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7.6 RANDOM NUMBER GENERATION

7.6.1 METHODS OF PSEUDORANDOM NUMBER GENERATION

In Monte Carlo applications, and other computational situations where randomnegg
is required, one must appeal to random numbers for assistance. While it has beep
argued that numbers measured from a physical process known to be random should
be used, it has been infinitely more practical to use simple recursions that produce
numbers that behave as random in applications and with respect to statistical testg
of randomness. These are so-called pseudorandom numbers and are produced by
a pseudorandom number generator (PRNG). Depending on the application, either
integers in some range or floating point numbers in [0, 1) are the desired output from
a PRNG. Since most PRNGs use integer recursions, a conversion into integers in a
desired range or into a floating point number in [0, 1) is required. If ., is an integer
produced by some PRNG in the range 0 < z, < M — 1, then an integer in the range
0<z, < N-1,with N < M, is given by y, = [%xn_l If N « M, then
Yn = ZTn (mod N) may be used. Alternately, if a floating point value in [0, 1) is
desired, lety, = =, /M.

7.6.1.1 Linear congruential generators

Perhaps the oldest generator still in use is the linear congruential generator (LCG).
The underlying integer recursion for LCGs is

Tn =aTp-1+b (mod M). (7.6.1)

Equation (7.6.1) defines a periodic sequence of integers modulo M starting with z ¢,
the initial seed. The constants of the recursion are referred to as the modulus M,
multiplier a, and additive constant b. If M = 2™, a very efficient implementation is
possible. Alternately, there are theoretical reasons why choosing M prime is optimal.
Hence, the only moduli that are used in practical implementations are M = 2™ or
the prime M = 27 — 1 (i.e., M is a Mersenne prime). With a Mersenne prime or any
modulus “close to” 27, modular multiplication can be implemented at about twice
the computational cost of multiplication modulo 27,

Equation (7.6.1) yields a sequence {z ,} whose period, denoted Per(z,,), de-
pends on M, a, and b. The values of the maximal period for the three most common
cases used and the conditions required to obtain them are

a b M | Per(z,)
Primitive root of M | Anything | Prime | M —1
3or5 (mod 8) 0 2m 2m=2
1 (mod 4) 1 {mod 2) | 2™ 2m

A major shortcoming of LCGs modulo a power-of-two compared with prime

modulus LCGs derives from the following theorem for LCGs:
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THEOREM 7.6.1

Define the following LCG sequence: T, = axn_1 + b (mod M;). If M divides
M, theny, = =, (mod M) satisfies yn = ayn—1 + b (mod My).

Theorem 7.6.1 implies that the & least-significant bits of any power-of-two modulus
LCG with Per(z,) = 2™ = M has Per(y,) = 2*,0 < k < m. Since a long period
is crucial in PRNGs, when these types of LCGs are employed in a manner that makes
use of only a few least-significant-bits, their quality may be compromised. When M
is prime, no such problem arises.

Since LCGs are in such common usage, here is a list of parameter values men-
tioned in the literature. The Park—Miller LCG is widely considered a minimally ac-
ceptable PRNG. Using any values other than those in the following table may result
in a “weaker” LCG.

a b M Source
70 0 231 _ 1| Park-Miller
131 0 235 Neave
16333 | 25887 215 Qakenfull
3432 | 6789 9973 Qakenfull
171 0 30269 | Wichman—Hill

7.6.1.2 Shift-register generators

Another popular method of generating pseudorandom numbers is using binary shift-
register sequences to produce pseudorandom bits. A binary shift-register sequence
(SRS) is defined by a binary recursion of the type,

Tp =Tp—j, BTn—j, B B Tp—j,, N <je<-+<jr=¢ (7.62)

where @ is the exclusive “or” operation. Note thatx &y = z+y (mod 2). Thus the
new bit, z,, is produced by adding k previously computed bits together modulo 2.
The implementation of this recurrence requires keeping the last £ bits from the se-
quence in a shift register, hence the name. The longest possible period is equal to the
number of non-zero ¢-dimensional binary vectors, namely 2 ¢ — 1.

A sufficient condition for achieving Per(z,,) = 2¢ — 1 is that the characteristic
polynomial, corresponding to Equation (7.6.2), be primitive modulo 2. Since prim-
itive trinomials of nearly all degrees of interest have been found, SRSs are usually
implemented using two-term recursions of the form,

Tp = Tpn-t D Tp_g, 0<k<t. (7.6.3)

In these two-term recursions, k is the lag and ¢ is the register length. Proper choice
of the pair (¢, k) leads to SRSs with Per(z,) = 2¢ — 1. Here is a list with suitable
(¢, k) pairs:

Primitive trinomial exponents
5,2 | (7,) | (7,3) | (17,3) | (17,5 (17,6)
(31,3) | (31,6) | 31,7) | (BL,13) | (127,1) |(521,32)
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7.6.1.3 Lagged-Fibonacci generators

Another wéy of producing pseudorandom numbers uses lagged-Fibonacci geners.
tors. The term “lagged-Fibonacci” refers to two-term recurrences of the form,

Tn =Tp—k®Tn—¢, 0<k<{d, {764}

where o refers to one of the three common methods of combination: (1) addition
modulo 2™, (2) multiplication modulo 2™, or (3) bitwise exclusive ‘OR’ing of ;-
long bit vectors. Combination method (3) can be thought of as a special implemen-
tation of a two-term shift-register sequence.

