The Cycle Server: A Web Platform for Running Parallel Monte Carlo
Applications on a Heterogeneous Condor Pool of Workstations

Mike Zhou
Program in Scientific Computing
University of Southern Mississippi
Hattiesburg, MS 39406-0057 USA

mhzhou@us.oracle.com

Abstract

We have developed a scientific computing tool which we
call the cycle server. This tool enables Monte Carlo com-
putations on the Condor cycle scavenging system. The tool
presents users with a graphical web interface which hides
the complexity of distributed computing from users. Users
need only upload codes and download results via the web
GUI anywhere there is web access. Parallel random num-

“er support (via SPRNG random number library), running
.asks on heterogeneous platforms (via the remote compiler),
and using Condor to migrate jobs from busy or dead ma-
chines to idle ones, are all integrated seamlessly with the
tool and are transparent to the user. At the same time, the
cycle server acts as a gate-keeper for the workstation pool.
No user accounts are needed on pool computers, and jobs
only run at otherwise idle times without accessing local file
systems. We show the utility of the cycle server on a large
Monte Carlo computation from biochemical physics.

1 Introduction

Monte Carlo calculations are based on defining random
variables with mean values equal to numerical quantities of
interest. As such, Monte Carlo computations have errors
which are probabilistic in nature, and the error size is typi-
cally expressed through the well-known statistical quantity
called the standard error. One typically assumes that the
problem variance, o2, is constant and independent of the
number of observations. Then there is a square law rela-
tionship [4] between the standard error of a computation,
o(n), and the number of observations, n:

a(n) = o/v/n. (D

0-7695-0771-9/00 $10.00 © 2000 IEEE

Michael Mascagni
Department of Computer Science
Florida State University
203 Love Building
Tallahassee, FL 323064530 USA

mascagni@cs.fsu.edu

One can see that to reduce the error o(n) ten-fold calls
for a hundred-fold increase in the number of observations.
Due to this fact, Monte Carlo calculations tend to converge
slowly and are often compute bound. In fact, it has been
said that Monte Carlo computations have consistently con-
sumed over half of all U.S. Department of Energy super-
computer cycles for as long as the Department of Energy
has had supercomputers: Mon:e Carlo is insatiable.

Over the years, raw aggregate computing power of
uniprocessors has increased steadily a la Moore’s law. Dur-
ing this same period, a sizable portion of the high end of
computing power has shifted from mainframes and super-
computers to workstations and PCs. The software tool we
describe here utilizes the Condor software system for the
underlying resource management of a pool of workstations
to provide these distributed cycles for Monte Carlo.!

Condor harnesses idle cycles on workstations by man-
aging daemons on these machines. Condor jobs are “sub-
mitted” to a machine that then farms out jobs to a pool of
available machines within a large, heterogeneous Condor
“flock.” The three main activities that Condor supports are
(1) matchmaking, (2) remote system calls for IO, and (3)
process migration. The resources of a Condor pool are het-
erogeneous, so Condor develops a match-making mecha-
nism for resource management. Each machine and each job
have certain attributes that are specified by their owners to
identify job requirements and machine constraints. Con-
dor evaluates these requirements to find a compatible match
between a job and machines. Since allowing remote jobs
access to a local file system is wrought with security impli-
cations, Condor uses remote system calls to redirect the job
1/0 to the hard disk of the submitting machine so that the
hard disk of the executing machine will not be affected. The
last and probably the most important Condor functionality

ICondor was developed by a group directed by Professor Miron Livny
of University of Wisconsin at Madison {2, 6, 9].

is process migration. When the owner of a machine needs
her machine, Condor stops its job and continues them on an-
other idle machine in the pool by utilizing its fairly general
checkpointing mechanism.

To run Monte Carlo applications in parallet on a Condor
pool, a highly reliable parallel random number generator
is required to ensure convergent and reproducible results.
There are basically two methods for parallelizing random
number generators. The conventional method is to split up
a serial generator into subsequences and distribute them to
parallel processes. [1, 5]. Traditionally, serial pseudoran-
dom number (PRN) sequences were split by either block-
ing or via a leapfrog technique. These method have limita-
tions, including short substreams, correlation among sub-
streams, and increased computational cost on large-scale
Monte Carlo applications. In contrast, the Scalable Par-
allel Random Number Generators (SPRNG) library devel-
oped by us [7] provides paralle] PRN generators via the pa-
rameterization of full-period serial PRN generators. Here
users can get full-period, independent random number se-
quences which are ideal for large-scale parallel Monte Carlo
applications. Another important feature of SPRNG, is that
it includes several, qualitatively different PRN generators.
There is no single PRN generator that provides bias-free
random numbers to every Monte Carlo application. Thus,
one must have several, distinct, PRN generators to control
a computation for unforeseen interactions between a PRN
generator and a Monte Carlo application.

