v because
all the particles contribute to the value at any point x. Moreover, if the particles have equal
mass, their density is large precisely where u has large gradients.

Once the initial data is discretized, the GRW method evolves the particle positions and
masses such that « satisfies (2.1). This is done by a fractional step iteration in which the
diffusion term is modeled by a random walk and the reaction term is modeled as exponential
growth or decay of the particle masses. For each timestep the sequence is as follows.

e Gaussian random walk step:

@5 Xt + At) = X;(1) + o,

where the o; are independent N (0, 2A¢) random variables.
e Evaluate u; = u(X;(t + At)), j=1,..., N using (2.4).
e Kill or replicate particles with probability | f'(u;)| At
1. Kill particle if /" < 0;
2. Create a new particle at X if /” > 0.
Note that the only way the particles interact with each other, and hence the only way that the
nonlinearity of the equations is manifest in the algorithm, is that the local value of u depends
on the positions of all the particles. Not surprisingly, this is the step that is most difficult
computationally. Naively, computing (2.4) for all the X;’s requires O(N?) work, but if the
particles are sorted, it requires only O(N) work plus O(N log N) for the sorting.

The Chorin-Ghoniem method [7], [21], [11] is essentially the same except that instead
of killing and replicating particles, the masses are increased or decreased according to the
ordinary differential equation

dmj .
(2.6) ar f(”;)-
In the mean and to O(Af) the two procedures are equivalent.

Both methods have been used to solve traveling-wave problems in one dimension. The
mechanism of wave propagation is transfer of mass from behind the front to ahead of it. With
randomized particle death and replication, particles are killed off behind the wavefront, where
JS" is mostly negative, and replicated ahead of the front, where f” is mostly positive. With
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deterministic particle growth and decay, there is a graded transmission of mass from nei ghbor
to neighbor.

We now generalize the method to two space dimensions. The key issue is how to recover
u from its gradient, represented by particles. For this we follow a suggestion of Anderson [1]
to employ Poisson’s formula [17]:

(2.7 u(x,t) = / G(x —x)Au(x,t)dx
where G is the fundamental solution of the Laplacian in R2:
' 1
2.8) G(x) = — log|x|.
27
Integrating by parts,
(2.9) u(x, t) = f VG(x —x) - Vu(x', t) dx’.

As in one dimension, we represent Vu as a sum of 8-functions:

N
(2.10) Vu(x, y,1) =Y m;8 (x — X;(t), y— Y;(1)) m;.
Jj=I

Now, in addition to position and mass, each particle has a unit vector, n ; = (&, n;), represent-
ing the direction of Vu at (X, Y;).
Substituting (2.10) in (2.9) we obtain

1 il rj-m;n;
(2.11) u(x,y,r)_.EZ——_

2
j=1 |1

wherer; = (x — X;, y — Y;). The sum (2.11) is very similar to that found in the RVM [5].
As in the RVM, if (x, y) = (X, ¥;), the kth term is excluded from the sum, and a smoothing
procedure is needed to avoid numerical instability when (x, y) & (X, Y). See 83.

Although this method of recovering u from its gradient appears to be very different from
the 1-D method, it is actually a natural generalization. In R}, with Gix(x —x") = =86(x —x"),
then Gy (x — x') = H(x' — x), so substituting (2.3) into the 1-D equivalent of (2.9) gives
exactly (2.4). From this point of view, one can reinterpret the positive and negative masses
used to represent nonmonotonic functions in [28] as particles with orientation +1 for up-jumps
and —1 for down-jumps.

We can extend the analogy a little further. In two dimensions one can represent i as a
step function by constructing a contour plot and replacing u by a function that jumps in value
whenever a contour is crossed. Thus we need to be able to represent a function that is O outside
aclosed curve I' and 1 inside. This is accomplished by placing N particles along I, oriented
along the outward normal with mass

length(I")
m=—
N

Then (2.11) is an approximation to the line integral

(2.12)

1
(2.13) — @ VG -nds.
27 r
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Applying the divergence theorem, (2.13) evaluates to 0 if (x, y) is outside I' and 1 if (x, y) is
inside. Equation (2.12) says that each particle represents an oriented arc with a given length
and implies that the larger the mean radius of I', the more particles of a given mass are required
to represent a jump of given height across I". In R?, particles would represent oriented patches
of surface area, and so on for arbitrary dimension.

Figure 2.1 shows the u-surface recovered from placing 1,2, 4, and 10,000 particles
equiangularly on the circle of radius 10. These figures illustrate that the particles can be
thought of as oriented steps only in a collective sense: Each one individually is a singular
dipole, and only by cancellation can a simple step be constructed.

