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Abstract

In this article we outline some methods for parallel pseudorandom number generation. In addition,
we present some rationale for choosing good parallel pseudorandom generators. We begin with meth-
ods based on splitting the full-period sequences of conventional pseudorandom number generators
into subsequences. Given the subsequences, each parallel process requiring random numbers is then
given a different subsequence for this purpose. The splitting methods considered include breaking the
original sequence into nonoverlapping subsequence blocks, using the leapfrog technique to make sub-
sequences, using recursive-halving leap ahead for subsequence definition, and using the Lehmer tree
for subsequence construction. Unfortunately, there are some generic reasons why using a single full-
period generator to provide parallel subsequences is a dangerous procedure, and so we then present
an alternative: using parameterized, full-period pseudorandom number sequences to provided paral-
lel random numbers. We then present several methods of parallel pseudorandom generation based
on parameterization. We describe parameterized versions of the following common pseudorandom
number generators: (i) linear congruential generators, (ii) shift-register generators, and (iii) lagged-
Fibonacci generators. We briefly describe the methods, detail some advantages and disadvantages of
each method and recount results from number theory that impact our understanding of their quality
in parallel applications. Finally, we present a short description of a scalable library for pseudoran-
dom number generation, called SPRNG. SPRNG is based on associating each parallel process which
requires random numbers with a unique, parameterized, full-period pseudorandom number generator.
This is generically accomplished by mapping the parameterized generators onto a binary tree so that
new generators may be initialized without any interprocessor communication and that no parallel pro-
cesses ever use the same parameterized generator. The brief description of SPRNG contained within
this document is meant only to outline the rationale behind and the capabilities of SPRNG. Much
more information, including the library’s source code, usage examples, and detailed documentation
aimed at helping users with putting and using SPRNG on scalable and distributed parallel systems is
available at the URL: http://sprng.cs.fsu.edu.

1 Introduction

Monte Carlo applications are widely perceived as embarrassingly parallel.! The truth of this notion
depends, to a large extent, on the quality of the parallel random number generators used. It is widely
assumed that with IV processors executing N copies of a Monte Carlo calculation, the pooled result
will achieve a variance IV times smaller than a single instance of this calculation in the same amount

'Monte Carlo enthusiasts prefer the term “naturally parallel” to the somewhat derogatory “embarrassingly parallel”
coined by computer scientists.




of time. This is true only if the results in each processor are statistically independent. In turn, this
will be true only if the streams of random numbers generated in each processor are independent.

We briefly present several methods for parallel pseudorandom number generation and discuss pros and
cons for each method. If the reader is interested in background material on plain old serial pseudo-
random number generation in general, consult the following references by Knuth [12], L’Ecuyer [15],
Niederreiter [36], and Park and Miller [37], while a good overview of parallel pseudorandom number
generation can be found in a recent work by the present article’s author [26, 29, 41].

In our parallel pseudorandom number generation review we are interested, primarily, with methods
for obtaining parallel pseudorandom number generators (PPRNGs) via parameterization. The exact
meaning of parameterization depends on the type of PRNG under discussion, but we wish to distin-
guish parameterization from splitting methods. We will also briefly consider the production of parallel
streams of pseudorandom numbers by taking substreams from a single, long-period PRNG. However,
we will state several, generic, reasons why PPRNGs constructed via splitting are ill advised, and so
our focus will again return to parameterization. In general, we seek to determine a parameter in the
underlying recursion of the PRNG that can be varied. Each valid value of this parameter will lead to
a recursion that produces a unique, full-period stream of pseudorandom numbers. We then discuss
efficient means to specify valid parameter values and consider these choices in terms of the quality of
the pseudorandom numbers produced.

