Monte Carlo via First- and Last-Passage Distributions **Continuous Path Brownian Trajectories for Diffusion**

Chi-Ok Hwang, Michael Mascagni and James A. Given Tallahassee, FL 32306-4530 USADepartment of Computer Science Florida State University

 ${
m URL:}\ {
m http://www.cs.fsu.edu/~chwang/reserach.html}$ Research supported by DOE/ASCI, ARO, and NSF E-mail: chwang@csit.fsu.edu

First Passage (FP) Algorithms

- "Walk on Spheres" (WOS) Algorithm
- Green's Function First Passage (GFFP) Algorithm
- Angle-averaging Method
- * Fluid Permeability
- Simulation-Tabulation GF Method
- * Solc-Stockmayer Model
- * Mean Trapping Rate
- * Effective Conductivity
- Feymann-Kac Formula
- * linearized Poisson-Boltzmann Equation

Slide 2	Dr. Chi-Ok Hwang
	Future Work
	• Charge Density on a Circular Disk
	• Approach from Outside
	Last Passage Algorithms
nts	Table of Conte

First Passage Algorithms

$$\Delta u(\mathbf{x}) = -q(\mathbf{x}), \quad \mathbf{x} \in \Omega$$

$$u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in \partial\Omega.$$

$$-\int_{s} \frac{\partial G(x, y)}{\partial n_{y}} f(y) dS_{y} + \int G(x, y) q(y) dy$$

$$(2)$$

 $u(\mathbf{x}) =$

- Isomorphism: First passage probability is exactly the Laplacian the given geometry. surface Green's function for the boundary value problem for
- surface induced by a charge to first-passage probability density particle. on the absorbing first-passage surface surrounding the diffusing Electrostatic charge density on a conducting first-passage

Darcy's Law

$$=rac{k\Delta P}{\eta L}$$

(4)

Q

- stationary, inert and isotropic porous medium A slow steady flow of a single Newtonian fluid through a
- k: fluid permeability
- ΔP : applied pressure difference
- L : thickness of the porous sample
- η : dynamic viscosity
- q: volumetric flow per unit cross-sectional area (flux)

Hubbard-Douglas TFC for an Arbitrary Nonskew Object

Using angle averaging, Hubbard and Douglas derived: vector or tensor Laplace equations to scalar Laplace equations

$$f = 6\pi\eta C$$

 \bigcirc

- f: translational friction coefficient
- η : dynamic viscosity
- C: electrical capacitance

Summary and Conclusions for Permeability

- The two methods with sharp boundary sampling agree well with each other except at very low porosities
- For overlapping sphere beds, the new estimate is good except at very low porosities ($\phi_0 < 0.2$).
- Each data point used 10⁵ trajectories and consumed approximately one minute of 233 Mhz PII CPU time (very fast).
- The actual data set of mono-sized and polydispersed overlapping simulation data. spheres beds from N. S. Martys agrees well with the sharp boundary
- The methods will work for general homogeneous and isotropic porous media.
- Applying the new permeability estimation methods to more realistic porous media models

Simulation-Tabulation Method

• Green's function for the non-intersected surface of a sphere located on the surface of a reflecting sphere

Solc-Stockmayer Model without Potential

Timing with WOS :

Solc-Stockmayer Model without Potential

Timing with GFFPA :

Mean Trapping Rate

In a domain of nonoverlapping spherical traps :

Mean Trapping Rate

In a domain of nonoverlapping spherical traps :

Mean Trapping Rate

In a domain of nonoverlapping spherical traps : Timing with GFFPA

Perfectly insulating, nonoverlapping spherical inclusions :

$$\sigma_{e} = \frac{X^{2}}{6\tau_{e}(X)}$$

Perfectly insulating, nonoverlapping spherical inclusions :

Perfectly insulating, nonoverlapping spherical inclusions : Timing with WOS

Perfectly insulating, nonoverlapping spherical inclusions : Timing with GFFPA

Last Passage Algorithms

- Charge distribution on a conducting object with edges and corners
- Problems in which a large fraction of the absorption takes place on a very small fraction of the surface.
- Problems in which more than one conducting object is present, at close proximity, and at different voltages.

where probability of diffusing to infinity of a diffusing particle initiated at x ϵ -distant (very near) to the lower FP surface $ar{g}(x,y)$ $P(x) = \oint d^2 y g(x, y, \epsilon) p(y, \infty)$ $\sigma(x)$ $\sigma(x)$ Approach from Outside || || $rac{1}{4\pi}\oint d^2yar{g}(x,y)p(y,\infty),$ $\frac{d}{d\epsilon}$ $-\frac{1}{4\pi}\frac{d}{d\epsilon}$ |€==0 $g(x,y,\epsilon)$ $\epsilon = 0$ $\int_{\Omega} \phi(x) = \frac{1}{4\pi} \frac{d}{d\epsilon} \int_{\Omega} P(x)$ $\epsilon = 0$ (17)(19)(18)(16)

Slide 38

where where $p(\mathbf{r}, \infty) = 1 - \frac{2}{\pi} \arctan$ **Charge Density on a Circular Disk** $r^2 = x^2 + y^2 + z^2$ $\sigma(x)$ \overline{g} || $\sqrt{r^2 - b^2} + \sqrt{(r^2 - b^2)^2 + 4b^2x^2}$ $\frac{3}{4}\frac{\cos\theta}{a^3}$ $\frac{3}{16\pi} \oint dS \frac{\cos\theta}{a^3} p(\mathbf{r}, \infty),$ $\sqrt{2b}$, (22)Slide 40 (21)(20)

1		.

- Extension of the Green's function library
- Using analytic solutions
- Sampling new Green's functions
- Extension of these methods to other PDEs
- Poisson equation
- Linearized Poisson Boltzmann equation
- Time-independent Schrödinger equation
- More applications such as biological problems
- Material Science
- Biomolecular Science
- Quasirandom walks