Thus, a solution to our problem is to develop a way to
gather Monte Carlo cycles with Condor using the SPRNG
capabilities. To combine SPRNG with Condor, we wrote a
remote compiler to permit easy access to those Monte Carlo
cycles. Note that we did not create the remote compiler
from scratch. It invokes a native compiler on machines act-
ing as compiler servers, and it also links the SPRNG and
Condor libraries automatically with submitted source code.
This, working together with Condor, enables a user to com-
pile and run a job on a remote machine in a Condor pool
with a different architecture/operating system (ARCH/OS)
type from that of his local submitting machine. The remote
compiler client-server application is written in Java because
of this language’s “write once run anywhere” property. This
is important since the application has to run in a heteroge-
neous environment. In addition, we used Java socket net-
working and invented a simple protocol for text and binary
data transfer. The server employed a multi-threading tech-
nique to handle multiple client connections.

Using the SPRNG library, the remote compiler, and Con-
dor, a user can compile and run jobs on a pool of architec-
turally heterogeneous workstations given that the user has
an account on one of the pool workstations. She could also
partition a large Monte Carlo job into smaller jobs each
running on a different workstation and consuming random

112

numbers from independent SPRNG PRN streams. How-
ever, our scientific computation tool could be made more
convenient and secure by taking advantage of the world
wide web. So, we developed a component called the cycle
server which provides a web interface for submitting Monte
Carlo jobs, via source code, to be executed on a distributed
pool of workstations.

The plan of the paper is the following. In §2 we give
an overview of the cycle server. In §3 we detail the cycle
server’s user interface and in §4 we present implementation
details for this web-based tool. In §5 we present a Monte
Carlo application from biochemical physics that was effec-
tively run using the cycle server. This work is presented as
an example of the benefit the tool already provides. Finally,
in §6 we briefly present conclusions and mention some pos-
sible future directions for this work.

2 A Web Platform Facilitates Secure Dis-
tributed Scientific Computing

Given a pool of networked computers, one popular way
to make use of their raw computing power is to remotely
log onto each of the computers and run jobs individually on
them. A problem with this approach is that a user needs to
have an account on each machine, and must manage pass-
words and often complicated security procedures if the ma-
chines are located at a remote site. This is very clumsy,
and there are clearly better ways to get at the idle cycles on
distributed workstations for Monte Carlo.

Naturally, accessing distributed resources over the web
poses serious security issues. To address these security con-
cerns we built a web application which we call the cycle
server (Fig. 1). While the cycle server is essentially a web
application, unlike regular web applications, which are for
the retrieval of static or dynamic information residing or ac-
cessible from a server, our interface permits a user to submit
Jobs to be compiled and run on a Condor pool: users obtain
CPU cycles from this server. The cycle server is made up
of a group of Java Servlets together with dynamic HTML
pages. Ideally, this system would run on a secure web server
connected with the Condor pool via a direct cable connec-
tion and separated from the pool via a fire wall. However,
in our initial implementation, this is not the case.

A user can submit a job to the cycle server from any-
where there is access to the Internet via a web browser. Af-
ter initial access, the machine providing the browser can be
disconnected from the internet. When the submitted job is
finished, the user is informed by e-mail and the results can
be downloaded, again using a web browser. The web in-
terface both insulates and connects the user and the cycle
source: the Condor pool. Viewed as an insulator, the cy-
cle server prevents the user from directly accessing the pool
machines by using, for example r1login or telnet. This

Jobs " ‘Submit. Retrleve ']

 Welcome fo SPANG CONDOR Home Page |4

Canned
Application

-

-~
1t S
~
-
= ~-—§) k8
i -
o)

Encryption er
No Local [/O
Only Computations

Figure 1. SPRNG_Condor cycle server home
page

protects the pool computers. On the other hand, the inter-
face also facilitates user interaction with the Condor pool.
Running a job is as casy as uploading codes and download-
ing results from the web.

