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Abstract. Monte Carlo applications are widely perceived as computationally 
intensive but naturally parallel. Therefore, they can be effectively executed on 
the grid using the dynamic bag-of-work model. We improve the efficiency of 
the subtask-scheduling scheme by using an N-out-of-M strategy, and develop a 
Monte Carlo-specific lightweight checkpoint technique, which leads to a 
performance improvement for Monte Carlo grid computing.  Also, we enhance 
the trustworthiness of Monte Carlo grid-computing applications by utilizing the 
statistical nature of Monte Carlo and by cryptographically validating 
intermediate results utilizing the random number generator already in use in the 
Monte Carlo application. All these techniques lead to a high-performance grid-
computing infrastructure that is capable of providing trustworthy Monte Carlo 
computation services. 

1. Introduction 

Grid computing is characterized by large-scale sharing and cooperation of 
dynamically distributed resources, such as CPU cycles, communication bandwidth, 
and data, to constitute a computational environment [1]. In the grid’s dynamic 
environment, from the application point of view, two issues are of prime import: 
performance – how quickly the grid-computing system can complete the submitted 
tasks, and trustworthiness – that the results obtained are, in fact, due to the 
computation requested. To meet these two requirements, many grid-computing or 
distributed-computing systems, such as Condor [2], HARNESS [3], Javelin [4], 
Globus [5], and Entropia [7], concentrate on developing high-performance and trust-
computing facilities through system-level approaches. In this paper, we are going to 
analyze the characteristics of Monte Carlo applications, which are a potentially large 
computational category of grid applications, to develop approaches to address the 
performance and trustworthiness issues from the application level. 

The remainder of this paper is organized as follows. In Section 2, we analyze the 
characteristics of Monte Carlo applications and develop a generic grid-computing 
paradigm for Monte Carlo computations. We discuss how to take advantage of the 
characteristics of Monte Carlo applications to improve the performance and 
trustworthiness of Monte Carlo grid computing in Section 3 and Section 4, 
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respectively. Finally, Section 5 summarizes our conclusions and future research 
directions. 

2. Grid-based Monte Carlo Applications 

Among grid applications, those using Monte Carlo methods, which are widely used in 
scientific computing and simulation, have been considered too simplistic for 
consideration due to their natural parallelism. However, below we will show that 
many aspects of Monte Carlo applications can be exploited to provide much higher 
levels of performance and trustworthiness for computations on the grid. According to 
word of mouth, about 50% of the CPU time used on supercomputers at the U.S. 
Department of Energy National Labs is spent on Monte Carlo computations. Unlike 
data-intensive applications, Monte Carlo applications are usually computation 
intensive [6] and they tend to work on relatively small data sets while often 
consuming a large number of CPU cycles. Parallelism is a way to accelerate the 
convergence of a Monte Carlo computation. If N processors execute N independent 
copies of a Monte Carlo computation, the accumulated result will have a variance N 
time smaller than that of a single copy. In a distributed Monte Carlo application, once 
a distributed task starts, it can usually be executed independently with almost no inter-
process communication. Therefore, Monte Carlo applications are perceived as 
naturally parallel, and they can usually be programmed via the so-called dynamic 
bag-of-work model. Here a large task is split into smaller independent subtasks and 
each are then executed separately. Effectively using the dynamic bag-of-work model 
for Monte Carlo requires that the underlying random number streams in each subtask 
be independent in a statistical sense. The SPRNG (Scalable Parallel Random Number 
Generators) library [11] was designed to use parameterized pseudorandom number 
generators to provide independent random number streams to parallel processes. 
Some generators in SPRNG can generate up to 231-1 independent random number 
streams with sufficiently long period and good quality [13]. These generators meet the 
random number requirements of most Monte Carlo grid applications. 

