Random Number Generators for Parallel Applications

ASHOK SRINIVASAN

National Center for Supercomputing Applications, University of Illinois at

Urbana- Champaign, Illinois
DAVID M. CEPERLEY

National Center for Supercomputing Applications and Department of Physics, University of

Lllinois at Urbana- Champaign, Illinois
MICHAEL MASCAGNI

Program in Scientific Computing and Department of Mathematics, University of Southern

Mississippi, Mississippi

1 Introduction

Random numbers arise in computer applications in several different contexts, such as : (i) In
the Monte Carlo method to estimate a many-dimensional integral by sampling the integrand.
Metropolis Monte Carlo or, more generally, Markov Chain Monte Carlo (MCMC), to which
this volume is mainly devoted, is a sophisticated version of this where one uses properties
of random walks to solve problems in high dimensional spaces, particularly those arising in
statistical mechanics, (ii) In modeling random processes in nature such as those arising in
ecology or economics. (iii) In cryptography, one uses randomness to hide information from
others. (iv) Random numbers may also be used in games, for example during interaction with
the user.

It is only the first class of applications to which this article is devoted, because these com-

putations require the highest quality of random numbers. The ability to do a multidimensional
integral relies on properties of uniformity of n-tuples of random numbers and/or the equiva-
lent property that random numbers be uncorrelated. The quality aspect in the other uses is
normally less important simply because the models are usually not all that precisely specified.
The largest uncertainties are typically due more to approximations arising in the formulation
of the model than those caused by lack of randomness in the random number generator.

In contrast, the first class of applications can require very precise solutions. Increasingly,
computers are being used to solve very well-defined but hard mathematical problems. For ex-
ample, as Dirac [1] observed in 1929, the physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are completely known and it is only neces-
sary to find precise methods for solving the equations for complex systems. In the intervening
years fast computers and new computational methods have come into existence. In quantum
chemistry, physical properties must be calculated to “chemical accuracy” (say 0.001 Rydbergs)
to be relevant to physical properties. This often requires a relative accuracy of 10° or better.
Monte Carlo methods are used to solve the “electronic structure problem” often to high levels
of accuracy [2] (see also articles by Reynolds, Nightingale, and Kalos in this volume). In these
methods one can use from 107 to 10'? random numbers, and subtle correlations between these
numbers could lead to significant errors.

Another example is from the numerical study of phase transitions. Renormalization theory
has proven accurate for the basic scaling properties of simple transitions. The attention of
the research community is now shifting to corrections to scaling, and to more complex models.
Very long simulations (also of the MCMC type) are done to investigate this effect and it has
been discovered that the random number generator can influence the results [3, 4, 5, 6]. As
computers become more powerful, and Monte Carlo methods become more commonly used and
more central to scientific progress, the quality of the random number sequence becomes more
important.

Given that the quality (which we shall define in a moment) of random numbers is becoming

more and more important, the unfortunate fact is that important aspects of quality are very
difficult to prove mathematically. The best one can do today is test empirically. But an
empirical test is always finite. We will report here tests on random number streams that are of
record length (up to about 10'? numbers). However, they will have to be redone in a few years
with even longer sequences. Also, important algorithms use random numbers in a way that is
hard to encapsulate in a test for which we know the answer, and so we must resort to general
guidelines on safe ways to use random number generators in practice.

This article constitutes a brief review of recent developments in random number genera-
tion. There are several excellent reviews of the older literature. In particular we recommend
the reader seriously interested in random number generation read the lengthy introduction in
Knuth [7] and the shorter introduction in the 2nd edition of Numerical Recipes [8]. More
information can also be found in references [9, 10, 11].

We shall focus here on developments caused by widespread use of parallel computers to
perform Monte Carlo calculations. Our impression is that individual users are porting random
number generators to parallel computers in an ad hoc fashion, possibly unaware of some of the
issues which come to the fore when massive calculations are performed. Parallel algorithms can
probe other qualities of random number generators such as inter-process correlation. There is
a recent review which covers parallel random number generation in somewhat more depth by
Coddington [12]. The interested reader can also refer to [13, 14, 15, 16, 17] for work related to
parallel random number generation and testing.

This article is structured as follows. First we discuss the desired properties that random
number generators should have. Next we discuss several methods that have been used as gen-
erators in particular on parallel computers. Then we discuss testing procedures and show some
results of our extensive tests. Quasi random numbers (QRN) have recently been introduced as
a way to achieve faster convergence than true random numbers. We briefly discuss these and
give some guidelines concerning those applications for which they are likely to be most effective.

We have recently developed a library implementing several of the parallel random number

generators and statistical tests of them on the most widely available multiprocessor computers.
Documentation and software are available at:

http://www.ncsa.uiuc.edu/Apps/CMP/RNG/RNG-home.html.
2 Desired Properties of Random Number Generators

In this section we discuss some of the desired properties of good random number generators.
We shall then explain specific implications of these for parallel random number generation.
First of all let us define a random number sequence, {u;} where 7 is an integer. In this article
we will be concerned exclusively with uniformly distributed numbers. Other distributions can
be generated by standard techniques [18]. Uniform numbers can be either reals, by convention
in (0,1) such as those returned by the FORTRAN ranf and C drand48 functions, or integer,
by convention in [1,2") for some n close to the word size on the computer. We shall denote the
reals by u; and the integers by I. Clearly, for many purposes integer and real generators on a

computer are virtually equivalent if n is large enough and if we define v = 127",
A. Randomness:

Let us consider the following experiment to verify the randomness of an infinite sequence of
integers in [1,d]. Suppose we let you view as many numbers from the sequence as you wished
to. You should then guess any other number in the sequence. If the likelihood of your guess
being correct is greater than 1/d, then the sequence is not random. In practice, to estimate the
winning probabilities we must play this guessing game several times.