The plan of the paper is as follows. In §2 we present an extensive overview of parallel pseudorandom
number generation mostly viewed from the parameterization point of view. However, in §2.1 we will
present, for purposes of completeness, an overview of methods based on splitting single PRNGs into
substreams for use in parallel settings. In §2.2 two methods for parameterizing linear congruential
generators (LCGs). In §2.3 we present a parameterization of another linear method: shift-register
generators (SRGs). This parameterization is analogous to one of the LCG parameterizations presented
in §2.2. In §2.4 we consider the parallel parameterization of so-called lagged-Fibonacci generators. In
§3, we present the Scalable Parallel Random Number Generators (SPRNG) library, a comprehensive
tool for parallel and distributed pseudorandom number generation developed by the authors. Finally
in §4 we discuss open problems, and provide concluding remarks.

2 Parallel Pseudorandom Number Generation

In this next, rather extensive, section we will look at several methods for parallel pseudorandom num-
ber generation. Most of the methods we will present will be based on some kind of parameterization
of the generators; however, we begin with a review of methods for splitting full-period generators into
subsequences for use as PPRNGs.

2.1 Spitting Techniques

Let us assume that we have a PRNG that generates the numbers zg, zy, . . ., and has period equal to
Per(z;). In addition, let us assume that it is easy to leap ahead in this PRNG sequence an arbitrary
amount in a manner that is computationally effective. With these constraints one can understand
the two most common techniques for splitting a long serial PRNG into parallel subsequences: the
blocking and the leap-frog techniques. In blocking, we associate a single block of length L with
each subsequence, thus the first block will be {zo,z1,...,2-1}, the second {z1,z141,. .., T2 L-1}s
and the ith {z(;_1)z, TG-1)L+1, - - -, Tir—1}. The other common technique, the leaf frog method, pro-
duces subsequences of length L as follows. First we define the leap ahead of ¢ = [PBTT(”“)J Then
the first leap frogged subsequence is {xq, ¢, Top, - . . , T(L-1)¢)- Similarly, the second leap-frogged




subsequence is {1, Z14¢, T1420, - - -, T14(L-1)e}» and the ith leap-frogged sequence is thus given by
{fﬂi, Litty Lit28y - -« ,$i+(L-1)e}-

In the blocking approach, the ith element of successive subsequences are all exactly L apart, while
successive elements in the leap-frogged subsequences are exactly £ apart with respect to the under-
lying PRNG. It is well known, that in most random number generators, strong correlations exist
between numbers in the sequence separated by a constant amount, [7, 8, 9]. Thus, it is felt by many
that these simple splitting techniques are doomed to suffer from correlations and hence to perform
less well than expected in parallel. One solution, it would seem, is to consider splitting techniques
where substreams are not constructed from the serial PRNG with constant offsets in either inter- or
intrastream situations. Below, we outline two such techniques, the “Lehmer Tree” and the “Recursive
Halving Leap-Ahead” method.

2.1.1 The Lehmer Tree

We begin this discussion by reviewing a splitting scheme called the “Lehmer tree” originally pro-
posed as a method for splitting linear congruential generators for asynchronous, parallel machines,
[10]. The idea is to choose two linear congruential generators, called the right and the left generators,
to generate a tree of pseudorandom numbers. The motivation for a tree-structured stream of pseu-
dorandom numbers is to ensure reproducible Monte Carlo computations on a distributed memory
parallel computer.

Most agree that any PRNG must give reproducible output in the sense that the same seeding of a
generator must produce the same stream of pseudorandom numbers. Any deterministic recursive se-
quence is reproducible in this sense when implemented in serial. In parallel, reproducibility can be
assured only by an implementation that is insensitive to temporal relationships among processors.
Since to be reproducible, the random numbers must be completely determined by which the parallel
process they are generated within, not the physical processor on which the generator executes. A gen-
eral way to assure this to employ a deterministic algorithm for seeding or parameterizing new random
number generation processes that depends only on information known by the parent processes. One
can view this requirement as leading to a logical tree of random number generators.