The intrinsically parallel aspect of Monte Carlo applications makes them an ideal 
fit for the grid-computing paradigm. In general, grid-based Monte Carlo applications 
can utilize the grid’s schedule service to dispatch the independent subtasks to the 
different nodes [15]. The execution of a subtask takes advantage of the storage 
service of the grid to store intermediate results and to store each subtask’s final 
(partial) result. When the subtasks are done, the collection service can be used to 
gather the results and generate the final result of the entire computation. Fig. 1 shows 
this generic paradigm for Monte Carlo grid applications. 
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Fig. 1. Monte Carlo Application in a Grid System 

The inherent characteristics of Monte Carlo applications motivate the use of grid 
computing to effectively perform large-scale Monte Carlo computations. 
Furthermore, within this Monte Carlo grid-computing paradigm, we can use the 
statistical nature of Monte Carlo computations and the cryptographic aspects of 
random numbers to reduce the wallclock time and to enforce the trustworthiness of 
the computation. 

3. Improving the Performance of Grid-based Monte Carlo 
Computing 

3.1 N-out-of-M Strategy 

The nodes that provide CPU cycles in a grid system will most likely have 
computational capabilities that vary greatly. A node might be a high-end 
supercomputer, or a low-end personal computer, even just an intelligent widget. In 
addition, these nodes are geographically widely distributed and not centrally 
manageable. A node may go down or become inaccessible without notice while it is 
working on its task. Therefore, a slow node might become the bottleneck of the whole 
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computation if the assembly of the final result must wait for the partial result 
generated on this slow node. A delayed subtask might delay the accomplishment of 
the whole task while a halted subtask might prevent the whole task from ever 
finishing. To address this problem, system-level methods are used in many grid or 
distributed-computing systems. For example, Entropia [7] tracks the execution of 
each subtask to make sure none of the subtasks are halted or delayed. However, the 
statistical nature of Monte Carlo applications provides a shortcut to solve this problem 
at the application level. 

Suppose we are going to execute a Monte Carlo computation on a grid system. We 
split it into N subtasks, with each subtask based on its unique independent random 
number stream. We then schedule each subtask onto the nodes in the grid system. In 
this case, the assembly of the final result requires all the N partial results generated 
from the N subtasks. Each subtask is a “key” subtask, since the suspension or delay of 
any one of these subtasks will have a direct effect on the completion time of the 
whole task. 

When we are running Monte Carlo applications, what we really care about is how 
many random samples (random trajectories) we must obtain to achieve a certain, 
predetermined, accuracy. We do not much care which random sample set is estimated, 
provided that all the random samples are independent in a statistical sense. The 
statistical nature of Monte Carlo applications allows us to enlarge the actual size of 
the computation by increasing the number of subtasks from N to M, where M > N. 
Each of these M subtasks uses its unique independent random number set, and we 
submit M instead of N subtasks to the grid system. Therefore, M bags of computation 
will be carried out and M partial results may be eventually generated. However, it is 
not necessary to wait for all M subtasks to finish. When N partial results are ready, we 
consider the whole task for the grid system to be completed. The application then 
collects the N partial results and produces the final result. At this point, the grid-
computing system may broadcast abort signals to the nodes that are still computing 
the remaining subtasks. We call this scheduling strategy the N-out-of-M strategy. In 
the N-out-of-M strategy more subtasks than are needed are actually scheduled, 
therefore, none of these subtasks will become a “key” subtask and we can tolerate at 
most M – N delayed or halted subtasks. 

Fig. 2 shows an example of a distributed Monte Carlo computation using the “6-
out-of-10” strategy. In this example, 6 partial results are needed and 10 subtasks are 
actually scheduled. During the computation, one subtask is suspended for some 
unknown reason. In addition, some subtasks have very short completion time while 
others execute very slowly. However, when 6 of the subtasks are complete, the whole 
computation is complete. The suspended subtask and the slow subtasks do not affect 
the completion of the whole computational task. 



