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ABSTRACT: Monte Carlo methods (MCMs) are extremely effective algorithms for solving a wide
variety of problems. In addition, since MCMs are based on the random sampling they are usually very
easy to run on parallel computers. To this end, considerable work has been done on the construction
of high quality pseudorandom number generators (PRNGs) for parallel and distributed computing.
PRNGs are typically based on simple, linear recursions over the integers. There are many reasons for
this, chief among them being the extra computational cost associated with nonlinear recursions. Here,
we discuss the optimization of the implicit and explicit inversive congruential generator (ICG) for use in
the popular Scalable Parallel Random Number Generators (SPRNG) library. ICGs are nonlinear variants
of the popular linear congruential generators (LCGs) and are of interest due to certain properties they
possess that lead to improved quality over linear generators. However, their major drawback is the extra
cost required to generate numbers with ICGs. If the cost of generating a number with an LCG modulo
m is a unit of computational work, then an ICG requires O(log, m) computational work. The extra cost
incurred in the calculation of a number via the ICG is due to the cost of computing the multiplicative
inverse modulo m. In this paper, we present an optimal algorithm for computing this modular inverse
along with a Field Programmable Gate Array (FPGA) version of modular inversion. Both methods we
discuss here are based on simple variants of the extended Euclidean algorithm. We compare the costs
of the two implementations and discuss their incorporation into the SPRNG library and their future use
on a new, hybrid, supercomputing architecture . The overall improvement in the FPGA implementation
over the optimal software implementation was a factor ranging from a maximum of 10.4 to a minimum
of 4.6 with a reasonable sized modulus, m = 23! — 1.

1 INTRODUCTION ware implementation and a “hardware” implemen-
tation of modular inversion, the most computa-
Monte Carlo methods (MCMs) are extremely ef-  tionally costly part of computing the ICG, are pre-
fective algorithms for solving a wide variety of  sented, compared, and discussed.
problems. In addition, since MCMs are based on The plan of the paper is as follows. In §2, we
the random sampling they are usually very easy  give a brief introduction to the ICG. Here we de-
to run on parallel computers. To this end, con-  scribe what one looks for in good PRNGs, and
siderable work has been done on the construction  why the ICG is of particular interest for use both
of high quality pseudorandom number generators  in serial and in parallel. Of particular note is
(PRNGs) for parallel and distributed computing.  the existence of theoretical results that indicate
Among one of the most popular of these sys- how to construct vectors of high quality from ex-
tems is the Scalable Parallel Random Number plicit ICGs. This forms the basis of our pro-
Generators (SPRNG) library, (Mascagni, Ceperley,  posed parallel implementation. In §3 we briefly
Mitas, Saied, & Srinivasan 1998). SPRNG is a li-  introduce the parallelization procedure we use to
brary consisting of several different random num-  incorporate the ICG into SPRNG. The procedure
ber generators. In this article we present the op-  used is both consistent with the software archi-
timizations used and the implementation details  tecture design of SPRNG and is based on theory
of SPRNG’s newest random number generator fam-  described in the previous section. The key defi-
ily, the implicit and explicit inversive congruential  ciency in ICGs is the high computational cost of
generator (ICG). In particular, an optimal soft-  performing a necessary modular inversion. In §4
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we describe an optimal software implementation
of modular inversion using an optimized version
of the extended Euclidean algorithm. While bet-
ter than the naive approach, software implemen-
tations cannot provide adequate performance for
modular inversion. Thus, in §5, we are forced to
consider a hardware acceleration technique. Our
approach is the design of a Field Programmable
Gate Array (FPGA) implementation for modu-
lar inversion. We describe our FPGA implementa-
tion of the extended binary Euclidean algorithm,
and compare this implementation to our optimized
software implementation. Finally, in §6 we sum-
marize our results, comment on future work, and
indicate a current high-performance computing ar-
chitecture that may benefit from this work.