In the Lehmer tree, one generator (the right) is used to generate random numbers within a parallel
process while the other (left) generator is used to seed generators on derivative parallel processes.
In their analysis of the relationship between the right and left generators, Frederickson, et al., [10],
state that (in their notation) L(z) = R%(z) holds for some W > 0. Here L(x) is the left generator
applied to z, and RY (z) is the result of W applications of the right generator to z. The left generator
is equivalent to leaping ahead W elements in the right sequence to seed the next generators. One of
the many elegant concepts in the original presentation of the Lehmer tree was that the left generator
could be represented as a fixed power of the right generator. It so happens that any leap ahead, W,
of a linear congruential generator can be expressed as a single step of another linear congruential
generator.? Thus for linear congruential generators, the concept of the Lehmer tree can be thought of
as using a precomputed leap-ahead value to split the sequence into a fixed number of subsequences.

2.1.2 Recursive Halving Leap-Ahead

We now consider how to extend the concept of the Lehmer tree to more general splittings. An un-
desirable property of the Lehmer tree is that the left generator, or equivalently the leap ahead, W,
is fixed. This means that splitting a previously split sequence can lead to considerable overlap with

*Let the right generator be R(z) = az + b (mod m). L(z) = R (z) = aWao + b(a¥ 1 +a¥ 2+ ... 4 a +1)
(mod m). With A = ¥ (mod m) and B =b(a" ! +a¥ 2+ ... +a+1) (mod m), L(z) = Az + B (mod m).




the grandparent sequence. To remedy this problem, one can use a splitting that separates maximally
from the original stream while also preventing overlap with all previously split streams. This can be
accomplished by using variable sized leap-ahead values.

As above, assume the pseudorandom sequence z, z1, ... has period equal to Per(z;), and has al-
ready been split [ times. In the next splitting we leap ahead [P—g,rjff—ﬂj in the sequence. For book
keeping purposes we think of the original and the split sequence as having been split (I + 1) times.
Thus the first split leaps ahead about one half the period, the next about one quarter, and so on. We

call this procedure recursive halving leap-ahead.
2.1.3 Concluding Remarks on Splitting

When considering splitting a single sequence for parallel use, one must keep in mind that the parent
sequence must have a period of sufficient length to provide all the random numbers required for all the
parallel processes. Thus, the period of parent generators will have to be very very big. Unfortunately,
for most generators a longer period implies that the cost of generating each random number goes
up. Thus, for generators of this type, which include most commonly used generators, splitting is not
scalable in this parallel context. In addition, there is often correlation in the parent sequence that is
quite deleterious for split parallel implementation. Thus, we feel that splitting is not an acceptable way
to parallelize PRNGs, except with certain types of generators. Thus, below we begin the development
of the notion of parameterization as a means of parallelizing PRNGs. However, for readers interested
in splitting methods and the consequences of using split streams in parallel please consult the works
by Dedk [5], De Matteis and Pagnutti [7, 8, 9], Frederickson et al. [10], and L’Ecuyer and C6té [16].

2.2 Linear Congruential Generators

The most commonly used generator for pseudorandom numbers is the LCG. The LCG was first pro-
posed for use by Lehmer [17], and is referred to as the Lehmer generator in the early literature. The
linear recursion underlying LCGs is:

Tp = aTp-1+b (mod m). )

When the multiplier, a, additive constant, b, and modulus, m, are chosen appropriately one obtains
a purely periodic sequence with period as long as Per(z,) = 2¥, when m is a power-of-two, and
Per(z,) = m— 1, when m is prime. It is well known that s-tuples made up from LCGs lie on lattices
composed of a family of parallel hyperplanes, Marsaglia [22]. The z,,’s in Eq. (1) are integer residues
modulo m, and a uniform pseudorandom number in [0,1] is produced via z,, = z,, /m, and the initial
value of the LCG, x,, is often called the seed.

The most important parameter of an LCG is the modulus, m. Its size constrains the period, and for
implementational reasons it is always chosen to be either prime or a power-of-two. Based on which
type of modulus is chosen, there is a different parameterization method. When m is prime, a method
based on using the multiplier, a, as the parameter has been proposed. The rationale for this choice is
outlined in Mascagni [28], and leads to several interesting computational problems.