Grid-based Monte Carlo Application      5 

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%
Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%
Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%

Initialization (t=0) Subtasks progress
(t=20 mins)

Subtask 2 and 9 are done
Subtask 4 is suspended

6 subtasks are complete
Whole computation is done(t=60 mins) (t=100 mins)

Tasks CompletionTasks Completion

Tasks CompletionTasks Completion

 
Fig. 2. Example of the “6-out-of-10” Strategy with 1 Suspended and 3 “Slow” Subtasks 

In Monte Carlo applications, N is determined by the application and it depends on 
the number of random samples or random trajectories needed to obtain a 
predetermined accuracy. The problem is thus how to choose the value M properly. A 
good choice of M can prevent a few subtasks from delaying or even halting the whole 
computation. However, if M is chosen too large, there may be little benefit to the 
computation at the cost of significantly increasing the workload of the grid system. 
The proper choice of M in the N-out-of-M strategy can be determined by considering 
the average job-completion rate in the grid system. Suppose p is the completion 
probability of subtasks up to time t in the grid system. Clearly, M*p should be 
approximately N, i.e., the fraction of the M subtasks finished should equal to N. Thus 
a good choice is M = . Note, if we know something about p(t), the time-
dependent completion probability, we can use this same reasoning to also help specify 
the approximate running time. 

 pN / 

We model the N-out-of-M strategy based on a binomial model. Assume that the 
probability of a subtask completing by time t is given p(t). Also assume that p(t) 
describes the aggregate probability over the pool of nodes in the grid, i.e., it could be 
measured by computing the empirical frequencies of the completion times over the 
pool. Then the probability that exactly N out of M subtasks are complete at time t is 
given by 

NMN
MofoutNExactly tptp

N
M
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and so the probability that at least N subtasks are complete is given by 
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The old strategy can be thought of as “N-out-of-N” which has probability given by 

)()( tptP N
NofoutN =−−− . (3) 

Fig. 3 shows an approximate sketch of P(t)N-out-of-M, p(t), and P(t)N-out-of-N (p(t) can be 
either below P(t)N-out-of-M or above P(t)N-out-of-M, depending on the value of N and M). 
As time goes on, the N-out-of-M strategy always has a higher probability of 
completion than the N-out-of-N strategy, although they all converge to 1.0 at large 
times. 

0 t0 t

P(t)

P(t)N-out-of-M

P(t)N-out-of-N

1.0

p(t)

 
Fig. 3. Sketch of PN-out-of-M, p(t), and PN-out-of-N 

Also notice that the Monte Carlo computation using the N-out-of-M strategy is 
reproducible, because we know exactly which N out of M subtasks are actually 
involved and which random numbers were used. Thus each of these N subtasks can be 
reproduced later. However, if we want to reproduce all of these N subtasks at a later 
time on the grid system, the N-out-of-N strategy must be used! 

One drawback of the N-out-of-M strategy is we must execute more subtasks than 
actually needed and will therefore increase the computational workload on the grid 
system. However, our experience with distributed computing systems such as Condor 
and Javelin shows that most of the time there are more nodes providing computing 
services available in the grid system than subtasks. Therefore, properly increasing the 
computational workload to achieve a shorter completion time for a computational task 
should be an acceptable tradeoff in a grid system. 

3.2 Lightweight Checkpointing 

A subtask running on a node in a grid system may take a very long time to finish. The 
N-out-of-M strategy is an attempt to mitigate the effect of this on the overall running 
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time. However, if one incorporates checkpointing, he can directly attack reducing the 
completion time of the subtasks. Some grid computing systems implement a process-
level checkpoint. Condor, for example, takes a snapshot of the process’s current state, 
including stack and data segments, shared library code, process address space, all 
CPU states, states of all open files, all signal handlers, and pending signals [12]. On 
recovery, the process reads the checkpoint file and then restores its state. Since the 
process state contains a large amount of data, processing such a checkpoint is quite 
costly. Also, process-level checkpointing is very platform-dependent, which limits the 
possibility of migrating the process-level checkpoint to another node in a 
heterogeneous grid-computing environment. 

