AN ANALYSIS OF THE PARALLEL COMPUTATION
OF ARBITRARILY BRANCHED CABLE NEURON MODELS*

JOSEP-L. LARRIBA-PEY+, MICHAEL MASCAGNI{,
ANGEL JORBA§, AND JUAN J. NAVARRO{
tDEPARTAMENT D’ARQUITECTURA DE COMPUTADORS,
UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA, SPAIN
t{SUPERCOMPUTING RESEARCH CENTER LD.A.

BOWIE, MARYLAND, USA
§DEPARTAMENT DE MATEMATICA APLICADA 1

UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA, SPAIN

SRC-TR-94-134

November 1, 1994

Abstract. We present and analyze a parallel method for the solution of partial differential equation
models of the nervous system. These models mathematically are one-dimensional nonlinear parabolic
equations defined on branching domains. Implicit methods for these equations leads to numerical solu-
tion of diagonally dominant almost tridiagonal linear systems at each time step. We first review some
exact methods for the solution of these linear systems that includes an Exact Domain Decomposition.
This EDD leads to the solution of many tridiagonal linear systems one for each branch. The sizes
of these systems is equal to the number of grid points on the branch. Since the branches of realistic
neurons vary widely in size, the decomposition leads to a very poor a prioriload balance. This problem
may be solved with the Overlapped Partition Method, a method for decomposing large diagonally
dominant tridiagonal systems. We describe and analyze an algorithm based on EDD and OPM that
can be load balanced.

Key words. Nerve modeling, partial differential equations, numerical method, domain decompo-
sition, parallel algorithm, vectorization

AMS(MOS) subject classifications. 65C06, 65M55, 65Y05, 92C20

* Work supported by the Ministry of Education and Science of Spain (CICYT TIC-880/92), the
CEE (ESPRIT Project APPARC 6634) and by CEPBA.

1

1

1. Introduction. Considerable effort has gone into the numerical solution of re-
alistic models of the nervous system [l, 2, 4, 8, 9, 13]. Some of the most efficient
and accurate of these methods are based on implicit finite-difference solutions of one-
dimensional nonlinear parabolic partial differential equations (PDEs) that capture phe-
nomena including the action potential and repetitive firing. The spatial domains of
these one-dimensional PDEs reflect the morphology of realistic neurons and so are ex-
tensively branched. This leads to almost tridiagonal systems to be solved at each time
step for an explicit solution to the PDEs. The description and analysis of a parallel
algorithm for these almost tridiagonal systems is the purpose of this paper.

The plan of the paper is as follows. In §2 we will describe the PDE models of
nerve conduction that we wish to solve. In addition, we will briefly review their implicit
finite-difference discretizations. We then describe the geometry of the computational
domains of interest and will derive the almost tridiagonal linear systems that of interest.
In §3 we reference a serial algorithm for the solution of this almost tridiagonal linear
system based on a reordering of the unknowns. We also explain an Exact Domain
Decomposition algorithm for this system based on breaking the neuronal domain into
problems to be solved on individual branches, [10]. The linear systems on the branches
are simple diagonally dominant tridiagonal systems; however, since a neuron’s branches
vary considerably in length, the sizes of these systems also vary. This inhibits an «
priori load balance of the parallel computation. In §4 we propose a solution to load
balancing by using the Overlapped Partition Method, a method for decomposing large
diagonally dominant tridiagonal systems, to produce a more uniformly sized set of
tridiagonal systems. We describe how to achieve an a priori load balance with the
addition of OPM and we analyze the overall algorithm’s complexity. In §5 we use
some results from the analysis of OPM to improve the other phases of EDD. In §6 we
summarize our results and conclude.

2. The Mathematical Model of Neurons. It is believed that the computa-
tional prowess of the nervous system is due to complex activity in neurons. This com-
plex activity includes, among other activities, ensemble activation, the propagation of
action potentials, and the repetitive firing of neurons, [12]. Ordinary differential equa-
tions models of activity can often capture much of this behavior, but experience teaches
that the most faithful models to date are PDE models, [8]. The basic form of these
equations is:

ov _a 0’V

(2.1) 9 = 2R 02

_gV
2R

equation, [11]. If g is a constant, then this linear cable equation is a valid PDE model

By scaling x — = and t — t/C in the above equation one can obtain the cable
of the dendrites and a further change of variables in V reduces (1) to the heat equation.
For axons g = g(V,z,t,...) is a nonlinear conductance and no such scaling in V is
possible and then (1) is nonlinear parabolic PDE.