2.2.1 Prime Modulus

Given we wish to parameterize a when m is prime we must determine first the family of permissi-
ble a’s. A condition on & when m is prime to obtain the maximal period (of length m — 1 in this
case) is that a must be a primitive element modulo m, Knuth [12].> Given primitivity, one can use

3An integer, a, is primitive modulo m if the set of integers {a* (mod m)|1 < i < m — 1} equals the set {1<i<




the following fact: if a and « are primitive elements modulo m then a = a* (mod m) for some &
relatively prime to ¢(m). Note that when m is prime that ¢(m) = m — 1. Thus a single, reference,
primitive element, a, and an explicit enumeration of the integers relatively prime to m — 1 furnish an
explicit parameterization for the jth primitive element, a; as a; = a% (mod m) where ; is the jth
integer relatively prime to m — 1. Given an explicit factorization of m — 1, Brillhart ez al. [3], efficient
algorithms for computing £; can be found in a recent work of the author [28]. An interesting open
question in this regard is whether the overall efficiency of this PPRNG is minimized by choosing the
prime modulus to minimize the cost of computing £; or to minimize the cost of modular multiplication
modulo m.

Given this scheme there are some positive and negative features to be mentioned. A motivation for
this scheme is that a common theoretical measure of the correlation among parallel streams predicts
little correlation. This measure is based on exponential sums. Exponential sums are of interest in
many areas of number theory. We define the exponential sum for the sequence of residues modulo m,

{z,}F), as:
kel
Ck) =) emen. 2)
n=0

If the z,, are periodic and k is the period, then Eq. (2) is called a full-period exponential sum. If z,, is
periodic and £ is less than the full period, then Eq. (2) is a partial-period exponential sum. Examining
Eq. (2) shows it to be a sum of k quantities on the unit circle. A trivial upper bound is thus |C(k)| < k.
If the sequence {z, } is indeed uniformly distributed, then we would expect |C(k)| = O(v/k), Kuipers
and Niederreiter [13]. Thus the desire is to show that exponential sums of interest are neither too big
nor too small to reassure us that the sequence in question is theoretically equidistributed.

Since we are interested in studying sequences for use in parallel, we must consider the cross-correlations
among the sequences to be used on different processors. If {x,} and {y,,} are two sequences of inter-
est then their exponential sum cross-correlation is given by:
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Here the sum has k terms and begins with z; and y;.

In a previous work we only considered full-period exponential sum cross-correlation for studying
these issues for a different recursion, Pryor et al. [39]. We will take the same approach here. Suppose
we have j full-period LCGs defined by zx, = a‘z, , (mod m), 0 < k < j. All of the pairwise
full-period exponential sum cross-correlations are known to satisfy, Schmidt [40]:

IC(m)| < ([mgxék] - 1) vm. 4)

The choice of the exponents, £, that minimizes Eq. (4) is to make ¢; the jth integer relatively prime
to m — 1. This necessitates an algorithm to compute this jth integer relatively prime to an integer with
known factorization, m~—1. This is discussed at great length in Mascagni [28]; however, two important
open questions remain: (i) is it more efficient overall to choose m to be amenable to fast modular
multiplication or fast calculation of the jth integer relatively prime to m — 1, and (ii) does the good
interstream correlation of Eq. (4) also ensure good intrastream independence via the spectral test?

m —1}.




The first of these questions is of practical interest to performance, the second; however, if answered
negatively, makes such techniques less attractive for parallel pseudorandom number generation.

2.2.2 Power-of-two Modulus

An alternative way to use LCGs to make a PPRNG is to parameterize the additive constant in Eq. (1)
when the modulus is a power-of-two, i.e., to m = 2* for some integer k¥ > 1. This is a technique
first proposed by Percus and Kalos [38], to provide a PPRNG for the NYU Ultracomputer. It has
some interesting advantages over parameterizing the multiplier; however, there are some considerable
disadvantages in using power-of-two modulus LCGs.