(b)

(d)

FIG. 2.1. Representing a step with gradient particles: u-surface recovered using (2.11) without smoothing from
(a) 1. (b) 2. () 4. and (d) 10, 000 particles equally spaced around a circle of radius 10. Note changes of scale: u-axis
scales for (a), (b}, (c). and (d). are in the ratio 1:2:4:4. The grid covers the square from (—20, —20) 1o (20. 20).

Moreover, the interpretation of the gradient particles as steps is only valid at 1 = 0; after
the first random walk step the particles will not lie on any meaningful curve. The Poisson
formula representation, (2.11), is more general than (2.13), however, and continues to apply
to any collection of particles in the plane.

After discretizing the initial data, one uses the same fractional step iteration as in R!,
replacing (2.5) with independent Gaussian steps for X; and Y

e Gaussian random walk step:

Xj(f‘FAf) = Xj(?)'FO';,

Yi(t + Ar) = Y;(1) + aj‘.

where 0" and o} are independent N (0, 2A¢) random variables.
e Evaluate u; = u(X;(t + A1), Y;(t + A1), j=1,....N using (2.11).
o Kill or replicate particles with probability | /(u;)| At:
1. Kill particle if /' < 0;
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2. Create a new particle at (Xj, ¥;) if /' > 0.

The differences between this 2-D algorithm and the 1-D algorithm given above are that: (1)
a2-D random walk is performed and (2) the Green function of the Laplacian in two dimensions
is used to compute u on the particles using (2.11). To extend this to d-dimensions we merely
use a d-dimensional random walk and substitute the Green function of the d-dimensional
Laplacian in (2.11) to perform the recovery:

1 il r-m;n;

(2.14) ux.1) = — ; o
where w; is the area of the unit ball in R?.

As in one dimension, the most expensive and algorithmically challenging step is evaluating
u at the particles because it is equivalent to calculating the interactions in an N-body problem.
Unlike the 1-D case, one cannot circumvent this difficulty by sorting the particles. A partial
solution is to apply the fast multipole method of Greengard and Rokhlin {13], [12], which
can calculate the O(N?) interactions in O(N) steps. Specifically, we used their subroutine
rapif2 to compute the product of the complex Hilbert matrix, Hy = 1/(zj —z), z; =
Xj +1iY; with a complex vector, g, = & + in;. Notice that g, is a complex representation of
the direction of the kth gradient particle. Then, v is 5~ M(Hg). The multipole method proved
to be much faster than the direct calculation of (2.11), but we had difficulty with smoothing
(see §3).

We now give results of applying the GRW method to some simple test problems.

3. Numerical examples.

Example 1. We begin with a pure initial value problem: (1.1) withd = 2 and f(u) =
u(l —u)(u — a), a = 0.25. This is Nagumo’s equation without recovery [19]. The initial
data is 1 inside a circle of radius Ry = 10 and 0 outside:

1 if %] < Ro,

. ,0) =
@D “EO=1 0 x> e

With this initial data the solution takes the form of an “excited region” (where u ~ 1), which
expands radially and asymptotically approaches a traveling wave as the radius — oo.

To solve this problem, we place N = 10, 000 particles, each with mass 27t Ry/ N, on the
circle of radius Ry = 10 at T = 0 and advance up to 7 = 25 with a timestep of A? = 0.1.
The initial data is shown in Fig. 2.1(d), and Figs. 3.1(a), (b) show u as a stacked contour plot
at T = 5 and 25. Figure 3.1(c) shows the expansion of the ¥ = 0.5 contour in time. It retains
approximate cylindrical symmetry although this is not imposed in the algorithm. Although
we have evaluated the solution on a rectangular grid for display purposes, the particles cluster
in a narrow band around the » = 0.5 contour (Fig. 3.4(c), (d), Example 3).

As indicated in §2, it was necessary to smooth the singularity in (2.11) when particles
approached each other closely, or when evaluating the solution at a grid point near a particle.
We thus replaced (2.11) with

N
m r..nA
3.2 =y —2L J
3.2) u(x, y,t) ZH;max(lrjlz.‘?z)

The choice ¢ = 0.3 gave good results.
For comparison with the exact solution we solved the radial problem,

3.3 U =u,, + lur + f(u),
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FiG. 3.1. Example 1. Initial value problem with u = 1 inside a circle of radius 10. and O outside. Initiallv
10, 000 particles are placed along the circle. and more particles are automatically added as the front expands (Fig.
3.2). Stacked contour plot of w at (a) T = 5 and (b) T = 25. Contour levels are 0.1,0.2, ....0.9. (c) Contour for
v=05aT=510,..., 25. (d) Comparisonat T = 0.5, ..., 25 of GRW profiles (dashed) along ray 6 = 0 with
the “exact™ solution (solid)y computed by a finite difference method for the radial (3.3).

with a finite-difference method using a small uniform mesh. Figure 3.1(d) shows the wave
profile of the GRW solution as compared to the finite-difference solution along aray. Although
the shape of the profile fluctuates, the wave speed is computed accurately.

