Techniques for Testing the Quality of
Parallel Pseudorandom Number Generators*

Steven A. Cuccaro Michael Mascagni Daniel V. Pryor

Abstract
Ensuring that pseudorandom number generators have good randomness properties is
more complicated in a multiprocessor implementation than in the uniprocessor case. We
discuss simple extensions of uniprocessor testing for SIMD parallel streams, and develop
in detail a repeatability test for the SPMD paradigm. Examples of the application of
these tests to an additive lagged-Fibonacci generator are also given.

1 Introduction

Random numbers are used in applications ranging from scientific simulations to statistical
sampling procedures. The impracticality in most cases of using true random numbers led
to the development of pseudorandom number generators (PRNGs). In the course of this
development, testing procedures were designed to ensure that the necessarily deterministic
sequence of numbers produced by these PRNGs had analytical and statistical properties
which compared well with those of a true random stream. With the tests described by
Knuth [1] and Marsaglia [2, 3], an intelligent user can be reasonably confident that he can
pick a generator suitable for his purposes.

However, the tests described in the above references presuppose that only a single stream
of “random” numbers is needed. To run efficiently, a program designed for multiprocessor
computers will use multiple PRNGs to generate many streams simultaneously. Indeed,
several mnethods for generating these multiple streams have been proposed [4, 5, 6, 7]. This
parallelization produces new difficulties in ensuring random behavior. While multiple true
random streams would not have mutual correlation under any circumstances, this is not
guaranteed for PRNGs on a multiprocessor system.

In this paper, we describe some new requirements on PRNGs which arise from
parallelization. Simple rules that a generator must obey to satisfy these requirements
are given where possible; for the cases where there are no simple rules, or if the details of
the generator are not known to the user, we outline algorithms which can be used to test
that the generator behaves in the necessary manner. We also give some examples of these
tests as applied to the parallel pseudorandom number generator developed by the authors
(4], which is based on additive lagged-Fibonacci generators.

2 Single Processor Properties

Before we can discuss testing of parallel PRNGs, we must first determine the properties
which ensure that the generators have good behavior. We start by defining the desired

*Supercomputing Research Center/I.D.A., Bowie, MD, USA

o 970

280

properties of PRNGs in the most constrained case of parallel processing, which is the
uniprocessor case (equivalent to a collection of processors all simultaneously performing
the same operations on the same data). We can then relax the constraints successively to
yield the SIMD, SPMD and MIMD paradigms, and at each level define the characteristics
to be tested.

There are three basic properties that any PRNG should satisfy. The first of these is of
course “randomness”: the stream of numbers produced should be similar to a truly random
stream. Algorithms which compare various characteristics of pseudorandom streams with
the known random property are covered in detail in [1] and [2] for the single processor case,
and the results of applying these tests to many standard PRNGs are given. In particular,
Marsaglia subjects the additive lagged-Fibonacci generator to a suite of eight tests and
finds that it passes all but the birthday spacings test (and for sufficiently long lags passes
this test as well).

The second property is repeatability: precisely the same sequence of pseudorandom
numbers is returned when the initializing inputs to the generator are the same. (This
property is needed for testing and development of programs.) It would be difficult to
unknowingly design a generator without this property on a single processor, and testing is
trivial.

The third property is portability: given the same initial conditions the stream should
be the same on a variety of platforms. Portability is easily tested by running the generator
on different machines and comparing the results. Alternatively, portability is ensured if the
generator is either based on integer arithmetic and designed to give correct answers with
32-bit integers! or on integer or floating point addition/subtraction done to some fixed
precision less than or equal to the precision of all machines to be used?.

3 Requirements and Tests for SIMD

To satisfy the repeatability and portability requirements in the SIMD paradigm, we have
to guarantee that the results of a set of processes which call the parallel random number
generator do not change when the number of physical processors used by the calculation
changes. We can ensure portability if the parallel generator depends only on user-provided
parameters, by fixing all but one parameter to be the same on every process and using a
process index for the remaining parameter. If the user does not have this degree of control
over the generator, the best way to test for portability is simply to port the generator.
Using a program which generates a fixed number of processes, each of which calls the
PRNG, the condition is satisfied if the results of running this program depend only on the
initial conditions of the generator, and not the architecture or the number of processors in
the architecture.

The presence of multiple streams of random numbers requires us to generalize the
definition of randomness. Along with the requirement that the individual streams of
numbers seem random, we add the condition that the streams of random numbers generated
by each process should behave as if they were independent. A necessary condition for this
is that the correlation between the streams assigned to each process be small. With a small
number of PRNGs, each stream may be tested against the others individually, but this is
not practical when there are large numbers of processes. One way to measure the correlation

'Here we are assuming all architectures to use 32-bit or larger integers.

21t is worth noting that the differences between the streams produced on architectures in a case where
this condition is not fulfilled are likely to be small, at first.

