IMPLEMENTATION AND USAGE OF A
PORTABLE AND REPRODUCIBLE PARALLEL
PSEUDORANDOM NUMBER GENERATOR

DANIEL V. PRYOR
STEVEN A. CUCCARO
MICHAEL MASCAGNI

M. L. ROBINSON

Supercomputing Research Center, I.D.A. Supercomputing Research Center, L.D.A.

- 17100 Science Drive
Bowie, Maryland 20715-4300 USA

SRC-TR-94-116

March 15, 1994

ABSTRACT. We describe in detail the parallel implementation of an additive lagged-Fibonacci
pseudorandom number generator. Elsewhere, [8], it was shown how important properties of
these generators lead to an obvious parallel implementation based on deterministic seed-
ing. Seeds are calculated to select one of a large number of full-period cycles, or equivalence
classes. This “naive” implementation is computationally efficient and produces a high-quality,
portable, and totally reproducible parallel generator. A drawback of the “naive” implementa-

‘tion is that it produces sequences that have initial segments of poor quality. In addition, the

initial segments from the equivalence classes of different parallel processes are similar. The

~ simplest solution to this problem is rejected due to its computational cost. Instead, a different

seeding algorithm is described. The new algorithm can be viewed as an alternative enumer-
ation of the equivalence classes. The new algorithm is computationally more efficient and
avoids the quality problems of the “naive” implementation. We believe that this algorithm
solves the reproducibility problem for a far larger class of parallel Monte Carlo applications
than had been previously possible. In fact, this generator allows one to write code that is
reproducible independent both of the number of processors and the execution order of the
parallel processes. Finally, a library of portable C routines is described that implements these
1deas. These routines are available from the authors.

1991 Mathematics Subject Classification. 65C10, 65Y05.
Key words and phrases. random number generation, parallel computation, Fibonacci generator, MIMD,
SIMD, reproducible, portable, implementation.

Typeset by Aa4S-TEX

2 IMPLEMENTATION OF A PARALLEL PSEUDORANDOM NUMBER GENERATOR

1. Introduction.

In Knuth’s well known exposition on pseudorandom number generation [3]. several
methods of generation are considered. Among these is the additive lagged-Fibonacci pseu-
dorandom number generator:

(1) Ty = Ti—k + Ti—f (mod 2™), £>k,

which we shall denote as F(€,k,m). In Marsaglia’s empirical study of pseudorandom num-
ber generators [6], this generator was among many considered. Overall, it did well on all of
Marsaglia’s “stringent” tests, save for the “non-overlapping birthday spacing test.” How-
ever, Marsaglia noted that by choosing a generator with a large length, {, improvements
are seen in this test. It is important to note that while the lagged-Fibonacci generators did
have one shortcoming, in general they performed better than linear congruential generators
on the “stringent” tests.

This generator has a maximum possible period of (2¢ — 1)2™~! under certain easy to
check conditions, [7, 3]. Given these simple conditions, the maximum possible period 1s
obtained if and only if at least one of the initial ¢ residues modulo 2™ 1s odd. In other
words, if the least significant bits of the seed are all zero, the maximum possible period is
not obtained. For this generator there are (2¢ - 1)22(""1) seeds that satisfy the condition
for giving the maximum possible period. Since each of these seeds is in a cycle of maximum
possible period, there must be

(26— 126 ny(m-1)
2) E= —2
2~ 1)2m

different maximal or full-period cycles. Each of these full-period cycles will be called an
equivalence class (EC).

In a previous paper, (8], the authors described a way to enumerate all E ECs based on
the reduction of a seed from a given EC into a single unique seed representative of the
entire EC. In addition, an explicit construction of all of the EC representatives was shown
to have the form:

m.s.b 1.s.b.
b1 bm—2 ... b bo
O g ... O b()[__l Te—1
(3) ' : a) O | bog—2 | Te—2
O O ... Of by | =
0 0 Ces 0 b00 To

Here the ¢-bit long vector of least significant bits, bg, can be computed in advance for
F(£,k,m). We call this representation of F(Z, k,m), i.e, the bottom row of zeros and the
precomputed column of least significant bits, its “canonical form.” This canonical form
tableau leaves exactly (£—1)(m — 1) bits left to be specified to select one of the o(=1)(m—1)
ECs.

eral
pseu-

um-
1l of
OW-
ants
did

ors

to

1s
ler

1s
)i}

PRYOR, ET AL. 3

The simplest way to parallelize this generator is to associate the I'th parallel process
with EC number K. The numbering is done lexicographically in the rectangle of boxes
shown above. (Whether numbering is in row-column order or column-row order does not
matter.) This “naive” approach has certain advantages. If we associate the EC indices
with the nodes on a binary tree, any dynamic need for a new stream of pseudorandom
numbers may be filled using a successor node on the tree. This is a local computation and
can be implemented to be independent of the number of parallel processors and the order
of parallel execution, [8]. This approach is quite prudent from the quality perspective. as
the relationship between the ECs close on the binary tree minimizes the exponential sum
cross-correlation among the full-period sequences, [8].