This test has certain implications, the most important of which is the uniformity of the
individual elements. If the sequence consists of integers in [1, d], then the probability of getting
any particular integer should be 1/d. All good sequences are constructed to have this property.
But applications in statistical mechanics as well as other real applications rely heavily on
uniformity in higher dimensions, at least 4 dimensions if not thousands.

We define uniformity in higher dimensions as follows. Suppose we define n-tuples U* =

z=0
repeat loop N times
xtrial = x + 0 * (sprng() — 0.5)
if (exp(—p * (V(ztrial) — V(x))) > sprng()) then
z = xtrial
endif
end loop

Figure 1: Algorithm for simulating movement of the particle.
(4it1,---Uj+n) and divide the n-dimensional unit hypercube into many equal sub-volumes. A
sequence is uniform if in the limit of an infinite sequence all the sub-volumes have an equal
number of occurrences of random n-tuples. For a random sequence this will be true for all
values of n and all partitions into subvolumes, though in practice we only test for small values
of n.

The following simple Metropolis Monte Carlo example demonstrates how correlations be-
tween successive pairs of random numbers can give incorrect results. Suppose we sample the
movement of a particle along the z axis confined in a potential well which is symmetric about
the origin: V(z) = V(—z). The classic Metropolis algorithm is outlined in Fig. 1. At each
step in our calculations, the particle is moved to a trial position with the first random number
(sprng()) and then that step is accepted or rejected with the second random number.

Fig. 2 shows the results of the particle density computed exactly (for a harmonic well) with
a good random number sequence, and also with sequences which are deliberately chosen to be
correlated or anti-correlated. In the latter case a high number is likely to be followed by a
low number and a low number by a high number. The particle density is then not symmetric
because movements to the right are more likely to be rejected than movements to the left, so
that the final distribution is skewed. This occurs despite uniformity of the individual elements
of the sequence.

Now let us imagine how this changes for IV particles in three dimensions. The usual Metropo-

lis MC algorithm for a simple classical fluid will use random numbers four at a time (three for

0.5F

0.4}

0.3

0.2r

0.1r

Figure 2: Distribution of particle positions in one-dimensional random walk simulations. The
solid line shows the results with an uncorrelated sequence, the bold dashed line for sequences
with correlation coefficient = -0.2, and the dashed-dotted line for sequences with correlation
coefficient = 0.2.

the displacement and one for the acceptance test) so that the algorithm is potentially sensi-
tive to correlations between successive quadruples of numbers. But it can also be sensitive
to correlations of u; with w;14n since one usually goes through the particles in order, causing
Ui, Uj+4N, --- t0 be used for the same purpose on the same particle. Unfortunately, the usual
linear congruential generator has correlations between numbers separated by distances that are
powers of 2; so it is not a good idea to simulate systems where N is a power of 2 with this
generator. In general each Monte Carlo algorithm is sensitive to particular types of correlations,

making it hard to define a universal test.
B. Reproducibility:

In the early days of computers, it was suggested that one could make a special circuit element
which would deliver truly random numbers. Computer vendors have not supplied such an
element because it is not trivial to design a device to deliver high quality numbers at a sufficient
rate. Even more importantly, debugging codes would becomes much more difficult if each time

the code was run a completely irreproducible sequence were to be generated. In Monte Carlo

simulations, bugs may be manifest only at certain times, depending on the sequence of random
numbers obtained. In order to detect the errors, it is necessary to repeat the calculations to
find out how the errors occurred. The feature of reproducibility is also helpful while porting
the program to a different machine. If we have a sample run from one machine available, then
we can try an identical run on a different machine and verify that it ported correctly. Such
reproducible random number generators are said to be pseudo random (PRNG), and we shall
call the numbers produced by such generators as PRN's.

There is a conflict between the requirements of reproducibility and randomness. On a finite
memory computer, at any step k in the sequence the PRNG has an internal state specifiable
conceptually by an integer Sy, where the size of this integer is not necessarily related to the
word length of the computer. For each state S in the sequence, there is a mapping that gives a
random number the user sees, uy = F'(Sy). We also have an iteration process to determine the
next state of the sequence from the current state, Sy11 = T'(Sk). All PRNGs can be classified
by the internal state space, the mapping, and the iteration. The sequence is defined once we
have specified the initial starting state Sy known as the seed. Fig. 3 illustrates the procedure
for obtaining pseudo-random sequences described above.

Now let us return to the possible conflict between the properties of reproducibility and
randomness: if it is reproducible then it cannot be perfectly random since knowing the sequence
will make betting on the next number easy. How do we resolve the incompatibility between
the two properties? In common sense terms, we mean a good PRNG is one whose numbers
are uncorrelated as long as you do not explicitly try to back out the mapping and iteration
processes and use that to predict another member of the sequence. PRNG’s have not been

designed to be good cryptographic sequences.
C. Speed:

It is of course desirable to generate the random numbers fast. While for some applications

the generation of the random numbers is the limiting factor, many generators take only a few

Cycle

T T
/SO » Sn-]—> sn _> sn+.| »
Seed F F F
| n-1 | n | n+1
U n-1 U n U n+1

Figure 3: A pseudo-random sequence is defined by the internal state space, the mapping, the
iteration, and the initial state.

clock cycles to deliver a new number so that usually the generation of random numbers is only
a small fraction of the time required for the calculation. Hence speed is not a major concern
unless, either the generator is extremely slow, or the remainder of the algorithm is extremely

fast such as with a lattice spin model.
D. Large cycle length:

A pseudo random number generator is a finite state machine with at most 2P different states
where p is the number of bits that represent the state. One can easily see that the sequence
must repeat after at most 2P different numbers have been generated. The smallest number of
steps after which the generator starts repeating itself is called the period or cycle length, L.
Assuming all cycles have the same length, the number of disjoint cycles (i.e. having no states
in common) is then: 27 /L.