The parameterization chooses a set of additive constants {b;} that are pairwise relatively prime, i.e.
ged(bi,b;) = 1 when i # j. A prudent choice is to let b; be the jth prime. This both ensures the
pairwise relative primality and is the largest set of such residues. With this choice certain favorable
interstream properties can be theoretically derived from the spectral test [38]. However, this choice
necessitates a method for the difficult problem of computing the jth prime. In their paper, Percus and
Kalos do not discuss this aspect of their generator in detail, partly due to the fact that they expect to
provide only a small number of PRNGs. When a large number of PPRNGs are to be provided with
this method, one can use fast algorithms for the computation of 7(z), the number of primes less than
z, Deleglise and Rivat [6], Lagarias, Miller, and Odlyzko [14] . This is the inverse of the function
which is desired, so we designate 7~1(j) as the jth prime. The details of such an implementation
need to be specified, but a very related computation for computing the jth integer relatively prime to
a given set of integers is given in Mascagni [28]. It is believed that the issues for computing = L(j)
are similar.

One important advantage of this parameterization is that there is an interstream correlation measure
based on the spectral test that suggests that there will be good interstream independence. Given that
the spectral test for LCGs essentially measures the quality of the multiplier, this sort of result is to
be expected. A disadvantage of this parameterization is that to provide a large number of streams,
computing 7~ (5) will be necessary. Regardless of the efficiency of implementation, this is known
to be a difficult computation with regards to its computational complexity. Finally, one of the biggest
disadvantages to using a power-of-two modulus is the fact the least significant bits of the integers
produced by these LCGs have extremely short periods. If {z,,} are the residues of the LCG modulo
2F, with properly chosen parameters, {z,, } will have period 2F. However, {zn (mod 27)} will have
period 27 for all integers 0 < j < k, Knuth [12]. In particular, this means the least-significant bit of
the LCG with alternate between 0 and 1. This is such a major short coming, that it motivated us to
consider parameterizations of prime modulus LCGs as discussed in §2.2.1.

2.3 Shift-Register Generators

Shift register generators (SRGs) are linear recursions modulo 2, see Golomb [11], Lewis and Payne [18],
and Tausworthe [42], of the form:

k-1
Tk = Zaixnﬂ' (mod 2), 5)
i=0

where the a;’s are either 0 or 1. An alternative way to describe this recursion is to specify the kth
degree binary characteristic polynomial, see Lidl and Niederreiter [19]:

k-1
flz) =zF + Z a;r*  (mod 2). (6)
i=0




To obtain the maximal period of 2% — 1, a sufficient condition is that f(z) be a primitive kth degree
polynomial modulo 2. If only a few of the a;’s are 1, then Eq. (5) is very cheap to evaluate. Thus
people often use known primitive trinomials to specify SRG recursions. This leads to very efficient,
two-term, recursions.

There are two ways to make pseudorandom integers out of the bits produced by Eq. (5). The first,
called the digital multi-step method, takes successive bits from Eq.(5) to form an integer of desired
length. Thus, with the digital multi-step method, it requires n iterations of Eq. (5) to produce a new n-
bit pseudorandom integer. The second method, called the generalized feedback shift-register, creates
anew n-bit pseudorandom integer for every iteration of Eq. (5). This is done by constructing the n-bit
word from x4 and n — 1 other bits from the & bits of SRG state. While these two methods seem
different, they are very related, and theoretical results for one always hold for the other. One way
to parameterize SRGs is analogous to the LCG parameterization discussed in §2.2.1. There we took
the object that made the LCG full-period, the primitive root multiplier, and found a representation
for all of them. Using this analogy we identify the primitive polynomial in the SRG as the object
to parameterize. We begin with a known primitive polynomial of degree k, p(z). It is known that
only certain decimations of the output of a maximal-period shift register are themselves maximal and
unique with respect to cyclic reordering, see Lidl and Niederreiter [19]. We seek to identify those.
The number of decimations that are both maximal-period and unique when p(z) is primitive modulo

2k—2

2 and k is a Mersenne exponent is =—=. If a is a primitive root modulo the prime 2* — 1, then the

residues a’ (mod 2% — 1) fori = 1to 2k—k‘g form a set of all the unique, maximal-period decimations.
Thus we have a parameterization of the maximal-period sequences of length 2% — 1 arising from
primitive degree k binary polynomials through decimations.