281

in this case is to do the standard randomness tests, but instead of examining the numbers
generated by the PRNG associated with a single process at successive times, we examine
the numbers generated by all processes at a single time. The numbers can be examined in
any of the possible permutations of processor order, provided that the permutation chosen
does not depend on the values of the numbers being tested (otherwise any generator could
be made to fail any test by choosing a permutation which orders the numbers). The test
can be repeated at successive times. If the number of processes is small, the entire set of
numbers may be treated as one stream, otherwise the numbers generated at each time may
be tested individually and the results of the tests checked for deviations from the expected
value using a x? or Kolmogorov-Smirnov type test [1].

This type of test will inevitably involve some communication between processors, so a
choice which minimizes this is optimal. A simple example is to perform parallel runs testing
in processor order, as in the FORTRAN 90 program included in Appendix A. The runs test
compares the number and length of each monotonic increasing (or decreasing) sequence ~ a
run - in the stream examined with the theoretical distribution of runs in a random stream
(a run of length k occurs with probability % - ('EiT)' [1]). The program in Appendix A
compares the number generated in each processor to its neighbors to determine where runs
end, modifies the result of these comparisons to exclude dependence due to adjacent runs,
determines the size of the runs and tallies the number of runs of each length. Similar
programs have been created for other tests, such as the equidistribution test and the serial
test in n dimensions [1].

We have found that correct seeding of the generators is crucial to proper performance.
The parallel random number generator package assembled by the authors [4] was found to
fail a parallel runs test when seeded from an LCG sequence and from a scrambled version of
this sequence, but passes the test when seeded from a Tausworth generator. (The currently
available version of the generator is seeded correctly.) The correctly seeded generator also
passes the equidistribution test and the serial test in up to 7 dimensions. It is interesting
to note that the generator passes the birthday spacings test [2, 3] when examined across

processors, even though the stream of numbers produced on any single processor fails this
test.

4 Additional Requirements and Tests for SPMD/MIMD

There are important qualitative differences when we move on to the SPMD model. First,
the various random number streams may get out of synch, which makes the model for
testing correlation between streams that is given above less valid. A more accurate test is
to check the correlation between streams at all possible offsets. Since this is impractical
for generators with long periods, we can test at a selected number of offsets instead. A
remedy for this inability to check all possible offsets is to prove theorems about theoretical
measures of randomness for the method of generation used. These theoretical results often
allow inferences about correlations among streams at all offsets [9]. Second, we must make
sure that the structure of the generator does not hinder the repeatability of calculations.
This requires that the method of assigning generators to newly spawned processes be
deterministic and depend only on local information. In the SIMD case, this is not an issue,
since every process executes the same instruction simultaneously, and if additional processes
are created, they can be indexed in a deterministic manner and generators assigned to them
as above. In a SPMD model, the order in which each process executes an instruction is
not fixed, so indexing that depends on order of creation will result in spawned processes

282

receiving a different generator on each run of a program. (We note that the MIMD model
will be no more general than this, so it will not be necessary to treat it seperately.)

To test the repeatability properties of a generator in the context of process creation,
we have constructed a Monte Carlo simulation whose only function is to split at random,
generating a pseudorandom tree while running. If the parallel generator is constructed
properly, the generated tree will be independent of the number of physical processors
used by the program, and of the order in which created processes are executed on these
processors. A generator fails if the trees produced in two different runs with the same
parameters differ. In practice, this comparison is much too laborious for any but the
smallest trees. Instead, we examine the number of branch points at each level of the tree
and the total lengths of the branches to make sure that they are the same for many trials.
We also look at the number of processes executed on each processor at each level of the
tree to ensure that they are different, for otherwise the test is superficial.

This tree generator uses an idea similar to one described in [8]. For their pseudorandom
number generator, an LCG, they define two successor rules, so that each generated number
has a right successor and a left successor. They assume that the right successor sequence
is the one that is used most often by a process, and that the left sequence is used for
splitting processes or spawning new threads. Thus the use of a standard random number
generator in a single-processor sequential program corresponds to using the stream of right
hand successors of a given seed. A seed for a new stream is obtained by taking a left hand
successor at a particular node of the random tree.

For our purposes, if the generator to be tested has a provision for splitting (. e., a new
generator is initialized in some automatic way when a new process is created), this is made
use of; otherwise it is necessary to define some way of obtaining the new stream. If this
definition is inappropriate the parallel generator will fail the test. Once an initial seed for
the random tree is specified, the tree to be generated is given by three parameters: (i) a
granularity constant, G, which determines the probability that a thread will “die”; (ii) an
initial “fertility” rate, Fy, which is the level-0 probability at each time step of spawning
children divided by the probability of dying; and (iii) a multiplier & for a geometric sequence
describing the decline in the fertility rate as a function of the tree level. While the language
used here (“fertility”, “spawning children”, “dying” etc.), suggests an attempt to model
some real-world biological system, we have no such intent. We merely wish to generate
random trees of various shapes and sizes with some criterion for stopping, and the language
seems suited for describing that process.