2 THE INVERSIVE CONGRUENTIAL GEN-
ERATOR

The ICG is currently one of the most attractive
random number generators which is based on a
nonlinear recursion. ICGs were developed as non-
linear analogs of the widely used linear PRN G, the
linear congruential generator (LCG). The better
known LCG is based on the following first order
linear modular recursion:

Tn =0aZTn-1+b (mod m). (1)
The constants in equation (1) are the modulus, m,
the multiplier, a, and the additive constant, b. In
common implementations, m is chosen either to be
prime or a power-of-two. In these cases, one can
choose the multiplier and additive constant to get
a good quality LCG with the longest possible pe-
riod, (Knuth 1981). Over the years, LCGs have
proven to be reliable; however, they have a defect
shared by all pseudorandom numbers produced by
linear recursions: multidimensional vectors made
up of from them lie on lattices that can often be
covered by a small family of parallel hyperplanes,
(Marsaglia 1968). The spacing between these hy-
perplanes, which is computed via the spectral test,
(Coveyou & MacPherson 1967), usually increases
as the dimension of the vectors increases. This
causes problems for Monte Carlo applications such
as numerical integration, as the lattices develop
larger and larger “holes” with increasing dimen-
sion.

Since the hyperplane problem is generic to lin-
ear modular recursions, interest developed in find-
ing good quality nonlinear recursions that could be
used for PRNGs. One such nonlinear generator is
the implicit ICG, (Eichenauer & Lehn 1986). It is
obtained by applying a single, nonlinear, transfor-
mation to an LCG. The recursion for the implicit
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ICG (IICG) is given by:

Tn = 0Tp-7+b (mod m). (2)
Note that the “bar” indicates the multiplicative
inverse modulo m. This operation is defined via
the expression xn =1 (mod m), with zero be-
ing its own inverse, 0 = 0. Since we have to deal
with computing multiplicative inverses, it is nat-
ural to work in a finite field, and so it customary
to choose the modulus, m, to be prime. More re-
cently, (Hellekalek 1995), an ICG variant, called
the explicit ICG (EICG), was found to be as use.
ful as it’s implicit cousin. The EICG is defined by
an explicit formula, not a recursion:

Tn =an+b (mod m). (3)
It is important to reiterate that unlike the equa-
tion (2) for the IICG, equation (3) is a formula,
not a recursion. Thus, one need not store previ-
ously computed values to compute using an EICG,
and one may compute the value of an EICG at an
arbitrary point in its cycle as easily as computing
the next EICG point.

An important fact about ICGs is that they to-
tally avoid the hyperplane problems seen in linear
PRNGs, (Eichenauer-Herrmann 1991). This is a
very important fact; however, all PRNGs based on
simple recursions have some defect, and ICGs have
their’s as well, (Leeb & Wegenkittl 1997). None
the less, ICGs offer some very important proper-
ties to the Monte Carlo community; however, at
present there is no widely used random number
package that provides them. For example, there
arc several linear generators and a single nonlinear
generator! that are currently provided in SPRNG.

A final property of ICGs that swayed the de-
velopers of SPRNG to include them is the following
theoretical result that influences explicit ICGs for
use in parallel and vector computations. Let us
define a family of N EICGs as follows:

T, =an+ b (mod m), i = L,2,...,N. (4)
Then, N-tuples of the form (21,22, ... 2V ) have

good statistical properties if all the N numbers
ba' are distinct, (Niederreiter 1991). There are
several strategies for producing maximal families
of EICGs that ensure that the b'gi are distinct,
and we are still experimenting with several to dis-
cover which provides empirically better random
numbers in parallel for SPRNG. One such scheme
is mentioned below when we discuss incorporation
of EICGs into SPRNG.

'The nonlinear generator is a multiplicative lagged-
Fibonacci generator satisfying the recursion: z, = Tp_j X
Zn_k (mod 2°).



