
Grid-based Monte Carlo Application

Yaohang Li and Michael Mascagni

Department of Computer Science and School of Computational Science and Information
Technology

Florida State University
Tallahassee, FL 32306-4530

{yaohanli, mascagni}@cs.fsu.edu

Abstract. Monte Carlo applications are widely perceived as computationally
intensive but naturally parallel. Therefore, they can be effectively executed on
the grid using the dynamic bag-of-work model. We improve the efficiency of
the subtask-scheduling scheme by using an N-out-of-M strategy, and develop a
Monte Carlo-specific lightweight checkpoint technique, which leads to a
performance improvement for Monte Carlo grid computing. Also, we enhance
the trustworthiness of Monte Carlo grid-computing applications by utilizing the
statistical nature of Monte Carlo and by cryptographically validating
intermediate results utilizing the random number generator already in use in the
Monte Carlo application. All these techniques lead to a high-performance grid-
computing infrastructure that is capable of providing trustworthy Monte Carlo
computation services.

1. Introduction

Grid computing is characterized by large-scale sharing and cooperation of
dynamically distributed resources, such as CPU cycles, communication bandwidth,
and data, to constitute a computational environment [1]. In the grid’s dynamic
environment, from the application point of view, two issues are of prime import:
performance – how quickly the grid-computing system can complete the submitted
tasks, and trustworthiness – that the results obtained are, in fact, due to the
computation requested. To meet these two requirements, many grid-computing or
distributed-computing systems, such as Condor [2], HARNESS [3], Javelin [4],
Globus [5], and Entropia [7], concentrate on developing high-performance and trust-
computing facilities through system-level approaches. In this paper, we are going to
analyze the characteristics of Monte Carlo applications, which are a potentially large
computational category of grid applications, to develop approaches to address the
performance and trustworthiness issues from the application level.

The remainder of this paper is organized as follows. In Section 2, we analyze the
characteristics of Monte Carlo applications and develop a generic grid-computing
paradigm for Monte Carlo computations. We discuss how to take advantage of the
characteristics of Monte Carlo applications to improve the performance and
trustworthiness of Monte Carlo grid computing in Section 3 and Section 4,

2 Yaohang Li and Michael Mascagni

respectively. Finally, Section 5 summarizes our conclusions and future research
directions.

2. Grid-based Monte Carlo Applications

Among grid applications, those using Monte Carlo methods, which are widely used in
scientific computing and simulation, have been considered too simplistic for
consideration due to their natural parallelism. However, below we will show that
many aspects of Monte Carlo applications can be exploited to provide much higher
levels of performance and trustworthiness for computations on the grid. According to
word of mouth, about 50% of the CPU time used on supercomputers at the U.S.
Department of Energy National Labs is spent on Monte Carlo computations. Unlike
data-intensive applications, Monte Carlo applications are usually computation
intensive [6] and they tend to work on relatively small data sets while often
consuming a large number of CPU cycles. Parallelism is a way to accelerate the
convergence of a Monte Carlo computation. If N processors execute N independent
copies of a Monte Carlo computation, the accumulated result will have a variance N
time smaller than that of a single copy. In a distributed Monte Carlo application, once
a distributed task starts, it can usually be executed independently with almost no inter-
process communication. Therefore, Monte Carlo applications are perceived as
naturally parallel, and they can usually be programmed via the so-called dynamic
bag-of-work model. Here a large task is split into smaller independent subtasks and
each are then executed separately. Effectively using the dynamic bag-of-work model
for Monte Carlo requires that the underlying random number streams in each subtask
be independent in a statistical sense. The SPRNG (Scalable Parallel Random Number
Generators) library [11] was designed to use parameterized pseudorandom number
generators to provide independent random number streams to parallel processes.
Some generators in SPRNG can generate up to 231-1 independent random number
streams with sufficiently long period and good quality [13]. These generators meet the
random number requirements of most Monte Carlo grid applications.

The intrinsically parallel aspect of Monte Carlo applications makes them an ideal
fit for the grid-computing paradigm. In general, grid-based Monte Carlo applications
can utilize the grid’s schedule service to dispatch the independent subtasks to the
different nodes [15]. The execution of a subtask takes advantage of the storage
service of the grid to store intermediate results and to store each subtask’s final
(partial) result. When the subtasks are done, the collection service can be used to
gather the results and generate the final result of the entire computation. Fig. 1 shows
this generic paradigm for Monte Carlo grid applications.