However, starting all of the pseudorandom sequences from seeds that are in canonical
form leads to so-called “flat spots.” This 1s because the seeding values used for small
EC numbers are numerically small themselves. Thus the initial segments will start and
remain numerically small for an unacceptably long stretch. Worse than that, since all of
the ECs start from their canonical forms in the “naive” implementation, all of the ECs
will suffer from flat spots that are lined up with respect to their cycles. So not only is each
EC initially distorted, all of those with similar EC number will be similarly distorted. To
illustrate the phenomenon of flat spots, Figure 1 shows the normalized initial sequences of
two different ECs started from the EC canonical form.

The “naive” solution to these shortcomings in this simplest numbering scheme is to
apply a deterministic but pseudorandom run up in each EC canonical form. To discuss
this more concretely we recast equation (1) into a matrix recursion modulo 2™. First we
write X; = [Z4,T41,...Zr—¢4+1]% for the contents of the tableau at the tth step. We may
then write equation (1) as Xy = Ax;—; (mod 2™) with the £ x £ matrix A defined by:

k ¢

/00 0 0 1 0 0 0 1)

10 0 00 0 00 0

0 1 0 00 0 00 0

00 1 000 0 0 0

(4) A= |0 0 0 10 0 0 0 0
00 0 01 0 00 0

0 0 0 00 1 00 0

000 ..000..100

\0 00 ... 000 ..01 0/

Thus by run up we mean that if we are in EC number K, we seek to apply some pseu-
dorandom power of A to the EC canonical form to step it away from the flat spot. We
seek a pseudorandom function, f(-), so that we can apply Af(%) to this EC representative
before using it in a computation. Even with efficient powering algorithms and the tabu-
lation of certain special powers of A, this procedure is woefully inefficient. An alternative
approach is to renumber the ECs so that the first ECs chosen will not have flat spots and

4 IMPLEMENTATION OF A PARALLEL PSEUDORANDOM NUMBER GENERATOR

1.00 — 1T i ' T
0.80 —
0.60 —
0.40
0.20 —

0.00 0.50 1.00 1.50 2.00

1.00 — 1 : % I
0.80 |— '

0.60 —
0.40
0.20 (—

0.00 = !
0.00 0.50 1.00 150y -« 2.

1.00 [~—[

0.50 —

BN S |

0.00 —

-0.50 —

B

| | |

-1.00 =1 ' :
0.00 0.50 1.00 _ 1.50 2.00

FIGURES 1A, 1B, AND 1c. The initial sequence from two different
ECs started at their EC canonical form. Upper plot (1A) is with EC
number K = 0. Middle plot (1B) is with & = 1. Lower plot (1C) is the
difference between 1A and 1B. The units for the abscissa is £ x m and
the random numbers are scaled to be between 0 and 1.

that neighboring ECs will have very different representatives under the reordering. The
description and justification of an efficient algorithm for such a reordering of the ECs is
the main purpose of this paper. '

)R

o

PRYOR. ET AL. 5

The plan of the paper is as follows. In §2 we will describe an alternative seeding
algorithm for these generators. This new algorithm will be illustrated for the lagged-
Fibonacci generator with parameters { = 17, & = 5, and m = 32, that is, F(17.5,32).
This generator has E = 219° different ECs. In the alternative seeding algorithm a modulus
231 _ 1 linear congruential generator (LCG) is used to renumber the ECs, eliminating the
problem with flat spots. The only property used of the LCG is that it produces all 231 2
non-zero residues modulo 23! — 1 exactly once in its 23! — 2 long period. In §3 we describe
in detail the incorporation of the algorithm from §2 into a portable library for parallel
pseudorandom number generation. We include a discussion on the implementation’s use
to obtain Monte Carlo results that are independent of the number of parallel processors
and on the order of the execution of the independent parallel processes. This is especially
useful in applications such as neutronics, where certain types of “splitting” occur. In §4
we summarize the results and propose directions for further work. Finally, in an appendix
we include a list of subroutines and their calling sequences for the parallel library available
from the authors.