Popular algorithms for the numerical solution of (1) are finite-difference methods,
[8]. The need to resolve spatially the action potential places an upper bound on the

2

scaled Az. Thus an explicit solution of (1) must use a step-size that satisfies At <
K&(f‘wﬁ. This is overly restrictive and begs the use of an unconditionally stable implicit
method. Using implicit methods requires the solution of a linear or perhaps a nonlinear
equation at each time step. Different forms of nonlinear conductance require different
methods of solution, [9], thus let us assume that we can advance our implicit finite-
difference solution one time step by solving a single linear system.

If we consider the simplest case: solving the linear cable equation on a single
one-dimensional domain, then the matrix for the linear system obtained is diagonally
dominant and tridiagonal. If we use a backward-Euler time discretization and ignoring
boundary conditions, the matrix is Toeplitz with diagonal 1 4+ 2\ + ~ and off diagonals
—\ where A = aAt/2RC(Axz)? and v = gAt/C. The morphology of biological neurons
requires that we consider heavily branched one-dimensional domains. This leads to
linear systems that are almost Toeplitz with extra off diagonals that couple the different
branches together at branch points. An example showing a branching geometry and
the associated linear system can be found in [10]. The purpose of this paper is the
description and analysis of a double domain decomposition algorithm for the parallel
solution of these types of linear systems for the complicated geometries found in the
nervous system.

3. The EDD Algorithm. Real neurons are extensively branched. In fact, the
anatomy of real neurons includes an extensively branched dendritic region that con-
verges onto a single cell body. The cell body then emanates a lightly branched axon
that ends in other heavily branched presynaptic regions. The linear system correspond-
ing to an explicit finite-difference solution of such an axon is still diagonally dominant,
but is very complicated indeed.

An algorithm that reduces the linear system from any loop-free neuron geometry
into a logically single diagonally dominant tridiagonal system was proposed and is based
on a careful numbering and reordering of the unknowns in such a system, [3, 8]. This
reordering algorithm will not be described here, but it has major two shortcomings:
(a) the algorithm is equivalent to Gaussian elimination without pivoting and hence is
hard to vectorize/parallelize, and (b) the algorithm precludes modeling neurons with
electrical synapses since their geometry is not loop free. These defects motivated an
exact domain decomposition algorithm, [10] based on decomposing the linear system
on the entire neuron into subproblems solved only on the branches and then only at the
branch points.

All branches are connected to at least one branch point, some to two. This obser-
vation motivates the main idea behind the algorithm, namely that the solution along
a branch is a superposition of at most three solutions: (i) the branch equations with
branch points assumed zero; (ii) the solution with the right-hand side zero and the “left”
branch point assumed one; and (iii) the homogeneous “right” branch point solution. Af-
ter obtaining the solution of these tridiagonal system one creates a linear system for
the branch point values. This equation is neither positive definite nor symmetric and
has the sparsity pattern of the adjacency matrix for the graph of the neuron geometry.
The solution of the branch point equation then gives proportionality constants to form

3

the linear combinations of the branch tridiagonal system solutions. For more details
see [10].

To review, the almost tridiagonal system can be solved by a decomposition of the
domain into K unbranched domains of size ny (for 1 < k < K). The solution of the
linear system with the domain decomposition method is found in the following way:

A) Initialization: In this phase, K to 2K independent tridiagonal systems have to
be solved. These systems can be solved in parallel with Gaussian elimination without
pivoting. Each branch has one of these systems Epyr = by if it is connected to one
branch point and two systems Eryr = by and Eyz, = vy if it is connected to two branch
points. These are the “right” and “left” homogeneous solutions.

B) Iteration: At each time step ¢ do:

B.1) Solve K independent tridiagonal systems Ekdg) = xgj_l) where Fj, are di-
agonally dominant in structure but different in size. These K systems can be solved
independently in O(ny) operations via Gaussian elimination.

B.2) Using part of the solutions of step B.1, solve a sparse system of equations
for the branch points P;vl(f) = :cl(f_l) where xl(f) is the solution vector of the branch
points at step 2. This system is approximately of order K, and has no special structure.
The matrix P represents a condensation of the unknowns in the problem onto only the
branch points.

B.3) Perform K general axpy operations :cgf) = dgf) + 2y, + :cgi)zk. Here z() and
(1)

ch are the solution to branch points r and [adjacent to branch k. These K operations

can also be performed in parallel giving :L’Ej), the overall solution at time step .

While we think of EDD as an algorithm for the solution of a particular type of
linear system, this linear system arises from a time-dependent nonlinear PDE. Thus the
coefficient matrix can change each time step and so the matrices Fj and P may also
change. However, many of the K branches are dendritic and are therefore governed
by linear PDEs. Here the K} matrices do not change and this provides for potential
savings. This implies that the vectors y; and z; will remain constant throughout the
computation, and so can be computed once and stored. In Hines” algorithm, no such
savings are realized. We should also note that if a uniform spatial discretization is
made where the cable equation constants A and v are made identical along a dendritic
branch then y; and z; will be reflections of one another on that branch. Moreover, if
A and ~ are the same along all the dendritic branches, then if one computes and stores
yr, for the longest dendritic branch, measured in grid points, all of the y;’s and z;’s on
the shorter branches are simple restrictions to this reference solution. This provides
additional initialization savings.