The entire parameterization goes as follows. Assume the kth stream is required, compute d; = o*
(mod 2*F — 1) and take the dyth decimation of the reference sequence produced by the reference
primitive polynomial, p(z). This can be done quickly with polynomial algebra. Given a decimation
of length 2k + 1, this can be used as input the Berlekamp-Massey algorithm to recover the primitive
polynomial corresponding to this decimation. The Berlekamp-Massey algorithm finds the minimal
polynomial that generates a given sequence, see Massey [32] in time linear in k.

This parameterization is relatively efficient when the binary polynomial algebra is implemented cor-
rectly. However, there is one major drawback to using such a parameterization. While the reference
primitive polynomial, p(z), may be sparse, the new polynomials need not be. By a sparse polynomial
we mean that most of the a;’s in Eq. (5) are zero. The cost of stepping Eq. (5) once is proportional
to the number of non-zero a;’s in Eq. (5). Thus we can significantly increase the bit-operational
complexity of a SRG in this manner.

The fact that the parameterization methods for prime modulus LCGs and SRGs are so similar is no
accident. Both are based on maximal period linear recursions over a finite field. Thus the discrep-
ancy and exponential sum results for both the types of generators are similar, see Niederreiter [36].
However, a result for SRGs analogous to that in Eq. (4) is not known. It is open whether or not such
a cross-correlation result holds for SRGs, but it is widely thought to.

2.4 Lagged-Fibonacci Generators

In the previous sections we have discussed generators that can be parallelized by varying a param-
eter in the underlying recursion. In this section we discuss the additive lagged-Fibonacci generator
(ALFG): a generator that can be parameterized through its initial values. The ALFG can be written




as:
Tp =Tp_j + Tpg (mod2™), j<k. )

In recent years the ALFG has become a popular generator for serial as well as scalable parallel ma-
chines, see Makino [21]. In fact, the generator with = 5, £k = 17, and m = 32 was the standard
PPRNG in Thinking Machines Connection Machine Scientific Subroutine Library. This generator has
become popular for a variety of reasons: (i) it is easy to implement, (ii) it is cheap to compute using
Eq. (7), and (iii) the ALFG does well on standard statistical tests, see Marsaglia [24].

An important property of the ALFG is that the maximal period is (2*¥ — 1)2™-1, This occurs for
very specific circumstances, Brent [2] and Marsagia and Tsay [25], from which one can infer that this
generator has 25~ 1D%(m-1) different full-period cycles, Mascagni et al. [30]. This means that the state
space of the ALFG is toroidal, with Eq. (7) providing the algorithm for movement in one of the torus
dimension. It is clear that finding the algorithm for movement in the other dimension is the basis of
a very interesting parameterization. Since Eq. (7) tells us how to cycle over the full period of the
ALFG, one must find a seed that is not in a given full-period cycle to move in the second dimension.
The key to moving in this second dimension is to find an algorithm for computing seeds in any given
full-period cycle.

A very elegant algorithm for movement in this second dimension is based on a simple enumeration as

follows. One can prove that the initial seed, {zo, z1, ..., Zr-1}, can be bit-wise initialized using the
following template:
m.s.b. Ls.b.
bm—l bm_2 e b1 b()
] m ... O 0 |zx_q
0 H ... B| 0 |zr_o (8)
[ ] " ... m| 1 Tg