3 The User Interface

The user interface is made up of a series of web pages
each of which has a menu bar on the top of the page and a
display area below this bar (sample snapshots are in Fig. 1
through Fig. 4). There are five buttons on the menu bar:
“Login”, “Hosts", “Jobs”, “Submit” and “Retrieve”. Figure
I shows a snapshot of the first page displayed when a user
visits the SPRNG_Condor cycle server web site at

“HTTP://potomac.st.usm.edu:8000
/sprng.condor/ index.html”.

To log onto the cycle server, a user must have an account
consisting of an email address (as a login name) and a pass-
word. After login, a user can click on the “Hosts” menu
button to view the pool machine information. The user will
get two frames below the menu bar (Fig. 2). The left frame
contains an embedded Java Applet which organizes the ma-
chines into a tree format. By clicking our way down the host

113

Nelscape: SPRHG_COHDOR Home Page
Fila Ede View Go Commuricalor - FE

: - ; = o ;

4 e H % &
4 . Wome Semch Newcwe Pu Secuty
arks 4 Locaton: ‘http //potanac-8000/3prng_condor/in £ €57 wWhat's Retated

Relgad

~ Baokm

Hosts Submit '~ Retrleva

Mike.Zhou@usm.edu
Hosts Tree A0
s Pool cond C 2

813293
0339166
1 000000

7525

35263915

27

-

“<128.105.101 45.1025>"
T
“LINUX-GLIBC"
“fnchcswasc adu”
“finch.cswisc edu™
“128105101")
123344

818293

20532

211

929622121

1000000

0339166

1134

4

“Clamed”

Figure 2. Host tree and host information

tree we can get real-time machine and machine group infor-
mation which is useful in deciding which group or groups to
which a job should be submitted. In Fig. 2, detailed infor-
mation about the pool machine “finch.cs.wisc.edu” is dis-
played in a table in the right frame which we obtain after
we click on the machine name.

Similar to the “Hosts” page, the “Jobs” page displays
information on the pool’s Condor jobs.

The “Submit” button in the menu bar helps users upload
source files, compile, and run them on the Condor pool ma-
chines (Fig. 3). The display area under the menu bar is split
into two frames. The left frame has a small form for users
to upload source files and input files to the server, while
the right frame lets a user provide compilation and execu-
tion information. Typically a user will need to upload one
Fortran or C source file and some input data files. The
user could fill in the form with the full paths of the files or
browse and find each file and upload them one at a time.
The button labeled “Browse...” implements the later.

When a job is finished the submitter will be notified via
e-mail. The submitter can then download the output of the
job using the “Retrieve” menu button. Using this button, a
user can also check the status of running jobs, and stop or
delete jobs at any time.

SCEpS: SPRNG, CORDOR flome Fie

View Go Communicator

ZJ.. .-I.‘a : :ﬁ ‘.E_Q- '. 'E.a Z.

Futsid - Reload Home * Sarch - Netscape

& Bockmarks & Location: Tittp: //potonac: G000 speng_condar Find

. E buton.d

< =]

1 INTELAINUX-GLIBC s E

| u;:]riadTr

;huﬂar[

Fila: i bufian cmd.

fremesrm .
} El:m.l.l.- Reset Form

Figure 3. Forms for submitting a job.

4 The Implementation

The cycle server application could be set up on any web
server which supports Java Servlets. We currently use the
JRun Servlet engine and the JRun web server. The cycle
server files are contained in three directories: “sc_htdocs”,
“sc_Servlets” and “sc_data”. The directory “sc_htdocs” con-
tains the static HTML pages, graphic files, and Java Applet
files. These are usually referred to as client side programs.
The “sc_Servlets” directory contains the Java Servlets for
the cycle server, and they are usually referred to as server
side programs. The third directory, “sc_data”, is the work-
ing place for the Servlets, it contains the cycle server pass-
word file and cycle server user home directories.