Some comments on the EDD algorithm are necessary. Most important is the obser-
vation that EDD allows only limited a prior: load balancing. The most time consum-
ing computations are B.1 and B.3. These are performed in parallel on the individual
branches and require O(ny) operations. Anatomy and subsequent discretization give
us the ny’s, the branch lengths. Determining an a prior: load balance on II processors
requires partitioning the nj’s into II subsets with sums as close to A = |¥, ni /1] as
possible, in general an NP-hard problem. To make matters worse, axonal branches are

4

usually much much longer than typical dendritic branches potentially making the best
possible a priort load balance very poor. In the case that the longest axonal branch
is smaller than A there is no hindrance to an a priori load balance. However, when
the longest axonal branch is larger than A, a method that allows further subdivision
of branches into smaller problems is required. This situation occurs especially on a
massively parallel processors where Il is large.

4. A Further Decomposition via OPM. We wish further to subdivide the
solution of a single tridiagonal system into smaller sized problems to assist in load bal-
ancing. This can be accomplished with the Overlapped Partition Method proposed
for the vectorization of diagonally dominant tridiagonal systems, [6]. OPM has been
shown to be faster than other methods, such as Divide and Conquer, on vector com-
puters, [5, 7] and appears to be very promising on parallel computers as well, [5]. In
OPM, one decomposes a long diagonally dominant tridiagonal system into several over-
lapping tridiagonal systems that can be solved independently. The overall solution to
the long system is made up of the individual solutions. Usually, the overlapped un-
knowns are taken from the first system they appear in, but this choice is not crucial.
[teration of OPM is a convergent overlapping Schwartz domain decomposition for a
one-dimensional parabolic PDE. However, the interesting fact is that by choosing the
overlap correctly this decomposition is as accurate as one desires in a single iteration.
This fact should not astonish as the linear systems corresponding to elliptic PDEs do
not have this property while those from parabolic PDEs do.

Let us state the conditions by which we can determine the overlap as a function
of the desired accuracy in the overall solution. First define a measure of the diagonal
dominance of the tridiagonal system with typical equation e;z;_ 1 + d;z; + fiziz1 = b;

by 6 = min; |e,||c_l|f|| At In a uniform linear backward-Euler discretization we clearly have

§>1lasd=(1+2A+7)/(2)), and so 6 = 1 + O(A™') > 1. Experience with the

backward Euler discretization shows that one can use a value of A as large as 5 or 10

and still obtain qualitatively good results. However, with the unconditionally stable
Crank-Nicolson method, a value of A & 2 is more appropriate as larger A values lead
to unphysiological oscillations in these equations. With Crank-Nicolson we also have

§=14+0(A"") > 1. It is easy to bound the solution to such a tridiagonal system by:
(4.1) o= llello = o

With g we can prove that for an accuracy ¢ we require an overlap no smaller than m
where m is defined by the following bound:

(19) s [10;5_1 log[s(l ;5—2)”

Notice that the value of m can be computed a priori and so can be hard coded into a
computation.

The use of OPM is only required to decompose the extremely long branches to
assist in load balance. It is obviously not desirable to use OPM to slavishly decompose

5

every system into subproblems of exactly the same size. In fact, if branch k has ny < 2m
than OPM cannot be applied. Also if we have a branch that is decomposed by OPM
into j subproblems, then there are (j — 1)m extra overlapped variables. Since these
overlapped variables appear in tridiagonal systems the extra work required to solve this
branch equation is O((j — 1)m). However, this is only O(m) extra parallel work.

5. More Parallelism from OPM. A consequence of the analysis in OPM is
further reduction in the work required in algorithm’s initialization as well as step B.3.
In addition, this same analysis gives us criteria for when a branch point equation can
be considered diagonal. Such a branch point is decoupled from the rest and can be
computed independently.

If we consider the special solutions, ¥, and zz, on linear branches, these must be
combined with other solutions at each time step. It has been proved for such systems,
that only the first m elements of these solutions are larger than ¢ with m defined by,

[6]:

(5.1) m = [M

1
log 6—1 + -‘

This information helps us during both initialization and B.3 as follows. Suppose we
have an @ priort bound on the branch point voltages, the multipliers of y; and z; in
step B.3. Call this bound V. If we calculate m from equation (4) with ¢ replaced by
V x ¢, we will not need more than the first m unknowns in y; and z;. Thus we only need
compute these many unknowns initially. In addition, since only the first m unknowns
in y, and z; are numerical significant, we need only combine these many unknown in
the axpy computations in step B.3. This saves work in steps A and B.3.