A computer in 1997 might deliver 108 numbers/processor/ second (or 22¢). Hence it will
take 1 second to exhaust a generator with a 26 bit internal state and 1 year to exhaust one

with 2% internal states. This suggests that it could be dangerous to use the 32 bit generators

developed for the microprocessors of the 1980’s on today’s computers. After the sequence is
exhausted, the “true” error of a simple MC evaluation integral will no longer decrease and one
can be mislead into trusting an incorrect answer.

However, for many applications a small period will not in itself bias the results significantly.
For example in MCMC we can think of the “state” of the random walk as consisting both of the
coordinates of the particles (say 3N position variables) and of the internal state of the PRNG.
The walk will repeat itself only if all the coordinates are exactly the same. Hence even if the
random number sequence repeats, the particles will have moved on and have a different internal
state. However, it is not a good idea to have repeating sequences, especially since it is easy to

avoid.
Parallelization:

We next mention the implications of correlation and cycle length on parallel random number
generators (PPRNG).

In order to get higher speed, Monte Carlo applications make extensive use of parallel com-
puters, since these calculations are particularly well suited to such architectures and often
require very long runs. A common way to parallelize Monte Carlo is to put identical “clones
” on the various processors; only the random number sequences are different. It is therefore
important for the sequences on the different processors to be uncorrelated. That is, given an
initial segment of the sequence on one process, and the random number sequences on other pro-
cesses, we should not be able to predict the next element of the sequence on the first process.
For example, it should not happen that if we obtain random numbers of large magnitude on
one process, then we are more likely to obtain large numbers on another.

Consider the following extreme case to demonstrate the impact of correlations. Suppose we
perform identical calculations on each process, expecting different results due to the presence

of a different random number sequence. If, however, we use the same sequence on each process,

then we will get an identical result on each process and the the power of the parallel computer

is wasted. Even worse we may incorrectly believe that the errors are much reduced because
all processes give identical results. Such cases routinely occur when users first port their MC
codes to parallel computers without considering how the random number sequence is to be
parallelized.

Even if the correlations across processes are not perfect, any correlation can affect the
random walk. It is generally true that inter-processor correlation is less important that intra-
processor correlation, but that can depend on the application. The danger is that a particular
parallel application will be sensitive to a particular correlation. New statistical tests have to be
invented for correlation between processors.

The desire for reproducibility, when combined with speed, is also an important factor, and
limits the feasible parallelization schemes. We shall next describe some common schemes for

creating PPRNGs along with their merits.

1. Central Server

One can maintain one particular process that serves as a centralized random number
generator for all the processes. Any process that requires a random number obtains
it from that process by sending messages. Such a scheme reduces the speed greatly
since inter-processor communication is very expensive and the process needing the PRN
must have exclusive access to the server to ensure that there are no conflicts. It also
hinders reproducibility because the different processes may request random numbers in
different orders in different runs of the program, depending on the network traffic and

implementation of the communication software.

2. Cycle Division

In one popular scheme the same iteration process is used on the different processes, but
with widely separated seeds on each process. There are two related schemes: (i) the
leap frog method where processor ¢ gets u;, ujyas, ..., where M is the total number of

processes. For example, process 1 gets the first member of the sequence, process 2 the

10

second and so forth. (ii) In the cycle splitting method for M processors, process i + 1 gets
Ui M Uil /M 41, ---» Where [is the cycle length. That is, the first process will get the first

L/M numbers, the second process the second L/M numbers, and so forth.

Both methods require a fast way of advancing the PRNG a few steps; faster than iterating
the sequence that number of steps. In the first method we need to be able to advance by
M steps at each iteration. In the second method we need to be able to advance by L/M
steps during initialization.

Statistical tests performed on the original sequence are not necessarily adequate for the

divided sequence. For example, in the leap frog method correlations M numbers apart in

the original sequence become adjacent correlations of the split sequence.

Clearly either method reduces the period of the original sequence by the number of pro-
cesses. For example, with 512 nodes running at 100 MFlops one will exhaust the sequence
of a PRNG with a 46 bit internal state (the common real*8 or long rng) in only 23 min-
utes! If the number of random numbers consumed is greater than expected, then the

sequences on different processes could overlap.

. Cycle Parameterization

Another scheme makes use of the fact that some PRNGs have more than one cycle. If we
choose the seeds carefully, then we can ensure that each random sequence starts out in a
different cycle, and so two sequences will not overlap. Thus the seeds are parameterized
(that is, sequence i gets a seed from cycle i, the sequence number being the parameter
that determines its cycle). This is the case for the Lagged Fibonacci Generator described

in the next section.

. Parameterized Iteration

Just as the disjoint cycles can be parameterized, so can many of the iteration functions
for the internal state as with the Generalized Feedback Shift Register described in the

next section. Here, sequence i gets iteration function 7;.

11

It is difficult to ensure reproducibility if the number of processors changes between one run
and the next. This problem cannot be solved by the PPRNG in itself. In order to write a
parallel MC application which gives identical results with a variable number of processors, it
is necessary to write in terms of ”virtual processors”, each virtual processor having its own
PRNG. Each physical processor would handle several virtual processors. It is unlikely that
many programmers would go to this much trouble just to ensure that their code has this degree
of portability unless it can be done automatically.