Fortunately, Monte Carlo computation has a structure highly amenable to 
application-based checkpointing. Typically, a Monte Carlo application starts in an 
initial configuration, evaluates a random sample or a random trajectory, estimates a 
result, accumulates mean and variances with previous results, and repeats this process 
until some termination condition is met. Thus, to recover an interrupted computation, 
a Monte Carlo application needs to save only a relatively small amount of 
information. The necessary information to reconstruct a Monte Carlo computation 
image at checkpoint time will be the current results based on the estimates obtained so 
far, the current status and parameters of the random number generators, and other 
relevant program information like the current iteration number. This allows one to 
make a smart and quick application checkpoint in most Monte Carlo applications. 
Using XML [8] to record the checkpointing information, we can make this checkpoint 
platform-independent. More importantly, compared to a process checkpoint, the 
application-level checkpoint is much smaller in size and much quicker to generate. 
Therefore, it should be relatively easy to migrate a Monte Carlo computation from 
one node to another in a grid system. However, the implementation of application 
level checkpointing will somewhat increase the complexity of developing new Monte 
Carlo grid applications. 

4. Enhancing the Trustworthiness of Grid-based Monte Carlo 
Computing 

4.1 Distributed Monte Carlo Partial Result Validation 

The correctness and accuracy of grid-based computations are vitally important to an 
application. In a grid-computing environment, the service providers of the grid are 
often geographically separated with no central management. Faults may hurt the 
integrity of a computation. These might include faults arising from the network, 
system software or node hardware. A node providing CPU cycles might not be 
trustworthy. A user might provide a system to the grid without the intent of faithfully 
executing the applications obtained. Experience with SETI@home has shown that 
users often fake computations and return wrong or inaccurate results. The resources in 
a grid system are so widely distributed that it appears difficult for a grid-computing 
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system to completely prevent all “bad” nodes from participating in a grid 
computation. Unfortunately, Monte Carlo applications are very sensitive to each 
partial result generated from each subtask. An erroneous partial result will most likely 
lead to the corruption of the whole grid computation and thus render it useless. 

The following Monte Carlo integration example illustrates how an erroneous 
computational partial result effects the whole computation. Let us consider the 
following hypothetical Monte Carlo computation. Suppose we wish to evaluate 
integral 

∫ ∫ ++
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The exact solution to 8-digits of this integral is 103.81372. In the experiment, we plan 
to use crude Monte Carlo on a grid system with 1,000 nodes. Table 1 tabulates the 
partial results from volunteer computers. 

Table 1. Hypothetical Partial Results of Monte Carlo Integration Example 

Subtask #    Partial Results 
1  103.8999347 
2   104.0002782 
3   103.7795764 
4   103.6894540 

… 
561   89782.048998 

… 
997   103.9235347 
998  103.8727823 
999  103.8557640 
1000  103.7891408 

 
Due to an error, the partial result returned from the node running subtask #561 is 
clearly bad. The fault may have been due to an error in the computation, a network 
communication error, or malicious activity, but that is not important. The effect is that 
the whole computational result ends 193.280805, considerably off the exact answer. 
From this example, we see that, in grid computing, the final computational result may 
be sensitive to each of the partial results obtained from nodes in the grid system. An 
error in a computation may seriously hurt the whole computation. 

To enforce the correctness of the computation, many distributed computing or grid 
systems adapt fault-tolerant methods, like duplicate checking [10] and majority vote 
[16]. In these approaches, subtasks are duplicated and carried out on different nodes. 
Erroneous partial results can be found by comparing the partial results of the same 
subtask executed on different nodes. Duplicated checking requires doubling 
computations to discover an erroneous partial result. Majority vote requires at least 
three times more computation to identify an erroneous partial result. Using duplicate 
checking or majority vote will significantly increase the workload of a grid system. 