Grid-based Monte Carlo Application 3

Schedule Service

Storage Service

Collection Service

Subtasks

Partial
Results

Partial
Results

Monte Carlo Grid
Applications

Task

Final Result

Grid
System

Fig. 1. Monte Carlo Application in a Grid System

The inherent characteristics of Monte Carlo applications motivate the use of grid
computing to effectively perform large-scale Monte Carlo computations.
Furthermore, within this Monte Carlo grid-computing paradigm, we can use the
statistical nature of Monte Carlo computations and the cryptographic aspects of
random numbers to reduce the wallclock time and to enforce the trustworthiness of
the computation.

3. Improving the Performance of Grid-based Monte Carlo
Computing

3.1 N-out-of-M Strategy

The nodes that provide CPU cycles in a grid system will most likely have
computational capabilities that vary greatly. A node might be a high-end
supercomputer, or a low-end personal computer, even just an intelligent widget. In
addition, these nodes are geographically widely distributed and not centrally
manageable. A node may go down or become inaccessible without notice while it is
working on its task. Therefore, a slow node might become the bottleneck of the whole

4 Yaohang Li and Michael Mascagni

computation if the assembly of the final result must wait for the partial result
generated on this slow node. A delayed subtask might delay the accomplishment of
the whole task while a halted subtask might prevent the whole task from ever
finishing. To address this problem, system-level methods are used in many grid or
distributed-computing systems. For example, Entropia [7] tracks the execution of
each subtask to make sure none of the subtasks are halted or delayed. However, the
statistical nature of Monte Carlo applications provides a shortcut to solve this problem
at the application level.

Suppose we are going to execute a Monte Carlo computation on a grid system. We
split it into N subtasks, with each subtask based on its unique independent random
number stream. We then schedule each subtask onto the nodes in the grid system. In
this case, the assembly of the final result requires all the N partial results generated
from the N subtasks. Each subtask is a “key” subtask, since the suspension or delay of
any one of these subtasks will have a direct effect on the completion time of the
whole task.

When we are running Monte Carlo applications, what we really care about is how
many random samples (random trajectories) we must obtain to achieve a certain,
predetermined, accuracy. We do not much care which random sample set is estimated,
provided that all the random samples are independent in a statistical sense. The
statistical nature of Monte Carlo applications allows us to enlarge the actual size of
the computation by increasing the number of subtasks from N to M, where M > N.
Each of these M subtasks uses its unique independent random number set, and we
submit M instead of N subtasks to the grid system. Therefore, M bags of computation
will be carried out and M partial results may be eventually generated. However, it is
not necessary to wait for all M subtasks to finish. When N partial results are ready, we
consider the whole task for the grid system to be completed. The application then
collects the N partial results and produces the final result. At this point, the grid-
computing system may broadcast abort signals to the nodes that are still computing
the remaining subtasks. We call this scheduling strategy the N-out-of-M strategy. In
the N-out-of-M strategy more subtasks than are needed are actually scheduled,
therefore, none of these subtasks will become a “key” subtask and we can tolerate at
most M – N delayed or halted subtasks.

Fig. 2 shows an example of a distributed Monte Carlo computation using the “6-
out-of-10” strategy. In this example, 6 partial results are needed and 10 subtasks are
actually scheduled. During the computation, one subtask is suspended for some
unknown reason. In addition, some subtasks have very short completion time while
others execute very slowly. However, when 6 of the subtasks are complete, the whole
computation is complete. The suspended subtask and the slow subtasks do not affect
the completion of the whole computational task.

Grid-based Monte Carlo Application 5

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%
Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%
Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%

Initialization (t=0) Subtasks progress
(t=20 mins)

Subtask 2 and 9 are done
Subtask 4 is suspended

6 subtasks are complete
Whole computation is done(t=60 mins) (t=100 mins)

Tasks CompletionTasks Completion

Tasks CompletionTasks Completion

Fig. 2. Example of the “6-out-of-10” Strategy with 1 Suspended and 3 “Slow” Subtasks

In Monte Carlo applications, N is determined by the application and it depends on
the number of random samples or random trajectories needed to obtain a
predetermined accuracy. The problem is thus how to choose the value M properly. A
good choice of M can prevent a few subtasks from delaying or even halting the whole
computation. However, if M is chosen too large, there may be little benefit to the
computation at the cost of significantly increasing the workload of the grid system.
The proper choice of M in the N-out-of-M strategy can be determined by considering
the average job-completion rate in the grid system. Suppose p is the completion
probability of subtasks up to time t in the grid system. Clearly, M*p should be
approximately N, i.e., the fraction of the M subtasks finished should equal to N. Thus
a good choice is M = . Note, if we know something about p(t), the time-
dependent completion probability, we can use this same reasoning to also help specify
the approximate running time.