There are other consequences of the desire for reproducibility and speed. As an example,
consider the simulation of a branching process. Suppose “neutron” paths are generated based
on the outcome of various interactions between the neutrons and a medium. During a neutron
flight, the neutron may collide with an atom and produce new neutrons (fission) or be absorbed
(fusion). Efficient utilization of the processors requires good load balancing, and so one can move
the computation of the statistics for new neutrons to different processors in order to keep the
work evenly balanced. To ensure reproducibility in different runs, each neutron must be given
a different random number sequence in a deterministic fashion. Thus, in a repetition of a run,
even if the neutron is migrated to a different processor, the same random number sequence will
be produced in determining its path. We also need to ensure that the random number sequence
produced for each neutron is unique without incurring inter-processor communication. This
can be accomplished by developing the ability to “spawn” unique sequences from an existing
one.

We take the model that when a new process forks, a new sequence is generated for that
process. Each sequence can be identified by a parameter if we parallelize the generators by any
of the methods of parameterization described earlier. We ensure uniqueness of the new sequence
by assigning each process a set P of parameters available for spawning. When a process forks,
it partitions the elements of P among itself and its children, to create new sets of parameters
available for spawning as shown in Fig. 4. Since the sets available for spawning on each process

are disjoint, different sequences are obtained on each process. There is, however, the risk that

12

eventually all the parameters could be used up; so we should not spawn too often. In the next
section we will discuss some generators with very large numbers of possible parameters, so that

quite a lot of spawning could be done before we would be in danger of repeating parameters.

p=0
P={l,2, .., 8}
Spawn AN
AN
B C A (after spawning)
pP= p=2 p=0
P = {3,6} P={4,7} P = {5,8}

Figure 4: Process A spawns processes B and C. Each new process gets a new random number
sequence parameterized by p and a set of parameters P for spawning.

On today’s parallel computers communication is very slow compared to floating point per-
formance. It is sometimes possible to use multiple random number sequences to reduce the
communication costs in a Monte Carlo simulation. An example occurs in our parallel path
integral calculations [19]. The total configuration space of the imaginary time path is divided
into subspaces based on the “imaginary time” coordinate so that a given processor has control
over a segment of imaginary time. Most moves are made on variables local to each processor
but occasionally there are global moves to be made which move all values of imaginary time,

where each processor has to evaluate the effect of the move on its variables. For these moves

13

the number of messages can be cut in half by having available two different sequences of ran-
dom numbers on each processor: (i) a local sequence which is different on each processor (and
uncorrelated) and (ii) a global sequence shared by all processors. The global sequence permits

4

all the processors to “predict” without communication what the global move will be, evaluate
its consequence on their variables, and then “vote” whether that global move is acceptable.
Thus half of the communication and synchronization cost is avoided compared to the scheme

whereby a master processor would generate the global move, send it out to all the workers and

tally up the results from the various processors.

3 Methods for Random Number Generation

We describe in this section some popular basic generators and their parallelization. We also

mention about “combined generators”, which are obtained from the basic ones.
3.1 Linear Congruential Generators

The most commonly used generator for pseudorandom numbers is the Linear Congruential
Generator (LCG) [20]:

Ty =aTp_1+b (modm). (1)

where m is the modulus, a¢ the multiplier, and ¢ the additive constant or addend. The size of
the modulus constrains the period, and it is usually chosen to be either prime or a power of 2.

This generator (with m a power of 2 and ¢ = 0) is the de facto standard included with
FORTRAN and C compilers. One of the biggest disadvantages to using a power of 2 modulus
is that the least significant bits of the integers produced by these LCGs have extremely short
periods. For example, {z, (mod 27)} will have period 27 [7]. In particular, this means the
the least-significant bit of the LCG will alternate between 0 and 1. Since PRNs are generated
with this algorithm, some cautions to the reader are in order: (i) The PRN should not be split
apart to make several random numbers since the higher order bits are much more random than

the lower order bits. (ii) One should avoid using the power of 2 modulus in batches of powers

14

of 2. (For example if one has 1024 particles in 3 dimensions, one is using the PRNs 4096 at a
time and the correlations between a PRN and one 4096 later may be large.) (iii) Generators
with large modulus are preferable to ones with small modulus. Not only is the period longer,
but the correlations are much less. In particular one should not use 32 bit modulus for careful
work. In spite of this known defect of power of 2 LCGs, 48 bit multipliers (and higher) have
passed many very stringent randomness tests.

Generally LCGs are best parallelized by parameterizing the iteration process, either through
the multiplier or the additive constant. Based on the modulus, different parameterizations have

been tried.
3.1.1 Power of 2 Modulus

The parameterization chooses a set of additive constants {b;} that are pairwise relatively prime,
i.e. ged(bi,bj) = 1 when 7 # j so that the sequences are generated in different orders. The
best choice is to let b; be the jth prime less than /m/2 [14]. One important advantage of this
parameterization is that there is an inter-stream correlation measure based on the spectral test

that suggests that there will be good inter-stream independence.
3.1.2 Prime Modulus

When the modulus m is prime, (usually very close to a power of 2 such as a Mersenne prime,
2™ — 1, so that the operation of taking the modulus will be faster) a method based on using
the multiplier, a, as the parameter to generate many sequences has been proposed. We start

with a reference value of a and choose the multiplier for the jth stream as a; = abi

(mod m)
where Z; is the jth integer relatively prime to m — 1. This is closely related to the leapfrog
method method discussed earlier. Conditions on a and efficient algorithms for computing /;
can be found in a recent work of one of the authors [16].