Before setting up the cycle server, one needs to first
install and configure a Condor system, remote compiler
clients and servers, and the SPRNG random number li-
brary. To set up the cycle server with JRun, one needs to
put the three cycle server directories into their proper JRun
directories and start up the JRun service manager. This, in
turn launches the JRun web server and Servlet engine. We
wrote a shell script to let the operating system startup and
shutdown the JRun service manager automatically at ma-
chine boot and shut down time. Our implementation was
made on dual processor Pentium-Pro machine running Red-
hat Linux.

114

Jobs Submit

: i?elﬂavs

Retrieve Table LR
Qusler Source Filg

Firs] bufien.c
9% | bufonc

ARCHIOS * Stop'Dufets Download © | - -
INTELALINUX - GLIBC | Stz | Detere | gip s

Cluster 96 Unfinished Processes - -

== Subminer pofomac siusmedy 1 <131 55113421027, polemac’ el usmedy
1D OWHER SUBMITTED CPU_USAGE ST PRI SEZE .CMD
B8 25.0 |spmg_condor| 617 1923 | 0-00:00.00 | U |
361 |spmg_condor| 67171923 | 0-000000 | U

Cluster 96 Finished Processes

ID OWHER SUBMITTED CPU_USAGE ST COMPLETED PRI SIZE CMD

Figure 4. The retrieve page.

4.1 User Authentication and Session

A networking protocol is said to be stateful if it maintains
a state (a set of variables) between multiple requests by the
same client. An example of such a protocol is FTP. The op-
posite is a stateless protocol such as HTTP where requests
from the same client are considered to be independent of
each other. Our application needs to be stateful since we
don’t want a user to have to repeat the authentication proce-
dure for each new request. A “state” will be maintained in
this application by using the Java Servlet's session tracking
technique. Requests, which are processed by Servlets, from
one client are connected to each other by a “session” object
shared by all Servlets. State variables, such as a client’s lo-
gin and password are stored in the object so that a client can
login once for the entire session. Authentication is done in
the “Login” Servlet which stores the login information in a
session object while other Servlets check the session object
for authentication. A Servlet accesses or creates a session
object using the following statement:

HttpSession session reqg.getSession(true);
If the returned argument is “true,” it will create a session
if there is no session for this client yet. The “session”
object is unique for each client.

When a user clicks on the “Login” menu button in the
aser interface, the “Login” Servlet is invoked. This Servlet
interacts with user by generating dynamic web pages. When
the Servlet is first invoked, it returns a login form for
the user to fill out. The Servlet then retrieves the lo-
gin and password values from the submitted form using
the “getParameter” method of the “HttpServle-
tRequest” object. The Servlet then validates the user-
submitted e-mail address and password by matching them
with the entries of the password file.

4.2 Viewing Real-Time Job and Machine Infor-
mation

Four Serviets work together to allow a user to view the
Condor pool machine information. When a user clicks on
the *Hosts” menu button, the “Hosts” Servlet is invoked and
generates an HTML frame set page which contains a left
frame and a right frame. The graphic tree in the left frame is
drawn by a Java Applet returned by the “Hosttree” Servlet.

The tree Java Applet comes from the server and runs on
the client machine. It can produce graphic objects such as
lines, include external images, and perform other graphi-
cal functions. It can also respond to user interactions. An
Applet is an effective way to maintain such a graphic user
interface. The tree Applet is created by the Servlet “Host-
sTree” which queries the pool in real time. Condor provides
commands like “condor_status” to produce output pool ma-
chine information in text format. The Servlet “HostsTree”
invokes these commands, gets the output, parses the output
and uses the results to inform the Applet to construct a tree.

When a node of the host tree is clicked, “HostDetails”
invokes the Condor command “condor_status,” with appro-
priate arguments, to obtain the desired real-time informa-
tion. For example, by clicking on an OS node, one will
receive information including how many machines running
the requested OS are idle. Clicking on a machine node will
display information such as how much memory the clicked
machine has.

The job information is retrieved and displayed in a simi-
lar manner to the way the machine information is displayed
except that a different Condor command, “condor.q,” is
used by the Servlets to get submitted job information.

4.3 Submitting Jobs

Uploading a file via the web is a tricky task, and most
web applications only allow a user to type in or paste text
into a highly constrained form. Clearly, one reason for
this is the security issue associated with uploading data and
therefore permitting a remote machine access to a local file
system. For the user’s convenience, we allow users to up-
load files directly from their local file systems. To enable

115

this feature, special care must be taken on both the client
and the server side. On the client side we use an encryp-
tion protocol. Specifically, we set the encryption type to be
“MULTIPART/FORM-DATA”:

method=POST
ENCTYPE=
"MULTIPART/FORM-DATA". ..