At each level of the tree, the fertility rate will be

Fr=aF,_{ = aLFo ; where 0 < a < 1.

The granularity G is also the expected lifetime of each right sequence, or the expected
number of steps it will take; the probability that a thread will die is a constant G~ for all
levels L of the tree. At each level, the right sequences of that generation (L) will spawn an
expected F, number of children. Fy and o combine to control the spread and depth of the
tree. In particular, without the restriction on a, the simulation would not end.

We have used this code to test the behavior of our lagged-Fibonacci based parallel
generator [4]. For this generator, the “left successor” is provided by initializing a new
generator which obeys the same equation as its parent but by virtue of its different initial
conditions is on a different cycle. (The parallel generator has been designed to guarantee
that all generators produced in a run are on different cycles [9].) “Right successors” are
generated by stepping the generator in the usual fashion. Figures 1, which show the shapes

s o 1 s

}fmwr e LR TICF S ST BT

283

(c)

F1G. 1. Three trees generated by the program of section z. Different styles of line represent
ezecution on different processors. Figures la) and 1b) were generated with the same parameters but

on two different runs; figure 1c) was generated with different parameters.

of the partial trees generated with some sample parameters, illustrate the results of varying
the parameters of the program.

5 Conclusion

We have analyzed the additional properties that are required of pseudorandom number
generators for them to have good behavior when parallelized, and derived means of testing
for these properties. We found that it was not sufficient merely to use a good uniprocessor
generator, but that the initialization of the generators was important as well.

284

A FORTRAN 90 code for runs testing

¢ parameters: RUNSIZE,NPROCS

c serial integers: j, maxlen, temp, count(RUNSIZE)

c parallel integers/reals: hold, holdl

c parallel integers: context, index, ind1, ind2, kk, test
¢ parallel functions: pgen(), AND(), ANY(), SUM()

o

do j=1,RUNSIZE
count(j) = 0
end do

GET RANDOM NUMBERS, COPY TO RIGHT

hold = pgen()
hold1(2:NPROCS) = hold(1:NPROCS-1)

index = 0

RUNS UP - hold.lt.hold1
RUNS DN - hold.gt.hold1
where (hold.lt.hold1) index = 1
index(1) = 0

MAKE RUNS NON-OVERLAFPPING

ind1(2:NPROCS) = index(1:NPROCS-1)
test = AND(index,ind1)
do while (ANY(test).eq.1)

ind2(3:NPROCS) = index(1:NPROCS.2)

COUNT RUN LENGTHS IN PARALLEL

ind2 = index

‘context = 1

kk =0

maxlen = 0

do while (ANY(context).eq.1)
maxlen = maxlen 4 1
context(maxlen) = 0
ind1(2:NPROCS) = ind2(1:NPROCS-1)
where (indl.eq.1) context = 0
where (context.eq.1) kk = kk + 1
ind2 = ind1

end do

TALLY NUMBER OF RUNS OF EACH LENGTH
where (kk. gt RUNSIZE) kk = RUNSIZE

do }=1,RUNSIZE
temp = SUM(1,kk.eq.j.and.index.eq.1)

where (ind2.eq.0.and.test.eq.1) index = 0 count(j) = count(j) + temp

ind1(2:NPROCS) = index(1:NPROCS-1) end do
test = AND(index,ind1)
end do
References

(1]
(2]

D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed.
Addison-Wesley, Reading, Massachusetts (1981).

G. Marsaglia, A current view of random number generators, in Computing Science and
Statistics: Proceedings of the XVIth Symposium on the Interface, 1985, pp. 3-10.

G. Marsaglia, A. Zaman, and W. W. Tsang, Toward a Universal Random Number Generator,
Stat. and Prob. Lett. 8 (1990) pp. 35-39.

D. V. Pryor, S. A. Cuccaro, M. Mascagni, and M. L. Robinson, Implementation of a Portable
and Reproducible Parallel Pseudorandom Number Generator, to appear in proceedings of
Supercomputing '94.

F. W. Burton and R. L. Page, Distributed random number generation, J. Functional Program-
ming 2 (1992) pp. 203-212.

L. Deak, Uniform random number generators for parallcl computers, Parallel Computing 15
(1990) pp. 155-164.

R. P. Brent, Uniform Random Number Generators for Supcrcomputers, Proceedings Fifth
Australian Supercomputer Conference, 1992, pp. 95-104.

P. Frederickson, R. Hiromoto, T. L. Jordan, B. Smith, and T. Warnock, Pscudo-random trees
in Monte Carlo, Parallel Computing 1 (1984) pp. 175-180.

M. Mascagni, S. A. Cuccaro, D. V. Pryor, and M. L. Robinson, A Fast, igh Quality,
and Reproducible Parallel Lagged-Fibonacci Pseudorandom Number Generator, SRC Technical
Report 94-115.

'

coitgpaabied o

B
I

e 2

o

AR R b gt

NEE