The scheme given above can be justified based on exponential sums, which is explained in

section 4.1. Two important open questions remain: (1) is it more efficient overall to choose m

to be amenable to fast modular multiplication or fast calculation of the jth integer relatively

15

prime to m — 1, and (2) does the good inter-stream correlation also ensure good intra-stream

independence via the spectral test?
3.2 Shift-Register Generators

Shift Register Generators (SRGs) [21, 22| are of the form:
k-1
Ttk = Z 0;iTnt; (mod 2), (2)
i=0
where the z,,’s and the a;’s are either 0 or 1. The maximal period of 2% _ 1 and can be achieved
using as few as two non-zero values of a;. This leads to a very fast random number generator.

There are two ways to make pseudorandom integers out of the bits produced by Eq. (2).
The first, called the digital multi-step method, takes n successive bits from Eq. (2) to form an
integer of n-bits. Then n more bits are generated to create the next integer, and so on. The
second method, called the generalized feedback shift-register, creates a new n-bit pseudorandom
integer for every iteration of Eq. (2). This is done by constructing the n-bit word from the last
bit generated, x,,+x, and n — 1 other bits from the k bits of SRG state. Thus a random number
is generated for each new bit generated. While these two methods seem different, they are
very related, and theoretical results for one always hold for the other. Serious correlations can
result if k is small. Reader’s interested in more general information on SRGs should consult
the references: [23, 21, 22].

The shift register sequences can be parameterized through the choice of a;. One can sys-
tematically assign the values of a; to the processors to produce distinct maximal period shift
register sequences [24]. This scheme can be justified based on exponential sum bounds, as in
the case of the prime modulus LCG. This similarity is no accident, and is based on the fact

that both generators are maximal period linear recursions over a finite field [25].
3.3 Lagged-Fibonacci Generators
The Additive Lagged-Fibonacci Generator (ALFG) is:
Tp=Tp—j+ Zpp (mod2™), j<k. (3)

16

In recent years the ALFG has become a popular generator for serial as well as scalable parallel
machines because it is easy to implement, it is cheap to compute and it does well on standard
statistical tests [11], especially when the lag k is sufficiently high (such as & = 1279). The
maximal period of the ALFG is (2¥ —1)2™~1 [26, 27] and has 2(:=1)*(m~1) different full-period
cycles [28]. Another advantage of the ALFG is that one can implement these generators directly
in floating-point to avoid the conversion from integer to floating-point that accompanies the
use of other generators. However, some care should be taken in the implementation to avoid
floating point round-off errors [15].

In the previous sections we have discussed generators that can be parallelized by varying a
parameter in the underlying recursion. Instead the ALFG can be parameterized through its ini-
tial values because of the tremendous number of different cycles. We produce different streams
by assigning each stream a different cycle. An elegant seeding algorithm that accomplishes this
is described in reference [28].

An interesting cousin of the ALFG is the Multiplicative Lagged-Fibonacci Generator (MLFG).
It is defined by:

Ty =Tp—j X Ty (mod 2™), j<Ek. (4)

While this generator has a maximal-period of (2% —1)27~3, which is a quarter the length of the
corresponding ALFG [27], it has empirical properties considered to be superior to ALFGs [11].
Of interest for parallel computing is that a parameterization analogous to that of the ALFG

exists for the MLFG [29].
3.4 Inversive Congruential Generators

An important new type of PRNG that, as yet, has not found any widely distributed implemen-
tation is the Inversive Congruential Generator (ICG). This generator comes in two versions,
the recursive ICG [30, 31]

Ty = aTp_1+b (mod m), (5)

17

and the explicit ICG [32]

Tn =an+0b (mod m). (6)

In both the above equations ¢ denotes the multiplicative inverse modulo m in the sense that
cc=1 (mod m) when ¢ # 0, and 0 = 0.

An advantage of ICGs over LCGs are that tuples made from ICGs do not fall in hyper-
planes [33, 34]. Unfortunately the cost of doing modular inversion is considerable: it is O(logy m)

times the cost of multiplication.
3.5 Combination Generator

Better quality sequences can often be obtained by combining the output of the basic generators

to create a new random sequence as follows:
Zn = ZTn O Yp (7)

where ® is typically either the exclusive-or operator or addition modulo some integer m, and
x and y are sequences from two independent generators. It is best if the cycle length of the
two generators is relatively prime, for this implies that the cycle length of z will be the product
of that of the basic generators. One can show that the statistical properties of z are no worse
than those of z or y [11]. In fact, one expects it would be much superior but little has yet been
proven to date.

Good combined generators have been developed by L’Ecuyer [35], based on the addition of

Linear Congruential sequences.

4 Testing Random Number Generators

We have so far discussed the desired features of random number generators and described some
of the popular generators used in Monte Carlo applications. Now the question arises: How
good are the random number generators? While most generators are quite good for a variety of
applications, there have been a few applications in which popular generators have been found

to be inadequate [3, 4, 5, 6].

18

Sophisticated Monte Carlo applications often spend only a small fraction of their time in
the actual random number generation. Most of the time is taken up by other operations. It is
therefore preferable if we can test the random number generator fast, without actually using it
in the application, to determine if it is good. For example in the runs test we divide the random
number sequence into blocks that are monotonically increasing, and determine the distribution
of the lengths of each block. This is a good test of randomness because it is fast and looks at
correlations between longer and longer groups of random numbers. (Using a sequence of length
10'? we expect to see runs as long as 15.)

However, a single statistical test is not adequate to verify the randomness of a sequence,
because typical MCMC applications can be sensitive to various types of correlations. However, if
the generator passes a wide variety of tests, then our confidence in its randomness increases. The
tests suggested by Knuth [7] and those implemented in the DIEHARD package by Marsaglia [36]
are a standard. Since there are many generators which pass these tests there is no reason to
consider one that is known to fail. Of course, any generator will eventually fail most tests, so
we always must state how many numbers were used in the test. level of accuracy).