<form

and then we insert a “file” form field as follows:

<input type=FILE name=sourceFile

To receive files, the server side Servlet “SubmitUpload”
creates an inputstream object from the request ob-
Ject. It then reads a stream of bytes from the input-
stream from which it obtains the file size and file name
information. By stripping heading and trailing bytes, the
Servlet reads and saves the uploaded file on the server’s hard
disk.

For each user, the Servlet creates an individual home di-
rectory under which each job occupies a separate subdirec-
tory. User codes and other files are uploaded to the job di-
rectory. In this Servlet, we create a hash table named “jobs”
for managing a user’s jobs. Each entry of the “jobs" hash ta-
ble has a job number as key and a “job” hash table object as
value. Before and after a transaction, the “jobs” hash table
is read from and written to through a job database file. This
way the job information is made persistent and this task is
easily carried out using the objectinputstream and
objectoutputstreamclasses.

After a user has uploaded all the files for a job, a re-
mote compiler client connects with an appropriate remote
compiler server. That server resides on a machine with the
user specified ARCH/OS type. On that server, the job is au-
tomatically compiled and linked with both the SPRNG li-
brary and the Condor library. The linked executable is then
returned to the user job directory, and the executable is then
submitted to ARCH/OS-appropriate Condor pool for exe-
cution.

4.4 Retrieving Jobs

When a user issues the download commands by clicking
“zip” or “tgz” in the “Retrieve” page, an entire job direc-
tory is packed into one file and sent back to the user via the
web. To save Internet bandwidth and download time, the
executable is excluded from the job package.

5 Brownian Langevin Simulation of Large
Molecules Using the Cycle Server

In this section we investigate the impact of the pseudo-
random number generators on a Monte Carlo simulation of

Figure 5. A Miiller-Brown potential surface.
The barrier (dashed curve) divides the space
into two parts: part A has minimum M1 and
part B has M2 and M3 as minima. The primary
saddle point S1 is on the barrier curve and S2
is between M2 and M3.

the movements of large molecular systems. These calcu-
lations were done using the tool described in the previous
sections and is presented here in brief detail as a testament
to the utility of the tool to facilitate distributed Monte Carlo
computations.

The performed computations involve both dynamics
(molecular dynamics) and statics (Monte Carlo), and are of
interest to medical researchers who need to predict reaction
rates from potential energy profiles (c.f. [10]).

We consider the problem of finding the average path of
amolecule on a Miiller-Brown potential surface (Fig. 5) [8]
as the molecule moves from one state stable to another. The
molecule is in solution and thus subject to high-friction,
and its movements are either “diffusive,” “over-damped,”
or “Brownian.” The equation of motion for the molecule is
the Brownian Langevin equation:

dx
dt

f
m_'y +R(t)

(2)

where x is the position of the molecule. The right hand
side has two terms. The first term describes the determinis-
tic motion of the molecule with mass m under the external
force f. The second term describes the stochastic part of the
motion with R representing a random force acting on the
molecule to account for the stochastic interaction with sur-
rounding small molecules. R is proportional to temperature
T so that at low temperature the first term in the right hand
side of Eq. (2) will dominate and the motion of the particle
is deterministic. At high temperature the second term in the

116

right hand side of Eq. (2) will dominate and the motion will
be totally stochastic.

A simple approach to simulating the above diffusive
equation of motion, Eq. (2), is to use a simple forward-Euler
discretization:

Xj+1 = X5 + (£5/mvy)At + Axpg, 3)

where x; = x(jAt) and f; = f(x;), and Axg is chosen
from a Gaussian distribution with variance given by:

o? = 2AtkpT/myy. “4)

This simplistic approach to simulating the molecular
movements via Eq. (3) is quite inefficient because only a
tiny percentage of the trajectories generated will reach the
final state of interest, B, in a computationally reasonable
amount of time. In such situations, one can use the method
of importance sampling to force all trajectories to the de-
sired final state, [4]. Formally, one begins by constructing
an integral representation of the straightforward simulation
and then find a good “sampling bias”, D, which is used
for importance sampling. The biases we will use in this
work [3] consist of products of Gaussian probability den-
sities, each of which is centered about a space-, time-, and
force-dependent target point. However, for our purposes in
this paper, more detail on the exact nature of the importance
functions used is not necessary.