 pN / 

We model the N-out-of-M strategy based on a binomial model. Assume that the
probability of a subtask completing by time t is given p(t). Also assume that p(t)
describes the aggregate probability over the pool of nodes in the grid, i.e., it could be
measured by computing the empirical frequencies of the completion times over the
pool. Then the probability that exactly N out of M subtasks are complete at time t is
given by

NMN
MofoutNExactly tptp

N
M

tP −
−−−− −×








=))(1()()(,

(1)

and so the probability that at least N subtasks are complete is given by

6 Yaohang Li and Michael Mascagni

∑
=

−
−−− −×








=

M

Ni

iMi
MofoutN tptp

i
M

tP))(1()()(.
(2)

The old strategy can be thought of as “N-out-of-N” which has probability given by

)()(tptP N
NofoutN =−−− . (3)

Fig. 3 shows an approximate sketch of P(t)N-out-of-M, p(t), and P(t)N-out-of-N (p(t) can be
either below P(t)N-out-of-M or above P(t)N-out-of-M, depending on the value of N and M).
As time goes on, the N-out-of-M strategy always has a higher probability of
completion than the N-out-of-N strategy, although they all converge to 1.0 at large
times.

0 t0 t

P(t)

P(t)N-out-of-M

P(t)N-out-of-N

1.0

p(t)

Fig. 3. Sketch of PN-out-of-M, p(t), and PN-out-of-N

Also notice that the Monte Carlo computation using the N-out-of-M strategy is
reproducible, because we know exactly which N out of M subtasks are actually
involved and which random numbers were used. Thus each of these N subtasks can be
reproduced later. However, if we want to reproduce all of these N subtasks at a later
time on the grid system, the N-out-of-N strategy must be used!

One drawback of the N-out-of-M strategy is we must execute more subtasks than
actually needed and will therefore increase the computational workload on the grid
system. However, our experience with distributed computing systems such as Condor
and Javelin shows that most of the time there are more nodes providing computing
services available in the grid system than subtasks. Therefore, properly increasing the
computational workload to achieve a shorter completion time for a computational task
should be an acceptable tradeoff in a grid system.

3.2 Lightweight Checkpointing

A subtask running on a node in a grid system may take a very long time to finish. The
N-out-of-M strategy is an attempt to mitigate the effect of this on the overall running

Grid-based Monte Carlo Application 7

time. However, if one incorporates checkpointing, he can directly attack reducing the
completion time of the subtasks. Some grid computing systems implement a process-
level checkpoint. Condor, for example, takes a snapshot of the process’s current state,
including stack and data segments, shared library code, process address space, all
CPU states, states of all open files, all signal handlers, and pending signals [12]. On
recovery, the process reads the checkpoint file and then restores its state. Since the
process state contains a large amount of data, processing such a checkpoint is quite
costly. Also, process-level checkpointing is very platform-dependent, which limits the
possibility of migrating the process-level checkpoint to another node in a
heterogeneous grid-computing environment.

Fortunately, Monte Carlo computation has a structure highly amenable to
application-based checkpointing. Typically, a Monte Carlo application starts in an
initial configuration, evaluates a random sample or a random trajectory, estimates a
result, accumulates mean and variances with previous results, and repeats this process
until some termination condition is met. Thus, to recover an interrupted computation,
a Monte Carlo application needs to save only a relatively small amount of
information. The necessary information to reconstruct a Monte Carlo computation
image at checkpoint time will be the current results based on the estimates obtained so
far, the current status and parameters of the random number generators, and other
relevant program information like the current iteration number. This allows one to
make a smart and quick application checkpoint in most Monte Carlo applications.
Using XML [8] to record the checkpointing information, we can make this checkpoint
platform-independent. More importantly, compared to a process checkpoint, the
application-level checkpoint is much smaller in size and much quicker to generate.
Therefore, it should be relatively easy to migrate a Monte Carlo computation from
one node to another in a grid system. However, the implementation of application
level checkpointing will somewhat increase the complexity of developing new Monte
Carlo grid applications.