The second type of test is to run an application that uses random numbers in a similar
manner to your applications, but for which the exact answer is known. For statistical mechanical
applications, the two-dimensional Ising model (a simple lattice spin model) is often used since
the exact answer is known and it has a phase transition so one expects sensitivity to long
range correlations. There are several different MCMC algorithms that can be used to simulate
the Ising model and the random numbers enter quite differently in each algorithm. Thus this
application is very popular in testing random number generators and has often detected defects
in generators. We can test parallel generators on the Ising model application by assigning
distinct random number sequences to subsets of lattice sites [37].

How good are the popular generators on the Ising model? Ferrenberg, et al [3] found that
certain generators such as the particular shift register generator they used (R250) failed with

the Wolff algorithm, while the simple and much maligned 32 bit LCG called CONG did well.

19

Similar defects in popular generators have also been observed by others [4, 5, 6]. However, with
the Metropolis algorithm, CONG performed much worse than R250. Thus it appears that it
is the combination of problem and generator that must be considered in choosing a suitable
generator. Thus statistical tests are not adequate; we must also test the generators in our
actual application.

Of course in almost all cases we do not know the exact answer. How then can we trust a given
generator on our problem? The only general approach is to run our application with several
different types of generators that are known to have good statistical properties. Hopefully at
least two will agree within the error bars and they can be used on further similar runs with
that algorithm. A word of caution: the test runs must be at least as long as the production
runs because subtle correlations in the PRNG may not show up until long runs are made. This
approach is quite computationally expensive and if done seriously would increase the cost of all
MC simulations by a factor of two. (If you decide at the end that all generators are good, you

can recover the time by averaging the results together.)
4.1 Parallel Tests

We now mention some tests of parallel random number generators.
Ezponential sums: The exponential sum (Fourier transform of the density) of a sequence
UQ, veey Up 1S:

k—1
Cylk) =Y emiis. (8)
=0

For a random sequence (|C,(k)[?) = k (for g # 0). This fact can be used to test correlation
within, and between, random number sequences [13, 16]. Consider two random sequences X

and Y and define the exponential sum cross-correlation:

k—1
Cylh, 1 k) =Y >9lonmss —vi) 9)
j=0

In each term of this sum, we find the difference between an element of each sequence at a fixed

offset apart. If this difference were uniformly distributed, then we should have: (|C(j,1,k)|?) = k

20

Parallel spectral test: Percus and Kalos [14] have developed a version of the spectral test
for parallel linear congruential generators.

Interleaved tests: We create a new random sequence by interleaving several random se-
quences, and test this new sequence for randomness using standard sequential tests.

Fourier transform test: Generate a two dimensional array of random numbers with each
row in the array consisting of consecutive random numbers from one particular sequence. The
two dimensional Fourier transform can be performed. For a truly uncorrelated set of sequences
the coeflicients (except the constant term) should be close to 0.

Blocking test: In the blocking test we add random numbers from several streams as well as
from within a stream. If the streams are independent, then the distribution of these sums will
approach the normal distribution.

We now give some test results for the LCG with (parameterized) prime addend and a
modified version of the LFG. Both of these generators performed acceptably in the sequential
tests with 10'! random numbers. Preliminary results from other tests of PPRNG can also be
found in the paper by Coddington [37].

We first tested the generators by interleaving about 1000 pairs of random sequences each
containing about 1028 PRNs. Both the generators passed this tests. Next we simulated par-
allelism on the 16 x 16 Ising model by using a different random sequence for each lattice site
in the Metropolis algorithm. The LCG (with identical seeds) failed badly as can be seen from
the dashed line in Fig. 5. We then generalized the statistical tests, interleaving 256 sequences
at a time. The LCG again failed, demonstrating the effectiveness of these tests in detecting
non-random behavior. The modified LFG passed these tests.

In the tests mentioned above, we had started each parameterized LCG with the same
seed but used different additive constants. Even when we discarded the first million random
numbers from each sequence, the sequences were still correlated. However, when we started
the streams from different, systematically spaced seeds, the LCG passed all statistical tests

(including parallel ones) with up to 10! - 10'2 numbers. We finally repeated the parallel

21

-1

10

Error in Energy

I

-5 -4

10 10

Standard Error

3 -2

10 10

Figure 5: Plot of the actual error versus the internally estimated standard deviation of the
energy error for Ising model simulations with the Metropolis algorithm on a 16 x 16 lattice
with a different Linear Congruential sequence at each lattice site. The dashed line shows the
results when all the Linear Congruential sequences were started with the same seeds but with
different additive constants. The solid line shows the results when the sequences were started
with different seeds. We expect around 95% of the points to be below the dotted line (which
represents an error of two standard deviations) with a good generator.

22

Metropolis algorithm simulation with 10! random numbers, and both generators performed
acceptably, as can be seen from the solid line in Fig. 5.

Apart from verifying the quality of two particular generators, our results illustrate that it
is commonplace for generators to pass some test and fail others. It is important to test parallel
generators the way they will be seeded, since correlations in the seeding can lead to correlations

in the resulting sequences.

5 Quasi-random numbers

It is well known that the error estimate from any MC calculations (or in general from a sim-
ulation) converges as N ~1/2 where N is the number of random samples or equivalently the
computer time expended. Recently there has been much research into whether non-random
sequences could result in faster convergence, but still have the advantages of MC in being
applicable to high-dimensional problems.