Here each square is a bit location to be assigned. Each unique assignment gives a seed in a provably
distinct full-period cycle, Mascagni et al. [30]. Note that here the least-significant bits, by are specified
to be a fixed, non-zero, pattern. If one allows an O(k?) precomputation to find a particular least-
significant-bit pattern then the template is particularly simple:

m.s.b. L.s.b.
b1 bmea ... bi| by
| ] [ | .. N bOk—l Tr-1
n B ... B |bop_o|Tk2 9)
] HE ... m| by ]
0 0 0 1 Ty

Given the elegance of this explicit parameterization, one may ask about the exponential sum correla-
tions between these parameterized sequences. It is known that certain sequences are more correlated
than others as a function of the similarity in the least-significant bits in the template for parameter-
ization, Mascagni et al. [31]. However, it is easy to avoid all but the most uncorrelated pairs in a
computation, Pryor et al. [39]. In this case there is extensive empirical evidence that the full-period




exponential sum correlation between streams is O( /(2% — 1)2m-1), the square root of the full-period.
This is essentially optimal. Unfortunately, there is no analytic proof of this result, and improvement
of the best known analytic result, Mascagni et al. [31], is an important open problem in the theory of
ALFGs.

Another advantage of the ALFG is that one can implement these generators directly with floating-
point numbers to avoid the constant conversion from integer to floating-point that accompanies the
use of other generators. This is a distinct speed improvement when only floating-point numbers are
required in the Monte Carlo computation. However, care must be taken to maintain the identity of
the corresponding integer recursion when using the floating-point ALFG in parallel to maintain the
uniqueness of the parallel streams. A discussion of how to ensure fidelity with the integer streams can
be found in Brent [1].

An interesting cousin of the ALFG is the multiplicative lagged-Fibonacci generator (MLFG). It is
defined by:

Tp = Tp—j X Tng  (mod 2™), j < k. (10)

While this generator has a maximal-period of (2% — 1)2™~3, which is a quarter the length of the
corresponding ALFG, Marsaglia and Tsay [25], it has empirical properties considered to be superior
to ALFGs, Marsaglia [24]. Of interest for parallel computing is that a parameterization analogous to
that of the ALFG exists for the MLFG, see Mascagni [27].

3 SPRNG

The SPRNG library is currently in it’s first, full, Version 1.0 release. Moreover SPRNG is now
supported and maintained by NCSA under their high-performance software activities funded by the
NSF under PACL. In addition, there has been considerable interest from most of the high-performance
computing vendors in using SPRNG as a common, parallel pseudorandom number generation library
on their machines. Thus SPRNG, itself, will be a lasting contribution to mathematical software for
parallel Monte Carlo computations.

SPRNG is designed to use parameterized pseudorandom number generators to provide random num-
ber streams to parallel processes.* SPRNG includes the following:

e Several, qualitatively distinct, well tested, scalable RNGs

o Initialization without interprocessor communication

e Reproducibility by using the parameters to index the streams

e Reproducibility controlled by a single “global” seed

e Minimization of interprocessor correlation with the included generators

e A uniform C, C++, FORTRAN, and MPI interface

Extensibility

¢ An integrated test suite including physical tests

*1t is important to note, that while SPRNG currently only has parameterized generators available, future, short-term,
plans include the inclusion of the Mersenne Twister generator of Matsumoto and collaborators, [33, 34]. The Mersenne
Twister is a particularly efficient approach to implementing a SRG, and provides an extraordinarily long period. With this
generator, we plan to parameterize via pseudorandom seeding.




The decision to use parameterized generators was based on work of the author in parameterizing sev-
eral different, common, RNGs to provide full-period streams of random numbers for each, unique, pa-
rameter value. These generators then formed the core of the generators currently available in SPRNG:

e Additive lagged-Fibonacci: z,, = z,,—, + Zp—s (mod 2™)

Multiplicative lagged-Fibonacci: =, = z,—r X Zp—s (mod 2™)

Prime modulus multiplicative congruential: z,, = az,-1 (mod m)

Power-of-two modulus linear congruential: z,, = az,-1 + b (mod 2™)