3 PARALLELIZATION VIA PARAMETERI-
ZATION

The SPRNG library is designed to incorporate gen-
erators that can be parameterized, (Mascagni &
Srinivasan 2000). Clearly, the above theory based
on EICGs with different multipliers and additive
constants provides such a parameterization pro-
vided we can satisfy the requirement that all the
b'a’ are distinct. In one approach, we set ' = a, a
constant multiplier, and we define b* = ax (i—1)+b
(mod m). Clearly we obtain distinct numbers with
these definitions:

bai=(ax (i—1)+ba (modm),
()

=(i—1)+ba (modm).

Note, there are many alternative parameteriza-
tions that maintain the property that biaf are dis-
tinct. However, such different methods may not
all provide good parallel pseudorandom numbers.
Thus, before we finalize the SPRNG implementa-
tion, a considerable set of empirical tests will be
undertaken to discriminate between the different
alternatives.

4 MODULAR INVERSION

One of the major reasons why ICGs have not be-
come more popular is the cost of modular inver-
sion relative to modular multiplication. If multi-
plication modulo m costs a unit of computer time,
then modular inversion costs O(log, m). This fact
holds whether one uses the fact that 2% = F
(mod m) to find the multiplicative inverse, or if
one uses the extended Euclidean algorithm for
computing the Greatest Common Divisor (GCD),
(Cormen, Leiserson, & Rivest 1990). In the ex-
tended Euclidean algorithm for the computation
of the GCD for inputs n and m one obtains both
the GCD and the smallest numbers, z and y, that
satisfy ged(n,m) = 2 X n+y x m. In our case, we
desire to compute the multiplicative inverse of n
modulo m. Since we always choose m to be prime,
we obtain ged(n,m) =1 = z X n+y x m. Reduce
both sides of this equation modulo m to obtain:
zxn=1 (modm),andsoz=n (modm). In
fact, the optimal algorithm for modular inversion
seems to be to build a table for small values for the
extended Euclidean algorithm, and then to use this
table instead of computation in the final stages of
the algorithm. Recall that number of iterative calls
to the iterative version of the extended Euclidean
algorithm grows logarithmically with the size of its
inputs. This means that each iterative call reduces
the inputs to the next iterative call approximately
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by a constant factor.* Thus, a sizable fraction of
the total calls are done on relatively small sized in-
puts, making it clear that tabulating small values
can lead to a considerable speed up. Such an im-
plementation for an EICG has been written by Ot-
mar Lendl of the pLab group, and this code serves

as the basis for our own software implementation,
(Lendl 1997).

5 FPGA IMPLEMENTATION

An FPGA is a very general piece of hardware with
many logical gates and pathways. A user can de-
sign a rather arbitrary circuit that can then be
downloaded onto the chip to permit the rapid ex-
ecution of the function instantiated by the circuit.
In addition, at a later time, a new circuit can be
downloaded allowing for new computations. FP-
GAs are used in many research and industrial set-
tings as they permit one to produce a “near hard-
ware speed” implementation of a performance crit-
ical circuit without the cost of fabricating a spe-
cial purpose chip, (Rahimi & Ali 2000). This was
one of many reasons why we decided to implement
modular inversion on an FPGA: to obtain faithful
estimates of optimal running times for modular in-
version in order to understand the optimal runtime
potential of ICGs.

We implemented inversion modulo 2°' — 1 on
a Xilinx XC4010XL-PC84CMN9749 FPGA board.
Our design was written in the Very High Speed In-
tegrated Circuit Hardware Description Language
(VHDL), and was compiled and loaded onto the
Xilinx board using Xilinx Foundation Series Soft-
ware version 2.6.3 The algorithm we implemented
was the binary variant of the extended Euclidean
algorithm, (Knuth 1981). This variant proceeds
without the division step used in the modular re-
duction step in the ordinary extended Euclidean
algorithm. Instead of dividing the numbers, ma-
nipulations that iteratively reduce their values in
appropriate ways are accomplished with bit-level
shifting and addition of the numbers as repre-
sented in binary. The the binary extended Eu-
clidean algorithm not only provides us with an ef-
ficient means of computing modular inverses, but
the bit manipulation aspects of the algorithm make
it much easier to implement as a digital circuit. It

%In this case, each call to the extended Euclidean al-
gorithms for the GCD reduces the size of the inputs by
approximately the “Golden ratio,” (Cormen, Leiserson, &
Rivest 1990).