5.1 Running the Application in Serial

Now we detail the the steps taken to investigate the be-
havior of the previously described Monte Carlo application
as we systematically vary the SPRNG generator used. The
tool we have described greatly facilitated our ability to set
up and execute these calculations. In these computations
we use the standard interface of SPRNG in the application
code, which is written in Fortran77.2 To use SPRNG
we must first include the SPRNG header file and declare
the necessary SPRNG variables:

#include "sprng_f.h"

integer GEN,
num,

stream-
nstreams, seed

SPRNG_POINTER stream

Here “GEN” is the generator type, “nstreams” is the to-
tal number of PRN streams needed, “streamnum” is the
stream this run will use, and “seed” is the global random
number seed. In our computational experiments we are

2For a more careful description of how to use SPRNG in a Monte
Carlo application, the reader is referred to the SPRNG home page:
HTTP://sprng.cs. fsu.edu. This web page has detailed documen-
tation, examples, and downloadable source code for SPRNG 2.0.

planning to run our Monte Carlo application with many dif-
ferent SPRNG PRN generators. We can do this simply by
varying GEN. We then read in the parameters and initialize
a random number stream as follows:

stream init_sprng (GEN, stream-

num, nstreams, seed, SPRNG_DEFAULT)

The pointer to the random number stream, “streamn”, is
used each time the program needs a new random num-
ber from this particular stream. For example, calling the
SPRNG function “sprng(stream)” returns a double
precision random number uniformly distributed in [0,1)
from PRN stream, “stream.”

sprng (stream)

To submit a job to the Condor system, one needs a de-
scription file. The following is a sample description file for
this particular computation:

executable = lang.sprng
log = lang.sprng.log
input = g0.s0.in
output = g0.s0.out
queue 1

This description file instructs Condor to run the executable
“lang sprng” and write log messages to “lang_sprng.log”.
The Condor job reads from file “g0._s0.in” for its inputs and
writes to “g0.s0.out”. In addtion, the cycle server will add
some lines to the description file as follows:

notifyuser Mike.ZhouRusm. edu

requirements Arch == "INTEL"

"SOLARIS26"

&& OpSys

The extra lines are needed so that the job will be com-
piled and executed on the right machine group and the cycle
server user will be notified upon job completion.

With the Fortran source code, the Condor description
file, and the input file, we log on and submit the job to the
cycle server through the web interface. At this point we can
logout and await an e-mail notification of job completion.
Then we can retrieve the computational results through the
same web interface.

Behind the scenes, the WB-GUI agent on
“HTTP://potomac.st.usm.edu” retrieves the
source file and contacts the remote compiler server on
“vulture.cs.wisc.edu” informing it to compile the source
code. The remote compiler will also link the code with
both the SPRNG and Condor libraries suitable for the
ARCH/OS pair of the remote compiler. Then the WB-GUI
agent submits the executable on behalf of the use and

117

e e
1. LFG
e ----LCG
12 + ‘\'; ——- LCG64 -
b —-—~ CMRG
L'\. —— MLFG
>~ 08 F -
0.4 -
0
~0.8 0.8

Figure 6. Average reaction paths generated
by different random number generators.

the code executes on all available“INTEL/SOLARIS26”
machines.

In this computation, we test five SPRNG generators
with the Langevin dynamics application. The five gen-
erators used were an additive lagged-Fibonacci genera-
tor (LFG), a prime modulus linear congruential generator
(LCG), a power-of-two modulus linear congruential gen-
erator (LCG64), a combined multiple recursive/linear con-
gruential generator (CMRG), and a multiplicative lagged-
Fibonacci generator (MLFG). We let the program read in a
generator type number, GEN, from the standard input. This
permits the SPRNG initialization routine to use the “type
number” to create a PRN stream of the corresponding type.