As in the 1-D algorithm, the propagation of the wave is the result of transfer of mass. In
one dimension, total particle mass and particle number, N, are conserved, so that, in effect,
particles jump across the front. In two dimensions, total mass is still conserved (u remains
near 1 at the origin), but particle number grows with time. Since in a radially symmetric
traveling wave, the circumference of the front grows linearly, (2.12) suggests that N must also
increase linearly. After a transient, during which the shape of the profile relaxes, linear growth
is observed (Fig. 3.2). Note that N increases faster than the average radius, so that the effective
arc-length per particle decreases with time. We believe that this is because the particles lose
their radial orientation as they diffuse. If at each timestep the particles are reoriented to point
radially outward, then N grows at the same rate as the radius (not shown).

The calculation for Fig. 3.1 was programmed in C on a Cray YMP and required about 1.5
CPU hours, virtually all of which was spent computing the readily vectorized N-body sum 3.2.
The same calculation took only one-fifth as long using the fast multipole FORTRAN subroutine,
rapif2, even though this mostly did not vectorize. However, this level of performance was
attainable only if no smoothing was done, and the resulting solutions (not shown) suffered from
large spike-like errors. Smoothing is implemented by calling a close approach subroutine,



TWO-DIMENSIONAL GRADIENT RANDOM WALK METHOD 1287

2
| — N/10000
----<r>/10

0 ' ) ' ' 25

FiG. 3.2. Growth of particle number with time. Solid curve: The number of particles, normalized by the initial
number. Dashed curve: The average radius of the wave (computed as the simple average of the radii of the particles),
normalized by the initial radius. Both grow approximately linearly, but N grows faster. Thus, the effective arc-length
per particle declines slowly.

which computes the interactions directly when |r| < ¢. This degrades performance: with
& = 0.3 instability was avoided, but rapif2 actually took longer than the direct N-body
calculation, presumably because the subroutine call inhibited vectorization.

Example 2. The next example addresses the question of what happens when the shape of
the excited region changes in time. Fogelson [10] used the same discretization as in Example
1 to represent a circular step of concentration around a localized source, which stretches and
elongates into an ellipse due to convection and diffusion. In the case of pure convection he
showed that the particles would remain on and normal to the boundary of the region, I, because
it is the material curve separating regions of high and low concentration. The particles rotate
because of the derivatives of the convective term. There are no terms in reaction-diffusion
that can turn the normals, which raises the question of how new emerging directions can be
represented.

Reconsider Example 1, but with the excited region initially a square. Asymptotically,
the square again evolves into a circular traveling wave. Figure 3.3(a) shows the contours for
u=05aT =35,10,...,25. The shape of the front transforms from a square to a circle.
The calculation is in reasonable agreement with results of a 2-D finite-difference method (not
shown). The curved front is represented by linear combinations of the four existing directions
in the particle population. Diffusion combines with growth and decay of particles to produce,
on average, the appropriate mix of particles in the required locations. Note that this depends
on the linearity of (2.11), which is inherited from (2.9). Figure 3.3(b) shows the distribution
of particle directions (actually the difference between the argument of the particle and the
direction of its normal) at T = 25, when the front is approximately circular. The distribution
closely approximates a cosine, which is sufficient to represent a circular front.

Example 3. In order to illustrate a simple example with boundary conditions we solved
(1.1) on the half-space x > 0, appending the boundary condition u, (0, ») = 0. This is done
by the method of images: a particle at (X}, Y;) with orientation (§;, 7;) has an image particle at
(~X;, Y;) with orientation (—&;. n;). The sum (2.11) is modified to account for the influence
of the image particles on the real particles; it is of course not necessary to compute u at the
image particles. This calculation is equivalent to two excited regions coalescing, and we have
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FiG. 3.3. Example 2. Initial value problem with the initial excited region a square circumscribing a circle of
radius 10. (a) Contoursforu =0.5at T =5,10. ..., 25 for the GRW method. (b) Histogram (numbers of particles)
versus tan™ ;‘ —tan~! g : that is, the difference between the argument of the particle and the direction of its normal.
The distribution approximates a scaled cosine, shown superimposed.

displayed it as such in Fig. 3.4. Figure 3.4(a) shows the # = 0.5 contours as a function of
time, indicating the two regions expanding and merging into one large region. Figure 3.4(b)
is a surface plot at T = 15. Figures 3.4(c), (d) show the particle positions in the plane to
highlight how the method adapts to the solution: The cloud of particles is confined to a narrow
band around the front, and, as the regions merge, the particles along the y-axis, which are no
longer needed to resolve the solution, are killed off.