The matrix P from step B.2 represents the coupling between branch points. In [10]
it was shown that this coupling is the value y;({), i.e. the minimum value of the special
solution. Equation (4) tells us how big this special solution can be with m interpreted
as the branch length in grid points given the bound V. When equation (4) predicts a
sufficiently small value for y;(€), that unknown becomes decoupled and may be solved
in parallel to the rest of the unknowns.

Since equation (4)’s behavior is crucial to this extra parallelism, we provide a table
that contains values m for a small number of values for ¢ and 6. The value of ¢ is
computed from A assuming a uniform backward Euler discretization with v = 0.

‘ m e=10"*|e=10"7 | e=1071¢
A=1—=6=1.5 22 39 90
A=5—=6=1.1 107 180 397

A=10—6=1.05 223 364 789

6. Conclusions and Open Problems. This paper has presented the details of
a parallel algorithm for solving a special linear system. This system arises from the
implicit finite-difference solution of one-dimensional parabolic PDEs on extensively

branched domains. This sort of problem arises in the simulation of realistic neuron
models. The algorithm takes advantage of two noniterative domain decompositions.
The first, EDD breaks the problem variables into branches and branch points. The
branches lead to diagonally dominant tridiagonal systems which determine the values
in an equation to be solved for the branch points. The wide range of lengths in realistic
branch points motivates the use of the OPM to further partition the longest branches.
The overall algorithm requires O(3", nx) arithmetic operations, equal to the operation
count for the optimal serial algorithm and provides considerable opportunities for par-
allelism. In addition, the analysis of OPM produces several additional savings as well
as more opportunities for parallelism in the second phase of EDD.

Currently, EDD is part of the Genesis simulation package available from the Di-
vision of Biology at Caltech, [13]. It is hoped that a fully parallel version of Genesis
will appear that incorporates the entire algorithm described in this paper. Another
application for just the OPM in this application domain is as a method of decompos-
ing Hines’ serial algorithm for parallelism. While the asymptotic cost of a parallelized
Hines’ algorithm would be the same as our algorithm, it may prove more useful on
large-grained implementations.

REFERENCES

[1] J. W. Cooley and F. A. Dodge, Digital computer solution for excilation and propagation of the
nerve impulse, Biophys. J., 6 (1966), pp. 219-229.

[2] F. A. Dodge and J. W. Cooley, Action potential of the motorneuron, IBM J. Res. Dev., 17
(1973), pp. 219-229

[3] M. Hines, Efficient computation of branched nerve equations, Int. J. Bio-Medical Computing, 15
(1984), pp. 69-76.

[4] A. L. Hodgkin and A. F. Huxley, A gquantitative description of membrane current and its
application to conduction in the giant azon of Loligo , J. Physiol., 117 (1952), pp. 500-544.

[5] J.-L. Larriba-Pey. Tridiagonal Systems on Parallel Computers. 3rd Mons Workshop on Parallel
Computing, Mons (Belgium), September 23-34 1993.

[6] J.-L. Larriba-Pey, A. Jorba and J. J. Navarro. A Parallel Tridiagonal Solver for Vector Unipro-
cessors, STAM Conf. on Par. Proc. for Sci. Comp., Norfolk, 1993, pp.590-597.

[7] J.-L. Larriba-Pey, J. J. Navarro, O. Roig and A. Jorba. A generalized vision of some parallel
bidiagonal systems solvers. Proceedings of the Intl. Conf. on Supercomputing 1994, ACM
Press, pp. 404-411.

[8] M. Mascagni, Numerical methods for neuronal modeling, in Methods in Neuronal Modeling, C.
Koch and I. Segev (Eds.) MIT Press, Cambridge, MA, pp. 439-484.

[9] M. Mascagni, The backward Euler method for numerical solution of the Hodgkin-Huzley equations
of nerve conduction, SIAM J. on Num. Anal., 27 (1990) pp. 941-962.

[10] M. Mascagni, A parallelizing algorithm for computing solutions to arbitrarily branched cable
neurons, J. of Neuroscience Methods, Elsevier Sci. Publishers 36 (1991), pp. 105-114.

[11] W. Rall, Core conductor theory and cable properties of neurons, in Handbook of Physiology: The
Nervous System, Vol.1, Kandel, E. R. Brookhardt, J. M. and V. B. Mountcastle (Eds.),
Williams and Wilkins, Co., Baltimore, MD, pp. 39-98.

[12] G. M. Shepherd, The Synaptic Organization of the Brain, Third Edition, Oxford University
Press, New York, Oxford (1990).

[13] M. A. Wilson and J. M. Bower, The simulation of large-scale neural networks, in Methods in
Neuronal Modeling, C. Koch and I. Segev (Eds.) MIT Press, Cambridge, MA, pp. 291-333.