Using combination method (1) leads to additive lagged-Fibonacci sequences
(ALFSs). If =, is given by

Tp = Tn—k +Tpn—¢ (mod 2™), 0< k<, (7.6.5)

then the maximal period is Per(z,) = (2¢ — 1)2m~L.

ALFSs are especially suitable for producing floating point deviates using the
real-valued recursion ¥, = Yn—k + Yn—¢ (mod 1). This circumvents the need to
convert from integers to floating point values and allows floating point hardware to
be used. One caution with ALFSs is that Theorem 7.6.1 holds, and so the low-order
bits have periods that are shorter than the maximal period. However, this is not nearly
the problem as in the LCG case. With ALFSs, the j least-significant bits will have
period (2¢ — 1)29=1, so, if ¢ is large, there really is no problem. Note that one can
use the table of primitive trinomial exponents to find (¢, k) pairs that give maximal
period ALFSs.

7.6.1.4 Non-linear generators

A recent development among PRNGs are non-linear integer recurrences. For exam-
ple, if in Equation (7.6.4) “o” referred to multiplication modulo 2 ™, then this recur-
rence would be a multiplicative lagged-Fibonacci generator (MLFG), a non-linear
generator. The mathematical structure of non-linear generators is qualitatively dif-
ferent than that of linear generators. Thus, their defects and deficiencies are thought
to be complementary to their linear counterparts.

The maximal period of a MLFG is Per(z,) = (2¢=1)2™~3, a factor of 4 shorter
than the corresponding ALFS. However, there are benefits to using multiplication as
the combining function due to the bit mixing achieved. Because of this, the perceived
quality of the MLFG is considered superior to an ALFS with the same lag, ¢.

We conclude by defining two non-linear generators, the inversive congruential
generators (ICGs), which were designed as non-linear analogs of the LCG.

1. The implicit ICG is defined by the following recurrence that is almost that of
an LCG

ZTn =aTp—1 +b (mod M). (7.6.6)

The difference is that we must also take the multiplicative inverse of z,_;,
which is defined by T;,—1 ,—1 = 1 (mod M), and 0 = 0. This recurrence
is indeed non-linear, and avoids some of the problems inherent in linear recur-
rences, such as the fact that linear tuples must lie on hyperplanes.
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2. The explicit ICG is
T, =an+b (mod M). (7.6.7)

One drawback of ICGs is the cost of inversion, which is O(log, M) times the cost
of multiplication modulo M.

7.6.2 GENERATING NON-UNIFORM RANDOM VARIABLES

Suppose we want deviates from a distribution with probability density function f(z)
and distribution function F(z) = [*_ f(u) du. In the following “y is U[0,1)”
means ¥ is uniformly distributed on [0, 1).

Two general techniques for converting uniform random variables into those from

other distributions are as follows:

1. The inverse transform method:

If y is U[0, 1), then the random variable F ~1(y) will have its density equal to
f(z). (Note that F~(y) exists since 0 < F(z) < 1.)

2. The acceptance-rejection method:

Suppose the density can be written as f(z) = Ch(z)g(z) where h(z) is the
density of a computable random variable, the function g satisfies 0 < g(z) < 1,
and C~* = [*_h(u)g(u)du is a normalization constant. If z is U[0,1), y
has density h(z), and if z < g(y), then z has density f(z). Thus one generates
{z, y} pairs, rejecting both if z > g(y) and returning z if z < g(y).

Examples of the inverse transform method:

1. Exponential distribution: The exponential distribution with rate A has f(z) =
Ae~*2 (forz > 0) and F(z) = 1 — e *%. Thus u = F(z) can be solved to
givex = F~1(u) = =A7'In(1 — u). Ifu is U[0, 1), then so is 1 — u. Hence
2z = —A~"!Inu is exponentially distributed with rate \.

2. Normal distribution: Suppose the z;’s are normally distributed with density
function f(z) = 7%6"2’2. The polar transformation then gives random
variables r = /27 + z3 (exponentially distributed with A\ = 2) and § =
tan~1(z2/21) (uniformly distributed on [—%, %]} Inverting these relation-

ships results in z; = /—2Inz; cos27z2 and 22 = +/—2In 1z, sin 2wz,; each
is normally distributed when z, and z are U[O, 1). (This is the Box—Muller

technique.)