Example 4. As a final example, we indicate how to represent more general initial condi-
tions. Consider the heat equation,

u, = Au,
with Gaussian initial data and solution

u(x,t) = -(x'+y')/4(a+t).

(o +¢)
In this example we choose 0 = 4.

We discretize with uniform step size Su along the u direction and construct the corre-
sponding level sets T'; (here, circles). By (2.12), each curve I'; should contain particles with
combined mass

M; = length(T";)éu = 27 R;éu.

The total mass of all the level sets M = Y _ M; approximates the volume under u(x, 0). The
particle representation can be uniquely specified by distributing N particles with equal mass,
m = M/N. Thus, T; gets N; = |[M;/m] = {(NM;/M)] particles. To avoid fractional
particles, the mass per particle on I'; can be adjusted slightly: m; = M;/N;. An alternative is
to use random roundoff. The particles are spaced uniformly in arc-length (here, equiangularly)
and have the direction of the gradient, which is the outward normal to I'; (here, radial).

An alternative method is to distribute particles on a rectangular grid. With uniform spac-
ing h, total mass equal to |Vu(x;, y;)|h* is placed at the grid point (x;, y;) and subdivided into
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T =15

(c) (@

FIG.3.4. Example 3. Expanding front in the half space x > O with u (0, 3) = 0, solved by using image particles.
(@) Contours for u = 0.5 arT =5,10,..., 25. (b) Surface PlotofuatT = 15, (Plots reflect the influence of both
the real particles and their images.) Positions of the actual particles (only 1l() of the particles are sho wn for clarity)
a©)T =Sand(d) T = 25, showing that the particles follow the wave front, and that the superfluous particles
along x = 0 are eliminated automatically.

particles, each with direction —Vu(x;, ¥;). This is analogous to initialization in the RVM
when an initial vorticity distribution is given. This alternative is easy to implement for our
example because Vu is known analytically, but the level set method is more natural and works
better given the Symmetry of the problem. One problem with this approach arises when the
initial function is given in tabular form. The numerical derivative required to compute the
initial gradient reduces the numerical accuracy of the initial conditions passed to the GRW by
o).

studied the optimal tradeoff, Figure 3.5(a) shows the Tepresentation of the initial data with
100 level curves and Initial N = 10,000 (9948 after adjustments), and Fig. 3.5(b) shows the
exact and computed profiles alongarayats =0Qands = 4.

4. Issues for future consideration. We have taken a step toward our goal of a grid-free,
adaptive method for reaction-diffusion equations in two or more space dimensions by gener-
alizing a family of 1-D random gradient methods (271, [281, (7], [2 1], [11}. Example 3 shows
spatial adaptivity: The particles are concentrated around the steep gradient of the wavefront
(Fig. 3.4(c)) and, when the gradient vanishes due to interaction with a boundary (or another
expanding excited region), the particles defining that region die off (Fig. 3.4(a)). Example 2
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FIG. 3.5. Example 4. Solution of the heat equation with Gaussian initial data. (a) Initial surface represented
by radially oriented particles along 100 level curves uniformly spaced in the u direction. A 1otal of 9948 particles
were used. (b) Comparison of exact (solid) and computed (dashed) profiles along the positive x-axis at time t = 0
(upper curves) and t = 4.

demonstrates adaptivity with respect to particle directions: Directions not represented in the
initial data are represented by linear combinations of existing particles.

We conclude with a discussion of the limitations of the method and suggestions for
improvements.

One good feature of the 1-D discretization, which does not generalize to two dimensions,
is monotonicity. For equations that have monotonic solutions, such as Nagumo’s equation
without recovery, the numerical method is guaranteed to have monotonic solutions. This
greatly constrains the set of solutions, preventing oscillatory instabilities, for example. In two
dimensions there is no such guarantee, and the solutions may go negative as well as exceed
1. Fortunately, in our case f' < Oat« = 0, 1, and these errors damp out, but it is evident
from Fig. 2.1 that a great deal of cancellation is involved in representing smooth solutions by
singular gradient patches.