3Space constraints within this paper prevent
us from including more detailed results. The
optimized  software implementation, the VHDL
code, a circuit schematic, and more detailed tim-

ing results are available on the web at the URL:
http://www.cs.fsu.edu/~mascagni/research/FPGA.




is important to note; however, that in software, the
ordinary extended Euclidean algorithm is faster
than it’s binary counterpart. However, implement-
ing a circuit for dividing two numbers, which is
required in the ordinary extended Euclidean algo-
rithm required far too many logic gates than were
available on our FPGA. In fact, it is our opinion
that an optimal FPGA implementation of the ordi-
nary extended Euclidean algorithm will never be a
viable modular inversion competitor for an FPGA
implementation of the binary extended Euclidean
algorithm.

The other choice we could have made for imple-
menting inversion on the FPGA is to implement
modular multiplication, modulo m. With modu-
lar multiplication and the “square and multiply”
algorithm, one could obtain a fast inversion im-
plementation that required only O(log, m) mod-
ular multiplies due to the fact that z™2 z
(mod m). This is asymptotically the same cost
as with the Euclidean algorithm; however, im-
plementing modular multiplication on an FPGA
poses certain problems of its own. If the prime
modulus, m is fixed, then one can “hardwire” an
efficient algorithm for modular multiplication that
does not require integer division. For example, for
moduli close to powers of two, multiplication may
be implemented with only binary shifts and adds,
and so in these cases an FPGA implementation
will be relatively easy to design, and will be ex-
pected to be comparable in efficiency to the ex-
tended binary Euclidean algorithm FPGA imple-
mentation. However, to implement a general in-
version routine using an arbitrary, but bounded,
modulus requires implementing integer division.
Above, we rejected using integer division due to
its complexity in an FPGA design, and so we
will not even attempt a comparison with this in-
version method with our FPGA implementation
of the extended binary Euclidean algorithm. In
addition, it is important to comment that even
though we chose to use a Mersenne prime mod-
ulus, m = 23! — 1, one of the most efficient in
terms of shift and add modular multiplication, as
our modulus, our extended binary Euclidean al-
gorithm implementation allows inversion with re-
spect to any prime modulus that fits in the initial
31-bit register. Indeed, if we modified our design
to include a 64-bit register for m and z, then we
would have a general FPGA inversion implemen-
tation for moduli up to 2% — 1. Thus, using the
extended binary Euclidean algorithm for inversion
provides a general FPGA solution for the EICG
for arbitrary prime moduli.

The maximal delay of the last (31st) bit of
the inversion through our circuit ranged from 240
nanoseconds to 410 nanoseconds. This was com-
pared to a range of 1.9 useconds to 2.5 useconds for
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the optimal software implementation running on a
550 megahertz Pentium IIl workstation running
Linux. The FPGA result was obtained through
direct measurement of delays in the Xilinx FPGA
system; however, as yet we do not have a complete
software/FPGA implementation of the full EICG
available for measurement. We hope to have such
a system in place in the very near future, and will
then make total EICG generation timings avail-
able on our web site. Thus, the range of speedups
that we see in our FPGA implementation over the
optimal software implementation run from a fac-
tor of 4.6 to a factor of 10.4 over the optimal soft-
ware implementation. This is already a substantial
speedup; however, it is important to mention that
the particular Xilinx chip that we used has a clock
speed of only 24 megahertz. While it is typical
that current FPGAs have clock speeds much slower
than the contemporary, high-end, microprocessors,
the factor is usually smaller than the approximate
factor of 23 seen here. Typically, FPGAs have
clock speeds a factor of 10 smaller than current,
high-end, microprocessors. Thus, we expect that
our current VHDL design will find a stable FPGA
implementation that is a factor of 10 to 20 faster
than an optimized software implementation.