Combined multiple recursive generator: z, = T, + y, X 232, where z,, is a linear congruential
generator modulo 2% and y,, satisfies y, = 107374182y,,_; + 104480y,_5 (mod 2147483647)

All the above generators can be thought of as being parameterized by a simple integer valued function,
f(-) where f(7) gives the appropriate parameter for the ith random number stream. Given this unifor-
mity, the random number streams are mapped onto the binary tree through the canonical enumeration
via the index <. This allows us to take the parameterization and use it to produce new streams from
existing streams without the need for interprocessor communication. We accomplish this by allowing
a given stream access only to those streams associated with the subtree rooted at the given stream.
This can be used to automatically manage static and dynamic creation of streams, and prohibits reuse
of streams. To permit a calculation to be redone with different random numbers, we can apply a mix-
ing function p,(-) so that we map the streams onto the binary tree via the index p, (i) instead of just
i. The function p,(-) is a permutation parameterized by the global seed s. Different values of s give
different permutations and thus map the streams onto the binary tree in different yet distinct ways. In
our initial work with parallelizing ALFGs, we built p,(-) up from an SRG, where s was a 31-bit seed
to the same sized SRG. We found that the SRG gave unexpected interstream correlations and changed
over to an analogous LCG, which eliminated the correlations. Because of this experience we feel that
a very interesting area for future research is in characterizing and implementing good permutation
functions.

SPRNG was also designed to be flexible, and to be as easy to use as possible. The Monte Carlo
community is very conservative, and many groups use RNGs that have been handed down the gen-
erations (sometimes all the way back to Lehmer or Metropolis!). Thus we not only developed the
library in collaboration with a member of this conservative community, but we added the ability to
extend the library with a user supplied generator. Thus a user may add their own RNG by rewriting
two dummy SPRNG two functions and recompiling SPRNG. This then gives a user access to their
own generator within the SPRNG parallel infrastructure. This is a powerful capability, and our own
implementational experience has shown that any implementation must be thoroughly tested, empiri-
cally, to prevent unforeseen correlations within streams. (We found such unanticipated correlations
ourselves in very carefully thought out implementations). Thus SPRNG includes a comprehensive
testing suite to validate new generators. Together, the extensibility and testing suite aids both users
wanting to implement their own generators in parallel, and provides library developers a powerful
rapid prototyping tool.

Through the default generators, SPRNG is a tool for parallel pseudorandom number generation. The
results obtained are also reproducible, and SPRNG provides a simple way to run on distributed-
memory parallel machines using popular languages and parallel paradigms and supports distribution




on a heterogeneous collection of machines.’ When a different RNG is desired, e.g. when a particular
RNG is thought to give spurious results in a given application, a qualitatively different generator can
replace the original by merely relinking the user program with SPRNG.® Finally, new RNGs can be
incorporated into SPRNG with little more than coding the generation and initialization routines and
recompiling SPRNG.

4 Conclusions and Open Problems

We have presented a considerable amount of detail about parallel pseudorandom number generation
through parameterization. In particular, we have described the SPRNG library as an example of a
comprehensive library for parallel Monte Carlo.

While care has been taken in constructing generators for the SPRNG package, the designers realize
that there is no such thing as a PRNG that behaves flawlessly for every application. This is even more
true when one considers using scalable platforms for Monte Carlo. The underlying recursions that
are used are for PRNGs are simple, and so they inevitably have regular structure. This deterministic
regularity permits analysis of the sequences and is the PRNG’s Achilles heel. Thus any large Monte
Carlo calculation must be viewed with suspicion as an unfortunate interplay between the application
and PRNG may result in spurious results. The only way to prevent this is to treat each new Monte
Carlo derived result as an experiment that must be controlled. The tools required to control problems
with the PRNG include the ability to use another PRNG in the same calculation. In addition, one must
be able to develop and use entirely new PRNGs as well. These capabilities as well as parallel and
serial tests of randomness, Cuccaro et al. [4], are components that make the SPRNG package unique
among tools for parallel Monte Carlo.
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