The main drawback of the GRW method is that large numbers of particles are needed.
Although we have not done systematic timing studies, we can estimate how the efficiency
of the GRW method with direct calculation of the particle interactions compares to finite-
difference methods. Using a 2-D (nonradial) Euler method, an answer more accurate than
the GRW solution of Fig. 3.1 can be obtained in 3.6 Cray YMP CPU seconds. The GRW
is at least 3 orders of magnitude slower. Accuracy was assessed by comparing along a ray
both solutions with that of a second order 1-D (radial) solver using a fine grid. Improvement
requires reducing N and speeding up the calculation of the particle interactions.

The GRW may not choose the most economical representation of the solution. In Example
4 the accuracy decreased with time, primarily because the particles lose their radial orientation
as they diffuse. In Example 1 we found that efficiency was enhanced by rotating the particles
so that they would always point radially. Even then, more particles are needed to resolve the
wave as the radius increases.

Inorder to address this problem, we have experimented with the Chorin—Ghoniem method,
which permits masses of individual particles to change with time while GRW conserves particle
mass [7], [21]. The result is that in Chorin—-Ghoniem while particle number is conserved,
individual particles can grow or shrink exponentially in time. This leads to the need to remove
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particles that have practically vanished and to split up particles that have grown too massive.
In that case, however, the number of particles grows with time just as in the stochastic growth
and decay algorithm. We note that Fogelson [10] found that no instability was caused in the
convection-diffusion problem by allowing the masses to grow unchecked. This may reflect
inherent differences between the convection-dominated and diffusion-dominated cases. We
conclude that Chorin-Ghoniem has no practical advantage over GRW in reaction-diffusion
problems.

Another modification that could both limit the growth of particles and mitigate loss of
optimal particle direction is to recontour the computed solution numerically and reassign
particles every so often. That s, N could be reduced by redistributing the mass among a smaller
number of particles. Thisis related to the “‘rezoning” technique that has been effectively applied
to the RVM to reduce the variance of long time solutions [20]. One could apply rezoning by
redistributing mass onto regular grids as in the RVM, but this is more complicated in the case
of the 2-D GRW because one must compute both the x and y components of the gradient at
each point rather than the scalar vorticity.

Another more speculative possibility is to view particle “evolution™ in biological terms:
particles that help define the solution proliferate while unneeded ones die. Thus. it may be
beneficial to introduce “mutations™ by randomly or heuristically perturbing the directions.
This might also help in problems like Example 2 with direction-deficient initial conditions.

Because of the strong formal similarity between the GRW and RVM [5] methods, much
of the machinery that has been developed for the RVM can be applied to the GRW method.
For example, a direct implementation of the algorithm requires the computation of O(N?)
interactions between particles at each timestep. We have applied the Greengard—Rokhlin [12],
[13] algorithm to accomplish this in O(N) arithmetic operations, increasing the efficiency by
almost an order of magnitude. As noted above, however, we had difficulties implementing
adequate smoothing to avoid numerical instability without at the same time destroying the
computational efficiency. An interesting alternative is to use the Barnes—Hut algorithm to do
the N-body calculation [2]. While only O(N log N) complex, Barnes—Hut permits the use of
high-order cut-off functions [3] in a more integral way than Greengard—Rokhlin. Thus Barnes—
Hut offers the possibility of incorporating smoothing in a subquadratic N-body algorithm.
Further research is required in this area.

An alternative to the multipole method to overcome the quadratic complexity of the GRW
would be to do, say, 10 independent runs with 1,000 particles instead of 1 run with 10,000
particles. The solution at a fixed set of grid points would be obtained by averaging. If the
variance is O(N~') as in the 1-D GRW methods, then averaging would yield a solution as
accurate as that of the single large simulation at 1/10 the cost. Such an approach also would
parallelize in a natural way.

A final, and promising, possibility is to model the diffusion deterministically and thereby
replace the random walk with a deterministic motion. This approach has already been applied
to simple diffusion and convection-dominated diffusion problems in one and two dimensions.
[25], [24], [9], and to collisional dynamics [26], [16]. A distinct advantage of such meth-
ods is that deterministic movement of particles to simulate diffusion eliminates the statistical
fluctuations of a Monte Carlo method. Instead, these methods have a (deterministic) dis-
cretization error associated with their approximate diffusion process. In one dimension, the
deterministic algorithms share much in common with the GRW methods, as they are grid free
and automatically adaptive. In two dimensions, the existing deterministic methods compute
the approximate derivatives required by finite differences on the moving grid defined by the
particle coordinates. It is hoped that a variant of a deterministic method can be found that
does not require the construction of a moving grid to compute the particle trajectories.
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