Examples of the rejection method:

1. Exponential distribution with A = 1:
(a) Generate random numbers {U;}¥, uniformly in [0, 1], stopping at N' =
min{n | Uy2U 22U, < Un}.
(b) If N is even, accept that run, and go to step (c). If NV is odd reject the
run, and return to step (a).
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(c) Set X equal to the number of failed runs plus U (the first random num.
ber in the successful run).

2. Normal distribution:

(a) Select two random variables (V1, V2) from U0, 1). Form R = V2 + V2,
(b) If R > 1, then reject the (V}, V3) pair, and select another pair.

(© IfR <1,thenz = Vi4/ —2]—}—? has a N (0, 1) distribution.

3. Normal distribution:

(a) Selecttwo exponcntxally distributed random variables with rate 1: (Vy, Va).

(b) If Vo > (V1 —1)?/2, then reject the (Vy, V,) pair, and select another pair.
(c) Otherwise, V; has a N (0, 1) distribution.

4. Cauchy distribution: To generate values of X from f(z) =

1
A(i+z7) 0N —00 <
r < 00,

(a) Generate random numbers Uy, Us (uniform on [0, 1)), and set
=U; - - Y2 Us — %
() If Y2 + Y3 < , then return X = Y7 /Y. Otherwise return to step (a).

To generate values of X from a Cauchy distribution with parameters 8 and 4,

= —i————— for —00 < = < 0, truct X as above, and
f(=) 7B+ (z — 0)7] or —oo < & < 00, construct X as above, an
then use SX + 6.

7.6.2.1 Discrete random variables

The density function of a discrete random variable that attains finitely many values
can be represented as a vector p = (pg, p1,...,Pn—1,Pn) by defining the probabili-
ties P(x = j) = p; (for j = 0,...,n). The distribution function can be defined by
the vector ¢ = (co, ¢1,...,6n-1,1), where cj = ZLO pi- Given this representation
of F'(z), we can apply the inverse transform by computing z to be U [0,1), and then

finding the index j so that ¢; < < ¢;j41. In this case event j will have occurred.
Examples:

. (Binomial distribution) The binomial dxstnbutlon with n trials of mean p has
pi = (})P(L=p)"i, forj=0,.

(a) As an example, consider the resuit of flipping a fair coin. In 2 ﬂips, the
probablllty of obtaining (0,1,2) heads is p = (},3,1). Hencec =
(4, £,1). If = (chosen from U[0,1)) turns out to be say, 0.4, then “

head” is returned (smce <04< 3)

(b) Note that, when n is large, it is costly to compute the density and distri-
bution vectors. When n is large and relatively few binomially distributed
pseudorandom numbers are desired, an alternative is to use the normal
approximation to the binomial.
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(¢) Alternately, one can form the sum Y ., |u: + pJ, where each u; is
Ulo,1).

2. (Geometric distribution) To simulate a value from P(X = i) = p(1 —p)*™!

fori > l,use X =1+ [___lo_g_l{__‘,
log(1 - p)

3. (Poisson distribution) The Poisson distribution with mean A hasp; = M e /5!
for j > 0. The Poisson distribution counts the number of events in a unit time
interval if the times are exponentially distributed with rate A. Thus if the times
t; are exponentially distributed with rate A, then j will be Poisson distributed
with mean A when 3°7_ ¢; <1 < }:Z:l t;. Since t; = —A~1Inu;, where

u; is U[0,1), the previous equation may be written as HLO up > e >

HZ:S u;. This allows us to compute Poisson random variables by iteratively

computing P; = [T/, u: until P; < e™*. The first such j that makes this

inequality true will have the desired distribution.

Random variables can be simulated using the following table (each U and U; is-
uniform on the interval [0, 1)):

Distribution Density Formula for deviate
n
Binomial | p; = (’;)p’ (1-p"’ N WUi+p)
i=1
o
Cauchy flz) = pr g o tan(#U)
Exponential flz) = Ae™® ~2"nU
Pareto f(z) = ab® [zt b/Ut/e
Rayleigh flz) = :1:/06“"'2/2‘72 ov—inU

7.6.2.2 Testing pseudorandom numbers

The prudent way to check a complicated computation that makes use of pseudoran-
dom numbers is to run it several times with different types of pseudorandom number
generators and see if the results appear consistent across the generators. The fact that
this is not always possible or practical has led researchers to develop statistical tests
of randomness that should be passed by general purpose pseudorandom number gen-
erators. Some common tests are the spectral test, the equidistribution test, the serial
test, the runs test, the coupon collector test, and the birthday spacing test.