Consider the integral:
1
I= / &of(z) (10)
0

The Monte Carlo estimate for this integral is:

1 n
L= =Y f(=i), (11)
"=
where the points x; are to be uniformly distributed in the s-dimensional unit cube. An impor-
tant, and very general, result that bounds the absolute error of the Monte Carlo estimate is the

Koksma-Hlwaka inequality [25]:
|1 — 1| < Dy(@)V(£), (12)

where Dg(z;) is the discrepancy of the points z; as defined by Eq. (13), and V(f) is the total
variation of f on [0,1)® in the sense of Hardy and Krause [38]. The total variation is roughly
the average absolute value of the s derivative of f(z).

Note that Eq. (12) gives a deterministic error bound for integration because V(f) depends

only on the nature of the function. Similarly, the discrepancy of a point set is a purely geometric

23

property of that point set. When given a numerical quadrature problem, we must cope with
whatever function we are given, it is really only the points, z;, that we control. Thus one
approach to efficient integration is to seek point sets with small discrepancies. Such sets are
necessarily not random but are instead referred to as quasi-random numbers (QRNS).

The s dimensional discrepancy of the N points, z; is defined as:

#(37 CEZ)

-~ AB). (13)

Dy(z;) = sup
B

Here B is any rectangular subvolume inside the s-dimensional unit cube with sides parallel to
the axes and volume A(b). The function #(B, z;) counts the number of points of z; in B. Hence
a set of points with a low discrepancy covers the unit cube more uniformly than one with a
large discrepancy. A lattice has a very low discrepancy, however adding additional points to
the lattice is slow in high dimensions. The discrepancy of a lattice does not decrease smoothly
with increasing V.

A remarkable fact is that there is a lower (Roth) bound to the its discrepancy [39]:
D¥(z;) > CsN ™ (log N)~V/2 s > 3. (14)

This gives us a target to aim at for the construction of low-discrepancy point sets (quasi-random

numbers). For comparison, the estimated error with random sequences is:

<(I—f>2>=\/§ =] (15)

The quantity in brackets, the variance, only depends on f. Hence the standard deviation of

the Monte Carlo estimate is O(N~'/2). This is much worse than the bounds of Eq. (14) as a
function of the number of points. It is this fact that has motivated the search for quasi-random
points.

What goes wrong with this argument as far as most high-dimensional problems in physical
science is that the Koksma-Hlwaka bound is extremely poor for large s. Typical integrands
become more and more singular the more one differentiates. The worse case is the Metropolis

rejection step: the acceptance is itself discontinuous. Even assuming V(f) were finite, it is

24

likely to be so large (for large s) that truly astronomical values of N would be required for the
bound in Eq. (14) to be less than the MC convergence rate given in Eq. (15).

We will now present a very brief description of quasi-random sequences. Those interested
in a much more detailed review of the subject are encouraged to consult the recent work of
Niederreiter [25]. An example of a one-dimensional set of quasi-random numbers is the van der
Corput sequence. First we choose a base, b, and write an integer n in base b as n = Eiozg(’)’n a;b'.

Then we define the van der Corput sequence as z,, = E;fgn a;b~*~1. For base b = 3, the first

12 terms of the van der Corput sequence are:

ol2iar2s8 L0)
3°3'9°9°9°979°9727° 27727

One sees intuitively how this sequence, while not behaving in a random fashion, fills in all the
holes in a regular and low-discrepancy way.

There are many other low-discrepancy point sets and sequences. Some, like the Halton
sequence [40] use the van der Corput sequence. There have been many others which are thought
to be more general and have provably smaller discrepancy. Of particular note are the explicit
constructions of Faure [41] and Niederreiter [42].

The use of quasi-random numbers in quadrature has not been widespread because the claims
of superiority of quasi-random over pseudo-random for quadrature have not been shown empiri-
cally especially for high dimensional integrals and never in MCMC simulations [43]. QRNs work
best in low dimensional spaces where the spacing between the points can be made small with
respect to the curvature of the integrand. QRNs work well for very smooth integrands. The
Boltzmann distribution exp (—V(R)/kgT) is highly peaked for R a many dimensional point.
Empirical studies have shown that the number of integration points needed for QRN error to
be less than the MC error increases very rapidly with the dimensionality. Until the asymptotic
region is reached, the error of QRN is not very different from simple MC. Also there are many
MC tricks which can be used to reduce the variance such as importance sampling, antithetic
sampling and so forth. Finally MC has a very robust way of estimating errors; that is one of its

main advantages as a method. Integrations with QRNs have to rely on empirical error estimates

25

since the rigorous upper bound is exceedingly large. It may happen that the integrand in some

way correlates with the QRN sequence so that these error estimates are completely wrong, just

as sometimes happens with other deterministic integration methods.

There seem to be some advantages of quasi-random over pseudo-random for simple smooth

integrands that are effectively low dimensional (say less than 15 dimensions), but they are much

smaller than one is lead to expect from the mathematical results.

ACKNOWLEDGMENT

We wish to acknowledge the support of DARPA through grant number DABT 63-95-C-0123

and the NCSA for computational resources.

References

[1] P. A. M. Dirac. Proc. R. Soc. London Ser A, 123:734, 1929.

[2] J. B. Anderson. In S. R. Langhoff, editor, Understanding Chemical Reactivity. Kluwer,
Dordrecht, The Netherlans, 1995.

[3] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong. Monte Carlo simulations: Hidden errors
from “good” random number generators. Phys. Rev. Let., 69:3382-3384, 1992.

[4] P. Grassberger. On correlations in 'good’ random number generators. Phys. Lett. A,
181(1):43-46, 1993.

[6] W. Selke, A. L. Talapov, and L. N. Schur. Cluster-flipping Monte Carlo algorithm and
correlations in “good” random number generators. JETP Lett., 58(8):665-668, 1993.