Fig. 6 illustrates the resulting reaction paths using the
five previously mentioned SPRNG generators. Here each
path is an average of 3, 000, 000 trajectories using the same
temperature (7 = 300°K) and the same barrier height
(H = TkpT). About 8 hours of CPU time was used for
each curve on the Intel(Pentium)/Solaris machines. One
can see that the curves are very close to one another except
for the LFG curve. We felt that the observed deviations in
the LFG case were due to fluctuations and not correlations.
This hunch was later confirmed by averaging 30 times as
many trajectories. Nevertheless, for this particular appli-
cation we should recommend not using SPRNG generator
LFG.

5.2 Running the Application in Parallel

To find out whether the deviations to the LFG curve
were caused by fluctuations or intrinsic PRN correlations,
we generated more trajectories and computed a new aver-
age path. We expect to reduce the statistical error five-fold

e LFG,LCG,LCGB4,CMRG,MLFG -
—— LFG 30 Runs Average

>~ 08

04 +

0.8

Figure 7. Comparison between 30 run average
results of LFG with one run results.

if we average 30 times as many trajectories; however, this
will require 10 CPU days (8 hours x 30). The cycle server
makes it very easy to divide the job into smaller jobs and
run them on different machines in parallel. We don’t even
need to change the source code. We launch 30 runs of the
same program, with each run consuming a different random
number stream from the same PRNG. We needed 30 input
files which differs from each other in stream number, and
thus wrote a simple PERL script to generate the input files.
The Condor description file contains the following:

executable = lang.sprng

log = lang.sprng.log
input = g0_s$(Process) .in
output = g0_s$S(Process) .out
queue 30

Here we use one line to specify which input file each of the
thirty smaller jobs uses using the macro “$ (Process)”.
Each smaller job has a unique process number ranging from
0 to 29 which can be referred to by “$ (Process)”. The
line “input g0_s$ (Process) . in” states that the
first run (smaller job) will use the input file “g0_s0.in”, sec-
ond run will use “g0_s1.in”, and so on.

The 30 run average curve is plotted in Fig. 7 together
with original single run curves. The 30 run average curve
overlaps the others allowing us to conclude that the devia-
tions of the single run LFG result are due to fluctuations but
not to systematic correlation.

118

6 Conclusions and Future Work

The cycle server can be thought of as a single compo-
nent of a comprehensive software tool to enable distributed
Monte Carlo computations. The cycle server simplifies user
interaction with a Condor pool and SPRNG. At the same
time it enhances security for the distributed machines. Most
importantly, this is a tool for harvesting idle cycles on dis-
tributed resources over the web. Since the target applica-
tion, Monte Carlo, is naturally parallel, and SPRNG pro-
vides reproducible random number streams, we envision
such a system replacing the supercomputer requirement for
many large-scale, high fidelity Monte Carlo computations.
In the future we plan to extend the cycle server concept to
harvest cycles over the web on machines that allow a special
client to run when they are otherwise idle.

References

[1] S. Anderson. Random number generators on vector super-
computers and other advanced architectures. SIAM Rev.,
32:221, 1990.

J. Basney and M. Livny. Deploying a high throughput com-
puting cluster. In High Performance Cluster Computing,
volume 1. Prentice Hall, 1999.
M. Z. Daniel and T. B. Woolf.
1999.

J. M. Hammersley and D. C. Handscomb. Monte Carlo
Methods. John Wiley & Sons, 1964.

P.L’Ecuyerand S. C. Cot’e. Implementing a random number
package with splitting facilities. ACM Trans. Math. Soft.,
17:98, 1991.

M. Livny, J. Basney, R. Raman, and T. Tannenhaum. Mech-
anisms for high throughput computing. SPEEDUP Journal,
11(1), 1997.

M. Mascagni and A. Srinivasan. SPRNG: A scal-
able library for pseudorandom number generation. ACM
Trans. Math. Soft., in the press, 2000. See also:
HTTP://sprng.cs. fsu.edu.

K. Miiller and L. D. Brown. Location of saddle points and
minimum energy paths by a constrained simplex optimiza-
tion procedure. Teoret. Chim. Acta, 53:75, 1979.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput comput-
ing. Proceedings of the Seventh IEEE International Sym-
posium on High Performance Distributed Computing, July
1998.

T. B. Woolf. Path corrected functionals of stochastic trajec-
tories: Towards relative free energy and reaction coordinate
calculations. Chem. Phys. Lett., 289:433, 1998.

[2]

(31

private communications,
(4]

(5]

[6]

(7]

(8]

(9]

[10]