In the dynamic bag-of-work model as applied to Monte Carlo applications, each 
subtask works on the same description of the problem, but estimates based on 
different random samples. Since the mean in a Monte Carlo computation is 
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accumulated from many samples, its distribution will be approximately normal, 
according to the Central Limit Theorem. Suppose f1, …, fi, …, fn are the n partial 
results generated from individual nodes on a grid system. The mean of these partial 
results is 

∑
=

=
n

i
ifn

f
1

1ˆ , 
(5) 

and we can estimate its standard error, s, via the following formula 
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Specifically, the Central Limit Theorem states that  should be distributed 
approximately as a student-t random variable with mean , standard deviation 

f̂

f̂ ns / , 
and n degrees-of-freedom. However, since we usually have n, the number of subtasks, 
chosen to be large, we may instead approximate the student-t distribution with the 
normal. Standard normal confidence interval theory states that with 68% confidence 
that the exact mean is within 1 standard deviation of , with 95% confidence within 
2 standard deviations, and 99% confidence within 3 standard deviations. This 
statistical property of Monte Carlo computation can be used to develop an approach 
for validating the partial results of a large grid-based Monte Carlo computation. 

f̂

Here is the proposed method for distributed Monte Carlo partial result validation. 
Suppose we are running n Monte Carlo subtasks on the grid, the ith subtask will 
eventually return a partial result, fi. We anticipate that fi are approximately normally 
distributed with mean, , and standard deviation, σ = f̂ ns / . We expect that about 
one of the fi in this group of n to lie outside a normal confidence interval with 
confidence 1 – 1/n. In order to choose a confidence level that permits events we 
expect to see, statistically, yet flag events as outliers requires us to choose a 
multiplier, c, so that we flag events that should only occur in a group of size cn. The 
choice of c is rather subjective, but c = 10 implies that in only 1 in 10 runs of size n 
we should expect to find an outlier with confidence 1 - 1/10n. With a given choice of 
c, one computes the symmetric normal confidence interval based on a confidence of 

cn/11% −=α . Thus the confidence interval is [ - σ, + Z σ], where Z  is 

unit normal value such that 

f̂ 2/αZ f̂ 2/α 2/α

∫ =
−2/
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22
1α α
π

x

dxe
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. If fi is in this confidence interval, we 

can consider this partial result as trustworthy. However, if fi falls out of the interval, 
which may happen merely by chance with a very small probability, this particular 
partial result is suspect. We may either rerun the subtask that generated the suspicious 
partial result on another node for further validation or just discard it (if using the N-
out-of-M strategy). 

Let us now come back to the previous Monte Carlo integration example. We 
performed an experiment by running 1,000 subtasks for evaluating the integral 
described in the Monte Carlo integration example on a Condor pool [14]. Fig. 4 
shows the distribution of all the generated partial results: 677 partial results are 
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located within 1 standard deviation of the mean, 961 partial results within 2 standard 
deviations, and 999 of the 1,000 partial results within 3 standard deviations. If a 
hypothetical partial result happens as the one (#561) in the Monte Carlo integration 
example, the outlier lies 30 standard deviations to the right of the mean. As we know 
from calculating the confidence interval, we have α = 99.9999999999% within 7 
standard deviations. A outlier falling outside of 7 standard deviations of the mean will 
be expected to happen by chance only once in 109 experiments. Therefore, the 
erroneous partial result of #561 in the Monte Carlo integration example will easily be 
captured and flagged as abhorrent. 

677

961

999

f̂ f̂ +σ f̂ +2σf̂ +3σ
f̂ -σ f̂ -2σ f̂ -3σ 

 
Fig. 4. Partial Result Distribution in Monte Carlo Integration Example 

This Monte Carlo partial result validation method supplies us with a way to 
identify suspicious results without running more subtasks. This method assumes that 
the majority of the nodes in grid system are “good” service providers, which can 
correctly and faithfully execute their assigned task and transfer the result. If most of 
the nodes are malicious, this validation method may not be effective. However, 
experience has shown that the fraction of “bad” nodes in volunteered computation is 
very small. 