4. Enhancing the Trustworthiness of Grid-based Monte Carlo
Computing

4.1 Distributed Monte Carlo Partial Result Validation

The correctness and accuracy of grid-based computations are vitally important to an
application. In a grid-computing environment, the service providers of the grid are
often geographically separated with no central management. Faults may hurt the
integrity of a computation. These might include faults arising from the network,
system software or node hardware. A node providing CPU cycles might not be
trustworthy. A user might provide a system to the grid without the intent of faithfully
executing the applications obtained. Experience with SETI@home has shown that
users often fake computations and return wrong or inaccurate results. The resources in
a grid system are so widely distributed that it appears difficult for a grid-computing

8 Yaohang Li and Michael Mascagni

system to completely prevent all “bad” nodes from participating in a grid
computation. Unfortunately, Monte Carlo applications are very sensitive to each
partial result generated from each subtask. An erroneous partial result will most likely
lead to the corruption of the whole grid computation and thus render it useless.

The following Monte Carlo integration example illustrates how an erroneous
computational partial result effects the whole computation. Let us consider the
following hypothetical Monte Carlo computation. Suppose we wish to evaluate
integral

∫ ∫ ++

++

1

0

1

0
251252221

...
2

42

22
31

)1(
4... 205

31

dxdxxxxe
xx

exx xx
xx

.
(4)

The exact solution to 8-digits of this integral is 103.81372. In the experiment, we plan
to use crude Monte Carlo on a grid system with 1,000 nodes. Table 1 tabulates the
partial results from volunteer computers.

Table 1. Hypothetical Partial Results of Monte Carlo Integration Example

Subtask # Partial Results
1 103.8999347
2 104.0002782
3 103.7795764
4 103.6894540

…
561 89782.048998

…
997 103.9235347
998 103.8727823
999 103.8557640
1000 103.7891408

Due to an error, the partial result returned from the node running subtask #561 is
clearly bad. The fault may have been due to an error in the computation, a network
communication error, or malicious activity, but that is not important. The effect is that
the whole computational result ends 193.280805, considerably off the exact answer.
From this example, we see that, in grid computing, the final computational result may
be sensitive to each of the partial results obtained from nodes in the grid system. An
error in a computation may seriously hurt the whole computation.

To enforce the correctness of the computation, many distributed computing or grid
systems adapt fault-tolerant methods, like duplicate checking [10] and majority vote
[16]. In these approaches, subtasks are duplicated and carried out on different nodes.
Erroneous partial results can be found by comparing the partial results of the same
subtask executed on different nodes. Duplicated checking requires doubling
computations to discover an erroneous partial result. Majority vote requires at least
three times more computation to identify an erroneous partial result. Using duplicate
checking or majority vote will significantly increase the workload of a grid system.

In the dynamic bag-of-work model as applied to Monte Carlo applications, each
subtask works on the same description of the problem, but estimates based on
different random samples. Since the mean in a Monte Carlo computation is

Grid-based Monte Carlo Application 9

accumulated from many samples, its distribution will be approximately normal,
according to the Central Limit Theorem. Suppose f1, …, fi, …, fn are the n partial
results generated from individual nodes on a grid system. The mean of these partial
results is

∑
=

=
n

i
ifn

f
1

1ˆ ,
(5)

and we can estimate its standard error, s, via the following formula

∑
=

−
−

=
n

i
i ff

n
s

1

2)ˆ(
1

1 .
(6)

Specifically, the Central Limit Theorem states that should be distributed
approximately as a student-t random variable with mean , standard deviation

f̂

f̂ ns / ,
and n degrees-of-freedom. However, since we usually have n, the number of subtasks,
chosen to be large, we may instead approximate the student-t distribution with the
normal. Standard normal confidence interval theory states that with 68% confidence
that the exact mean is within 1 standard deviation of , with 95% confidence within
2 standard deviations, and 99% confidence within 3 standard deviations. This
statistical property of Monte Carlo computation can be used to develop an approach
for validating the partial results of a large grid-based Monte Carlo computation.