2. The Alternative Seeding Algorithm.

As mentioned above, the generator F(£, k,m) has 2(¢=1(m=1) distinct full-period cycles,
or ECs. These can be numbered naturally in an ¢-digit word, where each “digit” is radix

9m=1_Gych a number can be written as (€¢—2, €¢~3,- .., €1,€), Where e; is the coefficient

of 27(m=1)_Tf the generator tableau is in canonical form, then this “word” can be thought
of as the rectangle of bits in the upper left hand corner. Each of the 2(6=1){m—1) Jistinct
patterns of ones and zeros in that rectangle denotes a distinct EC.

There are two problems to consider in implementing a robust parallel generator which
makes use of this cycle structure. (1) How do we avoid the problem of correlation between
“neighboring” cycles, at least in the early part of their cycles? and (2) How do we accom-
plish the spawning of new ECs in such a (reproducible) way as to guarantee that no EC
will be spawned more than once? Our approach to these questions resulted in a library of
C routines that, for the sake of portability, fixes m to be 32 and gives the user several valid
choices for £ and k. We will describe the mechanics of the library with { = 17 and k = 5,
ie., F(17,5,32). |

Problem (1) is really an acknowledgment that when the 496-bit EC numbers of two
cycles differ by only a few bits, their outputs initially will be similar until the effects of
the matching bits propagate out of the most significant bit of the tableau. This does not
lessen the randomness properties of the individual ECs or their favorable full-period cross-
correlation, [8]. Each EC has good full period properties, and flat spots are expected in any
sufficiently long random sequence. The problem pointed to here is that with the “natural”
numbering of the ECs, we cause the flat spots of the lowest numbered ECs to appear at
the very beginning of their cycles, giving the initial appearance of both nonrandomness
and high cross-correlation.

For the particular lagged-Fibonacci generator, F/(17,5,32), the canonical tableau has

6 IMPLEMENTATION OF A PARALLEL PSEUDORANDOM NUMBER GENERATOR

the form:
m.s.b l.s.b.
b31 b30 B bl 0
8 O S O 0 T16
0 O ... O 0 T11
(5) O 0O ... 0Ol 1 |z
[O O 0 Tg
d o ... O 0 1
0 0 ... 0 0 To

In fact, the least significant bits of this tableau are the same as for the EC tableau for
the entire F(17,5,-) family. Several canonical least significant bit configurations for other
families of lagged-Fibonacci generators are listed in Table 1 at the end of this section.
The 16-by-31 upper left-hand rectangle of 496 bits is what we can arbitrarily fill to select
one of 2496 ECs. The bits to be specified are the 31 most significant bits of z; through
z16. For convenience, let us refer to these bits as the 16-long vector of 31-bit integers
s = (S16,515,---,92,81). In the “naive” implementation, the first EC was filled with
s =(0,0,...,0,1), and so on. '

We wish to reorder the ECs. To help us we will emaploy the LCG:

(6) 2 =[(24=1) = 7°2—1 (mod 23! — 1)

found in [9], to seed the 496 bits. So instead of filling the “first” rectangle as above, we
can fill it with s; = (I'1%(1),"4(1),...T?(1),I(1),1). ~ _
Similarly, for EC number 2, we have s; = (I''5(2),T4(2),...T%(2),1(2),2). Now the
contents of s; and s, are obviously very different from each other, as they arise from dif-
ferent subsequences taken from the cycle of a full-period LCG. Recall that a full-period
LCG with prime modulus, p, has period p — 1 and omits only one number. In this case
p = 231 — 1 is prime, so (6) has period 23! — 2 and omits 0. Therefore, if we need to
seed random number cycles (generators) for each of N < p processes, an initial seed of
sp = (I'¥(n),I%(n),...T?(n),I'(n),n) eliminates the “flat spot” problem and the initial
cross correlation of neighboring sequences. Furthermore, this form of initialization can be
individualized on a per-run basis by selecting a “global seed,” g, that maps each n to a dif-
ferent unique value 71, in the above expression. Thus for any particular computation, g is set
at the beginning and X, is initialized by first setting 71 = (n@®g)+1 (where “@” denotes the
bitwise exclusive OR operator) and then setting s, = (I''°(42),I''*(#),...T2(A),T(7),n).}
Note that the rightmost entry of s is n rather than #. There is no reason to prefer
one or the other in the present context, but we use n to conform to our usage in sub-
sequent discussions, where it does make a difference. This definition of 7 requires that

!Other mappings.of n to 7 are certainly possible.

A