4.2  Intermediate value checking 

Usually, a grid-computing system compensates the service providers to encourage 
computer owners to supply resources. Many Internet-wide grid-computing projects, 
such as SETI@home [9], have the experience that some service providers didn’t 
faithfully execute their assigned subtasks. Instead they attempt to provide bogus 
partial result at a much lower personal computational cost in order to obtain more 
benefits. Checking whether the assigned subtask from a service provider is faithfully 
carried out and accurately executed is a critical issue that must be addressed by a grid-
computing system. 

One approach to check the validity of a subtask computation is to validate 
intermediate values within the computation. Intermediate values are some quantities 
generated within the execution of the subtask. To the node that runs the subtask, these 
values will be unknown until the subtask is actually executed and reaches a specific 
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point within the program. On the other hand, to the clever application owner, certain 
intermediate values are either pre-known or are very easy to generate.  Therefore, by 
comparing the intermediate values and the pre-known values, we can control whether 
the subtask is actually faithfully carried out or not. Monte Carlo applications consume 
pseudorandom numbers, which are generated deterministically from a pseudorandom 
number generator. If this pseudorandom number generator has a cheap algorithm for 
computing arbitrarily within the period, the random numbers are perfect candidates to 
be these cleverly chosen intermediate values. Thus, we have a very simple strategy to 
validate a result from subtasks by tracing certain predetermined random numbers in 
Monte Carlo applications. 

For example, in a grid Monte Carlo application, we might force each subtask to 
save the value of the current pseudorandom number after every N (e.g., N = 100,000) 
pseudorandom numbers are generated. Therefore, we can keep a record of the Nth, 
2Nth, …, kNth random numbers used in the subtask. To validate the actual execution 
of a subtask on the server side, we can just re-compute the Nth, 2Nth, …, kNth 
random numbers applying the specific generator with the same seed and parameters 
as used in this subtask. We then simply match them. A mismatch indicates problems 
during the execution of the task. Also, we can use intermediate values of the 
computation along with random numbers to create a cryptographic digest of the 
computation in order to make it even harder to fake a computational result.  Given our 
list of random numbers, or a deterministic way to produce such a list, when those 
random numbers are computed, we can save some piece of program data current at 
that time in an array.  At the same time we can use that random number to encrypt the 
saved data and incorporate these encrypted values in a cryptographic digest of the 
entire computation.  At the end of the computation the digest and the saved values are 
then both returned to the server.  The server, through cryptographic exchange, can 
recover the list of encrypted program data and quickly compute the random numbers 
used to encrypt them.  Thus, the server can decrypted the list and compare it to the 
"plaintext" versions of the same transmitted from the application.  Any discrepancies 
would flag either an erroneous or faked result.  While this technique is certainly not a 
perfect way to ensure correctness and trustworthiness, a user determined on faking 
results would have to scrupulously analyze the code to determine the technique being 
used, and would have to know enough about the mathematics of the random number 
generator to leap ahead as required.  In our estimation, surmounting these difficulties 
would far surpass the amount of work saved by gaining the ability to pass off faked 
results as genuine. 

5. Conclusions 

Monte Carlo applications generically exhibit naturally parallel and computationally 
intensive characteristics. Moreover, we can easily fit the dynamic bag-of-work model, 
which works so well for Monte Carlo applications, onto a grid system to implement 
grid-based Monte Carlo computing. Furthermore, we may take advantage of the 
statistical nature of Monte Carlo calculations and the cryptographic nature of random 
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numbers to enhance the performance and trustworthiness of this Monte Carlo grid-
computing infrastructure at the application level. 

The next phase of our research will be to develop a Monte Carlo grid toolkit, using 
the techniques described in this paper, to facilitate the development of grid-based 
Monte Carlo applications. At the same time, we will also try to execute more real-life 
Monte Carlo applications on our developing grid system. 
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