f̂

Here is the proposed method for distributed Monte Carlo partial result validation.
Suppose we are running n Monte Carlo subtasks on the grid, the ith subtask will
eventually return a partial result, fi. We anticipate that fi are approximately normally
distributed with mean, , and standard deviation, σ = f̂ ns / . We expect that about
one of the fi in this group of n to lie outside a normal confidence interval with
confidence 1 – 1/n. In order to choose a confidence level that permits events we
expect to see, statistically, yet flag events as outliers requires us to choose a
multiplier, c, so that we flag events that should only occur in a group of size cn. The
choice of c is rather subjective, but c = 10 implies that in only 1 in 10 runs of size n
we should expect to find an outlier with confidence 1 - 1/10n. With a given choice of
c, one computes the symmetric normal confidence interval based on a confidence of

cn/11% −=α . Thus the confidence interval is [- σ, + Z σ], where Z is

unit normal value such that

f̂ 2/αZ f̂ 2/α 2/α

∫ =
−2/

2

0

2

22
1α α
π

x

dxe
Z

. If fi is in this confidence interval, we

can consider this partial result as trustworthy. However, if fi falls out of the interval,
which may happen merely by chance with a very small probability, this particular
partial result is suspect. We may either rerun the subtask that generated the suspicious
partial result on another node for further validation or just discard it (if using the N-
out-of-M strategy).

Let us now come back to the previous Monte Carlo integration example. We
performed an experiment by running 1,000 subtasks for evaluating the integral
described in the Monte Carlo integration example on a Condor pool [14]. Fig. 4
shows the distribution of all the generated partial results: 677 partial results are

10 Yaohang Li and Michael Mascagni

located within 1 standard deviation of the mean, 961 partial results within 2 standard
deviations, and 999 of the 1,000 partial results within 3 standard deviations. If a
hypothetical partial result happens as the one (#561) in the Monte Carlo integration
example, the outlier lies 30 standard deviations to the right of the mean. As we know
from calculating the confidence interval, we have α = 99.9999999999% within 7
standard deviations. A outlier falling outside of 7 standard deviations of the mean will
be expected to happen by chance only once in 109 experiments. Therefore, the
erroneous partial result of #561 in the Monte Carlo integration example will easily be
captured and flagged as abhorrent.

677

961

999

f̂ f̂ +σ f̂ +2σf̂ +3σ
f̂ -σ f̂ -2σ f̂ -3σ

Fig. 4. Partial Result Distribution in Monte Carlo Integration Example

This Monte Carlo partial result validation method supplies us with a way to
identify suspicious results without running more subtasks. This method assumes that
the majority of the nodes in grid system are “good” service providers, which can
correctly and faithfully execute their assigned task and transfer the result. If most of
the nodes are malicious, this validation method may not be effective. However,
experience has shown that the fraction of “bad” nodes in volunteered computation is
very small.

4.2 Intermediate value checking

Usually, a grid-computing system compensates the service providers to encourage
computer owners to supply resources. Many Internet-wide grid-computing projects,
such as SETI@home [9], have the experience that some service providers didn’t
faithfully execute their assigned subtasks. Instead they attempt to provide bogus
partial result at a much lower personal computational cost in order to obtain more
benefits. Checking whether the assigned subtask from a service provider is faithfully
carried out and accurately executed is a critical issue that must be addressed by a grid-
computing system.

One approach to check the validity of a subtask computation is to validate
intermediate values within the computation. Intermediate values are some quantities
generated within the execution of the subtask. To the node that runs the subtask, these
values will be unknown until the subtask is actually executed and reaches a specific

Grid-based Monte Carlo Application 11

point within the program. On the other hand, to the clever application owner, certain
intermediate values are either pre-known or are very easy to generate. Therefore, by
comparing the intermediate values and the pre-known values, we can control whether
the subtask is actually faithfully carried out or not. Monte Carlo applications consume
pseudorandom numbers, which are generated deterministically from a pseudorandom
number generator. If this pseudorandom number generator has a cheap algorithm for
computing arbitrarily within the period, the random numbers are perfect candidates to
be these cleverly chosen intermediate values. Thus, we have a very simple strategy to
validate a result from subtasks by tracing certain predetermined random numbers in
Monte Carlo applications.