[6] F. Schmid and N. B. Wilding. Errors in Monte Carlo simulations using shift register
random number generators. Int. J. Mod. Phys. C, 6(6):781-787, 1995.

[7] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,

Second edition. Addison-Wesley, Reading, Massachusetts, 1981.

26

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
FORTRAN. Cambridge University Press, New York, NY, second edition, 1994.

S. K. Park and K. W. Miller. Random number generators: good ones are hard to find.
Comm. of the ACM, 31:1192-1201, 1988.

P. L’Ecuyer. Random numbers for simulation. Comm. of the ACM, 33:85-97, 1990.

G. Marsaglia. A current view of random number generators. In Computing Science and

Statistics: Proceedings of the X VIth Symposium on the Interface, pages 3-10, 1985.

P. Coddington. Random number generators for parallel computers, 28 April 1997.

http://www.npac.syr.edu/users/paulc/papers/NHSEreviewl.1/PRNGreview.ps.

M. Mascagni, S. A. Cuccaro, D. V. Pryor, and M. L. Robinson. Recent developments in
parallel pseudorandom number generation. In D. E. Keyes, M. R. Leuze, L. R. Petzold, and
D. A. Reed, editors, Proceedings of the Sixth SIAM Conference on Parallel Processing for

Scientific Computing, volume II, pages 524-529, Philadelphia, Pennsylvania, 1993. STAM.

O. E. Percus and M. H. Kalos. Random number generators for MIMD parallel processors.
J. of Par. Distr. Comput., 6:477-497, 1989.

R. P. Brent. Uniform random number generators for supercomputers. In Proceedings Fifth

Australian Supercomputer Conference, pages 95-104. 5ASC Organizing Committee, 1992.

M. Mascagni. Parallel linear congruential generators with prime moduli. IMA Reprint

1470 and submitted, 1997.

M. Mascagni S. A. Cuccaro and D. V. Pryor. Techniques for testing the quality of parallel
pseudorandom number generators. In Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing, pages 279-284, Philadelphia, Pennsylvania,
1995. STAM.

27

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Kalos and P. Whitlock. Monte Carlo Methods. Wiley-Interscience, New York, 1986.

Volume I: Basics.

D. M. Ceperley. Path integrals in the theory of condensed helium. Reviews of Modern
Physics, 67(2):279-355, 1995.

D. H. Lehmer. Mathematical methods in large-scale computing units. In Proceedings of the
2nd Symposium on Large-Scale Digital Calculating Machinery, pages 141-146, Cambridge,

Massachusetts, 1949. Harvard University Press.

T. G. Lewis and W. H. Payne. Generalized feedback shift register pseudorandom number
algorithms. J. of the ACM, 20:456-468, 1973.

R. C. Tausworthe. Random numbers generated by linear recurrence modulo two. Math.

Comput., 19:201-209, 1965.

S. W. Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills, California,
1982. Revised Edition.

J. L. Massey. Shift-register synthesis and bch decoding. IEEFE Trans. Information Theory,
15:122-127, 1969.

H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM,

Philadelphia, Pennsylvania, 1992.

R. P. Brent. On the periods of generalized Fibonacci recurrences. Math. Comput., 63:389—
401, 1994.

G. Marsaglia and L.-H. Tsay. Matrices and the structure of random number sequences.

Linear Alg. and Applic., 67:147-156, 1985.

M. Mascagni, S. A. Cuccaro, D. V. Pryor, and M. L. Robinson. A fast, high-quality,
and reproducible lagged-Fibonacci pseudorandom number generator. J. Comput. Physics,

15:211-219, 1995.

28

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Mascagni. A parallel non-linear Fibonacci pseudorandom number generator, 1997.

Abstract, 45th STAM Annual Meeting.

J. Eichenauer and J. Lehn. A nonlinear congruential pseudorandom number generator.

Statist. Hefte, 37:315-326, 1986.

H. Niederreiter. Statistical independence of nonlinear congruential pseudorandom numbers.

Montash. Math., 106:149-159, 1988.

H. Niederreiter. On a new class of pseudorandom numbers for simulation methods. J.

Comput. Appl. Math., 56:159-167, 1994.

G. Marsaglia. Random numbers fall mainly in the planes. Proc. Nat. Acad. Sci. U.S.A.,
62:25-28, 1968.

G. Marsaglia. The structure of linear congruential sequences. In S. K. Zaremba, editor,
Applications of Number Theory to Numerical Analysis, pages 249-285. Academic Press,
New York, 1972.

P. I’Ecuyer. Efficient and portable combined random number generators. Comm. of the

ACM, 31:742-774, 1988.
G. Marsaglia. Diehard. ftp://stat.fsu.edu/pub/diehard.

P. Coddington. Tests of random number generators using Ising model simulations. Int. J.

of Mod. Phys. “C”, 7(3):295-303, 1996.

E. Hlwaka. Funktionen von beschriankter variation in der theorie der gleichverteiling. Ann.

Mat. Pura Appl., 54:325-333, 1961.
K. F. Roth. On irregularities of distribution. Mathematika, 1:73-79, 1954.

J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating

multi-dimensional integrals. Numer. Math., 2:84-90, 1960.

29

[41] H. Faure. Using permutations to reduce discrepancy. J. Comp. Appl. Math., 31:97-103,
1990.

[42] B. L. Fox P. Bratley and H. Niederreiter. Implementation and tests of low-discrepancy

point sets. ACM Trans. on Modeling and Comp. Simul., 2:195-213, 1992.

[43] W. J. Morokoff and R. E. Caflisch. Quasi-Monte Carlo integration. J. Comp. Phys.,
122:218 230, 1995.

30