6 CONCLUSIONS AND REMARKS ON FU-
TURE WORK

We have discussed the implementation of modu-
lar inversion on an FPGA system to improve the
performance of the EICG. The overall simulated
performance increase of our FPGA implementa-
tion is a factor of 4 to 10 over that of an opti-
mal software implementation using thc modulus
m = 23! — 1. Moreover, there is the expcctation
that with more current FPGA hardware, a fac-
tor of 10 to 20 improvement may be scen over the
software performance executed on state-of-the-art
microprocessors.

The motivation for our project is many-fold.
First, we have an intrinsic desire to improve the
EICG to make it a more acceptable PRNG for
general Monte Carlo use. Second, we wish to
complete the EICG’s inclusion in the SPRNG li-
brary. As mentioned above, we currently have
only one PRNG in SPRNG based on a nonlinear
modular recursion. In addition, one of the design
criteria for SPRNG is the exclusive use of parame-
terized generators. Another very important prin-
ciple in SPRNG is that SPRNG purposely provides
the user with a wide variety of qualitatively dis-
tinct PRNGs. The reason for this is due to the
fact that Monte Carlo computations are numeri-
cal experiments with stochastic components that
cannot be completely controlled in the sense of




experimental science, and that there is no single
PRNG that provides correlation free numbers to
all Monte Carlo applications. Thus, with a wide
variety of qualitatively distinct PRNGs a user can
redo a computation to rule out empirically that
an aberrant numerical result is due to an unfortu-
nate interaction between their Monte Carlo appli-
cation and their particular PRNG. Having more
generators with distinct qualitative and quantita-
tive properties provides the user with more choices
for PRNG controls in their Monte Carlo experi-
mentation. We feel that this is our most important
reason for wanting to include the EICG in SPRNG.

Another motivation for the implementation of
an FPGA accelerated version of the EICG is our
access to very particular new high-performance
computing architecture. An advanced prototype of
the SRC Computers, Incorporated SRC 6 machine,
(SRC Computers 2000) is currently installed at
the Center for Computational Science at the Oak
Ridge National Laboratory in Tennessee, USA.4
The most important architectural feature of the
SRC 6 machine, from our point of view, is that
it has Lucent Technologies FPGA chips installed
as coprocessors within its otherwise conventional
distributed-memory multiprocessor design. The
reasons for FPGAs being incorporated into the
SRC 6 machine are partly based on the expected
customers for this machine. Since the cost of devel-
oping and testing an FPGA function is very con-
siderable, it is expected that the typical FPGA-
accelerated application will compile a complicated
function that is used in almost every pass of a long
inner loop. This is exactly the computational con-
text of our EICG application. Thus, we feel that
this PRNG application is very appropriate to test
the capabilities of this machine.

It is important to note that even though we have
developed our digital design for modular inversion
on a Xilinx development system for use on Xilinx
chips, the design is completely specified in VHDL.
Thus, the actual design should be totally portable
to the particular Lucent FPGA chips used on the
SRC 6 prototype. The only issue, that we have not
had the opportunity to investigate, is whether or
not the spatial, logic, gate, and wire constraints of
our Xilinx implementation, that will be implicitly
enforced in the Xilinx development system, will be
totally compatible with the development software
and hardware for the Lucent FPGA.

The project described here is, in fact, part of
a larger interest of one of the authors (SR) in
developing the hardware and software infrastruc-
ture for FPGA acceleration in personal computers
and computer workstations, (Rahimi & Ali 2000).
Thus, we expect to not only provide a unified im-

4The name, SRC Computers, is taken from the initials
of the company’s late founder, Seymour R. Cray.

plementation of the EICG within SPRNG that can
use available FPGA hardware, but we will run this
version of SPRNG both on the Oak Ridge SRC 6
machine as well as on machines that have been fit-
ted with special FPGA accelerator boards. Besides
helping popularize the EICG, we also hope to help
popularize the generic use of FPGA acceleration
in general scientific computing.
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