For example, in a grid Monte Carlo application, we might force each subtask to
save the value of the current pseudorandom number after every N (e.g., N = 100,000)
pseudorandom numbers are generated. Therefore, we can keep a record of the Nth,
2Nth, …, kNth random numbers used in the subtask. To validate the actual execution
of a subtask on the server side, we can just re-compute the Nth, 2Nth, …, kNth
random numbers applying the specific generator with the same seed and parameters
as used in this subtask. We then simply match them. A mismatch indicates problems
during the execution of the task. Also, we can use intermediate values of the
computation along with random numbers to create a cryptographic digest of the
computation in order to make it even harder to fake a computational result. Given our
list of random numbers, or a deterministic way to produce such a list, when those
random numbers are computed, we can save some piece of program data current at
that time in an array. At the same time we can use that random number to encrypt the
saved data and incorporate these encrypted values in a cryptographic digest of the
entire computation. At the end of the computation the digest and the saved values are
then both returned to the server. The server, through cryptographic exchange, can
recover the list of encrypted program data and quickly compute the random numbers
used to encrypt them. Thus, the server can decrypted the list and compare it to the
"plaintext" versions of the same transmitted from the application. Any discrepancies
would flag either an erroneous or faked result. While this technique is certainly not a
perfect way to ensure correctness and trustworthiness, a user determined on faking
results would have to scrupulously analyze the code to determine the technique being
used, and would have to know enough about the mathematics of the random number
generator to leap ahead as required. In our estimation, surmounting these difficulties
would far surpass the amount of work saved by gaining the ability to pass off faked
results as genuine.

5. Conclusions

Monte Carlo applications generically exhibit naturally parallel and computationally
intensive characteristics. Moreover, we can easily fit the dynamic bag-of-work model,
which works so well for Monte Carlo applications, onto a grid system to implement
grid-based Monte Carlo computing. Furthermore, we may take advantage of the
statistical nature of Monte Carlo calculations and the cryptographic nature of random

12 Yaohang Li and Michael Mascagni

numbers to enhance the performance and trustworthiness of this Monte Carlo grid-
computing infrastructure at the application level.

The next phase of our research will be to develop a Monte Carlo grid toolkit, using
the techniques described in this paper, to facilitate the development of grid-based
Monte Carlo applications. At the same time, we will also try to execute more real-life
Monte Carlo applications on our developing grid system.

References

1. I. Foster, C. Kesselman, and S. Tueske, “The Anatomy of the Grid,” International Journal of
Supercomputer Applications, 15(3), 2001.

2. M. Litzkow, M. Livny, and M. Mutka, “Condor - A Hunter of Idle Workstations,”
Proceedings of the 8th International Conference of Distributed Computing Systems, pages
104-111, June, 1988.

3. Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, K. Moore, T. Moore, P.
Papadopoulous, S. Scott, and V. Sunderam, “HARESS: a next generation distributed virtual
machine,” Journal of Future Generation Computer Systems, (15), Elsevier Science B. V.,
1999.

4. B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D. Wu,
“Javelin: Internet-Based Parallel Computing Using Java,” Concurrency: Practice and
Experience, 9(11): 1139 - 1160, 1997.

5. I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” International
Journal of Supercomputer Applications, 11(2), 1997.

6. A. Srinivasan, D. M. Ceperley, and M. Mascagni, “Random Number Generators for Parallel
Applications,” to appear in Monte Carlo Methods in Chemical Physics, D. Ferguson, J. I.
Siepmann and D. G. Truhlar, editors, Advances in Chemical Physics series, Wiley, New
York, 1997.

7. Entropia website, http://www.entropia.com/entropia_platform.asp.
8. XML website, http://www.xml.org.
9. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky, “SETI@home-

Massively distributed computing for SETI,” Computing in Science and Engineering, v3n1,
81, 2001.

10. C. Aktouf, O.Benkahla, C.Robach, and A. Guran, “Basic Concepts & Advances in Fault-
Tolerant Computing Design,” World Scientific Publishing Company, 1998.

11. M. Mascagni, D. Ceperley, and A. Srinivasan, “SPRNG: A Scalable Library for
Pseudorandom Number Generation,” ACM Transactions on Mathematical Software, in the
press, 2000.

12. M. Livny, J. Basney, R. Raman, and T. Tannenbaum, “Mechanisms for High Throughput
Computing,” SPEEDUP Journal, 11(1), 1997.

13. SPRNG website, http://sprng.cs.fsu.edu.
14. Condor website, http://www.cs.wisc.edu/condor.
15. R. Buyya, S. Chapin, and D. DiNucci, “Architectural Models for Resource Management in

the Grid,” the First IEEE/ACM International Workshop on Grid Computing (GRID 2000),
Springer Verlag LNCS Series, Germany, Bangalore, India, 2000.

16. L. F. G. Sarmenta, “Sabotage-Tolerance Mechanisms for Volunteer Computing Systems,”
ACM/IEEE International Symposium on Cluster Computing and the Grid (CCGrid'01),
Brisbane, Australia, May, 2001.

